Homologically arc-homogeneous ENRs

J L BRYANT

We prove that an arc-homogeneous Euclidean neighborhood retract is a homology manifold.

57P05; 57T05

1 Introduction

The so-called Modified Bing–Borsuk Conjecture, which grew out of a question in [1], asserts that a homogeneous Euclidean neighborhood retract is a homology manifold. At this mini-workshop on exotic homology manifolds, Frank Quinn asked whether a space that satisfies a similar property, which he calls *homological arc-homogeneity*, is a homology manifold. The purpose of this note is to show that the answer to this question is yes.

2 Statement and proof of the main result

Theorem 2.1 Suppose that X is an n-dimensional homologically arc-homogeneous ENR. Then X is a homology n-manifold.

Definitions A *homology* n-*manifold* is a space X having the property that, for each $x \in X$,

$$H_k(X, X - x; \mathbb{Z}) \cong \begin{cases} \mathbb{Z} & k = n \\ 0 & k \neq n. \end{cases}$$

A Euclidean neighborhood retract (ENR) is a space homeomorphic to a closed subset of Euclidean space that is a retract of some neighborhood of itself. A space X is homologically arc-homogeneous provided that for every path $\alpha:[0,1] \rightarrow X$, the inclusion induced map

$$H_*(X \times 0, X \times 0 - (\alpha(0), 0)) \rightarrow H_*(X \times I, X \times I - \Gamma(\alpha))$$

is an isomorphism, where $\Gamma(\alpha)$ denotes the graph of α . The *local homology sheaf* \mathcal{H}_k in dimension k on a space X is the sheaf with stalks $H_k(X, X - x), x \in X$.

By a result of Bredon [2, Theorem 15.2], if an *n*-dimensional space X is cohomologically locally connected (over \mathbb{Z}), has finitely generated local homology groups $H_k(X, X - x)$ for each k, and if each \mathcal{H}_k is locally constant, then X is a homology manifold. We shall show that an *n*-dimensional, homologically arc-connected ENR satisfies the hypotheses of Bredon's theorem.

Assume from now on that X represents an n-dimensional, homologically arc-homogeneous ENR. Unless otherwise specified, all homology groups are assumed to have integer coefficients. The following lemma is a straightforward application of the definition and the Mayer–Vietoris theorem.

Lemma 2.2 Given a path $\alpha: [0, 1] \rightarrow X$ and $t \in [0, 1]$, the inclusion induced map

$$H_*(X \times t, X \times t - (\alpha(t), t)) \to H_*(X \times I, X \times I - \Gamma(\alpha))$$

is an isomorphism.

Given points $x, y \in X$, an arc $\alpha: I \to X$ from x to y, and an integer $k \ge 0$, let $\alpha_*: H_k(X, X - x) \to H_k(X, X - y)$ be defined by the composition

$$H_k(X, X-x) \xrightarrow{\times 0} H_*(X \times I, X \times I - \Gamma(\alpha)) \xleftarrow{\times 1} H_k(X, X-y).$$

Clearly $(\alpha^{-1})_* = \alpha_*^{-1}$ and $(\alpha\beta)_* = \beta_*\alpha_*$, whenever $\alpha\beta$ is defined.

Lemma 2.3 Given $x \in X$ and $\eta \in H_k(X, X-x)$, there is a neighborhood U of x in X such that if α and β are paths in U from x to y, then $\alpha_*(\eta) = \beta_*(\eta) \in H_k(X, X-y)$.

Proof We will prove the equivalent statement: for each $x \in X$ and $\eta \in H_k(X, X - x)$ there is a neighborhood U of x with $\alpha_*(\eta) = \eta$ for any loop α in U based at x.

Suppose $x \in X$ and $\eta \in H_k(X, X - x)$. Since $H_k(X, X - x)$ is the direct limit of the groups $H_k(X, X - W)$, where W ranges over the (open) neighborhoods of x in X, there is a neighborhood U of x and an $\eta_U \in H_k(X, X - U)$ that goes to η under the inclusion $H_k(X, X - U) \rightarrow H_k(X, X - x)$.

Suppose α is a loop in U based at x. Let $\eta_{\alpha} \in H_k(X \times I, X \times I - \Gamma(\alpha))$ correspond to η under the isomorphism $H_k(X, X - x) \xrightarrow{\times 0} H_k(X \times I, X \times I - \Gamma(\alpha))$ guaranteed by homological arc-homogeneity.

Let

$$\eta_{U \times I} = \eta_U \times 0 \in H_k(X \times I, X \times I - U \times I).$$

Geometry & Topology Monographs, Volume 9 (2006)

Then the image of $\eta_{U \times I}$ in $H_k(X \times I, X \times I - \Gamma(\alpha))$ is η_α , as can be seen by chasing the following diagram around the lower square.

$$\begin{array}{c} H_k(X, X - U) \longrightarrow H_k(X, X - x) \\ \cong \left| \times 1 & \cong \right| \times 1 \\ H_k(X \times I, X \times I - U \times I) \longrightarrow H_k(X \times I, X \times I - \Gamma(\alpha)) \\ \cong \left| \times 0 & \cong \right| \times 0 \\ H_k(X, X - U) \longrightarrow H_k(X, X - x) \end{array}$$

But from the upper square we see that η_{α} must also come from η after including into $X \times 1$. That is, $\alpha_*(\eta) = \eta$.

Corollary 2.4 Suppose the neighborhood U above is path connected and F is the cyclic subgroup of $H_k(X, X - U)$ generated by η_U . Then, for every $y \in U$, the inclusion $H_k(X, X - U) \rightarrow H_k(X, X - y)$ takes F one-to-one onto the subgroup F_y generated by $\alpha_*(\eta)$, where α is any path in U from x to y.

Lemma 2.5 Suppose $x, y \in X$ and α and β are path-homotopic paths in X from x to y. Then $\alpha_* = \beta_* : H_k(X, X - x) \to H_k(X, X - y)$.

Proof By a standard compactness argument it suffices to show that, for a given path α from x to y and element $\eta \in H_k(X, X-x)$, there is an $\epsilon > 0$ such that $\alpha_*(\eta) = \beta_*(\eta)$ for any path β from x to y ϵ -homotopic (rel $\{x, y\}$) to α .

Given a path α from x to y, $\eta \in H_k(X, X-x)$, and $t \in I$, let U_t be a path-connected neighborhood of $\alpha(t)$ associated with $(\alpha_t)_*(\eta) \in H_k(X, X - \alpha(t))$ given by Lemma 2.3, where α_t is the path $\alpha | [0, t]$. There is a subdivision

$$\{0 = t_0 < t_1 < \dots < t_m = 1\}$$

of *I* such that $\alpha([t_{i-1}, t_i]) \subseteq U_i$ for each i = 1, ..., m, where $U_i = U_t$ for some *t*. There is an $\epsilon > 0$ so that if $H: I \times I \to X$ is an ϵ -path-homotopy from α to a path β , then $H([t_{i-1}, t_i] \times I) \subseteq U_i$.

For each i = 1, ..., m, let $\alpha_i = \alpha | [t_{i-1}, t_i]$ and $\beta_i = \beta | [t_{i-1}, t_i]$, and for i = 0, ..., m, let $\gamma_i = H | t_i \times I$ and $\eta_i = (\alpha_{t_i})_*(\eta)$. By Corollary 2.4,

$$(\alpha_i)_*(\eta_{i-1}) = (\gamma_{i-1}\beta_i\gamma_i^{-1})_*(\eta_{i-1}) = \eta_i$$

where $\eta_0 = \eta$. Since γ_0 and γ_n are the constant paths, it follows easily that

$$\alpha_*(\eta) = (\alpha_n)_* \cdots (\alpha_1)_*(\eta) = (\beta_n)_* \cdots (\beta_1)_*(\eta) = \beta_*(\eta). \qquad \Box$$

Geometry & Topology Monographs, Volume 9 (2006)

Proof of Theorem 2.1 As indicated at the beginning of this note, we need only show that the hypotheses of [2, Theorem 15.2] are satisfied.

Since X is an ENR, it is locally contractible, and hence cohomologically locally connected over \mathbb{Z} .

Given $x \in X$, let W be a path-connected neighborhood of x such that W is contractible in X. If α and β are two paths in W from x to a point $y \in W$, then α and β are path-homotopic in X. Hence, by Lemma 2.5, $\alpha_*: H_k(X, X - x) \to H_k(X, X - y)$ is a well-defined isomorphism that is independent of α for every $k \ge 0$. Hence, $\mathcal{H}_k | W$ is the constant sheaf, and so \mathcal{H}_k is locally constant.

Finally, we need to show that the local homology groups of X are finitely generated. This can be seen by working with a mapping cylinder neighborhood of X. Assume X is nicely embedded in \mathbb{R}^{n+m} , for some $m \ge 3$, so that X has a mapping cylinder neighborhood $N = C_{\phi}$ of a map $\phi: \partial N \to X$, with mapping cylinder projection $\pi: N \to X$ (see [3]). Given a subset $A \subseteq X$, let $A^* = \pi^{-1}(A)$ and $\dot{A} = \phi^{-1}(A)$.

Lemma 2.6 If A is a closed subset of X, then $H_k(X, X - A) \cong \check{H}_c^{n+m-k}(A^*, \dot{A})$.

Proof Suppose A is closed in X. Since $\pi: N \to X$ is a proper homotopy equivalence,

$$H_k(X, X - A) \cong H_k(N, N - A^*).$$

Since ∂N is collared in N,

$$H_k(N, N - A^*) \cong H_k(\operatorname{int} N, \operatorname{int} N - A^*),$$

and by Alexander duality,

$$H_k(\operatorname{int} N, \operatorname{int} N - A^*) \cong \check{H}_c^{n+m-k}(A^* - \dot{A})$$
$$\cong \check{H}_c^{n+m-k}(A^*, \dot{A})$$

(since A is also collared in A^*).

Since X is n-dimensional, we get the following corollary.

Corollary 2.7 If A is a closed subset of X, then $\check{H}_c^q(A^*, \dot{A}) = 0$, if q < m or q > n + m.

Thus, the local homology sheaf \mathcal{H}_k of X is isomorphic to the Leray sheaf \mathcal{H}^{n+m-k} of the map $\pi: N \to X$ whose stalks are $\check{H}^{n+m-k}(x^*, \dot{x})$. For each $k \ge 0$, this sheaf is also locally constant, so there is a path-connected neighborhood U of x such that

 $\mathcal{H}^q | U$ is constant for all $q \ge 0$. Given such a U, there is a path-connected neighborhood V of x lying in U such that the inclusion of V into U is null-homotopic. Thus, for any coefficient group G, the inclusion $H^p(U,G) \to H^p(V,G)$ is zero if $p \neq 0$ and is an isomorphism for p = 0.

The Leray spectral sequences of $\pi | \pi^{-1}(U)$ and $\pi | \pi^{-1}(V)$ have E_2 terms

$$E_2^{p,q}(U) \cong H^p(U;\mathcal{H}^q), \qquad E_2^{p,q}(V) \cong H^p(V;\mathcal{H}^q)$$

and converge to

$$E^{p,q}_{\infty}(U) \subseteq H^{p+q}(U^*, \dot{U}; \mathbb{Z}), \qquad E^{p,q}_{\infty}(V) \subseteq H^{p+q}(V^*, \dot{V}; \mathbb{Z}),$$

respectively (see [2, Theorem 6.1]). Since the sheaf \mathcal{H}^q is constant on U and V, $H^{p}(U; \mathcal{H}^{q})$ and $H^{p}(V; \mathcal{H}^{q})$ represent ordinary cohomology groups with coefficients in $G_q \cong \check{H}^q(x^*, \dot{x})$.

By naturality, we have the commutative diagram

$$\begin{split} E_2^{0,q}(U) & \longrightarrow E_2^{2,q-1}(U) \\ & \downarrow \cong \qquad 0 \\ E_2^{0,q}(V) & \longrightarrow E_2^{2,q-1}(V) \end{split}$$

which implies that the differential $d_2: E_2^{0,q}(V) \to E_2^{2,q-1}(V)$ is the zero map. Hence,

 $E_3^{0,q}(V) = \ker \left(E_2^{0,q}(V) \to E_2^{2,q-1}(V) \right) / \operatorname{im} \left(E_2^{-2,q+1}(V) \to E_2^{0,q}(V) \right) = E_2^{0,q}(V),$

and, similarly, $E_3^{0,q}(V) = E_4^{0,q}(V) = \dots = E_{\infty}^{0,q}(V)$. Thus,

$$H^{q}(V^{*}, \dot{V}; \mathbb{Z}) \supseteq E_{\infty}^{0,q}(V) \cong E_{2}^{0,q}(V) \cong H^{0}(V; \mathcal{H}^{q}) \cong H^{0}(V; G_{q}) \cong G_{q}.$$

Applying the same argument to the inclusion $(x^*, \dot{x}) \subseteq (V^*, \dot{V})$ yields the commutative diagram

$$E_2^{0,q}(V) \longrightarrow E_2^{2,q-1}(V)$$
$$\downarrow \cong \qquad 0 \downarrow$$
$$E_2^{0,q}(x) \longrightarrow E_2^{2,q-1}(x)$$

Geometry & Topology Monographs, Volume 9 (2006)

which, in turn, gives

from which it follows that the inclusion $H^q(V^*, \dot{V}; \mathbb{Z}) \to H^q(x^*, \dot{x}; \mathbb{Z}) \cong G_q$ is an isomorphism of G_q . Since (x^*, \dot{x}) is a compact pair in the manifold pair (V^*, \dot{V}) , it has a compact manifold pair neighborhood $(W, \partial W)$. Since the inclusion $H^q(V^*, \dot{V}) \to \check{H}^q(x^*, \dot{x})$ factors through $H^q(W, \partial W)$, its image is finitely generated for each q. Hence, $H_k(X, X - x) \cong \check{H}^{n+m-k}(x^*, \dot{x})$ is finitely generated for each k. \Box

The following theorem, which may be of independent interest, emerges from the proof of Theorem 2.1.

Theorem 2.8 Suppose X is an *n*-dimensional ENR whose local homology sheaf \mathcal{H}_k is locally constant for each $k \ge 0$. Then X is a homology *n*-manifold.

References

- R H Bing, K Borsuk, Some remarks concerning topologically homogeneous spaces, Ann. of Math. (2) 81 (1965) 100–111 MR0172255
- [2] GE Bredon, Sheaf theory, McGraw-Hill Book Co., New York (1967) MR0221500
- [3] R T Miller, Mapping cylinder neighborhoods of some ANR's, Ann. of Math. (2) 103 (1976) 417–427 MR0402757

3005 Brandemere Drive, Tallahassee, Florida 32312, USA

jbryant@math.fsu.edu

Received: 23 March 2004

6