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SOME REMARKS ABOUT ELEMENTARY
DIVISOR RINGS()

BY
LEONARD GILLMAN AND MELVIN HENRIKSEN

In this and the following paper [2], we are concerned with obtaining con-
ditions on a commutative ring .S with identity element in order that every
matrix over S can be reduced to an equivalent diagonal matrix(?). Following
Kaplansky [4], we call such rings elementary divisor rings. A necessary condi-
tion is that S satisfy

F: all finitely generated ideals are principal.

It has been known for some time that if .S satisfies the ascending chain
condition on ideals, and has no zero-divisors, then F is also sufficient. Helmer
[3] showed that the chain condition can be replaced by the less restrictive
hypothesis that S be adeguate (i.e., of any two elements, one has a “largest”
divisor that is relatively prime to the other(?)). Kaplansky [4] generalized
this further by permitting zero-divisors, provided that they are all in the
(Perlis-Jacobson) radical.

By a slight modification of Kaplansky's argument, we find that the con-
dition on zero-divisors can be replaced by the hypothesis that S be an
Hermite ring (i.e., every matrix over S can be reduced to triangular form(?)).
This is an improvement, since, in any case, it is necessary that S be an
Hermite ring, while, on the other hand, it is not necessary that all zero-
divisors be in the radical. In fact, we show that every regular commutative
ring with identity is adequate. However, the condition that S be adequate
is not necessary either.

We succeed in obtaining a necessary and sufficient condition that S be
an elementary divisor ring. Along the way, we obtain a necessary and suffi-
cient condition that S be an Hermite ring. In the paper that follows [2], we
make constant use of these results. In particular, we construct examples of
rings that satisfy F but are not Hermite rings, and examples of Hermite
rings that are not elementary divisor rings. However, all these examples con-
tain zero-divisors; therefore, the question as to whether there exist cor-
responding examples that are integral domains is left unsettled.

DeFINITION 1. An m by # matrix A over S admits triangular reduction if

Presented to the Society, December 28, 1954 under the title Concerning adequate rings and
elementary divisor rings. 11; received by the editors April 20, 1955 and, in revised form, Novem-
ber 14, 1955.

(%) The preparation of this paper was sponsored (in part) by the National Science Founda-
tion, under grant NSF G1129.

(2) The precise definition is given below.
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there exist nonsingular(®) matrices U, V such that 4 U= [b;;] is triangular
(i.e., b;,;=0 whenever <j), and VA is triangular; A admits diagonal reduc-
tion if there exist nonsingular matrices P, Q such that PAQ = [c; ;] is diagonal
(i.e., ¢;,;=0 whenever i5£7), and every c;,; is a divisor of ¢iy1,i41 [4]().

THEOREM 2 (KAPLANSKY). Let S be a commutative ring with identity. If all
1 by 2 and all 2 by 1 matrices over S admit diagonal reduction, then every matrix
over S admits triangular reduction; in this case, S-is called an Hermite ring.
If, in addition, all 2 by 2 matrices over S admit diagonal reduction, then every
matrix over S admits diagonal reduction; in this case, S is called an elementary
divisor ring.

For the proof, see [4, Theorems 3.5 and 5.1].

Obviously, every elementary divisor ring is an Hermite ring. Further-
more, every Hermite ring satisfies F [4, p. 465].

In order to prove that a given commutative ring is an Hermite ring, it
suffices, by symmetry, to show only that every 1 by 2 matrix admits diagonal
reduction.

THEOREM 3. A commutative ring S with identity is an Hermite ring if and
only if it satisfies the condition

T: for all a, b&S, there exist a,, b1, dSS such that a=ad, b=>b.d, and
(a1, b1) =(1).

Proof. Suppose that S satisfies T. In order to show that S is an Hermite
ring, it suffices to show that every 1 by 2 matrix [a 5] admits diagonal reduc-
tion (Theorem 2 ff.). Let ai, b1, d, s, t satisfy a =a:d, b =b:d, and sa;+tb, =1.
Let

S '—"bl
M -7 7

t ay
Then Q is nonsingular, and [a 5]Q0=[d 0].

Conversely, suppose that Sis an Hermite ring. Let ¢, 8 &S. By hypothesis,
there exists a nonsingular matrix Q, which we denote as in (1), such that
[2¢56]Q=[d 0] for some dES. Then ab; =bai, and sa+tb=d. Since Q is non-
singular, we may assume that sa;+tb;=1. Then saa+tba=a, whence
s;ma+tab =a, i.e., axd =a. Similarly, b:d =b.

The following lemma, due essentially to Kaplansky [4, §4], shows that

in dealing with condition T relative to any specific pair a, 9, it suffices to con-
sider any particular generator of the ideal (a, b).

LEMMA 4. Let a, bES. If a1, b1, d exist as in condition T (whence (a, b) = (d)),

(%) By nonsingular, we mean that U (resp. V) has a two-sided inverse in the ring of all #» by
n (resp. m by m) matrices over S.
(%) Kaplansky [4] does not require commutativity of S.
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then for all d’ with (a, b) =(d’), there exist af, b] such that a=a{d’, b=0{d’,
and (af, b{)=(1).

Proof. Write d =kd’, d’ =1d, and choose s, ¢ such that sa;+b; =1. Define
af =klt—t+a:k, and b/ =s—Fkis+bik. Then a/d’=a, b/ d'=b, and (sl—b1)a!
+(tl+a1)b1’ =1.

As a straightforward consequence of Lemma 4, we have:

CoROLLARY 5. If S satisfies condition T, then given a, b, ¢, d with (a, b, ¢)
=(d), there exist a1, by, ¢1 such that a=ad, b=b.d, c=ad, and (a1, by, ¢1) =(1).

THEOREM 6. A commutative ring S with identity is an elementary divisor
ring if and only if it is an Hermite ring that satisfies the condition

D’: for all a, b, cES with (a, b, ¢c) =(1), there exist p, g=S such that (pa,
pb+qc) =(1).

Thus, S is an elementary divisor ring if and only if it satisfies T and D’.

Proof. We have already remarked that every elementary divisor ring is
an Hermite ring. The necessity of the condition D’ is established in the proof
of [4, Theorem 5.2].

The sufficiency of the two conditions is obtained by making the following
two changes in the proof of [4, Theorem 5.2]. First, delete the reference to
[4, Theorem 3.2]. Second, justify the fact that xa,4yb+2c is a unit by
referring to our Corollary 5.

DEerFiNiTION 7 (HELMER)(®). A commutative ring S with identity is said
to be adequate if it satisfies the two conditions F and

A: for every a, bES, with a0, there exist a1, dE.S such that (i) a=a.d,
(ii) (a1, b) =(1), and (iii) for every nonunit divisor d’ of d, we have (d’, b) #=(1).

If in the proof of [4, Theorem 5.3], we replace the reference to [4, Theo-
rem 5.2] by a reference to our Theorem 6, we obtain:

THEOREM 8. An adequate ring is an elementary divisor ring if and only if
it 1s an Hermite ring.

DEeFINITION 9 (VvON NEUMANN)(®). A commutative ring S with identity
is said to be regular if for every a €S, there exists x €.S such that a%x =a.

von Neumann [5] shows that in any regular ring, every principal ideal is
generated by an idempotent; in fact, if a?2x =a, then e =ax is idempotent, and
(a) =(e). Furthermore, every finitely generated ideal is principal; for if
b2y=>b, f=by, and d=e+f—ef, then a=ad, b=0bd, and dE&(e, f)=(a, b),

(5) Helmer's definition [3] was restricted to integral domains. More general commutative
rings with identity were first investigated in this connection by Kaplansky [4].

(%) In von Neumann’s definition [5], it is not assumed that S be commutative. The de-
fining condition in the general case is axa =a.
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whence (a, b) =(d). Moreover, every element is a uni multiple of an idem-
potent(?):

LEMMA 10. For any element a of a regular ring S (commutative, with iden-
tity), there exists a unit u such that a*u =a (whence e =au is idempotent).

Proof. Let x satisfy a%¢ =a, and let z satisfy x?2=x. Define u=1+4x—xz.
Since axz = (a%)xz=a2x =a, we have a?u =a. Now obviously, (#, x) =(1). But
xu =x2, whence x belongs to every maximal ideal that contains «. It follows
that # is a unit.

THEOREM 11. Every regular ring S (commutative, with identity) is adequate.

Proof. We have already remarked that S must satisfy F. In order to show
that S satisfies A, consider any ¢, bE.S. By Lemma 10, we may work instead
with the idempotents e, f of which @, b are unit multiples. Define d =e4-f —ef;
then, as noted above, (@) =(e, f). Put es=1—f+e¢f. Then e=eid and (e, f)
= (1). Since d divides f, no nonunit divisor d’ of d can be relatively prime to f.

REMARK 12. Kaplansky points out [4, p. 474] that by using results de-
veloped in [1], one can show that every commutative regular ring S with
identity is an elementary divisor ring. This can also be seen as follows. Work-
ing again with the idempotents ¢ and f, let d and e, be as above, and define
fi=f. Then e=ed, f=fid, and (e, f1) =(1). It follows that .S is an Hermite
ring (Theorem 3). Therefore, by Theorem 8, S is an elementary divisor ring.
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(") The arguments that follow are motivated by [1, Theorem 2.2].
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