
Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 
 
Beyer, Hawthorne L. (2010) Epidemiological models of rabies in 
domestic dogs: dynamics and control. PhD thesis. 
 
 
http://theses.gla.ac.uk/2017/ 
 
 
 
Copyright and moral rights for this thesis are retained by the Author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

 

http://theses.gla.ac.uk/2017/


Epidemiological models of rabies in domestic
dogs: dynamics and control

Hawthorne L. Beyer

This thesis is submitted in fulfilment of
the requirements for the degree of

Doctor of Philosophy

University of Glasgow
Faculty of Biomedical and Life Sciences

Division of Ecology and Evolutionary Biology

March 2010



Abstract

Epidemiological models are frequently used to estimate basic parameters, evaluate
alternative control strategies, and set levels for control measures such as vaccination,
culling, or quarantine. However, inferences drawn from these models are sensitive
to the assumptions upon which they are based. While many simple models provide
qualitative insights into disease dynamics and control, they may not fully capture the
mechanisms driving transmission dynamics and, therefore, may not be reasonable
approximations of reality. This thesis examines how the predictions made by simple
models are influenced by assumptions regarding the dispersion of the transition
periods, alternative infection states, and transmission heterogeneity resulting from
population structuring. More realistic models of rabies transmission dynamics
among domestic dogs in Serengeti District (Tanzania) are developed and applied
to the problem of assessing vaccination efficacy, and designing pulsed vaccination
campaigns.

Several themes emerge from the discussion of the models. First, the characte-
ristics of outbreaks can be strongly influenced by the dispersion of the incubation
and infectious period distributions, which has important implications for parameter
estimation, such as the estimation of the basic reproductive number, R0. Similarly,
alternative infection states, such as long incubation times, can substantially alter
outbreak characteristics.

Second, we find that simple SEIR models fail to accurately capture important
aspects of rabies disease outbreaks among domestic dog populations in northern
Tanzania, and therefore may be a poor basis for assigning control targets in this
system. More complex models that included the role of human intervention in
limiting outbreak severity, or that included population structure, were able to
reproduce the observed outbreak size distribution. We argue that there is greater
support for the structured population model, and discuss the implications of the
three models on the evaluation of vaccination efficacy.

Third, at a more regional scale, we build metapopulation models of rabies
transmission among domestic dog sub-populations. We use a Bayesian frame-
work to evaluate competing hypotheses about mechanisms driving transmission,
and sources of reinfection external to the dog population. The distance between
sub-populations, and the size of the sub-populations receiving and transmitting
infection are identified as important components of transmission dynamics. We
also find evidence for a relatively high rate of re-infection of these populations from
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neighbouring inhabited districts, or from other species distributed throughout the
study area, rather than from adjacent wildlife protected areas. We use the highest
ranked models to quantify the efficacy of vaccination campaigns that took place
between 2002-2007. This work demonstrates how a coarse, proximate sentinel of
rabies infection is useful for making inferences about spatial disease dynamics and
the efficacy of control measures.

Finally, we use these metapopulation models to evaluate alternative strategies
of pulse vaccination in order to maximize the reduction in the occurrence of rabies.
The strategies vary in both the way in which vaccine doses are allocated to sub-
populations, and in the trade-off between the frequency and intensity of vaccination
pulses. The most effective allocation strategy was based on a measure of the im-
portance of sub-populations to disease dynamics, and it had 30-50% higher efficacy
than the other strategies investigated. This work demonstrates the strong potential
for the role of metapopulation models in optimizing disease control strategies.
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Chapter 1

Introduction

1.1 Background

Managing infectious disease is one of the most challenging problems humans face

(King et al., 2006), from both human health, agricultural, and conservation perspec-

tives. Rabies, for instance, exerts a major public health and economic burden as it is

responsible for at least 55,000 deaths worldwide, and expenditure on treatment and

control exceeds US$500 million per annum (Coleman et al., 2004; Knobel et al., 2005).

Epidemiological models are fundamental tools for understanding disease dynamics,

predicting outbreak severity, evaluating the efficacy of control interventions, and

attempting to optimize the deployment of new control measures. Simple models,

such as SEIR (susceptible, exposed, infectious, recovered / removed) compartment

models, can be used to explore disease dynamics and control programmes in a

qualitative manner, although they are often too simplistic to accurately capture the

complexity of real epidemics. The degree to which a model is useful for designing

and evaluating control measures depends on the extent to which the model is a rea-

sonable approximation of reality. Models that do not fully capture the mechanisms

driving transmission dynamics might underestimate the level of control needed

to prevent major outbreaks occurring, or might result in inefficient allocation of

limited resources by suggesting inappropriate control targets.

There are two aspects to this problem. First, it is important to understand

how disease dynamics described by simple models are sensitive to the simplifying

assumptions upon which those models are based. This includes, for instance, the
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assumption that transition period distributions are exponentially distributed, that

it is reasonable to use a four-compartment model (SEIR), and that populations are

well-mixed. Second, models can be developed that do not make these assumptions,

and, therefore, sacrifice a certain amount of analytical tractability and simplicity to

become more realistic. These models can include, for instance, realistic transition

period distributions, alternative infection states, and population structure. Of

particular importance to the problem of rabies in East Africa are metapopulation

models that capture some of the heterogeneity in transmission arising from the

spatial structuring of the population.

1.2 Thesis organisation

This thesis has been compiled as a collection of 6 chapters in paper format, one

of which appears as an appendix. As some of the chapters are based on similar

datasets (but address different aspects of disease dynamics in that system) there

is inevitably some repetition of information among chapters. As each chapter has

its own introduction and discussion, I include only brief general introduction and

general discussion chapters (labelled 1 and 7).

Chapter 2 reviews how the dispersion of incubation and infectious period distri-

butions affects parameter estimation (R0, β) and the characteristics of outbreaks. A

common simplifying assumption in epidemiological models is that the incubation

and infectious periods are exponentially distributed. This is often an unrealistic

assumption as transition rates between epidemiological states change as a function

of the time an individual has spent in a given state. As a result, the exponential

distribution overestimates the frequency of durations that are much lower than

or higher than the mean, so the variance of the distribution is high. Using more

realistic, less dispersed distributions can profoundly alter parameter estimations

and the characteristics of outbreaks such as persistence time (the time to fade-out),

the critical time (time to the peak number of infectious individuals), number of

transmissions (outbreak size), and the probability that an outbreak will be large.

Chapter 2 also reviews how stochastic and deterministic solutions to compart-
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ment models differ. Deterministic solutions are sometimes criticised because they

allow disease to persist at unrealistically low densities that would result in fade-out

of the disease in real populations. When population counts are used instead of

densities, this can result in disease persisting in a fraction of an individual (e.g.

the atto-fox, 1 × 10−18 foxes; Mollison, 1991). Because fade-out does not occur in

deterministic solutions, they often predict epidemic cycles driven by the recruitment

of new susceptible individuals in the inter-epidemic troughs, thereby facilitating a

new outbreak. Yet deterministic solutions are very efficient compared to stochastic

simulations, and provide many useful qualitative results. Chapter 2, therefore,

brings together several ideas that have been reported previously, but that are not

often considered simultaneously. It is useful to review these concepts first as a

foundation for the modelling that occurs in later chapters.

In addition to the assumption of exponentially distributed incubation and infec-

tious periods, compartment models of rabies often also assume that an SEIR model

is a reasonable representation of the infection process. However, there are three

hypothesized alternative infection states that may be important to disease dynamics.

First, some rabies infections are characterized by unusually long incubation times

that may indicate two alternative incubation processes. Second, a carrier state has

been hypothesized whereby an individual intermittently sheds live virus in saliva

but without displaying typical clinical signs of the disease or suffering the increased

mortality normally associated with infection (Fekadu, 1975). Finally, it is usually

assumed that rabies is a fatal disease, but there is evidence that recovery from rabies

infection is possible, especially in the earliest stages of infection.

Cleaveland & Dye (1995) incorporate these alternative infection states into com-

partment models and compare the behaviour of the endemic equilibrium among

the models using deterministic methods. In Chapter 3, the four models of Clea-

veland & Dye (1995) are generalized to include a variable number of incubation

and infection stages, thereby facilitating the use of the method of stages (Cox &

Miller, 1965) to accommodate realistic transition period distributions. Expressions

for the basic reproductive number, R0, that incorporate the alternative infection

states and multiple stages for the states, are also presented for each of the models.
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I review the pathological and empirical evidence for three alternative infection

states, and quantify their effect on outbreak characteristics of rabies in domestic

dogs using stochastic simulations of these compartment models. Further to Chapter

2, realistic distributions are fit to empirical data on domestic dog incubation and

infectious period durations (Hampson et al., 2009), and the consequence of assuming

exponentially distributed transition times is also quantified.

Together, Chapters 2 and 3 are a review of the importance of model assumptions

on quantifying outbreak dynamics, with particular emphasis on rabies. The next

three chapters are more applied, and are based on data collected by my collaborators

working in Tanzania (in particular Sarah Cleaveland, Katie Hampson, Tiziana

Lembo and Magai Kaare). The focus of this work is the domestic dog population in

Serengeti District (SD), northern Tanzania, which borders wildlife protected areas

to the south and east (Serengeti National Park and the Ikorongo and Grumeti Game

Reserves), and other inhabited districts to the north and west (Bunda, Musoma and

Tarime Districts). The inhabitants of this district (approximately 175,000 people in

75 villages) live in primarily agro-pastoralist communities and use domestic dogs

for guarding households and livestock. Rabies has been a problem in this region

since 1979 (S. Cleaveland, pers. comm.).

Stochastic simulations of SEIR compartment models predict a bimodal distri-

bution of outbreak sizes (Anderson & Watson, 1980). This dichotomy in outcomes

is driven by stochastic fade-out of outbreaks, resulting in outbreaks that are small

and short-lived (minor), or larger and longer-lasting (major). Anderson & Watson

(1980) developed analytical approximations for the proportion of outbreaks that are

minor and major as a function of R0 and the number of stages used to represent

the incubation and infectious period distributions. In the case of domestic dogs in

Serengeti District, this approximation predicts that over 10% of outbreaks should

be major. In fact, none of the 185 observed outbreaks were major. This indicates

that simple SEIR models are not a good representation of disease dynamics in this

system, which has important implications for the use of these models in evaluating

intervention strategies and settings control targets. The major outbreaks are respon-

sible for the majority of incidence in simulations, and therefore have the potential to
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have a disproportionately large influence on estimates of control efficacy.

In Chapter 4 we explore two hypotheses that might account for the absence of

major rabies outbreaks in the observed size distribution. First, human intervention

shortly after the onset of cases may limit the severity of outbreaks. Although we

model the influence of human intervention in general terms as a reduction in the

transmission parameter soon after the start of an outbreak, this effect could result,

for instance, from owners restricting the movement of dogs. Second, although

homogeneous mixing is often assumed to be a reasonable assumption in small

populations, transmission heterogeneity resulting from host population structure

may limit outbreak size. We use Approximate Bayesian Computation (Toni et al.,

2009) to evaluate competing models that differ in the timing and strength of human

intervention, or in population structure and coupling.

In Chapter 5 we develop metapopulation models to explore how heterogeneity

in transmission dynamics resulting from spatial structure in a host population at a

regional level drives disease dynamics. A Bayesian framework is used to evaluate

competing metapopulation models of rabies transmission among domestic dog

populations in Serengeti District, northern Tanzania. Because of the difficulty of

collecting epidemiological data in this region, a proximate indicator of disease,

medical records of animal-bite injuries, is used to infer the occurrence of suspected

rabid dog cases in one month intervals. Hence, the metapopulation models are simi-

lar to stochastic patch-occupancy models. State-space models are used to explore

the implications of different levels of reporting probability on model parameter

estimates.

This is not a closed system and the metapopulation models include an external

source of reinfection. We hypothesize that this source arises from neighbouring

inhabited districts to the north and west, the protected areas (e.g. Serengeti National

Park) to the south and east, or from other hosts that are distributed throughout the

district. We use model selection approaches to rank the relative likelihood of the

three reinfection sources and the rate at which reinfection of the dog population

occurs. Finally, we use the top ranked models to quantify the efficacy of pulsed

vaccination campaigns that took place between 2002-2007.
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An obvious application of these metapopulation models is to address whether

they can be used to improve the efficacy of intervention measures. In Chapter

6, therefore, we evaluate alternative strategies of pulse vaccination in order to

maximize the reduction in the occurrence of rabies. The strategies vary according to

the manner in which vaccine is allocated, and the trade-off between frequency and

intensity of pulses.



Chapter 2

Effects of the dispersion of transition period

distributions on outbreak dynamics of SEIR

models

2.1 Abstract

In epidemiological modelling, the dispersion of the incubation and infectious period

distributions have important consequences on the estimation of the basic repro-

ductive number, R0, and disease dynamics in large populations at the endemic

equilibrium. However, the affect of the dispersion of these distributions on outbreak

dynamics in smaller populations is less well explored. Here we use stochastic simu-

lations of outbreaks to quantify the effect of the dispersion of the incubation and

infectious periods on persistence time, critical time and outbreak size. We find that

as the dispersion of the infectious period decreases, persistence time and the critical

time are reduced. Less dispersed incubation periods result in a slight decrease

in persistence times, and a slight increase in critical times. This effect becomes

more pronounced as the duration of the incubation period increases relative to the

infectious period. Outbreak size is insensitive to the dispersion of the distributions.

The dichotomy in outcomes of simulated outbreaks, which are either small and

brief (minor) or large and longer-lived (major), results in a bimodal distribution of

outbreak characteristics. Less dispersed infectious periods increase the probability

an outbreak will be major, particularly in systems where R0 is small (< 6) but larger

than 1. Deterministic solutions of these models describe the characteristics of out-
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breaks conditional upon a major outbreak occurring, and therefore fail to capture

important features of outbreaks (stochastic fade-out and persistence time). Determi-

nistic and stochastic approaches can provide qualitatively similar results but differ

in their quantitative predictions, which may be important when designing control

measures. Importantly, outbreak dynamics (persistence and critical times, and the

proportion of outbreaks that are major) are strongly influenced by the dispersion of

the incubation and infectious period distributions using either of these approaches.

We discuss the implications of this work to the design and evaluation of control

measures.

Keywords: compartment models; stochastic simulation; method of stages; incuba-

tion; infectious; SEIR; dispersion

2.2 Introduction

Mathematical epidemiological models are increasingly being used to identify ap-

propriate management responses to infectious disease outbreaks (Matthews et al.,

2003), inform public policy on disease management in the event of future outbreaks

(Ferguson et al., 2003; Haydon et al., 2004), and design and evaluate control strategies

(Haydon et al., 1997; Keeling et al., 2001, 2003; Haydon et al., 2006; Tildesley et al.,

2006; Feng et al., 2007). One common simplifying assumption in these models is that

the probability of an event occurring (e.g. recovery of an infectious individual) is

constant through time, and waiting times between events are therefore exponen-

tially distributed. This is often an unrealistic assumption: transition rates between

epidemiological states change as a function of the time an individual has spent

in a given state. For instance, the chance of recovery from a non-fatal infection

is usually low immediately following infection, and increases through time. The

mathematically convenient exponential distribution overestimates the frequency of

durations that are much shorter or longer than the mean (Lloyd, 2001c), thus the

dispersion of this distribution is unrealistically large for many diseases.

Disease dynamics are sensitive to the distributions used to model the transition
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periods (Anderson & Watson, 1980; Lloyd, 1996; Keeling & Grenfell, 1998; Andersson

& Britton, 2000; Lloyd, 2001b,c). In SIR (susceptible, infectious, recovered) models,

less dispersed infectious period distributions (IPDs) result in decreased stability

of the endemic equilibrium (Lloyd, 1996, 2001c), decreased persistence time (time

to fade-out) of the disease in the population (Andersson & Britton, 2000; Lloyd,

2001c), and outbreaks that take off faster and have a higher peak number of cases

(Wearing et al., 2005). In SEIR models, the addition of the exposure/incubation

period (E), representing a time when individuals are infected but not yet infectious,

adds a delay into the system that increases persistence time and critical time (the

time to the peak number of infectious cases). Analytical approximations suggest

that in large populations less dispersed incubation period distributions (EPDs)

reduce persistence time, but that the effect of the dispersion of the IPD depends on

the relative length of the incubation and infectious periods (Andersson & Britton,

2000). If the incubation period is short relative to the infectious period, SEIR

models are well approximated by SIR models and using less dispersed IPDs will

also decrease long term persistence time and stability (Lloyd, 2001c; Andersson &

Britton, 2000). However, if the incubation period is much longer than the infectious

period the opposite behaviour is observed: persistence times and model stability

increase when less dispersed distributions are used (Lloyd, 2001c). In SEIR models,

analytical approximations based on the assumption of large populations suggest

less dispersed IPDs result in a slight decrease in the mean and variance of the size of

major outbreaks, but the dispersion of the EPD has no affect on the size distribution

(Anderson & Watson, 1980).

As a result of these effects, the dispersion of the EPD and IPD can have important

consequences for the estimation of the basic reproductive number, R0, based on

the initial epidemic growth rate (λ) or from trajectory matching (Wearing et al.,

2005). Models using over-dispersed EPDs and IPDs result in an underestimation

and overestimation of R0 respectively (Anderson & Watson, 1980; Lloyd, 2001a;

Wearing et al., 2005), with the dispersion of the infectious period having a relatively

smaller effect on R0 (Figure 2.1). The bias resulting from the use of over-dispersed

distributions can be substantial (Wearing et al., 2005) in epidemics where R0 is high
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(approximately greater than 6), but bias is small for lower values of R0 (Figure 2.1).

Inferences regarding the design and efficacy of control measures may, therefore,

be sensitive to the distributions used (Wearing et al., 2005; Feng et al., 2007) depen-

ding on how parameters have been estimated. If R0 is estimated using trajectory

matching of an SEIR model, and the same models are used to evaluate the effective-

ness of control strategies, then using over-dispersed distributions may not result in

an important bias in the inferences. However, if R0 is estimated directly from empi-

rical data, for instance using contact tracing, then using over-dispersed distributions

may substantially bias estimates of efficacy and the level of control measures needed

to prevent major outbreaks. While underestimating the efficacy of control measures

may only result in an inefficient allocation of resources, overestimating efficacy may

result in inadequate protection of a population from disease outbreaks. Thus, the

dispersion of the incubation and infectious periods can have an important influence

on both the estimation of R0 and the evaluation of control measures.

Although the influence of the dispersion of the incubation and infectious per-

iods on R0 is well understood (Anderson & Watson, 1980; Lloyd, 2001a; Wearing

et al., 2005), there has been less work examining the effects of the dispersion of the

incubation and infectious periods on outbreak dynamics above and beyond the

influence on R0. Here we use stochastic simulations of SEIR compartment models

to quantify the effect of less dispersed distributions on outbreak dynamics relative

to an SEIR model with exponentially distributed incubation and infectious periods.

We compare the stochastic simulations to deterministic solutions of these models,

and discuss the implications of the assumption of exponentially distributed periods

on the evaluation of disease control strategies. In contrast to the effect of these

distributions on the estimation of R0, the dispersion of the infectious period is the

dominant of the two effects on the characteristics of outbreaks, but the dispersion of

the incubation period also can be important when the duration of the incubation

period is long relative to that of the infectious period.

Here, we assume that R0 has been estimated directly from empirical data (e.g.

using contact tracing), and not by means of trajectory matching using an SEIR model.

The estimate of R0 is therefore independent of any particular SEIR model. We
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demonstrate that the assumption of exponentially distributed infectious periods can

result in a substantial underestimation of the proportion of outbreaks that are major

(sensu Anderson & Watson, 1980) versus those that fade-out almost immediately,

implying a subsequent overestimation in the efficacy of control strategies.

2.3 Methods

We use a SEIR compartment model to investigate outbreak dynamics of a non-

fatal disease in a small, entirely susceptible, well mixed population into which a

single infectious individual is introduced. One way of incorporating more realistic

event time distributions into stochastic simulations of epidemiological models is

the method of stages (Cox & Miller, 1965; Anderson & Watson, 1980; Lloyd, 1996,

2001b), in which the incubation and infectious periods (of mean duration 1/σ and

1/α respectively) are divided into m and n discrete, exponentially distributed stages

respectively. The incubation and infectious periods are therefore the sum of m and

n independent exponential random variables, each having a mean 1/mσ and 1/nα

respectively (Anderson & Watson, 1980). Overall, the distribution of time spent

in the incubation and infectious states is gamma distributed, whereby the shape

parameter corresponds to m or n stages, and the scale parameter is to 1/mσ or 1/nα,

respectively. As the number of stages increases, the overall mean duration remains

the same but the dispersion of the distribution decreases (Figure 2.2).

The model dynamics are determined by the following equations that govern

the rates of change between the four epidemiological states (susceptible, exposed /

incubation, infectious, and recovered):
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dS/dt = bN − βSI − dS (2.1)

dE1/dt = βSI − (mσ + d)E1 (2.2)

dEj/dt = mσEj−1 − (mσ + d)Ej, (j = 2, ...,m) (2.3)

dI1/dt = mσEm − (nα + d)I1 (2.4)

dIj/dt = nαIj−1 − (nα + d)Ij, (j = 2, ..., n) (2.5)

dR/dt = nαIn − dR (2.6)

where E =
∑n

i=1Ei, I =
∑n

i=1 Ii, N = S + E + I + R, and βSI represents density

dependent transmission, which we assume is a reasonable assumption for modelling

outbreaks in small populations, although several other transmission models are

possible (reviewed in McCallum et al., 2001). Ej and Ij are the jth stage of the

incubation and infectious periods respectively. The model includes demographic

processes (birth rate, b, and natural death rate, d). Initial conditions were S = 1000,

E1 = 0, I1 = 1. The mean infectious period was 10 days, but to quantify outbreak

dynamics for different ratios of incubation and infectious periods, the incubation

period was 5, 10 or 20 days, corresponding to ratios of 1:2, 1:1, and 2:1.

As our goal was to quantify the effect of the dispersion of the EPD and IPD while

controlling for its influence on R0, the transmission parameter β was adjusted so

that R0 was constant (1.5) among models, regardless of the number of stages, using

(Feng et al., 2007):

R0 =

(
mσ

mσ + d

)m
βN

nα + d

n−1∑
j=0

(
nα

nα + d

)j
(2.7)

This expression relates R0 to β while correcting for the natural death of indi-

viduals during the incubation or infectious periods and in the absence of natural

death this simplifies to R0 = βN/α. Although we present the more general forms

of the equations that include demographic parameters, the birth and death rate

were set to 0 in our simulations to close the system and facilitate comparison of the

stochastic and deterministic solutions.
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The dynamical properties of these models were evaluated using 100,000 sto-

chastic simulations of each model, with every combination of 1, 2, 5, 10 and 20

incubation and infectious stages. Simulations were based on a continuous time

Gillespie algorithm (Gillespie, 1976), and were run until fade-out of the disease

in the population. Each simulation was characterized by the outbreak size, the

persistence time, and the critical time.

Numerical simulation was used to quantify the deterministic solutions to these

models using the “odesolve” package in R (Appendix A; R Development Core

Team, 2009). Deterministic methods do not predict fade-out, even in a closed system,

so fade-out was assumed to occur when the number of susceptible individuals

dropped below 1. Critical time could be identified precisely, and the outbreak size

was calculated by subtracting the number of susceptible individuals remaining at

the end of the simulation time from the initial number.

There is a dichotomy in the outcome of stochastic simulations of outbreaks,

which may be small and brief (minor) or large and long-lived (major). Each simula-

ted outbreak was categorized as minor or major based on the bimodal distribution of

outbreak sizes (for the population sizes modelled here, an outbreak was considered

major if there were more than 200 cases). Anderson & Watson (1980) provide an

analytical solution to the problem of predicting the probability that an outbreak will

be major for an SEIR model with gamma distributed periods. The approximation of

the probability of a major outbreak is 1− πψ where π is the smaller root of

π

[
1 +

R0

m
(1− π)

]m
= 1 (2.8)

and ψ is a function of the initial conditions (Anderson & Watson, 1980):

ψ = E + 1/m
m∑
j=1

(m− j + 1)Ij. (2.9)

In our analysis, in which we assume an outbreak begins with a single, newly

infectious individual entering a population, ψ = 1.

When m = 1, Equation 2.8 simplifies to the solution pi = 1− 1/R0 (Whittle, 1955;

Anderson & May, 1991), which can be intuitively explained as follows. If we define
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x as the proportion of the population that is susceptible and x′ as the proportion

of the population that is susceptible at the endemic equilibrium, then when x = 1,

xR0 = R0, and when x = x′, x′R0 = 1. Thus, x′ = 1/R0 and if the proportion of

the population that is susceptible is reduced by 1/R0 by vaccinating 1 − 1/R0 of

the population, then the effective reproductive number is 1 and the probability of a

large outbreak approaches 0. The termm in Equation 2.8 is an adjustment to account

for multiple stages (Anderson & Watson, 1980). As m increases, corresponding to a

reduction in the variance of the duration of the infectious period distribution, the

solution to π decreases, and the probability of a major outbreak therefore increases.

2.4 Results

The dichotomy in outcomes of simulated outbreaks (e.g. Figure 2.3a) resulted in

a bimodal distribution of outbreak sizes, persistence times and critical times (Fi-

gure 2.3b). The probability of disease fade-out before a major outbreak occurs is

an important feature of stochastically modelled outbreak dynamics. However, as

fade-out is not possible in deterministic solutions they reflect the behaviour of the

system conditional upon a major outbreak occurring. To facilitate comparison of

stochastic and deterministic solutions we therefore characterize the proportion of

outbreaks that are minor and major, but present only the mean characteristics of

major outbreaks for the stochastic models.

In stochastic models, outbreak size in major outbreaks was insensitive to the

dispersion of the incubation and infectious periods, or the duration of the incubation

period (Figure 2.4a-c). The stochastic and deterministic estimates of the size of

major outbreaks was similar (Figure 2.5a, b), an agreement that improved as the

dispersion of the IPD decreased (Figure 2.5a).

Persistence times (Figure 2.4d-f) and critical times (Figure 2.4g-i) decreased as

the dispersion of the IPD decreased. There was an approximately 15% difference in

persistence and critical times between the models with 1 and 20 infectious period

stages. Decreasing the dispersion of the EPD resulted in a slight decrease in persis-

tence times, and a slight increase in critical times. The strength of this effect was
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stronger as the duration of the incubation period increased relative to that of the

infectious period (Figure 2.4f, i).

The deterministic estimates were only approximately similar to the stochastic

means for persistence (Figure 2.5c, d) and critical times (Figure 2.5e, f). In both cases

the deterministic estimate for a model with exponentially distributed infectious

periods was considerably higher than the mean of the stochastic simulations, and

as the dispersion of the infectious period decreased the associated reduction in

persistence and critical times was larger for the deterministic estimate. Also, the

dispersion of the incubation period had small but opposite effects on persistence

times in the stochastic and deterministic solutions (Figure 2.5c, d): as the dispersion

of the EPD decreased persistence times slightly decreased and increased respectively.

The probability that an outbreak would be major was profoundly influenced

by the dispersion of the IPD. It increased as the dispersion of the IPD decreased

but was insensitive to the dispersion of the EPD or the duration of the incubation

period (Figure 2.4j-l). There was close agreement between the stochastic and

analytical estimates (data not shown). To examine the generality of the influence of

the dispersion of the IPD on the probability an outbreak will be major, simulations

were run for a range of values of R0 (0.5-10), whereby the value of β was adjusted to

reflect R0 based on equation 2.7. Two models were used: both with an exponentially

distributed EPD, but one with an exponentially distributed IPD, and the other with

20 stages used to represent the IPD. For values of R0 greater than 1, the assumption

of exponentially distributed infectious periods results in a lower probability that an

outbreak will be major across a wide range of values of R0 (Figure 2.6). When R0

is less than or equal to 1 there is no discernible effect of the dispersion of the IPD

because immediate fade-out occurs in the majority of simulations.

2.5 Discussion

For a given value of R0, modelling outbreaks using less dispersed IPDs results

in an increased probability that an outbreak will be major, and reduced disease

persistence and critical times in these major outbreaks. One explanation for the
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effect of less dispersed IPD is that individuals have a greater chance of passing on

infection before they are removed from the population (Keeling & Grenfell, 1998;

Lloyd, 2001c). With exponentially distributed infectious periods many individuals

are infectious for less than the mean of the distribution and are therefore less likely

to pass on infection, while a small number are infectious much longer than the

mean. Although these latter individuals are more likely to transmit infection, the

resulting secondary cases also tend to be infectious for short periods of time. In

contrast, when less dispersed distributions are used, there is less variation among

individuals in the number of transmission events. Exponential distributions thus

tend to result in slower, ‘smouldering’ epidemics compared to the faster, more

explosive epidemics that burn-out more rapidly when less dispersed distributions

are used. This is clearly reflected in the patterns of persistence and critical times we

observed (see Figure 2.4). Although these effects relate to outbreak behaviour, long-

term persistence of the disease is also likely to be reduced because less dispersed

IPDs destabilize the model at the endemic equilibrium, increasing variability and

therefore result in a greater chance of stochastic fade-out (Lloyd, 2001b,c).

The effect of the EPD is to add a delay into the system that resulted in epidemics

that take longer to peak and then fade-out. Increasing the duration of the incubation

period relative to the infectious period resulted in a substantial increase in persis-

tence and critical times, and increased the strength of the effect of the dispersion

of the EPD on persistence and critical times. For diseases with incubation periods

that are long relative to the infectious period, the dispersion of the EPD can have

an even greater affect on critical times than the dispersion of the IPD (data not

shown). Furthermore, the reduction in critical and persistence times resulting from

less dispersed IPD’s diminishes as the relative duration of the EPD increases, and

will switch to a positive effect if the relative duration of the EPD is long enough.

The effect of the dispersion of the IPD is, therefore, not monotonic with respect to

critical and persistence times (Andersson & Britton, 2000). Thus, the dispersion of

both the EPD and IPD has important implications for parameter estimation using

simulation-based techniques such as trajectory matching (Wearing et al., 2005) or

approximate Bayesian computation (Toni et al., 2009).
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In SEIR models that do not include demographic processes the dispersion of the

EPD does not influence the size of major outbreaks or the probability that an out-

break will be major. Transmission is driven by the duration of the infectious period

and the contact rate among individuals, neither of which is directly influenced by

the duration or dispersion of the incubation period. However, the EPD can influence

outbreak dynamics in models that include demographic processes if the natural

death rate is high (some incubating individuals are removed from the population

before becoming infectious), or if the duration of the EPD allows recruitment of

new susceptible individuals into the population prior to the individual becoming

infectious. The former effect reduces the size of outbreaks, and the latter effect

increases the size of outbreaks.

The bimodality of outcomes is an important feature of outbreaks that can be

overlooked in deterministic solutions of SEIR models because they describe the

system conditional upon a major outbreak having occurred. This is important from a

disease control perspective because the reduction in probability of a major outbreak

occurring asR0 is reduced by control measures is a key outcome. When resources for

the control of disease are limited and eradication is therefore not plausible, control

measures can be deployed to reduce the risk of a major outbreak knowing that small

outbreaks that fade-out quickly can be tolerated (Haydon et al., 2006). However,

the dispersion of the IPD has a strong influence on the probability that an outbreak

will be major for values of R0 that are low but greater than 1 (e.g. approximately

1 < R0 ≤ 6, depending on the specifics of the model). An exponentially distributed

IPD underestimates the probability an outbreak will be major, and control targets

based on such models may, therefore, be overly optimistic.

At higher values of R0 (e.g. > 6) the dispersion of the IPD will have a less

pronounced effect on the proportion of major outbreaks simply because the majority

of outbreaks will be major even for the exponential model. However, when R0 is

high the dispersion of the IPD could still have a strong influence on estimates of

control efficacy because the expected reduction in major outbreaks resulting from

control measures will be sensitive to the dispersion of the IPD. Furthermore, higher

values of R0 are expected to amplify the influence of the dispersion of the EPD



2.5 Discussion 18

and IPD on persistence and critical times, which could be important when using

trajectory matching to estimate parameters.

The dispersion of the incubation and infectious periods have important conse-

quences for the estimation of R0 and the quantitative characteristics of outbreaks

based on either stochastic simulations or deterministic solutions of compartment

models. When R0 is estimated based on the initial epidemic growth rate, models

using over-dispersed EPDs and IPDs result in an underestimation and overestima-

tion of R0 respectively, with the influence of the dispersion of the EPD being the

larger of the two effects (Anderson & Watson, 1980; Lloyd, 1996, 2001a; Wearing et al.,

2005). Because R0 is often used to deduce the value of the transmission parameter

β, underestimating R0 results in an underestimate of β. Deterministic solutions

or stochastic simulations based on that estimate will therefore underestimate the

severity of an outbreak, which is strongly influenced by the magnitude of β. This

bias is small when the estimate of R0 based on the exponential model is small (less

than 5).

Including demographic parameters in the deterministic models can result in

epidemic cycles that may dampen through time depending on the formulation of

the model. One criticism of such models is that the density of infected individuals in

the epidemic troughs is so low (e.g. 10−18 animals/km2; Fowler, 2000) that stochastic

fade-out of the disease would be inevitable (Mollison, 1991; Keeling & Grenfell,

1997; Fowler, 2000). In our stochastic simulations fade-out occurred among all

simulations, in part because there is no recruitment of susceptible individuals in

our population, but also because of stochastic extinction of many outbreaks at an

early stage. Deterministic models can provide qualitative insights into outbreak

dynamics, but fail to capture the important characteristics of outbreaks.

Compartment models can be used to quantify the relative efficacy of different

control measures and to identify targets of the numbers of individuals to receive

treatment or control (e.g. Anderson, 1986; Keeling et al., 2003; Haydon et al., 2006;

Feng et al., 2007). The mathematically convenient but biologically unrealistic as-

sumption of exponentially distributed infectious periods can result in substantial

overestimation of persistence and critical times, and underestimation of the pro-
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bability of a major outbreak occurring. Assessments of control measures based on

exponentially distributed infectious periods may therefore overestimate control

efficacy and underestimate control measure targets needed to prevent or elimi-

nate outbreaks. These conclusions are consistent with Feng et al. (2007) who show

that estimates of the efficacy of control measures (combinations of quarantine and

isolation) are sensitive to the distributions used, and that the relative rankings of

efficiency of these measures (and therefore the choice of control strategy) can change

when less dispersed distributions are used. Similarly, Wearing et al. (2005) warn that

using exponentially distributed incubation and infectious periods can bias estimates

of R0, possibly resulting in overly optimistic estimates of the efficacy of disease

control measures.

The properties of epidemiological models are sensitive to the distributions used,

therefore the use of more realistic distributions should be adopted as standard prac-

tice. Given that gamma distributed event times can be simulated using the method

of stages (Cox & Miller, 1965; Lloyd, 2001b), and that a gamma distribution with

an integer shape parameter (a necessary precursor to using the method of stages)

can be fit to empirical incubation and infectious period data, it is straightforward to

build more realistic distributions into compartment models.
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Figure 2.1: The effect of the dispersion of the incubation and infectious periods on the esti-
mation of R0 from the epidemic growth rate (λ), whereby R0 = (λ(λ(σm)−1 + 1)m)/(α(1−
(λ(αn)−1 + 1)−n)). As the number of stages used to model the incubation period (m) and
infectious period (n) increases, the dispersion of the distribution decreases. One stage
corresponds to the exponential distribution. The initial growth rate (λ) is 50, 75, and 100
yr−1 in plots a-c respectively, and the mean duration of the incubation and infectious period
is 7 days in all models. The dispersion of the infectious period (1/α) has a small effect
relative to the dispersion of the incubation period (1/σ). Bias resulting from the assumption
of exponentially distributed periods is proportional to R0, thus when R0 is small (< 4) this
bias is negligible.



2.6 Tables and Figures 21

0 5 10 15 20 25 30

0.
00

0.
05

0.
10

0.
15

Time (days)

D
en

si
ty

n=1
n=2
n=5
n=10
n=20

Figure 2.2: Probability density of gamma distributed infectious period times. When the
shape parameter of the gamma distribution, n, equals 1, the gamma distribution simplifies to
an exponential distribution (solid black line). When n > 1, this corresponds to compartment
models containing n stages (see Methods section), and results in distributions with lower
variance that may be more realistic representations of infectious period times. The vertical
line identifies the common mean for all distributions (10 days).
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Figure 2.3: Illustration of the bimodal nature of simulated epidemics based on 100,000
stochastic simulations of an SEIR model. (a) Number of susceptible individuals through
simulation time. Note the high density bands above and below the mean (black line) that
correspond to minor and major epidemics respectively. The dashed line represents the
deterministic solution of the model. (b) Main plot: relationship between disease persistence
time (days) and outbreak size for minor (grey dots) and major (black dots) epidemics, with
the median of these distributions identified by the black and white crosses respectively.
The distribution of persistence times (top, solid line), critical times (top, dashed line) and
outbreak sizes (right) are bimodal.
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Figure 2.4: The effect of the dispersion of the incubation and infectious periods on the
characteristics of major outbreaks, based on stochastic simulations of three SEIR models
(columns of plots) that differ only in the duration of the incubation period, which is half,
equal to, and double the duration of the infectious period (10 days). For each of these
models, different numbers of stages were used to represent the incubation period (x-axis)
and infectious period (different line styles; see legend), thereby determining the dispersion of
these distributions. Outbreak size (a-c) was insensitive to the dispersion of the distributions
or to the relative durations of the incubation and infectious periods. Less dispersed infectious
period distributions resulted in shorter persistence times (d-f) and critical times (g-i), and
increased the probability that an outbreak would be major (j-l). Less dispersed incubation
period distributions resulted in a slight decrease in persistence times and a slight increase
in critical times, and the strength of this effect increased as the duration of the incubation
period increased. Increasing the duration of the incubation period had no effect on the
proportion of outbreaks that are large. Refer to Methods section for details of the model.
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Figure 2.5: Comparison of stochastic and deterministic solutions to an SEIR model with an
incubation and infection period of 10 days, and with different numbers of stages used to re-
present the incubation period (x axis) and infectious period (different line styles; see legend),
thereby determining the dispersion of these distributions. The effect of the dispersion of
the incubation and infectious periods is quantified with respect to three characteristics of
major outbreaks: outbreak size (a, b), persistence time (c, d), and critical time (e, f). Refer to
Methods section for details of the model.
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Figure 2.6: The proportion of outbreaks that are major outbreaks as a function of R0 for a
SEIR model with a mean incubation and infectious period of 10 days, and starting conditions
of one new infectious individual introduced into a population of 1000 susceptible indivi-
duals (see Methods section for details of model structure). The transmission parameter, β,
was adjusted to reflect different levels of R0. The lines represent predictions based on the
analytical approximation of Anderson & Watson (1980). The solid line corresponds to the
exponential model, and the dashed line is a model with a 20 stage infectious period and
a one stage incubation period (the probability an outbreak will be major is not related to
the dispersion of the incubation period). The predictions are validated by 50,000 stochastic
simulations of the models at various levels of R0 (open circles), whereby the strong bimoda-
lity in outbreak sizes was used to classify each outbreak as minor or major (major outbreaks
had at least 200 cases). Relative to the exponential model, less dispersed infectious period
distributions increase the probability that an outbreak will be major.



Chapter 3

The importance of realistic distributions and

alternative infection states in models of rabies

outbreaks

3.1 Abstract

Epidemiological models are increasingly used to identify appropriate management

responses to infectious disease outbreaks, inform public policy on disease manage-

ment in the event of future outbreaks, and design and evaluate control strategies.

However, inferences drawn from these models are sensitive to model structure

and the simplifying assumptions upon which the model is based. We review the

pathological evidence for, and quantify the effect of, hypothesized alternative rabies

infection states (long incubation periods, carrier individuals, and recovery and sub-

sequent immunity from infection) on outbreak dynamics described by the outbreak

size, persistence time, the peak number of infectious cases, and the critical time.

We also examine how realistic infectious period distributions and host population

demography affect outbreak dynamics. Alternative infection states and host demo-

graphy (growth rate) had the strongest effect on outbreak dynamics and, therefore,

could have a profound influence on parameter estimation or the estimation of the

basic reproductive number.

Keywords: compartment models; stochastic simulation; method of stages; Lyssa-

virus; long incubation period; carrier state
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3.2 Introduction

Rabies virus (RV; genus Lyssavirus) is a neuropathogen causing an acute encephalitis

that is usually fatal to mammalian hosts (Rupprecht et al., 2002). Rabies exerts a

major public health and economic burden: it is responsible for at least 55,000 deaths

worldwide (predominantly in Africa and Asia), and expenditure on treatment and

control exceeds US$500 million per annum (Coleman et al., 2004; Knobel et al.,

2005). RV is endemic to all continents with the exception of Antarctica, with the

domestic dog being the primary reservoir in Africa and Asia (Rupprecht et al., 2002;

Nel & Markotter, 2007). RV is a multi-host pathogen that infects a wide range of

mammals (Hanlon et al., 2007) and is therefore also an important threat to animal

populations of conservation concern (Woodroffe, 2001; Haydon et al., 2006; Randall

et al., 2006; Cleaveland et al., 2007), but it can be effectively controlled or eliminated

by vaccinating hosts (Eisinger & Thulke, 2008; Lembo et al., 2010).

Epidemiological models are frequently used to estimate basic parameters (An-

derson & May, 1991), evaluate alternative control strategies (Haydon et al., 1997;

Ferguson et al., 2003; Keeling et al., 2003; Haydon et al., 2004; Feng et al., 2009), and set

levels for control measures such as vaccination (Coleman & Dye, 1996; Kitala et al.,

2002; Haydon et al., 2006), culling (Matthews et al., 2003), or quarantine/isolation

(Feng et al., 2007). However, inferences drawn from these models are sensitive

to the assumptions upon which they are based. One common approach is to use

compartment models that classify the population into discrete epidemiological

states representing susceptible, exposed / incubation, infectious, and removed (or

recovered) individuals (SEIR models). These models assume that these discrete

states are adequate approximations of continuous state changes, that there is homo-

geneous mixing within the population, and that transition times between states are

exponentially distributed.

Although rabies is often modelled using an SEIR framework, three alternative

infection states have been hypothesized that may have an important affect on out-

break dynamics. First, that the incubation period can be long, sometimes lasting

years (Charlton et al., 1997; Tepsumethanon et al., 2004; Johnson et al., 2008). Rare,

long incubation periods may facilitate long-term disease persistence by allowing



3.2 Introduction 28

time for the susceptible individuals in a population to increase following an out-

break, thereby triggering a new outbreak when the infected individual eventually

becomes infectious. Second, RV infections are often assumed to be invariably fatal.

While this is generally true when the infection has spread to the central nervous

system (CNS), rabies is highly immunogenic and infection may be cleared by an

immune response prior to CNS infection (Hooper, 2005). This response could also

result in improved immunity to any subsequent exposure to RV. Third, it has been

hypothesized that a carrier state is possible whereby an individual intermittently

sheds live virus in saliva but without displaying typical clinical signs or suffering

the increased mortality normally associated with the infectious stage of the disease

(Fekadu, 1975).

Cleaveland & Dye (1995) investigated the influence of these alternative infection

states on the long-term endemic equilibrium of disease using deterministic models.

Relative to the simple SEIR model, long incubations times and immunity had

little impact on the period of the epidemic cycles predicted by these models, but

carriers increased the period from approximately 10 to 16 years. All three alternative

infection states increased the minimum of the number of infected dogs in the

epidemic troughs, implying that long incubation, carriers, and immunity might all

reduce the probability of stochastic disease fadeout.

The affect of these alternative infection states on outbreak dynamics, however, is

poorly understood. Here, we review the pathological evidence of these alternative

infectious stages, and quantify their influence on outbreak dynamics relative to

the simple SEIR model using stochastic simulations. Inferences regarding disease

dynamics are also sensitive to the dispersion of the incubation (EPD) and infectious

(IPD) period distributions (Keeling & Grenfell, 1998; Andersson & Britton, 2000;

Lloyd, 2001c; Wearing et al., 2005; Feng et al., 2007, Chapter 2). We, therefore, also

quantify the affect of using realistic distributions on outbreak characteristics relative

to the exponential model.
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3.2.1 Rabies pathology and epidemiology

The primary infection mechanism is transmission of virus in the saliva of an in-

fectious animal to an uninfected animal, usually by means of biting. Although

other modes of transmission are possible (e.g. ingestion of infected material, aerosol

transmission, exchange of saliva via licking mucous membranes or an open wound)

they are considered rare and ineffectual compared to bite transmission (Hanlon et al.,

2007; Rupprecht et al., 2002). Following inoculation, the virus enters cells, replicates,

and either spreads to adjacent cells or is released into the blood. Although RV is

neurotropic and direct entry into the peripheral nervous system is possible (Shankar

et al., 1991), it may take a variable amount of time for the virus to first encounter

a neuronal cell. There are also differences among strains in the time required to

invade the nervous system (Nel & Markotter, 2007).

Once in a neurone the virus moves rapidly through the peripheral nervous

system (50-100 mm/day; Tsiang et al., 1991) to the CNS. Infection of organs and

other non-nervous tissue subsequently occurs by means of centrifugal dissemi-

nation throughout the peripheral nervous system from the CNS (Murphy, 1977;

Jackson et al., 1999). Infection of the salivary gland in this way facilitates onward

transmission of the virus. Replication of the virus in the brain results in the neuro-

logical changes commonly associated with rabies, including increased aggression,

high pain tolerance, increased movement rates, gradual paralysis, and hydrophobia

(Hanlon et al., 2007). However, there is considerable variability in the range of

neurological signs that may be a function of damage to different regions of the brain.

Although RV is highly immunogenic and can be cleared from a host by a normal

viral immune response (Hooper, 2005), there are several ways in which the immune

system can be evaded. First, while replicating within a cell, and when moving

directly between adjacent cells, the virons are not exposed to virus neutralising

antibodies (VNA). Thus, the virus may be able to persist in a localised group of

infected cells despite an immune response. Furthermore, low concentrations of virus

may not trigger an immune response. Second, the nervous system is an immune

privileged site as the blood brain barrier prevents or limits the passage of VNA and

lymphocytes (Nel & Markotter, 2007). Thus, following CNS invasion, it is less likely
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an infection will be cleared, although the permeability of the blood brain barrier and

the pathogenicity of the RV strain in the host are important factors in determining

this (Baloul & Lafon, 2003; Wang et al., 2005; Roy & Hooper, 2008).

The duration of the incubation stage is highly variable, usually ranging from

2 weeks to several months or even years (Charlton et al., 1997; Tepsumethanon

et al., 2004; Johnson et al., 2008). Long incubation periods may be facilitated by

intramuscular inoculation whereby RV invades muscle cells, persists and replicates

within those cells for long periods of time, and only eventually spreads to the

peripheral nervous system at which time the usual pathogenesis resumes (Baer

& Cleary, 1972; Charlton et al., 1997). Charlton et al. (1997) provide experimental

evidence that muscle tissue is the site of delay of progression of infection, and that a

limited immune response may follow intramuscular infection. The duration of the

infectious period is less variable as the neurological effects typically lead to death

within a few days.

Thus, recovery from early infection, immunity, and long incubation periods are

repeatedly reported aspects of RV infection. However, the existence of a carrier state

has also been hypothesized (Fekadu, 1975; Fekadu et al., 1981; Fekadu, 1991) whereby

live virus is shed intermittently over long periods of time in the saliva of apparently

healthy individuals that display no clinical signs. Because the animal does not suffer

the increased mortality of a typical infection, and being asymptomatic is undetected

by humans that might otherwise destroy it, carrier individuals have the potential to

infect numerous other individuals over a long period.

Neither serum VNA nor viral RNA in the saliva is evidence of the carrier state

as both conditions can arise as the result of a RV infection cleared by an immune

response (Zhang et al., 2008). Furthermore, live virus can be shed in saliva before

the onset of clinical signs (Fekadu et al., 1982; Rupprecht et al., 2002), so short-term

observations of live virus in the absence of clinical signs is not proof of a carrier

individual either. The sole indication of the carrier state is the demonstration of

live virus in the saliva over long periods of time, although the virus may only be

detected intermittently.

The carrier state has only been rarely documented (Fekadu, 1975; Fekadu et al.,
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1981; Fekadu, 1991), and only in a small number of individuals. Fekadu et al. (1981)

describe a domestic dog that recovered from rabies infection following experimental

intramuscular inoculation, but that shed low concentrations of live virus 42 and

169 days after recovery. The presence of live virus was established when it resulted

in fatal rabies infections in mice inoculated intra-cerebrally. Two further studies

provide limited evidence of a carrier state. Aghomo & Rupprecht (1990) isolated

live virus from 4 of 1500 saliva samples from apparently healthy, unvaccinated

domestic dogs distributed over a broad area in southern Nigeria. However, as these

dogs were not subsequently monitored it is not known whether they developed

clinical signs shortly after sampling, or conversely, whether there was long-term

shedding of virus. Furthermore, 4 in 1500 samples is consistent with the incidence

of rabies in this region, which is endemic in the domestic dog population. Thus, this

study provides weak evidence of a carrier state. East et al. (2001) claimed that viral

RNA (detected using RT-PCR) in saliva samples and positive VNA titres indicated

a carrier state among hyaenas (Crocuta crocuta). However, as they did not isolate

live virus from saliva we argue this study also provides weak evidence of a carrier

state. More recently, Zhang et al. (2008) found no evidence of a carrier state among

153 domestic dogs in China.

Furthermore, pathologically, it is not clear how such a state could arise. There

is little evidence to suggest that a salivary gland infection is possible without a

simultaneous infection in the nervous system. Charlton et al. (1983) demonstrated

experimentally that spread among salivary gland cells occurs via neuronal connec-

tions, with limited direct cell to cell transmission, and that neural networks are

necessary for widespread infection of salivary glands. This implies that in carrier

individuals infection is either cleared from the CNS after it has infected the salivary

glands, where it persists, or that the CNS infection is at a low level and fails to cause

fatal encephalitis or clinical signs. It is perhaps possible that the carrier state may

only occur with a specific strain of rabies in a specific host, that is localized in one

region.

The apparently intermittent shedding of virus reported by Fekadu et al. (1981) is

consistent with the mechanism proposed by Charlton et al. (1997) to account for long
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incubation periods in muscle fibres: within cells, where it is protected from VNA,

the virus may replicate for long periods of time, only eventually being released follo-

wing the disintegration of the cell. This suggests a possible alternative explanation

of the presence of live virus in animals that have recovered from infection. Virus

may persist in some infected cells for a considerable length of time until the cells

dies, when low concentrations of live virus might be detected.

3.3 Methods

One way of introducing more realistic event time distributions into stochastic

models is the method of stages (Cox & Miller, 1965; Lloyd, 2001c, Chapter 2), in

which the incubation and infectious periods (of mean duration σ and α respectively)

are divided into m and n discrete, exponentially distributed stages respectively. The

incubation and infectious periods are therefore the sum of m and n independent

exponential random variables, each having a mean 1/mσ and 1/nα respectively

(Anderson & Watson, 1980). Overall, the distribution of time spent in the incubation

and infectious states is gamma distributed. As the number of stages increases,

the overall mean duration remains the same but the dispersion of the distribution

decreases.

We adapted the four compartment models of rabies proposed by Cleaveland &

Dye (1995), allowing the incubation and infectious periods to be modelled using a

variable number of stages. All of the models include demographic processes (birth

rate, b, and natural death rate, d). The first model is a simple SEIR (susceptible,

exposed / incubation, infectious, removed) model:

dS/dt = bN − βSI − dS (3.1)

dE1/dt = βSI − (mσ + d)E1 (3.2)

dEj/dt = mσEj−1 − (mσ + d)Ej, (j = 2, ...,m) (3.3)

dI1/dt = mσEm − (nα + d)I1 (3.4)

dIj/dt = nαIj−1 − (nα + d)Ij, (j = 2, ..., n) (3.5)

dR/dt = (nα + d)Ij (3.6)
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where N = S + E + I , E =
∑m

i=1Ei, I =
∑n

i=1 Ii, βSI represents density dependent

transmission, and 1/σ and 1/α are the mean duration of the incubation and infec-

tious periods respectively. Ej and Ij are the jth stage of the incubation and infectious

periods respectively.

The second model adds an alternative, longer incubation period (L) of mean

duration 1/σL that is occupied by φL proportion of infected animals. Thus, equations

3.2-3.5 are replaced with:

dE1/dt = (1− φL)βSI − (mσ + d)E1 (3.7)

dEj/dt = mσEj−1 − (mσ + d)Ej, (j = 2, ...,m) (3.8)

dL1/dt = φLβSI − (pσL + d)L1 (3.9)

dLj/dt = pσLj−1 − (pσL + d)Lj, (j = 2, ..., p) (3.10)

dI1/dt = mσEm + pσLLp − (nα + d)I1 (3.11)

dIj/dt = nαIj−1 − (nα + d)Ij, (j = 2, ..., n) (3.12)

where p is the number of stages in the long incubation period (here, p = m in model

2).

In the third model a small proportion of animals (φC) enter a carrier state (C)

whereby they are able to transmit disease but do not suffer from clinical effects

and therefore are only removed from the population at the same rate at which

animals naturally die (d). However, compared to normally infectious individuals

they are less effective at transmitting disease (parameter η) because they shed

virus intermittently and do not suffer the behavioural changes such as increased

aggression that can facilitate transmission. Thus, equations 3.1-3.6 are replaced

with:
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dS/dt = bN − βS(I + ηC)− dS (3.13)

dE1/dt = βS(I + ηC)− (mσ + d)E1 (3.14)

dEj/dt = mσEj−1 − (mσ + d)Ej, (j = 2, ...,m) (3.15)

dI1/dt = (1− φC)mσEm − (nα + d)I1 (3.16)

dIj/dt = nαIj−1 − (nα + d)Ij, (j = 2, ..., n) (3.17)

dC/dt = φCmσEm − dC (3.18)

dR/dt = (nα + d)Ij + dC (3.19)

In the fourth model a proportion of animals (φR) recover from infection and

enter a new immune class (M). Unlike non-fatal pathogens, however, recovery from

rabies infection occurs prior to the infectious period. Here, equations 3.4-3.6 are

replaced by:

dI1/dt = (1− φR)mσEm − (nα + d)I1 (3.20)

dIj/dt = nαIj−1 − (nα + d)Ij, (j = 2, ..., n) (3.21)

dM/dt = φRmσEm − dM (3.22)

dR/dt = (nα + d)Ij + dM (3.23)

For this model N = S + E + I +M .

We explored these models in the context of rabies outbreaks among domestic

dogs in a small, well mixed population. The demographic and epidemiological pa-

rameters were estimated from dog surveys and contact-tracing in Serengeti District

(SD), northern Tanzania (Hampson et al., 2009). The birth rate (0.538 dogs/yr) was

slightly higher than the natural death rate (0.45 dogs/yr), therefore in the absence

of disease the population will, on average, increase through time. The population

growth rate was the difference between the birth and death rate (r = b − d). In

Model 2, 5% of infected animals were characterized by long incubation periods of

mean duration 140 days. In Model 3, 0.1% of infectious animals were carriers that
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suffered no increased rate of mortality due to disease, but that were only 0.1 times

as effective as transmitting disease as normal infectious individuals. In Model 4,

20% of infected individuals recovered and became immune. Initial conditions were

S = 500, E1 = 0, I1 = 1, but in the case of Model 3 the initial single infectious indivi-

dual was stochastically assigned to the alternative carrier state with probability φC .

The population size of 500 was selected because it corresponds to typical population

sizes of domestic dogs in SD villages, and allows us assess qualitative differences

among models.

Samples of the duration of the incubation and infectious periods (n = 296 and

237 respectively) were derived from case histories of suspected rabid domestic dogs

(Hampson et al., 2009). There were two problems to overcome when fitting a gamma

distribution to estimates of the duration of the incubation and infectious periods.

First, most estimates were made to the nearest day. This discretisation had a strong

influence on the fitted parameter values, particularly the integer shape parameter

that represents the number of stages (m or n). Second, some durations were recorded

to the nearest week, or over a range of days. For durations that were estimated to

the nearest day we assumed a ±0.5 d error, and for all other point estimate values

we assumed ±20% error. This reflects the assumption that the resolution at which

the duration is recorded is related to the accuracy of the estimate because recent

events (recorded in units of days) are likely to be recalled with greater accuracy than

events that occurred weeks or months earlier. We therefore used a constant error for

the durations recorded in days, and an error that was proportional to the duration

for those durations recorded in weeks or months. For each duration estimate a new

value was sampled from a uniform distribution defined by these error limits, and

the gamma distribution was fit to this sample using maximum likelihood. This

was repeated 1000 times. The maximum likelihood value for the shape parameter

was the same for all iterations (m = 1 and n = 3 for the incubation and infectious

periods respectively). The mean duration of the incubation and infectious periods

was 22.5 and 3.12 days respectively (Figure 3.1).

It is often not feasible to estimate the value of the transmission parameter (β)

empirically because of the difficulty of observing contact between infectious and
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susceptible individuals that results in disease transmission. This parameter can,

however, be deduced from an estimate of the basic reproductive number (R0) and

a transmission model, which is often based on the assumption of either density

or frequency dependent transmission (McCallum et al., 2001). R0, defined as the

average number of secondary cases that are expected to arise from the introduction

of a newly infectious individual into an entirely susceptible population (Anderson

& May, 1991), was estimated to be approximately 1.1− 1.2 among domestic dogs

in Serengeti District (Hampson et al., 2009). In this system transmission appears

to be neither strictly frequency nor density dependent (Hampson et al., 2009), but

for simulating outbreaks in small populations we assume that density dependent

transmission is a reasonable simplification.

Under density dependent transmission the rate at which new cases are generated

increases in the early stages of the outbreak as the number of infectious cases

increases and the number of susceptible individuals remains high. But the depletion

of susceptible individuals as an outbreak progresses then results in a reduction

in the rate at which new cases arise. Because transmission frequency varies as a

function of host density, R0 will increase as host density increases. It may, therefore,

be inappropriate to use a value of R0 estimated at one density and apply it to a

population at a different density. Our goal, however, was to quantify the relative

effects of the dispersion of the transition period distributions and of alternative

models of infection states on the characteristics of outbreaks while controlling for

R0. The transmission parameter β was therefore adjusted so that R0 was constant

(1.19; Hampson et al., 2009) among all models based on these expressions for R0:
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R0 =

(
mσ

mσ + d

)m
βN

nα + d

n−1∑
j=0

(
nα

nα + d

)j
(3.24)

R0 =

[
(1− φL)

(
mσ

mσ + d

)m
+ φL

(
pσL

pσL + d

)p]
βN

nα + d

n−1∑
j=0

(
nα

nα + d

)j
(3.25)

R0 =

(
mσ

mσ + d

)m
βN

[
ηφC
d

+
1− φC
nα + d

n−1∑
j=0

(
nα

nα + d

)j]
(3.26)

R0 =

(
mσ

mσ + d

)m
βN(1− φR)

nα + d

n−1∑
j=0

(
nα

nα + d

)j
(3.27)

for Models 1-4 respectively. These expressions relate R0 to β while correcting for the

natural death of individuals during the incubation or infectious periods. In practice,

β varied little among simulations because the natural death rate is long relative to

the duration of the incubation and infectious periods. The expression for R0 for

model 1 is based on Feng et al. (2007), which was used as a basis for deriving the

other three expressions.

The dynamical properties of these models, for both exponential and gamma

distributed IPD’s, were evaluated using 50,000 stochastic simulations of each model,

in a population of 500 susceptible dogs into which a single infectious dog was

introduced. Simulations were based on a continuous time Gillespie algorithm

(Gillespie, 1976), and were run until fade-out of the disease in the population. Each

simulation was characterized by the outbreak size (the total number of cases), the

persistence time (time to fade-out), the peak number of infectious cases, and the

critical time (the time of the peak of the number of infectious cases). To further

quantify the interaction between demography and outbreak dynamics we simulate

the model with a gamma distributed IPD at levels of population growth rate (−0.3 <

r < 0.3 in increments of 0.1) by adjusting the birth rate parameter.

There is a dichotomy in the outcome of stochastic simulations of outbreaks,

which may be small and brief (minor) or large and long-lived (major). For larger

values of R0 (e.g. R0 > 3) the bimodal distribution of outbreak sizes do not overlap

and it is therefore straightforward to reliably classify outbreaks as minor or major.

When R0 is close to 1, however, the distributions of minor and major outbreak sizes
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overlap, making it more difficult to distinguish the two. Here, we define major

outbreaks as having more than 122 cases (this cut-off was established using k-means

clustering (MacQueen, 1967) of the bimodal frequency distribution of outbreak

sizes).

3.4 Results

The characteristics of simulated outbreaks are summarized in Table 3.1. The propor-

tion of outbreaks that were major was similar for models 1, 2 and 4, but approxima-

tely 13% lower for the model that included carrier individuals (model 3). Relative

to models using exponential IPDs, using gamma IPDs increased the proportion of

major outbreaks by 43-49% for all four models.

The mean outbreak size differed little among the four models, with an approxi-

mately 7% difference between the smallest (model 1) and largest (models 2 and 3)

sizes, and similar outbreak sizes using either exponential or gamma IPDs. However,

the frequency of extreme values relative to the simple SEIR model (model 1) was

higher for the carrier model (model 3), and to a lesser extent the long incubation

time model (model 2), leading to an increase in the variance, skewness and 97.5%

quantile values of the outbreak size distribution (Figure 3.2a).

Relative to the simple SEIR model (model 1), the addition of long incubation

times (model 2) or carrier individuals (model 3) substantially increased the mean,

variance and extreme values in persistence and critical times (Table 3.1). For instance,

the mean persistence time was 42% longer for model 2 (Figure 3.2b), and the 97.5%

quantile of persistence times was 4.1 yr for model 2 compared to 2.7 yr for model

1. Allowing some animals to recover with subsequent immunity (model 4) slightly

reduced persistence and critical times. The predominant effect of using gamma IPDs

was to increase the mean persistence and critical times by approximately 8-14% for

all four models. The peak number of cases was similar among the four models, but

gamma IPDs resulted in a slight decrease in peak cases relative to models using

exponential IPDs.

The demographic growth rate (r) had a strong effect on outbreak characteristics.
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For all models, the proportion of outbreaks that were major, and the size, persistence

times, and peak number of infectious cases of those major outbreaks increased as

the population growth rate increased (Figure 3.3a-d). Negative population growth

rates resulted in smaller, shorter outbreaks with fewer peak cases of infectious

individuals, and reduced the proportion of outbreaks that were major. Increasingly

positive population growth rates resulted in non-linear (approximately exponential)

increases in persistence and critical times, and outbreak sizes. The greatest discre-

pancy among the four models was in persistence times, which were consistently

50% higher for models 2 and 3.

3.5 Discussion

The hypothesized alternative long incubation state is supported by both pathological

and empirical (e.g. case history) evidence (Charlton et al., 1997; Tepsumethanon et al.,

2004; Johnson et al., 2008). However, although long incubation times for rabies are

possible, even lasting years, it is difficult to quantify the frequency and duration of

these long incubation periods. There is strong sampling bias against long incubation

times as experimental studies are unable to monitor individuals indefinitely so

observations are censored, and case history reconstructions are less likely to detect

transmission events that occurred a long time prior to the appearance of signs. It is

not clear, therefore, whether it is more appropriate to model incubation times as a

single distribution with high variance (a fat tail), or as two separate distributions

representing different pathological processes (direct infection of the peripheral

nervous system, or a period of intramuscular incubation that precedes infection of

the nervous system). Using a single distribution to represent the incubation period

may underestimate the frequency and duration of individuals with long incubation

times, and therefore underestimate outbreak persistence times, and outbreak sizes

in populations with positive growth rates.

The hypothesized alternative carrier state is unsupported by pathological and

empirical evidence (Charlton et al., 1983; Zhang et al., 2008), with the possible

exception of a small number of apparently exceptional cases (e.g. Fekadu et al., 1981;
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Aghomo & Rupprecht, 1990). If carrier individuals do exist, they may arise so rarely

that they are inconsequential from an epidemiological modelling and disease control

perspective. Although the inclusion this state can result in substantial changes to

disease dynamics, without direct evidence of the existence of the carrier state and

an estimate of the frequency of incidence in a host population it is difficult to justify

including this state in epidemiological models.

There is experimental evidence that recovery from rabies infection is possible,

especially prior to infection of the CNS, and that vaccination provides some im-

munity to future infection. However, different RV strains can vary considerably in

pathogenicity and the degree to which they trigger an immune response in hosts.

Thus, the degree of immunity may vary depending on the strain, rather than being

a binary immune/susceptible state as modelled here. Also, little is know about

how immunity might wane with time, and the rate at which recovered individuals

become susceptible again. Further work is needed in this area. However, as natural

recovery from exposure to rabies had little effect on outbreak characteristics, even

at a 20% recovery rate, it may be of limited significance in epidemiological models.

Outbreak dynamics were strongly influenced by host demography (population

growth rate). When estimating parameters or R0 using trajectory matching methods

it is therefore important to take into account the demographic context in which

outbreaks occur. Negative growth rates had a dampening effect on outbreak se-

verity, while positive growth rates magnified outbreak severity. Even though R0

was constant for all our simulations, the rate at which susceptible individuals are

recruited to the population resulted in widely different outcomes. This implies that

poor estimates of recruitment, or assuming that demography is not important, could

result in substantial bias to parameter estimates.

Compared to persistence time, outbreak size data may offer limited resolution

for evaluating competing models of infectious states. The differences in outbreak

sizes among the alternative infection state models were small (less than 7% relative

to the simple SEIR model) whereas the differences in mean persistence times were

much larger (up to 42%). Furthermore, there was more variation among models

with respect to persistence times than to outbreak sizes (Figure 3.2a, b). However,



3.5 Discussion 41

although persistence time data would potentially provide greater opportunity to

distinguish among competing models, persistence times are difficult to quantify in

the field and are sensitive to detection of the first and last cases in an outbreak.

There was 100% fade-out of the disease among all simulations for all models,

indicating that none of the models are consistent with long term persistence of

infection in the absence of reintroduction from an external (unmodelled) source.

However, the model that included a separate class of long incubators (model 2) had

substantially longer persistence times and more extreme values than the simple SEIR

model (model 1), indicating that this model was more consistent with long-term

persistence of rabies. Long incubation times allow the population of susceptible

individuals to increase (in cases where there is positive population growth) before

the incubation individual becomes infectious. In populations where the recruitment

rate of susceptible individuals is high enough, this could potentially fuel cycles of

outbreaks and recovery, thereby facilitating long-term persistence of the disease in a

population.

The use of realistic distributions (a gamma distributed IPD in this case) increased

the probability that an outbreak would be major, but resulted in outbreak sizes

that were similar to those predicted by the model with an exponentially distributed

IPD. Gamma distributed IPD’s also increased the length of persistence and critical

times, but these effect sizes were approximately one-quarter the size of the diffe-

rences among the four infection state models. Previous work has emphasized the

importance of the dispersion of the EPD and IPD on estimates of R0 (Anderson &

Watson, 1980; Lloyd, 2001a; Wearing et al., 2005). We argue, however, that for some

diseases alternative infection states and population growth rates may have an even

more important influence on outbreak dynamics and therefore on the estimation

of R0. This is particularly true for pathogens where R0 is small (e.g. < 3) and the

effects of the dispersion of the incubation and infectious distributions are relatively

inconsequential (Chapter 1).

We have examined outbreak dynamics of these models using stochastic simula-

tion, and Cleaveland & Dye (1995) have examined the behaviour of the endemic

equilibrium using deterministic approaches. Although there is limited scope for
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examining outbreak dynamics using deterministic approaches, using stochastic

simulations to explore the behaviour of the endemic equilibrium could provide

useful insights into the critical community size that is required to facilitate long-term

persistence, and the effect, if any, of alternative infection states on epidemic cycles.

It is important to consider the validity of the simplifying assumptions when

interpreting the results of epidemiological models. The mathematically convenient

but biologically unrealistic assumption of exponentially distributed infectious per-

iods may introduce important error into control measure targets (Feng et al., 2007).

Stochastic simulation outcomes are sensitive to the distributions used, therefore the

use of more realistic distributions should be adopted as standard practice. Given

that gamma distributed event times can be simulated using the method of stages

(Cox & Miller, 1965), and that a gamma distribution with an integer shape parameter

(a necessary precursor to using the method of stages) can be fit to empirical incuba-

tion and infectious period data, it is straightforward to build realistic distributions

into stochastic compartment models.
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Exponential models Gamma models
1 2 3 4 1 2 3 4

Proportion major 0.144 0.143 0.125 0.144 0.210 0.213 0.181 0.206

Outbreak size
mean 239 251 252 244 240 257 252 247
s.d. 60.1 65.7 86.4 63.5 57.5 64.4 83.1 61.8
97.5% quantile 356 389 482 368 354 391 461 371
skewness 0.156 0.433 1.60 0.210 0.164 0.456 1.58 0.257

Persistence time (days)
mean 571 808 734 536 633 877 792 597
s.d. 168 281 557 166 193 295 543 184
97.5% quantile 984 1493 2350 942 1102 1595 2420 1040
skewness 1.05 1.28 4.06 1.17 1.13 1.22 3.82 1.14

Critical time (days)
mean 247 291 260 223 277 332 292 255
s.d. 137 196 173 134 154 214 173 149
97.5% quantile 584 806 664 565 666 895 712 622
skewness 1.34 1.90 2.70 1.63 1.41 1.90 1.94 1.40

Peak infectious cases
mean 9.16 8.88 8.94 8.42 8.77 8.57 8.58 8.06
s.d. 2.17 2.03 2.08 1.96 1.93 1.90 1.91 1.77
97.5% quantile 14 14 14 13 13 13 13 12
skewness 0.702 0.750 0.808 0.755 0.666 0.762 0.850 0.675

Table 3.1: Characteristics of simulated rabies outbreaks based on 50,000 stochastic simu-
lations of four compartment models of rabies using exponentially distributed incubation
and infectious periods (“Exponential models”) and more realistic gamma distributions
(“Gamma models”). The four models correspond to a standard SEIR model (model 1), an
SEIR model with an alternative long incubation state (model 2), an SEIR model that includes
carriers (model 3), and an SEIR model that allows for recovery and immunity (model 4).
The proportion of outbreaks that are major is shown in the first row of values. Subsequent
summary statistics are based on major outbreaks only. Outbreak dynamics are summarized
by the mean, standard deviation (s.d.), 97.5% quantile values, and skewness of the outbreak
size, persistence time (days), critical time (days) and peak number of infectious cases.
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Figure 3.1: Distributions of the durations of incubation (a) and infectious (b) periods of
rabid dogs in Serengeti District, Tanzania. Solid lines represent the maximum likelihood fits
of gamma distributions with integer shape parameters, and the dashed line indicates the
mean of the distributions. The mean duration of the incubation and infectious periods was
22.5 days (s.d. 22.7 d) and 3.12 days (s.d. 1.83 d) respectively.
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Figure 3.2: Frequency distributions of outbreak size (a) and persistence times (b) of four
compartment models of rabies (represented by different line styles in each plot). The four
models correspond to a standard SEIR model (model 1), a model with an alternative long
incubation state (model 2), a model that includes carrier individuals (model 3), and a model
that allows for recovery and immunity (model 4). Vertical lines represent the mean of each
distribution. Outbreak dynamics were quantified using 50,000 stochastic simulations of the
models with an initial population of 500 susceptible animals into which a single infectious
individual is introduced (see Methods for details).



3.6 Tables and Figures 46

−0.3 −0.1 0.1 0.3

0.
05

0.
15

0.
25

r

P
ro

po
rt

io
n 

m
aj

or

model

1
2
3
4

(a)

−0.3 −0.1 0.1 0.3

20
0

30
0

40
0

50
0

r

O
ut

br
ea

k 
si

ze

(b)

−0.3 −0.1 0.1 0.3

40
0

60
0

80
0

10
00

r

M
ea

n 
pe

rs
is

te
nc

e 
tim

e 
(d

ay
s)

(c)

−0.3 −0.1 0.1 0.3

7
8

9
10

11
12

13

r

M
ea

n 
pe

ak
 in

fe
ct

io
us

 c
as

es

(d)

Figure 3.3: The relationship between the host population growth rate and outbreak cha-
racteristics of four compartment models of rabies (see Methods for details). The change
in outbreak dynamics as a function of population growth rate is summarized by the the
proportion of outbreaks that are major (a), the mean outbreak size of major outbreaks (b),
the mean persistence time of major outbreaks (c), and the mean peak number of infectious
cases for major outbreaks (d).



Chapter 4

Limiting determinants of outbreak size

distributions: a case study of canine rabies

“Reports that say that something hasn’t happened are always interesting to me, because
as we know, there are known knowns; there are things we know we know. We also
know there are known unknowns; that is to say we know there are some things we do
not know. But there are also unknown unknowns - the ones we don’t know we don’t
know”

US Defence Secretary Donald Rumsfeld
Department of Defense, 12 February 2002

4.1 Abstract

For epidemiological models to be useful in designing and evaluating disease control

measures (e.g. vaccination) they must be a reasonable approximation of reality. We

contrast the observed distribution of rabies outbreak sizes among domestic dogs

in Tanzania to predictions from simple compartment models, which predict a bi-

modal distribution of outbreak sizes. The large, long-lived (major) outbreaks were

absent from observed data but accounted for 84% of simulated rabies incidence, an

important discrepancy. We hypothesize outbreak severity may be limited by human

intervention reducing transmission rates subsequent to the start of an outbreak,

or transmission heterogeneity resulting from host population structure. We use

Approximate Bayesian Computation to evaluate competing models that differ in the

timing and strength of human intervention, or in population structure and coupling.

Both mechanisms reproduced the observed outbreak size distribution, but for the
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intervention model this was conditional on a 98% reduction in transmission soon

after the onset of cases, which is unrealistic in practice. The highest ranked structure

model had numerous small groups, with transmission rates 15 times higher within-

versus between-groups. We conclude that even in small populations structure is an

important driver of outbreak dynamics, implying the common assumption of homo-

geneous mixing may not be valid. Local population structuring limits the spread of

infection and the size of outbreaks. Including populations structuring into models

is likely to be important for accurately evaluating the efficacy of interventions.

Keywords: rabies; outbreak dynamics; vaccination; sequential Monte Carlo; Ap-

proximate Bayesian Computation

4.2 Introduction

Epidemiological models are frequently used to estimate basic parameters (Anderson

& May, 1991), evaluate alternative control strategies (Haydon et al., 1997; Fergu-

son et al., 2003; Keeling et al., 2003; Haydon et al., 2004; Feng et al., 2009), and set

levels for control measures such as vaccination (Coleman & Dye, 1996; Kitala et al.,

2002; Haydon et al., 2006), culling (Matthews et al., 2003), or quarantine/isolation

(Feng et al., 2007). Simple models, such as SEIR (susceptible, exposed, infectious,

recovered) compartment models, can be used to explore disease dynamics and

control programmes in a qualitative manner, although they are often too simplistic

to accurately capture the complexity of real epidemics. The degree to which a model

is useful for designing and evaluating control measures depends on the extent

to which the model is a reasonable approximation of reality. Models that do not

fully capture the mechanisms driving transmission dynamics might underestimate

the level of control needed to prevent major outbreaks occurring, or might result

in inefficient allocation of limited resources by suggesting inappropriate control

targets.

Here we critically examine how well simple compartment models describe

outbreak dynamics of rabies in domestic dog populations in an east African agro-
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pastoralist community. Stochastic simulations of SEIR compartment models result

in a dichotomy in outcomes of outbreaks, which may be small and brief (minor)

or large and long-lived (major), with relatively little probability of intermediate

outbreak sizes. The distribution of outbreak sizes is therefore bimodal, with the

relative proportion of minor and major outbreaks depending on the magnitude of

the basic reproductive number, R0, and the distribution of the infectious period

(Anderson & Watson, 1980, Chapter 2). ’Major’ outbreaks, therefore, refer to the

outbreaks that take-off and typically result in infection of 50-100% of the population

depending on the model. The impetus for this investigation is the observation that

major rabies outbreaks appear to be absent from the host population (Figure 4.1a).

Extensive empirical work (infectious case histories) in this system indicates the

value of R0 being around 1.1-1.2 (Hampson et al., 2009). Therefore, based on the

most simple SEIR models, we would expect more than 10% of outbreaks would be

major (Anderson & Watson, 1980).

We quantify the expected distribution of outbreak sizes based on realistic in-

cubation and infectious period distributions, and estimates of the proportion of

the host population that is vaccinated. This model predicts that major outbreaks

would occur in this system, which have not been observed in practice. We there-

fore evaluate two hypotheses that may account for this discrepancy. First, human

intervention at the early stages of an outbreak could result in a reduction in trans-

mission rates that would limit the severity of the outbreak. This corresponds to

behaviour such as tying up dogs when rabies is known to be present, and killing

suspected rabid animals. We develop competing models of the timing of the onset

of human intervention and quantify the strength of effect that would be needed

to reproduce the observed distribution of outbreak sizes. Second, heterogeneous

mixing (structure in the dog population) may serve to limit outbreaks. Although

the populations are quite small in the communities we study (mean: 288 dogs

per village), the assumption of homogeneous mixing may not be appropriate. We

develop competing models of population structure and quantify the relative rates of

within and between group transmission needed to generate outbreak distributions

similar to those observed. We then further investigate the potential impacts of these
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alternative mechanisms by using an independent metric. Comparing vaccination

efficacy between observed data and simulations, we identify population structure

as an important factor constraining the spread of disease within these populations.

4.2.1 Estimation of R0

The basic reproductive number is defined as the average number of secondary

infections produced by the introduction of a single infectious individual into an

entirely susceptible population (Anderson & May, 1991). A variety of approaches

can be used to estimate R0. One of the most direct methods is based on infection

histories that document who infects whom and provides a distribution of the num-

ber of secondary cases resulting from each infectious case. In the early stages of an

epidemic it is reasonable to assume that the population of susceptible individuals

is constant, and the mean of this distribution is an empirical estimate of R0. A

related approach is to estimate the intrinsic growth rate of the infected population

at the beginning of an outbreak. The expression that relates R0 to this growth rate is

model dependent (see Heffernan et al., 2005). Both of these methods are sensitive

to the stochastic variability typical of the early stages of infection, and to reporting

inaccuracies (missed cases). They can also only be meaningfully applied to disease

for which transmissions can be readily observed, or reconstructed (Heesterbeek &

Dietz, 1996), precluding most airborne pathogens.

A more general approach is to use trajectory matching of simulated outbreaks

to the observed outbreak (e.g. Wearing et al., 2005). In the case of SEIR models

this approach usually requires that the durations of the incubation and infectious

periods have been estimated independently. The remaining model parameters (e.g.

β) are estimated by minimising the difference between the observed and simulated

epidemic trajectories (e.g. using least squares errors), and R0 can then be derived

from these parameters (e.g. R0 = β/γ in the case of a simple mass action model).

In populations comprised of discrete, disjoint classes the ’next generation method’

(Diekmann et al., 1990) can be used to estimate R0, defined as the spectral radius of

the next generation operator (Heffernan et al., 2005). This technique can therefore be

applied to populations with, for instance, age or spatial structure. One issue with
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this approach is that it can be difficult to parameterize transmission rates among

classes, and that the estimate of R0 may be sensitive to the way in which continuous

variables (e.g. age) have been descretized.

Other approaches include the reconstruction of epidemic trees (Haydon et al.,

2003; Hampson et al., 2009), and inferences based on the final size of the epidemic

or on data from equilibrium situations (Heesterbeek & Dietz, 1996; Heffernan et al.,

2005).

Most of these approaches to estimating R0 suffer from the problem of qualifying

whether a population is entirely susceptible. Immunity of some individuals may

arise following vaccination, or naturally following recovery from infection. If

a significant proportion of the population is immune the effective reproductive

number (Re) is estimated rather than R0. There may be a complex relationship

between Re and R0 as a function of density dependence in transmission rates, and

how the immune individuals may dilute the susceptible individuals. Estimating the

frequency of natural immunity in a population can be difficult and expensive.

4.3 Methods

4.3.1 Rabies outbreak sizes in domestic dogs

Serengeti District (SD) in northern Tanzania borders wildlife protected areas to the

south and east (Serengeti National Park and Ikorongo and Grumeti Game Reserves)

and inhabited districts to the north and west (Bunda, Musoma and Tarime). SD

consists of 75 villages, inhabited by approximately 174,400 people (Population

and Housing Census of Tanzania 2002) in agro-pastoralist communities that use

domestic dogs for guarding households and livestock.

The incidence of suspected infectious rabid dogs in each village in each month

(Figure 4.2) was quantified from contact tracing using medical records of patients

with animal-bite injuries from hospitals and dispensaries, case reports from livestock

offices, and community-based surveillance activities (Hampson et al., 2009). The

initial number of susceptible dogs in each village in January 2002 was estimated

based on the human population size and the average number of dogs per household
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in this region (Knobel et al., 2008; Lembo et al., 2008), and the numbers of dogs that

were vaccinated. The number of susceptible and vaccinated dogs in subsequent

months was modelled as a function of the birth and death rate, the number of

dogs vaccinated during vaccination campaigns, and the rate at which vaccination

coverage wanes (refer to Hampson et al., 2009, for details).

Failure to observe all cases and the long incubation time of rabies makes it

difficult to determine when outbreaks start and end, and which cases should be

considered part of the same outbreak. Here we assume that cases within a village

that are separated by three or more months of no detected cases constitute different

outbreaks. To facilitate comparison of outbreaks sizes from villages with different

population sizes, we convert the outbreak size to a proportion by dividing by the

estimated number of susceptible dogs at the beginning of the outbreak (Figure 4.1a).

It is likely that not all cases of rabies were detected using these methods. Howe-

ver, only if detection rates are very low (< 10%) would there be a risk of failing to

detect large outbreaks that would fundamentally bias our analysis. We conservati-

vely modelled the detection rate of cases to be low, at 50%, and test the sensitivity of

our results to this assumption using detection rates of 40% and 60%. We suspect

the true detection rate is higher than 50%, which would influence parameter esti-

mates, but only reinforces the conclusion that major outbreaks are absent from the

population. We argue that because rabies is a highly visible disease, and the host

population is in close contact with the human population, and the local population

is educated about this disease, it is unlikely that detection rates could be as low as

50%.

This approach is based on the assumption that movements of infectious dogs

among villages are balanced within the course of a single outbreak (no net loss

or gain from this movement), and that this movement does not alter the size of

the outbreak. This first assumption was necessary in order to distinguish among

outbreaks because it is not feasible to trace outbreaks that transition across multiple

villages.

Estimates of the duration of the incubation and infectious periods were based on

case-histories of infectious dogs obtained from contact tracing (Hampson et al., 2009).
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Interviews with local people were used to classify the cause of death as natural,

killed by humans, or unknown. Thus we can estimate the reduction in infectious

period resulting from human intervention, and the approximate proportion of

infectious dogs that are killed.

4.3.2 Expected outbreak size distribution

We quantify the distribution of rabies outbreak sizes predicted by a SEIRV (suscep-

tible, exposed / incubation, infectious, removed, vaccinated) compartment model

of a small, well mixed population into which a single infectious individual is in-

troduced. One way of incorporating more realistic event time distributions into

stochastic simulations of epidemiological models is the method of stages (Cox &

Miller, 1965; Anderson & Watson, 1980; Lloyd, 1996, 2001b, Chapter 1), in which the

incubation and infectious periods (of mean duration 1/σ and 1/α respectively) are

divided into m and n discrete, exponentially distributed stages respectively. The

incubation and infectious periods are therefore the sum of m and n independent

exponential random variables, each having a mean 1/mσ and 1/nα respectively

(Anderson & Watson, 1980). Overall, the distribution of time spent in the incubation

and infectious states is gamma distributed with a shape parameter corresponding to

m or n stages. As the number of stages increases, the overall mean duration remains

the same but the dispersion of the distribution decreases.

The model dynamics are determined by the following equations that govern the

rates of change between the epidemiological states:

dS/dt = −βSI/N (4.1)

dE1/dt = βSI/N −mσE1 (4.2)

dEj/dt = mσEj−1 −mσEj, (j = 2, ...,m) (4.3)

dI1/dt = mσEm − nαI1 (4.4)

dIj/dt = nαIj−1 − nαIj, (j = 2, ..., n) (4.5)

dRj/dt = nαIj (4.6)

whereN = S+E+I+V ,E =
∑m

i=1Ei, and I =
∑n

i=1 Ii. Ej and Ij are the jth stage of
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the exposed and infectious periods respectively. Frequency dependent transmission

(βSI/N ) is used here to allow for a dilution effect of vaccinated individuals, which

differ in number among villages. We assume that the waning of vaccination and

demographic processes are not important effects in single outbreaks. Therefore,

birth and natural death are omitted, and no dynamics of the vaccinated individuals

are explicitly included. We use a conservative estimate of R0 = 1.14 (Hampson et al.,

2009) to parameterize the model (β = 0.365).

Most estimates of the duration of the incubation and infectious periods (n = 296

and 237 respectively) were made to the nearest day, but the rest were recorded to the

nearest week, or over a range of days. This discretisation has a strong influence on

the fitted parameter values, particularly the shape parameter (representing m and

n). To resolve this, for durations that were estimated to the nearest day we assume

a ±0.5 d error, and for all other values we assume ±20% error. For each recorded

duration, a continuous value was sampled from a uniform distribution defined by

these error limits, and the gamma distribution was fit to this new sample using

maximum likelihood. This was repeated 1000 times. In both cases the maximum

likelihood value for the shape parameter was the same for all iterations (m = 1 and

n = 3 for the incubation and infectious periods respectively). The rate parameter

was calculated as the mean of the rate parameters for each of the iterations. The

mean durations of the incubation (1/σ) and infectious periods (1/α) were 22.5

and 3.12 days respectively (Figure 4.3a, b). This infectious period duration is the

estimated mean for the population (Hampson et al., 2009), and therefore includes

cases where animals were killed by humans.

For each observed outbreak (N = 185) the number of susceptible and vaccinated

dogs at the start of the outbreak was used to stochastically simulate outbreaks using

a Gillespie algorithm (Gillespie, 1976). The resulting simulated outbreak size was

used to estimate the detected outbreak size by sampling from a binomial distribution

with a probability of 0.5, corresponding to the estimated detection probability. This

process was repeated to generate a sample of 100 outbreak sizes for each observed

outbreak. The number of simulated detected infectious dogs was expressed as a

proportion of the number of susceptible dogs (Figure 4.1b) to facilitate comparison
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with the observed data (Figure 4.1a).

4.3.3 Approximate Bayesian computation

We use approximate Bayesian computation (ABC; Beaumont et al., 2002; Marjoram

et al., 2003; Sisson, 2007; Toni et al., 2009) for parameter estimation and model

comparison of our stochastic models. ABC has been suggested as an alternative to

likelihood methods when likelihood functions are analytically or computationally

intractable, whereby the calculation of the likelihood is replaced by a stochastic

simulation procedure. We provide a general summary of the ABC method as it

applies to all of the models we evaluate.

The simplest implementation of ABC is a rejection algorithm (Pritchard et al.,

1999). A set of candidate parameter values, θ∗, are drawn from initial sampling

distributions defined by the investigator for each of the random variables in the

model. These parameter values are used in the model to simulate a dataset (x∗)

that can be compared to the observed dataset (x0). The difference between the

simulated and observed datasets (ρ(x0, x∗)) is quantified using a vector of summary

statistics, which are designed to distinguish important differences between these

two realisations. If the difference is above a threshold, ε, then θ∗ is rejected, otherwise

it is accepted. This process is repeated, and the accepted values represent a sample

from the posterior distribution. The premise of ABC is that the posterior distribution

π(θ|x) can be approximated by π(θ|ρ(x0, x∗) ≤ ε) (Toni et al., 2009).

The rejection algorithm has been criticised as being inefficient when the prior

and posterior distributions are very different (Marjoram et al., 2003; Toni et al., 2009),

which makes this approach impractical if simulations are computationally costly.

Marjoram et al. (2003) proposed an MCMC-based algorithm to resolve this problem.

While it is more efficient (rejection rates are lower), the samples from the posterior

distribution are serially correlated, and if the likelihood surface is complex and the

proposal mechanism is poor the sampling chains can become stuck in areas of the

state space (Sisson, 2007).

Here we use the ABC sequential Monte Carlo (SMC) algorithm (Toni et al., 2009)

in which a population of “particles” are sampled from the prior distribution and are
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propagated through a series of intermediate distributions using stochastic simula-

tions and an increasingly stringent vector of tolerances (ε1, ..., εP ) for each sequential

population of particles (1, ..., P ). The final population, θP , represents a sample from

the conditional posterior distribution π(θ|ρ(x0, x∗) ≤ εP ). The algorithm is described

as follows:

1. Define the initial sampling distributions π, the vector of tolerances ε1...εP such

that ε1 > ... > εP ≥ 0, and set population indicator p = 1

2. Set particle number n = 1

3. If p = 1, independently sample proposed parameter vector θ∗∗ from π. Other-

wise, sample a particle θ∗ from the previous population of particles θp−1 with

weights wp−1, and perturb the particle using a kernel, Kp, to obtain θ∗∗. If

π(θ∗∗) = 0, repeat the perturbation until π(θ∗∗) > 0

4. Use θ∗∗ to simulate a dataset, and calculate the distance, ρ, between the obser-

ved and simulated datasets.

5. If ρ ≥ εp then return to Step 3, otherwise accept the proposed particle (θ
(n)
p =

θ∗∗) and set the weight for the particle: if p = 1 then wnp = 1, otherwise

w(n)
p =

π(θ
(n)
p )∑N

j=1w
(j)
p−1Kp(θ

(j)
p−1, θ

(n)
p )

(4.7)

6. If n < N , increment n by 1 and return to Step 3.

7. Normalize the weights to sum to 1

8. If p < P , increment p by 1, and return to Step 2.

The weights (Equation 4.7) are calculated as the probability of the parameters

based on the prior distribution divided by the sum of the product of the previous

weights of particles multiplied by a kernel that returns smaller values for parameter

values that are further apart. Thus, the kernel penalizes particles that are too close

to highly weighted particles in the previous population, ensuring that the variance

of the posterior distributions are not underestimated.
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The dataset simulated in step 4 is derived from 500 stochastic simulations of one

of the competing models (see below), and is a frequency distribution of outbreak

sizes that are adjusted to account for the detection probability by sampling a new

detected outbreak size from a binomial distribution. Any detected outbreak sizes of

zero were dropped from the sample as they represent undetected outbreaks. The

distance statistic was calculated as ρ =
∑

i(Si−Oi)
2, where Si and Oi are the density

of simulated (S) and observed (O) detected outbreak sizes (expressed as a proportion

of the initial number of susceptible animals), for each bin, i, in a histogram with 0.05

width bins (see Figure 4.1).

A key assumption of the ABC method is that the summary statistic describes the

data without loss of important information (i.e. that it is close to sufficient), and

that the distance statistic is unbiased and inversely proportional to the likelihood.

Summary statistics that are very specific are closer to being sufficient, but result in

much higher rejection rates in the ABC algorithm because simulated data is unlikely

to match the observed data exactly. Conversely, less specific summary statistics may

fail to provide the resolution to adequately discriminate between simulated and

observed data, which may result in biased parameter estimates or estimates with

high variance. There is therefore a balance that must be found between specificity

and rejection rates when designing a summary statistic. Inevitably, this is somewhat

subjective, and for this reason it is essential to validate the parameter estimates to

ensure that they can reproduce the observed data.

The final population of particles is an estimated sample from the posterior distri-

bution of the parameters. Kernel smoothing is applied to identify the point estimate

of the maximum likelihood value of the parameter. Validation of the estimates

involved comparing the observed and expected outbreak size distributions based

on 50000 stochastic simulations of the highest ranked model using the estimated

maximum likelihood parameter values.

4.3.4 Human intervention model

This model is designed to explicitly incorporate two mechanisms by which human

intervention might limit the severity of an outbreak. First, our model includes two
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infectious states, representing dogs that suffer normal rates of disease mortality (I)

and those that are detected by people (H) and therefore suffer increased mortality

rates as a result of direct human intervention (people killing infectious dogs). Se-

cond, we introduce a parameter κ, that represents the proportional reduction in

transmission rates among dogs following detection of rabies. κ is initially 1, but

switches to a lower value in the range [0,1] following a trigger event. The model

dynamics are determined by the following equations that govern the rates of change

between the four epidemiological states:

dS/dt = −κβSI/N (4.8)

dE1/dt = κβSI/N −mσE1 (4.9)

dEj/dt = mσEj−1 −mσEj, (j = 2, ...,m) (4.10)

dI1/dt = (1− φ)mσEm − nαI1 (4.11)

dIj/dt = nαIj−1 − nαIj, (j = 2, ..., n) (4.12)

dH1/dt = φmσEm − nγH1 (4.13)

dHj/dt = nγIj−1 − nγHj, (j = 2, ..., n) (4.14)

where E =
∑m

i=1Ei, I =
∑n

i=1 Ii, N = S + E + I , and βSI/N represents frequency

dependent transmission. Ej and Ij are the jth stage of the exposed and infectious

periods respectively. Assuming human intervention with probability φ, the duration

of the infectious state is reduced from 3.70 (1/α) to 2.75 (1/γ) days (see above).

The model was initialized with a single, newly infectious dog that was assigned

to state H1 with probability φ, and state I1 with probability 1− φ. This reflects the

fact that the initial source animal can also be targeted by people for disease control.

Stochastic simulations of the model were performed using a Gillespie algorithm

(Gillespie, 1976) and were run until fadeout of the disease. Survey data on the

outcomes of infectious dogs was used to estimate the proportion of infectious dogs

that are controlled or killed by people (φ = 0.555).

We evaluate five competing models of the trigger that reduces κ, corresponding

to different hypotheses about the timing of this event. The trigger occurs at the

transition between states: E → H1 (Model 1), H1 → H2 (Model 2), H2 → H3
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(Model 3), H3 → death (Model 4), and the death of the second detected dog (Model

5), corresponding to models 1-5 respectively. The trigger therefore spans timings

ranging from the instant a detected dog first becomes infectious, to the death of

the second infectious dog in the system. Thus, we estimate both the timing of the

change in contact rates, and the magnitude of the change.

A trivial solution of this problem is to allow β and κ to vary freely, resulting

in a system where R0 is less than 1. We controlled the value of R0 by describing

the combination of β and κ that ensured the empirical and simulated R0 values

were the same (R0 = 1.14). Stochastic simulations of each model (1-5) were used

to estimate R0 at regular intervals in the 2-dimensional parameters space for β

and κ. At each interval of κ (0 to 1 in 0.05 increments) a point estimate of the

required value of β was made. A third-order polynomial line was fit to this sample

using maximum likelihood. Thus, κ was a free parameter with prior U(0, 1) that

was estimated by the ABC-SMC algorithm, and β was calculated deterministically

based on the polynomial equation. The algorithm was run with 5000 particles, and

the distance thresholds for each sequential population of particles were defined

as ε = (384, 192, 96, 48, 24, 12). Appropriate threshold values are determined by

running trials to define suitable start and end values.

4.3.5 Structured population model

To evaluate the effect that heterogeneous mixing among dogs has on outbreak sizes,

we introduce a structured SEIR model in which the dog population is divided into

equally sized groups that are hypothesized to correspond to socially and/or spatially

mediated groups in the host population. Transmission between dogs is permitted

with a susceptible dog in the same group or an immediately adjacent neighbouring

group, using a hexagonal grid to identify connections among neighbouring groups

(Figure 4.4). The within-group transmission rate, β, is higher than between-group

transmission rate, µβ, where µ is a scaling parameter ranging from [0,1). This is

similar to a metapopulation model (Park et al., 2001), but applied at a smaller scale.
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The compartment model for each group, i, is:

dSi/dt = −βSi

[
Ii + µ

Gi∑
k,i6=k

Ik

]
(4.15)

dEi,1/dt = βSi

[
Ii + µ

Gi∑
k,i6=k

Ik

]
−mσEi,1 (4.16)

dEi,j/dt = mσEi,j−1 −mσEi,j, (j = 2, ...,m) (4.17)

dIi,1/dt = mσEi,m − nαIi,1 (4.18)

dIi,j/dt = nαIi,j−1 − nαIi,j, (j = 2, ..., n) (4.19)

where Ni = Si + Ei + Ii, Ei =
∑m

j=1Ei,j , and Ii =
∑n

j=1 Ij . In this model we

assume transmission is density dependent because group sizes are small and the

assumption that transmission is proportional to group size is reasonable. G is the

number of neighbouring groups for group i, and will vary according to the specific

arrangement of groups (Figure 4.4). Ei,j and Ii,j are the jth stage of the exposed and

infectious periods respectively for group i.

In this model human-influences on the duration of the infectious period are not

explicitly modelled, thus 1/α is the mean duration of the infectious period among

all dogs (3.12 days), and the duration of the incubation period (1/σ) remains the

same (22.5 days).

In the absence of empirical data on group sizes and contact rates among dogs,

we evaluate four models of structuring of the population. The total population size

is always 288 dogs, which is the average population size of dogs in SD. The four

models we evaluate correspond to the following combinations of the number of

groups and group sizes respectively: 6 groups of 48 dogs (Model 6), 12 groups of 24

dogs (Model 7), 24 groups of 12 dogs (Model 8), and 48 groups of 6 dogs (Model 9).

This spans a wide range of possible population structures (Figure 4.4). Because we

summarize outbreak sizes as the proportion of the total population, the simulation

results are insensitive to the initial population size.

The value of R0 was controlled by describing the combination of β and µ that

ensured the empirical and simulated R0 values were the same (R0 = 1.14). Thus,

µ was a free parameter with prior U(0, 1) that was estimated by the ABC-SMC
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algorithm, and β was calculated deterministically. The outbreak size distribution

for each model was quantified using 500 stochastic simulations of a continuous

time Gillespie algorithm (Gillespie, 1976), and were run until fade-out of the disease

in the population. The ABC-SMC algorithm was run with 5000 particles, and the

distance thresholds for each sequential population of particles were defined as

ε = (768, 384, 192, 96, 48, 24, 12). β and µ are free parameters that are estimated by

the ABC-SMC algorithm.

4.3.6 Efficacy of vaccination

We contrasted the implications of the simple SEIRV model, and the highest ranking

human intervention model and structured population model, on the efficacy of

vaccination using 10,000 stochastic simulations of each model at different levels

of vaccination coverage. Each of these three models was initialized with a pop-

ulation of 288 susceptible individuals into which a single infectious individual is

introduced. The mean outbreak size (expressed as a proportion of the population

size) was calculated for each level of vaccination, and efficacy was calculated as

the proportional reduction in mean outbreak size relative to outbreak size when no

vaccination occurred.

4.4 Results

Unlike the stochastic simulations of the simple SEIRV model, which are characteri-

sed by a bimodal distribution of outbreak sizes, no major outbreaks were observed

in the real outbreak data (Figure 4.1a, b). Although only 13.4% of outbreaks were

major in the simulations, they accounted for 83.7% of the total incidence of rabies.

In the human intervention model, the timing of the trigger determined the

strength of the trade-off between κ and β (Figure 4.5a). If the value of κ was reduced

by an early trigger (e.g. Models 1 and 2), β was strongly positively correlated with

the size of the reduction. If the trigger was later (e.g. Models 4 and 5), κ had no

influence on R0.

The human intervention model with the greatest support included a reduction
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in transmission rate triggered when the first detected infectious dog transitioned

from state H1 → H2 (Model 2, Figure 4.5b). There was little support for the models

with an earlier or later trigger. In the highest ranked model the estimated maximum

likelihood parameter values were κ = 0.0169 (Figure 4.5d) and β = 0.518. This

implies that human intervention would need to reduce the transmission rate among

dogs by 98.3% soon after first detection of an infectious dog to prevent major

outbreaks from occurring. Stochastic simulations using the estimated maximum

likelihood values of β and κ, and in a population with the mean observed population

size of 288 susceptible dogs, resulted in a distribution of outbreak sizes that was

similar to the observed data (Figure 4.5d).

In the structured model, to maintain a constant R0 the strength of coupling

between groups (µ) decreased as the transmission parameter (β) increased. This

trade-off was non-linear, and was more pronounced for the models with smaller,

more numerous groups (Figure 4.6a). The structured model with the greatest

support was the model with 48 groups of 6 dogs (Figure 4.6b). There was little

support for the models with fewer groups. The estimated maximum likelihood

values for the highest ranked model were µ = 0.0670 (Figure 4.6c) and β = 0.0633.

Thus, this implies that within-group transmission rates were approximately 15

times higher than between-group transmission rates. Stochastic simulations of the

highest rank model with the estimated maximum likelihood values of β and µ,

and in a population with the mean observed population size of 288 susceptible

dogs, resulted in a distribution of outbreak sizes that also closely matched the

observed data (Figure 4.6d). Only 1.1% of simulated outbreaks were larger than

the maximum observed outbreak. Larger values of κ than the maximum likelihood

value, corresponding to a weaker reduction in β following the trigger event, resulted

in outbreak size distributions with a greater proportion of simulated outbreak sizes

that were larger than the maximum observed outbreak. For instance, κ values of

0.1,0.3, and 0.5 resulted in outbreak size distributions that predicted 1.9, 4.9 and

9.7% of outbreaks would be larger than the maximum observed outbreaks.

The simple SEIRV model, and the highest ranked human intervention and

structured population models, suggest widely different estimates of the efficacy of
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vaccination based on the expected change in mean outbreak size following different

levels of vaccination (Figure 4.7a, b). Mean outbreak size fell by 81% following 17%

vaccination coverage for the simple SEIRV model, and further vaccination resulted

in only incremental changes in efficacy. In contrast, outbreak size for the human

intervention model was insensitive to vaccination at coverage levels below 83%,

while the change in efficacy for the structured model was approximately directly

proportional to vaccination coverage levels.

These results were insensitive to changes in the detection probability (Electronic

Supplementary Material). For both the human intervention and structured popul-

ation models, the highest ranked models were the same at all detection levels. For

the human intervention model the estimated maximum likelihood values of κ were

0.0283 and 0.0105 for the 40 and 60% detection rates respectively. For the structured

population model the estimated maximum likelihood values of µ were 0.0780 and

0.0599 for the 40 and 60% detection rates respectively. Thus, different detection rates

resulted in small quantitative, not qualitative, differences to the results.

4.5 Discussion

We have demonstrated that a simple SEIRV compartment model that included realis-

tic incubation and infectious period distributions, and that was based on estimates

of the numbers of susceptible and vaccinated dogs in SD villages, predicted that

13.9% of outbreaks would be major (Figure 4.1b). Of 185 observed outbreaks we

would, therefore, expect approximately 26 major outbreaks. The absence of any

major outbreaks in the observed populations (Figure 4.1a) is an indication that the

simple model fails to capture important drivers of outbreak dynamics, and therefore

may result in incorrect or biased insights into this system. Major outbreaks would

have a disproportionately strong influence on evaluations of control efficacy because

they account for over 80% of simulated incidence. Using a simple SEIRV model,

similar to the one we have used, to design control programmes and identify target

vaccination levels could, therefore, result in incorrect predictions and recommen-

dations. In this case, such models would over-estimate the efficacy of vaccination
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because vaccination eliminates major outbreaks in the simulations that do not occur

in reality.

We have evaluated two possible explanations for the discrepancy between these

observed and simulated outbreak size distributions. An SEI model that incorporates

a hypothesized role of human intervention in reducing transmission rates can

reproduce the observed distribution of outbreak sizes (Figure 4.5d). However, to

do so requires that this intervention result in an approximately 98% reduction in

transmission rates among dogs over and above the reduction in outbreak sizes

resulting from the killing of infectious dogs, which was already reflected in the

mean duration of the infectious period. Furthermore, the model assumes that the

change occurs soon after the first detection of an infectious dog, and instantaneously

throughout the population. A more gradual change would require an even greater

reduction in transmission rates. We suggest that an effect of this magnitude is

unrealistic and that there is no empirical or anecdotal evidence of such an effect size.

While some owners may restrict the movement of their dogs for short periods of

time, we suggest that it is unlikely that this effect size is of the order required to

prevent major outbreaks from occurring. Smaller reductions in transmission rates

result in outbreak size distributions that predict a higher frequency of simulated

outbreaks larger than the largest observed outbreak, and are therefore less plausible

than the estimated maximum likelihood value.

The second explanation we investigated was the role of heterogeneous contact

rates and structure in the dog population in limiting outbreak sizes. There was

greater support for the models with more numerous, smaller groups compared to

the models with fewer, larger groups. Approximating what is probably a complex

contact network among dogs as a structured population in which transmission rates

within groups is higher than with immediately adjacent neighbouring groups was

able to reproduce the observed distribution of outbreak sizes (Figure 4.6d). We

favour the structured model as the more plausible and parsimonious hypothesis

because of the unrealistic effect sizes required in the human intervention model.

However, the formulation of our structured model is undoubtedly an oversimplifi-

cation of reality. Variation in group sizes and connectivity among groups is likely
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to influence transmission dynamics. Further fieldwork is required to quantify the

structuring of dog populations in different communities.

What are the implications of this work for vaccination programmes designed to

control or eliminate rabies? To some degree, both the human intervention model

and the structured population model are an improvement over the simple SEIR com-

partment model as they provide a better phenomenological description of outbreaks.

However, while the dynamics of the human intervention model are not sensitive to

population size, the dynamics of the structured model change considerably with

population size. This affects the estimate of efficacy of vaccination in reducing inci-

dence. Importantly, although these two models were able to reproduce the observed

distribution of outbreak sizes, they made considerably different predictions about

the efficacy of vaccination (Figure 4.7b). This work demonstrates that different

models can have profoundly different implications for the design and assessment of

control measures. Developing a better mechanistic understanding of transmission

in host populations, especially the role of structure in driving heterogeneity in

transmission rates, is essential in order to gauge the risk of major outbreaks and to

optimize disease control strategies for particular host populations.

Because we are interested in outbreak dynamics and not the behaviour of the

model at the endemic equilibrium, and because our human intervention models

include an event-triggered parameter change, deterministic solutions to these mo-

dels would not have provided useful insight. The SMC-ABC method is a powerful

approach for both parameter estimation and model comparison in models for which

likelihood functions cannot be developed. It provides a mechanism for identifying

correlations among parameters that provides insight into the dynamics of the sys-

tem, it allows us to incorporate uncertainty in a similar way to state-space models,

and it is an effective way of exploring parameter space and complex likelihood

surfaces. The danger of ABC methods is that a poorly designed summary statistic

could bias parameter estimation, resulting in an estimate that is not similar to the

maximum likelihood estimate. Stringent statistics that are close to being sufficient

are more likely to yield posterior distributions that are a good reflection of the true

distribution, but more stringent summary statistics typically result in increased
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processing times. Validation of the parameter estimates through simulation and

comparison with observed data, as we have done here, is therefore essential when

using ABC methods.

While the effect of host population structure on disease dynamics near the ende-

mic equilibrium has been explored in large populations (Bolker & Grenfell, 1995;

Keeling & Gilligan, 2000; Park et al., 2002; Kao et al., 2006), it is often assumed

that homogeneous mixing is a reasonable assumption in small populations. This

work suggests that heterogeneous mixing may play an important role in outbreak

dynamics even in small populations. The domestic dog population we studied is

probably structured at several social or spatial levels, all of which may be important

factors influencing the spread of infection. While structure at some levels is obvious

(e.g. dogs are distributed among villages that form a regional metapopulation), fine

scale structure may be difficult to perceive and quantify. Yet it appears that fine

scale structure in the dog population may be important in limiting outbreak size.

Quantifying the contact structure among dogs and the movement behaviour of rabid

dogs would allow us to better establish how structure and disease transmission

combine to influence outbreak dynamics. The assumption of a well mixed popul-

ation and the use of simple SEIRV compartment models is not a good representation

of disease dynamics in this system, and is therefore not a good basis for establishing

control targets such as the number of animals to vaccinate. By capturing some of

the transmission heterogeneity in real populations, structured population models

have the potential to be closer approximations of reality than simple unstructured

models, and to therefore provide more relevant insight into intervention strategies.

Two important assumptions were required to quantify within-village outbreak

sizes: that movements of infectious dogs among villages are balanced within the

course of a single outbreak (no net loss or gain from this movement), and that this

movement does not alter the size of the outbreak. The first assumption implies that

there are concurrent infections in multiple villages, and that movement of dogs

among villages occurs frequently enough that they may be balanced. Concurrent in-

fections in villages were common (Figure 4.2), and high resolution epidemiological

data based on contact-tracing (Hampson et al., 2009), indicates that approximately



4.6 Acknowledgements 67

20% of infections cross village boundaries. It is difficult to assess the validity of

the second assumption given the absence of relevant quantitative data. However,

it is questionable whether these two assumptions are reasonable in this system, in

particular because the results obtained are sensitive to under-reporting of outbreak

sizes. A better approach would, therefore, be to explicitly account for the spatial

distribution of dogs in villages, and the movement rates among villages. Compe-

ting spatially explicit SEIR models could be evaluated using the ABC approach to

estimate maximum likelihood parameter values and for model comparison. The

difficulty with this approach is the much longer processing times that would be

required relative to the simpler within-village outbreak models.
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Figure 4.1: Distributions of sizes of observed (a) and simulated (b) outbreaks, expressed
as the proportion of the susceptible population that becomes infected during the outbreak.
The observed outbreaks are based on monitoring of 75 villages in Serengeti District, Tan-
zania, over a 5 year period (2002-2006). The simulated outbreaks are based on stochastic
simulations of a SEIR compartment model that includes realistic incubation and infectious
period distributions, and takes into account the number of susceptible and vaccinated dogs
in the observed villages at the start of each outbreak. We adjusted the simulated outbreak
distribution assuming a case detection rate of 50%. This was incorporated into the stochastic
model to facilitate comparison of the observed and simulated samples (see Methods).
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Figure 4.2: Graphical depiction of observed rabies incidence (squares) among the 75 villages
in Serengeti District, Tanzania, over a 5 year period (2002-2006). Villages are ordered
alphabetically (y axis), and incidence is quantified in one month intervals (x axis). The
shading of squares (light grey to black) is proportional to incidence, ranging from 1-10
observed cases per month.
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Figure 4.3: Distributions of the durations of incubation (a) and infectious (b) stages of rabid
dogs in Serengeti District, Tanzania. Solid lines represent the maximum likelihood fits of
gamma distributions with integer shape parameters, and the dashed line indicates the mean
of the distributions.
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Figure 4.4: Structure in dog populations was imposed using a hexagonal grid to define
connections between adjacent groups. The total population of dogs was 288 (the mean
of the observed number of susceptible dogs in Serengeti District villages). Four scenarios
regarding group size and the number of groups were evaluated: (a) 6 groups of 48 dogs, (b)
12 groups of 24 dogs, (c) 24 groups of 12 dogs, and (d) 48 groups of 6 dogs.
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Figure 4.5: The output from the ABC-SMC algorithm for the human intervention models. (a)
Lines that describe the values of β and κ that result in an R0 of 1.14 for each of the 5 models.
These lines were fit to point estimates (symbols) at regular intervals of κ, based on stochastic
simulations of the models. (b) Proportion of particles associated with each model (1-5) in
each of the six populations of particles (x axis). The distance measures between observed
and simulated datasets become increasingly stringent in this progression of populations.
The relative frequency of particles for each model in the final population is used as an
indication of the relative likelihood of the models. The strongest support was found for
Model 2. (c) The estimated posterior distribution of κ based on the density of particles in the
final population of particles. The dashed line represents the estimated maximum likelihood
estimate of κ. (d) Validation of the model was based on 50,000 simulations using these
estimated maximum likelihood parameter values. The predictions from the simulated data
(black dots) were similar to the observed data (histogram).
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Figure 4.6: The output from the ABC-SMC algorithm for the structured population models.
(a) Lines that describe the values of β and µ that result in an R0 of 1.14 for each of the 4
models. These lines were fit to point estimates (symbols) at regular intervals of µ, based
on stochastic simulations of the models. (b) Proportion of particles associated with each
model (1-4) in each of the five populations of particles (x axis). The distance measures
between observed and simulated datasets become increasingly stringent in this progression
of populations. The relative frequency of particles for each model in the final population is
used as an indication of the relative likelihood of the models. The strongest support was
found for Model 4, followed by Model 3. (c) Plots of parameter values (β, µ) for each particle
in the final population of particles, and from the two highest ranked models. The lines
represent the 25, 50 and 75% isopleths of the kernel density estimate of these points. The
solid black dot represents the estimated maximum likelihood estimate of these parameters.
(d) Validation of the model was based on 10,000 simulations using these estimated maximum
likelihood parameter values. The predictions from the simulated data (black dots) matched
the observed data (histogram) closely.
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Figure 4.7: Quantifying the efficacy of vaccination using three alternative models: a simple
SEIRV compartment model, a model that includes the effects of human intervention, and
a model in which the host population is structured (see Methods for details). The change
in mean outbreak size based on 10,000 stochastic simulations (a) was used to calculate the
efficacy of vaccination in reducing outbreak size (b). The efficacy of vaccination differs
substantially among models.



Chapter 5

Metapopulation dynamics of rabies and the

efficacy of vaccination

5.1 Abstract

The common assumption in simple epidemiological models that a population is

well mixed is often not valid. Spatial structure in a host population results in hete-

rogeneity in transmission dynamics. We used a Bayesian framework to evaluate

competing metapopulation models of rabies transmission among domestic dog po-

pulations in Serengeti District, northern Tanzania. A proximate indicator of disease,

medical records of animal-bite injuries, is used to infer the occurrence (presence /

absence) of suspected rabid dog cases in one month intervals. State-space models

are used to explore the implications of different levels of reporting probability on

model parameter estimates. We find evidence for a relatively high rate of infection

of these populations from neighbouring inhabited districts or from other species

distributed throughout the study area, rather than from adjacent wildlife protected

areas. Stochastic simulation of our highest ranked models in vaccinated and hy-

pothetical unvaccinated populations indicated that pulsed vaccination campaigns

(2002-2007) reduced rabies occurrence by 57.3% in vaccinated villages in the one

year following each pulse, and that a similar regional campaign would deliver an

80.9% reduction in occurrence. This work demonstrates how a relatively coarse,

proximate sentinel of rabies infection is useful for making inferences about spatial

disease dynamics and the efficacy of control measures.
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5.2 Introduction

Rabies exerts a major public health and economic burden: it is responsible for

55,000 deaths worldwide (predominantly in Africa and Asia), and expenditure on

treatment and control exceeds US$500 million per annum (Coleman et al., 2004;

Knobel et al., 2005). Although effective post-exposure prophylaxis exists, it is

expensive, often scarce, and must be administered shortly after exposure to be

effective. Prevention of rabies infection in humans is therefore problematic in

developing countries. Yet rabies is a pathogen that can be effectively controlled

or eliminated by vaccinating hosts (Eisinger & Thulke, 2008). Rabies virus is a

multi-host pathogen that infects a wide range of mammals (Hanlon et al., 2007)

and is therefore also an important threat to animal populations of conservation

concern (Woodroffe, 2001; Randall et al., 2006; Cleaveland et al., 2007). A single

rabies epidemic can eliminate a large proportion of a population (Randall et al., 2004;

Haydon et al., 2006). Our interest in rabies control is therefore motivated by both

human health and conservation concerns.

Epidemiological models are frequently used to estimate basic parameters (An-

derson & May, 1991), evaluate alternative control strategies (Haydon et al., 1997;

Ferguson et al., 2003; Keeling et al., 2003; Haydon et al., 2004; Feng et al., 2009), and set

levels for control measures such as vaccination (Coleman & Dye, 1996; Kitala et al.,

2002; Haydon et al., 2006), culling (Matthews et al., 2003), or quarantine/isolation

(Feng et al., 2007). However, many applications of epidemiological models to disease

control apply to human or agricultural systems where detailed information about

movement, transmission, and host populations is available (e.g. Ferguson et al., 2001;

Kao, 2002, 2003; Matthews et al., 2003; Medlock & Galvani, 2009). This quantity and

quality of epidemiological data is usually unavailable for diseases in developing

regions where formal monitoring, reporting and diagnosis can be ineffectual or
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absent (Knobel et al., 2005).

There are two common approaches to resolving this issue. First, theoretical

or general models can be used to explore the relative efficacy of different control

strategies, and to devise approximate rules for setting control targets (e.g. Coleman

& Dye, 1996; Roberts, 1996; Vial et al., 2006; Feng et al., 2009). For instance, one

frequently used approximation of the proportion of a population that must be vacci-

nated to reduce the basic reproductive number, R0, below 1 is 1− 1/R0 (Anderson

& May, 1991). The second approach is to collect epidemiological data, which is

often difficult and costly. This approach is typically applied to the development

of non-spatial models (e.g. Kitala et al., 2002; Cleaveland & Dye, 1995; Zinsstag

et al., 2009) because spatial models require the estimation of more parameters and

therefore require more extensive data collection. Also, although valuable, detailed

individual-level epidemiological data (e.g. diagnostic tissue testing, sequence data,

and case histories) often cannot be collected retrospectively or over large areas.

However, disease dynamics and the efficacy of control measures are influenced

by the spatial distribution of the host populations and interventions. Spatial structu-

ring of the host population resulting from social organization (e.g. family groups)

or a patchy physical environment (e.g. islands) violates the assumption of many

simple models that the population is well mixed. Metapopulation models explicitly

model this spatial structure as a system of loosely coupled discrete populations or

patches with different rates for within and between patch transmission (Bolker &

Grenfell, 1995; Lloyd & May, 1996; Grenfell et al., 2001; Fulford et al., 2002; Cross

et al., 2007; Colizza & Vespignani, 2008). Disease persistence in the metapopulation

is profoundly influenced by these spatial dynamics (Swinton, 1998; Park et al., 2001).

Thus, the promise of spatially explicit epidemiological models is that, because they

are locale-specific and capture some of the spatial dynamics of transmission, they

allow us to maximize the efficacy of control designs and therefore the deployment

of limited control resources.

Our focus is the control of rabies in a multi-host African ecosystem (Serengeti

District, Tanzania) in which domestic dogs are thought to be the primary disease

reservoir (Lembo et al., 2008) and are therefore the target of control measures (vacc-
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ination). This study presents methods for using an existing, indirect measure of

disease occurrence (medical records of animal-bite injuries) to parameterize and

evaluate competing spatially explicit models of disease occurrence and transmission

among dogs at a regional scale, and to quantify the efficacy of a control programme.

Although insights into the transmission dynamics of rabies in domestic dogs have

been presented previously (Cleaveland & Dye, 1995; Hampson et al., 2009), the spa-

tial dynamics at a more regional scale are still poorly understood. This is important

because control measures are often targeted at these larger scales. No predictive

models of host-pathogen metapopulation dynamics have yet been developed for

this system.

We are also interested in sources of infection of the domestic dog population be-

cause of their importance to maintaining a disease-free state. We evaluate evidence

for three sources: infected domestic dogs from neighbouring (unmodelled) districts,

interactions with wildlife originating from neighbouring wildlife protected areas,

and inter-species transmission with other potential hosts (domesticated and wild)

that occur throughout the district. Each of these sources results in different testable

predictions about the spatial distribution of infections from outside the system.

5.3 Methods

5.3.1 Assessing the occurrence of rabies

This study took place in Serengeti District (SD), northern Tanzania, which borders

wildlife protected areas to the south and east (Serengeti National Park and the Iko-

rongo and Grumeti Game Reserves), and other inhabited districts to the north and

west (Bunda, Musoma and Tarime Districts). SD consists of 75 villages (Figure 5.1,

and Table D.1 in Appendix D) and is inhabited by approximately 174,400 people

(Population and Housing Census of Tanzania 2002) in primarily agro-pastoralist

communities that use domestic dogs for guarding households and livestock.

Medical records of patients reporting with animal-bite injuries were collected

from local hospitals and medical dispensaries and were used to identify bites from

suspected rabid dogs (Cleaveland et al., 2002, 2003; Hampson et al., 2008, 2009). Most
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records indicate the date of the bite, the biting animal, and the village from which a

patient reported, although this may not always be recorded accurately or represent

the location where the person was bitten. There are also several other ways in which

medical records may misrepresent actual cases of rabies in domestic dogs: not all

rabid dogs bite humans, bite-victims do not always report to hospital, there may

be misidentification of whether an animal was really rabid, and it was often not

possible to determine if bites occurring close in time were from the same dog. We

therefore interpret these bite records conservatively, and explicitly modelled the

effects of uncertainty in detection using a state-space modelling approach.

We summarized the data as the occurrence (presence or absence) of exposures by

suspected rabid dogs in one-month intervals in each village over a six year period

(2002-2007). Occurrence is synonymous with occupancy in patch occupancy models,

and is not a measure of the number of infectious dogs (incidence). An occupancy

may correspond to the presence of more than one infectious dog in that month. We

identified 243 monthly occurrences of rabies among all 75 villages and across all 72

months (Figure 5.2).

5.3.2 Dog demography and vaccination history

The initial number of susceptible dogs in each village in January 2002 was estimated

based on the human population size and the average number of dogs per household

in this region (Knobel et al., 2008; Lembo et al., 2008), and the numbers of dogs

that were vaccinated. The number of susceptible dogs in subsequent months (see

Figure 5.3) was modelled as a function of the birth and death rate, the number of

dogs vaccinated during vaccination campaigns, and the rate at which vaccination

coverage wanes (refer to Hampson et al., 2009, for details).

Following an initial vaccination campaign in 2000 that resulted in low (35-40%)

and patchy coverage, subsequent campaigns targeted villages within 10km of the

wildlife protected areas (Figure 5.1) and increased coverage levels to between 40-80%

(Hampson et al., 2009). Specifically, there were four vaccination campaigns: August

2003 (4179 dogs, 33 villages), June/July 2004 (12975 dogs, 67 villages), Aug/Sep

2005 (7998 dogs, 39 villages), and Aug/Sep 2006 (8030 dogs, 36 villages).
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5.3.3 Modelling disease dynamics

Rabies infections have two stages: an incubation period when the animal is infected

but not infectious and exhibits no clinical signs, and an invariably fatal infectious

period where the animal displays the clinical signs of rabies and can transmit the

virus in its saliva to uninfected animals. In domestic dogs in this region the mean

duration of the incubation and infectious periods are 22.3 days (95% CI: 20.0-25.0

days) and 3.1 days (95% CI: 2.9-3.4) days respectively (Hampson et al., 2009). We

therefore assume that transmission from a village with infectious animals results in

incubating animals in the same time period (t), which become infectious animals in

the next time period (t+ 1). A one-month time step is also convenient because some

medical records can only be used to assign a suspected rabies case to a calendar

month. There will be cases where an animal is bitten and becomes infectious in the

same month, or long incubation periods that delay the infectious period for more

than one month, and these exceptions will add some error to parameter estimates.

We believe, however, that the one month time-step between acquiring infection and

becoming infectious is applicable to the majority of cases and allows us to capture

the important dynamics of the system.

We define H as the matrix of observed occupancy (1/0) of each village in each of

the 72 time periods (one-month time steps), which is a function of the unobserved,

true occupancy matrix, I, and the probability of detection of an occurrence (ρ):

Hi,t ∼ Bern[ρIi,t] (5.1)

This reflects the fact that if disease was present, it is observed with probability ρ, but

if disease was absent it could not have been observed. If reporting is perfect (ρ = 1)

then H = I. The probability of detecting infectious dogs based on medical records is

influenced by a complex interaction among human social and educational factors,

dog behaviour, and the quality of the medical records. Our detection parameter, ρ,

encapsulates all of this uncertainty in the simplest possible (one parameter) data

model as we have no quantitative basis for constructing and parameterizing a more

complex model.
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We hypothesize transmission of infection from another village may be mediated

by the distance between villages (d), and the population size (S) of susceptible

dogs in the villages that could receive and transmit infection. We therefore test

the hypotheses that transmission is negatively associated with distance between

villages, that larger populations of susceptible dogs are more likely to encounter

infectious animals and acquire infection, and that larger populations of susceptible

dogs are associated with larger outbreaks and are therefore more likely to transmit

infection.

The infectious state, I, of the ith village at time t is modelled using an exponential

failure distribution:

Ii,t ∼ Bern[1− e−ci,t ] (5.2)

where c is the hazard rate. The full transmission model is:

ci,t = β
(
1− e−δSi,t−1

) V∑
j

[
Ij,t−1e−κdi,j

(
1− e−ψSj,t−1

)]
+ τe−µgi (5.3)

where V is the total number of villages, di,j is the Euclidean distance between the

centres of ith and jth villages (km), Si,t is the number of susceptible dogs in the ith

village at time t. The parameters κ, δ and ψ determine the relative contribution of

the distance between villages and the size of the receiving and transmitting village

to the probability of acquiring infection, and τ and µ correspond to an external

source of infection into this system (see below).

We identify three competing models. Model 1 includes only the distance com-

ponent:

ci,t = β
V∑
j

[
Ij,t−1e−κdi,j

]
+ τe−µgi . (5.4)

Model 2 includes the distance and size of the receiving village components:

ci,t = β
(
1− e−δSi,t−1

) V∑
j

[
Ij,t−1e−κdi,j

]
+ τe−µgi . (5.5)

Model 3 is the full model (Eq. 5.3). We also fit a reference model where β is the
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only parameter (ci,t = β) to gauge the performance of the three competing models.

The implication of the reference model is that all infection arises randomly, with no

inter-village transmission and no population size effects.

Infections from outside the system are defined by the expression τe−µgi , where τ

is proportional to the rate at which these infections arise, and µ scales τ as a function

of distance to the source of infection. There are three hypotheses regarding the

source of infectious animals that can trigger outbreaks in the domestic dogs in SD.

The source may be spill-over infections from species that occur throughout this

landscape, indicated by randomly distributed infections (source “R”). Alternatively,

the wildlife protected areas to the east and south (source “P”), or the inhabited

adjacent districts to the north and west (source “D”), may be the source of infected

animals in which case transmission should be related to proximity to these areas

(Figure 5.1). For source R, µ = 0, and τ represents the rate at which a village acquires

infection from an external source per time step. For sources P and D, gi represents

the distance to the protected area boundary or nearest adjacent district boundary

respectively (km). In these models µ was allowed to vary as a free parameter,

and τ was calculated deterministically so that the overall rate of external infection

among all villages remained constant. For all sources we evaluated rates of external

infections into the system of 2, 6 and 10 infections per year, which we consider to

span the range of low to high estimates of the true rate of external infection. This

parameter is difficult to estimate empirically, therefore we selected three rates that

allow us to make a qualitative assessment of the impact of different rates of external

infection on model dynamics.

The exponential terms are a convenient yet versatile form for scaling the influence

of distance among villages and the population size of villages on transmission dyna-

mics. Each exponential function requires only a single parameter which facilitates

model fitting compared to more complex multi-parameter functions. Negative expo-

nential distributions are appropriate for representing effects that decay, such as the

probability of transmission between villages as a function of the distance between

them, and have the flexibility to represent very rapid decay, or almost no decay at all.

This form can be inverted by taking one minus the negative exponential distribution
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which is appropriate for capturing effects that increase up to a saturation point.

Again, this form can accommodate patterns that saturate very quickly, or that have

almost no effect. Although more complex functional forms could more accurately

characterize the influence of distance or population size on transmission dynamics,

we have little quantitative basis for selecting or fitting more complex forms. As a

first approximation, therefore, the exponential form is appropriate.

Models were fit using WinBUGS (Lunn et al., 2000) using uninformative prior

distributions (β ∼ U(−4, 0), κ ∼ U(0, 0.5), µ ∼ U(0, 0.7), δ ∼ U(−8,−2), ψ ∼

U(−8,−2)). For β, δ and ψ the prior distributions were log-transformed so that the

posterior distribution was approximately normally distributed, which facilitates the

estimation of the effective number of parameters (pD) for model comparison. We

generated 37500 samples from the posterior distributions of all parameters using 3

chains, a burn-in period of 200 samples, and a conservative thinning rate of 1 in 50

to ensure the resulting 750 samples were not autocorrelated. Chain convergence was

quantified using the R̂ statistic (values close to 1.0 indicate convergence). Models

were ranked using DIC. However, because the calculation of pD can be unstable

(Spiegelhalter et al., 2002), model comparison was based on both DIC and an inter-

pretation of model fit based on changes in deviance in relation to the number of

parameters in the model.

Uniform priors were selected because we had no previous data upon which to

base informative priors. Although informative priors can help to facilitate chain

convergence, that was not an issue encountered in fitting these models. Furthermore,

we did not wish subjective assumptions about prior distributions to bias parameter

estimates (the posterior distributions). Importantly, we ensured that the bounds

of the uniform prior distributions used did not limit how the chains explored

parameter space.

We use state-space models to evaluate how reporting error influences parameter

estimation in the highest ranked models (processing time constraints prevented us

from running all models as state-space models). The transmission component of the

models remained the same, but we evaluate reporting probabilities of ρ = 0.6 and

ρ = 0.8.
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We use 1,000 stochastic simulations of each of the four highest ranked models to

quantify the efficacy of pulsed vaccination campaigns that took place in SD from

2002-2007 (Hampson et al., 2009). Using the mean parameter values for each model,

occurrence of rabies was quantified in three scenarios: hypothetical unvaccinated

populations, vaccinated populations with a continuing external infection source

that corresponds to the vaccination campaign that took place, and hypothetical

vaccinated populations with an external infection source that ends 6 months after the

first set of vaccinations. The last scenario corresponds to hypothesized vaccination

at a regional scale that eliminates cross-district transmission, or that reduces the

incidence of rabies in other species that could then infect dogs. For the unvaccinated

population scenario, the number of susceptible dogs was estimated based on the

vaccination history and demographic parameters (Figure 5.3). The difference in

overall disease occurrence (the total number of months in which disease is observed)

between the vaccinated and unvaccinated population simulations is a measure of

the expected efficacy of vaccination. We measure efficacy at two scales: among the

villages targeted for vaccination in the 12 month period following a vaccination

campaign, and over the entire district from the first month in which vaccination

occurred until the end of the study period.

Simulations were initialized by randomly assigning infections to three villages

in the first time step, then running the simulation over a 72 month burn-in period

with constant population sizes (this data was discarded) before recording simulated

occurrence over the following 72 month period in which population sizes varied

as described above. These simulations were performed in R (R Development Core

Team, 2009).

5.4 Results

We obtained good chain convergence for all models (R̂ < 1.1 for all variables in

all models). Sampling the prior distributions for β, δ, and ψ on a log-transformed

scale was essential for obtaining reasonable estimates of the effective number of

parameters (pD).
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Of the 28 models tested (Table 5.1), the highest ranked model was the model

in which probability of transmission was a function of both inter-village distance

and the number of susceptible dogs in the village receiving infection, and where

the probability of acquiring an external infection declined as a function of distance

to neighbouring districts. However, three other models performed similarly well

(∆DIC < 2 relative to highest ranked model) and therefore also warrant conside-

ration. We infer from these four models that there is strong support for the role

of village distances and the size of the village receiving infection in driving trans-

mission dynamics (components of all four top ranked models), but weaker support

for the role of the size of the village transmitting infection (a component only of

the models ranked third and fourth). The model that included only the village-

distance component consistently ranked the lowest, providing further evidence of

the importance of population sizes in transmission.

Overall, there was most support for the district-source of external infection

(Table 5.1), especially at the lowest rate of infection (2 yr−1). At the higher rates of

infection the district and random-source models of external infection performed

similarly: although the district model had a lower DIC value in five out of six

comparisons (models 1-3, for rates 6 and 10 yr−1), the difference was generally less

than 2. We found only weak support for the wildlife protected area source models,

which consistently ranked lower than the other source models for each model and

rate combination.

There was also strongest support for the highest rate of external infection

(Table 5.1). On average, 10 external infections per year would account for 24.7% of

all observed occurrences (60 of 243 over the six year study period). However, the

inferences regarding the source of external infection and the important components

of transmission dynamics were consistent among the three external infection rates

(Table 5.1).

Although the highest ranked models have different structures and therefore

do not all share the same set of parameters, there was high consistency in para-

meter values among these models (Table 5.2 and Table D.2 in Appendix D). The

implications of the parameter values on the probability of transmission are shown
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in Figure 5.4. Although this figure is based on the parameter values of the most

complex model, which ranked third, it is representative for all four top ranked

models. For all models, the probability of transmission is negatively associated

with the distance between villages and positively associated with the population

size of susceptible dogs in the village receiving transmission. The probability of

acquiring external infection declines with distance from the district boundary in the

district-source models. Finally, the population size of susceptible dogs in the village

transmitting infection is important only for small populations whereby very small

populations (< 150 dogs) have a lower probability of transmission.

Within the set of villages that were targeted for vaccination (all but 5 of the

75 villages in SD) and in the 12 month period following a vaccination campaign,

vaccination reduced the occurrence of rabies by 57.3% (59.0, 51.9, 60.0, and 58.1%

for the four highest ranked models respectively) relative to the occurrence predic-

ted if no vaccination had occurred (Figure 5.5). Under the alternative assumption

that regional-scale vaccination occurred (thereby eliminating the external infection

source after 6 months), vaccination reduced the occurrence of rabies by 80.9% (81.7,

83.9, 79.0, and 78.9% for the four highest ranked models respectively) relative to

the unvaccinated population. Vaccination also reduced the variance in the size of

outbreaks (for instance, the standard deviation in the count of occurrences was

reduced from 51.4, 38.6, 54.8, and 51.7 to 17.4, 16.0, 19.1, and 19.4 respectively for

each of the four highest ranked models). Over the entire district, and including

all months following the first vaccination campaign, vaccination reduced the oc-

currence of rabies by 50.0% (51.0, 44.9, 52.6, and 51.5% for the four highest ranked

models respectively), and assuming regional scale vaccination the occurrence of

rabies was reduced by 81.7% (82.2%, 84.1%, 80.3%, and 80.3% respectively).

Explicitly assuming that the reporting probability is only 60% or 80% relative

to perfect reporting (100%) resulted in a marginal increase in the estimates of

all parameters (Figure 5.6 and Table D.3 in Appendix D). This corresponds to a

reduction in the spatial transmission kernel (a reduced probability of transmission

over longer inter-village distances), and an increase in the probability of a village

receiving infection as population size increases, for all four top ranked models. For



5.5 Discussion 87

the models with the neighbouring district source of infection there was a decrease

in the spatial transmission kernel from that source. Finally, there was also a reduced

effect of population size on the probability of transmission from a source village in

model 3.

5.5 Discussion

This work demonstrates that a relatively coarse, proximate sentinel (i.e. medical

records of animal-bite injuries) of rabies infection can be used to make inferences

about spatial transmission dynamics of rabies and the efficacy of control measures.

This has important practical implications for identifying drivers of disease trans-

mission, and the design and assessment of control protocols when only limited,

indirect epidemiological and demographic data are available. Medical bite records

are widely available in Tanzania (and many other countries), and therefore, if they

are sufficient to make useful epidemiological inferences, then a great deal of pro-

gress could be made using information that is already available without necessarily

prioritizing further investment in the acquisition of expensive surveillance data.

In this part of Tanzania, medical bite records appear to be a useful proxy for quan-

tifying the occurrence of rabies at a village scale. Although medical records could

also be used to estimate incidence, this requires distinguishing among infectious

dogs when multiple, closely-timed bite injuries are reported, which can be difficult.

Furthermore, because only a single medical record is needed to infer occurrence, it is

less sensitive to low reporting rates than is incidence. Medical records are, therefore,

a more accurate indicator of occurrence than incidence. Thus, rather than adopt a

traditional individual-based, SEIR (susceptible, exposed, infectious, removed) for-

mulation in which transmission is modelled as a function of the number (or density)

of infectious individuals, we adapted a metapopulation dynamics approach (sensu

Ovaskainen & Hanski, 2003) to an epidemiological process, whereby the size of

patches (villages) in our model is measured by the number of susceptible dogs. A

further benefit of this approach is that medical bite records provide limited data for

parameterizing an SEIR model, or identifying a suitable transmission model (e.g.
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density versus frequency dependent transmission). Simple SEIR models also fail

to include the influence of structure in the dog population, or the possible role of

human management in limiting outbreaks. By modelling dynamics at a slightly

coarser level in this study we avoid the need to explicitly specify fine-scale dynamics

that are currently not well understood.

Although there are several examples of the application of epidemiological mo-

dels to rabies control problems in Africa (e.g. Kitala et al., 2002; Cleaveland & Dye,

1995; Zinsstag et al., 2009), none of them are spatially explicit. While non-spatial

models provide approximate rules for control measure targets (e.g. the proportion of

a population that must be vaccinated to reduce R0 below 1 is 1− 1/R0), the efficacy

of controls in a specific context (such as Serengeti District) is influenced by the

spatial distribution of the host population, of other host populations, and of control

measures. The promise of spatially explicit models is the potential to maximize the

efficacy of controls in a specific circumstance, thereby optimising the deployment of

limited intervention resources. Moreover, these models provide novel insights into

the importance of local population size and coupling, and proximity to wildlife host

species on disease dynamics. Developing a detailed, more mechanistic understan-

ding of disease dynamics also provides new opportunities for understanding how

disease dynamics in different regional contexts may differ.

Spatially explicit models can also provide insight into drivers of regional-scale

transmission dynamics. A subjective interpretation of the spatial distribution of

rabies occurrences (Figure 5.1), which is highest near the wildlife protected areas,

might conclude that infection of the domestic dog reservoir from wildlife in these

protected areas was implicated in long-term disease persistence. However, our

models demonstrate that, once inter-village transmission dynamics are accounted

for, there is only weak evidence of a link between the protected areas and infection

of dogs. The apparent proximity of rabies cases to the protected areas may be largely

due to the distribution of dogs and villages in that area that results in a “hot-spot”

of infection. This may be exacerbated if the protected area boundary encourages

higher levels of inter-village movement of people and dogs. Because movement is

restricted to the east and south this may concentrate movement among villages to
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the north and west resulting in higher levels of inter-village transmission.

There is stronger evidence that the source of infection is the inhabited neighbou-

ring districts, or that a source of infection is distributed randomly throughout the

district. Both of these hypotheses are plausible and consistent with previous studies

in this region that indicate domestic dogs are the reservoir for rabies (Cleaveland &

Dye, 1995; Lembo et al., 2008). Inter-district infection could result from movement

of infected domestic dogs, either on foot or in vehicles. Randomly distributed

within-district infection could result from inter-specific transmission between seve-

ral species, e.g. Lembo et al. (2008) report that rabies is found in domestic cats and

eight wild carnivore species in that region.

However, it is not clear to what extent other wild and domestic species contribute

to disease persistence. Our models indicate that the rate of external infection into

the SD dog population may be quite high, although this rate includes transmission

from domestic dogs in adjacent districts and is therefore not specific to wildlife. An

external infection rate of 10 occupancies per year would, on average, account for 60

of the 243 occupancies observed (24.7%), implying that inter-village transmissions

are only four times more common than transmissions from external sources. Lembo

et al. (2008) estimate that dog to dog transmissions are approximately eight times as

common as transmissions between dogs and other carnivores, therefore occasional

infection of the dog population from wildlife is plausible. However, given that

dogs are the primary reservoir, rabies outbreaks in wildlife that could infect the dog

population are likely to have originated from the dog population. Thus, if vaccin-

ation reduces the reservoir dog population below the critical threshold required for

endemic rabies to persist, then this should also eliminate rabies outbreaks in other

species and remove one source of infection of the dog population. Improving our

understanding of inter-species transmission rates is a priority for future work.

Another reason the protected areas do not appear to be a significant source

Although the mean incubation period is typically 22.3 days (95% CI: 20.0-25.0

days) (Hampson et al., 2009), incubation periods of months or years are possible,

although rare, in mammalian hosts (Lakhanpal & Sharma, 1985). These long incu-

bation times, which violate our assumption of a one-month delay between being
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infected and becoming infectious, could account for some of the observed occupan-

cies (Figure 5.2), implying the frequency of transmission events between villages

or from the external source may be overestimated in our models. Some dogs may

also become infectious in the same month they are infected, but this will have no

influence on our estimate of dynamics if this occurs in a month in which occurrence

has already been detected. For instance, if an infectious dog bites a susceptible dog

that, in turn, becomes infectious in the same village and month as the first dog, then

the recorded occurrence captures both animals. Stochastic simulations of individual-

based based SEIR (susceptible, exposed / incubating, infectious, removed) models

with realistic incubation and infectious period distributions could be used to further

assess the sensitivity of these results to the duration of the model time-step.

Within our model specification new occurrences could arise as a result of either

within-system transmission (transmission within a single village from one time-step

to the next, or between-village transmission) or transmission from the external

source of infection. If the parameters associated with these processes are free an

identifiability problem can arise as a result of the direct trade-off between these

processes. For instance, if the rate of infection arising from the external source was

high enough it could account for all of the observed occurrences. The primary

symptom of this problem is a lack of MCMC chain convergence. To prevent this

problem it was necessary to constrain the parameters associated with one of these

two processes. As we were primarily interested in metapopulation transmission

dynamics we constrained the parameters associated with the external source of

infection such that the rate of infection entering the system was constant for a given

model. By evaluating three different rates corresponding to estimated low, medium

and high rates of external infection we are able to evaluate the effect of variation

in this parameter without it being a truly free parameter. The results obtained are

conditional upon the assumptions we have made about the rate of external infection.

If our representation of that process is grossly incorrect there is the possibility that

it could bias the estimates of other parameters in the model. We have argued,

however, that the three rates we evaluated are reasonable in this system, and in lieu

of quantitative data that could be used to better parameterize this component of the
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model the pragmatic approach we have taken is reasonable.

Assessing the efficacy of vaccination is not straightforward because disease

transmission is a stochastic process that can result in highly variable spatial and

temporal patterns of occurrence. Field observations of occurrence before and after

vaccination provides an important measure of the realized efficacy, but this measure

is based on only a single realization of a stochastic process and therefore may

not be a good representation of the efficacy that would be expected in general.

Our approach, using stochastic simulations of the vaccinated population and a

hypothetical, unvaccinated population, provides an estimate of the expected efficacy

resulting from the pulsed vaccination campaigns that took place between 2002-2007.

This measure of expected efficacy may be more relevant when planning future

interventions as it describes the expected mean reduction in occurrence resulting

from the vaccination campaigns.

Although we found that the four vaccination campaigns between 2002-2007

resulted in a 57.3% (or 80.9% assuming a regional-scale vaccination programme)

decrease in our measure of occurrence, it is important to recognize that the reduction

in incidence will be greater than this. Mean outbreak size is positively associated

with the number of susceptible dogs (Hampson et al., 2009), therefore occurrence in

the unvaccinated populations is likely to correspond to a larger number of infectious

dogs than occurrence in the vaccinated populations. This non-linear relationship

between our measure of occurrence and outbreak size implies that the estimate

of the efficacy of the vaccination campaigns would be higher if we were able to

monitor incidence at the individual animal level. For instance, Cleaveland et al.

(2003) estimate that vaccination campaigns in SD in the decade prior to this study

reduced the incidence of rabies by approximately 90% based on the incidence of

bites of humans by suspected rabid dogs.

These models suggest a potentially complex relationship between vaccination

coverage levels and the reduction in disease occurrence. As expected, we found

strong evidence that the population size of susceptible dogs was an important

predictor of the probability of transmission: smaller populations were less likely

to acquire infection, and this effect was approximately linear. However, we also
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found support for a strong reduction in the probability of transmission in small

populations (fewer than 150 dogs), indicating a possible threshold beyond which

vaccination may have increasing benefits. A possible explanation of this effect is

that the density of susceptible dogs may become so low in these highly vaccinated

populations that fade-out of the disease becomes increasingly likely. Alternatively,

this effect could result from human social factors that might vary as a function of

population size. Understanding this effect warrants further investigation as it has

the potential to be exploited to improve disease management.

The most ambitious zoonotic disease control programmes aim to achieve disease

eradication at regional scales. Although we have used our four highest ranked mo-

dels to quantify the efficacy of the pulsed vaccination campaigns (2002-2007) there

is clearly scope to apply them to optimise the design of vaccination programmes

in metapopulations (Asano et al., 2008), to design responses to subsequent disease

outbreaks in disease-free populations, and to predict what the large scale implica-

tions of intervention actions might be. The application of metapopulation models to

inform management decisions has the potential to increase both the efficacy and

cost-effectiveness of control and eradication programmes.

State-space models provided a rigorous method for quantifying the effect of

measurement error on parameter estimates and model inferences. Because proces-

sing times were considerable, we evaluated the influence of measurement error only

on the highest ranked models and suggest this approach provided a reasonable

trade-off between expediency and confidence in inferences. Metapopulation models

provide a powerful framework for investigating disease dynamics in spatially struc-

tured populations, and for evaluating the efficacy of control strategies. This work

demonstrates that these powerful models can be developed based on proximate

measures of disease occurrence when more specific and detailed epidemiological

data is unavailable.
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Table 5.1: Summary of competing patch occupancy models, the deviance, the number of
parameters in the model, the effective number of parameters (pD), the deviance information
criteria (DIC) value, and the difference in DIC value relative to the highest ranked model (∆
DIC). Probability of transmission is modelled as a function of the distance between villages
(model 1), and the number of susceptible dogs in the receiving village (model 2), and the
number of susceptible dogs in the village from which infection was transmitted (model 3).
These models include an external source of infection which is random in space (R), or arises
from wildlife protected areas (P) or inhabited districts (D) adjacent to Serengeti District. The
rate of external infection from these sources is fixed at 2, 6, or 10 yr−1 among all villages.
A simple reference model in which all infection arises randomly from an external source
(model 0) is included to gauge the performance of the other models. Models are ranked by
the ∆ DIC values.

model source rate deviance parameters
(free/fixed)

pD DIC ∆ DIC

2 D 10 1836 5 (3, 2) 3.32 1839 0.00
3 D 10 1836 6 (4, 2) 3.67 1840 0.69
2 R 10 1837 4 (3, 1) 2.44 1840 0.71
3 R 10 1838 5 (4, 1) 2.67 1840 1.22
2 P 10 1840 5 (3, 2) 3.08 1843 3.95
3 P 10 1840 6 (4, 2) 3.33 1843 4.50
2 D 6 1847 5 (3, 2) 3.29 1850 11.4
3 D 6 1847 6 (4, 2) 3.53 1851 11.9
2 R 6 1850 4 (3, 1) 2.44 1852 13.5
3 R 6 1850 5 (4, 1) 2.66 1853 14.0
2 P 6 1852 5 (3, 2) 3.23 1855 16.4
3 P 6 1852 6 (4, 2) 3.56 1856 17.1
2 D 2 1881 5 (3, 2) 3.32 1884 45.1
3 D 2 1881 6 (4, 2) 3.58 1885 45.6
2 R 2 1885 4 (3, 1) 2.31 1887 48.2
3 R 2 1885 5 (4, 1) 2.65 1888 48.9
2 P 2 1886 5 (3, 2) 3.16 1889 50.1
3 P 2 1886 6 (4, 2) 3.60 1890 51.1
1 R 10 1896 3 (2, 1) 1.88 1897 61.8
1 D 10 1895 4 (2, 2) 2.96 1898 62.9
1 P 10 1900 4 (2, 2) 2.84 1902 66.9
1 D 6 1911 4 (2, 2) 2.90 1914 78.2
1 R 6 1912 3 (2, 1) 1.91 1914 78.4
1 P 6 1915 4 (2, 2) 2.71 1917 81.8
1 D 2 1947 4 (2, 2) 2.86 1950 114.0
1 R 2 1950 3 (2, 1) 1.95 1952 116.0
1 P 2 1951 4 (2, 2) 2.81 1954 118.2
0 R 0 1958 1 (1, 0) 0.97 1959 123.2
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Figure 5.1: Distribution of the 75 villages in Serengeti District, Tanzania. The size of the
symbol relates to the total number of occurrences of rabies observed (2002-2007), whereby
an occurrence is defined as the presence of at least one suspected rabid dog in a village in
a one month period. These villages are bordered by wildlife protected areas (grey) to the
south and east, and other inhabited districts (white) to the north and west. Black lines depict
District boundaries. Village names (indexed by the ID number beside each village in this
map) are included in Appendix D.
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Figure 5.2: Graphical depiction of rabies occurrence (black squares) among the 75 villages
in Serengeti District, Tanzania, over a 6 year period (2002-2007). Villages are ordered
alphabetically (y axis), and occurrence is quantified in one month intervals (x axis). The
histograms (top and right sub-plots) summarize the pattern of occurrence among villages
and time periods respectively.
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Figure 5.3: The estimated population size of susceptible dogs (solid lines) in four represen-
tative villages from 2002-2007. Declines in population numbers result from vaccination of
dogs, and the increase in numbers results from both population growth and the waning of
vaccination coverage. Included are villages with the smallest, largest and two intermediate
dog populations. Note that not all villages were vaccinated in each vaccination campaign.
The dashed line represents the estimated population of susceptible dogs in the absence of
vaccination, which we use to quantify the efficacy of vaccination.
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Figure 5.4: The relative probability of transmission between villages is negatively associated
with the distance between villages (a) and the distance to neighbouring districts (b), and
positively associated with the population size of susceptible dogs in the village receiving (c)
and transmitting (d) infection. The mean (solid lines) and 95% credible intervals (dashed
lines) are derived from the two highest ranked models of disease occurrence and trans-
mission (see Methods). Graphs (a-d) are based on parameter estimates for κ, µ, δ and ψ
respectively (Table 5.2), in the four highest ranking models. Note that the combination of
these model components varies among these four models (Table 5.1), but parameter esti-
mates were highly consistent among models therefore these four graphs are representative
of the parameters in all four models.
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Figure 5.5: Frequency of disease occurrence based on 1000 stochastic simulations of the
four highest ranking models (represented by different line styles) among the 75 villages in
Serengeti District. To quantify the efficacy of vaccination occurrence of rabies was quantified
in three scenarios: unvaccinated populations, vaccinated populations with a continuing
external infection source (a), and vaccinated populations with an external infection source
that ends 6 months after the first set of vaccinations (b). Occurrence was summed within the
set of villages that were targeted for vaccination (all but 5 of the 75 villages in SD) for the 12
month period following a vaccination campaign in each village. Vaccination reduces both
the mean and variance of disease occurrence.
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Figure 5.6: The effect of uncertainty in the proximate indicator of disease occurrence on
model parameter estimates. Relative to a perfect indicator that captures 100% of occurrences
(solid line), assuming the indicator captures only 80% (dashed line) or 60% (dashed dotted
line) of occurrences results in a reduction to the spatial transmission kernel (a), and the
external infection source kernel (b), but has little influence on the effects of the population
size of susceptible dogs in the villages receiving (b) or transmitting (c) infection.



Chapter 6

The implications of metapopulation dynamics

on the design of rabies vaccination campaigns

6.1 Abstract

The problem of how to most effectively deploy vaccine in metapopulations has

not been resolved. We evaluate alternative strategies of pulse vaccination in order

to maximize the reduction in the occurrence (presence / absence) of rabies in a

metapopulation. We use metapopulation patch-occupancy models to quantify the

contribution of each sub-population to disease occurrence (“risk”). The competing

allocation strategies prioritise sub-populations based on population size, the risk

metric, or the reduction in global (metapopulation) risk that would result from the

vaccination. We also evaluate these three allocation strategies under the constraint

that if villages are visited then 70% of susceptible individuals must be vaccinated.

The allocation strategy that resulted in the greatest reduction in disease occurrence

maximized the reduction in global risk, and was 30-50% more effective compared

to all other allocation algorithms. Higher frequencies of smaller vaccination pulses

were more effective at reducing occurrence than less frequent, larger pulses. Forcing

a 70% vaccination level reduced the effectiveness of vaccination. This work de-

monstrates the strong potential for the role of metapopulation models in optimizing

disease control strategies.

Key words: rabies; vaccination effectiveness; patch occupancy; allocation
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6.2 Introduction

Epidemiological models are routinely applied to the design and evaluation of control

measures like vaccination campaigns (e.g. Coleman & Dye, 1996; Roberts, 1996; Kao,

2002; Haydon et al., 2006; Feng et al., 2009). For instance, such models can be used to

estimate how many vaccine doses need to be deployed to confer protection, and

to understand how the frequency and intensity of vaccination pulses influence the

long-term effectiveness of control programmes (Nokes & Swinton, 1997).

The simplest epidemiological models, which assume all individuals form a

single, homogeneously mixed population, provide straightforward solutions to the

problem of setting vaccination targets. One common estimate of the proportion of a

population that must be vaccinated to reduce the basic reproductive number, R0,

below 1 is 1− 1/R0 (Anderson & May, 1991). The problem with these models is that

they are typically poor approximations of real-world epidemics, and it is, therefore,

not clear whether inferences based on these models are valid.

The assumption of homogeneous mixing is often not valid because structuring

of host populations results in heterogeneity in transmission rates that have an im-

portant influence on disease dynamics (Bolker & Grenfell, 1995; Lloyd & May, 1996;

Swinton, 1998; Keeling, 2000; Fulford et al., 2002). Spatially structured metapo-

pulations can be modelled as a collection of loosely-coupled sub-populations (or

patches), whereby homogeneous mixing is assumed to be a reasonable approxima-

tion within sub-populations and between-population transmission can be a function

of distance and sub-population size. The dynamics of disease transmission in the

metapopulation is dependent on the strength of coupling among sub-populations,

the within-population value of R0, and the size and spatial arrangement of sub-

populations (Bolker & Grenfell, 1995; Ball et al., 1997; Park et al., 2001, 2002; Cross

et al., 2005). These models are rarely analytically tractable, thus it is difficult to draw

general conclusions about disease dynamics and how to optimize the implementa-

tion of control measures (Watts et al., 2005; Cross et al., 2007).

Here, we address the problem of how to deploy rabies vaccine doses in order to

reduce disease occurrence in a host metapopulation, where occurrence is defined

as the presence of one or more infectious cases in a one-month period. Rabies
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exerts a major public health and economic burden (Coleman et al., 2004; Knobel

et al., 2005), and poses an important threat to animal populations of conservation

concern (Woodroffe, 2001; Randall et al., 2004, 2006; Haydon et al., 2006; Cleaveland

et al., 2007). Yet rabies is a pathogen that can be effectively controlled or eliminated

by vaccinating hosts (Eisinger & Thulke, 2008). We evaluate competing strategies

for allocating vaccine doses among sub-populations in a metapopulation, and

quantify how a trade-off between vaccination pulse frequency and pulse intensity

(number of vaccine doses deployed) affects longer term effectiveness of the control

programme, which we define as the reduction in occurrence of rabies resulting

from vaccination relative to occurrence in a hypothetical unvaccinated population.

We adopt a metapopulation patch-occupancy framework in which the occurrence

of rabies is used to quantify the colonization-extinction dynamics of rabies in the

metapopulation (Beyer et al., in review).

6.3 Methods

This study took place in Serengeti District (SD), northern Tanzania, which borders

wildlife protected areas to the south and east (Serengeti National Park and the Iko-

rongo and Grumeti Game Reserves), and other inhabited districts to the north and

west (Bunda, Musoma and Tarime Districts). SD consists of 75 villages (Figure 6.1)

and is inhabited by approximately 174,400 people (Population and Housing Census

of Tanzania 2002) in primarily agro-pastoralist communities that use domestic dogs

for guarding households and livestock.

Our evaluation of control strategies was based on models of rabies metapopulation

dynamics presented in Beyer et al. (in review). In these models the presence and

absence (occupancy) of rabies in a village in one month intervals is modelled as a

function of four factors that influence disease transmission and persistence. First,

the probability of transmission between villages is negatively associated with the

distance between them. Second, the larger the sub-population of susceptible dogs in

the village receiving transmission, the greater the probability of transmission. Third,

for a subset of models, probability of transmission was also positively associated



6.3 Methods 105

with the dog population size in the sub-population transmitting infection. Finally,

all models included one of three sources of infection external to the metapopulation

of villages: the inhabited districts or protected areas adjacent to SD (Figure 6.1) whe-

reby probability of infection is associated with proximity to the district or protected

area boundaries, or a source that is distributed randomly throughout SD. As there

was little support for the protected area source of infection models (Beyer et al., in

review) they are not evaluated here.

Specifically, the infectious state, I, of the ith village at time t is modelled as:

Ii,t ∼ Bern[1− e−ci,t ] (6.1)

where c, the hazard rate, is proportional to the probability of transmission. The full

transmission model is:

ci,t = β
(
1− e−δSi,t−1

) V∑
j

[
Ij,t−1e−κdi,j

(
1− e−ψSj,t−1

)]
+ τe−µgi (6.2)

where V is the total number of villages, di,j is the Euclidean distance between the

centres of ith and jth villages (km), and Si,t is the number of susceptible dogs in the

ith village at time t. The parameters κ, δ and ψ determine the relative contribution

of the distance between villages and the size of the receiving and transmitting

village to the probability of acquiring infection. In the models including a randomly

distributed source of infection µ = 0, and τ represents a constant rate of external

infection among all villages. In the models where this external source is adjacent

districts, gi is the distance to the nearest inhabited district boundary, µ determines

the relative probability of transmission as a function of this distance, and τ is set

deterministically so that the overall rate of external infection among all SD villages

is 10 infections / yr (see Beyer et al., in review, for details). We use the four highest

ranked models with the maximum likelihood parameter values (Table 6.2) as the

basis for evaluating vaccination strategies.

Based on these models, the contribution of each sub-population to the meta-

population dynamics of disease occurrence (“risk”) was quantified as the sum of

two metrics that represent the risk of becoming infected, and the risk of transmitting
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infection. The risk of a sub-population receiving infection is 1− e−ai , where:

ai = β
(
1− e−δSi

) 1

V − 1

V∑
j,i6=j

[
e−κdi,j

(
1− e−ψSj

)
pj
]
. (6.3)

The probability that a village contained infectious individuals and could thus

transmit infection (p) was estimated using stochastic simulations of the meta-

population model over a 72 month burn-in period, which were discarded, and

then a 10000 month period that was used to calculate the probability of occurrence

in each village. The proportion of simulated occurrences is an empirical estimate

of p for a given population distribution in the metapopulaton, and it takes into

account the influence of the external source of infection in determining patterns of

occurrence.

Second, the risk of a sub-population transmitting infection (including to self) is

1− e−bi , where:

bi = βpi
(
1− e−ψSi

) 1

V

V∑
j

[
e−κdi,j

(
1− e−δSj

)]
. (6.4)

Thus, the risk (R) of sub-population i is Ri = ai + bi. We also define the global

metapopulation risk asRG =
∑V

i Ri, where V is the total number of sub-populations.

Formal analytical approximations for the contribution of individual sub-populations

to persistence of metapopulations have been previously developed (Hanski & Ovas-

kainen, 2000; Ovaskainen & Hanski, 2001, 2003). However, they assume that there

are no external sources of migrants (Ovaskainen & Hanski, 2001). Rabies in SD

cannot be considered a closed system as an external source of infection is an essential

component of the metapopulation model (Beyer et al., in review). The quantities Ri

and RG are, therefore, an ad-hoc first approximation to quantifying the contribution

of sub-populations to metapopulation dynamics in lieu of more formal metrics.

We evaluate six different allocation designs (A1-A6; Table 6.1). In all cases we

assume a maximum of 70% of susceptible animals in each sub-population can be

vaccinated, which reflects the fact that some dogs are stray, that some owners will

not choose to vaccinate their dogs, and that some dogs will not be accessible for

vaccination for other reasons (Lembo et al., 2010). It is not possible to vaccinate
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all dogs in a village, and the fraction of unvaccinated dogs could influence the

effectiveness of control measures in the metapopulation. We therefore assume that

a maximum of 70% will be vaccinated and explicitly account for the unvaccinated

proportion of the population in our evaluation of the effectiveness of the allocation

algorithms.

The first three algorithms allocate one dose at a time to the sub-population

prioritized by the allocation metric. Thus, algorithms A1-A3 may not necessarily

vaccinate sub-populations to the 70% level. Algorithms A4-A6 are based on the

algorithms A1-A3 but with the additional constraint that if a sub-population is

targeted that it must be vaccinated to the 70% level. We refer to these two strategies

as “per-dose” and “per-village” allocation strategies respectively.

A1. The algorithm allocates one vaccine dose at a time to the sub-population

with the most susceptible dogs, thereby reducing that sub-population size

by 1. This process is repeated until all vaccine has been allocated.

A2. The algorithm allocates one vaccine dose at a time to the sub-population

with the highest metapopulation risk value (Ri). After each allocation the

number of susceptible dogs in that sub-population is reduced by 1 and the

risk values are recalculated. This process is repeated until all vaccine has

been allocated.

A3. The algorithm allocates one vaccine dose at a time to the sub-population that

would result in the greatest decrease in the global risk score (RG). After each

allocation the number of susceptible dogs in that sub-population is reduced

by 1 and the risk scores are recalculated. This process is repeated until all

vaccine has been allocated.

A4. Vaccine doses are allocated to sub-populations in decreasing order of size,

with 70% of susceptible dogs vaccinated in each sub-population in sequence

until all of the doses have been allocated.

A5. Vaccine doses are allocated to sub-populations in decreasing order of risk

(Ri), with 70% of susceptible dogs vaccinated in each sub-population in

sequence until all of the doses have been allocated.
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A6. Vaccine doses are allocated to sub-populations in decreasing order of the

reduction in the global risk (RG) that would result from vaccinating 70% of

susceptible dogs in each sub-population, and repeated until all of the doses

have been allocated.

The last sub-population to be vaccinated, however, receives the remainder of

vaccine doses and therefore may not be vaccinated to the 70% level.

The initial number of susceptible dogs in each village in January 2002 was

estimated based on the human population size and the average number of dogs

per household in this region (Knobel et al., 2008; Lembo et al., 2008; Hampson et al.,

2009), resulting in 20,774 dogs distributed among the 75 villages. If the entire

metapopulation was vaccinated at the 70% level this would require 14,542 doses

of vaccine. Here we assume that 10,000 doses of vaccine are available. In many

circumstances the availability of vaccine doses is likely to be only one of several

possible limiting factors. For instance, the organisational and operational cost of

vaccinating a village may be high relative to the per-dose cost of vaccine, thus

could be a more important constraint on vaccination strategy. However, using

vaccine doses as a constraint allows us to evaluate the relative effectiveness of

the allocation algorithms and pulse designs, and to examine the importance of

metapopulation dynamics on these control strategies. Furthermore, the additional

constraint in algorithms A4-A6 that 70% of the village must be vaccinated if it

is visited effectively limits the campaign to a small number of villages. We are

therefore able to make a qualitative comparison between these different sets of

constraints.

We evaluate the trade-off between vaccination intensity and frequency by contras-

ting the effectiveness of one-, two- and four-pulse vaccination designs over a 5 year

period following the first vaccination event. The total number of vaccine doses

is identical among the three scenarios: one pulse of 10,000 vaccinations in month

1, two pulses of 5,000 vaccinations in months 1 and 13, and four pulses of 2,500

vaccinations in months 1, 13, 25 and 37.

The number of susceptible and vaccinated dogs in each month of our five year

study period was modelled as a function of the initial sub-population size, the
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dog birth rate (b = 0.538 yr−1) and death rates (d = 0.450 yr−1), the number of

dogs vaccinated during vaccination campaigns, and the rate at which vaccination

coverage wanes (w = 0.4 yr−1). The dynamics of the susceptible (S) and vaccinated

(V) components of the sub-population were described by dS/dt = b(S+V )+wV −dS,

and dV/dt = −wV −dV , which were solved using numerical simulation (the “lsoda”

command; R Development Core Team, 2009).

Using the maximum likelihood parameter values for each metapopulation mo-

del (Table 6.2) we use stochastic simulations of the four highest ranked models to

quantify the effectiveness of these simulated pulsed vaccination campaigns. Simu-

lations were initialized by randomly assigning infections to three villages in the

first time step, then running the simulation over a 72 month burn-in period with

constant sub-population sizes (these data were discarded) before recording simula-

ted occurrence among all sub-populations over the 60 month period following first

vaccination. These simulations were performed in R (R Development Core Team,

2009). For comparison, we also evaluate the frequency of disease occurrence in an

unvaccinated metapopulation. The difference in overall disease occurrence (the

total number of months in which disease is observed) between the vaccinated and

unvaccinated metapopulation simulations is a measure of the expected effectiveness

of vaccination.

Villages are administrative boundaries that may not relate closely to heteroge-

neity in dog densities. Dogs typically can be found throughout this agro-pastoralist

landscape so representing villages as point locations and quantifying transmission

dynamics as a function of distances among villages may be an over-simplification,

particularly for adjacent villages where there may be little difference in between-

and within-village transmission. To test the sensitivity of our models to these as-

sumptions village distances between adjacent villages (those in which polygon

boundaries touch) were set to 0 and the analysis was repeated.
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6.4 Results

The estimated contribution of sub-populations to metapopulation disease dynamics

(Ri) was positively correlated with sub-population size (Figure 6.2a-d), although

there was considerable variability in values resulting from the spatial proximity

of sub-populations. For instance, of the villages with 400-600 dogs there was an

approximately three-fold difference in values of Ri (Figure 6.2a-d). The relative

importance of the roles of sub-population size and proximity are illustrated in

Figure 6.3. The risk values based on the metapopulation models that included the

size of the transmitting village (models 3 and 4, Figure 6.2c, d) were similar to the

risk values based on the models omitting this term (models 1 and 2, Figure 6.2a, b).

However, for algorithms A2, A3, A5, and A6, even small changes in the estimates of

Ri can alter the way vaccine is deployed in the metapopulation. While algorithms

A2 and A5 target the sub-populations with the largest values of Ri, algorithms A3

and A6 target the sub-populations where the vaccination of susceptible individuals

results in the largest decrease in Ri.

The effectiveness of vaccination (the percent reduction in occurrence of rabies

relative to the unvaccinated metapopulation) varied between 13.2% and 33.4%

among the different allocation algorithms and pulse designs (Table 6.3). The highest

effectiveness was predicted for the algorithm that allocated vaccine based on the

largest per-dose reduction in RG (A3) in the 4-pulse design (Figure 6.4).

Of the pulse designs, the effectiveness of the 4-pulse design was up to 15.9%

(mean 6.5%) higher than the effectiveness of the 2-pulse design, and up to 52.7%

(mean 32.5%) higher than the effectiveness of the 1-pulse design. The effectiveness

of the 2-pulse design was up to 46.3% (mean 27.9%) higher than the effectiveness of

the 1-pulse design. A higher frequency of vaccination pulses was therefore more

effective at reducing disease occupancy over the 5 year study period, even though

the total number of vaccines deployed was the same.

For the vaccine allocation algorithms based on the size of the sub-population

(A1, A4), or on Ri (A2, A5), applying vaccination on a per-village basis resulted in

similar vaccination effectiveness to the per-dose algorithms (comparing A1 with A4,

and A2 with A5 for all three pulse designs). However, the algorithms that allocated
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vaccine based on the largest reduction in RG had greater effectiveness with the

per-dose allocation strategy (A3) than the per-village strategy (A6). For instance, in

the 4-pulse design the per-dose allocation strategy was 8.4% more effective than the

per-village allocation strategy (Table 6.3).

There was wide variation in the number of villages visited and the proportion of

susceptible dogs in each village vaccinated (Table 6.5). Allocating vaccination doses

using the per-village strategy resulted in 21-59% fewer villages visited compared

to the per-dose strategies. The greatest variation among allocation algorithms in

the number of villages vaccinated and the number of doses allocated to villages

was seen in the 1-pulse design. For instance, A1 and A2 allocated doses among

numerous villages and resulted in a variable proportion of susceptible animals

vaccinated in each village in contrast to A3, which allocated doses to fewer villages

and consistently vaccinated the maximum of 70% of susceptible individuals, even

though it was not constrained to do so (Table 6.5). These differences diminished,

however, as the number of pulses increased.

The spatial and temporal pattern of vaccine allocation differed widely among

the allocation algorithms. For instance, the pattern of allocation for the algorithm

that allocated vaccine based on the largest reduction in metapopulation risk (A3) in

the 4-pulse design was highly clumped (Figure 6.4). In contrast, the algorithm that

prioritized by population size (A1) resulted in a much more dispersed pattern of

allocation (Figure 6.5). Of particular note, the largest sub-population with over 1300

dogs (see arrows in Figures 6.4 and 6.5) was allocated no vaccine by algorithm A3,

but was the most heavily vaccinated sub-population using algorithm A1.

Metapopulation dynamics are highly variable and there was considerable over-

lap in the frequency distributions of disease occurrence among all models and

scenarios (Figure 6.6). Although vaccination reduces this variability, high levels of

simulated occurrence were possible even in the vaccinated metapopulation.

These results were not sensitive to assumptions about how how distances bet-

ween neighbouring villages were specified. Under the alternative village distance

model where adjacent villages were assigned as distance of 0 and non-adjacent

villages retained the original Euclidean distance, effectiveness among the pulse and
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allocation strategies was qualitatively similar but approximately 3-4% higher than

that of the original model (Table 6.4). This reflects the fact that changing the distance

matrix effectively alters metapopulation structure.

6.5 Discussion

The algorithm (A3) that allocated vaccine doses based on metpopulation risk (RG)

was up to 52% more effective at reducing disease occurrence than the other alloca-

tion algorithms. The greater effectiveness of this algorithm (A3) compared to the

algorithm that prioritized sub-populations based on size (A1) demonstrates the im-

portance of host population structure and metapopulation dynamics on the design

of, and evaluation of the effectiveness of, control measures. The implication is that,

using metapopulation models, it may be possible to improve the effectiveness of

control programmes by optimizing vaccination effort in spatially structured host

populations. This improvement in effectiveness, however, was reduced to approxi-

mately 30% under the constraint that sub-populations were prioritized using the

per-village (A6) versus the per-dose (A3) allocation strategies. Thus, the potential for

improving the effectiveness of control programmes may be limited by operational

constraints if the number of villages that can be visited is a strong limited factor in

the design of a campaign.

In the real world, deploying a limited number of vaccines in a village, or focu-

sing on vaccinating more, smaller villages, may not be tenable strategies if they

create resentment among dog owners, competition for vaccines, or if they are cost

ineffective. If the set of constraints in a specific vaccination problem can be specified

then formal optimization of allocation could be achieved using techniques such as

fuzzy logic (Massad et al., 1999) or simulated annealing (Kirkpatrick et al., 1983). For

instance, Massad et al. (1999) characterize constraints to measles vaccination pro-

grammes in terms of compliance (the expected maximum number of vaccines that

can be delivered), human resources, transportation, communication (advertising

and education), and cost, and use a fuzzy logic framework to contrast competing

strategies.
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The single village that was considerably larger than the other villages had the

largest risk value (Ri). However, for the smaller villages there was considerable

variation in risk as a function of dog population size. Of particular importance are

the larger villages with low risk and the smaller villages with high risk. The former

represent villages that conventional approaches to vaccine allocation might suggest

should be targeted, but where control efforts yield relatively little protection to the

metapopulation per unit investment. The latter represent villages that might typi-

cally not be prioritized by conventional approaches, but that in fact are important

from a metapopulation disease dynamics perspective.

No vaccine was allocated to the largest village (see arrows in Figure 6.4) using

the most effective algorithm (A3), despite this village having the largest risk value

(Ri). This village was not prioritized by algorithm A3 because a single vaccine dose

resulted in a small reduction in the global risk value (RG) relative to other villages.

Thus, this work challenges the intuitive expectation that it is important for the largest

population to be vaccinated. Several factors determine transmission dynamics in

these models, and RG is a function of the interaction between population size, the

probability of occurrence of rabies in each village, and the spatial arrangement of

villages in relation to each other and to any other possible sources of rabies infection.

Our objective was to reduce the occurrence of rabies (the presence of one or more

infectious cases in a one-month period), which is different to reducing prevalence.

Rabies outbreaks in SD tend to be minor (sensu Anderson & Watson, 1980), with a

prevalence that is uncorrelated with the population size of susceptible dogs (data

not shown), which is one reason why it is justifiable to model metapopulation

dynamics of rabies as occurrence rather than prevalence (Beyer et al., in review).

For diseases where prevalence is strongly correlated with population size, however,

population size may be a stronger driver of transmission dynamics and the largest

populations may be more likely to be prioritized by the risk algorithms. A strategy

that was specifically designed to reduce prevalence might, therefore, result in a

different allocation of vaccine doses among villages.

The effectiveness of all vaccination allocation algorithms improved as the number

of pulses increased, with the 4-pulse design being approximately twice as effective
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as the 1-pulse design for the best performing algorithm (A3). The single pulse design

that allocates all vaccine at once provides the greatest protection, but the susceptible

population recovers from this pulse within about 2 years (Figure 6.7). In contrast,

the 2- and 4-pulse designs provide less protection at any one time, but spread that

protection more evenly across the 5 year study period, thereby providing better

long-term protection (Figure 6.7). In this study recruitment of susceptible dogs

results from both birth and from the waning of vaccination in vaccinated dogs. The

best pulse strategy is, therefore, determined by a complex interaction between the

number of doses administered, the number of pulses, the interval between pulses,

and the rates of birth and waning of vaccination.

The metapopulation models we evaluated included an external source of infec-

tion of the dog population, representing transmission from neighbouring inhabited

districts, or transmission from alternative host populations distributed throughout

SD. In order to use these models to design strategies to eradicate rabies it is necessary

to first better establish how vaccination of the dog population is likely to influence

this source of infection. If neighbouring districts are the primary source, then vac-

cinating dogs on a larger regional scale would result in a rapid elimination of the

source of reinfection. If, however, other host populations present throughout SD are

a source of reinfection, there may be a considerable lag time between elimination of

rabies in dogs, and fade-out of rabies from these other host populations. Current

evidence suggests other domesticated species within SD and wildlife species in the

adjacent protected areas do not constitute a separate host population (Lembo et al.,

2007, 2008), but they could play a role in helping to facilitate the persistence of rabies

in the domestic dog population in the short-term. Understanding the likely source

of external infection is key to devising eradication designs and, equally importantly,

to devising responses to outbreaks arising in the disease-free population following

initial eradication. This is an essential area for further work.

Metapopulation models are particularly suitable for the design of control or

eradication programmes at large scales in spatially structured populations. Simple

approximate rules for determining the number of individuals to vaccinate in a sub-

population may be effective at preventing major outbreaks in that sub-population.
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For instance, one frequently used approximation of the proportion of a population

that must be vaccinated to reduce the basic reproductive number, R0, below 1 is

1−1/R0 (Anderson & May, 1991). But this work suggests that, given a limited supply

of vaccine, allocation strategies that take into account metapopulation structure

can be substantially more effective at reducing occurrence than simple population

size-based strategies.

While models can be useful in informing the design of control strategies, they

are inevitably simplifications of reality and must be interpreted in the context of

the broader social, political and organisational factors that influence the design

and implementation of control programmes. Many of these factors are important

but cannot be explicitly included in models so must be accounted for in a an

ad-hoc way. Models are also sensitive to the assumptions upon which they are

based. Here, we examined the sensitivity of our analysis to assumptions about

how the distances among villages were quantified and found our results to be

robust to those assumptions. There are many more assumptions, however, that

may influence the allocation of vaccine therefore it is also important to consider

the risk of model recommendations, particularly for strategies that involve high

investment of resources in just a few populations. Furthermore, disease outbreaks

are a highly variable stochastic process (Figure 6.6), and, under any but the most

comprehensive control programmes, significant outbreaks remain possible. Yet

despite these cautionary provisos, this work indicates there are significant potential

benefits to using metapopulation models to identify effective control strategies.

Metapopulation models are key to understanding disease dynamics in spatially

structured populations at regional scales, and to maximising the efficiency of control

efforts. Although it can be difficult to obtain the data required to parameterize

such models, we suggest that initial survey efforts could be used as a basis for

creating simple metapopulation models, while more detailed data could be collected

through time to build more detailed and informative models. Thus, we recommend

that collecting metapopulation data be included as a specific objective in control

programmes designs. This would include sub-population surveys, estimates of

key demographic parameters as a function of sub-population size, and the relative
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frequency of within- and between-population transmission rates.
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prioritization population metapopulation global
metric: size risk risk

(S) (Ri) (RG)

allocation size:
per-dose A1 A2 A3
per-village A4 A5 A6

Table 6.1: Vaccine was allocated to villages according to 6 algorithms (A1-A6) that differ
according to whether doses are allocated on a per-vaccine or per-village basis, and according
to the metric used to prioritize villages. For per-dose allocation one dose is allocated at
a time, whereas for per-village allocation 70% of the population of susceptible dogs are
allocated at each step. Villages were prioritized based on the population size of susceptible
dogs, the magnitude of village-level metapopulation risk (Ri), or in order of the greatest
reduction in global risk (RG). See Methods for further details.
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allocation occurrence reduction (%)
method model 1× 10k 2× 5k 4× 2.5k

A1 1 14.8 20.6 21.5
A1 2 13.4 16.9 16.9
A1 3 14.8 19.2 20.7
A1 4 14.1 19.6 20.6

A2 1 17.2 21.5 24.2
A2 2 14.2 20.9 20.4
A2 3 16.0 22.7 24.1
A2 4 17.3 21.1 23.2

A3 1 17.3 27.7 32.1
A3 2 15.5 24.2 27.4
A3 3 17.0 28.0 33.3
A3 4 15.8 29.4 33.4

A4 1 14.9 18.4 19.6
A4 2 14.2 17.9 17.6
A4 3 14.3 19.3 20.1
A4 4 14.2 18.4 20.7

A5 1 16.6 23.0 22.9
A5 2 13.2 19.0 20.9
A5 3 16.8 23.3 25.0
A5 4 15.6 23.3 25.6

A6 1 15.6 23.0 23.7
A6 2 15.2 20.8 19.5
A6 3 15.6 21.5 25.5
A6 4 18.2 22.2 24.1

Table 6.3: The reduction in the simulated occurrence of rabies as a result of vaccination
relative to simulated occurrence in an unvaccinated population. Occurrence is defined as at
least one case in a sub-population in a one-month period, and was assessed over 5 years
following first vaccination. Vaccine doses were allocated according to 6 algorithms (A1-A6)
over three pulse schedules (one pulse of 10,000 doses, two pulses of 5,000 doses, or four
pulses of 2,500 doses). Models 1-4 refer to four competing metapopulation patch-occupancy
models. See Methods for details.
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allocation occurrence reduction (%)
method model 1× 10k 2× 5k 4× 2.5k

A1 1 17.3 22.3 23.6
A1 2 14.8 18.2 19.6
A1 3 15.0 21.8 22.5
A1 4 18.1 24.0 23.5

A2 1 17.3 27.0 27.5
A2 2 16.0 21.6 23.2
A2 3 16.7 25.1 27.3
A2 4 18.8 27.7 28.1

A3 1 19.1 31.9 37.4
A3 2 17.0 27.4 31.7
A3 3 17.0 32.4 38.3
A3 4 19.0 32.4 38.7

A4 1 16.9 23.0 23.5
A4 2 14.1 18.7 20.2
A4 3 12.9 19.3 22.5
A4 4 18.5 22.5 23.1

A5 1 18.5 26.8 27.2
A5 2 14.8 22.0 22.9
A5 3 16.6 23.5 26.1
A5 4 19.4 27.2 28.6

A6 1 19.7 25.2 29.4
A6 2 14.9 21.8 23.7
A6 3 16.2 25.3 26.7
A6 4 18.2 27.4 29.6

Table 6.4: The reduction in the simulated occurrence of rabies as a result of vaccination
relative to simulated occurrence in an unvaccinated population for the alternative village-
distance model (see Methods). These results are qualitatively the same as those for the
original distance model but approximately 3-4% higher. Occurrence is defined as at least one
case in a sub-population in a one-month period, and was assessed over 5 years following
first vaccination. Vaccine doses were allocated according to 6 algorithms (A1-A6) over three
pulse schedules (one pulse of 10,000 doses, two pulses of 5,000 doses, or four pulses of 2,500
doses). Models 1-4 refer to four competing metapopulation patch-occupancy models. See
Methods for details.
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allocation 1× 10k pulse 2× 5k pulses 3× 2.5k pulses
method model Nvill Pvacc s.d. Nvill Pvacc s.d. Nvill Pvacc s.d.

A1 1-4 68 43.7 17.0 41 31.6 24.4 24 22.8 22.4
A2 1 61 48.8 32.2 33 29.8 31.3 22 17.8 21.1
A2 2 59 51.6 21.3 31 39.8 29.3 21 21.8 21.8
A2 3 60 48.4 32.3 30 29.6 31.3 22 18.2 21.7
A2 4 59 51.1 19.9 30 38.5 28.7 24 20.2 21.4
A3 1 56 68.8 9.4 31 40.4 29.9 20 25.9 24.6
A3 2 56 68.8 9.4 30 40.4 29.9 19 26.4 24.9
A3 3 57 69.4 4.9 32 40.4 29.9 21 26.6 25.0
A3 4 56 70.0 0.6 32 40.4 29.9 20 26.5 24.9
A4 1-4 40 69.0 5.9 17 38.5 30.0 10 23.3 23.3
A5 1 43 48.9 32.5 20 32.0 31.0 10 20.1 22.7
A5 2 43 66.6 14.9 20 37.1 29.9 12 21.7 22.6
A5 3 43 50.5 31.8 20 30.1 30.7 11 19.7 22.6
A5 4 43 68.4 10.7 20 37.1 29.9 10 23.2 23.6
A6 1 43 68.5 10.1 19 35.7 30.2 11 22.1 23.3
A6 2 43 69.8 1.8 19 37.4 29.7 12 21.6 23.1
A6 3 43 68.6 9.7 19 35.7 30.2 12 20.7 22.9
A6 4 44 67.6 11.9 21 36.1 29.5 12 21.8 22.5

Table 6.5: The number of villages visited during vaccination campaigns (Nvill), and the
mean (Pvacc) and standard deviation (s.d.) of the percent of the susceptible population
vaccinated on each visit. Each visited village was counted only once if it was visited in more
than one pulse. Vaccine doses were allocated according to 6 algorithms (A1-A6) over three
pulse schedules (one pulse of 10,000 doses, two pulses of 5,000 doses, or four pulses of 2,500
doses). Models 1-4 refer to four competing metapopulation patch-occupancy models. See
Methods for details.
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Figure 6.1: Distribution of the 75 villages in Serengeti District, Tanzania. The size of the
symbol relates to the estimated domestic dog population sizes (2002). These villages are
bordered by wildlife protected areas (grey) to the south and east, and other inhabited
districts (white) to the north and west. Black lines depict District boundaries.
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Figure 6.2: The estimated contribution of each SD village to metapopulation disease dy-
namics (Ri) based on four metapopulation models (a-d; see Methods) that included the
number of susceptible dogs in the receiving population and the distance to neighbouring
populations (a, b), and that also include the size of transmitting populations (c, d). Risk was
positively correlated with population size, although there was considerable variability in
values resulting from the spatial proximity of populations.



6.6 Tables and Figures 124

570000 580000 590000 600000

78
00

00
79

00
00

80
00

00
81

00
00

● ●

●

●●

● ● ● ● ● ● ●
1 2 3 4 5 6 7

x coordinate

y 
co

or
di

na
te

(a)

●

●

●

●

●

●

●

1 2 3 4 5 6 7

0.
01

5
0.

02
0

0.
02

5
0.

03
0

0.
03

5

Position index

R
i

(b)

●

●

●

●

●

●

●

●

200 400 600 800 1000 1200 1400

0.
02

0.
04

0.
06

0.
08

0.
10

Population size (susceptibles)

R
i

(c)

Figure 6.3: Demonstration of the relative importance of spatial proximity and population
size to the contribution of a sub-population to metapopulation disease dynamics (Ri) calcu-
lated using the highest ranked model (see Methods for details). In this simple hypothetical
example (a) five populations of 200 dogs are fixed (solid circles) and the location of one
further village changes (open circles). Ri for this additional village increased as proximity
to the other populations increased (b). The labels in (a) correspond to the x axis of (b). The
influence of population size was quantified using village position 5 and calculating Ri for a
range of population sizes (c). The population size has a stronger influence on the magnitude
of Ri than the proximity of the populations.
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Figure 6.4: Allocation of 10,000 vaccines among villages, in four pulses of 2,500 vaccines
in months 1 (a), 13 (b), 25 (c) and 37 (d), by the allocation algorithm (A3) that resulted in
the greatest decrease (30.4%) in the occurrence of disease in simulations. Many populations
received no vaccine doses (open circles). Small, medium and large sizes of solid circles
correspond to villages that received 0-100, 100-200, or 200-300 vaccine doses respectively.
The arrow indicates the largest village with an initial population of 1389 dogs.
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Figure 6.5: Allocation of 10,000 vaccines among villages, in four pulses of 2,500 vaccines in
months 1 (a), 13 (b), 25 (c) and 37 (d), by the allocation algorithm (A1) that prioritises the
largest populations, resulting in a 19.3% decrease in occurrence of disease in simulations.
Many populations received no vaccine doses (open circles). Small, medium and large sizes
of solid circles correspond to villages that received 0-100, 100-200, or 200-1000 vaccine doses
respectively. The arrow indicates the largest village with an initial population of 1389 dogs.
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Figure 6.6: The reduction in the occurrence of rabies as a result of vaccination. Occurrence
is defined as at least one case in a sub-population in a one-month period, and was assessed
over 5 years following first vaccination. (a) Frequency distribution of disease occurrence
based on simulations of four metapopulation models (see Methods) in unvaccinated (solid
lines) and vaccinated populations (dashed lines). For simplicity, only the results of a
single vaccine allocation algorithm (A3) applied using the 4-pulse design are shown. (b)
Frequency distribution of disease occurrences based on simulations of the highest ranked
metapopulation model (model 1) in unvaccinated populations (solid line) and populations
vaccinated using four alternative vaccine pulse designs (1-, 2- and 4-pulses). For simplicity,
only the results of a single vaccine allocation algorithm (A3) are shown. Vertical lines
represent mean values of each distribution. (c) Frequency distribution of disease occurrences
based on simulations of the highest ranked metapopulation model (model 1) in unvaccinated
populations (thick line) and populations vaccinated using six alternative vaccine allocation
algorithms (A1-A6). For simplicity, only the results of the 4-pulse vaccination design are
shown.
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Figure 6.7: The number of susceptible individuals in a village is reduced by vaccination, but
increases as new individuals are recruited to the population (birth or immigration) and due
to the waning of vaccination. To illustrate the role of vaccination pulse frequency on the
population of susceptible dogs, 216 vaccines were administered to a hypothetical population
of average size (288 susceptible dogs) under four pulse strategies over a 5 year period. In
the 1-pulse design (solid line) all 216 doses are administered at time 0, representing a 70%
coverage. In the 2-pulse design (dashed line) 108 vaccines are administered at time 0 and
2.5, and in the 4-pulse design (dashed-dotted line) 54 vaccines are administered at times
0, 1.25, 2.5, and 3.75. (A small offset was added to the x-axis for the 2 and 4-pulse lines to
prevent overlap.) Thus, the total number of vaccines administered is identical under all
three scenarios. The mean number of susceptible dogs over the 5-year period is 311, 312 and
285 dogs respectively for the 1, 2, and 4-pulse designs. Thus, the 4-pulse design is the most
effective of the three in minimizing the susceptible population.



Chapter 7

Discussion

One of the themes to emerge from this thesis is the sensitivity of SEIR models to

the simplifying assumptions upon which they are based and the methods used

to solve them. The assumption of exponentially distributed transition periods is

one problematic assumption. I suspect that rabies is unusual in having a highly

variable incubation period such that the exponential model turned out to be a better

fit to the distribution than a gamma distribution (with a shape parameter greater

than 1, which is the exponential distribution). It is perhaps likely that the majority

of pathogens would have incubation and infectious period distributions that are

considerable less-dispersed than the exponential distribution. As the method of

stages (Cox & Miller, 1965; Lloyd, 2001b) provides an obvious and straightforward

solution to incorporating realistic distributions into models there is little excuse for

not using it. Even if data is not available for fitting a gamma distribution, the method

of stages can be used to evaluate the sensitivity of the results to the assumption of

exponentially distributed transition periods.

Representing a complex and continuously changing infection process as discrete

states is another problematic assumption. Again, I suspect rabies is unusual in

apparently having considerable variability in the infection process. There is convin-

cing experimental evidence of possible mechanisms facilitating long incubation

times and the ability of some infected animals to recover and develop immunity (at

least, prior to CNS infection). Yet, there is also considerable uncertainty about the

pathology of the rabies, that is fuelled in part by the complex interaction of different

strains in different hosts. In particular, lab strains of RV appear to have much lower
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pathogenicity than some wild (“street-virus”) strains, and it is questionable how

directly applicable the lab strain work is to disease in the wild.

One issue that has not been explored in this thesis is the effect that variable

infectivity might have on outbreak dynamics. Transmission of rabies among dogs

appears to be assisted by the neurological and therefore behavioural changes resul-

ting from infection such as increased aggression, and tolerance to pain. As these

changes appear to develop gradually during the infectious period, the probability of

transmission may be relatively low in the early stages of the infectious period, and

considerably higher up until the time the animal dies. This could be important in SD

because the human population is quite effective at killing infectious dogs, thereby

truncating the infectious period. Although we took this reduction in the duration

of the infectious period into account in our models, we may have underestimated

the importance of this effect if the days truncated from the end of the infectious

period represent the majority of transmission events. Based on contact-tracing data

(Hampson et al., 2009) I suspect that is not the case, but it remains an issue that

would be interesting to explore.

Another theme to emerge from this thesis is the importance of transmission

heterogeneity at multiple scales. It is often assumed that the assumption of homoge-

neous mixing in small populations is reasonable. While this is obviously not true in

some circumstances, particularly in the context of agricultural systems (e.g. cows on

farms), it is very difficult to gauge the variability of transmission rates in SD dog

populations. Dogs are often free to roam and mix in rural villages, although this may

not be true in the more urban settings. Yet we found support for the hypothesis of

population structuring in small populations (< 300 dogs). Even though this did not

change the estimate of R0 compared to the simple (unstructured population) SEIR

models, it reduced outbreak severity substantially. Modelling the dog population

as groups of dogs where within-group transmission was approximately 15 times

higher than between-group transmission resulted in much more frequent stochastic

fade-out of disease.

There is little doubt about the importance of population structure at the district

level. The patch-occupancy approach was highly effective in modelling meta-
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population dynamics. Although many metapopulation disease models are based

on compartment models (Park et al., 2001), the inability of these models to gene-

rate realistic outbreak size distributions (Chapter 4) precluded this approach here.

Furthermore, there is little relationship between populations size and outbreak size

(data not shown). If an outbreak occurs, it tends to result in a small number of

cases, regardless of population size. Thus, modelling occurrence of rabies rather

than incidence of rabies is a valid approach, and does not suffer from subjectivity in

defining a suitable SEIR model.

Although epidemiological data can be difficult to collect, especially in developing

countries, we have shown that metapopulation models can be fit based on proximate

indicators of disease occurrence (medical records of human bite injuries). This data

is much more readily available than direct information about rabies incidence in

dogs, and has the added advantage of being a record of incidence over many

years. Bayesian state-space models are a rigorous framework for relating this noisy

indicator data to the true variable of interest (occurrence or incidence). The data

model component of our state-space formulation is very simple, including only a

single parameter representing the probability of detection. While this is a reasonable

starting point, long-term projects could collect supplementary data that could be

used to develop a better models of the link between unobserved, true incidence,

and the proxy variable we observe.

Thus, the absence of direct epidemiological data does not always prevent us

from developing more realistic models that might offer greater insight into disease

dynamics and control, and there is clearly potential to apply these methods to many

disease problems in developing countries. Given the potential trade-off between

obtaining a detailed, one-time “snapshot” of the infectious status of a population

(e.g. through field surveys), versus obtaining a much coarser, but long-term estimate

of disease incidence, it is not obvious to me that the detailed data necessarily offers

greater insight. Detailed but short-term incidence data offers limited scope for

developing an understanding of transmission dynamics, which is so important

from an intervention perspective. The possible exception to this is the collection of

sequencing data over wide regions, which can address fundamentally important
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questions of the origin and spread of pathogens over large scales (Biek et al., 2007).

From the perspective of using the patch-occupancy metapopulation models

for designing disease eradication programmes at a larger regional scale there are

three issues that it would be useful to investigate further. Two of these issues

relate to the problem of applying the model to population sizes that fall outside

of the range of population sizes that were used to fit the model. First, it is not

clear how the probability of transmission declines at very small population sizes

(< 50 dogs). There is some evidence of quite strong non-linearity in transmission

dynamics at small population sizes (Chapter 5). A better definition of the changes

in transmission rates in these very small populations would be useful. At the other

end of the spectrum, there is also uncertainty about how transmission dynamics

change in larger populations. It would be interesting to fit these models to data

from adjacent, unvaccinated villages, which have larger populations of susceptible

dogs. There is also the question of whether population mixing is fundamentally

different in the large populations, and in particular whether it would be more

appropriate to develop different models for rural and urban populations. Dogs

may be much more restricted in the latter, which would have a profound influence

on transmission dynamics. Thus, very fine-scale data on within-village social and

spatial organisation of the dog population would also be very useful for improving

our understanding of this system.



Appendix A

Deterministic solutions of the method of

stages

Systems represented by a series of ordinary differential equations, such as the SEIR

model presented here with gamma distributed incubation and infectious periods

implemented using the method of stages, can be solved deterministically using

numerical simulation algorithms. Here we present an example of how to generate

the deterministic solution to an SEIR model with 5 incubation and infectious stages

using R (R Development Core Team, 2009).

The equations are built into a function that can be referenced using the “odesolve”

library:

modelSEIR_5_5 <- function(t, y, p){
dS <- p[1]*(y[1] + y[2] + y[3] + y[4] + y[5] + y[6] + y[7] + y[8]
+ y[9] + y[10] + y[11] + y[12]) - p[3]*y[1]*(y[7] + y[8] + y[9]
+ y[10] + y[11]) - p[2]*y[1]
dE1 <- p[3]*y[1]*(y[7] + y[8] + y[9] + y[10] + y[11])
- (p[6]*p[4] + p[2])*y[2]
dE2 <- p[6]*p[4]*y[2] - (p[6]*p[4] + p[2])*y[3]
dE3 <- p[6]*p[4]*y[3] - (p[6]*p[4] + p[2])*y[4]
dE4 <- p[6]*p[4]*y[4] - (p[6]*p[4] + p[2])*y[5]
dE5 <- p[6]*p[4]*y[5] - (p[6]*p[4] + p[2])*y[6]
dI1 <- p[6]*p[4]*y[6] - (p[7]*p[5] + p[2])*y[7]
dI2 <- p[7]*p[5]*y[7] - (p[7]*p[5] + p[2])*y[8]
dI3 <- p[7]*p[5]*y[8] - (p[7]*p[5] + p[2])*y[9]
dI4 <- p[7]*p[5]*y[9] - (p[7]*p[5] + p[2])*y[10]
dI5 <- p[7]*p[5]*y[10] - (p[7]*p[5] + p[2])*y[11]
dR <- p[7]*p[5]*y[11] - p[2]*y[12]
list(c(dS, dE1, dE2, dE3, dE4, dE5, dI1, dI2, dI3, dI4, dI5, dR))
}

The vector t represents the times at which the values of each of the components

of the model are reported, y is a vector that contains the initial conditions of each

component in the system, and p is a vector of parameters which in this case corres-
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ponds to: the birth rate (b), death rate (d), the transmission parameter (β), the rate

parameter for the incubation period (σ) and infectious period (α), and the number

of incubation stages (m) and infectious stages (n). The solution to the model is

calculated as follows:

library(odesolve)
times <- seq(0,600,0.1)
parms <- c(0,0,0.00015,0.1,0.1,5,5)
init <- c(1000, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)
sol <- lsoda(init,times,modelSEIR_5_5, parms, rtol=1e-4, atol=1e-6)

The resulting object “sol” is a dataset where each row represents the state of

the system at a time specified in the vector “times”, which are recorded in the first

column of this dataset, and the subsequent columns contain the value of each of the

stages at that time.



Appendix B

Sensitivity analysis (Chapter 4)

The sensitivity of our analysis to the assumption of a 50% detection rate was evalua-

ted by repeating the analysis with detection rates of 40 and 60%. The following two

figures describe the model selection and parameter estimation results for the human

intervention model (first figure) and the structured population model (second fi-

gure) at these two detection probability levels. Differences in detection probabilities

resulted in small quantitative, not qualitative, differences to the analysis.
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Figure B.1: The output from the ABC-SMC algorithm for the human intervention models
assuming detection rates of 40% (a, c) or 60% (b, d). (a, b) Proportion of particles associated
with each model (1-5) in each of the six populations of particles (x axis). The distance
measures between observed and simulated datasets become increasingly stringent in this
progression of populations. The relative frequency of particles for each model in the final
population is used as an indication of the relative likelihood of the models. The strongest
support was found for Model 2 at both detection probability levels. (c, d) The estimated
posterior distribution of κ based on the density of particles in the final population of particles.
The dashed line represents the estimated maximum likelihood estimate of κ.
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Figure B.2: The output from the ABC-SMC algorithm for the structured population models
assuming detection rates of 40% (a, c) or 60% (b, d). (a, b) Proportion of particles associated
with each model (1-4) in each of the six populations of particles (x axis). The distance
measures between observed and simulated datasets become increasingly stringent in this
progression of populations. The relative frequency of particles for each model in the final
population is used as an indication of the relative likelihood of the models. The strongest
support was found for Model 4 at both detection probability levels. (c, d) The estimated
posterior distribution of µ based on the density of particles in the final population of particles.
The dashed line represents the estimated maximum likelihood estimate of µ.
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Table C.1: Names of the 75 villages in Serengeti District, Tanzania. Numbers correspond to
the numbers on the map in Figure 1. Alternative spellings are shown in parentheses.

1 Bisarara 39 Mbiso (Mbisso)
2 Bonchugu 40 Merenga
3 Borenga 41 Mesaga
4 Buchanchari 42 Miseke (Misseke)
5 Burunga 43 Monuna
6 Busawe 44 Morotonga
7 Bwitengi 45 Mosongo
8 Gentamome (Gantamome) 46 Motukeri
9 Gesarya 47 Mugumu
10 Gusuhi 48 Musati
11 Iharara 49 Ngarawani
12 Iseresere 50 Nyagasense
13 Itununu 51 Nyamakendo
14 Kebanchabache (Kebanchebanche) 52 Nyamakobiti
15 Kebosongo 53 Nyamatare
16 Kegonga 54 Nyamatoke
17 Kemgesi 55 Nyambureti
18 Kenyamonta 56 Nyamburi
19 Kenyana 57 Nyamerama
20 Kibeyo 58 Nyamitita
21 Kisangura 59 Nyamoko
22 Kitembere 60 Nyamsingisi (Nyamasingisi)
23 Kitunguruma 61 Nyankomogo
24 Kono 62 Nyansurumuti (Nyansurumunti)
25 Koreri 63 Nyansurura
26 Kwitete 64 Nyiberekera
27 Kyambahi 65 Nyiboko
28 Maburi 66 Nyichoka
29 Machochwe 67 Park Nyigoti
30 Magange 68 Remung’orori
31 Magatini 69 Rigicha
32 Majimoto 70 Ring’wani
33 Makundusi 71 Robanda
34 Marasomoche 72 Rung’abure
35 Masangura 73 Rwamchanga
36 Masinki 74 Singisi
37 Matare 75 Wegete (Wagete)
38 Mbalibali
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State-space models

Here we provide further information regarding the state-space model output. Consi-

derable processing time is required to generate samples from the posterior distri-

butions of these models. Furthermore, we adopted a conservative thinning rate of

1 in 50 to ensure there was no autocorrelation between samples. It was therefore

difficult to generate a large number of samples from the posterior distributions.

However, because chain convergence was good, generating additional samples from

the posterior distribution is unlikely to alter the parameter estimates.

We present the thinned MCMC chain histories for the most complex model,

which is representative of the behaviour of the other models. We also present

the posterior density plots, and means and 95% credible intervals, for each of the

estimated parameters in the models.
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Figure C.1: Sample of MCMC chains for the state-space metapopulation models demons-
trating chain convergence. Only the chains for the third model (in which the source of
external infections are the adjacent districts and the rate of infection is 10 infections per year)
are shown as it is the most complex model and is representative of the behaviour of the
other models. The left and right columns of plots correspond to the 80% (ρ = 0.8) and 60%
(ρ = 0.6) reporting probabilities.
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Figure C.2: Posterior densities for the estimated parameters (β, κ, δ) for model 2 in which the
source of the external infection is randomly distributed at a rate of 10 infections yr−1. The
blue and green lines represent the models with 80% (ρ = 0.8) and 60% (ρ = 0.6) reporting
probabilities. The vertical dashed lines are the mean of the distributions, with the black line
representing the mean based on the model that assumes perfect reporting.
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Figure C.3: Posterior densities for the estimated parameters (β, κ, δ, µ) and one derived
parameter (τ , derived deterministically from µ) for model 2 in which the source of the
external infection is the adjacent districts at a rate of 10 infections yr−1. The blue and green
lines represent the models with 80% (ρ = 0.8) and 60% (ρ = 0.6) reporting probabilities. The
vertical dashed lines are the mean of the distributions, with the black line representing the
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Figure C.4: Posterior densities for the estimated parameters (β, κ, δ, ψ) for model 3 in which
the source of the external infection is randomly distributed at a rate of 10 infections yr−1. The
blue and green lines represent the models with 80% (ρ = 0.8) and 60% (ρ = 0.6) reporting
probabilities. The vertical dashed lines are the mean of the distributions, with the black line
representing the mean based on the model that assumes perfect reporting.
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Figure C.5: Posterior densities for the estimated parameters (β, κ, δ, ψ, µ) and one derived
parameter (τ , derived deterministically from µ) for model 3 in which the source of the
external infection is the adjacent districts at a rate of 10 infections yr−1. The blue and green
lines represent the models with 80% (ρ = 0.8) and 60% (ρ = 0.6) reporting probabilities. The
vertical dashed lines are the mean of the distributions, with the black line representing the
mean based on the model that assumes perfect reporting.
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