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Abstract

High reliability systems generally require individual system components having extremely

high reliability over long periods of time. Short product development times require reliability

tests to be conducted with severe time constraints. Frequently few or no failures occur

during such tests, even with acceleration. Thus, it is di�cult to assess reliability with

traditional life tests that record only failure times. For some components, degradation

measures can be taken over time. A relationship between component failure and amount of

degradation makes it possible to use degradation models and data to make inferences and

predictions about a failure-time distribution.

This paper describes degradation reliability models that correspond to physical-failure

mechanisms. We explain the connection between degradation reliability models and failure-

time reliability models. Acceleration is modeled by having an acceleration model that

describes the e�ect that temperature (or another accelerating variable) has on the rate of a

failure-causing chemical reaction. Approximate maximum likelihood estimation is used to

estimate model parameters from the underlying mixed-e�ects nonlinear regression model.

Simulation-based methods are used to compute con�dence intervals for quantities of interest

(e.g., failure probabilities). Finally we use a numerical example to compare the results of

accelerated degradation analysis and traditional accelerated life test failure-time analysis.

Key words: Bootstrap, Maximum likelihood, Mixed e�ects, Nonlinear estimation, Random

e�ects, Reliability.
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1 Introduction

1.1 Background

Today's manufacturers face strong pressure to develop newer, higher technology products

in record time, while improving productivity, product �eld reliability, and overall quality.

This has motivated the development of methods like concurrent engineering and encour-

aged wider use of designed experiments for product and process improvement e�orts. The

requirements for higher reliability have increased the need for more up-front testing of ma-

terials, components and systems. This is in line with the generally accepted modern quality

philosophy for producing high reliability products: achieve high reliability by improving the

design and manufacturing processes, moving away from reliance on inspection to achieve

high reliability.

Estimating the failure-time distribution or long-term performance of components of

high reliability products is particularly di�cult. Many modern products are designed to

operate without failure for years, tens of years, or more. Thus few units will fail or degrade

importantly in a test of practical length at normal use conditions. For example, during

the design and construction of a communications satellite, there may be only 6 months

available to test components that are expected to be in service for 15 or 20 years. For this

reason, Accelerated Tests (ATs) are used widely in manufacturing industries, particularly to

obtain timely information on the reliability of product components and materials. Generally,

information from tests at high levels of accelerating variables (e.g., use rate, temperature,

voltage, or pressure) is extrapolated, through a physically reasonable statistical model, to

obtain estimates of life or long-term performance at lower, normal use conditions. In some

cases the level of an accelerating variable is increased or otherwise changed during the

course of a test (step-stress and progressive-stress ATs). AT results are used in design-for-

reliability processes to assess or demonstrate component and subsystem reliability, certify

components, detect failure modes, compare di�erent manufacturers, and so forth. ATs have

become increasingly important because of rapidly changing technologies, more complicated

products with more components, and higher customer expectations for better reliability.

1.2 Accelerated degradation data

In some reliability studies, it is possible to measure degradation directly over time, either

continuously or at speci�c points in time. In most reliability testing applications, degrada-

tion data, if available, can have important practical advantages:

� Degradation data can, particularly in applications where few or no failures are ex-

pected, provide considerably more reliability information than would be available

from traditional censored failure-time data.

� Accelerated tests are commonly used to obtain reliability test information more quickly.

Direct observation of the degradation process (e.g., tire wear) may allow direct mod-

eling of the failure-causing mechanism, providing more credible and precise reliability

estimates and a �rmer basis for often-needed extrapolation. Modeling degradation

of performance output of a component or subsystem (e.g., voltage or power) may be
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Figure 1: Accelerated degradation test results giving power drop in Device-B output for a

sample of units tested a three levels of temperature.

useful, but modeling could be more complicated or di�cult because the output may

be a�ected, unknowingly, by more than one physical/chemical failure-causing process.

Example 1 Device-B power output degradation. Figure 1 shows the decrease in

power, over time, for a sample of integrated circuit devices called \Device-B." Samples of

devices were tested at each of three levels of temperature. At standard operating temper-

atures (e.g., 80�C junction temperature), the devices will degrade slowly. Based on a life

test of about 6 months, design engineers needed an assessment of the proportion of these

devices that would \fail" before 15 years (about 130,000 hours) of operation at 80�C junc-

tion temperature. This assessment would be used to determine the amount of redundancy

required in the full system. Failure for an individual device was de�ned as power output

more than .5 decibels (dB) below initial output. Because they degrade more slowly, units

at low temperature had to be run for longer periods of time to accumulate appreciable

degradation. Because of severe limitations in the number of test positions, fewer units were

run at lower temperatures. The original data from this experiment are proprietary. The

data shown in Figure 1 were actually simulated from a model suggested by limited real data

available at the time the more complete experiment was being planned.

1.3 Literature

Shiomi and Yanagisawa (1979) and Suzuki, Maki, and Yokogawa, (1993) describe the anal-

ysis of accelerated degradation data on carbon-�lm resistors. Carey and Tortorella (1988)

describe a 3-stage method of estimating parameters of an accelerated degradation model

for MOS devices. Chapter 11 of Nelson (1990) describes applications and models for accel-

erated degradation and describes Arrhenius analysis for data involving a destructive test
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(only one degradation reading on each unit). Carey and Koenig (1991) describe an applica-

tion of the Carey and Tortorella (1988) methods of accelerated degradation analysis in the

assessment of the reliability of a logic device. Tobias and Trindade (1995) illustrate the use

of some simple linear regression methods for analyzing degradation data. Murray (1993,

1994) and Murray and Maekawa (1996) use such methods to analyze accelerated degra-

dation test data for data-storage disk error rates. Tseng, Hamada, and Chiao (1995) use

similar methods with experimental data on lumens output from 
uorescent light bulbs over

time. Boulanger and Escobar (1994) describe methods for planning accelerated degradation

tests for an important class of degradation models. Tseng and Yu (1997) propose methods

for choosing the time to terminate a degradation test. Lu and Meeker (1993) �t a random

e�ects model to fatigue degradation data and then use simulation-based methods to make

inferences about the corresponding failure-time distribution. In this paper we extend the

approach of Lu and Meeker (1993) to allow for acceleration.

1.4 Overview

This paper is organized as follows. Section 2 describes useful models for degradation pro-

cesses at a particular level of an accelerating variable while Section 3 presents models that

can be used to relate degradation level and failure time. Section 4 describes methods and

models relating degradation to acceleration variables like increased temperature. Section 5

shows how to compute approximate ML estimates of accelerated degradation model pa-

rameters. Section 6 shows how to evaluate a failure time cdf for a speci�ed degradation

model and use the results from degradation analysis to estimate a failure-time distribution.

Section 7 describes and illustrates the use of a parametric bootstrap algorithm to compute

con�dence intervals for quantities of interest. Section 8 compares the results obtained using

accelerated degradation analysis with those from a traditional accelerated life test analyses.

In Section 9 we conclude with discussion of some areas for further research.

2 Models for Degradation

2.1 Degradation leading to failure

Many product failures can be traced to an underlying degradation process. The horizontal

line in Figure 1 at degradation level �:5 dB represents the level (or approximate level) at

which failure would occur. The failure level (e.g., the horizontal line in Figure 1 at �:5 dB)

may be �xed or random from unit-to-unit. In some applications there will be more than one

degradation variable (or more than one underlying degradation process). Here we consider

only a single degradation variable.

Example 2 Degradation from a �rst-order chemical reaction. Meeker and LuValle

(1995) describe models for growth of failure-causing conducting �laments of chlorine-copper

compounds in printed-circuit boards. In their models, A1(t) is the amount of chlorine avail-

able for reaction and A2(t) is proportional to the amount of failure-causing chlorine-copper

compounds at time t. Under appropriate conditions of temperature, humidity, and electri-

cal charge, there will be a chemical reaction in which copper combines with chlorine (A1) to

produce A2. In the simplest model suggested by Meeker and LuValle (1995), this reaction
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occurs in a single step with rate constant k1. Diagrammatically,

A1
-

k1
A2

and the rate equations for this reaction are

dA1

dt

= �k1A1 and
dA2

dt

= k1A1; k1 > 0: (1)

The solution of this system of di�erential equations gives

A1(t) = A1(0) exp(�k1t)

A2(t) = A2(0) + A1(0)[1� exp(�k1t)]

where A1(0) and A2(0) are initial conditions. If A2(0) = 0, letting A2(1) = limt!1A2(t) =

A1(0), gives

A2(t) = A2(1)[1� exp(�k1t)]: (2)

The asymptote at A2(1) re
ects the limited amount of chlorine available for reaction to

the harmful compounds.

Carey and Tortorella (1988) and Carey and Koenig (1991) use similar models to describe

degradation of electronic components. As explained in Example 3, here we will use the same

�rst-order chemical reaction model to describe power drop as a function of time, where power

drop at time t will be assumed to be proportional to A2(t). Meeker and LuValle (1995)

suggest other more elaborate, but plausible, models for their particular failure mechanism.

Section 4 describes the ideas behind acceleration of failure-causing processes.

2.2 Variation in degradation and failure time

Variability causes manufactured units to fail at di�erent times. A degradation model should

account for the important sources of variability in a failure process. Figure 2 shows degra-

dation curves with unit-to-unit variability in both A2(1) and k1. Having variability in both

parameters causes crossing of the curves, typical of what is observed in actual degradation

testing. These curves describe unit-to-unit variability in materials properties and initial

conditions.

In other applications, individual units will vary with respect to the amount of material

available to wear, initial level of degradation, amount of harmful degradation-causing ma-

terial, and so on. For some applications the variable of interest is the amount of change

from an initial level of some measure of performance [typically measured in either percent

change or in decibels (dB)]. This is why the paths in Figure 2 are shown starting at the

same point. This adjustment is useful when the corresponding failure times, de�ned by the

amount of change, have more practical value and/or have less relative variability.
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Figure 2: Plot of simulated power degradation with unit-to-unit variability in the power

level asymptote A2(1) and degradation rate k1.

2.3 General degradation path model

We denote the true degradation path of a particular unit (a function of time) by D(t); t >

0. In applications, values of D(t) are sampled at discrete points in time, t1; t2; : : : . The

observed sample degradation path for unit i at time tij is a unit's actual degradation path

plus error and is given by

yij = Dij + �ij ; i = 1; : : : ; n; j = 1; : : : ; mi (3)

where Dij = D(tij ;�i) is the actual path for unit i at time tij (the times need not be

the same for all units), �ij � N
�
0; �2

�

�
is a deviation from the assumed model for unit i

at time tij , and �i = (�1i; : : : ; �ki) is a vector of k unknown parameters for unit i. The

deviations are used to describe measurement error. The total number of inspections on unit

i is denoted by mi. Time t could be real-time, operating time, or some surrogate like miles

for automobile tires or loading cycles in fatigue tests. Typically sample paths are described

by a model with k = 1, 2, 3 or 4 parameters. As described in Section 2.2, some of the

parameters in � will be random from unit-to-unit. One or more of the parameters in �

could, however, be modeled as constant across all units.

The scales of y and t can be chosen (as suggested by physical theory and the data)

to simplify the form of D(t;�). For example, the relationship between the logarithm of

degradation and the logarithm of time might be modeled by the additive relationship in

(3). The choice of a degradation model requires not only speci�cation of the form of the

D(t;�) function, but also speci�cation of which of the parameters in � are random and

which are �xed and the joint distribution of the random components in �. Lu and Meeker

(1993) describe the use of a general family of transformations to a multivariate normal
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distribution with mean vector �� and covariance matrix ��. For many problems, the Box-

Cox family of transformations (Box and Cox 1964) will be useful. In our application we use

the log transformation, a special case of the Box-Cox transformation. For �xed parameters

in �, it is notationally convenient to set the elements in the corresponding rows and columns

in �� equal 0.

It is generally reasonable to assume that the random components of the vector � are in-

dependent of the �ij deviations. We also assume that the �ij deviations are independent and

identically distributed for i = 1; : : : ; n and j = 1; : : : ; mi. Because the yij are taken serially

on a unit, however, there is potential for autocorrelation among the �ij ; j = 1; : : : ; mi, es-

pecially if there are many closely-spaced readings. In many practical applications involving

inference on the degradation of units from a population or process, however, if the model �t

is good and if the testing and measurement processes are in control, then autocorrelation

is typically weak and, moreover, dominated by the unit-to-unit variability in the � values

and thus can be ignored. Also, it is well known (e.g., pages 246-249 of Johnston 1972)

that point estimates of regression curves are not seriously a�ected by autocorrelation, but

ignoring autocorrelation can result in standard errors that are seriously incorrect. This,

however, is not a problem when (as we do) con�dence intervals are constructed by using

an appropriate simulation-based bootstrap method. In more complicated situations it may

also happen that �� will depend on the level of the acceleration variable. Often, however,

appropriate modeling (e.g., transformation of the degradation response) will allow the use

of a simpler constant-�� model.

3 Models Relating Degradation and Failure

3.1 Soft failures: speci�ed degradation level

For some products there is a gradual loss of performance (e.g., decreasing light output from

a 
uorescent light bulb). Then failure would be de�ned (in a somewhat arbitrary manner)

at a speci�ed level of degradation such as 60% of initial output. We call this a \soft failure"

de�nition. See Tseng, Hamada, and Chiao (1995) for an example.

We use Df to denote the critical level for the degradation path above (or below) which

failure is assumed to have occurred. The failure time T is de�ned as the time when the

actual path D(t) crosses the critical degradation level Df . Inferences are desired on the

failure-time distribution of a particular product or material. For soft failures, it is usually

possible to continue observation beyond Df .

3.2 Hard failures: joint distribution of degradation and failure level

For some products, the de�nition of the failure event is clear|the product stops working

(e.g., when the resistance of a resistor deviates too much from its nominal value, causing

the oscillator in an electronic circuit to stop oscillating or when an incandescent light bulb

burns out). These are called \hard failures." With hard failures, failure times will not,

in general, correspond exactly with a particular level of degradation (like the horizontal

line shown in Figure 2). Instead, the level of degradation at which failure (i.e., loss of

functionality) occurs will be random from unit to unit and even over time. This could be
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modeled by using a distribution to describe unit-to-unit variability in Df or, more generally,

the joint distribution of � and the stochastic behavior in Df .

4 Acceleration Model

In order to obtain timely information from laboratory tests, it is often possible to use

some form of acceleration. Increasing the level of acceleration variables like temperature,

humidity, voltage, or pressure can accelerate the chemical or other degradation processes

related to speci�c failure mechanisms such as the weakening of an adhesive mechanical bond

or the growth of a conducting �lament through an insulator. If an adequate physically-

based statistical model is available to relate failure time to levels of accelerating variables,

the model can be used to estimate lifetime or degradation rates at product use conditions.

4.1 Elevated temperature acceleration

The Arrhenius model describing the e�ect that temperature has on the rate of a simple

�rst-order chemical reaction is

R(temp) = 
0 exp

�
�Ea

kB � (temp+ 273:15)

�
= 
0 exp

�
�Ea � 11605

temp+ 273:15

�

where temp is temperature in �C and kB = 1=11605 is Boltzmann's constant in units of

electron volts per �C. The pre-exponential factor 
0 and the reaction activation energy Ea

in units of electron volts are characteristics of the particular chemical reaction. Taking the

ratio of the reaction rates at temperatures temp and tempU cancels 
0 giving an Acceleration

Factor

AF(temp; tempU ; Ea) =
R(temp)

R(tempU)
= exp

�
Ea

�
11605

tempU + 273:15
�

11605

temp+ 273:15

��
(4)

that depends only on the two temperature levels and the activation energy. If temp >

tempU , then AF(temp; tempU ; Ea) > 1. For simplicity, we use the notation AF(temp) =

AF(temp; tempU ; Ea) when tempU and Ea are understood to be, respectively, product use

(or other speci�ed base-line) temperature and a reaction-speci�c activation energy.

4.2 Nonlinear degradation path and reaction-rate acceleration

Consider the simple chemical degradation path model from Example 2, rewritten in the

generic notation and with a temperature acceleration factor a�ecting the rate of the reaction:

D(t; temp) = D1 � f1� exp [�RU �AF(temp)� t]g : (5)

Here RU is the rate reaction at use temperature tempU , RU�AF(temp) is the rate reaction

at temperature temp, and D1 is the asymptote. When degradation is measured on a scale

decreasing from zero, D1 < 0 and we specify that failure occurs at the smallest t such that

D(t) � Df . Figure 3 shows model (5) for �xed values of RU , D1, and Ea for 4 di�erent
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Figure 3: Illustration of the e�ect of Arrhenius temperature dependence on the degradation

caused by a single-step chemical reaction.

levels of temperature. Equating D(T ; temp) to Df and solving for T gives the failure time

at temperature temp as

T (temp) =
�

1
RU

log
�
1� Df

D1

�
AF(temp)

=
T (tempU )

AF(temp)
(6)

where T (tempU ) = � (1=RU) log (1� Df=D1) is failure time at use conditions.

The right-hand side of (6) shows that the life/temperature model induced by this sim-

ple degradation process and the Arrhenius-acceleration model results in a Scale Acceler-

ated Failure Time (SAFT) model. Under the SAFT model, the degradation path (and

thus a corresponding failure event) for a unit at any temperature can be used to deter-

mine the degradation path (and failure time) that the same unit would have had at any

other speci�ed temperature, simply by scaling the time axis by the acceleration factor

AF(temp). Failure-time models are scaled similarly. For example, if T (tempU), the failure

time at use temperature, has a Weibull distribution with scale parameter �U and shape

parameter � [denoted by T (tempU ) � WEIB(�U ; �)], then failure time at other temper-

atures is distributed T (temp) � WEIB[�U=AF(temp); �]. Similarly, if T (tempU ) has a

lognormal distribution with scale parameter exp(�U) and shape parameter � [denoted by

T (tempU) � LOGNOR(�U ; �)], then T (temp) � LOGNOR [�U � log(AF(temp)); �]. In

general a model will be SAFT if the failure mechanism is governed by a single-step chem-

ical reaction with a rate that depends on an acceleration variable like temperature but is

otherwise constant over time. Klinger (1992) also notes this relationship.
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Figure 4: Illustration of the e�ect of Arrhenius temperature dependence on a linear degra-

dation process.

4.3 Linear degradation path reaction-rate acceleration

Consider model (5) along with the critical level Df . For values of t such that D(t) is small

relative to D1,

D(t; temp) = D1 � f1� exp [�RU � AF(temp)� t]g

� D1 �RU �AF(temp)� t = R
+

U � AF(temp)� t (7)

is approximately linear in time t with slope R
+

U �AF(temp) where R
+

U = D1 �RU . Also

some degradation processes (e.g., automobile tire wear) are naturally linear in time. Figure 4

shows model (7) for �xed values of R
+

U and Ea for 4 di�erent values of temperature.

If failure occurs when D(T ) � Df , we can equate D(T ; temp) to Df and solve for T to

give the failure time as

T (temp) =
Df

R
+

U

�
1

AF(temp)
=

T (tempU)

AF(temp)

where T (tempU ) = Df=R
+

U
is failure time at use conditions. Thus this is also an SAFT

model.

4.4 Degradation with parallel reactions

Consider a more complicated degradation path model with two parallel one-step failure-

causing chemical reactions leading to

D(t; temp) = D11 � f1� exp [�R1U � AF1(temp)� t]g

+ D21 � f1� exp [�R2U � AF2(temp)� t]g :
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Here R1U and R2U are the use-condition rates of the two parallel reactions contributing

to failure. Suppose that temperature dependence for each reaction rate can be described,

individually, by the Arrhenius acceleration factorsAF1(temp) and AF2(temp), respectively.

Unless AF1(temp) = AF2(temp) for all temp, this degradation model does not lead to an

SAFT model. Intuitively, this is because temperature a�ects the degradation processes

di�erently, inducing a nonlinearity into the acceleration function relating times at two dif-

ferent temperatures. To obtain useful extrapolative models it is, in general, necessary to

have models for the important individual degradation processes.

4.5 Accelerated degradation model parameters

Our model's rate-acceleration parameters are unknown �xed-e�ects parameters (e.g., in

the Arrhenius model we assume no unit-to-unit variability in activation energy Ea). As

described in Section 2.3, �xed-e�ects parameters are included, notationally, in the parameter

vector � introduced in Section 2.3. Thus for the single-step models in Sections 4.2 and 4.3,

we have one additional parameter to estimate. The total number of parameters in � for an

individual unit, is still denoted by k.

The values of � corresponding to individual units may be of interest in some applications

(e.g., to predict the future degradation of a particular unit, based on a few early readings).

Subsequent development in this paper, however, will concentrate on the use of degradation

data to make inferences about the population or process from which the sample units

were obtained or predictions about the failure-time distribution at speci�c levels of the

accelerating variable (e.g., temperature) of future units from the process. In this case,

the underlying model parameters are �� and ��, as well as the standard deviation ��.

Again, the appropriate rows and columns in ��, corresponding to the �xed parameters in

�, contain 0's. For shorthand, we will use �� = (��;��) to denote the parameters of the

overall degradation population or process.

Example 3 Device-B power output degradation model parameterization. For

the Device-B power-drop data in Example 1, the scientists responsible for the product were

con�dent that degradation was caused by a simple one-step chemical reaction that could

be described by the model in Example 2. Thus for the data in Figure 1, we will use the

accelerated degradation model in (5), assuming that RU and D1 are random from unit

to unit. Then a possible parameterization would be (�1; �2; �3) = [log(RU); log(�D1); Ea]

where the �rst two parameters are random e�ects and activation energy Ea is a �xed e�ect.

That is, Ea is assumed to be a material property that does not depend on temperature and

that is constant from unit to unit. The log transformation on RU and �D1 is consistent

with the data and assures that the model for the random e�ects is consistent with the

physical model for degradation (in terms of the signs of RU and �D1).

5 Estimation of Accelerated Degradation Model Parameters

Lu and Meeker (1993) used a two-stage method to estimate the parameters of the mixed-

e�ects accelerated degradation model in (5). The methods developed by Lindstrom and

Bates (1990) and Pinheiro and Bates (1995a) provide excellent, computationally e�cient
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approximations to ML estimates. The software implementation in Pinheiro and Bates

(1995b), also available in S-Plus, has made the methods easy to use. Indeed, we have

found, in some cases, that doing an approximate ML is faster than doing the n nonlinear

least squares estimations required for the two-state method. ML estimation also has the

advantages of desirable large-sample properties and the ability to easily use sample paths

for which all of the parameters cannot be estimated (as is the case in our example where

the assumed model cannot be �t to the 150�C).

The two-stage estimation method is useful for getting starting values for the ML ap-

proach or for modeling, especially, when consideration is given to something other than a

joint normal distribution for the random e�ects.

The likelihood for the mixed-e�ect accelerated degradation model in Section 4 can be

expressed as

L(�� ;��; ��jDATA) =

nY
i=1

Z
1

�1

� � �

Z
1

�1

2
4miY
j=1

1

��

�(�ij)

3
5
f�(�i;��;��) d�1i; : : : ; d�ki (8)

where �ij = [yij�D(tij ;�i)]=��, �(z) is the standard normal density function, and f�(�i;��;��)

is the multivariate normal distribution density function. See Palmer, Phillips and Smith

(1991) for motivation and explanation. To simplify notation and presentation, we continue

to collect both the unit-to-unit random e�ects and �xed e�ects parameters into the vector

�i with the entries in �� being 0 for the rows and columns corresponding to the �xed

e�ects.

Evaluation of (8) will, in general, require numerical approximation of n integrals of di-

mension kr (where n is the number of paths and kr � k is the number of random parameters

in each path). Maximizing (8) with respect to (��;��; ��) directly, even with today's com-

putational capabilities, is extremely di�cult unless D(t) is a linear function. Pinheiro and

Bates (1995a) describe and compare estimation schemes that provide approximate max-

imum likelihood estimates of �� = (��;��) and ��, as well as estimates of the random

unit-speci�c components in �i; i = 1; : : : ; n. Pinheiro and Bates (1995b) implement a mod-

i�cation of the method of Lindstrom and Bates (1990). The examples in this paper were

computed with the Pinheiro and Bates (1995b) program and some other complementary

S-Plus functions that were written speci�cally for accelerated degradation data analysis.

Example 4 Estimates of Device-B model parameters. Continuing with Example 3,

we �t model (5) using S-plus function nlme. To improve the stability and robustness

of the approximate ML algorithm, it is important to reduce the correlation between the

estimates of Ea and the parameters relating to the reaction rate R. Thus it is preferable to

estimate R at some level of temperature that is central to the experimental temperatures,

rather than the use-temperature. We use 195�C and parameterize with �1 = log[R(195)],

�2 = log(�D1), and �3 = Ea where R(195) = RU �AF(195) is the reaction rate at 195
�C.

Our model assumes that (�1; �2) has a bivariate normal distribution from unit-to-unit and

that �3 = Ea is a constant, but unknown, material property. S-plus function nlme gives the

following approximate ML estimates of the mixed-e�ect model parameters

b�� =

0
@ �7:572

:3510

:6670

1
A
;

b�� =

0
@ :15021 �:02918 0

�:02918 :01809 0

0 0 0

1
A
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Figure 5: Device-B power drop observations and �tted degradation model for the 34 sample

paths.

and b�� = :0233. Figure 5 shows the �tted model (5) for each of the sample paths (indicated

by the points on the plot) for the Device-B degradation data. Figure 6 plots the estimates

of the �1; �2 parameters for each of the 34 sample paths, indicating the reasonableness of

the bivariate normal distribution model for this random-coe�cients model.

6 Evaluation and estimation of F (t)

For the remainder of this paper we will assume that Df is a constant. Allowing Df to

be random is a computationally straightforward generalization but would complicate the

presentation.

For a speci�ed degradation model, the distribution function of T , the crossing (or fail-

ure) time, can be written as a function of the degradation model parameters and Df . In

particular, a unit fails by time t if degradation level reaches Df by time t. Thus, in Figure 5,

Pr(T � t) = F (t) = F (t; ��) = Pr[D(t;�) � Df ]: (9)

That is, the distribution of T depends on the distribution of � and the distribution of the

� depends on the basic path parameters in ��.

6.1 Analytical expressions for F (t)

For some particularly simple path models, F (t) can be expressed as a function of the basic

path parameters in a closed form. With acceleration, F (t) also depends on the level of

acceleration variables like temperature. As illustrated in Section 3.1, one or more of the
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Figure 6: Plot of b�1i versus b�2i for the i = 1; : : : ; 34 sample paths from Device-B, also

showing contours corresponding to the �tted bivariate normal distribution. The + marks

the estimates of the means of �1 and �2.

elements in � may be expressed as a function of accelerating variables, but notation for this

dependency will be suppressed until needed.

Example 5 Linear degradation with lognormal rate. Suppose failure occurs when

D(t) � Df and that the actual degradation path of a particular unit is given by

D(t) = �1 + �2t

where �1 < Df is �xed and �2 > 0 varies from unit to unit according to a LOGNOR(�; �)

distribution. This implies that

Pr(�2 � b) = �

�
log(b)� �

�

�
where �(z) is the standard normal cdf and � and � are, respectively, the mean and standard

deviation of log(�2).

The parameter �1 represents the common initial amount of degradation of all the test

units at time 0 and �2 represents the degradation rate, random from unit-to-unit. Then

F (t; �1; �; �) = Pr (D(t) � Df) = Pr(�1 + �2t � Df) = Pr

�
�2 �

Df � �1

t

�

= 1� �

�
log(Df � �1)� log(t)� �

�

�
= �

�
log(t)� [log(Df � �1)� �]

�

�
; t > 0:

This shows that T has a lognormal distribution with parameters that depend on the basic

path parameters �� = (�1; �; �), and Df . That is, exp[log(Df � �1) � �] is the lognormal

median and � is the lognormal shape parameter.
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See Section 2.3 of Lu and Meeker (1993) for some other examples.

6.2 Numerical evaluation of F (t)

For most practical path models, especially when D(t) is nonlinear and more than one of the

elements in � = (�1; : : : ; �k) is random, it may be necessary to evaluate F (t) numerically.

For two random variables (say �1 and �2), the following algorithm provides a simple means

of doing this.

Algorithm 1 Evaluation of F (t) by direct integration. To use this algorithm it

is necessary that D(t) be a monotone function of one of the parameters (say �2) for a

�xed value of �1. Then if (�1; �2) has a bivariate normal distribution with parameters

�� = (��1 ; ��2 ; �
2
�1
; �

2
�2
; �),

F (t) = P (T � t) =

Z
1

�1

�

�
�
g(Df; t; �1)� ��2j�1

��2j�1

�
1

��1

�

�
�1 � ��1

��1

�
d�1

where g(Df ; t; �1) is the value of �2 that gives D(t) = Df for speci�ed �1 and where

��2j�1
= ��2 + ���2

�
�1 � ��1

��1

�
�
2
�2j�1

= �
2
�2
(1� �

2):

In principle, this approach can be extended in a straightforwardmanner when there are more

than 2 continuous random variables. The amount of computational time needed to evaluate

the multidimensional integral will, however, increase exponentially with the dimension of

the integral.

6.3 Monte Carlo evaluation of F (t)

Monte Carlo simulation, as illustrated in Figure 2, is a particularly versatile method for

evaluating F (t). Evaluation is done by generating a large number of random sample paths

from the assumed path model. Then the proportion of paths crossing Df by time t provides

an evaluation of F (t). This approach is described in detail and illustrated in Section 4.1 of

Lu and Meeker (1993).

6.4 Estimation of F (t)

One can estimate the failure-time distribution F (t) by substituting the estimates b�� into

(9) giving

b
F (t) = F (t; b��):

This is straightforward for the case when F (t) can be expressed in a closed form. When

there is no closed-form expression for F (t), and when numerical transformation methods

are too complicated, one can use Algorithm 1 or Monte Carlo simulation to evaluate (9) atb��.
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Figure 7: Estimates of the Device-B life distributions at 80, 100, 150, and 195�C, based on

the degradation data.

Example 6 Device-B degradation data estimate of F (t). Figure 7 shows b
F (t) for

Device-B based on the IC power-drop data with failure de�ned as a power drop of Df =

�:5dB. Estimates are shown for 195�C, 150�C, 100�C, and 80�C. These estimates were

computed with Algorithm 1, using the estimates of the model parameters b�� = (b��; b��)
from Example 4.

7 Con�dence Intervals Based on Bootstrap Sampling

Because there is no simple method of computing standard errors for bF (t), we use a simu-

lation of the sampling/failure process and the bias-corrected percentile bootstrap method,

described in Efron (1985), to obtain parametric bootstrap con�dence intervals for quanti-

ties of interest. The bias-corrected percentile bootstrap method for obtaining con�dence

intervals for F (t) at a speci�ed temperature is implemented with the following algorithm.

Algorithm 2 Bootstrap con�dence intervals from degradation data.

1. Use the observed data from the n sample paths to compute the estimates b�� and b��.
2. Use Algorithm 1 or Monte Carlo simulation with b�� as input to compute the estimate bF (t)

at desired values of t.

3. Generate a large number (e.g., B = 4;000) of bootstrap samples and corresponding boot-

strap estimates bF �(t) according to the following steps.

(a) Generate n simulated realizations of the random path parameters ��i ; i = 1; : : : ; n,

each from a multivariate normal distribution with parameters b�� .
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(b) Using the same sampling scheme as in the original experiment, compute n simulated

observed paths from

y
�

ij = D(tij ;�
�

i ) + �
�

ij

up to the planned stopping time tci , where the �
�

ij values are independent simulated

deviations generated from N(0; b�2
� ) and tci is the �xed censoring time for the unit i.

(c) Use the n simulated paths to estimate parameters of the path model, giving the

bootstrap estimates b���
4. Use Algorithm 1 or Monte Carlo simulation with b��� as input to compute the bootstrap

estimates bF �(t) at desired values of t.

5. For each desired value of t, the bootstrap con�dence interval for F (t) is computed using the

following steps

(a) Sort the B values b
F
�(t)1; : : : ; bF �(t)B in increasing order giving b

F
�(t)[b]; b = 1; : : : ; B.

(b) Following Efron (1985), the lower and upper bounds of pointwise approximate 100(1�

�)% con�dence intervals for the distribution function F (t) are�
F

e

(t); ~
F (t)

�
=
h b
F
�(t)[lB];

b
F
�(t)[uB]

i
where

l = �
�
2��1(q) + ��1(�=2)

�
; u = �

�
2��1(q) + ��1(1� �=2)

�
;

��1(p) is the standard normal p quantile, and q is the proportion of the B values ofb
F
�(t) that are less than b

F (t). Setting q = :5 gives the percentile bootstrap method.

For an SAFT model, once b
F
�(t) has been computed in step 4 for one set of conditions

for the accelerating accelerating variable, it is possible to obtain b
F
�(t) for other conditions

by simply scaling times. Otherwise the results in step 3 need to be reused in step 4 to

recompute the b
F
�(t) values for each new set of conditions.

Example 7 Degradation data bootstrap con�dence intervals for F (t). Continuing

with Example 6, Figure 8 shows the point estimate and a set of pointwise two-sided ap-

proximate 90% and 80% bootstrap bias-corrected percentile con�dence intervals for F (t) at

80�C, based on the IC power-drop data with failure de�ned as a power drop of Df = �:5dB.

The bootstrap con�dence intervals were computed by using Algorithm 1 and Algorithm 2

to evaluate bF �(t). Speci�cally, the point estimate for F (t) at 130 thousand hours is .14 and

the approximate 90% con�dence interval is [:005; :64]. The extremely wide interval is due

to the small number of units tested a 150�C and the large amount of extrapolation required

to estimate to F (t) at 80�C.

If there is appreciable autocorrelation in the �ij , then the �
�

ij values in step 3b of Al-

gorithm 2 should be generated from an estimated autoregressive model, as described in

Chapter 9 of Shao and Tu (1995).
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Figure 8: Estimates of the Device-B life distribution at 80�C with approximate 80% and

90% pointwise two-sided bootstrap con�dence intervals based on the IC power-drop data

with failure de�ned as a power drop of Df = �:5dB.

8 Comparison with Traditional Accelerated Life Test Anal-

yses

This section compares accelerated degradation and accelerated life test analyses. With

failure de�ned as power drop below �:5 dB, there were no failures at 150�C. Although it is

possible to �t a model to the resulting life data, the degree of extrapolation with no failures

at 150�C would be, from a practical point of view, unacceptable. The comparison will be

useful for showing one of the main advantages of degradation analysis|the ability to use

degradation data for units that have not failed to provide important information at lower

levels of the accelerating variable where few, if any, failures will be observed, thus reducing

the degree of extrapolation.

Figure 9 shows a scatter plot of the failure time data, obtained from the degradation data

in Figure 1. Figure 10 is a multiple lognormal probability plot with the straight lines showing

individual lognormal distributions �tted to the samples at 237�C and 195�C. This �gure

shows that the lognormal distributions provide a good �t at both temperatures. Figure 11

is also a multiple lognormal probability plot for the individual samples at 237�C and 195�C.

In this case, however, the superimposed lines show the �tted lognormal-Arrhenius model

relating the life distributions to temperature. This is a commonly used accelerated life test

model for electronic components (e.g., Nelson 1990 and Tobias and Trindade 1995). Under

the lognormal-Arrhenius model log failure time has a normal distribution with mean

� = �0 + �3

�
11605

temp+ 273:15

�
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Figure 9: Scatterplot of Device-B failure-time data with failure de�ned as power drop below

�:5 dB. The symbol � indicates the 7 units that were tested at 150�C and had not failed

at the end of 4000 hours.
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Figure 11: Lognormal-Arrhenius model �t to the Device-B failure-time data with failure

de�ned as power drop below �:5 dB.

and constant standard deviation ��. In relation to the lognormal-Arrhenius failure-time

model described in Section 4.2, the slope �3 = Ea is the activation energy and the intercept

is

�0 = �U � �3

�
11605

tempU + 273:15

�
:

The estimated lognormal cdfs in Figure 11 are parallel because of the constant �� assump-

tion. This plot shows some deviations from the assumed model. These deviations, however,

are within what could be expected from random variability alone (a likelihood ratio test

comparing the model depicted in Figure 11 with independent ML �ts at each level of tem-

perature, shown on Figure 10, had a p-value of .052).

Figure 12 shows the same lognormal-Arrhenius model �t given in Figure 11 with an

extrapolated estimate of the cdf at 80�C. The dotted lines on this �gure are the degradation-

model-based estimates of the �:5dB-de�nition failure-time distributions shown in Figure 7.

There are small di�erences between the lognormal and the degradation models at 237�C

and 195�C. The di�erence at 80�C has been ampli�ed by extrapolation. The degradation

estimate would have more credibility because it makes full use of the information available

at 150�C.

The overall close agreement between the degradation model and the lognormal failure-

time model can be explained by referring to the models introduced in Section 4.2. There we

showed that failure time will follow a lognormal distribution if T (tempU ) = � (1=RU) log (1� Df=D1)

follows a lognormal distribution. In our degradation model, log(RU) and log(�D1) [and

thus log(Df=D1)] are assumed to follow a joint normal distribution. If Df=D1 is small

relative to 1 (as in this example), then log(1� Df=D1) � �Df=D1 and thus T (tempU ) is
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Figure 12: Lognormal-Arrhenius model �t to the Device-B failure-time data with failure

de�ned as power drop below �:5 dB (solid lines) compared with the corresponding degra-

dation model estimates (dotted lines). Also shown is the set of pointwise approximate 90%

bootstrap con�dence intervals for F (t) at 80�C, based on the degradation analysis.

approximately the ratio of two lognormal random variables, and the ratio of two lognormal

random variables also follows a lognormal distribution.

Figure 13 is similar to Figure 12 with a �tted Weibull distribution for failure time. Com-

paring Figures 12 and 13, the lognormal ALT and degradation models provide a somewhat

better �t to the data.

9 Concluding Remarks and Areas for Further Research

Using degradation data o�ers some important advantages for making reliability inferences

and predictions, especially when test time is severely limited and few or no failures are

expected at lower levels of acceleration variables in an accelerated test. Although degra-

dation analysis requires stronger modeling assumptions (shape of degradation curves and

distributions for the random e�ects), there is better opportunity to assess the adequacy of

such assumptions and to combine important physical understanding of failure process with

limited, expensive data.

There are a number of important extensions of this work, suggesting areas for future

research. These include

� The development of more and better physical/chemical models for failure-causing

degradation.

� In some products there may be more than one failure mechanism and thus more than

one degradation process with the correspondingly di�erent chemical reactions that
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Figure 13: Weibull-Arrhenius model �t to the Device-B failure-time data (solid lines) com-

pared with the degradation model estimates (dotted lines).

may be accelerated at di�erent rates. Physical models and corresponding statistical

methods are needed for dealing with such problems.

� Exact ML and likelihood-based methods for inference are computationally burden-

some. With continuing increases in computing power, however, such methods could

become practicable in the future.

� As explained in Section 2.3, we have assumed that the appropriate transformation

(e.g., a Box-Cox transformation) for the random e�ects parameters is known. The

multivariate generalization of the probability-integral transform given in Rosenblatt

(1952) suggests the use of more general joint families of distributions for the path

parameters.

� It would be possible to include the choice of parameter transformation (e.g., ML esti-

mation of the Box-Cox transformation parameters) as part of the estimation/bootstrap

procedure.

� The models in this paper have assumed that given a unit's random parameters, the

degradation process is deterministic. Such a model is adequate for many well-behaved

failure processes. In some situations, however, additional within-unit or environmental

stochastic variability may need to be modeled. For example, Sobczyk and Spencer

(1992) describe stochastic process models for fatigue failure.

� Nelson (1995) describes models and analysis methods for problems with random non-

zero degradation initiation times. His methods assume destructive inspection so that

each sample unit will provide a single (possibly censored) degradation response. It
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would be useful to extend this work to allow for multiple readings on individual test

units.
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