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Abstract

The design and physical verification of contemporary integrated circuits is a challeng-

ing task due to their complexity. System-in-Package is an example of generally con-

gested electronic components and interconnects which in the initial design process

rely on computationally intensive electromagnetic simulations. Hence the available

computer memory capacity and computational speed become meaningful limitations.

An alternative method which allows the designer to overcome or reduce the limits is

desired.

This work represents the first demonstration of the application of effective medium

theory to the analysis of those segments of the entire integrated system where the

interconnect networks are more dense. The presented approach takes advantage of

the deep subwavelength characteristic of interconnect structures. In order to achieve

the aim of defining the homogeneous equivalent for the interconnect grating structure

a few steps were followed towards proving the homogenisation concept and finally

presenting it by an analytical formulation. A set of parameters (metal fill factor, as-

pect ratio, dielectric background and period-to-wavelength ratio) with values related

to typical design rules were considered. Relating these parameters allows the empiri-

cal models to be defined. In order to show the relationship between existing effective

medium theories and those developed in this Thesis, the presented empirical models

are defined in terms of the Maxwell-Garnett mixing rule with an additional scaling

factor. The distribution of the scaling factor was analysed in terms of the calculated

reflection and transmission coefficients of the homogenised structures that are equiv-

alent to a given grating geometry. Finally the scaling factor, for each empirical model,

was expressed by an analytical formula and the models validated by their application

to the numerical analysis of grating structures.

The numerical validation was carried out by comparing the reflection and transmis-

sion coefficients obtained for the detailed and homogenised structures. In order to
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ensure the empirical models can be broadly employed, the performance of the model

in the presence of non-normally incident plane wave was evaluated. For the range of

angles±30◦ the model is accurate to 5%. The impact of the shape of the grating, specif-

ically the case of a tapered profile, typical of actual fabricated interconnects was also

considered, with sidewall tapers of up to 5◦ giving the same error not higher than 5%.

Experimental validation of the application of the homogenisation concept to the analy-

sis of interconnects is desired for two main applications: for the reflectivity estimation

of a whole chip in a System-in-Package and for the performance estimation of intercon-

nects on lower metal layers in an interconnect stack. For the first, free-space measure-

ments are taken of a grating plate with copper rods aligned in parallel illuminated by a

plane wave in the X-band (8.2−12.4 GHz). For the second, S-parameters are measured

for microstrip waveguides with a number of metal rods embedded in the substrate

between the signal line and ground plane. The good agreement with the simulations

validates the homogenisation approach for the analysis of interconnects.
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Notation

AR aspect ratio

c speed of light in a vacuum, 2.998× 108 m/s

E electric field vector

f metal fill factor

F Farad

H magnetic field vector

H Henry, or magnitude of magnetic field depending on context

k wavenumber

K grating vector

m metre

n refractive index

neff effective refractive index

r reflection coefficient

R reflectivity

s second

t transmission coefficient

T transmissivity

xyz Cartesian coordinate system with group of equivalent planes

Z0 characteristic impedance of microstrip line

ε0 permittivity of free space, 8.854× 10−12 F/m

εr relative permittivity, εr = ε/ε0

εeff effective permittivity

η0 intrinsic impedance of free space, 376.6 Ω

λ wavelength

λ0 free space wavelength



Notation viii

Λ period

µ0 permeability of free space, 4π × 10−7 H/m

µr relative permeability, µr = µ/µ0

ν frequency

θ angle of incidence

Ω resistance or impedance, Ohms

ξ focal length

Ψ scaling factor
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Glossary

CMOS Complementary Metal-Oxide-Semiconductor

DUT Device Under Test

EMT Effective Medium Theory

FDTD Finite Difference Time Domain

FEM Finite Element Method

GHz GigaHertz (109 Hz)

HFSS High Frequency Structure Simulator

IC Integrated Circuit

ISM Industrial, Scientific and Medical band of frequencies

ITRS International Technology Roadmap for Semiconductors

PCB Printed Circuit Board

PBC Periodic Boundary Condition

PEC Perfect Electric Conductor

PML Perfect Matched Layer

RCWA Rigorous Coupled Wave Analysis

SiP System-in-Package

SoC System-on-Chip

SLOT Short Load Open Through calibration

SMA SubMiniature version A connector

TE Transverse Electric

TEM Transverse Electric and Magnetic

TEMPEST FDTD code from University of California, Berkeley

TM Transverse Magnetic

TRL Through Reflect Line calibration

WGP Wire Grid Polariser

X-band Band of frequencies between 8.2− 12.4 GHz
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Chapter 1

Introduction

1.1 On-Chip Interconnects for Integrated Circuits

For over four decades the evolution of electronic technology has followed Moore’s

law [1] where the number of transistors in an integrated circuit (IC) approximately

doubles every two years. This naturally increases the number of internal intercon-

nections needed to complete the system. The increase in chip complexity is achieved

by a combination of dimensional scaling and technology advances. A variety of chip

types exist, including memory, microprocessors and application specific circuits such

as System-on-Chip (SoC). Since it is expensive to fabricate the large and simple passive

components such as on-chip capacitors and inductors on the same die as the active cir-

cuits, it is desirable to fabricate these on separate dies then combine them in System-

in-Package (SiP). The main advantage of SiP technology is the ability to combine ICs

with other components, including passive lumped elements already mentioned but

also antennas, high speed chips for radio frequency communication etc., into one fully

functional package. The high complexity of SiP brings many challenges to the design

process and physical verification of the system. In many cases the design process re-

lies on detailed 3-D numerical electromagnetic simulations that tend to be slow and

computationally demanding [2, 3, 4] in many cases limited by the available computer

memory capacity and computational speed. Therefore, directly including the detail of

the dense interconnect networks into the numerical model is impractical.

Large problems are usually solved by adapting a ‘divide and conquer’ approach such

as diakoptics [5, 6]. Such approaches are appropriate when the problem can be de-

composed into small pieces each of which can be readily solved. However, in the
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System-in-Package example considered in this Thesis, there is an interest in the case

of communication across entire dies, between dies and from one side of the package

to another. This involves modelling microwave waveguides (whether deliberately or

inadvertently created) that are influenced by the precise nature of the immediate envi-

ronment. Modelling even a single such waveguide requires much detail and therefore

approaches which reduce the computational intensity are desirable.

The presented approach is aimed towards two main applications. First, estimating the

reflectivity of a whole chip for use in System-in-Package electromagnetic interference

modelling, as illustrated in Fig 1.1. The concept of aggressor and victim chips in SiP

where one chip emits a signal that disrupts the other is depicted in Fig. 1.1(a) with a

cross-sectional diagram of a simple SiP and the close-up of the detail of the intercon-

nect stack in the victim. The representation of the proposed homogenisation method

where the interconnect is replaced by an equivalent homogenised medium is shown

in Fig. 1.1(b).

aggressor

victim

chip #1

chip #2

bondwire

incident
wave global (power)

intermediate

lower (signal)

(a) System-in-Package diagram

homogenised
equivalent

reflection
coefficient

(b) homogenisation concept

Figure 1.1: Application of integrated circuit (IC) electromagnetic compatibility analysis (a) diagram of

the concept of aggressor and victim chips in SiP with the close-up of the detail of the interconnect stack

in the victim chip; (b) representation of the proposed homogenisation approach. (note only one layer is

homogenised in this Thesis)

The second application is based on estimating interconnect performance in the pres-

ence of interconnects on lower metal layers. The homogenisation approach is based

on the calculated S-parameters for a microstrip prototype with interconnects embed-

ded in the dielectric substrate illustrated in Fig. 1.2(a) and the homogenised equivalent

structure in Fig. 1.2(b).
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dielectric

signal line

ground plane

(a) lower metal layers

homogenised
equivalent

ground plane

dielectric

signal line

ground plane

(b) homogenisation concept

Figure 1.2: Application of integrated circuit (IC) electromagnetic compatibility analysis (a) diagram

of the concept of interconnects at lower metal layers based on the microstrip structure; (b) representation

of the proposed homogenisation approach. (note only one layer is homogenised in this Thesis)

1.1.1 Interconnect Technology Overview

In this Section the design, fabrication and performance of contemporary on-chip in-

terconnects is described. On-chip interconnects are the wiring that connect the tran-

sistors. A cross section of a typical CMOS chip is shown in Fig. 1.3 with a transistor

formed in the substrate with interconnects formed above in Fig. 1.3(a). Figure 1.3(b)

shows a scanning electron micrograph of the interconnect layers in an actual chip, here

a 65 nm process from Intel [7], where the smallest feature in the interconnect stack

has 210 nm pitch. The on-chip interconnects can be classified into Metal 1, intermedi-

ate, semiglobal and global lines, depending on their position in the substrate.

The continuous process of down-scaling the IC components defines the size of the

wiring pitch at each level of interconnect layers. The graphical illustration of this pro-

cess based on the forecast published in International Technology Roadmap for Semi-

conductors (ITRS) 2008 Update [8] is given in Fig. 1.4. In the most recent ITRS forecast

the minimum global wiring pitch can have a size in between the value for intermedi-

ate and semiglobal lines. Such a trend was not predicted a few years ago where for

the same technology nodes the minimum global wiring pitch was affirmed to be larger

than the lower levels pitches [9].

The term ‘technology node’ was typically used with respect to the size of transistor

gate length and half pitch of the Metal 1 line. Since the half pitch value stopped de-

creasing as aggressively as it did in the past generations of ICs and was forecast in

ITRS a few years ago, the number for technology node is going to stand more for the

commercial name of the logic used than to correspond to the size of half of the pitch.

The actual parameter values and the predicted time for their implementation in mass
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Figure 1.3: Diagram of typical CMOS integrated circuit showing (a) transistor formed in the substrate

and interconnect layers formed above, (b) scanning electron micrograph with cross section of the Intel

65nm 8 layer interconnect stack (reproduced from Bai et al.).
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Figure 1.4: Trend of the wiring pitch size for on-chip interconnects (After ITRS).

production is typically different from that predicted in ITRS and strongly depends on

the semiconductor companies [10].

Since SoC and SiP usually involve at least one and sometimes hundreds of processor

cores, it is appropriate to discuss interconnect technology in terms of the microproces-
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sor section in the ITRS [8] rather than the memory section.

The earliest generations of microprocessors were generally required only three metal

levels whereas contemporary designs, in which more transistors are used, requires

additional layers of metal interconnects. The present microprocessors in mass produc-

tion contain up to 12 metal levels. The ITRS predicts that by the year 2022 the demand

for the number of interconnect layers will be within 13 − 15. Such a large number of

layers and continuous downscaling of the pitch involves scaling of the chip wiring,

with the result that the interconnect performance dominates the overall chip perfor-

mance. This is because the interconnect’s performance worsens as they shrink, unlike

transistors. Specifically, the miniaturization of the metal interconnections increases the

resistance, due to the decrease in the cross-sectional area, and typically also increases

the capacitance due to an increase in aspect ratio and hence metal height with respect

to conductor spacing. Hence, in integrated circuit design and verification, it is impor-

tant to understand how much parasitic resistance R and capacitance C is introduced

by interconnects. While this sort of analysis is peripheral to the goal of this Thesis, a

brief overview is given in the rest of this Section.

In an advanced integrated circuit the RC delay is dominated by the performance of

the global wires used to interconnect the on-chip components [11]. While the intercon-

nect delay is proportional to the square of its length, and the local and intermediate

interconnects tend to scale in their length, their influence on the signal latency is not as

significant. Solutions for reducing the delay include the insertion of buffers into long

interconnect lines and reverse scaling [12]. Lines longer than the optimal length are

usually buffered by repeaters. The optimal length is determined by Rent’s rule [13]

which relates the number of elementary components in a subcircuit and the number of

external connections and is used to estimate the interconnect length. Adding repeaters

results in additional power consumption as well as loss of part of the active silicon and

routing area, which in turn implies a larger wiring area is required or a more congested

layout with interconnect levels may result. On the other hand, reverse scaling is based

on reducing the delay by using widely spaced and large wires on the top global met-

alisation levels. This also improves power handling, reduces the loss and allows more

dense wiring at the lower metal layers. However, such a procedure results in a larger

size of microprocessor.

Other recognized issues in the analysis of interconnect performance include crosstalk
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and power supply quality (elimination of ground bounce and voltage sag), as well as

the power dissipation [14]. Power dissipation is of interest for local and intermediate

metal levels because the length of local and intermediate interconnect layers generally

scales with the implementation of a new technology process. Hence, the reduction

of the RC delay at those layers is less important than crosstalk reduction. Crosstalk

which occurs as the propagation of a signal to a neighbouring wire is closely related to

the total capacitance of the electronic component. It increases in relation to the ratio of

the line-to-line capacitance to the total capacitance, while power dissipation and delay

are proportional to the total capacitance. Therefore, the optimisation of the overall

interconnect system needs to consider both the line-to-line and the total capacitance.

However, scaling the wire size increases the resistance in the wire in proportion to the

square of the scaling factor. The current density is proportional to the scaling factor as

is illustrated in Table 1.1 [15]. These increases in resistance and current density result

in an increase of the RC delay and heating. Therefore, power and heat generation are

the limiting factors of the downscaling process.

Local wiring Global wiring

ideal

scaling

quasi-ideal

scaling

ideal

scaling

constant

dimension

scaling

line width and spacing S S S 1

wire thickness S
√
S S 1

interlevel dielectric thickness S
√
S S 1

wire length S S 1/
√
S 1/

√
S

resistance per unit length 1/S2 1/S3/2 1/S2 1

capacitance per unit length 1 ∼ 1 1 1

RC delay 1
√
S 1/S3 1/S

current density 1/S 1/
√
S 1/S S

Table 1.1: Interconnect scaling methodologies for local and global wiring (reproduced

from Sylvester et al.).

These consequences can be balanced by changing the typically used aluminum wiring

to copper [16] which has lower a resistivity and combining it with low-k dielectric

insulation [8]. Some low-k dielectric materials are already used in manufacturing pro-
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cesses where the bulk permittivity is 2.5 ≤ ε ≤ 2.9 and according to the ITRS forecast

is going to decrease to 1.5 ≤ ε ≤ 1.8 by the year 2022 if practical issues with their adop-

tion are overcome. There are two ways to implement low-k dielectrics: either as solid

materials with low permittivity or by deposition of porous materials. Porosity reduces

the bulk permittivity, but also reduces the mechanical strength of the material. Due

to the thermal and mechanical weakness of low-k materials, integration and reliability

concerns have slowed down their adoption. There are also some efforts toward using

air-gaps (ultra low-k material) with copper metalisation in advanced IC technologies

(22 nm technology node and below) [17, 10].

The overall performance of an IC can be evaluated in a number of ways such as power

consumption, number of operations per second or even clock speed. Using clock speed

is not a perfect measure because two chips with the same clock speed can have very

different power consumption and processing capacity if they have different designs.

However, for the purpose of this Thesis, it will suffice. The on-chip local speed, which

is determined by the transistor switching speed as well as the speed of the signal prop-

agation from one component to the next, is currently about 5 GHz and is predicted to

rise to approximately 15 GHz by the year 2022 [8] although this may be an ambitious

target given the power dissipation issues discussed here. As the interconnect network

becomes more and more complex the signal delay becomes a meaningful issue which

also influences the entire switching time and the maximum clock speed. The trend in

reducing the growth rate in clock frequency and chip size can be observed [10].

The other factor that deserves designers’ attention is the aspect ratio (AR) of the metal

wires defined as a ratio of the wire thickness to the wire width. The achievable aspect

ratio is determined by the technology process and, to some extent, is limited by the

fabrication process (etching, cleaning, metal deposition process) and by the properties

of the low-k dielectric insulator (thermal and mechanical losses during the fabrication

process, fragility, dielectric erosion, chemical interactions). The ITRS forecast with

respect to the reliable metal aspect ratio for the current and next generation technology

processes are in the range of 1.7−2.3 and are going to increase to 2.1−2.9 in the highly

advance 11nm technology node process. The lower bound of the range applies to the

lower metalisation levels (Metal 1 wiring and intermediate layers) whereas the upper

bound to the global lines.
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In the timing analysis and verification of an IC the density of the metalisation on the

layout needs to be considered. The interconnect pattern density is initially limited by

the design rules within 20%−80% [18]. The pattern density is defined as the proportion

of the area occupied by metal to the entire area being considered, also called metal

volume fraction or metal fill factor. A statistical analysis of the pattern density of a

real chip showed that, typically, the maximum pattern density does not exceed 60% in

regions where the random logic is separated from the memory blocks [19]. Since the

future generations of technological progress are predicted to mainly require scaling of

the components whilst keeping a similar pattern density on a given layout this upper

limit on the metal pattern density can be assumed to be applicable over the pending

technological generations.

1.2 Aim and Scope of Thesis

The aim of this Thesis is to develop empirical effective medium theory models which

allow interconnects to be accurately replaced by homogeneous material slabs in elec-

tromagnetic simulations containing integrated circuits. Replacing interconnects with

a homogeneous equivalent drastically reduces the complexity of the numerical model,

whilst simultaneously retaining the precise nature of the influence of those intercon-

nects on nearby waveguides.

The specific aims of this work are:

• consider electromagnetic behaviour of a canonical structure of on-chip intercon-

nects and evaluate validity of replacing detailed structure with an equivalent ho-

mogeneous material;

• develop a compact formula or formulas for the prediction of the effective permit-

tivity of such a homogeneous slab;

• conduct experiment to validate that the model can predict the reflection coeffi-

cient of a single layer of interconnects;

• extend model to deal with interconnects in the vicinity of a typical interconnect

carrying a high frequency signal, and conduct experimental validation.
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Some specific limitations on the scope of the work are as follows.

First the main focus is on the performance of a single layer of interconnects in the

presence of other interconnects. Since the approach of applying the effective medium

theory specifically to the analysis of interconnects has not been presented in the litera-

ture prior to this work, it was considered prudent to concentrate on a straightforward

canonical structure, that of a single layer of interconnects. It can be reasonably expected

that such an analysis can be extended to describe the performance of multilayered ar-

rangements of wires in an interconnect stack. However, such an analysis is out of the

scope of this Thesis.

Two frequency ranges, 1−10 GHz and 30−200 GHz, are targeted. The first, 1−10 GHz,

corresponds to typical on-chip signals frequency and the second, 30 − 200 GHz, is re-

lated to high frequency applications and includes several of the Industrial, Scientific

and Medical (ISM) bands.

A single layer of interconnects is not unlike a grating structure. A wave propagat-

ing through a grating structure with a deep subwavelength period behaves macro-

scopically the same as if it was travelling through a homogeneous medium. Effective

medium theory correlates the critical grating parameters with the dielectric proper-

ties of effective homogeneous medium. Despite metals having negative permittivities,

metal-dielectric gratings are well known to have positive effective permittivities. In

this work only nonmagnetic materials are considered; although these have been con-

sidered elsewhere for other applications [20], they are not directly of interest here.

1.3 Thesis Outline

This Section provides an outline of the contents and organisation of the remainder of

the Thesis. Generally, the work in this Thesis (Chapter 4-6) is presented in the order in

which it was performed.

Chapter two presents the background to the effective medium theory. The theory of ar-

tificial dielectrics and metamaterials, form birefringence and subwavelength gratings

is provided. It is explained that the effective medium theory gives mathematical tools

to analyse the dielectric and metal-dielectric gratings. A selection of mixing rules, with

an emphasis on the Maxwell-Garnett rule, are discussed.
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Chapter three provides a review of the analysis and simulation techniques. The ana-

lytical method - characteristic matrix method - is presented, along with the three nu-

merical methods used to generate the data - finite difference time domain method,

rigorous coupled wave analysis and finite element method. The numerical techniques

are validated against the analytical method.

Chapter four introduces the canonical structure for which the empirical mixing models

are defined. The analytical formulation of the empirical model for on-chip signals band

and the empirical model for ISM frequency band are presented together with their

validation. Furthermore, the validity of the empirical model for a range of incident

angles of the plane wave and change in the grating profile is discussed in the context of

theoretical bounds observations. A comparison with other empirical models reported

in the literature is also provided.

Chapter five details the X-band (8.2 − 12.4 GHz) free-space measurements with a de-

scription of experimental design and equipment. Detailed accounts of the calibration

procedure and measurement accuracy are also presented. The measurement results for

the TM polarisation are discussed.

Chapter six deals with the microstrip analysis and measurements. The experimental

design and numerical analysis along with the homogenisation procedure and results

are presented. The measurements of the prototype microstrip lines are described along

with the discussion of the results.

Chapter seven is the last in this Thesis and provides conclusions and plans for further

work.
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Chapter 2

Background

2.1 Introduction

Effective medium theory (EMT) has been studied since 1892 by such scientists as

Lord Rayleigh[21], Lorentz[22] and Maxwell-Garnett[23, 24]. Experimental and the-

oretical studies of periodic structures show that they behave as homogeneous media

if the characteristic period Λ is small compared to the illumination wavelength λ0;

typically Λ < λ0/4. Replacement of the periodic structure by an equivalent homoge-

neous medium is a process known as ‘homogenisation’ and is based on an effective

medium theory. The equivalent thin layer has an effective index that can be calculated

as some average from the geometry and material properties of the periodic structure.

Homogenisation often simplifies the analysis of the structure by creating a new arti-

ficial material. Another term often encountered in effective medium theory literature

is ‘metamaterial’, although this requires careful definition. One of the best known ex-

amples of effective medium theory is the Maxwell-Garnett mixing rule. This rule is of

particular interest here and is described in this Chapter.

2.2 Artificial Dielectrics and Metamaterials Theory

The first porous antireflection surfaces were presented by Fraunhofer[25] and were

obtained by etching a glass surface with an acid solution. The upper layer comprised

a mixture of air and glass and had a reduced macroscopic refractive index. Conse-

quently, reduced reflections were observed due to the reduced index mismatch at

the interface. Further reductions can be obtained with more regular porosity, with
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dimensions smaller than the wave length of the illuminating wave which together

form a continuous gradient in the refractive index through the thickness of the layer.

Considerable experimental work has been done on the reduction of reflections by

using porous layers of Gaussian profile [26] - thus validating the EMT approach.

A biological antireflection surface was discovered in the eye of the nocturnal moth and

analysed by Bernhard[27, 28]. For the purpose of camouflage the corneas of nocturnal

moth eyes are covered with a regular hexagonal array of protuberances of about 200 nm

depth and spacing with a cross section which is approximately sinusoidal. As the scale

of the structure is significantly smaller than visible wavelengths, the incoming visible

light cannot resolve the details and instead the light ‘sees’ a material with a smoothly

graded refractive index that gradually transitions the refractive index from that of air

to that of the cornea. The smoothly graded dielectric constant of the surface does not

exist independently of the illumination and is therefore called an artificial dielectric.

Early attempts to reduce the surface reflection of the visible spectrum were based on

the principle of the effect observed in the moth-eye and is often called the moth-eye-

type antireflection coating [29]. Nowadays this effect is used in the mass production of

antireflective coatings as an inexpensive alternative to the quarter wave coating.

The rapidly growing research area of artificially obtained media with positive or neg-

ative permittivity and permeability is commonly described as metamaterials1. The

literature relating to the negative index media is neglected here because it is out of

the scope of this Thesis. Metamaterials are created artificially by combining inhomo-

geneous media or patterning an homogeneous material in order to obtain an effective

macroscopic response. The two main requirements for metamaterial properties are

that they should not be observed both in the constituent materials and are not natu-

rally formed by nature [30]. Hence metamaterial is a man-made, fabricated material

engineered to somehow disregard or fulfill the natural phenomena. They are desired

for application in new apparatus, systems and materials.

With reference to a discussion on the difference between artificial dielectrics and meta-

materials [30], it is worth noting that the moth eye structure [27, 28], when occurring

naturally in nature, is an artificial dielectric but not a metamaterial. Were that struc-

ture to then be mimicked in a man-made process (e.g. using semiconductor fabrication

1meta = beyond, after
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technologies) only then it would also qualify as a metamaterial. Similarly, photonic

band gap structures found in butterfly wings [31] are not metamaterials whereas a

duplicate man-made structure will be.

Properties of artificially created materials depend on both internal and external fac-

tors [30]. Internal factors include the composite materials comprising the mixture.

Specifically, their shape, alignment (periodicity), separation, volume fractions, etc. Ex-

ternal factors include the interaction with the outer ‘world’ e.g. illumination frequency

and wave characteristics. There is a requirement of homogeneity for a material to be

called a ‘material’. It means that the created inhomogeneous mixture needs to be a dis-

ordered or periodic structure with unit cell much smaller that the length of the incident

wave to behave as an homogeneous medium. Hence periodic structures are easier to

manufacture, are more repeatable and are therefore of main interest in the engineering

of metamaterials.

Wire grid polarisers (WGP) have been studied extensively as subwavelength struc-

tures consisting of periodically aligned wires which reflect one polarisation of incident

wave (electric field polarised parallel to the direction of the wires) while transmitting

the other (electric field polarised perpendicular to the direction of the wires). They are

mainly utilized as polarisers or polarising beam splitters. The effectiveness of grid po-

larisers depends on the relationship between the grating periodicity and the illumina-

tion wavelength. The spacing between the metallic wires and their widths specify the

wavelengths at which the polariser can be used. The grating period should be smaller

than the wavelength of the illumination wave. For correct operation of the WGP over

the entire range of visible light the grating period should be less than 150 nm.

The incident electromagnetic wave polarised along the wire direction induces the free

movement of electrons along the length of the wire. The physical response of the wire

grid is similar to that of a thin sheet of metal. The current is generated on the metal

surface and some energy is lost due to joule heating whereas the rest of the wave is

reflected. In the case of the incident wave polarised perpendicular to the wires, the

electrons’ mobility is limited by the width of the wires. There is a small amount of the

energy both lost and reflected. Thus most of the incident wave is transmitted through

the grid. The electric field components parallel to the wires are absorbed or reflected.

Therefore, the transmitted wave has its electric field component perpendicular to the

wires - a linearly polarised wave. For the considered polarisation, and from form bire-
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fringence theory, the wire grid behaves analogously to a homogeneous slab of dielec-

tric.

A schematic diagram of the WGP is shown in Fig. 2.1. Material properties are repre-

sented by their refractive indices: n1 is the complex refractive index for the metallic

wires, n2 is the refractive index of the dielectric medium; f stands for the metal fill

factor, Λ is the grating period (Λ << λ, λ - wavelength of illumination wave) and h is

the grating height.
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Figure 2.1: Diagram representing the subwavelength wire grid polariser. When unpolarised wave in-

cident on the polariser, polarisation with electric field parallel (‖) to wire grid is reflected and polarisation

with electric field perpendicular (⊥) to the wire grid is transmitted.

The first attempt to apply the effective medium theory to the analysis of WGP was re-

ported by Yeh et al. [32] and Yeh [33, 34]. The authors proposed that a periodic layered

medium consisting of layers of different homogeneous and isotropic materials follow-

ing in sequence behaves as a uniaxial birefringent medium. The effective refractive

indices of this composite structure are given by [33]

nTE =
(
fn2

1 + (1− f)n2
2

)1/2
, (2.1)

nTM =
[ f
n2

1

+
(1− f)

n2
2

]−1/2

(2.2)

The lower indices TE and TM correspond to the polarisation of the electromagnetic

field with respect to the orientation of the metallic wires. This will be described in

Section 2.3. Note that Eq. (2.1)-(2.2) are equivalent to the zeroth-order approximation

of Eq. (2.17)-(2.18) and to the Wiener bounds of Eq. (2.32)-(2.33).
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The simplified model of WGP which is based on the effective medium approximation

was used in the analysis of polarisers operating at infrared [35], visible [36, 37, 38]

and ultraviolet [38] wavelengths. The performance and optimisation of the polarising

beam splitter [35] and the wire grid polariser in the vicinity of the volume plasmon fre-

quency (fundamental frequency of a free oscillation of the electrons in the metal) [38]

was studied by the straightforward application of formulas Eq. (2.1)-(2.2) in the quasi-

static limit. In [35] a detailed study of the zeroth-order diffraction efficiency is con-

ducted for a single wavelength of 1550 nm (infrared light) and varying grating depth

with fixed period Λ = 1069 nm. It is demonstrated that the zeroth-order diffraction effi-

ciency of the transmitted TM polarised wave is a periodic function of grating depth h.

The form birefringence approximation theory, Eq. (2.1)-(2.2), can be simply and effi-

ciently applied to the analysis of dielectric gratings [39, 40]. Nevertheless, for metallic

gratings, this model is not accurate enough [37]. In [37] it is demonstrated that, in some

cases, use of the form birefringence method to calculate optical properties (transmis-

sion and reflection coefficient) of the WGP does not yield accurate results. The analysis

was performed for the grating with parameters: Λ = 150 nm, h = 180 nm, metal fill

factor f = 0.55 and the incident wave with wavelength λ = 543.5 nm (visible range).

For the wave polarised perpendicular to the wires, the form birefringence approxi-

mation gives up to 80% error in the reflection coefficient. This is shown in Fig. 2.2(a)

and Fig. 2.2(b) for the transmission and reflection coefficients respectively. The devi-

ation of the form birefringence from the experimental results is small for the incident

wave polarised parallel to the wires. This is illustrated in Fig. 2.2(c) and Fig. 2.2(d).

In Fig. 2.2(c), both rigorous calculations and form birefringence differ from the mea-

sured data by very small percentages that are related to the experimental uncertainty.

Since the form birefringence approach is not accurate when applied to the analysis of

a single metallic gratings illuminated by waves polarised in the direction perpendic-

ular to the wires, either rigorous calculations are required or an alternative effective

medium approximation would need to be defined. Hence in this Thesis, classical mix-

ing models are considered.

The effective medium approximation was employed for the extensive modelling of

liquid-crystal displays (LCD) by replacing the metal grid with a homogeneous equiva-

lent block [36]. The form birefringence method was used as a starting point to estimate

the effective properties. The calculated effective refractive indices were then corrected

by fitting two parameters to ensure agreement with experimental data. The first pa-
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(a) Transmission coefficient (b) Reflection coefficient

(c) Transmission coefficient (d) Reflection coefficient

Figure 2.2: Comparison between experimental and simulated data for incident wave polarised per-

pendicular to wire grids: (a) transmission coefficient, (b) reflection coefficient. The values obtained for

incident wave polarised parallel to wire grids: (c) transmission coefficient, (d) reflection coefficient. (re-

produced from Yu et al., Fig. 3,4,5,6.)

rameter is the thickness of the effective medium; the second is the absorption coeffi-

cient. Note that the absorption coefficient is dispersive and changes with wavelengths.

The authors of [36] provide effective refractive indices for the two polarisations of the

incident light in the visible range (λ = 400 − 700 nm). These can be used in the anal-

ysis of LCD structures. However the effective refractive indices are only valid for two

specific combinations of gating parameters and substrate, and do not go for enough to

suffice for the applications considered in this Thesis.

For the subwavelength metallic gratings illuminated by a plane wave, the peak value
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of the transmitted wave can be observed at Brewster’s angle [41]. The magnitudes of

the transmitted and reflected waves incident at this angle are related to the grating

parameters and are determined by the horizontal and vertical surface resonances oc-

curring in the metallic periodic structures [42, 43, 44]. For TM polarised plane waves

incident on the metallic grating, the resulting zeroth-order diffracted wave excites hori-

zontal surface resonances (surface plasmons) on the upper and lower surface of the pe-

riodic structure. The coupling between the upper and lower surface plasmons results

from the propagating guided wave in the dielectric part of the grating. The vertical

surface resonances arises from the coupling of the two surface waves and corresponds

to the Fabry-Pérot resonances of the TM guided wave in the grating slits. The inter-

play between the two types of resonances causes the outgoing propagating plane wave

to be transmitted with high efficiency. For the multilayered structure, such a wave will

penetrate into the lower layers, thus the lower layers can also affect the total amount of

reflection. Therefore, even though a wire grid polariser are well studied it is necessary

to consider a new approach that can be readily extended to multilayers structures, after

validation single layer structures.

A metallic periodic structure, when illuminated by electromagnetic incident radi-

ation of required wavelength, can be called an artificial dielectric or metamate-

rial [45, 46, 47, 48] because the structure’s macroscopic metal properties exhibit dielec-

tric characteristics which do not exist in readily available natural materials. Metallic

periodic structures composed of copper grids have the properties of metameterial [45].

Such an arrangement of the metal wires can be used, for example, to control the emis-

sion of photonic-crystal-based antennas. Even though the crossing-wires structure be-

have as a metamaterial it does not adequately represent the metal wires found in inter-

connect stacks.

The metal-dielectric film composites [46] have been successfully applied to improve

the performance of near-field superlenses where the negative permittivity is of main

interest. The range of wavelengths at which the lens can operate is controlled by the

metal fill factor. These structures are characterised by a negative permittivity which is

not related to the interconnect structure.

The Maxwell-Garnett rule [23] was generalized for the calculation of the effective prop-

erties of a granular metal-dielectric mixture in terms of the size and distribution of the

metal particles [47, 48]. Since this effect was studied only for round-corner inclusions

the derived formulation cannot be applied straightforwardly to the analysis of mix-
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tures with sharp-corner inclusions like those found in an interconnect stack.

2.3 Form Birefringence

When analysing a grating structure its properties strongly depend on the direction

of the illuminating wave. Hence, the transverse electric (TE) and transverse mag-

netic (TM ) polarisation of the linearly polarised electromagnetic plane wave is defined

with respect to the grating vector K which is orthogonal to the grating. The TE polari-

sation is a linear polarisation with the electric field perpendicular to the grating vector,

as illustrated in Fig. 2.3(a), and the TM polarisation is a linear polarisation with the

electric field parallel to the grating vector, as depicted in Fig. 2.3(b).
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Figure 2.3: Representation of the transverse electric (TE) and transverse magnetic (TM) polarisations

of the normally incident linearly polarised electromagnetic waves. These are defined with respect to the

grating vector K: (a) TE - electric field perpendicular to K, (b) TM - electric field parallel to K.

Structures comprising regular parallel plates of isotropic materials with small thick-

nesses relative to the illumination wavelength behave anisotropically, a phenomena

known as form birefringence [49]. Form birefringence is created in surfaces charac-

terised with different grading of the refractive index for TE and TM polarised waves.

In such structures the effective dielectric constant depends on the direction of the elec-

tric field vector.

Dielectric grating structures forming birefringence have already been extensively anal-

ysed in the literature such as the 2-D examples shown in Fig. 2.4. The dielectric con-

stants of the two materials forming the grating structure are denoted by ε1 and ε2;

f stands for the fill factor of medium with ε1, and Λ is the structural period. The fill

factor is defined as the ratio of the width of the dielectric portion to the grating period,



2.4 Subwavelength Gratings 19

such that the value of fΛ is equal to the plate thickness. In this Thesis, gratings for

which ε1 represents a metal and ε2 a dielectric.

fΛ Λ

ε1 ε2

K,  E
ETE

TM

Figure 2.4: Perspective diagram of a grating structure that creates a birefringence surface, such as

might be seen in the analysis of a single layer of interconnects.

2.4 Subwavelength Gratings

A periodic subwavelength grating is similar to a diffractive structure but does not pro-

duce propagating diffracted waves in the far field because the period is small com-

pared to the illuminating wave. The only propagated order is the zero reflected and

zero transmitted order in the incident and substrate medium, respectively, while the

other higher diffraction orders are evanescent [50]. Figure 2.5 illustrates the geometry

of the profile of a 1-D grating surface. The critical dimensions of the grating struc-

ture are depicted. Specifically, grating vector K, grating period Λ, the transmitted and

reflected higher diffraction orders Tm, T−m andRm, R−m respectively, and the transmit-

ted and reflected zero-orders T0, R0 respectively. The incident and substrate medium

have dielectric refractive indices ni and ns respectively.

The grating equation determines whether a given order propagates or not and is given

by

ns sin θm − ni sin θi =
mλ

Λ
, (2.3)

where θi is the angle of incidence measured from the normal to the grating surface

and θm is the angle of the mth diffracted order, λ is the wavelength of the incident wave

in free-space.

If the only propagated order is to be m = 0 in either the substrate or the incident

medium then θm needs to be complex for all diffraction orders m 6= 0. Equation (2.3)

can be transformed to give an upper bound for the period-to-wavelength ratio. For



2.4 Subwavelength Gratings 20

Λ
RmR-m

R0

TmT-m

T0

incident
wave θi

K ns

ni
incident 
medium

gratings

substrate

x

z

y

θm

Figure 2.5: Transmitted and reflected diffraction orders for an artificial dielectric grating of arbitrary

profile. (After Raguin et al., Fig. 1)

the artificial dielectrics the first evanescent order is set to be for m = 1 and θm = π/2.

Hence Eq. (2.3) becomes

ns − ni sin θi =
λ

Λ
. (2.4)

The limit of the zero-order regime on the period is given by

Λc =
λ

ns − ni sin θi
, (2.5)

where Λc is the cutoff limit period above which the higher evanescent orders propa-

gate. The upper limit on the grating period Λ is set by the minimum value of the cutoff

limit period Λc. For the case when ns > ni the minimum value of Λc is obtained when

θi = −π
2
, θi ∈

[
−π

2
, π

2

]
and is equal to Λc = λ

ns+ni
. However, for ns < ni the Λc as a

function of the incident angle θi is undefined for θd = arcsin
(
ns

ni

)
. The limit period Λc

for θi > θd has negative values Λc < 0 therefore the domain in which Λc is defined is

θi ∈
[
−π

2
, θd
]
.

In order to minimise the cutoff limit period and account for the discontinuity in Λc(θi)

the denominator might be transformed to max[ns, ni] + ni sin θi. This gives the maxi-

mum value of the denominator for given values of ni, ns, λ and angle of incident θi.

Hence the upper limit on Λ becomes Λ < Λc and

Λc =
λ

max[ns, ni] + ni sin θi
, (2.6)

with the discontinuity angle being θd = arcsin
(
−max[ns,ni]

ni

)
which always has a nega-

tive value. Since Λc(θi) is monotonically decreasing function in the domain θi ∈
[
θd,

π
2

]
for both cases, when ns > ni and ns < ni, the minimum value of Λc(θi) is obtained for
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the maximum angle of incidence θmax. Therefore, the upper limit on the grating period

is

Λ <
λ

max[ns, ni] + ni sin θmax
, (2.7)

and restated in terms of the period-to-wavelength ratio is

Λ

λ
<

1

max[ns, ni] + ni sin θmax
, (2.8)

where max[] is equal to the maximum value of its arguments.

The above inequality indicates that, for only the zeroth diffraction order to propagate

in the grating structure, the structural period needs to be smaller than the incident

wavelength. This upper bound on the structural period and the length of illumination

wave is a practical way to determine whether or not the grating structure may be

considered as an artificial dielectric and, therefore, whether the man-made material

with an effective refractive index is a metamaterial with properties that do not exist in

nature.

2.5 Dielectric Gratings

This Section focuses on the propagation of electromagnetic waves through periodic

laminated structures of dielectrics. However, similar principles apply to other mate-

rials. The Rytov [51] and Clogston [52] formulas admit both permittivity ε and per-

meability µ. Nevertheless, in this Thesis it is assumed that the dielectric layers have

nonmagnetic properties (µr = 1) and the main concern is the permittivity.

Hence, Clogston [52] investigated conductor-dielectric stacks for reducing losses in

waveguides and derived the following formula for the effective permittivity

εeff = εd

(
1 +
W
T

)
, (2.9)

whereW is the thickness of the conducting layers, T is the thickness of the dielectric

layers, and εd is the permittivity of the dielectric layers.

A more detailed analysis of the laminated stack of dielectrics, in particular in terms of

the ratio of the structural period to the wavelength [51, 53, 54], will now be presented.
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In [51] Rytov analysed properties of a stratified media consisting of two arbitrary ho-

mogeneous dielectrics following in sequence. A schematic diagram of the structure

studied by Rytov with alternating layers is shown in Fig. 2.6. The first dielectric layer

has permittivity ε1, permeability µ1 and thickness a, and the second - permittivity ε2,

permeability µ2 and thickness b.

x

z

y

K,  E

ETE

TM

a b Λ

ε ,µ1 1ε ,µ2 2 Direction of
Propagation

Figure 2.6: Diagram of the stratified electromagnetic medium with alternating layers analysed in

Rytov’s paper.

In order to solve for the field direction characterised by TE and TM polarisation,

which are of the interest for the analysis of the grating structure representing a sin-

gle layer of interconnects, a uniform plane wave was applied to the structure. The TE

and TM polarisations are defined with respect to the grating vector K as it is specified

in Fig. 2.6.

The approach is based on averaging the electromagnetic field in the laminated stack by

calculating some average value of the dielectric properties over the period Λ = a + b.

The averaged value gives the effective permittivity and permeability. For metamateri-

als comprising materials with µr = 1 it is not necessary to consider the effective per-

meability explicitly since its effective value remains µeff = 1. The method proposed by

Rytov [51], and explained in the following, can be applied only under the assumption

that there is a slow change of the field along distance Λ in the direction of propagation.

This condition is formulated as

kΛ|n| � 1 (2.10)

where k = ω/c = 2π/λ and n is the effective refractive index of the medium for a given

polarisation and direction of propagation, and is similar to that given in Eq. (2.8) in

intent.
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The effective permittivity for the TE polarisation, εTE , is the root of

α2

µ2

tan
α2b

2
= −α1

µ1

tan
α1a

2
(2.11)

where

α1 = k
√
ε1 − εTE, (2.12)

α2 = k
√
ε2 − εTE. (2.13)

The effective permittivity for the TM polarisation, εTM , is the root of

α2

ε2
tan

α2b

2
= −α1

ε1
tan

α1a

2
(2.14)

where

α1 = k
√
ε1 − εTM , (2.15)

α2 = k
√
ε2 − εTM . (2.16)

The derived Eq. (2.11)-(2.16) does not give a close form solution for the effective permit-

tivities for each polarisation. Nevertheless, for the structures where the illumination

wave length is much longer than the structural period (quasi-static limit), the argu-

ments of the tangents become small (|α1a| � 1 and |α2b| � 1) and a zeroth-order ap-

proximation can be applied. Hence, the tangents are replaced by their arguments and

the zeroth-order effective permittivities for TE and TM polarisations are as follows

ε
(0)
TE = fεs + (1− f)εi, (2.17)

ε
(0)
TM =

[ f
εs

+
(1− f)

εi

]−1

(2.18)

where εs is the permittivity of a substrate medium, εi stands for the permittivity of

an incident medium, and the fill factor f represents the fraction of substrate material

within a period Λ. Formulas Eq. (2.17) and Eq. (2.18) depict the difference between ef-

fective permittivities calculated for TE and TM polarisations for 1-D grating structure.

Hence, they also show the effect of form birefringence in considered structure.

For the subwavelength grating structures, with larger period, that do not meet the

long wave limit (Λ/λ � 1, note that this is a simplified form of Eq. (2.10) but still

represents the limit adequately), it is required that a correction factor is added to the
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zeroth-order approximations. The obtained second-order effective permittivities for

each polarisation are

ε
(2)
TE = ε

(0)
TE

[
1 +

1

3ε0ε
(0)
TE

(
π(εs − εi)

Λ

λ0

f(1− f)

)2
]
, (2.19)

ε
(2)
TM = ε

(0)
TM

[
1 +

ε
(0)
TE

3ε0

(
π
ε

(0)
TM(εs − εi)

εiεs

Λ

λ0

f(1− f)

)2
]
. (2.20)

Rytov states that Eq. (2.19)-(2.20) are valid only when the correction term is small.

The limiting value of Λ/λ for which the homogenisation approach of EMT agreed with

rigorous calculations was studied by Bell et al. [53]. For both TE and TM the limit for

lamellar gratings (gratings with rectangular profile) is Λ/λ < 1/40. Typical intercon-

nect structures have Λ/λ < 1/106 and are thus well within the limit of the theory, under

the assumption the metal is represented by a dielectric constant via Drude model.

The above formulations for the estimation of the effective permittivities were derived

under the assumption that the stratified medium is infinite in the in-plane direction.

For that reason the case of shallow gratings was analysed in more detail and presented

by Lalanne et al. [54] from which the remainder of the equations in this Subsection

are obtained. An analytical solution of Maxwell’s equations in the small-depth limit

shows that the effective permittivities of subwavelength gratings are strongly depen-

dent on the grating depth and the refractive indices of the media surrounding the grat-

ings. These need to be accounted for, especially if the subwavelength gratings have

a depth smaller than two wavelengths. Expressions for the effective permittivities,

for TE and TM polarised incident wave, of the shallow gratings obtained by applying

Fourier expansion technique are given below

εTE(h) = ε0 +
∑
p 6=0

εpε−p
2|p|

(
Λ

λ

)
hk +O(h2k2), (2.21)

εTM(h) = ε0 −
∑
p 6=0

|p|εpε−p
εs + εi

(
λ

Λ

)
hk +O(h2k2) (2.22)

where h is the grating depth, ε0 is the effective relative permittivity, εp, ε−p are the

coefficients of the complex Fourier expansion of the permittivity profile, and p is the

number of terms included in the complex Fourier expansion. The effective permittivity

obtained for TE polarisation of 1-D gratings depends only on the grating parameters
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whereas for the case of TM polarisation the effective index is also influenced by the di-

electric properties of the surrounding media. Furthermore, the achievable value of εTM
is to some extent limited by the grating profile. The effective permittivity of a discon-

tinuous grating profile in the TM polarisation cannot be analysed using this Fourier

expansion method because the coefficient p in the numerator of the sum causes the

formula to be undefined.

In the paper [54] Lalanne et al. derived and validated an approximate formulation for

the effective permittivity in terms of the depth of the grating. The resulting equation

was based on arctangent dependency and satisfies the three following conditions: the

effective permittivity for the zero depth grating is equal to the zero-frequency compo-

nent in the Fourier expansion (ε(0) = ε0); the effective permittivity for the infinitely

deep grating is equal to the second-order EMT (ε(∞) = ε(2)); for the gratings with

depth within those limits the change of the permittivity with respect to the change in

grating depth and wavenumber is equal to η1 (dε/d(hk) = η1), where

ηTE1 =
∑
p 6=0

εpε−p
2|p|

(
Λ

λ

)
hk, (2.23)

ηTM1 =
∑
p 6=0

|p|εpε−p
εs + εi

(
λ

Λ

)
hk. (2.24)

The permittivity for a given polarisation and varying depth h of the subwavelength

gratings can be calculated from

ε(h) = ε0 +
2

π
(ε(2) − ε0) arctan

(
π2 η1

ε(2) − ε0
h

λ

)
. (2.25)

The effective permittivity obtained from Eq. (2.25) was compared with rigorous com-

putations and showed good agreement for the TE polarisation of 1-D gratings. How-

ever, for the TM polarisation of the 1-D gratings with non-continuous relative permit-

tivity profile (e.g. rectangular gratings) this equation is not valid. It is not valid due to

the method applied to derive equations Eq. (2.23)-(2.24) where the Taylor series expan-

sion was used. Thus, in Eq. (2.24) the summation over p becomes increasingly large.

Hence, a different method needs to be used in order to calculate the effective properties

of rectangular gratings.
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2.6 Dielectric-Metal Gratings

The most common approach to engineering artificial materials is to align the con-

stituents in a periodic manner. This has the advantage of being highly repeatable.

Nevertheless, there are naturally created mixtures which are of interest to researchers

such as geostructures, biological tissues, etc. that have a random distribution of parti-

cles [55]. For such mixtures with random alignment of inclusions the classical mixing

rules can be used in original or modified form.

In this Section the Maxwell-Garnett mixing rule is described and an argument pre-

sented that the modified classical mixing rules, such as Maxwell-Garnett rule, can be

used for calculation of the effective permittivity of composites where the initial con-

ditions for the validity of the original rule are not fully satisfied. In other words, the

classical mixing rules are more widely applicable than first expected.

2.6.1 Maxwell-Garnett Mixing Rule

The classical mixing rule for estimating the effective permittivity of a mixture was

defined by Maxwell-Garnett in 1904 [23, 24] and with its original formulation is valid

for mixtures with dilute conductive constituents under the following assumptions [55,

56]:

• the mixture is electrodynamically isotropic,

• none of the mixture’s fundamental parameters depend on the intensity of elec-

tromagnetic field (linear mixture),

• the parameters do not vary in time with changing external factors, e.g. electrical,

mechanical forces (non-parametric mixture),

• the randomly aligned spherical inclusions do not touch each other,

• the distance between neighboring inclusions is much larger than the radius of

spheres,

• the inclusions are small with respect to the illumination wavelength,

• the conductive inclusions are concentrated with a density lower than that speci-

fied by the percolation threshold.
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A schematic diagram of a typical composition with dielectric spheres, with permit-

tivity εi, randomly embedded in the dielectric background host (environment), with

permittivity εe, is shown in Fig. 2.7.

εe

εi

Figure 2.7: Schematic diagram of the dielectric mixture with randomly distributed spherical inclusions

embedded in a dielectric background environment.

Assuming that the effective permittivity εeff of such a mixture relates the average elec-

tric field E with flux density D [55]

D = εeffE (2.26)

and weighting these values with the related inclusion volume fraction f

D = fεiEi + (1− f)εeEe, (2.27)

E = fEi + (1− f)Ee (2.28)

where Ei is the internal field, Ee is the external field, and Ee, εe are constant.

Further, from Eq. (2.26)-(2.28) the effective permittivity is

εeff =
fεiA + εe(1− f)

fA + (1− f)
(2.29)

where A relates the internal and external fields Ei = AEe.

For the spherical inclusions, which by definition do not touch each other, and when the

distance between neighboring inclusions is much larger than the radius of the sphere

the ratio A is

A =
3εe

εi + 2εe
(2.30)
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and the effective permittivity can be calculated from the Maxwell-Garnett mixing rule

formulated below

εeff = εe + 3fεe
εi − εe

εi + 2εe − f(εi − εe)
. (2.31)

The effective permittivity does not depend on the radius of the inclusions as long as

the radius is small with respect to the illumination wavelength. The geometrical size

of the spheres can vary.

For the compound of the two dielectrics the effective permittivity calculated

from Eq. (2.31) has to fall in between the following bounds [55, p. 153]

εeff,max = fεi + (1− f)εe, (2.32)

εeff,min =
εiεe

fεe + (1− f)εi
. (2.33)

These bounds are also called Wiener bounds [57, 55]2. The upper limit for the effective

permittivity εeff,max is defined for a layered material with boundaries between inclu-

sions and host dielectric parallel to the field vector. The lower bound εeff,min is obtained

for the case where the field vector is perpendicular to the boundaries between inclu-

sions and host.

Since the Wiener bounds, Eq. (2.32) and Eq. (2.33), are defined for anisotropic mixtures,

stricter bounds, Hashin-Shtrikman bounds [55, p. 153], have been defined for the sta-

tistically homogeneous, isotropic and three dimensional mixtures. The upper and the

lower bounds are as follows

εeff,max = εi +
1− f
1

εe−εi + f
3εi

, (2.34)

εeff,min = εe +
f

1
εi−εe + 1−f

3εe

. (2.35)

where it is assumed that εi > εe.

The lower limit corresponds to the Maxwell-Garnett mixing rule whereas the upper

limit is the Maxwell-Garnett rule for the complementary mixture obtained by transfer-

ring the constituents: εi → εe, εe → εi, f → 1− f .

2Note that the original paper [57] is in German
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2.6.2 Selection of Mixing Rule

In the literature, many different mixing rules have been proposed to describe the effec-

tive properties of different types of mixtures [55]. Most of the current studies based on

numerical analysis of 2-D and 3-D structures with two constituents show that the effec-

tive properties of the mixture strongly depend on the inclusion volume fraction, its ge-

ometrical profile, and spatial orientation in periodic or random arrangements [58, 59].

The contrast between the permittivity and conductivity of the host material and in-

clusions determine the complex effective permittivity, which in turn depends on the

shape of the inclusions [60]. Hence, such a composite allows the designer to tune as

well as control the physical properties by varying the size and shape of the inclusions.

Since the mixtures with rounded shape inclusions, such as spherical, ellipsoidal or

rodlike shapes, have been studied by many researchers and to some extent the math-

ematical formulas for the effective properties calculation have been defined [55]. The

effective properties of the metal-dielectric mixtures [46, 47] or lossy composite materi-

als [61, 55] have been explored mainly in terms of inclusions with round corners [47].

In contrast, the composites with sharp corners have not been as thoroughly investi-

gated [59, 62, 63]. Studies of the effect of randomly and periodically arranged square

inclusions in host media showed that for the case of having low contrast between the

two mixed media the effective permittivity is not affected by the inclusions’ distribu-

tion. Whereas for composites with high contrast between constituents the disorder

and concentration of the particles strongly differentiate the effective properties of the

mixture [59]. Since the classical mixing rules need to be used carefully when the initial

conditions are not fully satisfied, in many cases the most appropriate analysis for cu-

bical inclusions are full numerical calculations. The numerical calculations can then be

explained by the classical mixing rules scaled by an appropriate constant value fitted

to the particular type of studied composites [62, 64, 65, 66].

In [65] Karkkainen et al. used the fitting method to define an empirical mixing model

that has been validated for the analysis of random dielectric mixtures. The created

model was based on numerical results obtained from simulations for a range of mix-

ture of two dielectrics with two different types of configuration. First, where the inclu-

sion permittivity was higher than the host permittivity εi > εe (so-called ‘raisin pud-

ding’ mixture), and the second covering the case when εi < εe (so-called ‘Swiss cheese’

mixture). The v-model [55, p. 172] was used to build the representation of studied

structures. The key advantage of the v-model is that it unifies three widely used mix-
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ing models: the Maxwell-Garnett rule, which is the most relevant to this work, and two

other related models - Bruggeman rule and Coherent Potential. All three models are

described in reference [55]. The v-model is defined for mixtures with isotropic spher-

ical inclusions of permittivity εi immersed in an isotropic environment εe and given

by
εeff − εe

εeff + εe + v(εeff − εe)
= f

εi − εe
εi + εe + v(εeff − εe)

. (2.36)

The Maxwell-Garnett rule is obtained for v = 0, the value v = 1 gives the Brugge-

man rule, and for v = 2 the Coherent Potential approximation is formulated. Since the

Maxwell-Garnett mixing rule has already been introduced in a previous Subsection, a

brief presentation of the two other rules is given below.

The Bruggemen rule [55, p. 161] assumes absolute equality between the constituents

constructing the mixture. Hence the difference between environment and inclusions

is neglected and the homogenised medium is treated as background with respect to

which the polarisations in terms of the environment and inclusions are measured. Fur-

ther, it considers the inclusions and the environment symmetrically, thus mixtures with

transfered material properties (εi → εe, εe → εi, f → 1−f ) have the same effective per-

mittivity.

The Coherent Potential formula [55, p. 163] is based on Green’s function for the field

in the mixture, seen as an effective medium, without considering the inclusions and

environment separately.

The parameter v can be set to other values, hence defining new mixing models. In [65]

the empirical mixing model was defined fulfilling the two dimensional parameter

space by varying the inclusion volume fraction and the permittivity contrast calculated

as the ratio εi/εe.

The Maxwell-Garnett mixing rule will be of main interest in the presented work. Fo-

cus on this particular mixing formula is motivated by the fact that the Maxwell-Garnett

mixing rule gives a qualitatively correct prediction of the effective properties of a com-

posite with conducting inclusions (e.g. metallic) [55, p. 80]. The other reason for the

interest in the Maxwell-Garnett rule is that, for the case of having a dilute mixture with

inclusions separated from each other and satisfying the condition εi > εe, this formula

gives a good enough approximation to the effective permittivity [65]. At one end of

the range of the considered fill factors in the interconnect grating structure the dilute

mixtures (f < 0.3) are included. As shown in Fig. 2.8, the Bruggemen model does not
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approximate the numerical data very well and it would appear that it gets even worse

as the fill factor increases beyond f = 0.3.

Inclusion volume fraction
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Figure 2.8: Mixing models are plotted with numerical results for the mixture with permittivity con-

trast εi/εe = 51 without clustering (reproduced from Karkkainen et al., Fig. 9).

2.7 Summary

This Chapter has provided coverage of the background material relating to the inter-

connects analysis investigated in this Thesis. A brief description of artificial dielectrics

and metamaterials has been presented along with the effective medium theory. The

formulation of the effective medium theory defined by Rytov for the periodic lami-

nated structure and explored by other researchers has been reported. An overview

of the related work where the modified classical mixing rules were used to define the

effective properties of a mixture with constituents specific to the analysed problems,

was presented. An evaluation of the accuracy of the various mixing rules when deal-

ing with structures having parameters similar to on-chip interconnects indicates that

the Maxwell-Garnett rule (or a modified form of it) is most likely to yield a suitable

effective medium theory for interconnects.
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Chapter 3

Interconnects Simulation

3.1 Introduction

There are many practical engineering problems involving the analysis of the electro-

magnetic behavior inside a system which require the solution of Maxwell’s equations.

However, for many problems obtaining the exact solution is a hard if not impossible

task. These difficulties may be ascribed to the complexity of the problem itself or to the

issues in defining the boundaries and initial conditions. Nevertheless, the available

numerical techniques, implemented either in commercial software or by the user, give

the possibility of computing the solution with good accuracy. An advantage of the an-

alytical solution over a numerical algorithm is that it demonstrates an understanding

of the physics of the problem whereas a numerical model can produce highly detailed

and accurate field data without necessarily enhancing the users understanding of the

operation of the system. Nonetheless, numerical methods are extremely valuable, par-

ticularly when it is desirable to simulate complex structures that do not readily yield

to analytical methods. Often, numerical methods begin by developing a discrete mesh

representing the geometry of interest. Hence, the first initiative operation, known as

discretization, for any numerical method is based on dividing the domain of interest

into a number of subsections and mesh points (nodes).

This Chapter presents a review of the analysis and numerical methods used in gener-

ating the data that underpin the effective medium models presented in this Thesis. A

brief description of the boundary conditions used in the models is also presented. The

Chapter includes the validation of presented techniques against analytical calculations

of the reflection and transmission coefficients for a canonical structure.
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3.2 Review of Analysis and Simulation Techniques

This Section reviews three widely used numerical methods for solving periodic struc-

tures in terms of electromagnetic phenomena. Namely, finite difference time domain

method (FDTD), finite element method (FEM), and rigorous coupled wave analy-

sis (RCWA). The analytical technique applicable to the solution of wave equations

propagating through a planar stratified medium, the characteristic matrix method, is

presented first.

3.2.1 Characteristic Matrix Method

The characteristic matrix method is a straightforward analytical technique used for the

solution of wave equations in the case of a plane wave incident on a stack of films

(multilayered structure) placed between planar, homogeneous regions. It is assumed

that the stack of dielectrics is normal to the z-axis, the direction of propagation, and

that the field within one layer can be characterised by a superposition of a forward

and backward traveling wave with magnitudes Ef , Eb respectively, and propagation

constant k defined in the medium on both sides of the interface kf and kb respectively,

E(z) = Efe
−jkf z + Ebe

jkbz. (3.1)

The optical properties of a plane, time-harmonic electromagnetic wave (monochro-

matic wave) propagating through a stratified medium, can be fully described by a

2 × 2 matrix M [49, p. 61]. Matrix M is called the characteristic matrix of the strati-

fied medium and expresses the relationship between the electric and magnetic fields

propagating through an individual layer. The matrix is formulated as

M(h) =

[
cos β − j

p
sin β

−jp sin β cos β

]
(3.2)

where β = k0nh cos θ, k0 = 2π/λ0 is the propagation constant calculated for the free-

space wavelength λ0, n =
√
εµ is the dielectric refractive index of the layer and ε = ε0εr

is the material permittivity (ε0 = 8.85 × 10−12 Fm−1 - permittivity of vacuum, εr - per-

mittivity of medium), µ = µ0µr is the permeability (µ0 = 4π10−7 Hm−1 - permeability

of vacuum, µr - permeability of medium), h denotes the thickness of the layer, θ is the

angle between the direction of propagation of the wave and the z-axis, and j =
√
−1

denotes an imaginary number.
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A schematic diagram of the propagation of an electromagnetic wave through a system

with a dielectric medium interfaced between two other media is depicted in Fig. 3.1,

where n1, n2, n3 are the refractive indices of the three media, h stands for the thickness

of the dielectric layer, and θ, θr, θt are the angles of incident, reflected and transmitted

wave, respectively.

θ θ

θ

n1

n2

n3

t

r

h

incident 
plane wave

reflected wave

transmitted wave

z

xy

     E

ETE

TM

Figure 3.1: Propagation of an electromagnetic wave through a homogeneous layer.

The characteristic matrix formulated by Eq. (3.2) can be applied to the analysis of the

two special cases of linearly polarised illumination wave. For the transverse electric

wave (TE) with electric vector perpendicular to the plane of incidence the factor p is

defined

pTE =

√
ε

µ
cos θ, (3.3)

whereas for the transverse magnetic wave (TM ) with magnetic vector perpendicular

to the plane of incidence

pTM =

√
µ

ε
cos θ. (3.4)

The stratified medium composed of m homogeneous layers can be described by the

characteristic matrix of the complete system obtained by multiplication of the charac-

teristic matrices of each layer Mi, where i = 1, 2, . . . ,m and denotes the succession of

stratified media from the first to the last layer and is defined by

M =
m∏
i=1

Mi. (3.5)
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The reflection r and transmission t coefficients of the layered system is related to the

elements of the matrix M by

r =
(m11 +m12pl) p1 − (m21 +m22pl)

(m11 +m12pl) p1 + (m21 +m22pl)
, (3.6)

t =
2p1

(m11 +m12pl) p1 + (m21 +m22pl)
, (3.7)

where p1, pl are the values calculated for the first and the last medium through which

the wave propagates.

The reflectivity and transmissivity are calculated in terms of the complex r and t

R = |r|2 , (3.8)

T =
pl
p1

|t|2 . (3.9)

The phase change on reflection φ refers to the first surface of discontinuity and is ex-

pressed in the form

φ = arctan

(
Im(r)

Re(r)

)
. (3.10)

Here, it is assumed that each of the layers comprising the structure is of a nonmagnetic

dielectric material, hence the relative permeability of the medium is µr = 1.

The reflection coefficient is the ratio of the electric field magnitude of the reflected

wave Er to the magnitude of the incident wave E0

r =
Er
E0

. (3.11)

Similarly, transmission coefficient is defined as the ratio of the electric field magnitude

of the transmitted wave Et to the magnitude of the incident wave E0

t =
Et
E0

. (3.12)

3.2.2 Finite Difference Time Domain

The finite difference time domain (FDTD) method is a popular computational tech-

nique for the full wave analysis of electromagnetic phenomena [67]. It offers many

advantages because of the simplicity of the algorithm both in conception and in terms
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of implementation. The FDTD method solves the electromagnetic field simultaneously

with respect to space domain and time variations and provides a useful tool for the vi-

sualization of physical interactions present in an analysed structure. Even though the

FDTD method can solve complicated problems it is generally computationally expen-

sive due to the large memory requirement and long computational time.

The standard FDTD algorithm solves Maxwell’s two curl equations (Faraday’s

and Ampere’s laws) in the time domain

∇× E = −µ∂H
∂t
, (3.13)

∇×H = σE + ε
∂E
∂t
, (3.14)

and is based on central difference approximations.

The first electromagnetic FDTD algorithm was proposed by Kane Yee in 1966 [68]. That

algorithm employs the first order central difference approximations of the temporal

and spatial derivatives of Maxwell’s curl equations and gives second order accuracy.

The space derivatives can be expressed as

∂An(i, j, k)

∂x
=

An(i+ 1/2, j, k)−An(i− 1/2, j, k)

∆x
+O(∆x2) (3.15)

and the time derivative is indicated as

∂An(i, j, k)

∂t
=

An+1/2(i, j, k)−An−1/2(i, j, k)

∆t
+O(∆t2), (3.16)

where the space point in the rectangular grid is (i, j, k) = (i∆x, j∆y, k∆z), any function

of time and space is defined as An(i, j, k) = A(i∆x, j∆y, k∆z, n∆t), ∆x, ∆y, ∆z are the

grid space increments in x, y, z Cartesian coordinate directions, ∆t is the time incre-

ment and i, j, k, n are integers.

Applying these approximations to Eq. (3.13)-(3.14) for each electric and magnetic field

component an explicit update scheme can be derived. The simulation domain is dis-

cretized with respect to space and time and the electric and magnetic fields are there-

fore staggered both in space and time. As the lattices are offset by a half grid in all

dimensions the solution of the difference equations for the ‘future’ fields is calculated

in terms of the ‘past’ field. Namely, the field solution at time (n+ 1/2)∆t is obtained in

terms of field at time n∆t or (n − 1/2)∆t. Such evaluation of the field at alternate half
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time steps is known as a leap-frog manner.

An exemplar update expression for the Ex field component is as follows

En
x (i+ 1/2, j, k) = En−1

x (i+ 1/2, j, k)

+
∆t

ε∆y

[
Hn−1/2
z (i+ 1/2, j + 1/2, k)−Hn−1/2

z (i+ 1/2, j − 1/2, k)
]

+
∆t

ε∆z

[
Hn−1/2
y (i+ 1/2, j, k + 1/2)−Hn−1/2

y (i+ 1/2, j, k − 1/2)
]
. (3.17)

The cell size and the time step are the two main factors which determine the accuracy

and computational time for the problem being solved although the boundary condi-

tions need to be chosen with caution. The size of the cell must be small enough to

accurately represent the simulated problem at the highest frequency of interest. A rule

often applied is

∆x ≤ λn/10 (3.18)

where ∆x is the size of the cubic grid (∆x = ∆y = ∆z) and λn is the smallest wave-

length at given frequency in entire simulated domain. Hence, λn is the length of the

wave propagated through the media with the highest refractive index in the domain

(λn = λ0/nmax, where λ0 is the free-space wavelength at the highest frequency of in-

terest). The maximum size of the time step is determined by two factors. Firstly, the

electromagnetic wave cannot propagate in free-space faster than the speed of light. Sec-

ondly, the wave cannot propagate between any two nodes faster than the equations are

updated. The criterion is set by the Courant-Friedrichs-Lewy (CFL) constraint [69, 67]

∆t ≤ ∆x√
n · c0

(3.19)

where n is the dimension of the simulation and c0 is the speed of light. This constraint

is valid under the assumption that the space increment in each direction of the domain

is equal and is easily modified for the case of non-cubic mesh cells.

The two types of boundary conditions used in this Thesis are the perfect matched

layer (PML) and periodic boundary conditions. The PML is defined as an artifi-

cial, anisotropic material used in order to truncate the computational region. For the

FDTD simulation domain the requirement for the thickness of the absorbing layer is

4 − 16 nodes (here 10 nodes were used). The distance between the nearest material

interface and PML surface needs to be at least half of the wavelength for the lowest

frequency of interest, as the performance of this implementation of PML is not pre-

dictable in the presence of evanescent fields.
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The periodic boundary condition (PBC) allows for the reduction of an infinite or repeat-

ing geometry to a single unit cell size. This boundary is useful for grating structures

which, from their definition, are periodic. In the software available in this study, TEM-

PEST FDTD Electromagnetic Simulation Program (University of California, Berkeley),

the PBC are defined as default boundaries on all six sides of the computational domain.

The metal part of the simulation domain was defined as a perfect electric conduc-

tor (PEC). The electric and magnetic fields are equal to zero inside a geometry with

material specified as PEC. This material can also be used as a boundary condition in

structures where the total reflection is required.

Here the FDTD method was used for the analysis of grating structures. The reflection

and transmission coefficients were extracted from the steady state field values.

3.2.3 Rigorous Coupled Wave Analysis

The rigorous coupled wave analysis (RCWA) was initially formulated by M. G. Mo-

haram and T. K. Gaylord [70, 71] for the analysis of electromagnetic wave diffraction

by periodic structures. It is an exact and at the same time straightforward, noniter-

ative and deterministic method for solving Maxwell’s equations. The technique can

be succesfully applied to the analysis of both holographic and surface-relief grating

structures such as those which can be found in an interconnect stack.

The algorithm is implemented over a domain which is divided into three parts: a grat-

ing layer located between two semi-infinite regions called the superstrate and sub-

strate. For the surface-relief gratings the grating region is defined as a stack of binary

layers (gratings with rectangular profile). Also, gratings with continuous profile can

be analysed by this method. Then the procedure for approximating the continuous

profile by a number of sufficiently thin binary layers needs to be employed. The con-

struction of the binary geometry performed by the commercial software GSolver for a

given grating is illustrated in Fig. 3.2.

In the RCWA algorithm the permittivity profile in the grating region is expanded in

a Fourier series. Then the field is calculated by solving the wave equation in each of

the three regions and matching the tangential electric and magnetic fields at the two

boundaries to satisfy the continuity requirement. The boundary conditions are applied
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(a) 2-D model (b) Binary approximation

Figure 3.2: The GSolver V5.1 user interface (a) 2-D grating structure editor, (b) continuous profile

approximation.

successively in the input region, where the backward-diffracted waves exist, between

the individual grating layers, and finally in the output region, where the forward-

diffracted waves are present. Employing this algorithm, the reflected and transmitted

diffracted field amplitudes and the diffraction efficiencies are obtained. This technique

always involves the zero diffracted order in the calculations therefore it can be succes-

fully applied to the analysis of subwavelength gratings.

The accuracy of the solution depends on the number of terms retained in the calcula-

tions satisfying the criterion of energy conservation. For each propagating order some

evanescent orders need to be retained. For 1-D metallic gratings the convergence rate

is slow for the TM polarisation [72] which is of the main interest in the presented work.

In the case of metallic gratings the field is more rapidly varying and the higher order

evanescent field magnitudes decay slowly. Hence, for a given propagated order more

evanescent orders need to be retained.
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This algorithm is particularly useful for the analysis of periodic structures for which

there is no effective medium theory (EMT) defined. Since it is an accurate and effi-

cient method it was the one which was mainly used in this work for the purpose of

generating the numerical data for defining the empirical models presented in Chap-

ter 4. Although the analysis was based on studying the metal-dielectric gratings (lossy

gratings) illuminated by a plane wave with TM polarisation where up to 70 orders

had to be retained in the calculations, it was still a less time consuming algorithm

compared with others which were available to the author. The commercially available

software GSolver, developed by David Fluckiger of the Grating Solver Development

Company [73], which implement the RCWA technique was used.

The energy (E) of a photon is defined as the product of reduced Planck’s constant

(~ = h
2π
, h = 6.62606896× 10−34 [J · s]) and the angular frequency (ω) of the associated

electromagnetic wave

E = ~ω [J ]. (3.20)

The metal parts in the unit cell of the simulation domain were defined by frequency

dependent dielectric function expressed by a Drude model [74][55, p. 201]

ε(ω) = 1− ω2
p

ω(ω + jγ)
, (3.21)

where ~ω is the energy given in electron volts related to the free-space wavelength λ0

by ~ω = 1240×10−9

λ0
[eV ] (1 eV = 1.60217653 × 10−19 [J]), ~γ is the damping term rep-

resenting dissipation of the plasmon’s energy into the system, and ωp is the plasma

frequency

ωp =

√
nde2

ε0me

[
rad

s

]
, (3.22)

where nd is the electron density, e is the electric charge, ε0 is the permittivity of free-

space and me is the mass of an electron.

Despite wide spread use of copper interconnects for the lower levels of interconnect

stacks, aluminum is often used for the global wiring, which are of the main concern in

this work, and has ~ωp = 15 [eV ] and ~γ = 0.1 [eV ] [74].

3.2.4 Finite Element Method

Finite element method (FEM) is the second, after finite difference method, most com-

monly used numerical method for solving electromagnetic phenomena within com-
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plex geometries or complex boundary conditions [75, 76]. This technique uses integral

equations rather than difference equations, as for the case of FDTD method, to create

a system of algebraic equations. The finite element analysis discretizes the solution

domain by subdividing the problem into nodes and tetrahedral elements and allows

arbitrary 3-D geometries to be meshed. This method enables the enhancement of the

mesh in locations with fine geometries without increasing the number of elements in

volumes with coarse features. The mesh is iteratively refined by the FEM solver until

the solution converges to an acceptable small difference. For electromagnetic problems

in 3-D the following wave equation derived from Maxwell’s equations is employed

∇×
(

1

µr
∇× E(x, y, z)

)
− k2

0εrE(x, y, z) = 0 (3.23)

where E(x, y, z) is the complex electric field within the simulation domain, εr is the po-

sition dependent complex relative permittivity, µr is the position dependent complex

relative permeability and k0 is the free-space wavenumber ω
√
ε0µ0 where ω = 2πν is

the angular frequency and ν is the frequency.

The commercial software High Frequency Structure Simulator (HFSS) [77] which uti-

lizes a 3-D full-wave FEM was used to perform the simulations and analysis of the

microstrip prototype structure as well as for the validation of the analyses of periodic

grating structures performed by the FDTD and RCWA methods.

Four types of boundary conditions were used in the FEM models: radiation boundary,

PML, master-slave boundary, and symmetry boundary. The radiation boundary en-

ables the wave to radiate infinitely far into space and it is assigned to an air or vacuum

box. The minimum distance between the radiating structure and the boundary should

be equal to one quarter of a wavelength of the lowest frequency of interest. The perfect

matched layer (PML) is an artificial absorbing layer which absorbs the waves exiting

the computational domain with minimal reflection. The PML layer can be defined at

the distance of at least one tenth of the longest wavelength of interest from the radiat-

ing geometry. The master-slave boundaries enable the modelling of periodic structures

with infinite extent. These boundaries enforce the electric field on one surface (slave

boundary) to match the electric field at each corresponding point on the other surface

(master boundary) to within a phase difference. The only constraint is that the fields

on the two boundaries need to have the same magnitudes and the same or opposite di-

rection. The electric field does not have to be tangential or normal to these boundaries.
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Finally, the symmetry boundary can reduce the size and complexity of the modelled

structure by only requiring part of the structure to be simulated . Therefore the com-

putational time is also minimized. The symmetry boundaries are defined as perfect E

when the electric field is normal to the symmetry plane or perfect H in the case of

electric field being tangential to the symmetry plane.

3.3 Validating FDTD, RCWA and FEM against Analytical

Method

In this Section the three numerical methods reviewed in Section 3.2, namely FDTD,

RCWA and FEM are validated against the analytical technique. For this purpose,

the simple structure of a solid silicon slab (etalon) surrounded by infinite half-spaces

of air was modelled in each of the simulators. The reflection and transmission

coefficients were extracted from the numerical data and compared with analytical

calculations obtained from the characteristic matrix method. The space increment

in FDTD simulations was set to 5µm in all directions. For the FEM calculations the

mesh operations were restricted to the maximum length of tetrahedral edge which

was set to 5µm. The good agreement amongst those numerical methods and the

analytical approach is illustrated in Fig. 3.3 for a range of depths 0 (free-space only)

to 200µm, with the agreement for reflection coefficient calculations in Fig. 3.3(a) and

the transmission coefficient in Fig. 3.3(b).

The error in the reflection coefficient calculated from numerical solutions when com-

pared with the analytical method is within 0.05% for FDTD and RCWA algorithms and

less than 2% for FEM, shown in Fig. 3.3(c). Similar error is obtained for the transmis-

sion coefficient calculations, as is illustrated in Fig. 3.3(d), where the FEM gives error

lower than 1.1%. Such good agreement amongst these techniques gives confidence in

using any one of them in the further analysis presented in this Thesis. The FEM has

a larger error which does not decrease with the tightening of the convergence criteria.

Therefore, the difference can be attributed to either a small change in the effective size

of the slab during the mesh process or to a possible small difference in the performance

of the applied boundary conditions.
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Figure 3.3: The magnitude of the (a) reflection and (b) transmission coefficients of a solid silicon etalon

surrounded by air calculated by FDTD, RCWA, FEM and characteristic matrix method. The error

in: (c) reflection and (d) transmission coefficients calculated for each numerical method relative to the

analytical method.

Error Calculation

The error between two values a and b is calculated from the formula

error =
|a− b|
b
· 100 [%], (3.24)

where a is the first value mention in the text and b is the second. This formula was

used throughout this Thesis to calculate relative errors between data sets.
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3.4 Summary

A brief review of the analytical method for calculation of the reflection and trans-

mission coefficients of stratified medium and the three numerical techniques: FDTD,

RCWA, and FEM, have been presented. Further, the validation of these techniques

against the analytical formulation showed that each of the presented algorithms can

be used succesfully in the analysis of periodic structures. The FDTD and RCWA cal-

culations of the reflection and transmission coefficients are equally accurate with a

minimal error of 0.05% whereas the FEM performs with an acceptable error of 2%.
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Chapter 4

Canonical Structure

4.1 Introduction

In this Chapter a detailed study of the reflection and the transmission characteristics

of a single layer of interconnects is presented. The analysis is concluded with three

empirical models each defined for a canonical structure based on the grating structure

of interest. The geometry of the grating structure, which is equivalent to the intercon-

nect arrangement in an IC, along with the homogenisation approach is described in

detail. The empirical models are formulated in terms of a modified Maxwell-Garnett

mixing rule. The first two models, which correspond to typical on-chip signals [8],

are defined for frequency range (1 − 10 GHz) and the third for emerging applications

at higher frequencies including Industrial, Scientific and Medical (ISM) bands in the

range (30− 200 GHz) [78, 79, 80]. Each model is validated by a comparison of the mag-

nitude of the reflection and transmission coefficients obtained from numerical simu-

lations for the detailed structure against those predicted by the empirical models. It

is demonstrated that the presented empirical models are well within the theoretical

Wiener bounds. The validity of the canonical structure over a range of tapered metal-

lic inclusions and angles of incidence is discussed. It is also illustrated that, for the

low frequency empirical model, the distribution of the values of scaling factor Ψ have

a trend similar to those presented in the literature where different mixtures and mix-

ing models are used, although those models could not be used in place of the ones

developed here.
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4.2 Method

The Maxwell-Garnett mixing rule relates the internal and external fields in a mixture

containing spherical inclusions by the ratio A (Eq. 2.30), providing the assumptions

stated in Subsection 2.6.1 are valid. The interconnect structure is characterised by dis-

tant rectangular (sharp corners) inclusions embedded in dielectric. The inclusion di-

mensions are much smaller than the wavelength of the signal propagated along the

wire. In order to account for the difference in geometry between the inclusions orig-

inally considered by Maxwell-Garnett and those studied in this Thesis the approach

will be based on introducing an additional scaling factor. Since a typical interconnect

stack can be perceived as a mixture with background host εe being a lossless dielec-

tric and the rectangular interconnects εi being lossy and conductive metallic inclusions

distributed in periodical arrangement. Therefore, it is plausible that the internal and

external fields in the developed mixture are also related to each other. This relation

is different to that of the spherical inclusions. However, for the subwavelength inter-

connect structure it is expected that this difference can be accounted for by modifying

the ratio A. To denote the modified ratio, symbol Ψ is introduced, giving the modified

Maxwell-Garnett mixing rule as

εeff = εe + Ψfεe
εi − εe

εi + 2εe − f(εi − εe)
. (4.1)

where f is the metal volume fraction.

It is expected that Ψ will be sensitive to the precise geometry of the structure so the

problem becomes the determination of Ψ as a function of the parameters to which it is

sensitive. The first step in determining the parameter space was to make sure that the

full range of typical interconnect structures are covered. The details of these structures

were described in Section 1.1.1 and are restated here in terms of the parameter space

to be explored in this Thesis. Specifically, the change in interconnects separation is de-

fined by the range of considered metal volume fractions in a unit cell and the geometry

of the inclusions is determined by the aspect ratio. Further, the dielectric properties of

the background medium and the change in frequency of the illuminated plane wave

are considered.

The concept of the homogenisation of a single layer of interconnect stack was inves-

tigated with the assumption that a series of interconnects are aligned in parallel in a

periodic manner. The model was based on analysing the electromagnetic properties
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of a grating structure with varying dimensions and material properties for sampled

frequencies from considered bands. The grating dimension was defined by the aspect

ratio (AR) in the range ARmin ≤ AR ≤ 3 and the metal fill factor from set 0.2 ≤ f ≤ 0.6

where the minimum value of the aspect ratio (ARmin) for each f is presented in Ta-

ble 4.1. The wide range of aspect ratios studied includes all likely structures defined in

typical design rules [8].

f ARmin ARmax

0.2 0.6 3

0.3 0.4 3

0.4 0.4 3

0.5 0.2 3

0.6 0.2 3

Table 4.1: The lower and upper limits put on the aspect ratio AR for the range of considered metal fill

factors f .

One of the approaches to improve the performance of interconnects in IC is based on

introducing low-k dielectrics. Therefore, a wide range of dielectric materials is in-

cluded in the study: as of the air-gap or ultra low-k materials (εr = 1) up to silicon

dielectric (εr = 11.7). Since the dielectric permittivity ε of a material is related to the

dielectric refractive index n by

n =
√
ε (4.2)

in the rest of the Thesis the range of considered dielectric backgrounds will be ex-

pressed in terms of the refractive index and will include 1 ≤ n ≤ 3.42.

The representative frequencies for each of the considered bands are: 1 GHz, 3 GHz,

5 GHz, and 10 GHz for the first band (1 − 10 GHz); and 30 GHz, 60 GHz, 100 GHz,

150 GHz, and 200 GHz for the second band (30 − 200 GHz). The first band represents

a selection of likely on-chip signal frequencies whereas the second band represents

signals in ISM bands that chips are likely to be exposed to in the future applications

although round figures have been chosen for the frequencies to maintain generality.
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4.3 Description of Canonical Structure

The analysis presented here was performed using the RCWA algorithm implemented

in GSolver [73] software for TM polarisation only. The TE polarisation has a very high

reflectivity of illuminated wave from the grating structure, R ≈ 1, and the analysis in

terms of the modified Maxwell-Garnett mixing rule therefore has no purpose. Thus,

the defined canonical structure is valid for grating excited by TM polarised plane wave

and, as it will be discussed in due course, for a range of incident angles and grating

profiles.

The canonical structure is illustrated in Fig. 4.1 with a diagram of the grating structure

shown in Fig. 4.1(a) and its homogenised equivalent in Fig. 4.1(b).
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Figure 4.1: Canonical grating structure diagrams of (a) grating with period Λ, grating vector K, and

TM electric field polarisation ETM ; (b) equivalent homogenised structure with neff calculated from

modified Maxwell-Garnett mixing rule.

The structural period Λ of the unit cell is made equal to 100µm so that, for the set of

considered frequencies, it was well into the deep subwavelength regime (Λ ≤ λ/4) [51].

The TM polarised electric field vector ETM is parallel to the grating vector K. The

incident plain wave propagates from the upper infinite half-plane, the reflected and
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transmitted waves are also depicted.

4.4 Homogenisation Procedure

In this Section details of the homogenisation procedure are presented. In order

to define the canonical structure a set of procedures is followed. Firstly, by using

‘brute force’ method and calculating reflection and transmission coefficients for a ho-

mogenised structure with broad set of neff values, it was found that it is valid to ho-

mogenise the grating structure. Secondly, a mixing model was found to predict the

value of neff for a given structure so that the inefficient ‘brute force’ method is no

longer required. Thirdly, a fitting procedure based on the least squares method (Ap-

pendix A) is used to estimate the value of coefficient Ψ and express it by an analytical

formula so that the results of this study can be compactly expressed and efficiently

communicated to potential users.

The initial approach to the homogenisation process is to calculate the reflection and

transmission coefficients for a sample grating structure and compare them with those

calculated for a homogeneous layer of the same depth but with a refractive index from

a wide range of values. Since the homogenised grating contains a lossy conductive

component (metal) the considered refractive indices are defined as a set of complex

numbers obtained by averaging the indices of the constituents where the metallic part

is defined as aluminum by the Drude model [74].

A diagram of the algorithm used for the ‘brute force’ fitting for a single structure is

presented in Fig. 4.2. The fitting procedure was carried out separately for the estima-

tion of reflection and transmission coefficients.

The algorithm is defined in the following steps. The initial input values are the pa-

rameters that define the grating geometry: aspect ratio AR, metal volume fraction f ,

grating period Λ; material properties of the host ne ∼= n and inclusion ni composites

and frequency ν of the illumination wave. The background dielectric is characterised

by its refractive index from the range 1 ≤ n ≤ 3.42, whereas the inclusion material is

defined as aluminum. The wide set of values within which the parameter Ψ varies is

also specified. Then the Maxwell-Garnett mixing model is introduced and a range of

effective refractive indices neff is calculated for all previously defined values of scaling
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constant values: AR, f, , n   , n  , Λ
varying value:  Ψ

calculate the values of potential n    
based on the modified Maxwell-Garnett 
mixing rule with varying factor Ψ

build the library for reflection and 
transmission coefficients calculated 
for a range of n

find the best match for reflection 
and transmission coefficients of 
the grating structure with those 
calculated in the library 

Ψ  - obtained from the matching procedure 
       in terms of the reflection coefficient
Ψ  - obtained from the matching procedure 
       in terms of the transmission coefficient

input values:
AR, f, , n   ,n  , Λ, Ψ

neff

reflection and transmission
coefficients library

best match for reflection 
and transmission

coefficients

return values:
Ψ  ,  ΨR T T

R

START

END

e i
e i

eff 

eff 

Figure 4.2: Diagram representing fitting algorithm for a single grating structure. For the input values

used to define a single grating structure algorithm returns the value of factors ΨR and ΨT calculated in

terms of the reflection and transmission coefficients respectively.

factor Ψ. Next, the reflection and transmission coefficients are calculated based on the

characteristic matrix method (Section 3.2.1) for a system with dielectric medium char-

acterised by neff value interface between two other infinite media. At this stage the

library for the values of reflection and transmission coefficients for the corresponding

homogenised equivalent structures is obtained. Finally, the best match for the reflec-

tion and transmission coefficients calculated for the detailed grating structure and the

values stored in the library is found. The algorithm returns the values of the factor Ψ

that give the best approximation in the homogenisation process. Since the algorithm
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is applied separately but in parallel for the reflection and transmission coefficients, it

gives two independent values ΨR and ΨT respectively.

This procedure shows that in the set of effective refractive indices there is one value for

which the homogeneous layer gives the same response as the grating, as it is illustrated

in Fig. 4.3. Nevertheless, it is shown in Fig. 4.3(a) and Fig. 4.3(b) that the best fit for

reflection and transmission was obtained for different neff .

2.5 3 3.5 4 4.5 5 5.5 6 6.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

neff homogenised layer

R
ef

le
ct

io
n 

co
ef

fic
ie

nt
 |E

 |/
|E

  |
r  

   
 0

homogenised layer
grating

(a) Reflection coefficient

2.5 3 3.5 4 4.5 5 5.5 6 6.5

0.9970

0.9975

0.9980

0.9985

0.9990

0.9995

1

 neff,R

Tr
an

sm
is

si
on

 c
oe

ffi
ci

en
t |

E
 |/

|E
  |

t  
   

 0

neff homogenised layer

homogenised layer
grating

(b) Transmission coefficient

Figure 4.3: The magnitude of (a) the reflection and (b) transmission coefficients for a grating structure

with grating parameters: f = 0.5, Λ = 100µm, AR = 2, n = 2.5, ν = 5 GHz. The effective refractive

index of the grating can be found in the fitting process. Note that only the real part of the neff is

presented.

Due to the discrepancy in the values of neff , it was verified and is shown in Fig. 4.4, for

sampled grating structure with metal fill f = 0.4 and dielectric constant n = 2, that the

related scaling factors ΨR and ΨT obtained for reflection and transmission coefficients

converge with increase of the applied frequency within 1 GHz to 200 GHz.

Further, it was confirmed that for both reflection and transmission coefficients esti-

mation scaling factor ΨR can be used. A comparison between reflection coefficients

calculated for grating structure and its homogenised equivalent obtained by apply-

ing mixing rule with ΨR is shown in Fig. 4.5(a), and analogous plot for transmission

coefficient calculations, where the same value of scaling factor ΨR was used, is pre-

sented in Fig. 4.5(b). For this particular geometry the corresponding error (calculated

from Eq. (3.24)) between grating and homogenised structure obtained for ΨR when cal-
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Figure 4.4: The comparison of the value of the scaling factors ΨR and ΨT obtained from the fitting

algorithm for a grating structure with grating parameters: AR = 1.6, f = 0.4, n = 2, Λ = 100µm,

1 GHz≤ ν ≤ 200 GHz. Factors ΨR and ΨT converge with an increase of applied frequency.
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Figure 4.5: The magnitude of the reflection and transmission coefficients for a grating structure with

grating parameters: AR = 1.6, f = 0.4, n = 2, Λ = 100µm, 1 GHz≤ ν ≤ 200 GHz. The RCWA

results agree with EMT formulation with neff calculated for scaling factor ΨR.

culated for reflectivity is less than 0.03%, whereas for transmission estimation the error

is lower than 0.2%, as illustrated in Fig. 4.6. These errors are close to the maximum ob-
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served over the wide range of grating structures analysed. Therefore, given the good

accuracy obtained the scaling factor ΨR was chosen for the rest of the analysis and its

notation was simplified to Ψ.
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Figure 4.6: The error (%) in the magnitude of the reflection (continuous line) and transmission (dashed

line) coefficient estimation for a grating structure with grating parameters: AR = 1.6, f = 0.4, n = 2,

Λ = 100µm, 1 GHz≤ ν ≤ 200 GHz. The effective refractive index for the homogenised structure is

calculated with scaling factor ΨR. The error between reflection and transmission coefficient of detailed

and homogenised structure is at a very low level.

Due to the four dimensional parameter space specified for the grating structure, the

accuracy of the algorithm, at the stage of determining the empirical model, was verified

for each of the parameters separately. For the low frequency model, over the range of

all studied geometries the reflection coefficient was always estimated with an error

less than 0.3%, and the transmission coefficient within 0.005% tolerance. In order to

illustrate the exactness of the ‘brute force’ fitting the reference grating with parameters:

f = 0.5, n = 2.5, AR = 2, ν = 5 GHz; has been chosen. The results are presented

for both reflection and transmission coefficients and the corresponding errors in their

estimation over varying values in the range defined for each parameter. Figure 4.7

illustrates the data in terms of the changing background dielectric within 1 ≤ n ≤
3.42. Figure 4.8 shows the accuracy with respect to the metal volume fraction in the

range of 0.2 ≤ f ≤ 0.6. Figure 4.9 presents the data over the range of studied aspect

ratios 0.2 ≤ AR ≤ 3, and finnaly, Fig. 4.10 depicts the accuracy of the algorithm for the

frequency sampled from the set of 1− 10 GHz.
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Figure 4.7: (a) The magnitude of the reflection and transmission coefficients for a grating structure

with grating parameters: AR = 2, f = 0.5, 1 ≤ n ≤ 3.42, Λ = 100µm, ν = 5 GHz. (b) The error in

reflection and transmission between grating and homogenised layer with neff calculated from the fitting

algorithm. The arrows point in the direction of the axis to which the curves belong.
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Figure 4.8: (a) The magnitude of the reflection and transmission coefficients for a grating structure

with grating parameters: AR = 2, 0.2 ≤ f ≤ 0.6, n = 2.5, Λ = 100µm, ν = 5 GHz. (b) The error in

reflection and transmission between grating and homogenised layer with neff calculated from the fitting

algorithm. The arrows point in the direction of the axis to which the curves belong.
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Figure 4.9: (a) The magnitude of the reflection and transmission coefficients for a grating structure

with grating parameters: 0.2 ≤ AR ≤ 3, f = 0.5, n = 2.5, Λ = 100µm, ν = 5 GHz. (b) The error in

reflection and transmission between grating and homogenised layer with neff calculated from the fitting

algorithm. The arrows point in the direction of the axis to which the curves belong.
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Figure 4.10: (a) The magnitude of the reflection and transmission coefficients for a grating structure

with grating parameters: AR = 2, f = 0.5, n = 2.5, Λ = 100µm, 1 GHz≤ ν ≤ 5 GHz. (b) The

error in reflection and transmission between grating and homogenised layer with neff calculated from

the fitting algorithm. The arrows point in the direction of the axis to which the curves belong.

The homogenisation approach was also validated by comparing the electric field mag-

nitudes obtained from the FDTD simulations of the detailed and homogenised struc-

ture for a set of gratings. A plot of the steady state electric field magnitude of an
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exemplar geometry is presented in Fig. 4.11 with the plot obtained for the grating

in Fig. 4.11(a), and for the homogenised equivalent in Fig. 4.11(b). In both geome-

tries the strip is between node 110 and 146 giving 36µm depth (∆x = 1µm). The plain

wave is excited at node 250.
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Figure 4.11: The magnitude of the steady state electric field for (a) grating and (b) homogenised layer.

Grating parameters: Λ = 100µm, f = 0.6, AR = 0.6, n = 2.5, ν = 100 GHz.

A comparison of the magnitudes calculated at three increasingly distant points from

the z axis node 146 (z axis nodes: 180, 210, 240) is depicted in Fig. 4.12. These graphs

demonstrate that the electric field magnitude of the illumination plane wave reflected

from both grating and homogenised layer gradually converges with increasing dis-

tance from the structure with the result that very close agreement is obtained in the far

field pattern.

4.5 Empirical Model for On-Chip Signals Band

This Section presents two empirical models for the interconnect grating structure of

the type presented in Section 4.3 for the frequencies 1 − 10 GHz corresponding to the

on-chip signals band. The impact of the metal volume fraction on the scaling factor Ψ

is discussed in detail. Mathematical formulation for the calculated scaling factor Ψ is

presented. The empirical models are validated by applying them to the analysis of the

studied geometries.
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Figure 4.12: The magnitude of the steady state electric field for grating and homogenised layer cal-

culated at three z axis nodes: (a) 240, (b) 210, (c) 180. The magnitudes converges in the far field.

4.5.1 Impact of the Metal Fill Factor

The analysis of the grating structure presented in Fig. 4.1 highlighted the impact of

metal fill factor on the value of fitted parameter Ψ for a given aspect ratio. Figure 4.13

illustrates that gratings with high metal fill factor (f > 0.5) require a lower value of Ψ

compared to those where the dielectric part predominate the grating cell. The pre-

sented plot was obtained for a homogenised structure illuminated by normally inci-

dent wave with free-space wavelength λ = 6 cm (ν = 5 GHz) where the metal bars are

embedded in dielectric with refractive index n = 2.5. A similar relationship between

metal fill factor and scaling factor Ψ was observed for varying dielectric backgrounds.

The same tendency occurs for all frequencies over the considered range and is illus-

trated in Fig. 4.14 for a single aspect ratio AR = 1.6. The change in the scaling factor Ψ

is presented in terms of the period-wavelength ratio (Λ/λ) for all metal fill factors.
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Figure 4.13: Change in the value of scaling factor Ψ with the change of metal volume fraction f .

Grating parameters: n = 2.5, Λ = 100µm, ν = 5 GHz, 0.2 ≤ AR ≤ 3.
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Figure 4.14: Change in the value of scaling factor Ψ with the change of the metal volume fraction f .

Grating parameters: n = 2.5, Λ = 100µm, AR = 1.6, the period-wavelength ratio varies with the

change of considered frequency.

The distribution of the value of coefficient Ψ in terms of the metal fill factor is related to

the homogenisation technique chosen to build the model. Detailed study of this issue
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will be presented in Subsection 4.6.2 which is devoted to the high frequency empirical

model.

In Fig. 4.15 it is demonstrated, for an exemplar structure, that the value of the scaling

factor Ψ does not significantly depend on the frequency of illuminating wave. The

small difference in the value of Ψ which does occur in the range of studied structures

has a tendency to disappear with the increase of the metal fill factor as demonstrated

in Fig. 4.15(a) for f = 0.3, and in Fig. 4.15(b) for f = 0.5. The effective refractive index

defined by the modified Maxwell-Garnett mixing rule with the permittivity of metal

inclusions calculated from the Drude model [74] accounts for the frequency depen-

dence. The frequency dependence of the value of factor Ψ is smaller for lower metal

fill factors and tends to disappear as this factor increases.
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Figure 4.15: A graph showing that obtained value of scaling factor Ψ does not significantly change

with the change of frequency of the illumination wave. Grating parameters: n = 2, Λ = 100µm,

0.2 ≤ AR ≤ 3, and metal fill factor: (a) f = 0.3; (b) f = 0.5.

4.5.2 Model Simplification

It was verified and is presented in Fig. 4.16 that for a single frequency and a consid-

ered range of aspect ratios the change in the scaling factor Ψ in terms of the varying

refractive indices of the dielectric background is minimal (less than 1%). Therefore, it

is not necessary to make the scaling factor Ψ dependent on the dielectric constituent as
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it is explicitly included in the modified Maxwell-Garnett formula with a single value

of Ψ = 1. For the sake of clarity, results for structures with background refractive

index n = 2.5, which is in the middle of the studied range, were chosen for further

analysis.
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Figure 4.16: A graph showing that obtained value of scaling factor Ψ does not change with the change

of the dielectric constant n. Grating parameters: f = 0.5, Λ = 100µm, ν = 5 GHz, 0.2 ≤ AR ≤ 3.

The distribution of the value Ψ versus aspect ratio for a given frequency and metal fill

factor has exponential characteristics. This regularity was considered in the fitting pro-

cedure where the nonlinear least squares method involving the Taylor series expansion

(Appendix A) was used. It was assumed that the studied model can be represented by

a nonlinear function which is the sum of two exponential functions with the aspect ra-

tio as variable. Hence, the scaling factor Ψ is defined for every dielectric with refractive

index n as a function of varying aspect ratio by formula

Ψ(xAR) = α · eβ·xAR + γ · eδ·xAR (4.3)

where xAR is the variable representing aspect ratio with ARmin ≤ xAR ≤ 3, and limits

for ARmin presented in Table 4.1.

Further coefficients α, β, γ, δ are determined by linear least squares method, includ-

ing expansion in Taylor series (Appendix A.3, A.5), for every n and frequency1 ν as a
1The unit for frequency has been set to GHz
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function of varying metal volume fraction f and they are given by

α(f) = α1 · f + α2 (4.4)

β(f) = β1 · f + β2 (4.5)

γ(f) = γ1 · f + γ2 (4.6)

δ(f) = δ1 · f + δ2 (4.7)

for 0.2 ≤ f ≤ 0.6. All coefficients αm, βm, γm, δm, where m = {1, 2} are well approxi-

mated by

α1(ν) = α11 · ν + α12 (4.8)

α2(ν) = α21 · ν + α22 (4.9)

β1(ν) = β11 · ν + β12 (4.10)

β2(ν) = β21 · ν + β22 (4.11)

γ1(ν) = γ11 · ν + γ12 (4.12)

γ2(ν) = γ21 · ν + γ22 (4.13)

δ1(ν) = δ11 · ν + δ12 (4.14)

δ2(ν) = δ21 · ν + δ22 (4.15)

Coefficients αmn, βmn, γmn, and δmn where m,n = {1, 2} are given in Table 4.2.

α11 −0.0054 β11 0.0191 γ11 −0.0370 δ11 0.0026

α12 3.0965 β12 −6.3175 γ12 −1.0792 δ12 −0.0558

α21 0.0188 β21 −0.0086 γ21 0.0231 δ21 −0.0015

α22 3.1421 β22 −1.1014 γ22 2.5738 δ22 −0.0513

Table 4.2: Coefficients αmn and βmn, where m,n = {1, 2}, for Ψ calculations according to the

Eq. (4.3) - (4.15).

The empirical model can be expressed in the multidimensional Taylor series form (Ap-

pendix A.1). The first-order coefficients of the Taylor series are expressed in terms of

those presented in Table 4.2 and are given below

Ψ|0 = [α11ν0f0 + α12f0 + α21ν0 + α22]eβ11ν0f0xAR0 +β12f0xAR0 +β21ν0xAR0 +β22xAR0 +

[γ11ν0f0 + γ12f0 + γ21ν0 + γ22]eδ11ν0f0xAR0 +δ12f0xAR0 +δ21ν0xAR0 +δ22xAR0 (4.16)
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∂Ψ

∂ν

∣∣∣∣
0

= [α11f0 + α21]e(β11f0xAR0 +β21xAR0 )ν0+β12f0xAR0 +β22xAR0 +

[α11ν0f0 + α12f0 + α21ν0 + α22] · [β11f0xAR0 + β21xAR0 ] ·
e(β11f0xAR0 +β21xAR0 )ν0+β12f0xAR0 +β22xAR0 +

[γ11f0 + γ21]e(δ11f0xAR0 +δ21xAR0 )ν0+δ12f0xAR0 +δ22xAR0 +

[γ11ν0f0 + γ12f0 + γ21ν0 + γ22] · [δ11f0xAR0 + δ21xAR0 ] ·
e(δ11f0xAR0 +δ21xAR0 )ν0+δ12f0xAR0 +δ22xAR0 (4.17)

∂Ψ

∂f

∣∣∣∣
0

= [α11ν0 + α12]e(β11ν0xAR0 +β12xAR0 )f0+β21ν0xAR0 +β22xAR0 +

[α11ν0f0 + α12f0 + α21ν0 + α22] · [β11ν0xAR0 + β12xAR0 ] ·
e(β11ν0xAR0 +β12xAR0 )f0+β21ν0xAR0 +β22xAR0 +

[γ11ν0 + γ12]e(δ11ν0xAR0 +δ12xAR0 )f0+δ21ν0xAR0 +δ22xAR0 +

[γ11ν0f0 + γ12f0 + γ21ν0 + γ22] · [δ11ν0xAR0 + δ12xAR0 ] ·
e(δ11ν0xAR0 +δ12xAR0 )f0+δ21ν0xAR0 +δ22xAR0 (4.18)

∂Ψ

∂xAR

∣∣∣∣
0

= [α11ν0f0 + α12f0 + α21ν0 + α22] · [β11ν0f0 + β12f0 + β21ν0 + β22] ·

e(β11ν0f0+β12f0+β21ν0+β22xAR0 )xAR0 +

[γ11ν0f0 + γ12f0 + γ21ν0 + γ22] · [δ11ν0f0 + δ12f0 + δ21ν0 + δ22] ·
e(δ11ν0f0+δ12f0+δ21ν0+δ22xAR0 )xAR0 . (4.19)

Figure 4.17 demonstrates how the defined empirical model approximates the values

of the scaling factor Ψ obtained from the ‘brute force’ algorithm for a single reference

grating, at each step of increased complexity. Figure 4.17(a) illustrates the agreement

between Ψ obtained from the ‘brute force’ fitting algorithm illustrated in Fig. 4.2 and

that from exponential approximation defined for every n as a function with varying

aspect ratio for grating structure with metal fill factor equal to 0.5 illuminated by nor-

mally incident wave with frequency 5 GHz. Whereas Fig. 4.17(b) shows the distribu-

tion of factor Ψ when coefficients are expressed by linear regression defined for all n

and all f as a function with varying aspect ratio compared with the reference data.

Figure 4.17(c) demonstrates how the scaling factor Ψ is estimated by the final model.

Figure 4.17(d) shows the accuracy in the estimation of Ψ at each of the three steps of

building the complex model when all the data are compared with the value obtained

from the fitting algorithm. There is minimal absolute difference in the distribution of
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value Ψ among all steps followed to estimate that factor. However it is still necessarily

to follow these steps in order to include the all four parameters to the final formulation

of the scaling factor Ψ.
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Figure 4.17: The values of the scaling factor Ψ obtained from the ‘brute force’ algorithm plotted as

crosses against values with scaling factor Ψ defined as a function for: (a) all background dielectrics

with varying aspect ratio; (b) all dielectrics and metal volume fractions with varying aspect ratio; (c) all

dielectrics, metal volume fractions and frequencies with varying aspect ratio plotted as continuous lines.

Figure (d) shows comparison of Ψ for all approximation steps together. Grating parameters: f = 0.5,

Λ = 100µm, ν = 5 GHz, n = 2.5, 0.2 ≤ AR ≤ 3.

Scaling factor Ψ when predicted by the least squares method for all background di-
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electrics n, all metal fill factors f , and all frequencies ν as a function of aspect ratio

results in an error within 0% − 2.5% compared to the values obtained from the ‘brute

force’ fitting algorithm. There is a higher error of about 4%−6% in the scaling factor for

metal volume fraction f = 0.2 and aspect ratio within 0.6− 1, but the proposed model

is aimed to be used for interconnects analysis and the aspect ratio currently predicted

in the ITRS [8] is between 1.6 and 3. Hence this error can be neglected here.

4.5.3 Numerical Validation of Analytical Model

The validation of the proposed empirical model was carried out by applying it to the

analysis of the studied structure and calculating the errors in reflection and transmis-

sion coefficients between detailed and homogenised structures. The reference structure

was set to be the grating structure with reflectivity and transmissivity calculated from

RCWA. Justification of the homogenisation procedure is achieved in steps related to

those taken to build the model. First, in Fig. 4.18(a) it is shown that when the structure

is homogenised using the modified Maxwell-Garnett mixing rule with parameter Ψ ob-

tained from the ‘brute force’ algorithm estimates the reflection coefficient with an error

less than 0.3%. Furthermore, exponential approximation defined for all background

materials was applied to express the dependence of Ψ in terms of varying aspect ratio

as illustrated in Figure 4.18(b). Then in Fig. 4.18(c) it is shown that the same agree-

ment is obtained when the analytical model is defined for all dielectric materials and

metal fills in terms of varying aspect ratio. The final analytical model was determined

by expressing coefficients from exponential approximation by a set of linear functions

defined for all n, all f , and all ν in terms of changing aspect ratio, and the accuracy of

this empirical model is illustrated in Fig. 4.18(d).

Simplification of the model after each approximation step results in an error in reflec-

tivity estimation not higher than 2.7% and in most cases less than 1.5%. Estimation of

the transmission coefficient was verified after each step was followed to get the final

analytical representation of the model. It was calculated that the error between trans-

mission obtained for simulated detailed structure and homogenised one at each level

of complexity is not higher that 0.2%. Plots of the transmission coefficient estimation

are not shown for brevity.

The difference in the phase of the detailed and homogenised grating structure with
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Figure 4.18: The magnitude of the reflection coefficient for a grating structure with grating parame-

ters: f = 0.5, Λ = 100µm, ν = 5 GHz, n = {1.5, 2.5, 3.42}, 0.2 ≤ AR ≤ 3. The RCWA results are

plotted along with the EMA formulation with neff calculated: (a) from ‘brute force’ algorithm; (b) with

scaling factor Ψ defined as a function for all background dielectrics with varying aspect ratio; (c) with Ψ

defined as a function for all dielectrics and metal volume fractions with varying aspect ratio; (d) with Ψ

defined as a function for all dielectrics, metal volume fractions, and frequencies with varying aspect ratio.

respect to increasing aspect ratio is also considered. It is illustrated in Fig. 4.19 that the

difference in phase is within 0◦ − 2◦ with tendency to increase with the increase of the

background dielectric permittivity. Due to such small deviation in the phase, further

analysis will be mainly focused on the reflection and transmission coefficients.
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Figure 4.19: The obtained small change in the phase value. Grating parameters: f = 0.5, Λ = 100µm,

ν = 5 GHz, n = {1.5, 2.5, 3.42}, 0.2 ≤ AR ≤ 3.

4.5.4 Further Model Simplification

Further simplification of the model was achieved by reducing the range of aspect ratios

to 1.4 ≤ AR ≤ 3 in order to reflect the dimensions of typically used interconnects.

Over this reduced range, the scaling factor can be represented as a linear function. This

observation was considered as a base to define the empirical model presented below.

The least squares method was applied to express the scaling factor Ψ in analytical form.

First, the scaling factor Ψ was determined by a linear least squares method, involving

expansion in Taylor series (Appendix A.3, A.5), for every refractive index n and every

metal volume fraction f as a function of varying aspect ratio 1.4 ≤ xAR ≤ 3 by the

formula

Ψ(xAR) = α · xAR + β (4.20)

Coefficients α and β are defined by linear regression for every frequency2 ν as a func-

tion of varying metal volume fraction f by

α(f) = α1 · f + α2 (4.21)

β(f) = β1 · f + β2 (4.22)

2The unit for frequency has been set to GHz
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All coefficients α1, α2, β1, β2 are well approximated by

α1(ν) = α11 · ν + α12 (4.23)

α2(ν) = α21 · ν + α22 (4.24)

β1(ν) = β11 · ν + β12 (4.25)

β2(ν) = β21 · ν + β22 (4.26)

with values of αmn and βmn, where m,n = {1, 2} presented in Table 4.3.

α11 0.0064 β11 −0.0341

α12 0.2309 β12 −1.7494

α21 −0.0037 β21 0.0213

α22 −0.2346 β22 2.8473

Table 4.3: Coefficients αmn and βmn, where m,n = {1, 2}, for Ψ calculations according to the

Eq. (4.20) - (4.26).

The α-coefficients determine the gradient of the linear function Ψ(xAR), whereas β-

coefficients are used in y-intercept calculations. Both coefficients are well predicted by

linear least squares method at each step in the analytical formulation. The error in the

approximation of Ψ, when calculated in terms of the reference data obtained from the

‘brute force’ algorithm, for the studied range of structures is in the range 0% − 2.5%.

Generally, the error reaches its maximum for structures with aspect ratios at either end

of the range 1.4 ≤ AR ≤ 3, whereas the error is not higher than 1% when the aspect

ratio is near the middle of the studied range.

The empirical model can be expressed in the multidimensional Taylor series form (Ap-

pendix A.1) and the coefficients are given in Table 4.4

Ψ|0 β11
∂Ψ
∂xAR

∣∣
0 α22

∂Ψ
∂f

∣∣
0 β12

∂Ψ
∂ν

∣∣
0 β21

∂2Ψ
∂xAR∂f

∣∣
0 2α12

∂2Ψ
∂xAR∂ν

∣∣
0 2α21

∂2Ψ
∂f∂ν

∣∣
0 2β11

∂3Ψ
∂xAR∂f∂ν

∣∣
0 2α11

Table 4.4: Coefficients for the Taylor series expansion of Ψ expressed in terms of the coefficients given

in Table 4.3.
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Figure 4.20 plots the scaling factor Ψ versus aspect ratio for the data obtained from

the ‘brute force’ algorithm (shown in Fig. 4.2) and the data obtained from the approxi-

mation procedure. Figure 4.20(a) shows the data obtained from the ‘brute force’ algo-

rithm and the data from the approximation procedure when Ψ is defined as a function

of n and the aspect ratio. Figure 4.20(b) shows the scaling factor Ψ when defined as a

linear function of aspect ratio for all refractive indices n and metal fill factors f . Fig-

ure 4.20(c) demonstrates Ψ when calculated by Eq. (4.20)-(4.26). Finally, Fig. 4.20(d)

shows a comparison of the scaling factor Ψ calculated from the three approximations.

The increase in complexity of the model does not significantly change the distribution

of the value Ψ, therefore the correlated error in the reflection and transmission coeffi-

cient predicted by the empirical model is relatively low as is discussed further in this

Section.

The corresponding results for the reflection coefficient estimation are presented in

Fig. 4.21. Numerical data from RCWA for a reference grating structure is plotted along

with data obtained from the analysis of the equivalent homogenised structure with ef-

fective refractive index neff obtained from the ‘brute force’ algorithm in Fig. 4.21(a);

neff calculated from modified Maxwell-Garnett formula with Ψ defined as linear func-

tion for all dielectrics from studied range in terms of varying AR in Fig. 4.21(b); and Ψ

determined for all dielectrics and all metal fills as a function of changing aspect ra-

tio in Fig. 4.21(c); finally Fig. 4.21(d) demonstrates results obtained when the complex

model is used to calculate the value of scaling factor Ψ.

The error in the reflection coefficient predicted by the presented empirical model varies

from 0% to 2.5%, nevertheless the transmission coefficient is estimated with an error

not exceeding 0.2%. The accuracy of the model for reflectivity calculations tends to

improve with an increase of the metal fill factor. For structures with metal fills 0.4 ≤
f ≤ 0.6 the error varies between 0− 1.5%.

4.5.5 Application of Model at Other Frequencies

Now that the effectiveness of the empirical model has been demonstrated at the fre-

quency points 1, 3, 5 and 10 GHz, it will be further validated for a different sample

frequency from the range 1− 10 GHz.

The model was constructed by sampling the numerical response at discreet values of



4.5 Empirical Model for On-Chip Signals Band 69

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
1.6

1.65

1.7

1.75

1.8

1.85

1.9

 

aspect ratio

sc
al

in
g 

fa
ct

or
Ψ

fitted
approximated

(a) first step approximation
 

aspect ratio

sc
al

in
g 

fa
ct

or
Ψ

fitted
approximated

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
1.6

1.65

1.7

1.75

1.8

1.85

1.9

(b) second step approximation

 

aspect ratio

sc
al

in
g 

fa
ct

or
Ψ

fitted
approximated

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
1.6

1.65

1.7

1.75

1.8

1.85

1.9

(c) third step approximation

 

aspect ratio

sc
al

in
g 

fa
ct

or
Ψ

1st approximation
2nd approximation
3rd approximation
fitted

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
1.6

1.65

1.7

1.75

1.8

1.85

1.9

(d) comparison

Figure 4.20: The fitted values obtained from the ‘brute force’ algorithm plotted as crosses along with

approximated values of scaling factor Ψ defined as a function for: (a) all background dielectrics with

varying aspect ratio; (b) all dielectrics and metal volume fractions with varying aspect ratio; (c) all

dielectrics, metal volume fractions and frequencies with varying aspect ratio plotted as continuous line.

Figure (d) shows comparison of Ψ for all approximation steps together. Grating parameters: f = 0.5,

Λ = 100µm, ν = 5 GHz, n = 2.5, 1.4 ≤ AR ≤ 3.

four parameters: aspect ratio, metal volume fraction, background material, and fre-

quency. It was then verified by comparing the numerical data obtained for the detailed

grating structure and its homogenised equivalent at a frequency point not used to de-

fine the model. Hence, the exemplar frequency of 6 GHz was chosen. Detailed grating

structures with metal volume fraction of 0.3 and 0.5 and their homegenised equiva-
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Figure 4.21: The magnitude of the reflection coefficient for a grating structure with grating parame-

ters: f = 0.5, Λ = 100µm, ν = 5 GHz, n = {1.5, 2.5, 3.42}, 1.4 ≤ AR ≤ 3. The RCWA results

are plotted along with the EMA formulation with neff calculated: (a) from the ‘brute force’ algorithm;

(b) with scaling factor Ψ defined as a function for all background dielectrics with varying aspect ratio;

(c) with Ψ defined as a function for all dielectrics and metal volume fractions with varying aspect ratio;

(d) with Ψ defined for all dielectrics, metal volume fractions and frequencies with varying aspect ratio.

lents were simulated over a range of varying aspect ratios and background materials.

Fig. 4.22(a) shows good agreement between the reflection coefficients of gratings

with 30% metal fill and homogenised structures with neff calculated from defined

canonical structure (Section 4.5.4). The error in reflection coefficient estimation is not

higher than 1.7% for structures with aspect ratios within the interval 1.6− 2.8, whereas
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the error for bounded aspect ratios rises up to 3%. Better accuracy is obtained for

gratings in which the metal fill factor is 50% or greater. The agreement is illustrated

in Fig. 4.22(b) where the error in return loss calculated using the two methods ap-

proaches 1.5% for structures with values of aspect ratios from the top and bottom of

the considered range and the error lower than 1% when the aspect ratio is from the

middle of the considered range. The transmission coefficient for all gratings is always
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Figure 4.22: The magnitude of the reflection coefficient for a grating structure with grating parame-

ters: Λ = 100µm, ν = 6 GHz, n = {1.5, 2.5, 3.42}, 1.4 ≤ AR ≤ 3. The RCWA results are plotted

along with the EMA formulation with neff calculated from modified Maxwall Garnett formula with

Ψ defined in Section 4.5.4 for gratings with: (a) f = 0.3, (b) f = 0.5.

estimated with an error less than 0.2%. The accuracy of the presented empirical model

is associated with the fact that the modified Maxwell-Garnett mixing rule, with inclu-

sions defined as metal by frequency dependent Drude model, when used to calculate

the effective dielectric constant of mixture with constituent having sharp corners ap-

pears to predict the effective dielectric constant more accurately when the metal vol-

ume fraction increases in the unit grating cell. Some aspects of this relationship have

already been discussed in Section 4.5.1 and is demonstrated in Fig. 4.15.
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4.6 Empirical Model for ISM Band

So far, empirical models have been investigated for selected frequencies from 1 −
10 GHz. These are representative of on-chip signal frequencies. As high speed tran-

sistor technology develops (including non-CMOS transistors in particular) there is

growing use of microwave signals at much higher frequencies. It is expected that the

most widely encountered signals will be from the unlicensed bands of which there are

several between 30 GHz and 200 GHz. In particular 57 − 66 GHz, 85 − 110 GHz, and

122−123 GHz [78, 79, 80]. An empirical model is now developed for these frequencies.

The homogenisation procedure to build this model was described in Section 4.4. Anal-

ysis of a grating structure with the same dimensions as the structure studied to define

previous models shows that as the frequency increases the influence of the dielectric

background material on reflectivity and transmissivity becomes significant.

4.6.1 Limitation of the Model

The accuracy of the algorithm use for the ‘brute force’ fitting of the effective refrac-

tive index to the data obtained from the numerical analysis of the grating structure is

reduced with increase of applied frequency and, equivalently, the electrical thickness

of the structure. Specifically, the distribution of scaling factor Ψ is well behaved up

to a particular value of aspect ratio and refractive index of the background material.

The smooth curve characterising the values of Ψ rapidly changes direction with val-

ues fluctuating in not regular manner. Such a distribution would require a high order

polynomial or more complicated model function with a large number of coefficients

in order to be represented by an analytical formulation. Moreover, such an approxi-

mation would result in high errors in reflection coefficient prediction. The transmis-

sion coefficient is always predicted with good accuracy due to its very small variation.

Therefore, the presented empirical model was defined with limits related to the values

of the aspect ratio and refractive index around which the first ‘break’ in the Ψ dis-

tribution occurs. The shorter the wavelength the more strict the limits of the model

for gratings with high aspect ratio and high dielectric constant of background mate-

rial. Restrictions for considered frequencies and metal fills are given in Table 4.5 for a

model valid in terms of the aspect ratio, and in Table 4.6 for a model valid with respect

to the background materials.
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@
@

@
@

ν

f
0.2 0.3 0.4 0.5 0.6

30 GHz 0.6− 3 0.4− 3 0.4− 3 0.2− 3 0.2− 3

60 GHz 0.6− 3 0.4− 3 0.4− 3 0.2− 3 0.2− 3

100 GHz 0.6− 3 0.4− 3 0.4− 3 0.2− 2.6 0.2− 1.8

150 GHz 0.6− 3 0.4− 3 0.4− 2.6 0.2− 1.8 0.2− 1.2

200 GHz 0.6− 3 0.4− 3 0.4− 2.0 0.2− 1.4 0.2− 1.0

Table 4.5: Range of aspect ratios considered. Note reduced ranges in shaded cells

@
@

@
@

ν

f
0.2 0.3 0.4 0.5 0.6

30 GHz 3.42 3.42 3.42 3.42 3.42

60 GHz 3.42 3.42 3.42 3.42 3.42

100 GHz 3.42 3.42 3.42 3.1 2.3

150 GHz 3.42 3.42 2.9 2.1 1.5

200 GHz 3.42 3.42 2.3 1.6 1.1

Table 4.6: Maximum background refractive index. Note reduced ranges in shaded cells.

The empirical model proposed in this Chapter was based on the numerical data ob-

tained for the grating structure where some initial limitations were put on the aspect

ratio. As is presented in Table 4.1, structures with metal fill factor f = 0.2 were anal-

ysed for aspect ratios above 0.6, while for f = 0.3 and f = 0.4 that limit was lowered

to AR = 0.4. Other structures had aspect ratios as low as AR = 0.2. The limits were

imposed in order to cover the typical interconnect geometry [8] where relatively wide

and shallow wires are not very likely to be used.

One tendency observed during the process of collecting and analysing simulation data,

but not included in the process of defining the analytical formulation due to limita-

tions as discussed above, is worthy of being presented. Figure 4.23 illustrates the trend

which occurs in the studied model of the ratio occupied by metal in the grating struc-

ture. In the structure chosen for demonstration there is an aspect ratio at which a con-

tinuously varying value of scaling factor Ψ ceases to decrease and begins to increase. It
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can be observed for f = 0.6 and aspect ratio about 1.4 that a similar trend occurs in the

real and imaginary part of the effective refractive index neff (not shown here). Further,

it can be noted that for a structure illuminated by wave with frequency ν = 100 GHz,

fixed metal fill factor f = 0.6 and refractive index n = 2.3 there are two structures with

different aspect ratios which require very similar values of neff for the homogenised

equivalent. As the magnitudes of the reflection and transmission coefficients of a sin-

gle grating layer are determined not only by material properties but also by the depth

of the layer, it follows that some cases can arise where the effective refractive indices

are equal. Therefore the ‘brute force’ algorithm is still self-consistent.

This changing direction of the value Ψ only occurs when the metal fill factor is within

the range 0.3 to 0.6. The location and the magnitude of the minimum values in the

characteristic depend on applied frequency, dielectric material and grating depth (re-

lated to AR). The higher the frequency, metal fill, and dielectric constant, the lower the

aspect ratio for which the discussed trend occurs.
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Figure 4.23: The scaling factor Ψ predicted from the ‘brute force’ algorithm plotted against the aspect

ratio for different values of metal fill factor f . Grating parameters: n = 2.3, Λ = 100µm, ν = 100 GHz,

0.2 ≤ AR ≤ 3.
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4.6.2 Impact of the Metal Fill Factor

Analysis of grating structures for frequencies from the ISM band within the range 30−
200 GHz showed that the general trend in the dependence of the scaling factor Ψ on

metal fill factor which was observed in the on-chip signals frequency models is also

present. As illustrated in Fig. 4.24(a) and Fig. 4.24(b), within considered limits for a

chosen frequency of 100 GHz and varying aspect ratio, the real and imaginary parts of

the effective refractive index neff of the homogenised equivalent increases gradually

with an increase in the proportion of metal part in the grating structure. This trend

is observed in all structures from the range of studied dielectric materials and is pre-

sented here for dielectric with refractive index n = 2.3.
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Figure 4.24: (a) The real part of the effective refractive index Re(neff ) and (b) imaginary

part Im(neff ) plotted versus aspect ratio for different values of metal fill factor f . Grating parame-

ters: n = 2.3, Λ = 100µm, ν = 100 GHz, 0.2 ≤ AR ≤ 3.

The distribution of the scaling factor Ψ obtained when the ‘brute force’ algorithm is

used to calculate the effective permittivity is presented in Fig. 4.25. There is an inverse

relation in the value of Ψ, and hence neff , in terms of the metal fill factor for considered

aspect ratios - the higher value of metal fill factor f , the lower value of the calculated

scaling factor Ψ. This tendency can be explained in terms of established homogenisa-

tion technique by the analysis of the stronger electromagnetic field which occurs due

to the multiple reflections between metal bars.

To explain this phenomenon numerical calculations for a sample grating structure were
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Figure 4.25: The scaling factor Ψ predicted from the ‘brute force’ algorithm plotted against the aspect

ratio, within considered limits, for different values of metal fill factor f . Grating parameters: n = 2.3,

Λ = 100µm, ν = 100 GHz, 0.2 ≤ AR ≤ 3.

performed by the FDTD method for a single frequency ν = 100 GHz and range of as-

pect ratios, metal fill factors, and background materials. For the sake of illustration the

reference aspect ratio is chosen as AR = 1.6 and the dielectric constant is n = 2.3. Two

plots of the electric field magnitude are presented in Figure 4.26(a) and Figure 4.26(b),

with grating structure occupied by a metal fill in 20% and 60% respectively.

It is assumed that the homogenised equivalent has the same height as the grating part

of the model. In such an homogenisation technique the original Maxwell-Garnett mix-

ing formula does not account sufficiently for all changes occurring in the electromag-

netic field. For a given aspect ratio of AR = 1.6 such a field becomes stronger with

a reduction of the distance between metal parts and for the sharp corner inclusions it

is partially accounted for in the original Maxwell-Garnett mixing rule which predicts

effective dielectric constant in terms of the volume occupied by the metal fills (inclu-

sions) and dielectric properties of the constituents. For gratings with lower metal fill

factors such a field, being even weaker, spreads more widely and means that the scal-

ing factor Ψ needs to be proportionally larger.

In Fig. 4.27 it is illustrated for a particular structure that the value of scaling factor Ψ de-

pends on both the frequency of illuminating wave and the metal volume fraction. Grat-
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Figure 4.26: The magnitude of the steady state electric field for a grating structure with grating

parameters: n = 2.3, Λ = 100µm, ν = 100 GHz, AR = 1.6, and: (a) f = 0.2, (b) f = 0.6. Stronger

electric field accumulates in the corners of the metal parts of the gratings.

ing structures with metal fill of 50% or more are represented by the plot in Fig. 4.27(b).

These structures are characterised by their value of factor Ψ being significantly influ-

enced by the value of applied frequency. In this case Ψ also tends to increase with

the increase of dielectric refractive index of background material (not shown here). For

frequencies as high as 100−200 GHz the electrical thickness of the homogenised equiv-

alent changes significantly and is reflected in a notable difference in the value Ψ which

is related to the length of illumination wave and metal volume fraction. Figure 4.27(a)

shows this for a grating structure with a metal volume fraction of 30%, and Fig 4.27(b)

for a metal volume fraction equal to 50%.

4.6.3 Model Simplification

It was illustrated in Fig. 4.25 that the distribution of parameter Ψ in terms of the aspect

ratio for a given metal volume fraction has an exponential characteristic. Nevertheless,

for the presented model the analytical formulation is given for the range of aspect

ratios 1.4 ≤ AR ≤ 3. The lower limit was conveniently increased because typical

interconnects tend not to have such low aspect ratios. This also allows the model to

be reduced to a linear function. Hence structures with dimensions defined by metal

volume fraction f = 0.5 illuminated by wave with frequency 200 GHz, and those with
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Figure 4.27: The scaling factor Ψ calculated from the ‘brute force’ algorithm plotted against the aspect

ratio for different values of illumination wave frequency. Grating parameters: n = 1.5, Λ = 100µm,

0.2 ≤ AR ≤ 3, and metal fill factor: (a) f = 0.3; (b) f = 0.5.

metal fill f = 0.6 excited by signal with frequency 150 GHz and 200 GHz according to

the limitations set in Table 4.5 are not included in the presented analytical formulation

of the model. Analysis of data obtained from numerical simulations of the studied

structures showed that all variation in scaling factor Ψ in terms of the varying refractive

index n of the background dielectric, metal volume fraction f , and frequency ν can be

account for by a linear function of varying aspect ratio.

Hence factor Ψ is given by

Ψ(xAR) = α · xAR + β (4.27)

and it is defined by linear least squares method, involving expansion in Taylor se-

ries (Appendix A.3, A.5) for every background material n as a function of varying

aspect ratio AR where 1.4 ≤ xAR ≤ 3. Coefficients α and β are determined for all

refractive indices n and they are represented by

α(n) = α1 · n+ α2 (4.28)

β(n) = β1 · n+ β2 (4.29)

Both α and β are functions defined by linear regression for every metal volume fraction

as a function of varying background material. Coefficients α1, α2, β1, and β2 are well
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approximated for all metal fill factors f by

α1(f) = α11 · f + α12 (4.30)

α2(f) = α21 · f + α22 (4.31)

β1(f) = β11 · f + β12 (4.32)

β2(f) = β21 · f + β22 (4.33)

All coefficients α1, α2, β1, and β2 are functions determined by linear least squares

method for every frequency3 from considered range as a function of varying metal

volume fraction. Coefficients αmn and βmn where m,n = {1, 2} are accurately approxi-

mated by

α11(ν) = α111 · ν + α112 (4.34)

α12(ν) = α121 · ν + α122 (4.35)

α21(ν) = α211 · ν + α212 (4.36)

α22(ν) = α221 · ν + α222 (4.37)

β11(ν) = β111 · ν + β112 (4.38)

β12(ν) = β121 · ν + β122 (4.39)

β21(ν) = β211 · ν + β212 (4.40)

β22(ν) = β221 · ν + β222 (4.41)

Factors αmn1, αmn2, βmn1, and βmn2 where m,n = {1, 2} are given in Table 4.7.

α111 0.0032 α211 −0.0050 β111 −0.0027 β211 0.0056

α112 −0.0049 α212 0.3236 β112 −0.0335 β212 −2.0725

α121 −0.0005 α221 0.0008 β121 0.0002 β221 −0.0006

α122 −0.0133 α222 −0.2523 β122 0.0287 β222 3.0087

Table 4.7: Coefficients αmn1, αmn2, βmn1, and βmn2 where m,n = {1, 2}, for Ψ calculations accord-

ing to the Eq. (4.27) - (4.41).

The presented model is valid under the assumption that all limitations presented in

Subsection 4.6.1 are observed.

The empirical model can be expressed in the multidimensional Taylor series form (Ap-

pendix A.1) and the coefficients are given in Table 4.8
3The unit for frequency has been set to GHz
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Ψ|0 β222
∂Ψ
∂xAR

∣∣
0 α222

∂Ψ
∂n

∣∣
0 β122

∂Ψ
∂f

∣∣
0 β212

∂Ψ
∂ν

∣∣
0 β221

∂2Ψ
∂xAR∂n

∣∣
0 2α122

∂2Ψ
∂xAR∂f

∣∣
0 2α212

∂2Ψ
∂xAR∂ν

∣∣
0 2α221

∂2Ψ
∂n∂f

∣∣
0 2β112

∂2Ψ
∂n∂ν

∣∣
0 2β121

∂2Ψ
∂f∂ν

∣∣
0 2β211

∂3Ψ
∂xAR∂n∂f

∣∣
0 3!α112

∂3Ψ
∂xAR∂n∂ν

∣∣
0 3!α121

∂3Ψ
∂xAR∂f∂ν

∣∣
0 3!α211

∂3Ψ
∂n∂f∂ν

∣∣
0 3!β111

∂4Ψ
∂xAR∂n∂f∂ν

∣∣
0 4!α111

Table 4.8: Coefficients for the Taylor series expansion of Ψ expressed in terms of coefficients given

in Table 4.7.

Figure 4.28 illustrates the distribution of the parameter Ψ for exemplar structure

with grating part occupied by 50% metal, dielectric background with refractive in-

dex n = 1.5, and frequency ν = 100 GHz, where the reference data obtained from the

‘brute force’ algorithm are plotted along with those calculated by least squares method

at each of the three steps necessary to build the analytical formulation of the com-

plex model. Figure 4.28(a) shows the scaling factor Ψ when approximated by a linear

function for all refractive indices n with varying aspect ratio and is compared with

the reference data. Further, Fig. 4.28(b) demonstrates the variation in Ψ when approxi-

mated in terms of all background dielectrics and metal volume fractions f as a function

of aspect ratio plotted with reference data. In Fig. 4.28(c) results for Ψ calculations in

terms of all n, all f , and all frequencies ν versus varying aspect ratio are plotted along

with data obtained from the developed algorithm. Finally, Fig. 4.28(d) illustrates the

accuracy in Ψ estimation obtained for all three steps of building the complex model

compared with the value obtained from the fitting algorithm. All three linear regres-

sions are characterised by an error not higher than 2% in scaling factor Ψ estimation.

4.6.4 Numerical Validation of Analytical Model

The validity of the analytical model was examined by an approach analogous to that

presented in Subsection 4.5.2. For each of the steps taken to construct the empir-

ical model, the magnitude of the reflection and transmission coefficients calculated

for the grating structure and its homogenised equivalent were compared. Figure 4.29

and Fig. 4.30 show the agreement between data obtained from numerical calculations

for grating structure using RCWA and calculations of reflection and transmission coef-

ficients using the characteristic matrix method where neff was obtained from the mod-

ified Maxwell-Garnett mixing rule with scaling factor Ψ calculated from Eq. (4.27).
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Figure 4.28: The fitted values obtained from the ‘brute force’ algorithm plotted as crosses along with

approximated values of scaling factor Ψ defined as a function for: (a) all background dielectrics with

varying aspect ratio; (b) all dielectrics and metal volume fractions with varying aspect ratio; (c) all

dielectrics, metal volume fractions and frequencies with varying aspect ratio plotted as continuous line.

Figure (d) shows comparison of Ψ for all approximation steps together. Grating parameters: f = 0.5,

Λ = 100µm, frequency ν = 100 GHz, n = 1.5, 1.4 ≤ AR ≤ 3.

Figure 4.29(a) and Fig. 4.29(b) show the high accuracy in the estimation of the reflection

and transmission coefficients when the grating structure is replaced by a homogenised

equivalent with neff obtained from the ‘brute force’ fitting. The very low errors demon-

strated in Fig. 4.6 increase due to the curve fitting procedure applied in order to analyt-

ically interpret the changes of each variable in the four dimensional parameter space.
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This tendency is expected and the errors for reflectivity estimation at each step of build-

ing the empirical model in most structure is within 0 − 3% and it tends to reach the

maximum value for an aspect ratio bounding the considered set whereas in most cases

it is less than 1%. On the other hand, transmissivity is always predicted with an error

less than 99%.

It was noted that the complex empirical model suffers from an increase in the error

in reflectivity estimation when applied to some structures with metal part having an

aspect ratio from the upper bound of considered ranges when embedded in dielectric

with refractive index n > 3. In these cases the error is within 4 − 8%. To address this

issue further limitations in terms of the background material can be set as presented

in Table 4.9. Since the permittivity of the low-k dielectrics used in the commercial

products is predicted to decreas [8] with developing technology the model is likely to

satisfy the menufacturable needs.

@
@

@
@

ν

f
0.2 0.3 0.4 0.5 0.6

30 GHz 3 3.42 3.42 3.42 3.42

60 GHz 3 3.42 3.42 3.42 3.42

100 GHz 3 3.42 3.42 2.9 2.3

150 GHz 3 3 2.7 2.1 −
200 GHz 3 3 2.3 − −

Table 4.9: Maximum background refractive index. Note reduced ranges in shaded cells

Visual demonstration of the agreement in reflection and transmission coefficients esti-

mation by the model for all steps is presented in the remaining subfigures of Fig. 4.29

and Fig. 4.30. The reference structure is chosen as grating with period Λ = 100µm

occupied by metal in 50% and background dielectric with refractive indices n =

{1.5, 2.0, 2.5} illuminated by normally incident wave with free-space wavelength λ =

3 mm (ν = 100 GHz). The reflection and transmission coefficients obtained from the

homogenised structure with neff calculated from modified Maxwell-Garnett mixing

rule when factor Ψ is determined by the linear distribution defined for all background

materials as a function of varying aspect ratio are plotted along with data obtained

for the reference structure in Fig. 4.29(c) and Fig. 4.29(d) respectively. Figure 4.30(a)
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and Fig. 4.30(b) illustrate similar agreement when factor Ψ is defined for all back-

ground materials and all metal fill factors from studied range as a function of chang-

ing aspect ratio. Finally, the empirical model is used to estimate factor Ψ, and con-

sequently neff , and the reflection and transmission coefficients of the homogenised

equivalent; these are shown in Fig. 4.30(c) and Fig. 4.30(d) with calculations for the

reference structure.
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(d) Transmission coefficient

Figure 4.29: The magnitude of the reflection and transmission coefficients for a grating structure with

grating parameters: f = 0.5, Λ = 100µm, ν = 100 GHz, n = {1.5, 2.0, 2.5}, 1.4 ≤ AR ≤ 3. The

RCWA results are compared with the EMA formulation with neff calculated: (a,b) from ‘brute force’

algorithm; (c,d) with scaling factor Ψ defined as a function for all n with varying aspect ratio.
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Figure 4.30: The magnitude of the reflection and transmission coefficients for a grating structure with

grating parameters: f = 0.5, Λ = 100µm, ν = 100 GHz, n = {1.5, 2.0, 2.5}, 1.4 ≤ AR ≤ 3. The

RCWA results are compared with the EMA formulation with neff calculated: (a,b) with Ψ defined as

a function for for all n and f with varying AR; (c,d) with Ψ defined as a function for all n, f , ν with

varying AR.

4.7 Empirical Model for On-Chip Signals Band Discus-

sion

In this Section the validity of the empirical model for on-chip signal band is explored

for non-normal angles of incidence. For broad applicability, it is essential to have a

homogeneised equivalent that works for a range of incident angles. The validity of
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the model for differently shaped metal inclusions, specifically the case of tapered in-

clusions, is investigated. The defined empirical model is compared with the empirical

mixing model presented by Karkkainen and Sihvola et al. in [65]. The bounds that

limit the range of predictions for the effective permittivity are considered and pre-

sented first.

4.7.1 General Bounds

The calculated effective permittivity varies according to the particular mixing rules

used to analyse a given mixture. However, there are theoretical bounds to the range

of calculated effective permittivieties, e.g. Wiener and Hashin-Shtrikman bounds

(Eq. (2.32)-(2.35)). It was verified that in a set of about 7000 simulations of the grat-

ing structure run to define each of the empirical models all effective refractive indices

are well within the Wiener bounds. Nevertheless, the predicted neff has values close

to the lower limit. This is related to the specific alignment of the grating structure (sin-

gle layer of interconnects) and the angle of incidence wave. Such regular and linearly

distributed arrangement of the inclusions with the field vector perpendicular to the

grating surface results in an effective permittvity from the bottom range of the pos-

sible values defined by Wiener bounds, as was stated in Subsection 2.6.1. The upper

limit is several orders higher in magnitude, hence even if satisfied, for the purpose of

the analyses of this particular grating structure it can be lowered by replacing it with

the Hashin-Shtrikman lower limit. It is illustrated in Fig. 4.31, for two random struc-

tures, that the real parts of the effective permittivity obtained from the empirical model

are within the lower limits of the Wiener and Hashin-Shtrikman bounds.

The more strict Hashin-Shtrikman bounds overestimate the obtained values of neff .

These limits are based on the Maxwell-Garnett mixing rule for the complementary

mixtures with transfered constituents (εi → εe, εe → εi, f → 1 − f ), Subsection 2.6.1,

and the lower limit is just the classical Maxwell-Garnett rule with εi > εe. Therefore,

for the analysed interconnect grating structure it can be assumed that the upper bound

for the effective permittivity is the classical Maxwell-Garnett rule whereas the lower

bound is the Wiener lower limit.
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Figure 4.31: Real part of the effective permittivity of the grating structure compared with theoretical

bounds for gratings with: (a) AR = 1 and n = 3.42, (b) AR = 3 and n = 1.5, where 0.2 ≤ f ≤ 0.6,

ν = 5 GHz, Λ = 100µm.

4.7.2 Angle of Incidence

Since the empirical model for the on-chip signals frequency band (Section 4.5.4) was

defined for the range of metal-dielectric grating structures illuminated by a normally

incident plane wave, in this Subsection the accuracy of the model over a range of inci-

dence directions is presented.

The TM polarised plane wave with the electric field vector ETM coplanar with the grat-

ing vector K, as shown in Fig. 4.32, illuminates the grating structure with incidence

angle θ within −90◦ < θ < 90◦. The grating period Λ and grating height h are also

indicated. Due to the symmetry of the grating structure the response for the incidence

angles with opposite sign is the same.

The reflection and transmission coefficient as a function of θ were compared for

both the detailed structure and its homogenised equivalent. Plots of the data are

shown in Fig. 4.33(a) and Fig. 4.33(b). The agreement is within 5% over the inter-

val −30◦ ≤ θ ≤ 30◦ as is illustrated in Fig. 4.33(c) for the error in reflection coefficient

estimation and in Fig. 4.33(d) for transmission coefficient.

The analysis shows that the empirical model, even if defined with respect to the nor-

mally incidence plane wave, can still be used with confidence to estimate the return

and transmission losses over a relatively wide range of incidence angles.
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Figure 4.32: Diagram of grating structure with rectangular profile and period Λ, grating height h,

grating vector K, TM electric field polarisation ETM , and incidence angle θ.

4.7.3 Trapezoidal Inclusions

The empirical model defined in Section 4.5.4 for the on-chip signals frequency was

based on the analysis of the grating structure with four varying parameters. Since the

model can be used for the grating structure illuminated by a plane wave with incidence

angle −30◦ ≤ θ ≤ 30◦ with an error less than 5% for the reflection and transmission

coefficients prediction, the next consideration was focused on the validity of the model

for gratings with trapezoidal cross section as is depicted in Fig. 4.34. Such gratings

sometimes can be found in fabricated interconnect structures [7].

The rectangular gratings, see Fig. 4.32, were reshaped such that the metal fill factor,

grating height and dielectric background were kept constant. Therefore, the only vary-

ing dimension is the sidewall angle θs that determines the taper of the trapezoid. The

angle θs was considered up to a maximum of 20◦. The validation was carried out

over the range of studied geometries and an illustration of the agreement obtained for

trapezoidal gratings with the sidewall angle of 5◦, metal fill factor f = 0.5, aspect ra-

tioAR = 2 floated in the background dielectric n = 2.5 is shown in Fig. 4.35. The reflec-

tion and transmission coefficients, Fig. 4.35(a) and Fig. 4.35(b), are plotted along with

the errors, Fig. 4.35(c) and Fig. 4.35(d), calculated for the rectangular and trapezoidal

gratings to distinguish the difference between them, and the errors between each type

of grating and their homogenised equivalent obtained from the empirical model. The

plots illustrate the distribution of each calculated value in terms of the changing angle

of incidence. Hence, it was verified that the model, without modification, estimates
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Figure 4.33: The magnitude of the (a) reflection and (b) transmission coefficients for a grating

structure compared with the homogenised equivalent. The error in (c) reflection and (d) transmis-

sion coefficients calculated between gratings and their homogeneous equivalents. Grating parame-

ters: f = {0.4, 0.5, 0.6}, AR = 2, Λ = 100µm, ν = 5 GHz, n = 2.5, 0◦ ≤ θ ≤ 40◦.

the reflection and transmission coefficients with similar accuracy and for the same in-

cidence angles range as in the case of having corresponding rectangular inclusions, for

inclusions with sidewalls with an angle of up to 5◦.
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Figure 4.34: Diagram of grating structure with trapezoidal profile and period Λ, grating height h,

grating vector K, TM electric field polarisation ETM , incidence angle θ, and sidewall angle θs.

4.7.4 Comparison with Other Empirical Models

The electric fields in random dielectric mixtures of two components were studied by

Karkkainen and Sihvola et al. [65]. The reported work shows that the effective per-

mittivity of a mixture defined as a periodic structure with many randomly located

inclusions per period can be succesfully represented by existing mixing models. The

v-model, Eq. (2.36), that encompasses the Maxwell-Garnett, Bruggemann, and Coher-

ent Potential mixing rules was used as a base to define the empirical mixing models.

Since the value of the parameter v characterizes the specific mixing rule, it was used as

a parameter which accounts for the change in the parameter space chosen for the mix-

ture - inclusion volume fraction and permittivity contrast k = εi/εe. Such an approach

gave more flexibility to the model and by determining the change of the parameter v

with respect to the considered mixtures the two empirical models based on numerical

data were defined.

It is demonstrated in Fig. 4.36 that the distribution of the value of scaling factor Ψ used

to define the empirical model for on-chip signals frequency band (Section 4.5.4) has a

similar trend, when expressed with respect to the change in metal volume fraction, to

that presented in the quoted paper for the v parameter. The interconnects grating struc-

ture with aspect ratio AR = 1 has a distribution of the scaling factor Ψ, see Fig. 4.36(a),

similar to that of the parameter v for the mixture with permittivity contrast k > 1, see

Fig. 4.36(b). Furthermore, the grating structure with the maximum aspect ratio AR = 3

has the values of factor Ψ, see Fig. 4.36(c), similarly distributed to the values of param-
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Figure 4.35: The magnitude of the (a) reflection and (b) transmission coefficients for a grating structure

with rectangular, and trapezoidal profile, and homogenised equivalent. The error in (c) reflection and

(d) transmission coefficients calculated between gratings with rectangular and trapezoidal profile and

between grating structures and their homogeneous equivalents. Grating parameters: f = 0.5, AR = 2,

Λ = 100µm, ν = 5 GHz, n = 2.5, 0◦ ≤ θ ≤ 40◦.

eter v for mixtures with low permittivity contrast k < 1, see Fig. 4.36(d).

Presented results and a comparison with other empirical mixing models shows that

the classical mixing rules are more widely applicable than initially envisaged.
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Figure 4.36: The value of the scaling factor Ψ calculated for the grating structure with: (a) AR = 1,

(c) AR = 3; and the value of the parameter v obtained for the permittivity contrast: (b) k > 1, (d) k < 1

(reproduced from Karkkainen et al., Fig. 5(a,b)). Grating parameters: 0.2 ≤ f ≤ 0.6, AR = {1, 3},
Λ = 100µm, ν = 100 GHz, n = {1.5, 2, 2.3, 2.5, 3.42}

4.8 Summary

New empirical mixing models based on the modified Maxwell-Garnett rule, and de-

fined in terms of the introduced scaling factor Ψ, have been presented for interconnect

structure in two frequency bands (1− 10 GHz, 30− 200 GHz). A wide range of grating

parameters (metal fill factor, aspect ratio, dielectric background) were considered in

order to cover the likely practical interconnect geometries and clock frequencies. The
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homogenisation procedure has been presented and the ‘brute force’ algorithm and its

accuracy (error less than 0.3%) with respect to each of the considered parameters was

discussed.

Each of the defined empirical models was supported with a detailed discussion on the

impact of the individual parameters, and the homogenisation technique itself, on the

distribution of the scaling factor Ψ. The on-chip signals frequency empirical model

was defined for two sets of aspect ratio values: 0.2− 3 and 1.4− 3. The reduced inter-

val, 1.4 − 3, was chosen to address the typical interconnect dimensions found in ICs.

Hence, for the wider range of aspect ratios the empirical model is formulated by the

combination of exponential functions whereas the minimized range of aspect ratios al-

lowed the characterisation of the model via a linear dependence.

The empirical model for the ISM band frequencies was formulated only for the reduced

range of aspect ratios and due to the rapid change in the Ψ distribution, obtained from

the ‘brute force’ algorithm, some initial limits on the individual parameters have been

introduced.

The accuracy of the complex models is discussed in terms of the approximated value

of the scaling factor Ψ compared with that obtained by ‘brute force’. Furthermore, the

models are applied to the calculation of the reflection and transmission coefficients of

the homogenised structure and are compared with the adequate coefficients obtained

for the detailed structure. The accuracy of the on-chip signals frequency models are

better than 2.7% and for the ISM band frequency model the error is not higher than 3%.

It was validated that the effective refractive indices calculated from the empirical mod-

els are well within the Wiener bounds. Nevertheless, the upper bound, due to its rela-

tively high magnitude, can be succesfully reduced for the studied canonical structure

by adopting for the upper bound the lower Hashin-Shtrikman bound.

The model was also validated by considering non-normal angles of incidence and in

the range of angles within ±30◦ the model is accurate to 5%. Finally, the model is val-

idated with respect to the change in the grating profile and it is shown that it can still

be applied to trapezoidal gratings, with sidewall angles up to 5◦, with similar error not

higher than 5%.

The empirical model is compared with other empirical mixing models reported in the

literature. It is illustrated that the scaling factor Ψ and its equivalent, from the reported

work, has a similar trend in the distribution of its value.
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Chapter 5

Free-Space Measurements

5.1 Introduction

This Chapter presents measurements of metal-air gratings placed on a dielectric sheet

at X-band frequencies (8.2−12.4 GHz). These free-space measurements are an essential

step in the validation of the concept of the homogenisation of a single layer of inter-

connects. Free-space measurement is a challenging task due to the sensitivity of the

system to the surrounding environment, therefore appropriate care needs to be taken

during the calibration and measurement procedure.

The contents of this Chapter are as follows. In Section 5.2 the background for the

free-space measurement technique is provided, Section 5.3 the experimental design is

presented, Section 5.4 contains the description of the equipment and calibration proce-

dure, and Section 5.5 depicts the measurement results compared with numerical cal-

culations.

5.2 Background

In the late 19th century scientist were trying to find evidence for a link between light

and electromagnetic propagation. The mathematical theory given by J. C. Maxwell [81]

predicted the existence of electromagnetic waves propagating through space at the

speed of light and drew the conclusion that light itself is such a wave.

The first successful experimental demonstration of Maxwell’s hypothesis was made

by H. Hertz [82, 83, 84]. The concept of the experiment is illustrated in Fig. 5.1. Hertz
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used an oscillator made of brass knobs connected to an induction coil and capacitor,

and separated by a narrow gap over which sparks could discharge with an oscillation

at a frequency related to the values of the capacitance and inductance of the coil. The

emitted radiation was detected by a simple receiver consisting of a looped wire with

small knobs separated by a tiny air gap. The receiver was designed so that current

oscillating in the wire would have a natural period close to that of the transmitter.

When the oscillator was turned on, the electromagnetic wave emitted by the oscilla-

tor’s sparks, induced an oscillating current in the receiver loop. This was signaled by

sparks occurring across the receiver air gap. This experiment was the first demonstra-

tion of the transmission and reception of electromagnetic waves. In more advanced

experiments Hertz proved that the electromagnetic waves propagate with a velocity

equal to the velocity of light.

interrupter

spark coils λ/2
dipole

spark
gaps

Figure 5.1: Conceptual schematic of Hertz’s experiment (reproduced from Kraus, Fig. 7).

Since that time, more advanced techniques for the free-space measurement of electro-

magnetic waves have been developed. For example, the performance of radio, mi-

crowave, infrared, visible, ultraviolet, and even x-ray systems can all be measured

with specialist equipment. In the case of wire grid polariser most early equipments

were conducted in the optical regime.
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Measurement of the reflection and transmission of a wire grid polariser (WGP) can

be performed for the classical mount, when the wave vector of the incident plane

wave is in the plane perpendicular to the gratings, or for the conical mount, when the

wave vector is off the perpendicular plane [85]. The measurement set up is illustrated

in Fig. 5.2 with the specific equipment configuration for measurement of transmission

and reflection of the WGP. For the case of classical mount, the wire grid side always

faces the light. Hence the transmission occurs at the glass (substrate) surface and re-

flection on the side with the metal wires. A polariser is mounted on the light source in

order to obtain a TE and TM polarised incident wave. For the transmission measure-

ment, illustrated in Fig. 5.2(a), the position of the detector in the plane perpendicular to

the gratings changes with the change in the angle of incidence θ in order to measure the

transmitted light at those angles. For the reflection measurement, shown in Fig. 5.2(b),

the light source and detector are placed in the plane perpendicular to the wires. In

each setting the angle of incidence θi and reflection θr are equal in order to measure the

reflected light over the range of angles of interest. A similar equipment configuration

for the measurement of the wire grid polariser is presented in [36, 37].

(a) Transmission measurement (b) Reflection measurement

Figure 5.2: Experimental configuration for (a) transmission and (b) reflection measurement (repro-

duced from Xu et al., Fig. 6).

Other arrangements for the measurement of the transmission through, and reflection

from, the subwavelength structures for which plane wave illumination is required are

presented in [27, 86, 87, 88]. There is little reported work on polarisers at radio and

microwave frequencies because the antenna structures are designed to directly emit
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the desired polarisation. However, it is instructive to look at an example of analysing

an artificial dielectric at microwave frequencies.

In [27] Bernhard reports an adapted measurement technique and the measured trans-

mission and reflection coefficients of the periodic structure of cones which imitate the

night moth cornea. Both the geometry of the cornea and the illumination wave were

scaled to microwave frequencies. A horn antenna mounted in front of the sample struc-

ture produces an electromagnetic plane wave in the far field and is shown in Fig. 5.3.

The model surface was made from a mixture of beeswax and paraffin. The experimen-

Figure 5.3: Measurement set up of the surface imitating moth eye (reproduced from Bernhard, Fig. 6).

tal results showed an increase in the transmission coefficient and a decrease in reflec-

tion coefficient of the wave propagating through the subwavelength periodic structure

of cones in comparison to a plane featureless medium.

The free-space measurement technique for the measurement of dielectric properties of

planar slabs of ceramic and composite materials at microwave frequencies was pre-

sented by D. K. Ghodgaonkar et al. [86, 87, 88]. The main components of the measure-

ment system are a pair of spot-focusing horn lens antennas, a vector network anal-

yser and a computer. The schematic diagram of the measurement system is presented

in Fig. 5.4. Since this technique was adapted for the free-space measurements pre-

sented in this Thesis a detailed description of the experimental design, equipment,

calibration and post-calibration processing of the data is provided in the following

Subsections.
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Computer Printer

coaxial cables

horn antenna with lens

sample holder

table

Figure 5.4: Schematic diagram of free-space measurement system (reproduced from Ghodgaonkar et al.,

Fig. 1).

5.3 Experimental Design

The key experimental aim is to measure the reflection and transmission coefficients

of a grating plate attached to a dielectric substrate. The ideal experiment requires an

infinite grating structure to be illuminated by a plane wave. Such a measurement con-

figuration is difficult to approximate if not impossible, therefore a substitute approach

is chosen. The plate is placed between two pyramidal horns. The pyramidal horn

antenna itself transmits a quasi plane wave in the far field. The far field distance is

calculated from formula [89]

D =
2 ·D2

λ
(5.1)

where D is the aperture antenna maximum dimension taken to be its diagonal and λ is

the wavelength of the radio wave. Therefore by choosing appropriate spacing between

the horns and the grating plate, plane wave illumination can be achieved.

The distances calculated from equation Eq. (5.1) for the antennas used at X-band fre-

quencies are within 34 − 52 cm. In order for the propagated plane wave to ‘see’ the

sample at the calculated distances with no significant interferences from the surround-

ing environment, the sample would have to be extremely large and the experiment

would have to be performed in a specially designed chamber. However, good results

can be obtained from a finite grating structure with a relatively small size when illumi-

nated by a wave transmitted from the horn antenna with a focusing lens. A schematic

diagram of the free-space measurement configuration for reflection and transmission
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coefficients of the grating sample is presented in Fig. 5.5.

focal plane

transmit
antenna

sample

focal lengthfocal length

Incident

Re�ected

Transmitted

receive
antenna

Figure 5.5: Diagram of the plane wave reflection and transmission of a grating-dielectric sample placed

in the focal plane of a pair of pyramidal antenna equipped with lens.

Such an equipment configuration produces a plane wave at the focal plane and to-

gether with an appropriate free-space calibration of the entire system gives an accurate

measurement of the response of the sample under test.

5.4 Equipment Description

This Section describes the equipment used to measure the free-space reflection and

transmission coefficients of a grating plate attached to a dielectric substrate. The main

components of the measurement system are pair of pyramidal horn antennas (transmit

TX and receive RX) equipped with hemispherical lenses, coaxial to waveguide transi-

tion, coaxial cables and network analyser. The configuration of the free-space measure-

ment system, calibration procedure, and measurement accuracy are also described.

5.4.1 Grating Plate

In order to explain validity of the homogenisation approach, two different grating plate

prototypes were manufactured which emulate a series of parallel interconnects. Etch-

ing slots in a solid copper sheet was chosen instead of more expensive and time con-

suming fabrication techniques such as micro fabrication or printed circuit board man-

ufacture. The maximum aspect ratio that can be obtained using this technique is one

and is determined by the thickness (0.15 mm) of the copper sheet and the essential re-

quirement that the structural period has to be in the deep subwavelength dimension.
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With the aspect ratio fixed at one, two different proportions of the metal relative to the

air-gap in the unit grating cell were chosen. In the first case gratings with metal bars of

width 0.15 mm separated by air-gaps of the same width, having metal fill factor f = 0.5

in structural period Λ = 0.3 mm were chosen. In the second instance copper bars were

separated by 0.35 mm gaps in the unit cell of Λ = 0.5 mm (f = 0.3).

A plan view drawing of the two types of grating plates is presented in Fig. 5.6, where a

is the width of the copper bars, and b stands for the width of the air-gaps.

10mm

10
m

m

a

b

220mm

230mm

22
0m

m

23
0m

m

Figure 5.6: Plan view drawing of a linear copper-air grating plate with thickness 0.15 mm and the

close-up of the detail to distinguish the width of the copper bars a, and air-gaps b. There are two de-

signs based on the drawing: (1) gratings with period Λ = 0.3 mm and metal volume fraction f = 0.5

with dimensions a = 0.15 mm, b = 0.15 mm, (2) gratings with period Λ = 0.5 mm and metal volume

fraction f = 0.3 and dimensions a = 0.15 mm, b = 0.35 mm.

As the etching process on such thin and relatively large copper sheets results in flexible
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bars that cannot hold the intended geometry without assistance, a holder was designed

in order to gently stretch the bars and thus hold them in the desired locations. For

the measurement purpose grating plates were attached to a Rogers 4350 [90] dielectric

substrate (εr = 3.66) with thickness 0.762 mm and mounted on the holder as it is shown

in Fig. 5.7. The three wing nut screws on the side, when tightened, move the base and

at the same time stretch the copper bars.

Figure 5.7: Photograph of the grating plate mounted on the holder.

5.4.2 X-band Free-Space Measurement Equipment

The free-space measurement system comprises a microwave network analyser, a pair

of coaxial cables, two coaxial to rectangular waveguide adapters, and two pyramidal

antenna with lens. A block diagram showing how these elements are connected for

free-space measurement is shown in Fig. 5.8, where the device under test (DUT) is not

specified. The frequency of excitation is controlled by the network analyser via the

frequency synthesiser.

The Agilent Technologies E8362B PNA Microwave Network Analyser measures all

four S-parameters of the two port network, and its photograph is shown in Fig. 5.9.

Measurements are displayed on the integral screen in either polar or rectangular
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RXTX

Network 
Analyser

DUT

Port 1 Port 2

Figure 5.8: Block diagram of the X-band equipment interconnections in free-space measurement con-

figuration.

co-ordinate systems, and they can also be saved for further analysis.

Figure 5.9: Photograph of the Agilent Technologies E8362B PNA microwave network analyser.

The continuous wave source is generated by a synthesised sweep over the frequency

range 10 MHz− 20 GHz. For this particular free-space measurement configuration the

source was operated at the maximum power setting of −5 dBm in order to maximize

the signal to noise ratio. The start and stop frequencies were set to the X-band range

and the number of sampled frequencies taken during the frequency sweep, was set to

201 in order to cover the range with a good density of data points, sufficient to identify
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expected features in the measured data.

The measurements were performed inside a microwave frequency anechoic chamber

which was originally design for the near field measurements and provides the required

damping of reflections at X-band frequencies. Thus multipath effects are minimised or

eliminated. All surfaces inside the chamber are lined with pyramidally shaped ane-

choic absorber. The chamber is 4.5× 4.5× 4.0 m.

S-parameters

The reflection and transmission coefficients are often defined by scattering parameters

(S-parameters) which constitute an n× n scattering matrix [91]. The two-port network

is represented by the symmetrical matrix[
S11 S12

S21 S22

]
with S21 = S12 for linear passive devices such as those studied in this Thesis.

The diagonal elements represents reflection coefficients of the input S11 and output S22

ports, whereas the off-diagonal elements are the forward S21 and reverse S12 transmis-

sion coefficients. A schematic diagram of the S-parameters of a two-port network is

presented in Fig. 5.10.

Port 1 Port 2S11 S22

S21

S12

Two-port
network

Input Output

Figure 5.10: Block diagram of the S-parameters of a two-port network.
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The S-parameters provide information about both magnitude and phase. Nevertheless

in the measurement of grating structure the magnitude information is of primary in-

terest, because it provides information about the return and transmission loss via S11

and S21 respectively. In the studied structures, the change in phase of S21 is minimal

(less than 2◦) therefore the phase data is neglected and not presented here.

5.4.3 Pyramidal Horn Antenna

A pair of waveguide-fed WR-90 (dimension 0.9” × 0.4”) pyramidal horn antenna (X-

band Antenna from Marconi Instruments Ltd., Stevenage, England) are used for the

free-space measurements. As the aim of the experiment is to measure the reflection and

transmission coefficients from and through grating structure illuminated by a plane

wave, the antennas are attached to focusing lenses constituting a spot-focusing lens

antenna. The hemispherical lens with diameter d = 11 cm is made of PTFE (polyte-

trafluoroethylene, εr = 2.1) and mounted back to back with the transmit pyramidal

horn antenna (TX), whereas for the receive antenna (RX) hemispherical lens of diame-

ter d = 10 cm made of polypropylene (εr = 1.8) is used. The configuration of the two

spot-focusing antennas produces an electromagnetic plane wave at the focus. The ra-

tio of focal length ξ to the diameter of the lens (ξ/d) is equal to one in both cases. The

horns are shown in place, in Fig. 5.11.

A numerical model of the pyramidal horn antenna with a PTFE lens operated at X-

band frequencies was built in 1 : 1 scale using HFSS software [77] and is demonstrated

in Fig. 5.12(a). The pyramidal spot-focusing horn antenna is symmetrical in two planes

(xy and yz) and it is possible to reduce the size of the overall model to a quarter of the

original size by applying symmetry boundary conditions. To improve the accuracy of

the results from the simulated model, the mesh resolution was enhanced in the areas

of higher interest. This approach was applied to the lens-part of the model. The entire

model was enclosed in a vacuum domain with radiation boundary conditions defined

on the outside walls to allow the wave to radiate far into space without reflection. The

pyramidal horn antenna was excited by a signal applied by a wave port defined at the

back side of the rectangular wave guide.

An illustration of the distribution of electric and magnetic field magnitude, at fre-

quency ν = 10 GHz, in the yz plane is given in Fig. 5.12(b) and Fig. 5.12(d) respectively.

A similar distribution occurs in any cross section of the domain with axis drawn along

the y-axis. The strong electromagnetic field is concentrated in the area between the
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Figure 5.11: Photograph of the pyramidal horns with lenses mounted in the transmission-reflection

configuration

tip of the lens and the focal plane, nevertheless the plane character of the wave occurs

only in the focal plane region where ξ = 11 cm for the PTFE lens and ξ = 10 cm for

the lens used with the receive antenna. It was verified, based on the simulated data,

that the focal distance does not change when the antenna is excited by the full range of

frequencies for which it was designed (X-band frequencies, 8.2− 12.4 GHz).

Additional verification of the numerical model was undertaken by looking into the

impedance distribution at frequency 10 GHz. A plot of the wave impedance calculated

along a line in the y-axis and set at the end of the horn in positive y-direction is shown

in Fig. 5.12(c). The fluctuating impedance within the distance of 0 − 5.5 cm is calcu-

lated inside the lens and it converges to a value approximately equal to the free-space

impedance η0 = 376.7 Ω when the wave passes through the vacuum. In the distance of

about 11 cm the impedance in the simulated model is ∼ 370 Ω as demonstrated in the

close-up in Fig. 5.12(c). Further propagation of the wave into the space is characterized

with a gradual divergence from the the free-space impedance value.
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5.4.4 Calibration Procedure

The two-port calibration was performed using the standards defined for free-space

measurement of the dielectric constants and loss tangents at microwave frequen-

cies [86, 87]. Due to the multiple reflections occurring between the coaxial-to-

rectangular waveguide adapters, the rectangular-to-circular waveguide transforma-

tion and the spot-focusing horn antenna, the losses of these structures, and the errors

always present in the network analyser and the cables, the measured S-parameters dif-

fer from the real response of the grating plate in free-space. It is therefore necessary to

calibrate the measurement configuration with the free-space standards defined based

on Through-Reflect-Line (TRL) waveguide calibration technique. This technique re-

quires three standards: through connection, short circuit connection for each of the two

ports, and transmission line connection between those ports. For the particular mea-

surement set-up each of those three standards has its specific equivalent in free-space

environment, with the principal assumption that the reference planes for the two ports

are located at the focal planes of transmit (TX) and receive (RX) antennas. The through

standard is defined by separating the two antennas by the distance equal to twice the

focal length 2ξ as illustrated in Fig. 5.13(a). The reflect standards for port one (transmit

antenna) and port two (receive antenna) are realized by placing a solid metal plate of

the same thickness as the grating plate and dielectric substrate together, on the holder

at the reference plane as shown in Fig. 5.13(c), and Fig. 5.13(d) respectively. The line

standard is obtained by separating the focal planes of the two antennas by the distance

equal to a quarter-wavelength of the signal from the middle of the frequency band as

is demonstrated in Fig. 5.13(b).

A new TRL calibration kit based on that provided with the Agilent Technologies

E8362B PNA Network Analyser is defined for the free-space calibration. The measure-

ments were taken at the X-band frequency range. The mid-band frequency of 10 GHz

was used to calculate the quarter-wavelength distance for the line standard configu-

ration (λ = 3 cm, λ/4 = 0.75 cm), and the difference between the electrical delay of

the through and line connection (τ = 25 ps). For the free-space measurements the

impedance in all standards is fixed at Z0 = 376.7 Ω.

The TRL calibration technique can be applied under the condition that the difference

in electrical length θl between the through and line standards is greater than 20◦ for

the lowest frequency of the calibration range, and is less than 160◦ for the highest fre-
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quency considered [92]. The electrical length θl is calculated from the formula

θl = k ·∆l (5.2)

where k is the wave number calculated as k = 2·π
λ

, and ∆l is the difference in physical

length between through and line standards.

The difference in electrical length at mid-band frequency (10 GHz) is chosen to be 90◦

(λ/4). At 8.2 GHz the calculated phase difference is∼ 74◦ and for 12 GHz the difference

is ∼ 108◦. Therefore the calibration is valid over the entire X-band.

2ξ

focal plane
RXTX

(a) Through standard

focal plane

2ξ+λ_
4

RXTX

(b) Line standard

metal plate

ξ

TX

(c) Port one reflect standard

metal plate

ξ

RX

(d) Port two reflect standard

Figure 5.13: Schematic diagram of the calibration standards and calibration procedure: (a) through line

measurement, (b) second through line measurement with extra quarter-wavelength standard, (c) Port

one reflect standard measurement, (d) Port two reflect standard measurement. Greek letter ξ stands for

the focal length of the pyramidal horn antenna equipped with a lens.

The through connection was measured after the calibration procedure. The magnitude

of S11 and S22 was less than −40 dB, whereas the amplitude and phase of S21 (S12) was

within ±0.04 dB and ±0.32◦, respectively. The through standard respond is depicted

in Fig. 5.14.
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Figure 5.14: Plot of the through line measurement of the free-space calibration with: (a) reflection

coefficient magnitude, (b) transmission coefficient magnitude, (c) phase of transmission coefficient.

The residual errors after calibration caused by source and load impedance mismatch

can be reduced by using time domain gating [87, 86] or by the application of a smooth-

ing function [88]. Time-domain gating for selective removal of the residual frequency

response resonances, is defined as a filter in the time-domain with a pass band selected

by the start and stop gate controls. The unwanted time-domain ripples are reduced by

the filter but generally not completely removed [93].

Implementation of that method is given by the following steps:

1. S11 and S21 parameters are obtained from measurement in frequency-domain
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2. time-domain S11 and S21 parameters are calculated by taking the inverse Fourier

transform of the frequency-domain data

3. gating is applied over the time-domain response

4. the gated time-domain data are converted back to the frequency-domain by tak-

ing the Fourier transform and the unwanted resonances and multiple reflections

are removed

In the presented study the smoothing procedure was applied in order to remove the

postcalibration errors. The linear least squares method was used in order to obtain the

approximate average of the frequency-domain data; see Appendix A.

5.4.5 Measurement Accuracy

There are two types of errors which can be distinguished when accuracy of the free-

space measurement, after calibration and time-domain gating or smoothing procedure,

is considered [87]. The first reflects the imprecision in calibration standards and instru-

ments. The coaxial cables are also an issue in accuracy estimation.

The error caused by the calibration standards is mainly influenced by the difference in

wave impedance between the line standard and that of free-space. The instrumenta-

tion errors, for example frequency instability, can be neglected due to the synthesised

nature of the network analyser source used to take measurements. To reduce the errors

caused by the coaxial cables used to connect the antennas to the ports of the apparatus,

proper care needs to be taken in their set-up to ensure consistency between calibration

and measurement.

The second type of error is due to the small misalignment between the position of the

measured sample and the reference plane defined by the through and reflect standards

in the calibration procedure. This small misalignment is caused by manually changing

the samples and contributes to the error in the presented results.

The TRL calibration method can be used when the wave at the focal plane is planar

in nature [86]. It was verified by numerical calculations and experimentally before the

calibration procedure was taken. A numerical approach was used to predict the lo-

cation of the focal plane, and hence the focal distance ξ from the horn aperture to the

focal point is described in Subsection 5.4.3. Experimental validation was carried out by



5.5 Results for Free-Space Measurements 110

placing the solid metal plate mounted on the holder parallel to the horn aperture at dif-

ferent distances. By measuring the S11 parameter it was noted that moving the reflect

plate from a far distance into the horn direction, the observed return loss increases to

reach its highest value when the plate is situated in the distance approximately equal

to the focal length ξ ≈ 11 cm. Those two procedures gave confidence in the correctness

of the equipment configuration and further more in the correctness of the obtained

experimental data.

The measurement precision and repeatability was estimated by the following ap-

proach. The system was calibrated twice and at every time a measurement of each

of the two grating plates of a given type was taken. Then the errors in the return and

transmission losses of the four sets of measurements data, with removed postcalibra-

tion errors, were calculated. For the gratings with structural period Λ = 0.3 mm the

error in the measured magnitude of the S11 parameter was between 0 − 2.3%, and

for S21 the error was not higher than 0.3%. Better measurement accuracy was noted

for structure with period Λ = 0.5 mm with the different measurements varying only

whithin 0 − 1.7% for the magnitude of S11 parameter, and less than 0.1% for param-

eter S21. The change in the phase of transmission coefficient was in the range ±0.04◦

and ±0.015◦ for gratings with period Λ = 0.3 mm and Λ = 0.5 mm respectivly.

The difference in experimental data is influenced by two factors. Namely, the small

change in location of the holder with sample grating plates in the reference plane was

manually adjusted during measurement routine. Secondly, the metal bars due to their

relatively small dimensions compared to their length, gave slightly different alignment

after being stretched for several times, which is also reflected in the error data.

5.5 Results for Free-Space Measurements

This Section presents the measurement results of the grating plates at X-band frequen-

cies compared with numerical results obtained from three different methods: finite-

difference time-domain method (FDTD), finite element method (FEM), and effective

medium theory approach. All measurements were taken for TM and TE polarisation

nevertheless here only the results for TM polarisation are presented.
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5.5.1 Smoothing Procedure

The experimental results were approximated in frequency-domain by linear least

squares method in order to remove the postcalibration errors. The measured reflection

and transmission coefficients are plotted against its approximated average in Fig. 5.15,

with results obtained for grating plates characterized by metal volume fraction f = 0.5

attached to Rogers substrate in Fig. 5.15(a) and Fig. 5.15(b), for gratings with metal fill

factor f = 0.3 on dielectric plate in Fig. 5.15(c) and Fig. 5.15(d), and for the reference

plate with Rogers dielectric only, in Fig. 5.15(e) and Fig. 5.15(f).

The experimental data starts to deviate from the fitted data with the increase in applied

frequency. This trend is a combined effect of a few factors:

1. manufacture precision

2. the varying tension and separation between neighboring wires

3. diffraction effects at the edges of sample

4. overall size of the sample compare to the illumination wavelength

The amplitude of the ripples in experimental results increases with frequency. The

overall system becomes more sensitive to any inaccuracy in the grating plates, and the

arrangement of the bars after their tensioning. Hence the error in experimental data

when compared with simulated is expected to become more significant for frequencies

in the upper half of the X-band. The quasi-linear response of the sample is masked

by ripples arising from the various reflections in the system. Overall, these reflections

have the effect of degrading the measurement accuracy, but some of these can be re-

stored by using a smoothing procedure.

5.5.2 Experimental Results

The experimental results for the free-space measurements of the two types of grating

plates attached to a Rogers dielectric plate appears to be affected by factors discussed

in the previous Subsection to an expected extent. The general trend in the measured

data is qualitatively close to those obtained from simulated numerical models and the

observed deviation tends to increase simultaneously with frequency increase. Con-

sidering the influence of each factor on the measured data those effects could be cor-
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Figure 5.15: The magnitude of the reflection and transmission coefficients of a grating structure at-

tached to the Rogers dielectric of thickness 762µm. The raw experimental results (dash line) are plot-

ted against its approximated average (continuous line) for: (a,b) gratings with period Λ = 300µm,

(c,d) gratings with period Λ = 500µm, (e,f) reference plate.
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rected by repositioning the feed slightly or by moving the reference plane of the mea-

surement. Apart from the discussed errors influenced by manufacturing process and

measurement set-up there is another aspect which can cause the difference between

measured (real model) and simulated (ideal model) results. Specifically, in the real ex-

periment the available sample was limited by its size, whereas its numerical equivalent

was defined by an infinitely extended periodic structure.

A 2-dimensional FDTD domain was defined as shown in Fig. 5.16, with the case of de-

tailed grating structure in Fig. 5.16(a) and its homogenised equivalent in Fig. 5.16(b).

The domain size was 60 cells in x by 8203 cells in z direction for grating period 300µm,

and 100 by 8203 cells for grating period 500µm, and 1 cell in y direction. The modeled

structure extends to infinity in the y direction with no change in the shape of its trans-

verse cross section in xz plane. In each case the space increment in all directions was

set to 5µm and it was ensured that the domain size in the z-direction was at least a

half wavelength from each of the absorbing Perfect Matched Layer (PML) boundaries

as the behavior of these boundaries is not reliable in the presence of evanescent fields.

Periodic boundary conditions were defined on four sides of the computational domain

in xz and yz planes.

PEC
Rogers dielectric

air

air

PML 

Periodic
boundary

Periodic
boundary

x

z

Direction of
Propagation

E

K, E
TE

TM

Λ

Source

PML 

y

(a) cross section in xz-plane

0.150 mm

> λ/2

0.762 mm

> λ/2

ne�

Rogers dielectric

air

air

PML 

Periodic
boundary

Periodic
boundary

Λ

Source

PML 

(b) homogenised equivalent

Figure 5.16: Diagram of the 2-D FDTD simulation domain. The domain is one period wide and

periodic in (a) x direction, with its (b) homogenised equivalent. The incident plane wave propagates in

the negative z direction. PML absorbing boundary conditions are defined. The TM and TE directions

are shown.
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The grating structure is periodic in the x direction, with one period of the grating

defined in the domain. The structure was illuminated by a wave with frequencies

ν within 8 − 12 GHz in steps of 1 GHz applied at the top of the domain and propa-

gated in the negative z direction. Continuous plane wave illumination was defined

and separate computations were performed for each of the frequencies. As an alter-

native approach, transient simulations involving a Gaussian pulse could also be em-

ployed. Post-processing of the numerical data for each of those cases requires different

approaches. Since field plots at certain frequencies of illumination were required, con-

tinuous wave illumination was chosen to reduce post-processing although this did

incur extra computation cost up front.

Among the effective medium approximations presented in Section 2.5 for the sub-

wavelength dielectric gratings, only the zeroth-order approximation (Eq. (2.17)-(2.18))

is, sometimes, applied to the analysis of metallic gratings - even though it is not ac-

curate, as it was discussed in Section 2.2 with respect to the wire grid polariser. The

second-order effective medium theory given by formulas Eq. (2.19)-(2.20) is defined for

gratings that do not meet the long wavelength limit. Therefore, it is not applicable to

structures with structural period much smaller than the illumination wavelength. Fi-

nally, the depth dependent formulation of the effective permittivity given by Eq. (2.25)

is not valid for rectangular gratings illuminated by a TM polarised electromagnetic

wave. With regard to the above discussion, the simulated data obtained for the grating

structure are plotted along with the zeroth-order approximation in Fig. 5.17 for grat-

ings with structural period 300µm and in Fig. 5.18 for gratings with period 500µm.

There is significant deviation between the reflection and transmission coefficients cal-

culated for the grating and those calculated for the homogenised structure. Hence a

new approach is required

Good accuracy was obtained by adopting the Maxwell-Garnett effective medium the-

ory. The homogenised equivalent structure was obtained by replacing the grating layer

with a solid dielectric. The dielectric properties were calculated from the modified

Maxwell-Garnett mixing rule. The value of scaling factor Ψ was empirically found as

due to the structural difference between experimental settings and the structure stud-

ied in order to define the empirical model, the straightforward application of the em-

pirical model underestimated factor Ψ. It was verified that Ψ, when equal to 2.5, gives

good approximation of the calculated effective refractive index neff .
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Figure 5.17: The magnitude of the reflection and transmission coefficients for a grating structure.

The zeroth-order EMT deviates from the numerical FDTD data (markers) obtained for the grating. The

FDTD and analytical results obtained for the reference structure are included. [gratings: f = 0.5,

Λ = 300µm, AR = 1; substrate: Rogers dielectric of thickness 762µm]
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Figure 5.18: The magnitude of the reflection and transmission coefficients for a grating structure.

The zeroth-order EMT deviates from the numerical FDTD data (markers) obtained for the grating. The

FDTD and analytical results obtained for the reference structure are included. [gratings: f = 0.3,

Λ = 500µm, AR = 1; substrate: Rogers dielectric of thickness 762µm]
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The FDTD and analytical calculations, based on characteristic matrix method, of re-

flection and transmission coefficients for the gratings with structural period 300µm

and its homogenised equivalent are plotted in Fig. 5.19 along with measured return

and transmission losses. Similar arrangement of results obtained for the grating with

period 500µm is shown in Fig. 5.20.
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Figure 5.19: The magnitude of the reflection and transmission coefficients for a grating structure. The

experimental data (lines) follows the same trend as the numerical FDTD calculations (markers) obtained

for grating, homogenised and reference structure. [gratings: f = 0.5, Λ = 300µm, AR = 1; substrate:

Rogers dielectric of thickness 762µm]

Furthermore, in order to validate the proposed approach for a wider range of fre-

quencies, 1− 18 GHz, numerical calculations were performed using the FEM method.

The 3-dimensional FEM simulation domain was configured as shown in Fig. 5.21 with

cross sections and dimensions of the unit cell defined in xz- and yz-plane illustrated

in Fig. 5.21(a) and Fig. 5.21(b) respectively. The homogenised equivalent structure was

configured as shown in Fig. 5.21(c) with effective refractive index neff calculated from

mixing rule with scaling factor Ψ = 2.5. The domain size was determined by the rec-

ommended standards that the PML boundaries should be placed at least one-tenth of

a wave length from strong radiators, and the thickness of the PML-box should also be

equal to at least one-tenth of a wave length.

This analysis shows that the results of the two numerical techniques and measured
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Figure 5.20: The magnitude of the reflection and transmission coefficients for a grating structure. The

experimental data (lines) follows the same trend as the numerical FDTD calculations (markers) obtained

for grating, homogenised and reference structure. [gratings: f = 0.3, Λ = 500µm, AR = 1; substrate:

Rogers dielectric of thickness 762µm]
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Figure 5.21: Diagram of the 3-D FEM simulation domain. The domain is one period wide and periodic

in: (a) x, and (b) y direction, with (c) homogenised equivalent. The incident plane wave propagates in

the negative z direction. PML absorbing boundary conditions are defined. The TM and TE directions

are shown.

results follow the same trend over a wide range of frequencies and allow extrapola-
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tion of the measured reflection and transmission coefficients outwith the measured

domain. The FDTD method is not efficient for simulations of structures with features

small compared to the illumination wavelength due to the Courant-Friedrich-Lewy

constraint (Eq. 3.19), but the FEM is readily applied to such geometries. As further

validation of the homogenisation method, the data extrapolated from the measure-

ment range was compared with the FEM data and found to agree closely. The error

between the FDTD and FEM results are not higher then 0.3% for the simulations of ho-

mogenised and reference structures (uniform surface), and with the error approaching

1.5% for the grating (rough surface). The accuracy of these two methods, for the case of

grating structure, can be improved by reducing the space increment in FDTD domain

or by manual assignment of the mesh operation in FEM domain. Both operations will

reduce the error at the expense of increased computation time and memory require-

ment.

The results obtained from these two numerical methods and measured return and

transmission losses are compared in Fig. 5.22 for the gratings characterized by metal

volume fraction 0.5, and for the second case, where metal fill factor was reduced to 0.3

in Fig. 5.23.
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Figure 5.22: The magnitude of the reflection and transmission coefficients for a grating structure. The

experimental data follows the same trend as the numerical calculations, from FDTD and FEM methods,

obtained for grating, homogenised and reference structure. [gratings: f = 0.5, Λ = 300µm, AR = 1;

substrate: Rogers dielectric of thickness 762µm]
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Figure 5.23: The magnitude of the reflection and transmission coefficients for a grating structure. The

experimental data follows the same trend as the numerical calculations, from FDTD and FEM methods,

obtained for grating, homogenised and reference structure. [gratings: f = 0.3, Λ = 500µm, AR = 1;

substrate: Rogers dielectric of thickness 762µm]

5.6 Summary

The free-space measurements were taken at X-band (8.2− 12.4 GHz) frequencies using

a network analyser with two horn antennas, each with lens. The plane wave illumi-

nation, focused on a relatively small area, was achieved by a special arrangement of

the equipment. A free-space calibration method was implemented in order to elimi-

nate the systematic errors occurring in the measurement data. The experimental data

supports the concept that the grating structure can be homogenised. The validation

was carried out by comparing the two different numerical results with experimental

data. The obtained results were extrapolated outwith the measured domain using the

FEM software. Hence the homogenisation procedure can be performed over the range

of frequencies 1 − 18 GHz. The data obtained from FDTD and FEM simulators are in

good agreement with an error less than 1.5%.
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Chapter 6

Microstrip Analysis and Measurements

6.1 Introduction

So far, this Thesis has been concerned with the reflection (and transmission) of plane

waves from a layer of interconnects. Now, the focus is shifted somewhat, to consider

the question of whether neighbouring interconnects in the vicinity of a signal-carrying

interconnect can also be homogenised to reduce the burden of physical verification

tools. Hence this Chapter presents numerical and experimental results for the applica-

tion of the homogenisation approach to the analysis of the lower layers of interconnects

in an interconnect stack. The concept is based on the study of electromagnetic perfor-

mance of a microstrip line, as it is a good analogue to signals transmitted over single in-

terconnects. The prototype microstrip line contains a set of periodically aligned metal

bars embedded in the substrate in order to examine the influence of adjacent layer on

the performance of the microstrip.

This Chapter is organised as follows. In Section 6.2 the experimental design is pre-

sented, Section 6.3 covers the description of homogenisation procedure for the proto-

type microstrip line, model geometry, and numerical results; and Section 6.4 presents

the measurement equipment and calibration issue, as well as measurement results.

6.2 Experimental Design

The microstrip transmission line was chosen in order to demonstrate the application

of the homogenisation approach to an analysis of the electromagnetic performance at
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the lower layers of interconnects in an interconnect stack. The effective medium ap-

proximation used in this Section is based on an analysis of the influence of metal rods

embedded in substrate on the wave propagated along the strip. In order to reflect the

most common arrangement of interconnects in an integrated circuits (IC), the mutually

parallel rods were embedded in a dielectric medium and aligned perpendicular to the

signal line. Two different configurations of periodically distributed metal rods were

chosen. Specifically, miscrostrip lines with either 5 or 10 inclusions embedded in the

substrate. The number of chosen inclusions was motivated by the fact that 5 regularly

distributed rods can be considered as a periodic alignment, whereas 10 gives the possi-

bility to assess the difference in the response with respect to the number of embedded

inclusions. A schematic diagram of the homogenisation approach is shown in Fig. 6.1

with a microstrip line where the metal inclusions are surrounded by the virtual ho-

mogenisation boundary in Fig. 6.1(a), and a microstrip line where the area of interest

is replaced by its homogenised equivalent in Fig. 6.1(b).

substrate

ground plane

strip

inclusionsnsub

virtual boundary

(a) Microstrip with inclusions

homogeneous
equivalentnsub

ne�

(b) Microstrip with homogenised equivalent

Figure 6.1: Diagram representing the microstrip model with (a) metal inclusions surrounded by the

virtual homogenisation boundary, (b) homogenised equivalent.

The distance between neighbouring interconnect layers is determined by the design

rules of the particular process used. Following the general design conventions the

ratio of the distance between interconnect layers to the interconnect height is in the

range 0.7 − 1.5. The lower limit generally applies to global interconnects, whereas

the semiglobal and intermediate lines are designed to satisfy the upper half of the

interval. However, in exceptional circumstances the intermediate lines are separated

by a distance lower than the interconnect height. In order to take an average approach

the distance was chosen to be in the middle of the range and the numerical models

studied in this Chapter are defined with the separation of the embedded metal bars
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from both signal line and ground plane by a distance equal to the height of the metal

inclusions.

Numerical and experimental results for the reflection and transmission coefficients are

obtained, and the homogenisation approach based on numerical simulations is vali-

dated by measurement.

6.3 Analysis

This Section presents a short introduction to microstrip theory and the homogenisation

procedure for a microstrip structure with a number of rods embedded in the substrate.

The geometry of the numerical model is also described and the numerical results are

discussed.

6.3.1 Microstrip Theory

Microstrip is a commonly used transmission line in microwave circuits. It can be easily

fabricated using printed circuit board (PCB) technology and its key advantage is that

the impedance can be tuned by altering only the geometry of the metal whereas the

substrate does not require altering. Microstrip is also a useful analogue to IC trans-

mission lines. A schematic diagram of microstrip line with its dimensions is shown

in Fig. 6.2(a). The conducting strip with widthW , height T and length L carries the sig-

nal and is separated from the ground plane by a dielectric substrate with relative per-

mittivity εr and thickness h. The electromagnetic field lines are depicted in Fig. 6.2(b).

T

h

LW

ε  ,ε0r

(a) Microstrip configuration

T

L
W

ε  ,ε0r

E
H

(b) E and H field lines

Figure 6.2: Microstrip transmission line: (a) configuration, (b) electric and magnetic field lines
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Two main electrical parameters are used when characterizing microstrip line circuit

design: characteristic impedance Z0 and effective permittivity ε<e>. These parameters

are applied under the assumption that the propagating mode is a quasi-transverse

electromagnetic mode (quasi-TEM).

The formulas presented in the rest of Section 6.3.1 come from standard text books [94,

95]. The characteristic impedance is determined by the microstrip line dimensions

according to the formula

Z0 =


60√
ε<e>
· ln
(

8h
W

+ W
4h

)
for W/h ≤ 1

120π√
ε<e>[W/h+1.393+0.667 ln(W/h+1.444)]

for W/h ≥ 1
(6.1)

where the effective permittivity ε<e> is equal to

ε<e> =
εr + 1

2
+
εr − 1

2
· 1√

1 + 12h/W
(6.2)

The guided wavelength λg of a microstrip line is the ratio of the free-space wave-

length λ0 to the square root of the effective dielectric constant λg = λ0/
√
ε<e>. The

propagation constant is obtained from the relation β = k0
√
ε<e>, where k0 = 2π/λ0 is

the wave number in free-space.

Also of interest are the dielectric and conductor losses. The attenuation due to dielec-

tric loss αd in microstrip line operating in quasi-TEM mode can be obtained from

αd =
k0εr(ε<e> − 1) tan δ

2
√
ε<e>(εr − 1)

[Np/m] (6.3)

where tan δ is the loss tangent of the dielectric, δ = ε
′′
/ε
′ , and ε = ε

′ − jε′′ is the permit-

tivity of the dielectric.

The attenuation due to the conductor loss αc is more significant than dielectric loss and

is given by

αc =
Rs

Z0W
[Np/m] (6.4)

whereRs =
√
ωµ0/2σ is the surface resistivity of the conductor, ω is angular frequency,

σ is conductivity, and µ0 is permeability of free-space.

6.3.2 Homogenisation Procedure

The microstrip analysis requires an alternative homogenisation model to that pre-

sented in Chapter 4. It was verified that the straightforward application of the pre-
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viously defined empirical model for on-chip frequencies with the homogenisation

boundaries tightly surrounding the grating structure results in relatively high error, up

to 4%, in the estimation of the reflection coefficient. Due to the small variation in the

value of the transmission coefficient it is always predicted with an error less than 1%.

Neverthless, the error is higher compared to the error calculated for the grating with

plane wave illumination, where the error does not exceed 0.2%. The increasing error

in the reflection and transmission coefficient estimation is related to the change in the

character of illumination from plane wave to quasi-TEM wave and also the change in

the propagation direction of the wave with respect to the grating vector. The differ-

ence can be accounted for in the homogenised equivalent structure by an averaging

procedure. The averaging procedure is applied by resizing the area where the homo-

geneous equivalent block is defined. In the horizontal direction the virtual boundary

is defined at the distance Λ/2 from the periodic structure whereas the vertical direction

is adjusted in terms of the height of the metal rods. Since the rods are separated by

a distance equal to their height from the signal line and the ground plane the virtual

homogenisation boundary is considered in 10 different positions extending the homo-

geneous block between the signal and the ground. The homogenisation is applied in

two steps as is illustrated in Fig. 6.3.

Λ p Λ.

a/2

Λ/2 ne� average  ne�

(p+1) Λ

2a

gratings �rst step second step

a

.

nsubnsub

a

Figure 6.3: Diagram representing the two steps of the homogenisation procedure.

Firstly, the grating part (periodically aligned metal rods) is homogenised using the

empirical model defined in Section 4.5.4. Secondly, the effective refractive index of the

area enclosed by the virtual boundary is averaged in terms of the fraction occupied by

a given material and material properties (effective dielectric and dielectric substrate)

using Eq. (6.5)

< neff >=

(
neff ·

p · Λ
(p+ 1) · Λ + nsub ·

Λ

(p+ 1) · Λ

)
· a

2 · a + nsub ·
a

2 · a (6.5)

where Λ is the grating period, p is the number of periods in a grating series, a stands

for the height of the grating layer, neff is the effective refractive index calculated from
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the modified Maxwell-Garnett mixing rule, and nsub is the substrate refractive index.

The first term in Eq. (6.5) accounts for the average effective refractive index in the

horizontal direction over the distance (p+ 1) ·Λ and grating height a. The second term

accounts for the distance at which the horizontal virtual boundaries are separated from

the grating. Here the distance is set to be half of the grating height.

It is shown in Fig. 6.4 that an increase of applied frequency significantly exceed the

error in reflection and transmission coefficients estimated by the homogenised equiv-

alent structure whereas the change of the size of the homogenised area does not in-

fluence the accuracy as much. The results are presented for the microstrip proto-

type structure with 5 inclusions embedded in the dielectric substrate with refractive

index n = 1.6, the metal fill factor is f = 0.51 and the aspect ratio is AR = 1.9.
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Figure 6.4: The error (%) in the magnitude of (a) reflection and (b) transmission coefficients calculated

between the real and the homogenised structures where the empirical model is used to obtain neff . The

error is plotted in terms of the changing virtual homogenisation boundaries in vertical direction.

Since the value of the reflection and transmission coefficients in the studied structures

is very low, with small differences between the response of the line with and without

metal inclusions, such an increase of the error in the homogenisation procedure masks

the difference between those responses. Therefore, the defined empirical model for

on-chip frequencies needs to be reformulated. Nevertheless, for the microstrip pro-

totype structures studied in this Chapter the presented results will demonstrate that

the homogenisation for such structures is valid but the specific empirical model will
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not be defined. The averaging procedure is slightly modified by tuning the value of

the coefficient Ψ in the modified Maxwell-Garnett mixing rule. It was found that the

value of Ψ = 15 gives good approximation for both reflection and transmission coeffi-

cients over the range of studied structures and with the horizontal virtual boundaries

set within the distance of 0.6a the error less than 2%. This is depicted in Fig. 6.5. In the

results presented in the following Sections the virtual boundaries are set at a distance

of half the height a the metal rods. For simplicity in the notation in the remaining part

of this Chapter the effective refractive index neff will stand for < neff >.
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Figure 6.5: The error (%) in the magnitude of (a) reflection and (b) transmission coefficients calculated

between the real and the homogenised structures where the neff is found based on the modified Maxwell-

Garnett mixing rule. The error is plotted in terms of the changing virtual homogenisation boundaries in

vertical direction.

6.3.3 Numerical Model Geometry

The example numerical models for structures with 5 and 10 metallic inclusions are

simulated using HFSS software [77]. The geometry and dimensions for the structure

having 5 inclusions is shown in Fig. 6.6 with cross section in yz-plane in Fig. 6.6(a) and

in xz-plane in Fig. 6.6(b). To ensure that all significant disturbances from the excitation

ports are minimized the metal inclusions, defined as aluminum rods, were placed in

the uniform dielectric substrate with a distance of 10Λ from each wave port. The pe-

riod of the unit grating cell is Λ = 35µm and is well within the deep subwavelength
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dimension, the depth η is equal to 35µm. The metal fill factor is fixed at f = 0.51

and reflects the cross section of the metal rod equal to 18× 35µm giving the aspect ra-

tio AR = 1.9. The metal rods are separated from the signal line (copper strip) and from

the ground plane (copper sheet) by the distance 35µm. The dimension of the signal

line is the same as the metal inclusions and the dielectric, used as substrate, was ex-

tended to tightly surround the line 35µm above it. Following the HFSS guidelines for

the size of the wave port for microstrip models, the height of the port was calculated

and set to 6h whereas the width was fixed at 3h, where h = 3η stands for the thick-

ness of the substrate, 630 × 315µm. In order to reduce the overall size of the model,

symmetry boundary conditions were defined in the yz-plane whereas the model itself

was surrounded by a vacuum enclosed by a radiation boundary to enable the wave to

exit the domain without reflection. The radiation boundary is placed away from the

microstrip line by a distance equal to one-quarter of the longest wave length in the

considered range of 1− 15 GHz.
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Figure 6.6: The numerical model of the microstrip line with five inclusions embedded in the substrate

with cross section in (a) yz-plane, (b) xz-plane.

A plot of the electric and magnetic field magnitude in the yz-plane at 10 GHz for

the microstrip line with 5 metal bars embedded in the substrate with refractive

index n = 1.6 is shown in Fig. 6.7(a) and Fig. 6.7(b), respectively. Compared with

the standard microstrip electric field pattern, the metal rods cause a strengthening of

the field in the region between the signal line and the inclusions and a weakening of

the field in the region between the inclusions and the ground plane. The distribution

of the magnetic field has a uniform character along the signal line. The strong

electromagnetic field at such high frequencies induces a current flow along the metal
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bars which generates additional heat losses. A plot of the surface current occurring at

the metal bars is presented in Fig. 6.8.

The electric and magnetic field magnitudes for the homogenised structure are shown

in Fig. 6.7(c) and Fig. 6.7(d), respectively. Transformation of the inclusion geometry

and properties to an homogenised effective dielectric block results in a more uniform

distribution of the electromagnetic field with insignificant change occurring in the

area where the signal penetrates substrate consisting two different dielectrics. Never-

theless, the return and transmission loss calculated for both detailed and homogenised

structures has comparable value, as will be discussed in the next Subsection.

6.3.4 Numerical Results

In this Subsection results obtained from numerical calculations based on the finite el-

ement method (HFSS software) for the microstrip lines of the type and dimensions as

described in Subsection 6.3.3 are presented. The homogenisation technique is applied

as discussed in Subsection 6.3.2. Presented results confirm that the homogenisation ap-

proach can be successfully applied to the analysis of structures supporting quasi-TEM

modes.

Manually adjusting the value of the scaling factor to Ψ = 15 achieved a good agree-

ment between the homogenised and actual structures, over the range of frequencies

between 1 − 15 GHz. Figure 6.9 shows the agreement in return and transmission loss

estimation, as well as in the phase of S21 parameter, calculated for the real structure

with 5 and 10 inclusions embedded in the substrate with dielectric constant n = 1.6

and compared with its homogenised equivalent. It also indicates that the performance

of the microstrip line depends on the number of inclusions embedded in the substrate.

The difference in phase calculated for S21 is less than 0.4◦ for the case of 5 metal bars

embedded in the substrate. For the transmission line with 10 metallic inclusions the

calculated difference in phase S21 is not higher than 0.9◦. However the difference in

phase between the real and the homogenised structure is so low that it does not ex-

ceed 1◦. It is assumed that the small discrepancy is caused by numerical error and can

be neglected. An illustration of the change in phase over the considered frequency

range is shown in Fig. 6.9(c).
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z
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x

Figure 6.8: The surface current occurring at the metal inclusions.

Further, the analysis was performed for the microstrip lines with the same geometry

but with changing properties of the dielectric substrate. The range of considered sub-

strates was within 1 ≤ n ≤ 1.9. This is within the range of low-k dielectric materials.

Figure 6.10 demonstrates the good agreement in the return and transmission loss esti-

mation for 5 inclusions embedded in different dielectric substrates. Figure 6.11 shows

the agreement for 10 inclusions. In both cases the error between the reflection and

transmission coefficients predicted by the homogenised equivalent and the real struc-

ture is not higher than 1% with a tendency to decrease as the frequency is reduced.

6.4 Measurement

This Section describes the equipment used in the experimental measurement of the

reflection and transmission coefficients of microstrip lines with 5 and 10 metal bars

placed in the dielectric substrate. The main components of the measurement system

are a pair of SubMiniature version A (SMA) connectors, coaxial cables and a vector

network analyser. The experimental results compared with numerical calculations for

equivalent structures are also presented.

6.4.1 Microstrip Prototype

Prototypes of the microstrip lines with metal inclusions underneath the signal strip

were manufactured as three-layer PCBs with two different configurations - one with

5 and the other with 10 metal bars. The lines were made of Rogers RO4350B high
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Figure 6.9: The magnitude of the reflection and transmission coefficients and the phase of parame-

ter S21 for a microstrip line with five and ten inclusions embedded in the substrate with n = 1.6. The

numerical calculations from the FEM method obtained for detailed and homogenised structure are in

good agreement. The plot is extended with the calculations of reference structures (with no inclusions)

for each line.

frequency laminate (εr = 3.66) [90] covered with an 18µm thick copper foil. The

dimensions of the manufactured prototypes are presented in Fig. 6.12 with techni-

cal drawings for the transmission line with 5 copper bars embedded in the substrate

in Fig. 6.12(a), and for the case with 10 inclusions in Fig. 6.12(b). The lines were de-

signed such that the distance from the edges where the SMA connectors are soldered

to the inclusions is fixed at 16.5 mm in both prototypes. For each type of microstrip
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Figure 6.10: The magnitude of the reflection and transmission coefficients of a microstrip line with five

inclusions embedded in different substrates. The numerical calculations from FEM method obtained for

detailed and homogenised structures are shown and are in good agreement.
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Figure 6.11: The magnitude of the reflection (|Er|/|E0|) and transmission (|Et|/|E0|) coefficients of

a microstrip line with ten inclusions embedded in different substrates. The numerical calculations from

FEM method obtained for detailed and homogenised structures are shown and are in good agreement.

line, reference lines with plain substrate were manufactured in order to investigate the

real change in the reflectivity and transmissivity of the line with and without metallic

inclusions. Due to the limitation of the manufacturing process the highest aspect ratio
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which is achievable is 0.36 with a 50µm separation of the rods. Though interconnects

with such low aspect ratios are not used in contemporary ICs, this geometry nonethe-

less allowed the experimental validation of this aspect of the proposed homogenisation

approach to take place. The tolerance of the manufacturing process is within a range

of 10%.

6.4.2 Equipment and Calibration

The microstrip measurement system contains a microwave network analyser (Agilent

Technologies E8362B PNA Microwave Network Analyser), a pair of coaxial cables and

SMA connectors. The measurement setup was calibrated using the guided two-port

calibration for the range of frequencies 1− 18 GHz. The upper limit was set according

to the recommended frequency range for good electrical performance of SMA connec-

tors (DC to 18 GHz). The number of sampled points in the frequency sweep was fixed

at 201.

The guided SLOT (Short-Load-Open-Through) calibration process sets the reference

plane to the end of the coaxial cables, therefore the SMA connectors are not removed

from the measurement by the calibration procedure. This calibration procedure nor-

malizes the measurement for increase accuracy of the measured S-parameters. It was

verified that the measured response of the lines is masked by the connectors perfor-

mance and to some extent by the presence of solder. Considering these issues the nu-

merical models of the lines contains models of connectors on both its ends. The numer-

ical model of the measured transmission line and its photograph are shown in Fig. 6.13.

6.4.3 Experimental Results

The experimental results for the two kinds of microstrip lines with metal bars located in

the substrate appear to be affected by a few factors. First, the manufacturing precision

for the multilayered PCB with desired dimensions and geometry needs to be within

a tolerance of 10%. Therefore the deviation in the thickness of the dielectric substrate

is 184µm± 18µm, and in the thickness of the metal layers 18µm± 1.8µm. Second, it

was noted that the lines are very sensitive to any bending in the structure because of

the thinness of the substrate. Hence each measured line was stabilized by attaching

a solid strip to the ground plane along the signal line, in order to provide mechanical

rigidity. The data obtained from the measurement are expected to be distorted because
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Figure 6.12: Technical drawing showing the cross section and three layers of the multilayer PCB for

the microstrip prototype with: (a) five embedded copper bars, (b) ten embedded copper bars.

of manufacturing tolerances.

In order to connect the microstrip line to SMA end-launchers, a taper is required in
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Figure 6.13: The prototype microstrip line with metal inclusions embedded in the substrate (a) numer-

ical model, (b) photograph of the line.

the signal line. The rapid change in the distribution of characteristic impedance along

the tapered section of the line can be reduced by an impedance matching approach.

There are several methods which allow matching of the impedance along non-uniform

transmission lines by designing a taper with a profile that is specified to the applica-

tion [96]. However for the purpose of the presented experiment the impedance match-

ing procedure was carried out empirically in a few steps. Since the models of the

connectors have to be included into the numerical model it was verified to have the

required 50 Ω characteristic impedance at the incident wave port (the obtained value

was Z0 = 49.9 − 0.04j Ω). Then the geometry of the taper was designed considering

the dimensions imposed on the microstrip line by the limitations of the manufactur-

ing process. The reference transmission line with connectors and tapers was simulated

and the obtained characteristic impedance at both wave ports was Z0 = 49.88−0.04j Ω.

Nevertheless the discontinuities in impedance profile along the line between the points

where the SMA connectors are fixed to the line and the points where the taper trans-

forms into the line with characteristic impedance Z0 = 115 Ω result in resonances.

The resonances occur in reflection and transmission coefficients with periodicity of

about 3.4 GHz, within the range of 1 − 15 GHz, in both types of lines. The resonance

frequencies are correlated with the length of the non-uniform transmission line and

occurs at frequencies for which the length of the line is equal to a quarter or half of the

illumination wavelength.

The numerical calculations and measurements were taken over the frequency range 1−
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15 GHz. Nevertheless, for the particular model the practical application of the ho-

mogenisation technique is limited to frequencies within 10 − 12 GHz. This limita-

tion is due to the low aspect ratio of 0.36 obtained for the embedded metal bars and

the large distance between inclusions and the signal line as well as the ground plane

(∼ 90µm ≈ 5η). Hence, the significant difference between performance of the line

with inclusions and reference line can be noted only in such narrow frequency range,

although the effective medium theory (EMT) model gives valid results outside this

range, they are the equivalent to having no inclusions. Therefore, the EMT model is

useful if a structure requires modelling over a wide range of frequencies which include

a frequency window where the presence of the inclusions results in a difference in per-

formance.

Figure 6.14 illustrates the qualitative agreement between numerical and experimental

data for a microstrip line with 5 inclusions floated in the substrate, and results for 10 in-

clusions are demonstrated in Fig. 6.15. The small displacement, by about 0.2 GHz, in

obtained values of reflection and transmission coefficients is related to the non-ideal

nature of the fabricated structure.
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Figure 6.14: The magnitude of the reflection and transmission coefficients of a microstrip line with five

inclusions embedded in the substrate. The experimental data follows the same trend as the numerical

data obtained from FEM method for detailed, homogenised and reference structure.

Further, the strength of occurring resonances is, to some extent, masked by the chosen

density of sampled data points. Thus, both simulated and measured data were inter-
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Figure 6.15: The magnitude of the reflection and transmission coefficients of a microstrip line with ten

inclusions embedded in the substrate. The experimental data follows the same trend as the numerical

data obtained from FEM method for detailed, homogenised and reference structure.

polated in order to calculate theQ factor (quality factor) for the resonance occurring in

the frequency interval 10− 12 GHz. TheQ factor is a value which relates the resonance

bandwidth to its center frequency and is defined as

Q =
ν0

∆ν
(6.6)

where ν0 is the center frequency of the resonance and ∆ν stands for the full width half

maximum calculated at half of the maximum value of the peak. The higher the value

of Q, the narrower and sharper the resonant peak is.

The calculated Q factor for the prototype line in terms of the transmission coefficient

has different values for the structures with and without inclusions. The quality factor

of the resonance is approximately equal to 31, with the center frequency ν0 within 10.9−
11.1 GHz, for microstrip with 5 embedded metal bars and the homogeneous equivalent

in both numerical and experimental design. Whereas Q ≈ 28 for the reference line

where ν0 ≈ 11.2 GHz.

Similar agreement occurs in the value of Q factor calculated for the line with 10 metal

bars embedded in the substrate, and also for the homogeneous equivalent. The value

of Q ≈ 36 was obtained with the center frequency between 10.7 − 10.9 GHz, and for

the reference line Q ≈ 32 with ν0 within 11− 11.1 GHz. Thus for both cases of studied
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structures the resonance quality factor indicates the agreement between numerical and

experimental data.

In order to demonstrate the change in the performance of the microstrip line with the

change of the number of metal bars placed in the substrate the obtained results are

compared in Fig. 6.16. For the transmission line with higher number of inclusions

the center frequency of the resonance is lower with a narrower and sharper resonance

peak than for the line with shorter series of metal-dielectric gratings embedded in the

substrate.
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Figure 6.16: The comparison of the magnitude of the reflection and transmission coefficients of a

microstrip with five and ten inclusions embedded in the substrate. The number of inclusions determine

the value of the center frequency of the resonance peak.

6.5 Summary

A study of a microstrip line with metal inclusions embedded in the substrate shows

that the homogenisation approach can be applied to the analysis of the lower layers

of interconnects in an interconnect stack. For the homogenisation procedure the aver-

aging method for the calculation of the effective dielectric constant is presented. It is

shown that the value of scaling factor Ψ = 15 in the modified Maxwell-Garnett mixing

rule gives good estimation of the averaged effective dielectric constant. The homogeni-

sation concept is based on numerical simulations and validated experimentally.
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For the range of considered dielectric substrates the error in the reflection and transmis-

sion coefficient estimation between detailed and homogenised structure is less than 1%

with tendency to increase proportionally to the increase of the applied frequency.

The experimental validation was carried out by the measurement of S-parameters of

the prototype line with five and ten metal rods embedded in the substrate. The ob-

tained results show that the performance of the line is influenced by the number of

metal inclusions. The measured data compared with numerical results obtained for

the equivalent detailed and homogenised microstrip line are in good agreement.
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Chapter 7

Conclusions and Further Work

The work presented in this Thesis involves the application of effective medium theory

to allow a single layer of interconnects to be replaced by a homogeneous material. The

final goal was to develop an empirical model, given by a mathematical formulation, to

calculate the effective refractive index of the homogeneous material equivalent to the

interconnect grating structure. The main achievements of this study may be listed as

follows:

• showed that the single layer of interconnects can be homogenised using effective

medium theory including the development of the ‘brute force’ algorithm;

• applied the modified Maxwell-Garnett mixing rule in order to predict the effec-

tive refractive index of the homogenised equivalent structure so that the ‘brute

force’ algorithm is no longer required; and proposed the empirical models to cal-

culate the effective refractive index from a complete set of mathematical formulas

for two frequency bands: 1 − 10 GHz for the typical on-chip signals frequencies,

30− 200 GHz related to the ISM frequency bands;

• experimentally demonstrated the validity of the homogenisation approach via

free-space measurement of the metallic grating structure at X-band (8.2 −
12.4 GHz) frequencies and through agreement with numerical results obtained

from simulators based on numerical methods: finite-difference time-domain

method, rigorous coupled wave analysis, finite element method;

• extended approach to deal with microstrip lines with interconnects located be-

tween signal line and ground plane and experimentally demonstrated the va-

lidity of the homogenisation approach by the measurement of a prototype mi-
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crostrip line with metal rods embedded in the substrate and the agreement

with numerical results obtained from the simulator based on the finite element

method;

This work presents the first application of effective medium theory to the analysis of

the performance of interconnects in integrated circuits. The contributions of the pre-

sented research have established a strong starting point for this approach in which,

by introducing the homogeneous equivalent for the interconnect layer, a tool is pro-

vided for dealing with the complexity of contemporary electronic devices during the

design process and physical verification of the system. Using the empirical models de-

veloped in this work, it is expected that computationally-demanding electromagnetic

simulations of congested interconnect networks can be simplified whilst at the same

time retaining their precise nature.

To give an understanding of the research carried out in this project, the coverage of the

related background material was outlined. The essence of the artificial dielectrics and

metamaterials along with the effective medium theory defined for the periodic lami-

nated structures and a review of the work in which the modified classical mixing rules

are used was provided. Since the Maxwell-Garnett rule was of the main interest in the

presented study, a detailed description of this rule was given.

The numerical data were generated using solvers based on numerical techniques:

FDTD, RCWA and FEM, principles of which are briefly reviewed. The validation of

these techniques against the analytical method, where the reflection and transmission

coefficient of a solid silicon slab was calculated, was also described.

In order to provide a general model which will account for the precise geometry and

nature of interconnects layers a canonical structure has been introduced. The canonical

structure, defined as a metal-dielectric grating, represents a single layer of intercon-

nects and was successfully homogenised using the defined empirical models for the

specified frequency bands. The considered parameters span a four dimensional do-

main, namely the values of the metal fill factor, aspect ratio, dielectric refractive index

and frequency. A detailed discussion on the validity of the defined empirical model

for on-chip signal band was presented. The empirical model estimates the reflection

and transmission coefficients with an error not higher than 2.7% when the structure

is illuminated by a normally incident plane wave. The model can be applied with

confidence over a range of incident angles within ±30◦ with plane wave illumination
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where the agreement is better than 5%. Further it is valid, without modifications, for a

range of trapezoidal profiles of the grating with sidewall angles up to 5◦ and incidence

angles within ±30◦ with similar error of 5%. It was discussed that the effective refrac-

tive indices obtained from the defined empirical model are well within the theoretical

Wiener bounds and the upper limit can be succesfully reduced and estimated by the

lower Hashin-Shtrikman bound.

The homogenisation approach was experimentally validated for the two main appli-

cations. The free-space measurement was performed at X-band frequencies where the

reflectivity of the metallic grating structure was of the main interest. Such a measure-

ment configuration was considered with specific reference to the estimation of the re-

flectivity of the whole chip in a System-in-Package. Further, the obtained results were

numerically extrapolated over the range of frequencies 1− 18 GHz using the FEM sim-

ulator, hence the homogenisation approach is valid over a wider frequency interval.

The second measurement was designed to validate the homogenisation concept for

the estimation of the interconnect performance at the lower layers of interconnects in

interconnect stacks. For this purpose the prototype microstrip line with a number of

metal rods embedded in the substrate was manufactured. Both experiments together

with the numerical simulations performed for the effective medium theory application

showed that the homogenisation concept is valid for the analysis of interconnects.

7.1 Future Work

Further research needs to be conducted into extending the approach to the analysis of

multilayered interconnect structures where the difference in the geometry of the inter-

connects depend on their location in the interconnect stack. Since the features differ

in terms of the size of the pitch, the ratio period-to-wavelength, a more thorough in-

vestigation in terms of the influence of the period of the relevant grating structure is

needed. The other issue which needs to be considered is the effect of coupling between

layers, namely how the homogeneous equivalent with effective properties can account

for the undesirable transfer of energy from one layer to the neighbouring ones. The

perpendicular orientation of successive layers in a typical stack constrains the problem

somewhat.
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The study of the multilayered interconnect grating structure formed by mutually or-

thogonal non-connected interconnect layers can be conducted by an analysis adapted

from that of two-dimensional wire media. The geometry of the periodic structure

formed by 2D wire media is illustrated in Fig. 7.1(a). This structure is composed of

an array of metallic wires of infinite length embedded in a dielectric. In other words,

the wires are organized in a cubic lattice with a unit cell depicted in Fig. 7.1(b). The

metallic crystal is created by a periodic distribution of the unit cell along three direc-

tions defined by the rectangular coordinate system.

Λ

Λ

(a) 2D wire medium

Λ Λ

(b) unit cell

Figure 7.1: Geometry of the (a) two-dimensional wire media, and (b) unit cell.

In effective medium theory the 2D wire medium is examined as a homogeneous

anisotropic medium. The electromagnetic waves in such a structure experience spa-

tial dispersion, even in the very long wavelength limit, which causes the presence of

evanescent waves with complex propagation constant. This introduces anisotropy to

the material’s permittivity, even to the cubic lattice which would be expected to be-

have as an isotropic electromagnetic crystal [97, 98, 99, 100]. The artificial medium is

characterised by a permittivity dyadic that depends on both the frequency and wave

vector. The wire media structures have negative material parameters (permittivity and

permeability) and are called double negative materials [101].

Hence the work presented in this Thesis was restricted to the study of uniform metal-

dielectric gratings further research needs to extend the method to the analysis of non-
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uniform density structures, quasi-periodic alignments, in order to define a homogeni-

sation approach appropriate to encompassing larger areas consisting of interconnects

in electronic components.

In some niche applications enhanced empirical models for the defined canonical

structure could be formulated where wider (non-normal) incident angles of the plane

wave are considered. Such an approach may provide an empirical model valid

over a wider range of incident angles. Possibly, it may even cover the whole range

within ±90◦.

Since the empirical models for the plain wave illumination of a grating structure (single

layer of interconnects) has already been presented in this Thesis and the homogenisa-

tion approach has been validated for the structures supporting the quasi-TEM modes,

appropriate future work may include the formulation of empirical models for non-

TEM modes. This is important because the studied microstrip prototype lines illus-

trate the principle that the effect of interconnects on adjacent layers should be consid-

ered. Furthermore, the accuracy with which crosstalk can be predicted using effective

medium theory needs to be evaluated.
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Appendix A

Least Squares Method

The least squares method is a procedure to determine the line (curve) giving the best fit

between the modelled and measured (observed) data. In the least squares scheme the

best fit is obtained when the modelled values have the minimal sum of the deviations

squared (least squared error) from the given set of measured data.

Assuming that the measured data points are (x1, y1), (x2, y2), . . . , (xN , yN) where xi, i =

{1, 2, . . . , N} is the independent variable and yi, i = {1, 2, . . . , N} is the dependent

(measured) variable. The fitting curve f(x) has the deviation (error) e from each data

point defined as the difference between the value of the dependent variable and the

predicted value from the model

e1 = y1 − f(x1), e2 = y2 − f(x2), . . . , eN = xN − f(xN). (A.1)

The least squares method estimates the optimum fitting curve such that the sum of the

squared residuals

S = e2
1 + e2

2 + . . . + e2
N =

N∑
i=1

e2
i =

N∑
i=1

[yi − f(xi)]
2 (A.2)

is a minimum.

Figure A.1 shows a graphical illustration of the least squares estimation where the set

of data points is approximated by a straight line y = f(x; a) and the errors ei are also

depicted.
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Figure A.1: The least squares estimation.

A.1 Multidimensional Taylor Series

Assuming that the multi-variable function f(x), where x = (x1, x2, . . . , xN) andN indi-

cates the dimension of the position vector x, is differentiable over its domain then the

gradient ∇f(x) vanishes at points where the minimum occurs. Hence, the minimisa-

tion problem is transformed to the root finding of the following system of N equations

∇f(x) = 0. (A.3)

Denoting the origin of the coordinate system by 0, the quadratic multidimensional

Taylor series of the function f(x) about the origin is

f(x) = f(0) +
N∑
i=1

∂f

∂xi

∣∣∣∣
0
xi +

1

2

N∑
i,j=1

∂2f

∂xi∂xj

∣∣∣∣
0
xixj +O(δx3). (A.4)

In matrix notation, Eq. (A.4) has the form

f(x) = c− b · x +
1

2
x ·H · x +O(δx3), (A.5)

where

c = f(0), (A.6)

b = −∇f |0, (A.7)
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and H is the Hessian matrix of f with elements

Hij =
∂2f

∂xi∂xj

∣∣∣∣
0
. (A.8)

It is assumed that H is a positive definite matrix, hence the minimum of function f

exists. If the O(δx3) is negligible then the gradient of f is given by

∇f = Hx− b. (A.9)

To solve Eq. (A.9), the gradient is required to vanish ∇f = 0. Hence, the problem

reduces to solving the linear system of equations

Hx = b. (A.10)

The minimum of function f can be found in a single step or, in the case when O(δx3)

terms are not negligible, using the iterative Newton-Raphson method.

A.2 General Description of the Least Squares Method

The curve fitting procedure is to determine a function y = f(x) based on the numberN

of measured or observed values y1, . . . , yN at the corresponding x values x1, . . . , xN .

The curve fitting requires a model function

y = f(x, a) (A.11)

where the M (N ≥ M) adjustable parameters are stored in the vector a =

(a1, a2, . . . , aM). The values of these parameters are estimated for the best fit to the

data (xi, yi), i = {1, . . . , N}.
The fitting procedure is executed by varying the parameters aj , j = {1, . . . ,M} in order

to estimate the modelled vector

D(a) = (f(x1, a), f(x2, a), . . . , f(xN , a)) (A.12)

as close as possible to the vector

D0 = (y1, y2, . . . , yN) (A.13)

created from the provided measured data.

In the least squares method the deviation is reduced by minimising the function

Φ(a) =
1

2
|D(a)−D0|2 . (A.14)
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The function Φ(a) can be approximated by a second order Taylor series expansion

about the origin of the parameter space denoted by 0 and is given by

Φ(a) = Φ(0) + (∇Φ)(0) · a +
1

2
a ·H(0) · a (A.15)

where the gradient

(∇Φ)i =
∂Φ

∂ai
=
∂D
∂ai
· (D−D0) =

N∑
k=1

∂Dk

∂ai
(Dk −D0k) (A.16)

and the Hessian

Hij =
∂2Φ

∂ai∂aj
=

N∑
k=1

∂Dk

∂ai

∂Dk

∂aj
+

N∑
k=1

∂2Dk

∂ai∂aj
(Dk −D0k). (A.17)

The above equations can be expressed in terms of the Jacobian matrix J with compo-

nents Jij = ∂Di

∂pj

∇Φ = JT (D−D0), (A.18)

(H)ij = (JT J)ij +
N∑
k=1

∂2Dk

∂ai∂aj
(Dk −D0k). (A.19)

If vector D(a) is linear in a (Φ(a) is quadratic in a) then the second derivatives in D

vanish and the Hessian H of Φ is given by

H = JT J. (A.20)

The least squares method is classified into two groups, namely, linear and nonlinear

least squares. In the linear least squares the model function y = f(x, a) is a linear

combination of parameters aj , j = {1, . . . ,M}, and the formula may represent a line, a

parabola or higher order polynomial. In the case of nonlinear least squares the param-

eters can have a form of e.g. a2
j , e

ajx.

A.3 Linear Least Squares

The linear least squares is very often used to fit a straight line to the considered data.

In such a case the model function is a linear function

y = f(x, a) = a1x+ a2 (A.21)
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with two parameters a1, a2. The parameters are estimated such that the straight line is

fitted to the N data points.

The vector D(a) depending on the parameters a = (a1, a2) of the model function is

D(a) = (f(x1; a1, a2), f(x2; a1, a2), . . . , f(xN ; a1, a2))

= (a1x1 + a2, a1x2 + a2, . . . , a1xN + a2) (A.22)

and the vector depending on the provided measured data is

D0 = (y1, y2, . . . , yN). (A.23)

According to the Eq. (A.14) and Eq. (A.15) the gradient∇Φ(a) with both the Hessian H

of Φ(a) and∇Φ evaluated about the origin 0 (a1 = 0, a2 = 0) has the form

∇Φ(a) = Ha− b (A.24)

where

b = −∇Φ(0). (A.25)

The parameters a are determined using the zero-gradient conditions∇Φ(a) = 0.

Hence

a = H−1b. (A.26)

Furthermore, the H and b are evaluated in terms of the Jacobian matrix J with com-

ponents Ji1 = ∂Di

∂a1
= xi and Ji2 = ∂Di

∂a2
= 1. Since H = JT J and b = −∇Φ(0) =

−JT (D−D0)(0) the least squares parameters are calculated from Eq. (A.26).

The presented linear least squares scheme can be applied, by analogy, to a fitting pro-

cedure with a model function defined by a quadratic or higher order polynomial func-

tion.

Figure A.2 shows the results of fitting a linear function to a set of data points.

A.4 Nonlinear Least Squares

The nonlinear least squares method is based on fitting the general model function

y = f(x, a) (A.27)
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Figure A.2: The linear least squares estimation.

with a nonlinear dependence on the parameter vector a = (a1, a2, . . . , aM) to the mea-

sured data y at the corresponding N independent values x.

In the nonlinear least squares the non-quadratic function defined by Eq. (A.14) is min-

imised with respect to the parameter a. The zero-gradient conditions

∇Φ(a) = JT (D(a)−D0) = 0 (A.28)

needs to be held at a minimum. Since the vector b is defined in the form

b(a) = −∇Φ(a) = −JT (D(a)−D0) (A.29)

the zero-gradient condition is given by

b(a) = 0. (A.30)

The algorithm starts with initial values for the parameter vector a. Then, the param-

eters aj , j = {1, . . . ,M} are refined iteratively with values incremented by parameter

vector ∆a satisfying the linear dependence

Jb(a) ·∆a = −b(a) (A.31)

where the Jacobian of the vector b, Jb(a), is given by

Jbij =
∂bi
∂aj

= − ∂2Φ

∂ai∂aj
= −Hij. (A.32)
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Hence

Jb = −H (A.33)

the values of the increment, ∆a, are determined from the system of linear equations

H ·∆a = b (A.34)

and are in the form

∆a = −H−1JT (D(a)−D0). (A.35)

The fitted curve obtained for a set of data points by applying the nonlinear least

squares algorithm is shown in Fig. A.3.
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Figure A.3: The nonlinear least squares estimation.

The presented description of the least squares method is based on the mathematical

definitions and explanations presented in [102, 103].

A.5 Matlab Code for Linear and Nonlinear Least Squares

Method

This Section contains the Matlab functions used in this Thesis for the linear and non-

linear curve fitting.

The function CurveFitting.m (see Fig. A.4) implements the Newton-Raphson method
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and can be used for both linear and nonlinear curve fitting by choosing the appropri-

ate model function. The model functions are defined and presented in Fig. A.5 for the

linear curve fitting and in Fig. A.6 for the exponential fitting in which the model func-

tion is defined as the sum of two exponents. The chosen model function is recalled in

variable f. The input values for the CurveFitting function are defined as:

• x - array containing input independent variable values.

• y - array containing input dependent (measured) variable values.

• p0 - array containing input adjustable parameters estimated for the best fit to the

data. The length of this array is equal to the number of parameters required for

the particular model function, e.g. two for the linear fit (y = p1 + p2 · x) and four

for the sum of the two exponents (y = p1 ·exp(p2 ·x)+p3 ·exp(p4 ·x)). Initial values

of p0 were always set to zero.

• tol - the tolerance which determines the accuracy of the fitting procedure. The

smaller the value, the better the accuracy that can be obtained.
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function p = CurveFitting (x,y,p0,tol)
% function call: p = CurveFitting(x,y,p0,tol) 
% p - output row of optimised parameters
% x - input row of x-data
% y - input row of y-data
% p0 - input row of initial parameters
% tol - tolerance

N = length(x);
% Choose a model function: 

%f = @model_function_sum_exp;
f = @model_function_line;

% F0 - vector F0 contains the y-data
F0 = y;

% M - number of parameters
M = length(p0);

% p - parameter vector, initialised to be p0
p = p0;

% norm_dp is the norm of the increment parameter vector p
% and is initialised to be greater than tol so that the
% iteration will be done at least once

norm_dp = 10*tol;
while norm_dp > tol
      for i = 1:N

F(i) = f(x(i), p, 0);
for j = 1:M
J(i,j) = f(x(i), p, j);

      end
end
H = J'*J;
b = -J'*(F-F0)';
dp = (H\b)';
norm_dp=sqrt(dp*dp');
p = p + dp;  
end 

Figure A.4: Matlab function for least squares method.
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function y = model_function_line(x, p, k)
% y = model_function_line(x, p, k)
% y - output y-value
% x - input x-value
% k - differentiation index:
% if k=0 then y = f(x,p) = p(1)+p(2)*x
% if k=i>0 then y = d f(x,p)/d p(i)

if k==0 % model function for fitting
      y = p(1)+p(2)*x;
elseif k==1 % differential in terms of p(1)
      y = 1;
elseif k==2 % differential in terms of p(2)
      y = x; 
end

Figure A.5: Matlab function for linear curve fitting.

function y = model_function_sum_exp(x, p, k)
% y = model_function_sum_exp(x, p, k)
% y - output y-value
% x - input x-value
% k - differentiation index:
% if k=0 then y = f(x,p) = p(1)*exp(p(2)*x) + p(3)*exp(p(4)*x)
% if k=i>0 then y = d f(x,p)/d p(i)

if k==0  % model function for fitting
        y = p(1)*exp(p(2)*x) + p(3)*exp(p(4)*x);
elseif k==1  % differential in terms of p(1)
        y = exp(p(2)*x);
elseif k==2  % differential in terms of p(2)
        y = p(1)*x*exp(p(2)*x);
elseif k==3  % differential in terms of p(3)
        y = exp(p(4)*x);
elseif k==4  % differential in terms of p(4)
        y = p(3)*x*exp(p(4)*x);
end

Figure A.6: Matlab function for exponential curve fitting with model function being the sum of two

exponents.
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