
Coarse Grain Parallel Finite Element Simulations
for Incompressible Flows

P.W. Grant and M.F. Webster1

Institute of non–Newtonian Fluid Mechanics
Department of Computer Science
University of Wales Swansea
Swansea, SA2 8PP, UK

X. Zhang2

Department of Computer Science and Information Systems
Brunel University
Uxbridge, Middlesex, UB8 3PH, UK

Parallel simulation of incompressible fluid flows is considered on networks of homogeneous work-
stations. Coarse-grain parallelization of a Taylor–Galerkin/pressure–correction finite element
algorithm are discussed, taking into account network communication costs. The main issues
include the parallelization of system assembly, and iterative and direct solvers, that are of com-
mon interest to finite element and general numerical computation. The parallelization strategies
are implemented on a Sun workstation cluster using the PVM (Parallel Virtual Machine) mes-
sage passing library. Test results are obtained with a maximum of nineteen workstations and
various PVM configurations are exhibited. Parallel efficiency close to ideal has been achieved
for some strategies adopted. It is suggested that loadbalancing may not always be beneficial
on distributed platforms with broadcasting communication connection. c© ??? John Wiley &
Sons, Inc.

Keywords: Distributed parallelization, finite elements, coarse–grain parallelism

I. INTRODUCTION

Computational Fluid Dynamics (CFD) is well known as a problem domain for its compu-
tational intensive nature, with applications found in many different areas of science and

1Author for correspondence.
2This author was employed by the Department of Computer Science, University of Wales
Swansea as a Senior Research Assistant when the research was carried out.

Numerical Methods in Engineering ???, 1?? (???)
c© ??? John Wiley & Sons, Inc. CCC ???

2 P.W. GRANT, M.F. WEBSTER AND X. ZHANG

engineering. This is particularly true for the simulation of rheologically complex flows,
that arise in many industrial processes and remain an elusive challenge even for the more
advanced modern computers. Parallel computing is thus perceived as a promising avenue
for future advances in this applied area of science.

A Taylor–Galerkin/ pressure–correction (TGPC) finite element semi–implicit time
marching scheme has been developed in Swansea in a sequential form for the simulation
of incompressible Newtonian and non-Newtonian flows [1, 2]. Here it is invoked for
Newtonian flows. One of its merits for complex flows is its considerable computational
accuracy. This algorithm has been used as a case study to develop an efficient parallel
implementation, and investigations into implementations using a functional language
have also been conducted [4, 5]. This paper presents a detailed study into how parallelism,
in this finite element algorithm, can be explored, investigating various schemes through
experimental testing. The target hardware platform is that of a network of homogeneous
workstations. The parallelization strategies and associated test results are instructive for
a wide range of CFD application domains. At this stage, issues such as heterogeneous
networks and load balancing are yet to be investigated. PVM [6] software is adopted to
support message passing among current software processes.

The paper is organized as follows. Section II. includes a brief review of the equations
governing the flow of incompressible fluids and an overview of the TGPC algorithm. Sec-
tion III. describes a domain decomposition approach, that is commonly adopted to allow
the exploitation of data parallelism in field problems for distributed memory platforms.
Test CFD problems addressed are described in Section IV. Sections V. to VII. are devoted
to the parallelization of individual algorithm components and and their integration. Sec-
tion VIII. examines the effect of a degree of freedom parallelization approach introduced
on top of already tested parallel strategies. A summary is given in Section IX..

II. GOVERNING EQUATIONS AND NUMERICAL SCHEME

The governing equations for generalized Newtonian incompressible flows may be ex-
pressed by the Navier–Stokes equations as

ρ
∂u
∂t

+ ρu · ∇u − ∇ · (µ∇u) + ∇p = f (2.1)

∇ · u = 0 (2.2)

where µ and ρ are the viscosity and density of the fluid, and u and p are the velocity
and pressure field variables.

Finite element methods discretise the spatial problem domain, over which the so-
lution is defined, into a mesh of finite elements (usually triangular or rectangular in
two–dimensions). A numerical solution is then obtained at the mesh nodes. The so-
lution at locations other than the mesh nodes is given by interpolation from those at
neighbouring nodes. For this purpose we use continuous interpolation functions, with
quadratic approximation for u and linear for p on two–dimensional triangular elements.

The above equations can be discretised by a transient semi–implicit Taylor–Galerkin/pressure–
correction element scheme [1, 2] of the form:

(
2ρM
∆t

+
Sµ

2
)(U (n+ 1

2) − U (n)) =
F (n) + F (n+ 1

2)

2
+ {LT P − [Sµ + ρN(U)]U}(n) (2.3)

COARSE GRAIN PARALLEL FE SIMULATIONS 3

(
ρM
∆t

+
Sµ

2
)(U (∗) − U (n)) =

F (n) + F (n+1)

2
+ {LT P − SµU}(n) − [ρN(U)U](n+ 1

2) (2.4)

∆tK
2ρ

(P (n+1) − P (n)) = LU (∗) (2.5)

2ρM
∆t

(U (n+1) − U (∗)) = LT (P (n+1) − P (n)) (2.6)

where M is a constant mass matrix; Sµ is a diffusion matrix; K is a pressure difference
stiffness matrix; N(U) is a convection matrix; L is a divergence/pressure gradient matrix;
F is a force function vector due to boundary conditions; U is the velocity solution vectors
and P is the pressure solution vector. Typically, the viscosity may be a function of
shear rate. The order of computation on each time step is to start with equations (2.3)
and (2.4) to solve for the intermediate field U (∗) from (U (n), P (n)), then equation (2.5)
computes P (n+1), and finally equation (2.6) computes the end of time step velocity
U (n+1). Matrices M, Sµ and K are sparse, symmetric, and positive definite under the
appropriate choice of boundary conditions [3].

The entries of the convection matrix N(U), Nij(U), appearing in the RHS of equa-
tions (2.3) and (2.4) take the form

Nij(U) =
∫

Ω

φi(φlU
l
k

∂φj

∂xk
)rdΩ (2.7)

where x1 and x2 indicate radial and axial axes, r and z respectively; φ is the interpolation
function; (U1, U2) = U and the double indices l imply summation. The tensorial entries
of the diffusion matrix Sµ, (Sµ)ij , appearing in both the RHS and left–hand–sides of
equations (2.3) and (2.4) may be expressed as

(Sµ)ij = [Slm]ij , l,m = 1, 2, (2.8)

(S11)ij =
∫

Ω

µ(2
∂φi

∂r

∂φj

∂r
+

∂φi

∂z

∂φj

∂z
+ 2

φiφj

r2
)rdΩ, (2.9)

(S12)ij =
∫

Ω

µ(
∂φi

∂z

∂φj

∂r
)rdΩ, (2.10)

(S21)ij = (S12)ji, (2.11)

(S22)ij =
∫

Ω

µ(
∂φi

∂r

∂φj

∂r
+ 2

∂φi

∂z

∂φj

∂z
)rdΩ. (2.12)

Generally, for the simulation of non–Newtonian flows with non–polynomial functional
form for µ, element level evaluation involves quadrature. In our case, loops over seven
Gauss integration points per triangular element are employed. This is costly but un-
avoidable to retain accuracy. The present Newtonian context is a special case where the
constant nature of the viscosity renders simplicity. In equations (2.3), (2.4) and (2.6), the
RHS and solutions are multiple vectors, corresponding to individual velocity components
of the continuous solution.

It is often desirable to use unstructured meshes, which require fine resolution in certain
sub–domains, for the simulation of computational fluid dynamics problems, where for
example local flow features, such as boundary layers, shocks or solution singularities
arise. Since the amount of computation involved in a finite element method is generally

4 P.W. GRANT, M.F. WEBSTER AND X. ZHANG

proportional to the number of mesh elements, this technique allows optimal solution
resolution for a given number of elements. An undesirable side effect of this technique
is the production of unstructured irregular grids, which for some nodes have high node
connectivity or, equivalently, high data dependencies on neighbouring nodes. This has
the implication that resultant system matrices, when explicitly assembled, have complex
structure whose storage may be overly demanding on space. In our implementation,
two approaches have been adopted to resolve this difficulty. One is to avoid explicit
assembly of system matrices, where possible, and the other is to use distributed matrix
representation.

A preconditioned version of a Jacobi iterative method [7], that does not require ex-
plicit assembly of system matrices, is used for the solution of equations (2.3), (2.4) and
(2.6). These equations are all of the same type. The relevant right–hand–sides (RHSs)
are assembled and stored for use in the subsequent Jacobi iteration sweeps. This method
has been shown to be well–suited to the solution of such augmented mass matrix equa-
tions. With their favourable conditioning few iterations are required [8], and also the
method is highly parallelizable. Each vector component of the nodal solution is com-
pletely independent of the remainder within a single Jacobi iteration sweep.

For the two–dimensional static domain problems investigated here, the matrix K is
constant. Its attributes suggest a direct method of solution for equation (2.5). Here a
Choleski method [9] is particularly appropriate, as a large amount of its computation
needs only to be performed once per flow simulation in the form of a Choleski factor-
ization. Another reason that we prefer a direct method is that the pressure difference
equation (2.5) may be ill–conditioned. Direct methods are often space demanding and
may present hurdles to efficient parallel implementations over iterative alternatives. For
certain problems, they are preferred to iterative methods due to their superior numerical
accuracy and efficiency in speed [10]. In the context of two–dimensional static domain
problems, the forward/backward substitution solution operation involved in the Choleski
method is computationally insignificant compared with the overall computation time re-
quired for the whole TGPC algorithm. The mainly sequential nature of the Choleski
method does not therefore cause any major concern. The storage of Choleski factors is
distributed, which increases the ability to solve large problems on conventional worksta-
tion clusters. For dynamic domain and three–dimensional problems iterative methods
may prove more cost–effective than direct methods. This has led to the investigation of
Conjugate Gradient (CG) iterative alternatives, which will be considered elsewhere.

The main operations involved in the solution of equations (2.3)—(2.6) comprise

1. assembly of

• RHS vectors of equations (2.3)—(2.6) accumulating local contributions,

• system matrices M and Sµ (implicit), and

• matrix K (explicit),

2. factorization of matrix K,
3. the Jacobi iteration, and
4. the Choleski solution.

The assembly and factorization of matrix K are performed only once for each simulation.
A finite element mesh contains two types of entities, namely elements and nodes. Dis-

crete solution vectors are specified with components at the nodes of the mesh, while mesh

COARSE GRAIN PARALLEL FE SIMULATIONS 5

elements describe data dependency at the element sub–domain level. The co–existence
of these two types of entities makes it possible to express the computations involved in
either node–based or element–based operational units. This is true, for example, of the
assembly processes.

III. MESH DECOMPOSITION AND INTERPROCESSOR COMMUNICATION

In the continuous equation system, the solution at a particular location is generally de-
pendent on that of the entire problem domain. In the discretised problem domain, data
dependency is localized to particular elements. The nature of this localized data depen-
dency renders finite element algorithms amenable to parallel implementations. There
are two general parallelization approaches. The first approach, described in [11], is fre-
quently termed multicolouring and uncouples local data dependency. A weakness to this
approach lies in the difficulty in application to irregular domains [11]. A better alterna-
tive is to provide a global uncoupling by dividing the problem domain into sub–blocks,
or sub–domains, a commonly used parallelization approach for finite element algorithms.
This approach is generally called domain decomposition [12, 13]. Malone [14] discusses
in detail how parallel computation can be achieved using this strategy. Basically, a sub–
domain is used as a basic task distribution unit. If localized data dependency is not
destroyed, a solution on the interior elements of a particular sub–domain can be sought
entirely in parallel with that on other sub–domains. Then all required data will be local
to the processor in control of that specific sub–domain. Interprocessor communication
may be necessary only when the solution on boundary elements of a sub–domain is
sought. If such communications are initiated at the earliest possible opportunity their
cost will be minimized. This is achieved by computing and transmitting contributions in
boundary elements, prior to computing those for elements internal to the sub–domain.
Such a computation and communication arrangement enables coarse–grained data par-
allelism to be extracted efficiently and is particularly suitable for platforms of networked
computers.

Both direct and iterative solvers can be implemented for parallel computation based
on the domain decomposition approach and Farhat [15] presents a concise discussion. Ex-
amples of adaptation of classical approaches to iterative solvers can be found in [16, 11].
An innovative and efficient approach suggested by Farhat and Roux [17] introduces La-
grange multipliers to enforce compatibility at interface nodes. Its convergence properties
are analysed in [18]. Iterative solvers in general are less economical than direct solvers
for repeated right hand side analyses. In [19], a modification to the preconditioned Con-
jugate Gradient method is suggested to remedy this difficulty. Two investigations of
domain decomposition direct solvers are reported in [20, 10]. In section VII., we describe
an alternative approach to that presented in [20].

For an unstructured mesh, a boundary node may be shared by a large number of
sub–domains. Accumulating boundary contributions from all sub–domains requires the
knowledge of boundary node global connectivity and the corresponding interprocessor
communication. It is appropriate to assign an extra processor to handle the accumula-
tion of all boundary contributions. As the total number of boundary nodes is unlikely
to be large, one boundary processor should be sufficient for this task. This approach
has the following two advantages over distributing the task amongst sub–domain proces-
sors. Firstly, each sub–domain processor only needs to communicate with the boundary

6 P.W. GRANT, M.F. WEBSTER AND X. ZHANG

processor, reducing the number of its communication connections to a minimum. On
this broadcasting network, establishing a network connection is likely to be expensive
and therefore connection reduction should take a high priority. Secondly, a centralized
communication configuration is much easier to program and manage than a distributed
one. To optimize this process, the computation on boundary elements is performed prior
to that on internal elements, so that boundary contributions can be delivered to the
boundary processor and accumulated results can be returned in parallel with evaluation
on elements internal to the sub–domain. On a broadcasting network where data trans-
mission is sequential, this scheme requires O(M + P) time to connect all sub–domain
processors and transmit all boundary data for each process sweep of the entire mesh; M
being the total number of boundary nodes and P the total number of sub–domains. The
communication cost may be hidden provided there is sufficient computation to perform
on internal elements in parallel with data communication.

As pointed out above, an implementation of a finite element algorithm may involve
both node–based and element–based operations. In the existing sequential TGPC imple-
mentation, the majority of computation is performed element–wise. An element–based
problem partition is therefore adopted, where every element is exclusively assigned to a
particular sub–domain. For node–based operations, ambiguity arises for the distribution
of computation at nodes in a boundary area (shared by elements belonging to different
sub–domains). In this implementation, such operations are either duplicated for each
processor in question, or performed on a dedicated processor, depending on the nature
of the operations. If all operations are implemented in a node–based fashion, it is more
appropriate to adopt the node–based partition approach, where every node is assigned
exclusively to a particular sub–domain.

With the domain decomposition, static load–balancing is not difficult to organize. In
our context the assembly processes, which are element–oriented, consume the majority of
the computation time. Hence, for an element–based partition, equitable load–balance can
be achieved by ensuring equal numbers of elements in all sub–domains. Under present
circumstances and if an alternative node–based partition is adopted, the same balancing
criteria should be applied as the number of nodes does not necessary reflect the amount
of element–oriented computation. This is most poignant for unstructured meshes. Such
a balancing criteria may be achieved by associating appropriate weights to individual
mesh nodes. For problems with dynamically changing domains, dynamic load–balancing
may be a necessity, see for example [21, 22].

There are many techniques for partitioning spatial domains, the one employed here is
a Recursive Spectral Bisection (RSB) method [23]. RSB attempts to minimize the total
length of sub–domain boundaries and therefore reduces interprocessor communication.

IV. TEST PROBLEMS AND METHODS

All test runs presented in this paper have been performed on a homogeneous network of
nineteen diskless Sun Sparc–1 workstations employing the PVM3 [6] library for network
message passing. These workstations run the SunOS (UNIX) operating system, and are
interconnected by an Ethernet network.

Simulations for steady inelastic flow past a rigid sphere in a tube have been conducted
under an axisymmetric frame of reference. For simplicity, in these test cases the shear
viscosity is taken as a constant function. Two unstructured meshes of 1535 and 5764

COARSE GRAIN PARALLEL FE SIMULATIONS 7

TABLE I. Number of mesh elements after partition

sub. # internal # boundary
min max min max

1 1535 1535 - -
2 744 744 23 24

Mesh 1 4 340 369 15 44
8 192 184 8 49
16 38 89 7 58

1 5764 5764 - -
2 2822 2823 59 60

Mesh 2 4 1316 1381 60 125
8 604 672 48 117
16 245 338 22 115

TABLE II. Number of mesh nodes after partition

sub. # internal # boundary
min max min max

1 3452 3452 - -
2 1712 1717 23 23

Mesh 1 4 817 884 15 42
8 395 448 9 48
16 163 228 9 62

1 12221 12221 - -
2 6078 6084 59 59

Mesh 2 4 2930 3085 61 122
8 1427 1563 49 119
16 676 824 23 123

8 P.W. GRANT, M.F. WEBSTER AND X. ZHANG

FIG. 1. A typical test mesh and its partition

elements have been used, and quadrature is introduced for evaluation of integrals of
element level quantities. Figure 1 shows the 5764 element mesh (partial) together with
a representative domain partition. Table I contains various element related parameters
of the two discretization meshes after being partitioned into different numbers of sub-
domains and the equivalent node related parameters are included in Table II. The
second column of these two tables indicates the number of sub-domains. Although the
original meshes (# sub. = 1) do not possess any sub–domain boundary elements and
nodes, they are included for comparison. These tables indicate the element–oriented and
node–oriented sub–domain loadbalance. The amount of data involved in interprocessor
communication is indicated by the size of boundary nodes given in Table II.

The timing of program execution is conducted in the following manner. Operations
such as the assembly and Choleski factorization of matrix K, that are not inside the
TGPC time stepping process are not timed. Immediately before and after the execution
of the time stepping cycles, each processor working in parallel sends a signal to a common
monitor processor, that is lightly loaded. Upon receiving the start or finish signal from
all such parallel processors, the monitor processor registers the system clock time. The
execution time is taken as the difference between the finish and start times, normalized by
the number of executed time steps. As sequential runs on one processor do not involve
data communication, we define two parallelization speed–up ratios, R1 and R2, for a
parallel implementation. R1 with P processors is defined as the ratio of run times on
one processor compared with that on P processors, and R2 as the ratio of that on two
processors compared with that on P processors.

V. SYSTEM ASSEMBLY

In this TGPC algorithm, a large amount of computation is spent on system assembly,
both of matrices and RHS vectors. System matrices and RHSs that arise in finite element
calculations can be mathematically decomposed into two different forms, described below.
For clarity, we analyze only the matrix case, but the same principle applies to the RHS
vector case.

Let A be a system matrix. The first approach is an element–based assembly, where
the decomposition is expressed as

A =
∑

e

LT
e AeLe. (5.1)

COARSE GRAIN PARALLEL FE SIMULATIONS 9

TABLE III. Relative speed (R1) of parallel RHS assembly

sub–domains 2 4 6 8 10 12 14 16 18

Mesh 1 2.0 4.0 6.0 7.9 10.0 12.0 14.0 15.2 16.5
Mesh 2 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0

Each element matrix Ae arises from considering the element e in the finite–element
mesh. Ae in our case is either 6 × 6 or 3 × 3 depending on whether quadratic or linear
interpolation functions on the two–dimensional triangular element are used. The Le

matrix is a 6 (or 3) ×n Boolean matrix, that maps the local node numbering (associated
with the individual element e) to its global numbering for the complete domain (each
column of Le contains a single unit entry). Equation (5.1) implies that matrix A can
assembled by first processing all elements to compute their element matrices Ae, and
then transmitting these entries into the appropriate location in A. A second approach is
a node–based assembly, where A is decomposed as

A =
∑

n

[
∑

e

(Le)T
nAe(Le)n] (5.2)

where (Le)n denotes a matrix obtained by zeroing all columns of Le other than column
n. This suggests a different computation order from the element–based assembly. The
matrix A is assembled row–by–row. For each node n and each Ae connected to it, the
nth row of A can be composed by computing the corresponding rows of Ae. (For those
elements that are not connected, their corresponding (Le)n = 0).

Although the element–based and node–based assembly approaches differ only in com-
putation order, this difference has wider implications. For the element–based approach,
the amount of computation involved in assembling an element is fixed, as the number
of nodes associated with each element is fixed. For the same reason, a dynamic data
structure is unnecessary for storing element–to–node mapping information. This is an
important issue for a FORTRAN implementation. For an unstructured mesh, however,
the number of elements attached to an individual node can be unbounded. Therefore a
dynamic data structure is necessary for keeping node–to–element mapping information,
which is required for node–based assembly [24]. Naturally, the amount of computation
involved in the node–based assembly varies across the different nodes. Another impli-
cation is related to the synchronization of memory access. On shared–memory systems,
the element–based approach requires a control mechanism for synchronizing memory
access. Alternatively, the node–based approach does not, as all updates to a specific
entry are performed by the same processor. On a distributed–memory platform, the
synchronization is irrelevant as no two processors can access the same memory entry.

For this FORTRAN implementation, only the element–based assembly approach has
been implemented. In our functional implementation (in Haskell) of the same algorithm,
the assembly is performed naturally in a node–based fashion, although forcing assembly
in another order is also possible [5].

Assuming that interprocessor communication cost can be hidden in this context, the
theoretical optimum parallelization speed–up for system assembly should be very close to
the ideal linear target (the parallel implementation incurs a small amount of duplicated
computation on boundary nodes). Indeed, Table III shows that results close to the
optimum are achieved.

10 P.W. GRANT, M.F. WEBSTER AND X. ZHANG

TABLE IV. Relative speed (R1) of parallel Jacobi iteration

sub–domains 2 4 6 8 10 12 14 16 18

Mesh 1 2.0 4.0 5.9 7.8 10.0 12.0 14.0 16.0 17.3
Mesh 2 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 17.8

VI. SOLVING FOR THE VELOCITY FIELD

A Jacobi iteration is adopted for the solution of velocity components. Suppose AX = B
is the matrix equation to be solved, where B is a multiple vector comprising of an
equal number of vectorial components to that of the velocity vector. The Jacobi method
generates a sequence of vectors X(r) for index r through

X(r+1) = (I − ωD−1A)X(r) + ωD−1B (6.1)

where ω is a positive relaxation factor and D is a chosen diagonal matrix. The choice of
ω and D affects the convergence properties of the scheme. Here, we select ω as unity for
convenience and the row sum version of D, see [8]. X(0) = 0 is usually adopted as the
initial iterative starting vector, where X represents a temporal increment in the primary
solution variables.

When solving equations (2.3), (2.4) and (2.6), we do not assemble these matrices ex-
plicitly. To economize on space we incorporate such operations into the Jacobi iteration.
Using equation (5.1), equation (6.1) can be reorganized as:

X(r+1) = (I − ωD−1
∑

e

LT
e AeLe)X(r) + ωD−1B (6.2)

= X(r) − ωD−1
∑

e

LT
e AeX

(r)
e + ωD−1B

which necessitates calculating AeX
(r)
e per element, followed by permutation transposition

with LT
e .

A Jacobi iteration also involves vector addition and subtraction, and diagonal matrix
and vector multiplication. These operations are node–oriented, and distributed according
to whichever sub–domain a node belongs to.

The theoretical parallelization speed–up for the Jacobi solver, like the system assembly
case, is almost linear. This is supported by our empirical tests whose results are pre-
sented in Table IV. Within each Jacobi sweep, the costs in these tests of interprocessor
communication have been hidden satisfactorily. However, this may not be the case when,
for example, the number of sub–domains is sufficiently large. A variation to the above
approach may prove advantageous. Initial sub–domains may be overlapped instead of
having clear–cut boundaries. On each sub–domain, only solutions on interior nodes are
updated by each Jacobi iteration sweep. The data dependency of these sub–domains
will therefore contract with each iteration sweep. The overlap of the initial sub–domains
must be sufficiently wide so that all nodes are included in the final Jacobi iteration sweep.
In this manner, only one interprocessor communication phase is necessary for exchange
of data pertaining to the overlapping area, minimizing the communication overhead in-
curred and tolerating a longer transmission delay. This scheme is feasible because the
number of Jacobi iterations sweeps is always small, typically in the order of three. In
fact, this scheme relaxes data dependency in boundary areas, and hence synchronization

COARSE GRAIN PARALLEL FE SIMULATIONS 11

requirements, by duplicating computation. This approach awaits attention in a further
study.

VII. SOLUTION FOR THE PRESSURE FIELD

A Choleski direct method is adopted for the solution of the pressure field in equation (2.5).
It determines the solution of the system, AX = B, by the forward and backward substi-
tution steps:

LY = B, LT X = Y (7.1)

where the Choleski matrix factor L is a lower triangular matrix satisfying LLT = A.
The elements of L are given by

lij = (aij −
j−1∑
p=1

lipljp)/ljj , j < i, (7.2)

lii = (aii −
i−1∑
p=1

liplip)1/2. (7.3)

The forward/backward substitution steps can be described by the following computa-
tions:

yi = (bi −
i−1∑
p=1

lipyp)/lii, i = 1, 2, ..., N, (7.4)

xi = (yi −
n∑

p=i+1

lpixp)/lii, i = N,N − 1, ..., 1, (7.5)

where N × N is the size of A.
One major difficulty relating to the use of the Choleski method is the explicit storage

of Choleski factors. For structured meshes, a standard fixed bandwidth storage scheme
is a reasonable choice as it is straightforward to implement and can be space efficient.
For unstructured meshes, a variable bandwidth or profile storage scheme is preferred as,
in this case, the minimum bandwidths of assembled system matrices tend to be large.
The matrix profile can normally be significantly reduced by adopting a profile reduction
scheme such as that proposed by Sloan [25]. This has been adopted in this investigation.

Here, it is appropriate to reorder the system matrix, based on the concept of domain
decomposition, to allow both distributed storage of its Choleski factor and distributed
parallel Choleski forward/backward substitution. Without reordering, it can be very
difficult to extract any meaningful parallelism on a distributed platform with broadcast
data communication. The system matrix can be reordered into the following block form:

A =




A11 A1,P+1

A22 A2,P+1

. .
. .

AP+1,1 AP+1,2 . . AP+1,P+1


 , (7.6)

12 P.W. GRANT, M.F. WEBSTER AND X. ZHANG

where Ai,P+1 = AT
P+1,i. Subscripts i = 1, 2, ..., P refer to the ith sub–domains and

P + 1 refers to the complete sub–domain boundary. A corresponding Choleski factor L
will then have a block form of

L =




L11

L22

.
.

LP+1,1 LP+1,2 . . LP+1,P+1


 (7.7)

which allows a certain amount of coarse–grained parallelism to be accessed. Forward/backward
substitutions can be performed in parallel on blocks {Lii, LP+1,i}, i = 1, 2, ..., P . This
formation is not difficult to achieve when we take advantage of a domain decomposition
procedure. Conceptually, just as with the parallel assembly process described in Sec-
tion V., it is possible to conduct forward/backward substitutions for interior areas of
sub–domains in parallel, as these areas are not directly connected. This suggests that
block Lii should only be associated with internal nodes of the ith sub–domain. Op-
erationally, this formation can be achieved by using the following local domain node
numbering scheme:

1. number all internal nodes before any sub–boundary node, and
2. number nodes in the same sub–domain consecutively.

As a result, LP+1,i will represent the dependencies between internal and boundary nodes
within the ith sub–domain, and LP+1,P+1 the dependencies among all boundary nodes.
Fortunately, this numbering scheme is not in conflict with that required for Sloan’s
profile reduction scheme, and a combined form is adopted that economizes on storage.
By employing Sloan’s heuristic function, this scheme first numbers internal nodes and
then boundary nodes.

Average sizes of the sparse submatrices can be estimated as follows. For the diagonal
blocks, Li,i, the storage requirement is approximately N/P ×hband. The blocks along the
bottom row, LP+1,i for i ≤ P require (n(i)

B)×N/P where n
(i)
B is the number of boundary

nodes in the sub–domain and this can be approximated by (M.N)/P 2. For the bottom
corner block LP+1,P+1 we have an estimate of ΣP

j=1n
(i)
B × kconn which approximates to

M.kconn, where kconn is a measure of connectedness of the boundaries, which will be
small for regular meshes.

This Choleski domain decomposition scheme somewhat resembles the parallel scheme
described in [20]. The main distinction is that the scheme in [20] does not factorise
AP+1,i, i = 1, 2, 3, ..., P , whereas ours does. Their approach has the advantage of avoid-
ing a large number of fill–ins. The penalty is that the sub–domain processor has then
to solve an equation with a n

(i)
B + 1 column right hand side,whereas our right hand side

has only one column. It is also necessary to multiply all columns of the solution with
the off-diagonal block (no fill–in), somewhat equivalent to our forward substitution in-
volving LP+1,i. The amount of data involved in interprocessor communication is (n(i)

B)2

comparing less favourably with our n
(i)
B . Although the same amount of communication

must be performed in our Choleski factorisation phase, we need only invoke it once.
The block {Lii, LP+1,i}, together with the associated computation, is distributed to

the ith parallel processor and LP+1,P+1 is distributed to the boundary processor. Again,
only P communication connections are required. This is not as parallelizable as the

COARSE GRAIN PARALLEL FE SIMULATIONS 13

assembly processes and Jacobi iteration, as communication and forward (or backward)
substitution on boundary nodes can only start after (or before) the same operation
has finished (or is started) on internal nodes. It should be noted that, of the overall
computation, the Jacobi component is the dominant part. This storage scheme can
be viewed as a distributed version of Liu’s generalized envelope method [26], with the
exception that nodes are not ordered by a minimum degree node numbering scheme.
Liu’s method provides a convenient way to exploit all zero entries in a Choleski factor
using a conventional variable bandwidth storage scheme. In our case, this means all zero
entries within {Lii, LP+1,i} will be removed from storage when all entries on the second
diagonal of Lii are non-zero.

In this implementation, the same domain partition used for the assembly processes
and Jacobi iteration is adopted. Since forward/backward substitutions are not element-
oriented operations, such a partition does not necessarily lead to a balanced work load.
Actually, the amount of computation required on a sub–domain is governed by the profile
of its corresponding matrix block {Lii, LP+1,i}. For unstructured meshes, although a
sub–domain containing nodes with higher connectivity tends to have less columns in
block {Lii, LP+1,i}, this block is likely to be denser than for a structured mesh equivalent.
Hence, this situation is somewhat self regulating as regards load-balancing.

Figure 2 displays the run profiles for Choleski factor blocks, where avg and max indicate
the average and maximum number of entries in {Lii, LP+1,i} respectively, and c indicates
the overall size of the Choleski factor for the unpartitioned mesh. In Figure 2, both the

FIG. 2. # entries of Choleski factor blocks (Mesh 2)

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

0 5 10 15 20
subdomains

max ❜

❜

❜

❜

❜

❜ ❜

❜

❜
❜ ❜

❜
❜

❜
❜

❜ ❜ ❜ ❜

avg ×

×

×
×

×
× × × × × × × × × × × × × ×

Lmm
�

� � �
�

� � � � �
� � � � � � � � �

c/n

average and maximum profiles of {Lii, LP+1,i} are approximately inversely proportional
to P , the number of sub–domains or parallel processors. The consistent peak at P = 3 is
due to the fact that there is a significant LP+1,i profile increase at this point. The profile
of LP+1,P+1 is a major factor that influences the scalability of this implementation, and
in both test cases, the run profiles for LP+1,P+1 exhibit a linear increase with P . We
can also observe from Figure 2 the load-balance of the sub–domain tasks associated with
the forward/backward computations, by noting the difference between the maximum and
average profiles of {Lii, LP+1,i}.

The profiles in Figure 2 indicate the amount of computation required to perform
Choleski forward/backward substitutions, this information can be used to predict ideal
parallel computation speed-up with zero communication cost, by computing the nor-
malized total profile of LP+1,P+1 and the maximum profile of {Lii, LP+1,i}. This is

14 P.W. GRANT, M.F. WEBSTER AND X. ZHANG

TABLE V. Relative speed (R1) of parallel Choleski method

sub–domains 2 4 6 8 10 12 14 16 18

Mesh 1 ideal 1.9 1.6 2.2 2.4 3.1 3.3 3.2 2.9 3.0
actual 1.5 1.6 1.6 1.3 1.1 0.9 0.8 0.7 0.6

Mesh 2 ideal 1.8 1.9 2.3 3.3 3.1 3.9 4.0 4.2 4.0
actual 1.8 1.9 2.3 3.1 2.8 3.0 2.9 2.6 2.3

TABLE VI. Overall relative speed (R1)

sub–domains 2 4 6 8 10 12 14 16 18

Mesh 1 2.0 4.0 6.0 7.8 9.8 12.0 13.2 15.7 16.9
Mesh 2 2.0 4.0 6.0 8.0 10.0 11.9 13.9 15.8 17.7

introduced in Table V for comparison with the actual tests results. In Table V, the best
actual speed-up achieved is only about three. For smaller numbers of sub–domains, the
actual parallel performance is very close to ideal. For larger numbers of sub–domains,
the actual performance departs from the ideal prediction due to the O(M + P) network
communication cost described in Section III.. The situation can be even worse if a tem-
poral network congestion is created, as this tends to increase the overhead in establishing
a connection. In such a context, a slightly unbalanced workload may prove favourable,
allowing the O(M+P) communication to start earlier and avoiding a network congestion.

As pointed out in Section II., sometimes an iterative solver is preferred for the solution
of equation (2.5). A preconditioned CG method is an obvious candidate of choice. One
approach is to apply the method to the global system matrix described in expression (7.6),
which can be very slow compared with direct methods. A compromise is to use the
classical Schur Complement method, which treats the interface problem iteratively using
independent direct solvers for the sub–domains [15]. The second approach can be an
order of magnitude faster than the first approach [10].

The overall performance of the algorithm is reflected in the results of Table VI, that
show the relative speed when all previously described parallelization approaches are
adopted simultaneously. Approximately linear speed-up has been achieved. Thus the
overall speed performance of the algorithm has not been retarded in any significant man-
ner by the Choleski component phase. This is due to the fact that the Choleski component
is computationally insignificant in overall run time. Such a speed-up in performance is
considered most satisfactory. For three–dimensional flows, the Choleski sub–blocks may
become large if the domain is decomposed into P sub–domains. This can be partially
alleviated in two ways, by increasing the number of processors and the local memory.
Nevertheless, for large problems, in practice the domain would have to be decomposed
into a larger number of sub–domains, and each processor would deal with several sub–
blocks sequentially. The overall time however, would still be dominated by the Jacobi
iteration stages.

These issues are considered in some more detail. The Jacobi iteration stages have a
time complexity which is linear in N/P , and if the diagonal Choleski factors Li,i can be
stored in the local memory of the processors then the time complexity of these stages are
also linear in N/P . Let us suppose the vertex node size of our two–dimensional problem
is, say, Q2 then the scale–up to the corresponding three–dimensional problem can be
taken as Q3. The time for the Jacobi stages of the algorithm will then increase by a
factor of Q translating from the two–dimensional to the three–dimensional problem.

COARSE GRAIN PARALLEL FE SIMULATIONS 15

In the Choleski stages, if P processors are used, then the size and scale–up of the fac-
tors Li,i will go from (Q2/P)hband to (Q3/P)hband, and this may no longer fit within the
memory (RAM) of a single processor. We could then view the Choleski stages as being
solved by splitting the domain into QP sub–domains (or processes). The Choleski diag-
onal factors then have size (Q3/(QP))hband = (Q2/P)hband, identical to the situation
for the two–dimensional problem. Each processor will then deal with Q sub–domains.
The time for Choleski stages on one processor is then Q(Q2/P)hband and so is also an
increase by a factor of Q on the two–dimensional problem time. This has not taken into
account the extra time needed for disk access (which can be local) and the extra network
communication.

The disk access on one processor requires copying, some Q times, factors of size
(Q2/P)hband. This gives an overall time of O(Q3/P)hband, the same order as before.
The network communication for processor i involves passing the part solution vector at
the internal nodes and in the three–dimensional case is of O(Q2/P). This can mostly be
hidden when other processing is being performed.

The final part of the Choleski stage, involves computation using the sparse blocks
LP+1,j of size (Q2/P)2 (which would require particular sparse storage considerations,
presuming internal sub–domain node-numbering optimised before boundary nodes are
numbered), and LP+1,P+1 of total size O(Q2.kconn), being proportional to the size of
the boundaries and their local connectivity banding factor kconn. If necessary this could
be distributed over the P available processors and so reduce the size to (Q2/P)kconn. It
is also likely that extra memory or extra processors could be made available for three–
dimensional problems. The implication is that the problem domain can be split into
less than QP sub–domains, each associated problem being larger in size according to
the increase in memory resource. This would reduce network communication time. To
take advantage, timewise, of increase in the number of processors, the converse situation
is sought of more sub-problems. A suitable compromise must be reached. Clearly if
memory is more of a bottleneck, then increasing QP sub–domains, with fixed number of
processors, would also be a possibility (as the allowable memory/processors increases),
at the compromise of time.

From the above deliberations, it clearly can be arranged that the Choleski stage time
consumption also increases by a factor of Q or less, and hence this method is certainly
feasible for three–dimensional problems. One may wish to consider even tighter recom-
mendations and analyse the possibilities of a generalised scale–up factor 1 ≤ βsize ≤ Q;
unity for a naive implementation and Q following the arguments above. Such a factor
βsize = memory increase factor ∗ increase in processes. In turn, time may be reduced
by a factor βtime = increase in processors ∗ increase in processor speed. The expec-
tations here in scale–up somewhat modify the over–pessimistic view of a Q times factor
on time degradation; it is not unreasonable to achieve Q′ closer to O(P), if one assumes
Q = O(P 2), βtime = O(P 1/2) and βsize = O(P 1/2). This is true as it may be established
that Q′ = βtime ∗ βsize = O(P 1/2.P 1/2) = O(P). If we take P = O(10), the implica-
tion is that the vertex node problem size considered is O(104) for two–dimensional and
O(106) for three–dimensional problems. This we believe is realistic in current practical
implementations.

16 P.W. GRANT, M.F. WEBSTER AND X. ZHANG

TABLE VII. Relative speed measures (R1 and R2) of DOF approach

sub–domains 1 2 3 4 5 6 7 8 9

Mesh 1 R1 1.1 2.3 3.4 4.5 5.6 6.5 7.7 8.6 9.8
R2 1.0 2.0 3.0 3.9 4.9 5.7 6.8 7.6 8.7

Mesh 2 R1 1.0 2.0 3.0 4.0 4.9 6.0 7.0 7.9 8.9
R2 1.0 2.0 3.0 4.0 4.9 5.9 6.9 7.8 8.8

VIII. INCORPORATING A DEGREE OF FREEDOM APPROACH

It is possible to extract parallelism over multiple degrees of freedom in our algorithm.
To do this, we assign statically one processor to each degree of freedom (refereed to
as a DOF approach below). This is a hybrid approach — imposed upon the domain
decomposition approach, described earlier, in a direct fashion. As the assembly and
solution of equation (2.5) requires only one processor per sub–domain, the remaining
processors lie idle. Under present circumstances this does not lead to a significant waste
of resource as the duration of these work tasks is comparatively short.

More interprocessor communication must be introduced to implement the DOF ap-
proach. The first step for the solution of the equations is the assembly of RHSs. The fact
that each RHS component in equations (2.3)—(2.6) depends on all solution components
of its previous fractional step, and this implies that the solution computed by a partic-
ular processor should generally be broadcast within its sub–domain (including that on
boundary nodes). Notice that each (Sµ)ij itself is a 2×2 matrix. This implies that terms
appearing in equations (2.3) and (2.4) are dependent on all degrees of freedom of (∆U)
through products with components of Sµ. Therefore similar broadcasts are introduced
at the beginning of each Jacobi sweep, when equations (2.3) and (2.4) are solved.

As the number of degrees of freedom is never large, we allow direct dialogue between
each pair of processors within a sub–domain. Unfortunately, in this application, it is
difficult to perform such communication in parallel with numerical computation. Since
the overall message length of all such communications is proportional to the size of
the problem domain, for large test problems, this type of communications may incur a
measurable communication cost.

By using this DOF approach, we wish to access a D times parallelization speed–up,
equivalent to the number of separate parallelizable degrees of freedom. However, this is
impractical. The first reason is that the Choleski component is not parallelizable in this
manner. The same is true for the time consuming evaluations of equations (2.7) and (2.8).
The major part of the computation involved is necessary for each degree of freedom. In
this implementation, the computation is actually duplicated on each processor.

Table VII reveals the performance of the DOF approach. By dividing R1 by R2

results, we can observe the net benefit of introducing the DOF approach. For Mesh
1 the improvement is about 10% and for Mesh 2 it is close to 0% for all sub–domain
numbers. These figures are very low compared with the ideal performance of 100% for
two–dimensional test problems. We attribute this to the components not parallelizable
by the DOF approach. Since the total amount of extra communication introduced by
the DOF approach between the processors, associated with each individual degree of
freedom, is proportional to the mesh size, Mesh 2 results in more data traffic. It is this
that we link with the further performance degradation (10% to 0%).

COARSE GRAIN PARALLEL FE SIMULATIONS 17

However, it has been found that the DOF approach does not introduce any significant
degradation on the effectiveness of the domain decomposition approach. In other words,
a hybrid DOF test run with P (≤ 9) sub–domain partitions is roughly P times as fast
as that without domain partitioning (R2).

In conclusion, this hybrid DOF approach has not been found an effective strategy
for this particular application on networked computers, although the approach extracts
coarse–grained parallelism. The fundamental reason is that this application introduces
extra network communication due to the fact that some terms in equations (2.3)—(2.6)
are dependent on all degrees of a solution vector at a previous stage. Provided each de-
gree of freedom is distributed to a different processor, the total amount of data involved
in such communication within a time step is of O(D2N), where D is the total number of
degrees of freedom and N the total number of mesh nodes. This is independent of the
number of sub–domains introduced into the original problem domain through partition-
ing. Transmitting this amount of data on computer clusters, connected by broadcasting
networks, does not make the approach easily scalable to problems with larger D or N
values. There are many engineering circumstances which involve the simulation of large–
scale Newtonian flows governed by the Navier–Stokes equations. For the simulation of
such flows, their corresponding diffusion matrix may be represented in block diagonal
form, which in turn avoids the need for data communication at the beginning of each
Jacobi sweep. In these cases, the DOF approach would reflect better performance char-
acteristics. In contrast on a shared–memory platform, such data dependency does not
present a significant problem.

IX. CONCLUSION

In this article we have brought together the strengths and weaknesses of various par-
allelization strategies imposed upon a fractional–staged time stepping finite element al-
gorithm. Most of the parallelization strategies are based upon a domain decomposition
technique. Both direct and iterative solvers are considered within separate and unified
frameworks. The predominance of the computation falls to the iterative solver, and as
such almost ideal linear speed–up is attained via the coarse–grained strategies proposed.
This is achieved through the effective masking of the communication overheads with
computation performed in parallel.

Principally an element–based approach is utilized through a Jacobi iteration and dur-
ing assembly processes. A domain partitioning strategy is found to be a most effective
parallelization method that can be organized to complement a profile reduction scheme
of Sloan. This achieves the desired block structure of the associated Choleski factors
that enables parallelization of the direct solver. It is observed that a less balanced work-
load may sometimes be more beneficial to avoid communication congestion and improve
overall parallel performance.

To further improve parallel performance, other strategies can also be incorporated.
These include the parallelization of the quadrature over the Gauss points in domain
integral evaluations by associating parallel processors with particular Gauss points over
all elements. Another strategy is the adoption of parallel Conjugate Gradient methods.

18 P.W. GRANT, M.F. WEBSTER AND X. ZHANG

This research was supported by a grant from the UK EPSRC (GR/J12321).
The authors are grateful for the detailed comments and constructive advice
from anonymous referees which has led to many improvements in this paper.

REFERENCES

1. D.M. Hawken, H.R. Tamaddon-Jahromi, P. Townsend, and M.F. Webster. A Taylor-
Galerkin-based algorithm for viscous incompressible flow. Int. J. Num. Meth. Fluids, 10:327–
351, 1990.

2. D. Ding, P. Townsend, and M.F. Webster. Computer modelling of transient thermal flows
of non-Newtonian fluids. J. Non-Newtonian Fluid Mechanics, 47:239–265, 1993.

3. D. Ding, P. Townsend, and M.F. Webster. On Computation of Two and Three-Dimensional
Unsteady Thermal Non-Newtonian Flows. J. Num. Meth. Heat Fluid Flow, 5:495-510, 1995.

4. P.W.Grant, J.A.Sharp, M.F.Webster, and X.Zhang. Sparse matrix representations in a
functional language. J. Functional Programming, 6(1):1–28, January 1996.

5. P.W. Grant, J.A. Sharp, M.F. Webster, and X. Zhang. Experiences of parallelising finite
element problems in a functional style. Software – Practice and Experience, 25(9):947–974,
September 1995.

6. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sundream. PVM3 user’s
guide and reference manual. Technical report, Oak Ridge National Laboratory, 1993.

7. L.A. Hageman and D.M. Young. Applied Iterative Methods. Academic Press, London, 1981.

8. D. Ding, P. Townsend, and M.F. Webster. Iterative solutions of Taylor-Galerkin augmented
mass matrix equations. Int. J. Num. Meth. Eng., 35:241–253, 1992.

9. J.H. Wilkinson and C. Reinsch. Handbook for Automatic Computation, Linear Algebra,
volume II. Springer-Verlag, New York, 1971.

10. R. Keunings. Parallel finite element algorithms applied to computational rheology. Com-
puters Chem. Engng, 19:647–669, 1995.

11. C. Farhat and E. Wilson. Concurrent iterative solution of large finite element systems.
Communications in Applied Numerical Methods, 3:319 – 326, 1987.

12. P. Le Tallec, Y. H. De Roeck, and M. Vidrascu. Domain decomposition methods for large
linear elliptic three dimensional problems. J. Computat. Appl. Math., 34:93–117, 1991.

13. D. E. Keyes, T. F. Chan, G. Meurant, J. S. Scroggs, and R. G. Voigt, editors. Domain
Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia, 1992.

14. J. G. Malone. Automated mesh decomposition and concurrent finite element analysis for
hypercube multiprocessor computers. Computer Methods in Applied Mechanics and Engi-
neering, 70:27 – 58, 1988.

15. C. Farhat. Which parallel finite element algorithm for which architecture and which prob-
lem? Eng. Comput., 7:186 –195, September 1990.

16. B. Nour-Omid, A. Raefsky, and G. Lyzenga. Solving finite element equations on concurrent
computers. In A. K. Noor, editor, Parallel Computations and Their Impact on Mechanics,
pages 209 – 228. ASME, New York, 1987.

17. C. Farhat. A method of finite element tearing and interconnecting and its parallel solution
algorithm. International Journal for Numerical Methods in Engineering, 32:1205 – 1227,
1991.

COARSE GRAIN PARALLEL FE SIMULATIONS 19

18. C. Farhat, J. Mandel, and F. X. Roux. Optimal convergence propertities of the FETI
domain decomposition method. Comput. Methods Appl. Engrg, 115:365 – 385, 1994.

19. C. Farhat, L. Crivelli, and F. X. Roux. Extending substructure based iterative solvers to
multiple load and repeated analyses. Comput. Methods Appl. Mech. Engrg., 117:195 – 209,
1994.

20. C. Farhat, E. Wilson, and G. Powell. Solution of finite element systems on concurrent
computers. Engineering with Computers, 2:157 – 165, 1987.

21. C. H. Walshaw and M. Berzins. Dynamic load-balancing for PDE solvers on adaptive
unstructured meshes. Technical Report 92.32, Division of Computer Science, University of
Leeds, 1992.

22. P. Henriksen and R. Keunings. Parallel computation of the flow of integral viscoelastic
fluids on a heterogeneous networks of workstations. Int. J. Num. Meth. Fluids, 18:1167–
1183, 1994.

23. H.D. Simon. Partitioning of unstructured problems for parallel processing. Computer Sys-
tems in Engineering, 2:135–148, 1991.

24. D.M. Hawken, P. Townsend, and M.F. Webster. Use of dynamic data structures in finite
element applications. Int. J. Num. Meth. Eng., 33:1795–811, 1992.

25. S. W. Sloan. An Algorithm for Profile and Wavefront Reduction of Sparse Matrices. Int.
J. Num. Meth. Eng., 23:239–251, 1986.

26. Joseph W.H. Liu. A generalized envelope method for sparse factorization by rows. ACM
Trans. on Math. Software, 17:112–129, March 1991.

