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Abstract 
 

Following extensive development over the past two decades, techniques of inverse 

simulation have led to a range of successful applications, mainly in the fields of helicopter 

flight mechanics, aircraft handling qualities and associated issues in terms of model 

validation. However, the available methods still have some well-known limitations. The 

traditional methods based on the Newton-Raphson algorithm suffer from numerical 

problems such as high-frequency oscillations and can have limitations in their applicability 

due to problems of input-output redundancy. The existing approaches may also show a 

phenomenon which has been termed “constraint oscillations” which leads to low-frequency 

oscillatory behaviour in the inverse solutions. Moreover, the need for derivative 

information may limit their applicability for situations involving manoeuvre discontinuities, 

model discontinuities or input constraints.  

 

Two new methods are developed to overcome these issues. The first one, based on 

sensitivity-analysis theory, allows the Jacobian matrix to be calculated by solving a 

sensitivity equation and also overcomes problems of input-output redundancy. In addition, 

it can improve the accuracy of results compared with conventional methods and can deal 

with the problem of high-frequency oscillations to some extent. The second one, based on a 

constrained Nelder-Mead search-based optimisation algorithm, is completely derivative-

free algorithm for inverse simulation. This approach eliminates problems which make 

traditional inverse simulation techniques difficult to apply in control applications involving 

discontinuous issues such as actuator amplitude or rate limits.  

 

This thesis also offers new insight into the relationship between mathematically based 

techniques of model inversion and the inverse simulation approach. The similarities and 

shortcomings of both these methodologies are explored. The findings point to the 

possibility that inverse simulation can be used successfully within the control system 
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design process for feedforward controllers for model-based output-tracking control system 

structures. This avoids the more complicated and relatively tedious techniques of model 

inversion which have been used in the past for feedforward controller design.  

 

The methods of inverse simulation presented in this thesis have been applied to a number of 

problems which are concerned mainly with helicopter and ship control problems and 

include cases involving systems having nonminimum-phase characteristics. The analysis of 

results for these practical applications shows that the approaches developed and presented 

in this thesis are of practical importance. It is believed that these developments form a 

useful step in moving inverse simulation methods from the status of an academic research 

topic to a practical and robust set of tools for engineering system design.  
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Chapter 1  

 

Introduction 
 

 

Contents 

1.1 Background................................................................................................................................. 1 

1.2 Original contribution of research ............................................................................................. 5 

1.3 Outline of thesis .......................................................................................................................... 7

 

This chapter provides general background information about the research carried out, the context in which the 

project was defined, the contributions made during the research period and an outline of the thesis.  

 

 

1.1  Background  
 

Conventional forward simulation using computers is an established part of the process of 

modelling of systems through mathematical models. The process is used to attempt to find 

solutions that predict the behaviour of the system (usually as a function of time) from a 

given model structure, a set of parameters and a set of initial conditions. In the aerospace 

and marine fields, this simulation process usually involves the determination of the motions 

of  vehicles in response to applied inputs (Hess, Gao, & Wang, 1991).  

 

This process of forward modelling and simulation is not, however, the only approach 

possible for gaining an understanding of the behaviour of complex engineering systems. 

The idea inverting a system can be traced back to the 1930s when Jones (1936) investigated 

the effects of gusts on aircraft by inverting a linearised aircraft model. In the 1960s and 
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1970s of the last century, a class of methods termed dynamic inversion or feedback 

linearization were developed for multivariable nonlinear minimum-phase (MP) systems by 

some pioneers (Brockett, 1965; Dorato, 1969; Hirschorn, 1979; Sain & Massey, 1969; 

Silverman, 1969). The procedure of dynamic inversion involves the transformation of the 

original nonlinear system into a linear and controllable system via a nonlinear state space 

change of coordinates and a nonlinear state feedback control law with the application of 

differential geometry concepts. Subsequently, further efforts were made to develop 

approaches for nonminimum-phase (NMP) systems (Isidori, 1989; Isidori & Byrnes, 1990) 

and in the mid 1990s, Devasia, Chen and Paden (1996) achieved further significant 

progress by developing a method based on noncausal Picard-like iteration to obtain 

bounded inversions. In recent years, based on this work, several approaches have been 

developed to achieve the causal inversion of NMP systems (Wang & Chen, 2001; 2002b; 

Zou & Devasia, 1999; 2007) as well as methodology for the nonhyperbolic problem 

(Devasia, 1997; 1999). 

 

This group of approaches has attracted such considerable attention due to the fact that these 

techniques offer a potentially powerful methodology for control system design. Reiner, 

Balas and Garrard (1995) designed an outer-loop flight controller with structured singular 

value (µ) synthesis, based on the linearised model obtained by an inner-loop controller 

designed by dynamic inversion. Hu et al (2003) followed the similar approach to design a 

controller for ship course keeping.  

 

In particular, one of the main stimuli to the development of these methods is that dynamic 

inversion can be used to design an inversion-based feedforward controller (FFC) to obtain 

precision tracking of a particular output trajectory (Devasia, 1997). One of the reasons for 

this development relates to the possibilities that it offers for solving some problems 

encountered by the traditional regulator approach, such as the transient tracking error after 

the switching instants (Qui & Davison, 1993). However, it has been pointed out that the 

transient tracking error problem can be eliminated by the stable-inversion based approach 

(Devasia & Paden, 1998; Hunt & Meyer, 1997). 
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In addition, the specification of trajectories can be simplified and, furthermore, dynamic 

inversion avoids the need for implementation of gain scheduling, such as to ensure flight 

control system stability over the entire operational envelope of the aircraft or other 

controlled system (Devasia, 1997). 

 

However, all of the above approaches have some shortcomings that restrict their application. 

Firstly, all the available mathematical approaches involving model inversion are quite 

tedious and difficult to implement in practice even for MP systems, especially in 

applications involving high-order models, such as those encountered in aircraft flight 

control or in the marine field where there the number of state variables can be large. 

Secondly, most available methods only achieve noncausal inversion and depend on the 

whole desired output trajectory. The causal approach (Wang & Chen, 2001; 2002b) 

eliminates the issue of noncausality but at the cost of a reduction of the tracking accuracy 

and an increase of complexity in implementation. Thirdly, the methods for model inversion 

usually require sufficient smoothness of the desired trajectories to provide the ideal input 

vector constructed by following the vector relative degree (Appendix-A). However, in 

practice, the assumption of the existence of the strictly relative degree can sometimes be 

violated (Sastry, 1999). Ramakrishna, Hunt and Meyer (2001) suggest a solution for some 

kinds of violations but this can be difficult to implement. Finally, the valid domain of these 

methods is usually restricted to tracking of trajectories involving small amplitudes due to 

the form of the algorithms (Sastry, 1999). Therefore, they may be not suitable for more 

demanding or severe types of manoeuvres. 

 

During the period when major developments were taking place in terms of the techniques 

for model inversion, a numerical process termed inverse simulation was being developed to 

allow numerical inversion of linear and nonlinear dynamic models. This approach has 

attracted significant attention within the field of aerospace engineering and in some other 

application areas. It is an approach that generates the forward control inputs such that a 

mathematical model of a system can follow a prescribed trajectory in state space. Many 

contributions have been published with the aim of developing more numerically stable and 

robust approaches to inverse simulation (Avanzini, de Matteis & de Socio, 1999; Celi, 
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2000; de Matteis, de Socio & Leonessa, 1995; Hess et al, 1991; Kato & Saguira, 1986; Lee 

& Kim, 1997; Lu, Murray-Smith & Thomson, 2007c; Thomson, 1987).  

 

The reasons for the popularity of inverse simulation methods arise from the practical 

usefulness of this approach in various fields. Firstly, Thomson and Bradley (1990b; 1994) 

highlighted the value of inverse simulation techniques in the investigation of the handling 

qualities, manoeuvrability, and agility of a hypothetical battlefield utility helicopter 

represented by a set of configurational data at the conceptual design stage. The quantitative 

assessment of helicopter handling qualities and validation of the model was approached by 

analysing attitude quickness criteria through simulated flight involving standard Mission 

Task Elements (MTEs) (Bradley & Thomson, 1993; Rutherford & Thomson, 1997; 

Thomson & Bradley, 1998). Secondly, inverse simulation has been shown to facilitate 

investigation of control actions required following engine failures during takeoff from 

offshore platforms (Thomson et al., 1995). In addition, inverse simulation has been 

investigated for output-tracking and inversion-based controllers (Avanzini et al., 1999; 

Boyle & Chamitoff, 1999; Gray & Grünhagen, 1998, Sentoh & Bryson, 1992). 

 

As with the model inversion approaches, traditional inverse simulation techniques suffer 

from some problems. Numerical issues, such as non-convergence, rounding error, and 

phenomena involving sustained high-frequency oscillations have been found (Avanzini & 

de Matteis, 2001; Hess et al., 1991; Lin, 1993; Rutherford & Thomson; 1996; 1997). 

Secondly, redundancy issues associated with the number of inputs being greater than the 

number of outputs may also lead to non-convergence of the solutions (de Matteis et al., 

1995; Lee & Kim, 1997; Yip & Leng, 1998). Thirdly, in some cases oscillations of much 

lower frequency also appear in the results. This phenomenon, which has been given the 

term “constraint oscillations”, often gives stable results but with gently damped oscillating 

components (Anderson, 2003; Thomson & Bradley, 1990). Fourthly, the numerical 

processes in traditional methods of inverse simulation involve use of derivative information 

such as in the Jacobian matrix or the Hessian matrix. This limits their application only to 

smooth trajectories and models which have no input constraints. Finally, the stability of 

inverse simulation methods for NMP systems has not been intensively investigated. In 
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addition, there has been no previous consideration of the relationship between model 

inversion and inverse simulation techniques. 

 

The general aims and initial objectives of the current research were to explore and 

investigate the problems existing in available techniques for inverse simulation and then to 

develop new methodologies to overcome some of these existing problems. In addition, an 

aim of this research was to investigate the applicability of inverse simulation to the 

nonlinear MP and NMP systems and to develop robust tracking controllers based on the 

traditional output-tracking control system structure with inverse simulation, thus avoiding 

the more complicated techniques of model inversion. Helicopter and marine systems were 

to be considered for these control applications. 

 

 

1.2 Original contribution of research 
 

To best of the author’s knowledge the novel contributions made in this thesis are as shown 

in the following list: 

 

• Development of the SA based method for inverse simulation to overcome: a) 

problems of high-frequency oscillations in inverse numerical solutions; b) the 

approximations involved in traditional methods for calculation of the Jacobian 

matrix, and c) the redundancy problem. 

 

• Investigation of the applicability of inverse simulation to MP and NMP systems. A 

methodology has been developed for application of inverse simulation to the NMP 

system by dividing the inverse simulation process into two distinct steps. 

 

• Development of a constrained and completely derivative-information-free NM-

based method for inverse simulation. 
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• Investigation for the first time of the relationship between inverse simulation and 

model inversion methods. 

 

• Investigation of the constraint-oscillation phenomenon in inverse simulation in 

more detail than in previous investigations. 

 

• Investigation, for the first time, of the use of the inverse simulation methods on 

models involving input constraints and a combination of input constraints and 

discontinuous manoeuvres.  

 

• Applications of inverse simulation involving problems from the marine field for the 

first time.  

 

• Developments of the FFC using inverse simulation techniques within the 2DOF 

control scheme for the helicopter and ship control problems. 

 

• Development of a new approach to calculate the Jacobian matrix by calculating the 

relative degree vector. Through use of this approach the numerical convergence 

processes of inverse simulation can be improved and become more stable and the 

problem of high-frequency oscillations can be eliminated. 

 

The following conference and journal publications have been written during the course of 

this research: 

 

1. Lu L, Murray-Smith DJ, and McGookin EW (2006). Applications of inverse 

simulation within the model-following control structure. Proc. of International 

Control Conference; ICC2006, Aug. 30th – Sept 1st, Glasgow, UK. 

 

2. Lu L, Murray-Smith DJ, and McGookin EW (2006). Relationships between model 

inversion and inverse simulation techniques. Proc. of 5th MATHMOD; Feb 8-10, 

Vienna, Austria. 
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3. Lu L, Murray-Smith DJ, and McGookin EW (2007). Feedforward controller design 

from a constrained derivative-free inverse simulation process. Control Engineering 

Practice. Submitted for Publication. 

 

4. Lu L, Murray-Smith DJ, and McGookin EW (2007). Investigation of inverse 

simulation for design of feedforward controllers. Journal of Mathematical and 

Computer Modelling of Dynamical Systems. Accepted for Publication. 

 

5. Lu L, Murray-Smith DJ, and Thomson DG (2007). A sensitivity-analysis method for 

inverse simulation. Journal of Guidance, Control, and Dynamics, 30(1), 114-121. 

 
6. Lu L, Murray-Smith DJ, and Thomson DG (2007d). Issues of numerical accuracy and 

stability in inverse simulation. Simulation Modelling Practice and Theory. Under 

Revision. 

 

 

1.3 Outline of thesis 
 

Chapter 2 outlines the general direction of the research described in this thesis. It provides a 

brief history of the development of model inversion techniques and inverse simulation 

approaches. The potential disadvantages and advantages of these approaches are illustrated 

in detail to help explain the motivation for the work. This chapter presents the main 

relevant references that are applicable to the research area of this thesis as well.  

 

Chapter 3 includes an investigation of the close relationship between model inversion and 

inverse simulation techniques. This investigation provides new insight concerning some 

aspects of inverse simulation and shows that inverse simulation techniques can provide an 

alternative way to deal with the implementation problems encountered with model 

inversion techniques for some situations. Cases considered in this context include the NMP 

and nonhyperbolic cases, involving a division of the inverse simulation process into two 

stages. The results from the analysis in this chapter, together with the case studies that are 
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implemented within it, provide a comprehensive background to the investigation of the 

possible use of inverse simulation methods to replace model inversion techniques in the 

design of feedforward controllers (FFCs). 

 

Chapter 4 is devoted to an explanation of problems associated with processes involved in 

the implementation of inverse simulation, such as high-frequency oscillations, redundancy 

problems and constraint oscillations. In this context the main efforts described here relate to 

constraint oscillations. Effects of sampling rate, the type of manoeuvres undertaken, and the 

internal dynamics of the model itself are all taken into consideration in investigation of this 

phenomenon. In addition, an alternative method for calculating the vector relative degree is 

proposed and this approach also has relevance for calculation of the Jacobian matrix. 

 

Chapter 5 presents a new formulation of the inverse simulation problem based on the theory 

of sensitivity-analysis (SA). This development allows the Jacobian matrix to be calculated 

by solving a sensitivity equation which may offer advantages over conventional methods of 

calculation based on approximation methods. The SA approach also makes full use of 

information within the time interval over which key quantities are compared in the inverse 

simulation algorithm and therefore can provide more accurate results. This technique also 

accounts for the issues of input-output redundancy that arise in the traditional approaches to 

inverse simulation. The results of a case study involving a nonlinear HS125 aircraft model 

and a Lynx helicopter model show improved performance in terms of stability and accuracy 

in comparison with the traditional Newton-Raphson (NR) approach to inverse simulation. 

 

Chapter 6 presents a new methodology in which the inverse simulation problem is 

formulated as an optimisation problem based on the constrained derivative-free Nelder-

Mead (NM) algorithm. Because of the absence of derivative information in the inverse 

simulation process, unlike the traditional approaches, the new technique enhances the 

feasibility and flexibility of the inverse simulation process. It also extends the applicability 

to situations involving discontinuous manoeuvres or input constraints and discontinuities 

within the model. Case studies involving ship models with input saturation of rudder angle, 

rudder rate or propeller speed or involving a discontinuous manoeuvre show that the 
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convergence and numerical stability properties of the inverse simulation based on the NM 

approach are generally superior to traditional approaches. 

 

Chapter 7 discuses some theoretical aspects and practical implementations of the mixed-

sensitivity (K/KS) H∞ control methodology to design the feedback controller (FBC) in the 

two degrees-of-freedom (2DOF) scheme. The stability and robustness of the controllers in 

the presence of measurement noise and disturbances are investigated through applications 

involving a Norrbin type of nonlinear ship model, a linear Lynx-like helicopter model, and 

a highly detailed nonlinear Container ship model. 

 

Chapter 8 describes the developments that make it possible to use inverse simulation in 

place of model inversion techniques to develop robust feedforward tracking controllers for 

the traditional 2DOF output-tracking control system structure. This chapter is of particular 

importance in that it includes the most significant findings of the whole project. It includes 

discussion of the relationship between the FFC and uncertainty and incorporates two 

illustrative case studies involving applications. 

 

Chapter 9 describes the use of inverse simulation techniques within a helicopter guidance 

and control system for shipboard landing. The investigations are carried out both in still air 

and in the presence of wind-disturbances. A simplified approach is adopted to make the 

inclusion of the wind disturbance more accessible and easily applicable within the 

helicopter model. Therefore only four categories of wind disturbance are considered in 

terms of the wind direction. They are:  tailwind, headwind, port wind, and starboard wind. 

In addition, this chapter includes the design and analysis of a control system for a ship 

landing manoeuvre based on the 2DOF control scheme. 

 

Chapter 10 presents the main conclusion of the thesis and highlights the original 

contributions. In addition, suggestions are made for future work to build on the foundation 

established here. 

 

 



 Page - 10 - 

 

 

 

 

Chapter 2  

 

Fundamentals of Model Inversion and 

Inverse Simulation 
 

 

Contents 

2.1 The two degrees-of-freedom control scheme ......................................................................... 10 

2.2 Review of methods for the inversion of nonlinear system dynamics ................................... 13 

2.3 Review of traditional inverse simulation algorithms............................................................. 23 

2.4 Manoeuvre definition............................................................................................................... 30 

2.5 Summary................................................................................................................................... 34

 

This chapter presents a study of the historic development of model inversion techniques and inverse 

simulation approaches. It is hoped that  this overview can provide insight regarding the advantages and 

disadvantages of the various different methods of approach and that this, in turn, can lead to new 

developments in the most promising directions. 

 

 

2.1 The two degrees-of-freedom control scheme 
 

In control applications, tracking control and regulation are two major researching topics 

and have thus attracted considerable attention from control researchers. Traditionally, 

asymptotic tracking has been solved for a given reference trajectory in the context of linear 

quadratic optimal control. Since the introduction of regulator theory for linear systems by 

Francis and Wonham (1976) and then further application to the nonlinear regulator field by 

Isidori and Byrnes (1990), output tracking through the 2DOF approach has undergone 
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significant development. Typically this control scheme involves two controllers, as shown 

in Fig. 2.1:  

 

 
 

Fig. 2.1 Two degrees-of-freedom control design scheme (Graichen et al., 2005) 
 

where Kff is the FFC and Kfb is the FBC. The FBC can be designed to guarantee robust 

stability and improves disturbance rejection, while the FFC improves tracking performance. 

A lot of techniques have published for the design of the FFC and FBC and satisfying 

tracking performance has been achieved in a number of applications, with reduced control 

energy requirements, and good robust stability (Braatz et al., 2006; Devasia et al., 1996; 

Lim & Chan, 2003; Muramatsu & Watanabe, 2005). Generally, the available approaches to 

design of this form of system can be split into two groups according to whether the two 

controllers are synthesized simultaneously or separately.  

 

Limebeer, Kasenally and Perkins (1993) proposed an effective method, which is the 

extension of the H∞ loop-shaping design procedure of McFarland and Glover, to design the 

FFC and FBC jointly. Although they are synthesized jointly as a controller, the roles of the 

FFC and FBC are quite distinct. The feedback part of the controller obtained in this way 

has the same roles as the traditional FBC, such as meeting given requirements in terms of 

robust stability and disturbance rejection. In addition, the feedforward part of the controller 

acts as the FFC to drive the closed-loop to follow a reference model. This development has 

been successfully illustrated in an example involving an application to an aero engine 

(Skogestad & Postlethwaite, 1996). In a recent development of this class of  techniques 
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Wik, Fransson and Lennartsson (2003) present a performance optimization method for 

designing the FFC and FBC together for given control objectives with uncertainties. 

 

The fact that the role that each controller has is distinct, as mentioned above, suggests the 

possibility of a two-stage design in which the FFC and FBC are designed separately 

(Giusto & Paganini, 1999). This approach is attractive because the procedure for the joint 

approach to the design of 2DOF systems is quite complex, whereas the separated process is 

relatively simple and straightforward. These benefits may compensate for disadvantages 

arising in the application of this decomposition procedure due to the fact that the FBC plays 

the principal role of solving the uncertainty and this may have an influence in terms of the 

achievable robust tracking performance for systems with uncertainties. 

 

Due to the relatively straightforward synthesis scheme, a number of different approaches 

for the separated procedure have been developed. Burdisso and Fuller (1994) designed the 

FFC by eigenvalue assignment. Huang, Shah and Miller (2000) developed an approach to 

access the potential benefit of implementing FFC in an industrial process from routine 

operating data. A numerical example included in the published work on that approach 

shows the improved performance that can be achieved by adding the FFC. Mammar, 

Koenig and Nouveliere (2001) implemented the H∞ algorithm to design both the FFC and 

FBC. In their approach the FBC is designed using robust interpolation of state feedback 

with loop-shaping controller scheduling. The robust FFC is designed by the Linear-

Fractional-Transformation (LFT) method, similar to the H∞ method, while the disturbance 

acts as the input and the input and output are directly considered. Moreover, the presented 

approach does not involve any restrictions such as requirements of the model being NMP.  

 

Among the control system design methodologies relating to the separated procedure, 

inversion of system dynamics for FFC design has been the most widely investigated by 

control researchers in the last two decades, especially in the aircraft field (Mickle, Huang & 

Zhu, 2004; Moghaddam & Moosavi, 2005; Zou and Devasia, 2007), while the FBC is 

designed by a traditional control algorithm such as PID (Visioli, 2004; von Grunhagen et 

al., 1996), the H∞ algorithm (Che & Chen, 2001; Takahashi, 1994), or the linear quadratic 
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(LQ) algorithm (Al-Hiddabi & McClamroch, 2002; Escande, 1997). Developments in this 

field have been stimulated by recognition of the defects existing in the regulator approach. 

Model-inversion based techniques have also been applied to other fields such as flexible 

structures and manipulators (Wang & Chen, 2002a) and in marine system control (Loo, 

McGookin & Murray-Smith, 2005). In addition, a new scheme, termed adaptive 2DOF 

control, is also applicable. This is based on feedback error learning where the FFC is tuned 

to be the inverse of the plant model (Muramatsu & Watanabe, 2004). The FFC can be 

described by an adaptive inverse model and it asymptotically tends to the inverse of the 

plant as time tends to infinity. 

 

Therefore, the essential problem of the inversion-based 2DOF scheme is to find a suitable 

approach for inversion of system dynamics to design a FFC.  

 

 

2.2 Review of methods for the inversion of nonlinear system dynamics 
 

The details relating to techniques for dynamic inversion are reviewed in this section. The 

contents cover NMP systems and nonhyperbolic systems as well as other systems. 

 

2.2.1 Noncausal inversion of nonlinear system dynamics 

 

2.2.1.1 Inversion of nonminimum-phase systems 

 

Some pioneers (e.g. Brockett, 1965; Dorato, 1969; Sain & Massey, 1969; Silverman, 1969) 

in the sixties of the last century showed that the dynamics of a linear system could be 

inverted to find inputs that exactly track a desired output trajectory. Hirschorn (1979) 

presented the set of sufficient conditions for the invertibility of multivariable nonlinear 

control systems. While the exact and asymptotic tracking results were obtained, all these 

previous approaches were based on MP control systems only. They led to unbounded 

inputs resulting from the unstable internal systems existing in NMP systems. Therefore, 

they could not be used for practical output tracking under this kind of situation. The same 
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challenging problem can be met in the regulation and path-following fields (Aguiar, 

Hespanha & Kokotovic, 2005; Al-Hiddabi & McClamroch, 2002). 

 

Compared with MP systems, tracking for NMP systems is much more difficult. The 

limitations introduced by unstable zero dynamics are structural. They cannot be avoided 

without changing the system structure or reformulating the tracking problem. A major 

breakthrough in defining a general framework for tracking for nonlinear NMP systems was 

made by Devasia et al (1996) who developed and proved the convergence of a noncausal 

Picard-like iteration to obtain bounded inversion for nonlinear NMP systems. The essential 

features of this method are briefly introduced in the following paragraphs. 

 

This approach can be divided into three steps: firstly, obtain the zero dynamics by local 

coordinate transformation. The zero dynamics of a nonlinear system is the internal 

dynamics of the system subject to the constraint that the outputs, and therefore all the 

derivatives of the outputs, are set to zero for all time. The second step involves checking 

whether the approximation of the zero dynamics satisfies a certain condition that guarantees 

that the system is locally approximately linear in a neighbourhood of the equilibrium point 

(Condition 1 in Devasia et al (1996)). If so, there is a theorem (Theorem 1 in Devasia et al 

(1996)) which assures a unique solution. Finally, based on the linearised zero dynamics, the 

Picard-like iteration is adopted to provide bounded inverse solutions. Afterwards, with the 

availability of the solutions from the internal system and then through inverting the 

transformation matrix, the bounded inputs can finally be found. The details of this approach 

are as follows: 

 

If a square nonlinear system is considered, with the number of its inputs (q) equal to the 

number of outputs, the system can be represented by the following form: 
( ) ( ) ( ) ( )

( ) ( )

t t

t

x f x g x u

y h x

= + ⋅

=
                                                              (2.1) 

where u∈ qR is the input vector, y∈ qR is the output vector, and x∈ mR is the state variable 

vector. The variables f, g and h are the function matrices with the corresponding orders. In 

addition, it is assumed here that the system has well-defined vector relative 
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degree 1 2[ , , ]T
qr r r r= ⋅⋅⋅ and 1 2 q m= + ⋅⋅ ⋅ + <r r r r (see Appendix-A), and then the 

nonlinear system in Eq. (2.1) can be converted to a normal form by local coordinate 

transformation. The coordinates can be chosen in the following way: 
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1 i q≤ ≤       

where L stands for the Lie derivative. Now, a new notation is introduced for the 

transformed system: 
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                                                                  (2.3) 

Then, if | r| < m, it is always possible to find m − r  more functions φ|r|+1(x), ···, φm(x) such 

that the φ(x) vector has a nonsingular Jacobian matrix at x0 (where x0
 is an arbitrary point). 

Furthermore, provided the distribution 

1{ , , }mspan=G g g                                                                  (2.4) 

is involutive near x0, it is always possible to calculate the φ|r|+1(x), ···, φm(x) based on the 

following equation: 

( ) 0
j iL =g xφ                                                                                (2.5) 

1 i m+ ≤ ≤r        1 j q≤ ≤     

If we let: 
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r
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r

η φ
η φ

η

η φ

                                                     (2.6) 

then based on the above definitions, it is possible to derive the final transformed form:  
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                             (2.7) 

where 1 1[ (t), (t)] { [ (t), (t)]}i

jij ia L Lξ η ξ η− −= r
g f h φ  and 1 1[ (t), (t)] { [ (t), (t)]}i

i ib Lξ η ξ η− −= r
f h φ . 

This also can be represented as a compact form: 
( ) ( ) [ ( ), ( )] [ ( ), ( )] ( )t t t t t try B A uξ η ξ η= + ⋅                                  (2.8) 

where  

                   
1 2

1 2

( ) [ ( ), ( ), ( )]

( ) [ ( ), ( ), ( )]

T
q

T
q

t t t

t t t

= ⋅⋅ ⋅

= ⋅ ⋅ ⋅

y t y y y

u t u u u
                                           (2.9) 

                    

  1 1[ ( ), ( )] { [ ( ), ( )]}t t L t tr
fB hξ η φ ξ η− −=                                        (2.10) 

1 1[ ( ), ( )] { [ ( ), ( )]}t t L L t tr
g fA hξ η φ ξ η− −=                                     (2.11) 

and the undriven system (or the zero dynamics) is: 

1

( ) [ ( ), ( )] [ ( ), ( )] ( )
q

i i
i

t t t t t t
=

= +∑ uη α ξ η β ξ η                               (2.12) 

As a results of the assumption of the full relative degree, the term A[ξ(t),η(t)] is 

nonsingular. Thus, the input u(t) can be found from Eq. (2.8) as:  
1 ( )( ) [ ( ), ( )] { ( ) [ ( ), ( )]}t t t t t tru A y Bξ η ξ η−= ⋅ −                          (2.13) 

Moreover, as far as the inversion-based tracking problem is concerned, the outputs are 

designated to follow the desired manoeuvre yd(t). They are also the inputs in the inverse 

system. Therefore, the following equation is defined: 
1 2( ) ( ) [ ( ), ( ), ( )]q T

d d d dt t t t tξ ξ ξ ξ ξ= = ⋅⋅⋅                             (2.14) 

where ( 1)1 2( ) [ ( ) ( ) ( )]i
id idd idt t t tiry y yξ −= ⋅⋅⋅  and ( )id ty  is the ith element of the desired 

manoeuvre yd(t). Thus, the zero dynamics driven by the ideal manoeuvre can be shown as: 
( )( ) [ ( ), ( ), ( )]d dt t t trs yη ξ η=                                                      (2.15) 
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The system represented by Eq. (2.15) is a core subsystem. The term NMP originates from 

here because there are right-half plane (RHP) poles in its linearised form around the 

equilibrium point. If this zero dynamic system satisfies Condition 1 in the reference 

(Devasia et al., 1996) then by Theorem 1 of that reference, the solution η(t) for Eq. (2.15) 

can be found by following the steps described below. Consequently it is easy to obtain the 

required inputs from Eq. (2.13).  

 

Step 1: the linearization of Eq. (2.15). In Eq. (2.15), the term ξd(t) is constructed from yd(t) 

as shown in Eq. (2.14). Thus, it should be eliminated from the equations and after 

linearization, the following equation is obtained: 
( )( ) ( ) [ ( ), ( )]dt t t trA yηη η ψ η= ⋅ +                                              (2.16) 

where Aη is the linearised term around the origin and the nonlinear term ψ(·) is defined as 

the following: 
( ) ( )[ ( ), ( )] [ ( ), ( ), ( )] ( )dd dt t t t t tr ry s y Aηψ η ξ η η= − ⋅                     (2.17) 

 

Step 2: Decouple the Aη into stable and unstable subsystems. The results are: 

0

0

s

u

A
A

A
η

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

                                                                       (2.18) 

where the eigenvalues of As and Au are on the left and right-hand sides of the complex 

plane, respectively. If there are poles on the imaginary axis, which is termed the 

nonhyperbolic problem, the method introduced in the next section has to be adopted. 

 

Step 3: Implementation of the Picard-like iteration. This algorithm mainly involves 

solving iteratively the following two equations: 
( )

1 1( ) ( ) {[ ( ), ( )] , ( )},N ,N ,N ,N dt t t t trT
s s s s s uA I yη η ψ η η− −= ⋅ + ⋅       (2.19) 

   ( )
1 1( ) ( ) {[ ( ), ( )] , ( )}T

,N ,N ,N ,N dt t t t tr
u u u u s uA I yη η ψ η η− −= ⋅ + ⋅       (2.20) 

where the dimensions of the unit matrices Is and Iu are equal to the row dimension of As 

and Au respectively. Now solve Eq. (2.19) using forward integration and Eq. (2.20) using 

backward integration as shown in the following equations: 
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t dt
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−
−∞

∞

−

⎡ ⎤Φ⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ − Φ⎢ ⎥⎣ ⎦

∫

∫

τ

τ
                   (2.21) 

where 
1 2( )

1 2( , ) t tt t e sA
s

−Φ = , 1 2( )
1 2( , ) t tt t e uA

u
−Φ =  

are the transition matrices of Eqs. (2.19) and (2.20). The terms , 1( )Nsψ − τ and , 1( )Nuψ − τ  are 

the nonlinear terms of Eqs. (2.19) and (2.20). 

 

In addition to the above ηN(t) solution, if the internal system satisfies the hyperbolicity and 

its nonlinear term locally meets the Lipschitz-like condition, then the iterative solution ηN(t) 

will converge to the ideal value η(t). If η(t) is available, the input u(t) can easily be found. 

The introduced approach works in the time interval –∞<t<+∞. The interval (–∞, t] is for 

the stable part of the linearised internal system and [t, +∞) for the corresponding unstable 

part. Provided the linearised internal system is hyperbolic and the residual nonlinearity is 

Lipschitz continuous with small linear bounds, guaranteed by Condition 1, it is possible to 

find a bounded solution for the unstable internal system. Since the future-time information 

is utilized, this approach is a noncausal method. In addition, the solution process depends 

on the linearization around the equilibrium point. Thus, its valid domain is usually 

restricted to tracking trajectories involving small amplitudes and slow variations. 

 

2.2.1.2 Inversion of nonhyperbolic systems 

 

Systems which have zeros on the imaginary axis are called nonhyperbolic systems. The 

aforementioned approach fails to apply to this kind of situation due to the infinite pre-

actuation time for general output trajectories. The solution for this case has been provided 

by (Devasia, 1997; 1999). The methodology there shows that this problem can be 

eliminated by modifying the internal system by adding an extra perturbation term ν(t) to Eq. 

(2.13). This will move the zeros slightly off the imaginary axis. 
1 ( )( ) [ ( ), ( )]{ ( ) [ ( ), ( )] ( )}t t t t t t tru A y Bξ η ξ η ν−= − +                (2.22) 

Here ν(t) has the following feedback form: 
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( )

t
t

t

e
v F

ξ

η

⎡ ⎤
= ⋅ ⎢ ⎥

⎢ ⎥⎣ ⎦
                                                                     (2.23) 

where eζ(t) is the tracking-error variable vector. F is chosen so that the modified internal 

system is hyperbolic. Then the above-mentioned Picard-like iterative algorithm is 

implemented to find the solution for the internal system. This is at the cost of precision to 

achieve the stable inversion of the nonlinear NMP system with the nonhyperbolic internal 

system. 

 

2.2.2 Causal inversion of nonlinear system dynamics 

 
In the stable inversion approach, for the NMP system, the inversion results depend on the 

whole desired output trajectory. This limitation restricts its application to trajectory 

planning problems or to real time applications without a predetermined trajectory. To 

eliminate this issue, several approaches have been developed and published. Two of them 

will be introduced in this section. The first is termed the causal inversion of the NMP 

system (Wang & Chen, 2001; 2002b) and the second is the preview-based stable-inversion 

(Zou & Devasia, 1999; 2007). Strictly speaking, the latter cannot be categorized within the 

causal inversion group. However, in this thesis, based on the sense of eliminating the 

requirement of a whole pre-specified desired-output manoeuvre, this approach is 

considered as a causal inversion method.  

 

2.2.2.1 Casual inversion of nonminimum-phase systems 

 

The causal inversion of NMP systems is introduced first. This approach was proposed by 

Wang and Chen (2001) to overcome the noncausal problem of the traditional stable 

inversion approaches and did not require pre-actuation. They defined two causal problems: 

the causal inversion problem and the optimal causal inversion problem, which will be 

explained in the text that follows. Later the same authors slightly modified this method and 

designed a controller with the H∞ algorithm (Zhou, Doyle & Glover, 1996) to achieve 

stable ε-tracking of a desired manoeuvre via a causal inversion approach (Wang & Chen, 

2002a; 2002b). It has been successfully applied to a one-link flexible manipulator system. 
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Consider the same form of a nonlinear system expressed in Eq. (2.1) and assume ( ) =0 0f  

and ( ) =0 0h . The causal inversion problem can be explained as finding a nominal control 

input ud(t) and a desired state trajectory xd(t) for a smooth desired manoeuvre yd(t), which is 

zero when t ≤0. It also needs to meet the following three requirements: 

 

1.) The stability of ud(t) and xd(t). This means these variables are bounded, and  

                                     ( )d tu → 0 , ( )d tx → 0  as ∞→t  

2.) Exact output matching. 

                                     [ ( )] ( )d dt th x y=  

3.) The causality of ud(t) and xd(t). That is: 

                                     ( )d tu = 0 , ( )d tx = 0  when 0≤t   

As far as the optimal causal inversion problem is concerned, the following performance 

index has to be defined: 
2

0

1[ ( ), ( )] ( ) { [ ( )] [ ( )] ( )}2
 

d d d d d d
 

t t t t t t
R

J u x x f x g x u
∞

= − + ⋅∫         (2.24) 

where R is a weighting operator. 

 

The methodology on which the technique is built is quite similar to the aforementioned 

approach for eliminating the nonhyperbolic problem. This method likewise requires the 

local coordinate transformation to obtain Eqs. (2.8) and (2.12). After linearising the right-

hand side of Eq. (2.15) at the equilibrium point η = 0  and then splitting the linearised 

matrix into stable and unstable parts, the following two equations can be obtained: 
( ) ( )( ) ( ) ( ) [ ( ), ( ), ( ), ( )]ddt t t t t t tr r

s s s s s s udA B y d yη η ξ η η= + +          (2.25) 

( ) ( )( ) ( ) ( ) [ ( ), ( ), ( ), ( )]dd dt t t t t t tr r
u u u u u s uA B y d yη η ξ η η= + +          (2.26) 

where the matrices As and Au are, respectively, the stable and unstable parts of the 

linearised matrix, and ds(⋅) and du(⋅) represent the higher-order terms of the expressions. 

Now if an appropriate additional term υ(t) can be selected to add into Eq. (2.26), the 

unstable system can reach a condition of asymptotic stability. The following two equations 

represent the two resulting systems: 
( ) ( )( ) ( ) ( ) [ ( ), ( ), ( ), ( )]dt t t t t t tr r

s s s s s d s udA B y d yη η ξ η η= + +                       (2.27) 
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( ) ( )( ) ( ) ( ) [ ( ), ( ), ( ), ( )] ( )dt t t t t t t tr r
u u s u u d s udA B y d yη η ξ η η υ= + + +             (2.28) 

If the equation ( )( ) ( ) [ ( ), ( ), ( ), ( )]dt t t t t tr
u u d s uK d yυ η ξ η η= − is selected, Eq. (2.28) becomes: 

( )( ) ( ) dt r
u u u uA K B yη η= + +                                                     (2.29) 

where K is chosen to make (Au+K) Hurwitz. Thus, the stable solution ( )tuη can be obtained 

from Eq. (2.29) and then ( )tsη from Eq. (2.27). Finally according to Eq. (2.13), the bounded 

input ( )tdu can be found. 

 

If the performance index in Eq. (2.17) is adopted to facilitate the selection of the υ(t), it has 

been shown that the optimal causal inversion has similarities with the Minimum Energy 

Control Problem (MECP) which is often met in the control field. Based on this point, for a 

linear system, the υ(t) can be successfully found. Wang and Chen (2001) also pointed out 

that the above method can be used to find an optimal noncausal solution if the whole 

trajectory of a smooth desired manoeuvre yd(t) is given. 

 

This method has shows some strong points over the nonlinear regulation method and the 

noncausal method for NMP systems. Unlike the nonlinear regulation approach, it can avoid 

the numerical intractability of solving nonlinear partial differential equations (PDE) and the 

combined transient errors are significantly smaller. In addition, for the linear system 

application, MECP has shown that in the above process of derivation it is only necessary to 

consider the unstable internal system. 

 

2.2.2.2 Preview-based stable inversion 

 

This method was firstly proposed by Zou and Devasia (1999) for linear systems. The 

purpose of this proposed approach is to eliminate one of the defects existing in the 

traditional stable inversion methods for NMP systems. Later, Zou and Devasia (2007) 

extended its application to nonlinear NMP systems. It makes use of the finite-time-window 

[tc, tc+Tp] preview information of the desired output instead of the whole future information 

[tc, +∞). In fact, for practical situations, sometimes one has to implement this preview-

based stable inversion method due to the finite range of sensors in a vehicle or the fact that 
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the future desired trajectory needs to be updated online etc. One of the major contributions 

of this paper is that it presents the quantification method to calculate the required Tp in 

terms of the desired accuracy of the calculated inputs and the internal dynamics. In addition, 

Zou and Devasia pointed out that the required preview time Tp has a close relationship with 

the smallest real part of the unstable poles of the linearised internal system. This method is 

introduced in this section. 

 

A finite desired trajectory yd(t) in the time widow [tc, tc+Tp] is used to compute the bounded 

solution for Eq. (2.21). Here a boundary condition is assumed: 

( )

( )

t

t

s c

o

u f

B
η

η

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

                                                                         (2.30) 

where tf  =tc+Tp. The Picard-like algorithm is adopted here. Thus, the initial values for this 

algorithm can be chosen as: 

 0
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t t t

s c s c
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= ⎢ ⎥
⎢ ⎥Φ⎣ ⎦

        for t∈[tc, tc+Tp]                       (2.31) 

Then for the iteration number N >1:  
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∫

∫
   (2.32) 

When N tends to infinity, the solutions of Eq. (2.32) are the same as those obtained from Eq. 

(2.21). However, the above method requires the future boundary conditions ηu(tf), which 

are usually unknown a priori. The paper further pointed out that this quantity can be set to 

zero for the boundary condition matrix. The error in computing the internal dynamics under 

this new boundary condition is bounded and the error also decays exponentially as the 

preview time Tp increases. After ηu(tf) is available, all other values can be computed. 

 

2.2.3 Developments in terms of other inversion techniques 

 

Other authors have also contributed significantly to the development of model inversion 

techniques. In their paper Hunt and Meyer (1997) improved the method of Devasia et al 
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(1996) by presenting a two-step noncausal procedure. They stated that the latter method in 

fact is applied to an error system instead of to the full system. The first step of their method 

computes the major part of the desired control and the corresponding state trajectory by 

ignoring the perturbation error. The second step finds the required control and states by 

computing a noncausal and stable solution to an error-driven dynamical equation. 

 

In all the above-mentioned methods, it is assumed the nonlinear system represented in Eq. 

(2.1) has strictly relative degree. In practice, this assumption sometimes can be violated. 

Ramakrishna et al (2001) investigated how the relative degree of the system can change 

with respect to parameter values. Their results show that although the order of the 

differential equation can change (the relative degree changes), the inversion solution is still 

continuous at the nominal value point of the varying parameter. 

 

 

2.3 Review of traditional inverse simulation algorithms 
 

In this section, the interest is focused upon a review of the available techniques for inverse 

simulation.  

 

2.3.1 Classification of inverse simulation approaches 

 

Inverse simulation aims to determine the system inputs required to produce a given 

response, defined in terms of the system output variables. Interest in inverse simulation 

methods has been particularly strong in the field of aircraft flight mechanics and this 

approach has received special attention in the case of helicopters and other forms of 

rotorcraft, which involve complex and highly nonlinear models. For such an application the 

input to the inverse simulation is the required flight path and the output information 

represents the piloting commands needed to achieve this trajectory. 

 

Inverse simulation is commonly carried out either by a direct approach based on 

differentiation or iteratively using integration methods. The first published accounts of the 
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problems of inverse simulation for aircraft applications were those of Kato and Saguira 

(1986) and Thomson (1987). Their methods involved numerical differentiation of the 

vehicle state variables, with respect to time. The main advantage of this approach is fast 

convergence speed. However, it may suffer from problems of numerical rounding error and 

involves ad-hoc approaches for specific applications for different types of vehicles. Sentoh 

and Bryson (1992) defined the inverse process as a LQ optimal problem that minimises the 

integral of a weighted square sum of the deviations from a straight flight path and control 

surface deflections. They demonstrated the approach by an application to feedforward 

control problems in an aeronautical context. However, this method suffered from 

significant practical limitations and involved a relatively cumbersome procedure.  

 

In the early 1990s members of a research group at the University of California, Davis (Gao 

& Hess, 1993; Hess et al., 1991) proposed what is now the most commonly used approach 

that formulates the inverse problem as part of an integration process. This approach does 

not require time differentiation of the specified path constraints. Instead, it involves a 

procedure that calculates the partial derivative of the output vector with respect to the input 

vector through a numerical algorithm. In addition, redundancy problems can be overcome 

by use of the Moore-Penrose inverse. Unlike the earlier methods based on the 

differentiation approach, the structure of this algorithm determines that this integration-

based method is less model-specific. That means that it can accommodate different models 

without restructuring the algorithm itself. One of the drawbacks of this approach is that it is 

an order of magnitude slower than the method involving differentiation with respect to time. 

 

In an approach similar to the integration-based algorithm, de Matteis et al (1995) presented 

an alternative local optimisation concept to eliminate the control redundancy problem. This 

involved adding new path constraints at the cost of evaluating the Hessian matrix 

numerically though a modified Broyden, Fletcher, Goldfar and Shanno (BFGS) quasi-

Newton method. However, in practice, it is not always feasible to construct new path 

constraints for a special performance requirement as this approach may not always lead to a 

solution due to the searching region being restricted. By incorporating a two timescale 

approach to simplify the complexity of aircraft models, this method has been successfully 
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demonstrated on a F-16 fighter aircraft model (Avanzini et al., 1999) and a Bell aH-1G 

single rotor helicopter model (Avanzini & de Matteis, 2001). 

 

Lee and Kim (1997) formulated the inverse simulation problem as a general optimisation 

problem by defining a performance index constrained by equality conditions that are a 

function of state variables. Then the performance index is discretized by the finite element 

method and the final governing equation is solved by the Levenberg-Marquardt (LM) 

algorithm. This can avoid the control redundancy problem by appropriate selection of the 

performance index and constraint condition. Therefore, the procedure does not involve 

numerical differentiation or integration processes. As a result, it overcomes the problem of 

ill conditioning and sensitivity problems associated with initial guessed values. However, 

the performance improvement is achieved at the cost of enormously increased complexity 

of the inverse simulation process. 

 

Celi (2000) solved the inverse problem by borrowing some ideas from the optimisation 

field. In fact, unlike the approaches based on local optimisation, his method considers pilot 

inputs as design variables in the global space. Furthermore, investigations based on indirect 

trajectory definition are allowed and as a result, the vehicle dynamics obtained (in Celi’s 

case a helicopter) and the required pilot inputs are noticeably different due to the existence 

of a family of valid trajectories. However, the approach may have difficulty in calculating 

the whole trajectory at one time. If this is the case, the results show poor consistency 

between the converged solution and the desired trajectory. This problem can be solved by 

performing the optimisation over overlapping consecutive segments of the trajectory rather 

than over the entire trajectory. In addition, problems of multiple solutions may appear. This 

will assist in handling qualities studies but creates difficulties if the inverse solution is 

being used for purposes of simulation model validation. As a consequence, additional 

constraints are required to achieve a unique solution. 

 

Finally, other authors also have made contributions to the inverse simulation field. 

Anderson (2003) proposed an enhanced NR method by combining Hess’s approach with 

the bisection method through which each change of controls is multiplied by an additional 
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scale factor. He stated that the numerical stability of the inverse simulation can be 

significantly improved and an order of magnitude reduction can be achieved in both the 

tracking error and the control deflections, as shown from results obtained from an 

application to a helicopter model with an individual blade representation. In fact, his 

method can be considered as another modification of the calculation of the Jacobian matrix 

and is quite similar to the inverse Broyden method (Cheney & Kincaid, 2004), but simpler. 

However the bisection method has some drawbacks. One disadvantage is that when the 

searching interval for a real root is decreased, the speed of convergence becomes very slow 

due to the computational load. It is also difficult to achieve high accuracy using this 

approach. 

 

Lu et al (2007c) proposed an approach based on sensitivity-analysis (SA) to solve some 

numerical problems existing in the traditional integration method. The details will be 

presented in the next chapter. In addition, Lu, Murray-Smith and McGookin (2007a) 

developed a derivative-free approach to improve the numerical stability. This allowed 

considering the inclusion of the actuator saturation in the model being investigated as well 

as discontinuous manoeuvres. This approach will also be discussed in later sections of this 

thesis. 

 

Based on the above literature review, the various techniques may be categorised as follows: 

 

Methods in which derivative information is used: 

• Optimisation methods 

Local optimisation: 

The LQ problem (Sentoh & Bryson, 1992); the local optimisation approach with the 

BFGS algorithm (de Matteis et al., 1995); the two timescale approach (Avanzini et al., 

1999; Avanzini & de Matteis, 2001); the method based on sensitivity analysis (Lu et 

al., 2007c). 

Global optimisation: 

The general optimisation problem involving equality conditions (Lee & Kim, 1997); 

the optimisation approach of Celi (2000). 
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• Differentiation methods 

Numerical differentiation of the vehicle constrained variables, with respect to time, 

until the control variables are solved explicitly (Kato & Saguira, 1986; Thomson, 

1987; Thomson & Bradley, 1997). 

• Integration methods 

The value of the control variables that satisfy the constraints are found iteratively 

within a sampling interval (Gao & Hess, 1993; Hess et al., 1991; Rutherford & 

Thomson, 1996); modification of the Hess approach by the bisection method 

(Anderson, 2003). 

 

Methods that do not involve derivative information: 

• Optimisation methods 

A derivative free approach based on the NM algorithm is used to find the control 

values within a sampling interval (developed in the course of the current research: 

details in a later section (Lu et al., 2007a). 

 

2.3.2 The differentiation-based approach 

 

Because it is completely different from the most widely adopted integration-based 

approaches and because it has been used successfully in a variety of previous applications, 

the algorithm of the differentiation-based approach is reviewed in this section (Murray-

Smith, 2000). 

 

A nonlinear system, whose form is slightly different from the one used for the traditional 

model inversion as shown in Eq. (2.1), may be described by equations of the form: 

( , )=x f x u                                                                             (2.33) 

( , )=y g x u                                                                              (2.34) 

where f∈ mR is the set of nonlinear ordinary differential equations describing the original 

system, g∈ pR is the set of algebraic equations that construct the expected outputs, and 

u∈ qR is the input vector. x∈ mR is the state-variable vector and y∈ pR is the vector of output 

variables. This form follows the traditional definition used in the previous inverse 
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simulation investigation (Hess et al., 1991). In addition, Eqs. (2.33) and (2.34) can be 

discretized as: 

1

1

( ) ( ) [ ( ) ( )]k k
k k

k k

t t t , t
t t

−

−

−
=

−
x x f x  u         k = 1, 2, 3,…, N −1                     (2.35) 

( ) [ ( ) ( )]k k kt t , t=y g x  u                                                              (2.36) 

where N is the total number of discretized intervals and tk is the kth discretization point in 

the time period. Now define two functions F1 and F2 to calculate out the values of the 

unknown variables ( )ktx  and ( )ktu . 

1
1

1

( ) ( )[ ( ) ( )] [ ( ) ( )] k k
k k k k

k k

t tt , t t , t
t t

−

−

−
= −

−
x xF x  u f x  u                                  (2.37) 

2[ ( ) ( )] [ ( ) ( )] ( )k k k k d kt , t t , t t= −F x  u g x  u y                                            (2.38) 

where the term on the left-hand side of Eq. (2.36) is replaced by ideal output values yd(tk+1), 

and where the subscript d is used to represent the desired value. The NR method is adopted 

to solve Eq. (2.37) and Eq. (2.38) so that the values ( )ktx  and ( )ktu can make the right hand 

sides of these equations approximately equal to zero. The updated equations are shown as 

follows: 
1

1 1
( ) ( 1) ( 1) ( 1)

1

( ) ( 1) ( 1) ( 1)
2 2 2
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F F
x x F x ux u

F Fu u F x u
x x

                     (2.39) 

where the quantity n is the current step within the iterative process. After the values ( )ktx  

and ( )ktu that make F1 and F2 zero are found, the inverse simulation will move to the next 

time step tk+1. By similar sequential steps, the complete time histories of ( )ktx  and ( )ktu can 

eventually be obtained. 

 

2.3.3 The integration-based approach 

 
This section provides a summary of the integration-based method of Hess et al (1991). 

After the discretization process of Eqs. (2.33) and (2.34), the input-output relationship of 

this nonlinear system can be defined as follows: 
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1

1( ) ( ) ( )
 t

k k t
t t dt tk

k
x x x+

+ = +∫                                                       (2.40) 

1 1( ) [ ( ), ( )]k k kt t ty g x u+ +=                                                            (2.41) 

Now the term on the left-hand side of Eq. (2.41) is replaced by ideal output values 1( )d k+ty , 

where the subscript d is used to represent the desired value. Thus, Eq. (2.41) can be 

rewritten as: 

1 1[ ( ), ( )] ( ) 0k+ k d k+t t tg x u y− =                                                   (2.42) 

In the traditional algorithm, the NR-based method is used to find u(tk) by the following 

iterative relationship: 
( 1) ( ) ( ) ( ) 1 ( ) ( )

1 1( ) ( ) ( { [ ( ), ( )]}) [ ( ), ( )]n n n n n n
k k E k k E k kt t t t t t+ −

+ += −u u J f x u f x u               (2.43) 

where ( ) ( ) ( ) ( )
1 1 1[ ( ), ( )] [ ( ), ( )] ( ).n n n n

E k k k k d kt t t t tf x u g x u y+ + += −  In Eq. (2.43) the term J 

represents the Jacobian matrix of system outputs at the end of the time interval ∆t (from tk 

to tk+1) with respect to input variables. If, in Eq. (2.34), there is a direct analytical 

relationship between input and output the Jacobian matrix may be obtained directly. 

Otherwise an approximation technique must be used as follows: 

1 11
( ) | ( ) |( )

( )
k ki j j t i j ti k

ij
j k j

t
t

y u u y uyJ u u
+ ++

∂ + Δ −∂∂
= ≈
∂ Δ

                                       (2.44) 

                                                                        i = 1, 2, 3, …, p and j = 1, 2, 3, …, q 

where uj and yi are the jth and ith elements of the input and output vectors, respectively. Δuj 

is the perturbation in uj at time tk. In Eq. (2.44), the superscript n is omitted. Rutherford and 

Thomson (1996) have also presented a modified approach for calculation of the Jacobian 

matrix by perturbing Δuj in the negative and positive directions. 

 

When a redundant situation exists, the Jacobian matrix is not square and it is not possible to 

use standard methods of matrix inversion in the NR iteration scheme, as shown in Eq. 

(2.43). Hess et al (1991) proposed the use of the pseudo-inverse matrix as a solution for 

finding the roots of Eq. (2.42) when J is rectangular. 
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2.4 Manoeuvre definition 
 

From the definition of inverse simulation, it is clear that this technique can be implemented 

to calculate the control efforts required by a modelled vehicle in following a specified 

manoeuvre. Therefore, for all cases, the initial stage of any inverse simulation must involve 

construction of the trajectory or manoeuvre that is to be investigated. In the helicopter field 

the applications of inverse simulation have been concerned particularly with aggressive 

flying tasks involving ADS-33E mission task elements (MTE) (Anon, 2000). Hence, the 

manoeuvre definition involves problems associated with the conversion of implicit words 

describing MTE in the ADS-33E manual into precise flight paths. 

 

Many contributions have been made to this translation process for the special case of 

helicopter flight mechanics (Rutherford & Thomson, 1997; Thomson & Bradley, 1990a; 

1994). A manoeuvre is usually composed of two parts: the positional coordinates 

[ ( ) ( ) ( )]e e ex t y t z t and the heading angle Ψ. The former elements are used to describe the 

motion of the helicopter’s centre of gravity relative to an Earth-fixed system of axes. The 

inclusion of the latter (heading angle) aims to provide the fourth constraint to produce a 

unique solution as well as to describe a realistic manoeuvre and vehicle movement, since 

there are four controls in the helicopter dynamic system. In addition, the choice of the 

heading angle from the vehicle attitude angles is convenient in terms of flight mechanics. 

By following this definition, this subsection will present mathematical models for the pop-

up, hurdle-hop, and bob-up manoeuvres. Another approach (Avanzini et al., 1998; 

Avanzini and de Matteis, 2001), which is different from the method adopted here, can also 

be found quite useful to construct an ideal trajectory. This approach implemented the Frenet 

triad to construct the algebraic equations to describe the trajectory. 
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2.4.1 The pop-up manoeuvre 

  
Fig. 2.2 The pop-up manoeuvre 

  

In Fig. 2.2, h is the height of the obstacle and L is the total track distance. As shown, the 

pop-up manoeuvre involves clearing an obstacle by a rapid controlled change of altitude 

over some distance L in the x - z vertical plane. The trajectory shape shown in the above 

figure can be described by a polynomial equation with some boundary conditions, 

following the specifications required in the ADS-33E manual (Rutherford & Thomson, 

1997; Thomson & Bradley, 1998). A fifth-order polynomial has been found to satisfy these 

boundary conditions and to guarantee the necessary smoothness of the manoeuvre 

(although sometimes higher order polynomials may be needed). This polynomial has the 

form: 

5 4 3( ) [6( ) 15( ) 10( ) ]e
m m m

t t tz t h
t t t

= − − +              0 mt t< <                    (2.45) 

where tm is the time to complete the manoeuvre and. In practical applications, the total 

flight speed Vf can be either constant (which is usually the case) or a variable as a function 

of time. The horizontal velocity component can be derived as follows: 

22 )()()( tztVtx efe −=                                                           (2.46) 

The quantity tm for the hurdle-hop manoeuvre is calculated by means of the following 

equation: 
 

 0
( )mt

eL x t dt= ∫                                                                          (2.47) 

z Span disturbance (L) 

h 

x 
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where xe is the longitudinal displacement. Eq. (2.47) can be easily solved by forward 

iteration. In practical applications, the values of the parameters h, Vf and L can be adjusted 

to provide the desired level of severity for the manoeuvre.  

 

2.4.2 The hurdle-hop manoeuvre 

 

  
Fig. 2.3 The hurdle-hop manoeuvre 

 

As shown in Fig. 2.3, the hurdle-hop manoeuvre involves clearing an obstacle of height h 

and then returning back to the original altitude over some span distance L (Rutherford & 

Thomson, 1996). The apex of the manoeuvre occurs in the middle of the span. Similar to 

the approach used for constructing the pop-up manoeuvre, the polynomial equation used to 

describe the hurdle-hop manoeuvre can be defined as follows: 

323 )](1)(3)(3)[(64)(
mmmm

e t
t

t
t

t
t

t
thtz −+−=                               (2.48) 

where the value of the parameter tm can be calculated in a similar fashion to Eq. (2.47). 
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2.4.3 The bob-up manoeuvre 

 

   
Fig. 2.4 The bob-up manoeuvre 

 

The bob-up manoeuvre, as shown in Fig. 2.4, is started from a trimmed state (hover) and 

then power is increased to increase the vertical velocity to approximately maximum at the 

middle time point of the manoeuvre. Then, power is decreased to reduce the vertical 

velocity which finally reaches zero at the end point (Anon, 2000; Bradley & Thomson, 

1993). The velocity description of this process can be illustrated in Fig. 2.5: 

 

  
Fig. 2.5 Velocity profile of the bob-up manoeuvre 

 

The polynomial equation used to describe the bob-up manoeuvre can be defined as follows: 

6 5 4 3
max( ) [ 64( ) 192( ) 192( ) 64( ) ]t t t tV t V

t t t tm m m m

= − + − +                               (2.49) 
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where Vmax is the maximum velocity in the manoeuvre.  

 

 

2.5 Summary 
 

In this chapter historic developments in the field of dynamic inversion and inverse 

simulation have been summarised. Both classes of approaches can be used to derive the 

inputs for a given trajectory but they rely on entirely different methodologies. Model 

inversion based methods obtain the input by inverting a nonlinear dynamic system model in 

advance. In contrast, inverse simulation methods are used to find the input based on special 

numerical algorithms or optimisation approaches. In addition, compared with feasibility of 

the principles of inverse simulation, the currently available techniques for dynamic 

inversion are complex and tedious to apply, especially for the methods attempting to 

achieve the noncausal inversions for NMP systems. This information has served to drive 

the current research to explore the possibility of replacing model inversion by inverse 

simulation for the synthesis of FFCs within the 2DOF control scheme.   
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The primary objective of this chapter is to explore and highlight the close relationship between model 

inversion and inverse simulation techniques. The similarities and shortcomings, existing in these two classes 

of methods, are presented. All these findings are intended to facilitate investigation of the possibility of 

replacing model inversion by inverse simulation in the design of a FFC. The work presented in this chapter 

also has been published in the Proc. of 5th MATHMOD (Lu, Murray-Smith & McGookin, 2006b) and Journal 

of Mathematical and Computer Modelling of Dynamical Systems (Lu et al., 2007a). 

 

 

3.1 Introduction 
 

As mentioned in Chapter 1 and Chapter 2, inversion of system dynamics is a widely 

investigated approach used to design the FFC to obtain precision tracking of output 

trajectories through a combination of feedforward and state feedback controllers (Devasia 

et al., 1996). Compared with MP systems, the tracking problem for a NMP system is much 
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more difficult since limitations introduced by unstable zero dynamics are structural and 

cannot be avoided without changing the system structure or reformulating the tracking 

problem. In addition, these traditional model inversion methods require extra efforts to 

overcome some drawbacks such as the complexity of the algorithm structures, the demand 

for sufficient smoothness of the manoeuvre and model being investigated, and the limited 

domain of validity etc. All these problems provide the stimulus for the development of new 

methodologies that share the same functionality as the model inversion techniques but are 

less complicated to apply and more feasible to implement in practical situations. 

 

Chapter 1 has introduced the idea that inverse simulation can be used in a similar way to 

model inversion techniques in control system design. In their pioneering work Sentoh and 

Bryson (1992) developed an approach to realize feedforward command generators for a 

guidance controller by solving an inverse problem. Hess and Gao (1993) formulated task-

driven bandwidth requirements for the design of a stability augmentation system using an 

inverse solution. Gray and von Grünhagen (1998) use a 2DOF control structure in which 

the FFC channel is replaced by a direct pilot input as an approximation to an inverse 

simulation. This structure can facilitate investigating the quality of the developed 

mathematical model as well as possible sources of the inaccuracy. A later contribution 

made by Boyle and Chamitoff (1999) involved an application for an autonomous guidance 

system for an unmanned aerial vehicle (UAV). Meanwhile, Avanzini et al (1999) combined 

the inverse problem and a (LQ) tracking controller to achieve good tracking performance 

and robust stability. The inverse approach is used to determine the input commands 

necessary to track the specified flight path and the aspect of the design process concerned 

with robust stability takes account of unmodelled dynamics and external disturbances. This 

idea of using a combination of approaches was further presented in the work of Avanzini 

(2004) where he explored the possibility of inverse simulation being used to provide the 

reference input for a controlled helicopter model. There he first simplified the original 

model using a two time-scale approach and then applied traditional inverse simulation 

methods. 
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These examples of previous work show that inversion simulation shares some common 

features with model inversion. They both need a way to generate the ideal manoeuvre and 

then use different mathematical approaches to provide the reference inputs for the 

controlled model from the defined manoeuvre. These similarities provide some sound 

reasons to replace the inverse model by inverse simulation, if the latter can satisfy all the 

necessary conditions. However, earlier investigations of inverse simulation methods have 

not fully considered the applicability of this approach for the special case of NMP systems. 

Yip and Leng (1998) failed to make a clear statement about why inverse simulation can be 

applied successfully to the NMP problem. Moreover, their development was based the 

assumption of fast convergence of the NR method. However, this assumption may be not 

always valid, as is shown later in this chapter.  

 

 

3.2 The approach of Yip and Leng (1998) 
 

In order to establish a basis for comparison with the approach presented in this chapter, the 

main content of Yip and Leng’s method is reviewed in this subsection. Their analysis is 

based on the integration-based method for inverse simulation (Hess et al., 1991). Firstly, 

the Jacobian matrix in Eq. (2.44) is assumed to be constant in the iteration process for a 

linear time-invariant system. Accordingly, Eq. (2.43) will be changed to the following form: 
(1) (0) 1 (0)

(2) (0) 1 (0) (1)

( ) (0) 1 (0) (1) ( 1)

0, ( ) ( ) ( )

1, ( ) ( ) [ ( ) ( )]

1, ( ) ( ) [ ( ) ( ) ( )]

k k k

k k k k

l l
k k k k k

     t t t

      t t t t

                          
l  t t t t t

−

−

− −

= = +

= = + +

= − = + + + +

n u u J e

n u u J e e

n u u J e e e

   (3.1) 

where l is the total number of iterations and ( ) ( )k kt t= − Ee f . A multiplier,ω, then is added 

to improve the initial guess such that 
( ) (0) 1 (0)( ) ( ) ( )l

k k k t t tω−= +u u J e                                                 (3.2) 

Compared with Eq. (3.1), the following equation can be obtained: 
(0) (0) (1) ( 1)( ) ( ) ( ) ( )l

k k k kt t t tω −= + + +e e e e                               (3.3) 
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Now if good convergence of the inverse simulation process is assumed within the first little 

iteration for a small Δt value, the value ω can be set approximately to unity. In addition, the 

term (0) ( )ktu is replaced by 1( )kt −u . Therefore, after omitting the superscript n, Eq. (3.2) 

becomes 
1

1( ) ( ) ( )k k k t t t−
−= +u u J e                                                            (3.4) 

where ( ) ( ) ( )k d k kt t t= −e y y . Eq. (3.4) is termed an approximate model of Newton’s scheme. 

With the simplified relationship among the input, the Jacobian matrix, and the error 

function, Yip and Leng investigated stability of the inverse simulation process for an 

aircraft application. 

 

 

3.3 The essence of inverse simulation 
 

Analysis of the inverse simulation process for the case of a nonlinear system of the type 

shown in Eq. (2.1) is difficult. Therefore, it is more appropriate to first consider a linear 

system having the form shown in Eq. (3.5).  

x Ax Bu

y Cx Du

= +

= +
                                                                             (3.5) 

where x is the vector of system state variables, u is the input vector, y is the output vector, 

and the matrices A, B, C, and D are the system matrices with the appropriate dimensions. 

 

The inverse simulation procedure based on the integration process may be divided into two 

stages: first the discretization process and then the solution by means of the numerical 

algorithms, as shown Eq. (2.43). This division is reasonable because many other inverse 

simulation methodologies also follow this kind of two-stage structure, using other 

numerical algorithms instead of the NR approach (Avanzini & de Matteis, 2001; de Matteis 

et al., 1995; Lee & Kim, 1997; Lu et al., 2007c). The stability of the second stage usually 

relates to the numerical stability and convergence properties of the chosen algorithm itself. 

This involves numerical issues more than questions of dynamical stability. As a result, only 
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the discussion of the first stage is presented and for the second stage convergence is 

assumed to be achievable. 

 

After discretizing Eq. (3.5), the following formulae can be obtained: 

1( ) ( ) ( )

( ) ( ) ( )

k k k

k k k

t t t

t t t

x Px Hu

y Cx Du

+ = +

= +
                                                          (3.6) 

where the terms P and H are: 

0
( )

t

 t
t

 

e

e t

Δ

Δ

=

= ∫

A

A

P

H d B
                                                                      (3.7) 

For the inverse simulation method introduced in Chapter 2, the state variables are first 

updated using Eq. (2.40) using the fourth-order Runge-Kutta (RK) algorithm. If the RK 

algorithm is applied for the integration process of the right side of Eq. (3.7), Eq. (2.40) can 

be expressed by the following equation after transformation and simplification: 

1( ) ( , , ) ( ) ( , , , ) ( )k k kt M t t M t tx Q A x W A B u+ = Δ + Δ                    (3.8) 

where the variable M is the number of iterative RK steps for one integration step from tk to 

tk+1. The function Q is dependent on the algebraic relationship of the three variables A, M, 

and Δt. The function W also depends on the matrix B in addition to the three other 

quantities shown. When the value M is increased, the accuracy of the results from Eq. (3.8) 

will be improved at the cost of greatly increased complexity. If M tends to infinity, Eq. (3.8) 

will be identical to Eq. (3.6). It can thus be concluded that the inverse simulation 

approximates to the process of discretization and the accuracy of this approximation 

depends on the value of M. In addition, the zeros of the system in Eq. (3.6) can be relocated 

in the z-plane by varying the sampling rate Δt. In the practical inverse simulation process, 

the values A, B, and M in Eq. (3.8) are usually fixed. Hence, by changing the value Δt in Eq. 

(3.8), it may be possible to redistribute the zeros in the z-plane as in Eq. (3.6) and to avoid 

the NMP problem.  

 

The application of the new method to the NMP problem can be explained as follows. 

Assume first that the system shown in Eq. (3.6) is a NMP system and has RHP zeros, 

regardless of the distribution of poles. This process of disregarding the poles is possible 
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because only the RHP zeros will affect the dynamic stability of the inverse system. As 

mentioned above, by changing the value of Δt it is possible to move zeros originally in the 

RHP into the left-half plane (LHP). This can guarantee the stability of the inverse 

simulation process in terms of the system structure at the first stage. Hence, there may exist 

some sampling-rate intervals or critical Δtc values where the magnitudes of all the zeros are 

less than one. 

 

Moreover, even if some magnitudes are greater than unity, inverse simulation may still 

provide good convergence because of the fact that it approximates to but is not exactly the 

same as a traditional discretization process. However, it is difficult to obtain Δtc directly 

from Eq. (3.8) due to the complicated structures of the two functions Q and W. Furthermore, 

this complexity is greatly increased when the value of M is increased. In practical terms, Δtc 

can be obtained from Eq. (3.6) by plotting a diagram showing the distribution of 

magnitudes of zeros versus the sampling-rate variation. These values of Δtc can then be 

taken as the reference Δt values for Eq. (3.8). As M tends to infinity, values obtained from 

Eq. (3.6) should be quite close to those obtained from Eq. (3.8). 

 

The analysis presented in this section is different from that given by Yip and Leng (1998). 

Firstly, they addressed the stability analysis using an assumption of fast convergence of the 

NR method, typically within two or three steps, as shown in Section 3.2, instead of the two-

stage division. However, this assumption of fast convergence may not be appropriate for 

cases where the inverse simulation does converge but at a relatively slow rate. This 

situation is quite usual for many cases, even for a very simple case that will be illustrated 

later. Moreover, their assumption is made for the case of small Δt values. However, it is 

well known that small Δt values will lead to some numerical instabilities such as the high-

frequency oscillations discussed previously (Lin, 1993). Secondly, in practice, the 

assumption of the constant Jacobian matrix, or the existence of the direct analytic 

relationship between input and out, may not be satisfied for many situations (Gao & Hess, 

1993; Hess et al., 1991). This assumption of small Δt values can be avoided entirely in the 

new approach described here. Thirdly, the two methods are based on different standpoints 

in terms of investigation of the stability of the inverse simulation process. The Yip and 
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Leng approach mainly focused on the approximation of the NR algorithm. In contrast, the 

approach presented in this section is concerned more with the first stage – the discretization 

process. Finally, Yip and Leng failed to make a clear statement about why inverse 

simulation can be applied successfully to the NMP problem. 

 

Although there are some shortcomings in Yip and Leng’s method, it can work well 

provided all of the above assumptions are satisfied. Compared with their method, the two-

stage methodology introduced in this chapter is more general and can work for a range of 

different situations. Taken overall the essential feature of inverse simulation based on the 

integration process for a linear system is that it approximates the original system by using a 

discrete equivalent. The same analysis can be applied to the nonlinear case but the 

procedure is more complex and challenging since it involves discretization of a nonlinear 

system.  

 

 

3.4 Application examples 
 

The proposed approach will be illustrated at length in this subsection through three 

different applications to allow a more detailed description and demonstration of the 

methodology. The three cases to be considered are: a nonlinear MP case, a linear NMP case, 

and a multiple-input multiple-output (MIMO) NMP case.  

 

3.4.1 A nonlinear minimum-phase system 

 

The simulation study selected here relates to a nonlinear longitudinal mathematical model 

of a fixed-wing aircraft, the HS125 (Hawker 800) business jet (Thomson, 2004) (Appendix-

B). It can be shown that the linearised model for this aircraft around the chosen equilibrium 

point is a MP system since there are no RHP zeros for this model. The thrust T (N) and the 

elevator angle δe (deg) act as the inputs for implementation of the algorithm for inverse 

simulation involving the NR approach. The manoeuvre conducted is a constant forward-

speed hurdle-hop manoeuvre (Rutherford & Thomson, 1996) in the z-x plane (altitude 
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versus distance travelled), as introduced in Eq. (2.48) in Chapter 2. It may be characterized 

by the following polynomials: 

                               

3 2 3

1

( ) 64 ( ) 3( ) 3( ) 1 ( ) m

( ) 61.87m sd

d
m m m m

f

t t t tZ t h t t t t

V t −

⎡ ⎤= − + −⎢ ⎥⎣ ⎦

= ⋅
                      (3.9) 

where tm is the time to complete the manoeuvre and can be calculated in a similar fashion to 

Eq. (2.47), h is the height. Eq. (3.9) also shows that the total flight speed Vf remains 

constant during the manoeuvre. 

 

In this application the first priority is to define the calculated manoeuvre based on the 

vector relative degree (Appendix-A), if it exists. Calculations show that the model has a 

vector relative degree [2, 1]. This means that the manoeuvre must be defined in terms of 

acceleration [see Eq. (2.14)] for application of the model inversion approach. To guarantee 

a fair comparison, the ideal manoeuvre is also defined as the acceleration in the inverse 

simulation, although it is not essential in this case. This is one of the advantages of 

implementation of inverse simulation to derive the require inputs. 

 

The methods applied are based on completely different fundamental methodologies for 

deriving the inputs. Inverse simulation obtains the inputs and reference states one by one in 

each fixed time interval Δt and it does not necessarily require trajectory derivative 

information. In contrast to inverse simulation, model inversion techniques calculate the 

inverse model in advance and then carry out the forward simulation using the defined 

manoeuvre with the corresponding derivatives of appropriate order. In addition, the 

traditional model inversion approaches require the original system to be of full relative 

degree and involves a complex local-coordinate transformation (Sastry, 1999). The 

simulation results are generated for the conditions defined in Eq. (3.10) and are shown in 

Fig. 3.1 and Fig. 3.2: 

                               150 m; 500 mh  s  = =                                                      (3.10) 
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Fig. 3.1 Inputs from inverse simulation (NR) and model inversion (MI) for the HS125 model 
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Fig. 3.2 Comparisons of outputs from forward simulation for the ideal manoeuvre for the HS125 model 
 

Fig. 3.1 and Fig. 3.2 show that for this case inverse simulation shows more accurate results 

compared with the model inversion for the larger Δt values such as 0.01 s and 0.02 s. In Fig. 

3.1b, both methods obtain the same thrust (T) for all Δt values being investigated. However, 

for the elevator angle (δe) channel (Fig. 3.1a), there are differences between the results for 

Δt =0.01 s and Δt =0.02 s. The results from the forward simulation with these calculated 

inputs, as shown in Fig. 3.2, further illustrates the poor consistency of the model inversion 

for Δt =0.01 s and Δt =0.02 s. The latter only achieves good results for Δt =0.001 s. 

However, use of this smaller Δt value means increased computation time. 
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In addition to the more accuracy for this case, compared with the model inversion 

techniques, inverse simulation is easier and more feasible in terms of implementation. 

Properties of the algorithm mean that the original system does not require the existence of 

the vector relative degree. It is therefore suggested that for MP systems, particularly for 

applications where the model is quite complex, such as in a helicopter or ship model, it 

would be more convenient to adopt inverse simulation, by selecting a suitable sampling 

interval, rather than model inversion. The chosen Δt value should satisfy two important 

conditions: a.) to guarantee the convergence of the inverse simulation process; b.) to ensure 

that the zeros in Eq. (3.8) remain in the LHP in the discretization process. These two 

requirements follow the property of the two-stage-division analysis, as already mentioned. 

The latter requirement must be included because inverse simulation approximates to the 

discretization process. 

 

3.4.2 A linear SISO nonminimum-phase system 

 

The main objective of this subsection is to illustrate the application of the methodology 

introduced in Section 3.2 and to show the weakness of the assumption of fast convergence 

of the inverse simulation process, made by Yip and Leng (1998) in the development of their 

method. 

 

Consider a linear SISO NMP system given by the following four system matrices: 
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                                          (3.11) 

This system has two RHP zeros: 0.5000 ± 7.0534i. Obviously, the method of Devasia et al 

(1996), as presented in Chapter 2, can be applied to overcome this NMP problem but it 

quite tedious and is also a noncausal process. Instead, for implementation of the method 

developed above, a plot of the magnitude of the zeros versus Δt values is created, as shown 

in Fig. 3.3.  
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Fig. 3.3 Variation of magnitude of the zeros with Δt 
 

The interval, in which the magnitudes of the zeros are smaller than one, can be determined 

directly from examination of Fig. 3.3. In this case the interval is [0.2 s, 0.46 s]. For the 

interval [0, 0.2 s], there are clearly zeros with magnitude slightly larger than one and for the 

range above 0.46 s magnitudes again become greater than unit as the interval increases. The 

range of intervals that should be considered first for Δt in the inverse simulation algorithm 

is therefore [0.2 s, 0.46 s]. However, it should be noted that the interval [0, 0.2 s] may not 

necessarily be invalid and a trial and error process may be used to check whether or not it is 

usable. According to the analysis presented above, the inverse simulation approximates to 

but is not exactly the same as a traditional discretization process and the interval [0, 0.46 s] 

therefore may be considered for the process of Δt value selection. Simulation results 

support the fact that the point 0.46 s is a critical limit for convergence of the inverse 

simulation. However, in addition to the reasons relating to Fig. 3.3, convergence problems 

may also be linked to numerical limitations of the NR method implemented in the inverse 

simulation algorithm. Therefore, the critical point value 0.46 s is a coincidence of the 

combination effects from the discretization process and the NR algorithm. The results with 

Δt values in the selected interval are shown in Fig. 3.4 for the hurdle-hop manoeuvre of Eq. 

(3.9). 
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Fig. 3.4 Comparisons of results from inverse simulation with the different Δt values 
 

Fig. 3.4a shows that for the sampling rates 0.4 s and 0.3 s, the inverse simulation achieved 

perfectly bounded inputs. However, for Δt = 0.01 s the calculated input is combined with 

slowly increasing oscillations. This is consistent with the above analysis that states that the 

results obtained for values outside the interval [0.2 s, 0.46 s] are of lower quality and even 

invalid compared with Δt = 0.4 s and Δt = 0.3 s. Furthermore, the poorer results of this case 

conflict with the traditional idea that smaller Δt values in discretization lead to more 

accurate results (Hess et al., 1991). 

 

An interesting phenomenon shown in Fig. 3.4b is that the results from the forward 

simulation with the three different calculated inputs completely satisfy the requirements for 

the ideal trajectory. This actually shows a multi-solution phenomenon with regard to the 

selection of the different Δt values for a NMP system. Therefore, special attention should 

be paid to deal with the selection of a suitable Δt value associated with NMP systems since 

this is a special case. All in all, this example demonstrates the validity of earlier statements 

concerning the application of inverse simulation to NMP systems. 
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Fig. 3.5 Iterations required in inverse simulation for each discretized step 
 

It should be noted that the method of Yip and Leng (1998) may fail because the assumption 

of high-speed convergence to derive Eq. (3.4) will be violated. This is shown in Fig. 3.5 

where the number of iterations required for four different Δt values are shown as a function 

of the discretized step number. In that figure, for Δt =0.4 s the inverse simulation requires at 

least thirty-five iterative steps to converge at each discretized time step. Even with the 

smallest value Δt =0.01 s, which is located outside idea range of intervals and leads to an 

unbounded solution, nine iterations are needed to converge at each step. Therefore, for this 

case, stability analysis of the inverse simulation may be inaccurate if the terms ( 2n > ) are 

ignored in Eq. (3.3) even if the value Δt is selected from the valid interval [0.2 s, 0.46 s]. 

 

3.4.3 A linear MIMO nonminimum-phase system 
 

In this example, a helicopter model is implemented in terms of an eighth-order description 

representative of a combat helicopter similar to the Westland Lynx, linearised around the 

hover situation. The inputs are the four basic control channels (i.e. main rotor collective 
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pitch (θ0), main rotor longitudinal cyclic pitch (θls), lateral cyclic pitch (θlc), and tail rotor 

collective pitch (θtr)), as illustrated in  Fig. 3.6. 

 

 
 

Fig. 3.6 Helicopter control system illustration (Anon, 2007) 
  

The model has the standard state space form as shown in Eq. (3.5). Its state variable vector 

x contains the following system variables (Skogestad & Postlethwaite, 1996): 

 
Table 3.1 State variables for the Westland Lynx linearised helicopter model 

State Variables Description Unit 
θ Pitch attitude rad 
Φ Roll attitude rad 
p Roll rate rad · s-1 
q Pitch rate rad · s-1 
r Yaw rate rad · s-1 
u Forward velocity ft · s-1 
v Lateral velocity ft · s-1 
w Vertical velocity ft · s-1 

 

The four channels of heave velocity ( H ), roll rate (p), pitch rate (q), and heading rate (Ψ ) 

are selected to be the outputs. The desired manoeuvres of these four channels are taken 

from the standard heave axis response (Walker & Postlethwaite, 1996) and redefined based 

on the latest version of the US Army helicopter handling qualities requirements ADS-33E-

PRF (Anon, 2000). The desired vertical rate response is thus defined as having the 
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qualitative appearance of a first-order lag with an additional pure delay, as shown in Eq. 

(3.12). The other three channels p, q, andΨ  are set to be zero in terms of their desired 

responses.   

 0.16210( )
0.8225 1

sH s e
s

− ⋅=
⋅ +

                                                    (3.12) 

It can be shown easily that this Lynx-like model, for the chosen flight condition, has a 

vector relative degree [ ]1 1 1 1=r . Thus, the inverse simulation is carried out using the 

first-order derivative of the variables for each channel for the chosen manoeuvre to get a 

more accurate Jacobian matrix by avoiding the traditional approximation method. The 

reasons for this kind of the first-order calculation will be discussed in detail in Chapter 4. 

The calculation to determine the zeros of the model have shown that the system has two 

RHP zeros and therefore is a NMP system. 

 

As previously explained, the first step is to plot the magnitude of the zeros in the z-plane 

versus the sampling rate Δt. After being discretized, the system has more than two RHP 

zeros. The results in terms of the magnitude plot are shown in Fig. 3.7. 
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Fig. 3.7 Magnitude variation of zeros with respect to the sampling interval Δt 

 

Fig. 3.7 shows the distribution of the magnitudes of the eight zeros of the discretized 

system of the Westland Lynx-like linearised model. The figure of eight zeros is determined 

from a series of discretization processes within the interval [0, 0.1 s]. In addition, it can be 

seen from Fig. 3.7 that there always exist zeros whose magnitudes are larger than unity. 
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Moreover, when the sampling time is increased, the magnitudes of the RHP zeros become 

larger. According to the previous suggestion, this means that to assure the convergence of 

the inverse simulation, small sampling intervals are preferred. Besides, the convergence of 

the NR algorithm needs to be taken into consideration. The final simulations have shown 

that inverse simulation can achieve convergence only when the Δt value is less than 0.05 s. 

Thus 0.01 t sΔ = is selected to ensure satisfaction of the combined requirements of accuracy, 

numerical stability, and good convergence. The results from the simulation experiments 

based on this choice of Δt are shown in Figs 3.8 and 3.9.  
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Fig. 3.8 The calculated inputs from inverse simulation (Δt = 0.01 s) 
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Fig. 3.9 Comparisons of the calculated outputs with the ideal manoeuvres (Δt = 0.01 s) 
 
Fig. 3.8 shows the inputs obtained from the inverse simulation. The amplitudes of these 

inputs are quite large and may not have physical meaning for the linear system which is 

being used as a benchmark. The main rotor collective pitch (θ0) first initiates a step input to 

start a heave acceleration and then decreases to a steady value after a while in order to 

maintain the required heave velocity. Meanwhile, a step input in the tail rotor collective 

pitch (θtr) is applied to balance the main rotor effect. Coupling effects can also be observed 

in the main rotor longitudinal (θls) channel and the lateral cyclic pitch (θlc) channel to make 

the roll and pitch angles as small as possible. Fig. 3.9 shows good consistency between the 

ideal manoeuvres and results obtained from the forward simulation using those calculated 

inputs. The heave velocity ( H ) follows the required step response while the other three 

channels involving  roll rate (p), pitch rate (q), and heading rate (Ψ ) are kept at zero.  

 

These figures show that the inverse simulation can obtain perfect results regardless of the 

fact that the original system (for Δt =0.01s) has three RHP zeros with magnitudes very 

close to one. This is consistent with that fact, mentioned previously, that the inverse 

simulation process can be linked to the traditional discretization process. The latter process 
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provides an analytical method for selecting a sub-optimal sampling interval or a reference 

interval for the inverse simulation. Trial and error may be involved in this process. Other 

tests have also been done and the results show that the inverse simulation algorithm can 

converge well, in this example, for values of Δt below 0.05 s. Beyond this critical point, the 

inverse simulation algorithm cannot converge.  

 

When a suitable Δt value is selected, the process that has to be followed to find the 

reference feedforward inputs is completely causal and may be suitable for online 

implementation. This can bring up some advantages for situations when only partial 

knowledge of system state variables is available due to the limitation of the sensors or 

where the future desired trajectory needs to be undated online. An example of such 

updating of the trajectory could occur in applications such as the space-shuttle, entry-

trajectory-tracking problem (Zou & Devasia, 2007) where the changes in environmental 

conditions are very significant. Hence, the noncausal approach (Devasia et al., 1996) and 

the more complex causal approaches (Wang & Chen, 2001; 2002b), as reviewed in Chapter 

2, can be avoided. This represents one of the major advantages of inverse simulation over 

these other approaches.  
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Fig. 3.10 Iterations required in inverse simulation for each discretized step 
 

In addition, the iterative steps required during the inverse simulation process are plotted in 

Fig. 3.10 and this shows that the inverse simulation process needs at least seven steps for 



 Page - 53 - 

 

the NR algorithm to achieve convergence in the interval [tk, tk+1]. This again shows the 

problem inherent in the assumption of fast convergence made by Yip and Leng to derive 

their methodology. 

 

 

3.5 Summary 
 

In this chapter, the close relationship between inverse simulation and model inversion has 

been explored and presented. It has been shown that it is possible and practical for inverse 

simulation to replace model inversion in the output-tracking field or other corresponding 

domains. The investigations have been carried out both on MP and NMP systems. For a 

suitable discretization interval, for the case of MP systems, inverse simulation can provide 

results that are almost identical to those obtained by model inversion. This is illustrated by 

an application involving a nonlinear HS125 fixed-wing aircraft model. For linear NMP 

systems, inverse simulation can be used successfully for causal calculation of feedforward 

inputs. In addition, compared with model inversion, the inverse simulation process is easier 

and more feasible in terms of practical implementation. This development depends upon 

zero redistribution within the process of inverse simulation and provides a link between the 

linear inverse system and its discrete counterpart in a mathematical sense. This has been 

successfully proved with an example of an eighth-order linear Lynx-like helicopter model. 

However, the investigation of inverse simulation for the case of nonlinear NMP systems 

requires further consideration. 

 

In addition, compared with the Yip and Leng’s method, the two-stage approach presented 

here is more general and less restricted. It does not require assumptions of a constant 

Jacobian matrix, the fast convergence etc. Moreover, the development standpoints on which 

these two methods depend are completely different. The Yip and Leng method focuses on 

the approximation of the NR algorithm while the approach presented in this chapter is 

based upon the approximation to the discretization process and as a result the stability of 

the whole inverse simulation process is affected both by the discretization process and the 

NR algorithm. 
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As well as the advantages that arise from the use of inverse simulation methods, there are potential problems 

of a numerical nature that can arise in solving the equations of the dynamic model in an inverse manner. This 

chapter focuses on investigation of phenomena involving high-frequency oscillations, redundancy problems, 

and the so-called “constraint oscillations” that can be encountered in applying the processes of inversion. In 

addition, an alternative method for calculation of the Jacobian matrix is presented. Some contents in this 

chapter have been contained in the paper for Simulation Modelling Practice and Theory (Lu, Murray-Smith, 

& Thomson, 2007d). 

 

 

4.1 The problems of high-frequency oscillations and redundancy 
 

It is not a trivial task to obtain the inverse response from the equations of motion of a 

vehicle or other system and many problems can be encountered. Because of the widespread 

adoption of the integration-based approach to inverse simulation (Gao & Hess, 1993; Hess 

et al., 1991) and the history of relatively successful applications with this type of method, 

this section focuses on numerical issues associated with the integration-based approach.  
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It has been commonly accepted that the algorithms can provide good results by an 

appropriate choice of step tolerance limit and sampling rate with appropriate initial guess 

values for the NR algorithm. However, as shown in Eq. (2.44), the calculation of the 

Jacobian matrix depends on dynamic states and its accuracy is determined by the length of 

the discretization interval. As a consequence, accuracy and stability problems may arise 

during this evaluation process. In addition, previous investigations have shown that this 

technique often involves redundant situations as well as failure of the inverse simulation 

process to converge and poor convergence or convergence with superimposed high-

frequency oscillations.  

 

The phenomenon of the high-frequency oscillations in inverse simulation solutions has 

been extensively investigated (Hess et al., 1991; Lin, 1993; Rutherford & Thomson, 1996; 

1997). Hess et al (1991) described the phenomenon as involving multiple local-minima of 

the error equation Ef  as shown in Eq. (2.43). They suggested that two modifications to the 

algorithm could alleviate this problem of numerical instability. The first of these involves 

adjusting the discretization interval; and the second relates to improvements in the method 

for calculating the Jacobian matrix to achieve better accuracy. In addition, they also 

demonstrated that the high-frequency oscillations could be smoothed by introducing a 

digital low-pass filter without degrading the values of the control inputs obtained.  

 

In contrast, Lin (1993) considered this phenomenon in terms of unobservable motions that 

are excited during the inverse process. Furthermore, with respect to the first suggestion 

made by Hess et al (1991), Lin has emphasized that, instead of eliminating this problem, 

the use of a small time interval could excite uncontrolled state variables and this would 

further lead to the high-frequency oscillation effect.  

 

Rutherford and Thomson (1996; 1997) tried to solve this problem in a different way. Their 

approach was aimed at finding a better qualified Jacobian matrix from physical reasoning, 

by taking account of the difference of perturbations in the controls in terms of the blade 

aerodynamic force variables and velocity variables. In practice, the perturbations have an 

instantaneous effect on the blade aerodynamic forces and therefore on accelerations, but not 
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on velocities and displacements. Changes in those latter variables happen only after a finite 

period of time. In addition, the two timescale method shows advantages in terms of 

numerical stability in that it eliminates the high-frequency oscillations by reducing the 

order of the model being investigated (Avanzini et al., 1999; Avanzini & de Matteis, 2001).  

 

As far as the redundancy problem is concerned, this introduces a further difficulty due to 

the non-square nature of the Jacobian matrix. Hess at al (1991) suggest that this issue could 

be avoided by means of the pseudo inverse. However, this could not always guarantee the 

convergence of the solutions. Several researchers (de Matteis et al., 1995; Lee & Kim, 1997; 

Yip & Leng, 1998) have provided some feasible solutions for the redundancy problem but 

these methods have some drawbacks, as mentioned in Chapter 2. Examples include the 

difficulty in determining the necessary performance indexes. Finally, the SA method (Lu et 

al., 2007c) can deal with the redundancy problem as a natural consequence of the structure 

of this special algorithm. In addition, it also can solve the problem of high-frequency 

oscillations by increasing the integration number within a discretized interval. All 

information about this approach is presented in detail in Chapter 5. 

 

 

4.2 The investigation of constraint-oscillation phenomena 
 

In addition to the high-frequency oscillations and the redundancy problem, constraint 

oscillations sometimes appear in the results. Thomson and Bradley (1990a) showed that 

this phenomenon exists in both the real pilot input data as well as in data from inverse 

simulations. In addition, the occurrence and the properties of this oscillating mode can be 

predicted by analysing the system matrix of the corresponding inverse linearised system. 

Anderson (2003) suggested that the root cause of this phenomenon is associated with the 

severity of the constraints and the model order and then suggested that it may result from 

the excitation of internal zero dynamics. Anderson (2003) and also Thomson and Bradley 

(1990a) used dynamic analysis of the inverse linearised model to reach conclusions about 

whether an oscillation observed in an inverse simulation solution was a constraint 

oscillation or not. However, the system model linearised around an equilibrium point 
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cannot represent the whole envelope of the manoeuvring rotorcraft, especially in cases 

involving severe manoeuvres. 

 

The current research has highlighted the need for additional consideration of the 

relationship between inverse simulation and model inversion. The detailed information 

about this relationship has been given in Chapter 3 in this thesis. In this section a SISO 

system is presented for illustrating the potential advantage of using model inversion to 

explain the constraint oscillations. The fact that in some of the previous work (Anderson, 

2003; Thomson & Bradley, 1990) the definition of constraint oscillations was linked to the 

dynamic properties of the model being investigated further supports this idea. Finally, this 

section also presents results from investigations that involve variation of the sampling rate, 

the use of different manoeuvres, and different trim points, for the case of a nonlinear Lynx 

helicopter model (Bagiev, 2006). 

 

4.2.1 A simple SISO system 

 

Because inverse simulation and model inversion share the same objective in terms of 

calculation of the input from a defined output trajectory, as discussed in Chapter 3, this 

provides a possible way to analyse inverse simulation techniques using model inversion 

methods. The latter therefore may be used to analyse and explain the constraint-oscillation 

phenomenon which exists in the inverse simulation process. The illustration presented here 

can be considered as an extension of the work of Thomson and Bradley (1990a) and 

Anderson (2003), to show that this phenomenon is related to the internal zero system. 

 

For example, consider the following SISO system:  

1 1

2 2

3 3

1

0 1 0 1

0 0 1 5

6 11 6 69

x x

x x u

x x

y x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

=
                                       (4.1) 

This system has a zero-pair distribution of its internal system as follows:  
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                                        1,2 0.5 7.0534z i= − ±                                                                   (4.2) 

According to the definition presented in Appendix-A, the relative degree of the above 

system is one ( 1=α ). Therefore, the order of its internal system is two (Isidori, 1989; 

Sastry, 1999), with regard to the equation m − r given in Chapter 2. In addition, after 

transformation, the following inverse model can be obtained by following process 

presented in Chapter 2: 

1 1 2

2 1 2

1

5 5

80 6 6 69

dy

u

ξ

η η η ξ

η η η ξ ξ

η ξ

=

= + −

= − − − +

= − +

                                                    (4.3) 

where yd is the desired trajectory, and η1 and η2 are the state variables for the internal 

system. The simulated results using inverse simulation obtained for the case of a sinusoidal 

input applied to the given model [Eq. (4.1)] are shown in Fig. 4.1. Fig. 4.2 shows results 

obtained through simulation using the inverse model [Eq. (4.3)]. 
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Fig. 4.1 Constraint oscillations from inverse simulation 
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Fig. 4.2 Constraint oscillations from model inversion 

 

Figs. 4.1 and 4.2 both show the constraint-oscillation phenomenon within the early part of 

the records. In the case of when 0.001 stΔ =  (red line), it can be seen that both methods 

provide the same results. In addition, compared with model inversion where the variation of 

the value Δt only slightly affects the accuracy while keeping nearly the same shape, the 

value of Δt has a bigger influence on the inverse simulation process. With the larger Δt 

values such as 0.2 s and 0.05 s, the inverse simulation will not provide good results due to 

the fact that a lot of information that should be present is omitted during the process. This is 

illustrated in Fig. 4.1 (blue and black lines), in which the result looks very good but are 

inconsistent with results from the inverse model. All these results show that, in practice, it 

is necessary to select a smaller Δt in inverse simulation to accurately capture the system 

dynamic properties as well as to eliminate the high-frequency oscillation (Gao & Hess, 

1993). In addition, it also proves that selection of Δt value should be related to the internal 

dynamic properties of the system as well as to the convergence characteristics of the NR 

algorithm in the inverse simulation process. Finally, it can be concluded that constraint 

oscillations may be one of the internal-system properties rather than being associated with 

numerical issues, as proved in this case. It is not the inverse simulation algorithm which 

leads to the oscillation or involvement of the pilot (Thomson & Bradley, 1990), but an 

inherent property of the dynamic system. 

 

This can be further clarified by expanding the output response in the form responding to 

sinusoidal input: 
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0.5( ) 0.2cos( ) 1.13 sin(7 )4
tu t t e t π−≈ + +                                 (4.4) 

Equation (4.4) proves that, for the linear case, the constraint oscillation results from the 

superimposition of sinusoidal functions and functions with exponential coefficients. The 

second term forms the constraint oscillation component. The oscillation frequency must be 

decided by the internal-system properties since it is seven times larger than the frequency of 

the input. Within the first four seconds, the large amplitude and rapidly changing shape of 

this term significantly influences the inverse simulation process. 

 

In addition, if the value of Δt is greater than 0.4s, for the example system considered, the 

inverse simulation will not converge, whereas the model inversion technique still can 

provide good results. The methodologies on which these two methods are based determine 

this difference. The inverse simulation process involves the NR algorithm, so that larger 

interval values will lead to a failure to converge. Conversely, the model inversion process 

implements a forward simulation. There is no convergence problem except that less 

accurate results are obtained when the larger interval value is adopted. The detailed 

difference between inverse simulation and model inversion will be presented in a later 

section of the thesis and is discussed in the papers (Lu et al., 2006b; 2007a). If the 

nonlinear system is considered, the situation will become more complex. However the 

properties in the vicinity of equilibrium points can be analysed as above.  

 

4.2.2 Relation to the linearised model around trim points 

 

In this subsection, the relationship between the full nonlinear model and linearised 

representations will be explored and investigated. According to the Hartman-Grobman 

Theorem (Isidori, 1989), the qualitative properties in the vicinity of isolated equilibrium 

points are determined by the linearization if the linearization has no eigenvalues on the jω 

axis. This theorem provides a bridge between the nonlinear system model and the 

equivalent linearised system model. Here, the results of inverse simulation from the 

nonlinear model and its linearised counterpart around the 80 kts trim point will be 

compared. However, it should be always kept in mind that during the inverse simulation the 

process for the nonlinear model diverges from the trim point. Therefore, in the 
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mathematical sense (as presented by the above Theorem), if the manoeuvres are aggressive 

or severe, the relationship between these two kinds of models is weak. 

 

In the current application, the linearised model of the nonlinear Lynx helicopter is obtained 

around the 80 kts. trim point. For the application of inverse simulation to the linear model, 

selection of an appropriate sampling rate is important. A good choice can guarantee the 

convergence of the inverse simulation (Lu et al., 2006b; 2007a). Following the 

methodology introduced in Chapter 3, a suitable sampling-rate value can be selected by 

plotting the magnitudes of zeros versus the variation of sampling rate. The results are 

shown in Fig. 4.3 and Fig. 4.4.  
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Fig. 4.3 show the plot of magnitude of zeros versus the sampling rate for the output defined, 

as normal, in terms of [ ]e e e ex y z Ψ  (i.e. the zero-order level of the outputs). There is 

an interval from 0 s to 0.18 s in which the magnitudes of all the zeros are less than unity. 

The selection of sampling rate from this interval can guarantee convergence provided that 

the NR algorithm shows good numerical characteristics. However, due to the fact that the 

original inverse simulation package for the nonlinear model is designed based on the output 

accelerations [ ]eeee zyx Ψ  (i.e. the second-order level of the outputs), the package for 

the linearised model is coded in a similar way to provide a fair comparison. The results are 

shown in Fig. 4.4, where the magnitudes of some zeros are equal to unity over the range of 

intervals considered. Since inverse simulation is a process that is an approximation to the 

traditional discretization process as mentioned in Chapter 3, it is still possible to achieve 

convergence for such a situation if the magnitudes of other zeros are less than unity or 

around unity. Therefore, a sampling rate of 0.01 s is selected for the linear system with 

outputs defined in terms of the accelerations. The results from both the nonlinear and linear 

models are shown in Fig. 4.5 and Fig. 4.6 for the pop-up and hurdle-hop manoeuvres, as 

introduced in Chapter 2.  
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Fig. 4.5 Inputs from hurdle-hop manoeuvre for the Lynx helicopter model  

(h = 50 m, L = 700 m, and V = 80 kts; Δt = 0.01 s) 
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Fig. 4.6 Inputs from pop-up manoeuvre for the Lynx helicopter  

(h = 25 m, Lt = 8 s, and V= 80 kts; Δt = 0.01 s) 
 

From Fig. 4.5 and Fig. 4.6 it can be observed that, although the investigated models are 

different, the shapes of the results are the same except for their amplitudes and the 

constraint oscillations shown in the case of the linear system model. For the longitudinal 

cyclic control channel in Fig. 4.5, especially, the second-halves of each of the records are 

very similar. Fig. 4.5 and Fig. 4.6 both show significant constraint oscillations in the 

longitudinal and lateral cyclic pitch channels for the linear system. For the other two 

channels involving the main rotor and tail rotor collective pitch, the two figures show very 

gentle constraint oscillations. It can be further observed that the frequencies of the 

constraint oscillations in the linear system are nearly the same (around 5.23 rad/s) 

regardless of the different manoeuvres. Moreover, this frequency (5.23 rad/s) is close to 

imaginary part of the complex conjugate zeros -0.393 5.43i±  of the linear system which are 

nearest to the imaginary axis. This is consistent with the conclusion reached in our previous 

investigation (Section 4.2.1). 
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The approach described above involves the usual Jacobian linearization of a nonlinear 

system. More accurate analysis could be possible if the internal system of the nonlinear 

system is considered, using exact feedback linearization or dynamic inversion (Isidori, 

1989). However, most available approaches depend on the existence of the vector relative 

degree. Therefore, it is impossible to apply them to the nonlinear Lynx helicopter model 

since the model lacks any analytic relationship between input and output. This is because 

numerical methods and associated look-up tables have been used to obtain some 

coefficients within the model.  

 

4.2.3 The influence of sampling rates 

 

It is well know that the sampling rate has a great influence on the discretization process of a 

continuous system. It may make the discretized system unstable or even show chaotic 

phenomena. Since the inverse simulation process involves a discretization process, it is 

believed that the sampling rate has an important role in the inverse simulation and this has 

already been the subject of much investigation. For inverse simulation based on the 

integration method with the NR algorithm, a small sampling rate is required to ensure 

accurate results (Gao & Hess, 1993; Hess et al., 1991). However, small values of the 

sampling rate may well lead to the high-frequency oscillation problem (Lin, 1993). Since 

the early 1990s, no work has been published that has explored the possibility of the 

influence of sampling rate on the constraint oscillations. In this subsection, it will be shown 

how this phenomenon also relates to the sampling rate.  

 

The results from inverse simulation based on the nonlinear Lynx helicopter (Bagiev, 2006) 

for various sampling rates are presented in Figs. 4.7 to 4.10. Among the results, Fig. 4.7 

and Fig. 4.8 show the control efforts from the inverse simulation process and Fig. 4.9 and 

Fig. 4.10 show the four state variables w (vertical velocity), p (roll velocity), q (pitch 

velocity), and r (yaw velocity) which display the constraint-oscillations phenomenon. 
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Fig. 4.7 Inputs from pop-up manoeuvre for the nonlinear Lynx helicopter  

(h = 40 m, Lt = 10 s, and V = 80 kts) 
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Fig. 4.8 Inputs from hurdle-hop manoeuvre for the nonlinear Lynx helicopter  

(h = 50 m, L = 700 m, and V = 80 kts) 
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Fig. 4.9 Inputs from pop-up manoeuvre for the nonlinear Lynx helicopter 

(h = 40 m, Lt = 10 s, and V = 80 kts) 
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Fig. 4.10 Results from hurdle-hop manoeuvre for the nonlinear Lynx helicopter  

(h = 20 m, L = 500 m, and V = 120 kts) 
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where Lt in the captions is the total simulation time for the pop-up manoeuvre. The results 

in Fig. 4.7 and Fig. 4.8 show that the different sampling rates lead to different accuracies. 

For example, the value of the main rotor collective channel from 0.4 st  Δ =  diverges by 

nearly 15 percent from the one for the case of 0.001 st  Δ = . This demonstrates the need to 

select a sufficiently small sampling rate to achieve a required level of accuracy. When the 

value of Δt decreases, the constraint oscillations begin to show in the longitudinal cyclic 

pitch and lateral cyclic pitch channels. These results are consistent with the linear SISO 

case shown in Section 4.2.1. Moreover, this phenomenon is shown even more clearly in the 

pitch and roll channels when 0.001 st  Δ =  in Fig. 4.9 and Fig. 4.10. 

 

The constraint-oscillation phenomenon in the linear system has been illustrated in Section 

4.2.1. The analysis for the nonlinear system is more complicated. Therefore, here only a 

general explanation is presented. Since the constraint oscillations are a stable phenomenon 

which will decay in a small period of time, instability or chaotic phenomena arising from 

the discretization process could be excluded. The smaller the sampling rate, the closer is the 

discretized system to the original continuous system. More information over a broader 

frequency range can thus be included in the system outputs. For the nonlinear system, the 

information contained in the output consists of information from the model itself and from 

the inputs as well as from the interaction between input and output. In contrast, the larger 

the value Δt, the narrower is the frequency bandwidth of interest.  

 

4.2.4 The influence of the manoeuvre 

 

Since the model under consideration is a highly nonlinear system, the inputs have a more 

significant influence on the output compared with the equivalent linear model. It is 

therefore worth investigating whether the manoeuvre contributes to the form of the 

constrained oscillation. Two sets of investigations which have been carried out involve the 

same manoeuvre with different configurations and different manoeuvres for the same trim 

condition. The results are shown as follows: 
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Fig. 4.11 Inputs from hurdle-hop and pop-up for the nonlinear 

Lynx helicopter (Δt = 0.01 s, V =80 kts) 
 

From Fig. 4.11, it can be observed that the type of input (manoeuvre) does influence the 

output of the inverse simulation even for the same kind of manoeuvre with slightly different 

forms. This can be seen from the hurdle-hop manoeuvre with the configuration 

( 50 mh  = , 700 mL  = ). The results from this manoeuvre show some constraint oscillations 

in the early part of the record and very significant constraint oscillations in the second half 

of the time period in the lateral cyclic channel (θlc), compared with the other case of 

( 30 mh  = , 500 mL  = ). The latter only shows slight oscillations. The results from the pop-

up manoeuvres with two different forms are nearly the same and they show constraint 

oscillations only in the first half of the time period in the longitudinal cyclic (θls) and lateral 

cyclic (θlc) channels. The same results from these four manoeuvres for the early part of 

each record possibly relate to the internal dynamics being investigated. 

 

4.2.5 The influence of the trim points 

 
In this subsection, the constraint oscillations at the different trim points are investigated. 

This investigation aims to check the consistency of the presence of this phenomenon as 
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operating conditions change. The results from three trim points (40 kts, 80 kts, and 120 kts) 

are shown as follows:  
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Fig. 4.12 Inputs from pop-up for the nonlinear Lynx helicopter  

(Δt = 0.0005 s, Lt = 8 s, h = 25 m) 
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Fig. 4.13 Inputs from hurdle-hop for the nonlinear Lynx helicopter 

(Δt =0.0005 s, L =500 s) 
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The constraint oscillations appear in the first half of the time period in the longitudinal 

cyclic (θls) and lateral cyclic (θlc) channels for each test, as shown in Fig. 4.12 and Fig. 4.13. 

The internal dynamics of the investigated model may contribute to this. Compared with the 

results from the other two trim points, the inputs from the trim point at 120 kts show 

significant constraint oscillations. This probably originates from the fact that this is the 

highest-speed condition concerned and therefore it involves the shortest time to cover the 

same span (500 m). In other words, this manoeuvre is the most severe.  

 

 

4.3 A new method for calculation of the Jacobian matrix  
 

Investigations by Lin (1993) showed the high-frequency oscillation phenomenon with a 

relatively small value of Δt for the case of a simple linear SISO system. His work has had a 

considerable influence on the development of inverse simulation and also for its application 

in that later authors believed that small values of Δt will lead to instability of the inverse 

simulation process. In this subsection, a new approach has been implemented to calculate 

the Jacobian matrix and the results from application to Lin’s model show that it can 

effectively eliminate the high-frequency oscillations. 

 

The traditional approach to calculate the Jacobian matrix has been presented in Eq. (2.44). 

This method only has a local meaning around the uj point and does not smoothly distribute 

in the input space. Its accuracy also depends on the size of Δuj. This may introduce some 

inaccuracies. However, it is possible to construct a Jacobian matrix which has global 

meaning. If the system in Eq. (2.1) has vector relative degree 1 2[ , , ]T
qr r r r= ⋅⋅⋅  (Isidori, 

1989; Sastry, 1999), the above nonlinear system can be written in Eq (4.5) as shown in 

Appendix-A: 

1 1
1 1 1

( ) ( ) ( )
q q

qq q

t

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

r r
f

r

r r
f

y L h u
y A x

uy L h

                                                (4.5) 

where ( )A x  is defined as: 
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                                           (4.6) 

If the vector ( )ry is considered as the new ideal output vector and u remains the input vector 

then Eq. (4.5) represents the direct relationship between input and the new output. Thus the 

Jacobian matrix becomes: 
( )

( )
ry A x

u
∂

=
∂

                                                                                          (4.7) 

It has been assumed that the original system has vector relative degree r and thus 0( )A x  is 

non-singular (where x0 is the initial condition). This means that ( )A x  is also non-singular 

in the neighbourhood of x0. In practice, additional constraint conditions will be included 

within the inverse simulation process. For applications involving small amplitude 

manoeuvres, the global meaning of ( )A x  in the state variable manifold is usually assured. 

As a result, the stability and accuracy of the inverse simulation process is improved. The 

advantages are more apparent if the linear system is considered in that its Jacobian matrix is 

constant, whereas the implementation of Eq. (2.44) leads to a cumbersome form and 

reduced accuracy.  

 

Now consider Lin’s model shown in Eq. (4.8) as an example. 

( ) ( ) ( ) sin(2 )x t x t x t t+ + =   0)0( and 0)0( == xx                               (4.8) 

After transforming the above model into the standard state space and letting 1x = x  and 

sin(2 )u t=  form the following equation is obtained: 

1 2

2 1 2 u
=
= − − +

x x
x x x

                  

 

                                               (4.9) 

This system has relative degree two ( 2r = ). Its Jacobian matrix is a constant matrix, shown 

in Eq. (4.10), according to Eq. (4.7). In addition, the direct relationship between the input 

and the output has been derived as shown in Eq. (4) in Lin’s paper. Therefore, based on this 

equation the Jacobian matrix takes the form of Eq. (4.11) if the traditional method is 
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adopted. From this equation, it is evident that the accuracy of the Jacobian matrix depends 

on the size of the sampling interval Δt. 

( ) 1yJ A x
u
∂

= = =
∂

                                                                    (4.10) 

2
1 {1 [cos( ) sin( )]}t

d d
n d

J e t tσ σω ω
ω ω

− ⋅Δ= − ⋅Δ − ⋅Δ                                   (4.11) 

where 0.5σ =  and 21 0.5dω = − .  The inverse simulation results with Eq. (4.10) are 

shown in Fig. 4.14, where the fourth-order RK integration method is used for the forward 

simulation, with a step size Δt/60. The results for Eq. (4.11) are shown in Fig. 4.15, in 

which the Euler method is adopted for the forward simulation with a step size Δt/60. 
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Fig. 4.14 Inverse simulation with the modified Jacobian matrix 
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Fig. 4.15 Inverse simulation with the traditional Jacobian matrix calculation 
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Figure 4.14 shows a perfect set of inverse time histories without high-frequency oscillations 

even with the small interval value Δt =0.005 s. The results demonstrate that numerical 

stability has been achieved and are completely different from the ones in Lin’s paper, 

where the high-frequency oscillations appear with the smaller discretization intervals, as 

illustrated in Fig. 4.15. In addition to this, the simulation process shows that the method 

presented here is far faster than the traditional approach. As shown in Fig. 4.15, there is 

evidence of high-frequency oscillations when the value Δt is reduced, but the shape of these 

oscillations is not exactly the same as those given in Lin’s paper. In the current application, 

Lin’s results could not be reproduced precisely. However, the good results shown in Fig. 

4.14 have already proved that the numerical stability of the inverse simulation could be 

improved by finding a better approach to calculate the J matrix. 

 

This method also can be applied in the helicopter field. In fact, the approach that 

demonstrated improved numerical stability through defining the output in the acceleration 

level (Rutherford & Thomson, 1996) is a simplified application of the technique presented 

here, where the authors gave more weight to the physical explanation. The current approach 

is equivalent to finding a closer analytical relationship between the input and output, or 

closer to the vector relative degree. 

 

 

4.4 Summary 
 

The high-frequency oscillation phenomenon and the redundancy problem have been 

reviewed in this chapter. The constraint oscillations shown in the results from the inverse 

simulation procedure from a nonlinear system model represent a very complex 

phenomenon. Various factors, such as the sampling rate, the type of manoeuvres, and the 

internal dynamics of the model itself, may contribute to the form of this phenomenon. The 

smaller sampling rate will provide more information in the output and therefore makes the 

phenomenon more distinct. The severity of the manoeuvre also influences this oscillatory 

phenomenon, with more severe manoeuvres leading to more distinct oscillations. Moreover, 

it can be concluded that the internal dynamics plays an important role in constraint 
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oscillations because of its consistent presence in all the above investigations. Finally, if the 

input-output analytic relationship can be derived, such as by calculating the vector relative 

degree, more thorough and accurate knowledge can be obtained and more analysis can be 

carried out. 
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Chapter 5  

 

A Sensitivity-Analysis Method for 

Inverse Simulation 
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This chapter discusses some numerical problems mentioned in the previous chapters and a new method based 

on sensitivity-analysis theory is developed and evaluated to overcome these issues. The work described here 

has been published in Journal of Guidance, Control, and Dynamics (Lu et al., 2007c). 

 

 

5.1 Introduction 
 

Sensitivity analysis is a well-known methodology which has been used extensively in 

reliability engineering, electrical circuit theory, and control engineering. In an editorial, 

Saltelli and Scott (1997) present twelve persuasive reasons to explain why and where SA 

should be considered. In spite of its simplicity, Ratto (2001) shows that SA can help to 

evaluate the effectiveness of predictions and identify the most important aspects of a model. 

Sato, Ueda and Ohmori (2004) have applied SA to determine the key parameters from 

hundreds of parameters for a conventional time varying simulation model. Appendix-C 
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gives an account of the implementation of this approach to identify the parameters for the 

inverse Autogyro longitudinal model from simulated data. However, no application of SA 

to the inverse simulation field appears to have been published to date. 

 

Inverse simulation is a technique that generates the expected forward control inputs such 

that the mathematical model of a vehicle can follow a prescribed path. The classification of 

inverse simulation methods and numerical issues existing in the integration-based approach 

have been discussed in Chapter 4. This chapter describes the first application of SA theory 

to the problems of inverse simulation for dealing with the above issues and describes a new 

technique that has been termed 'inverse sensitivity' (Rosenwasser & Yusupov, 2000). Many 

ideas from sensitivity analysis theory are incorporated into this method and this provides 

opportunities for a more thorough investigation of system properties through the inverse 

simulation process.  

 

This new approach developed in this chapter aims to deal more effectively with the 

following three issues:  

 

I. The approximation method to calculate the Jacobian matrix. Traditionally, if the 

Jacobian matrix cannot generally be determined analytically, approximation methods 

are used to determine partial derivatives of output variables with respect to input 

variables (Hess et al., 1991). However, this will inevitably reduce the accuracy. 

 

II. The high-frequency oscillations arising from the integration-based method. This 

phenomenon may possibly be due to a number of factors, such as step tolerance limits, 

initial conditions, choice of sampling rate, unobservable states, and multi-solutions etc, 

as been discussed in detail in Chapter 4.  

 

III. The redundancy problem associated with the number of inputs being greater than the 

number of outputs, due to the non-square nature of the Jacobian matrix. 
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The chapter begins by introducing the mathematical development of the new SA method. 

The theory on which it is based is also presented, including discussion of numerical 

stability and convergence properties. Comparisons with a traditional integration-based 

inverse simulation method are presented using results from an application of inverse 

simulation to a relatively simple fixed-wing aircraft model and a six-degree-of-freedom 

nonlinear model of a Lynx helicopter. 

 

 

5.2 Development of the new method 
 

This section involves the derivation of the SA-based approach for inverse simulation. In 

addition, the proposed method will be compared with the traditional integration-based 

technique in order to show the different strengths and weaknesses of the two approaches. 

 

5.2.1 Derivation of the algorithm 

 

In the aircraft field of application, inverse simulation is usually carried out from a trimmed 

flight condition (equilibrium point) with a suitable initial input u0, for the system 

represented in Eqs. (2.33) and (2.34). In addition, the inverse simulation process is ideal 

and it is assumed that no other factors such as exogenous disturbances and measurement 

noise are involved, as been discussed in detail in Chapter 2. Hence, the system output y can 

be viewed as being the result of the variation of the input vector u. Now, if the input vector 

u is regarded as a set of time-varying parameters α , which is certainly independent of the 

state variables, this is a determining set of parameters because initial conditions 

(equilibrium points) of the system under investigation are assumed constant in the inverse 

simulation process. Moreover, α is complete since all state variables of the investigated 

model can be uniquely determined with the given inputs during the ideal simulation process 

(Rosenwasser & Yusupov, 2000). Therefore, the parameter set α is the unique factor which 

determines future variations of all state-variable values because of its determining and 

complete properties. As a result, Eqs. (2.33) and (2.34) can be modified to take the form:  

( , )x f x α=                                                                             (5.1a) 
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( , )y g x α=                                                                             (5.1b) 

In the traditional inverse simulation algorithm, the input vector is assumed constant within 

the time interval 1k kt t t +< ≤ . Therefore, it follows that the vector α(t) will be a constant 

parameter vector αk in this time interval. In the following context, this interval is focused 

upon and αk is replaced by θ.  

 

For the system given in Eqs. (5.1a) and (5.1b) it can be shown that within the time interval 

1k kt t t +< ≤  the sensitivity function 

  ( , )( , ) T
tt ∂=

∂
xZ θθ θ

                                                                     (5.2) 

exists, provided (Rosenwasser & Yusupov, 2000): 

1) the initial conditions for a general case depend uniquely on θ : 

( , )k k kt=x x θ                                                                             (5.3) 

2) the variables in Eq. (5.3) are continuously differentiable with respect to θ, 

3) the solution of ( , )tx x θ= which satisfies Eq. (5.3) is also continuously differentiable 

with respect to θ and 

4) the functions f and g are continuously differentiable with respect to their arguments. 

 

From Eq. (5.3) it follows that:    

k k k
kT T T

d dt
d d

∂= +
∂

x x x
θ θ θ

                                                               (5.4) 

Since tk is a constant, the initial condition for the sensitivity equation shown as Eq. (5.2) is 

given by: 

( , ) k
k T

dt d= xZ θ
θ

                                                                         (5.5) 

In addition, it can be shown that if the conditions for Eq. (5.2) hold then, for a sufficiently 

small perturbation vector μ of the vector θ, there exists a first-order approximation for 

( , )tx μ θ+  within 1k kt t t +< ≤ as follows:  
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1

( , ) ( , ) ( , )

( , ) ( , ) ( , )
q

i i
i

t t t

t d t t

x x x

x x Z

μ μ θ θ

μ θ θ μ
=

Δ = + −

Δ ≈ = ∑
                                                     (5.6) 

where q is the dimension of the θ  vector. 

 

By transforming Eqs. (5.1a) and (5.1b) into the sensitivity-function form, it follows that: 

T T T T
∂ ∂∂ ∂= ⋅ +

∂ ∂ ∂ ∂
f fx x

xα α α
                                                        (5.7a) 

T T T T
∂ ∂ ∂∂= ⋅ +
∂ ∂ ∂ ∂

y g gx
xα α α

                                                       (5.7b) 

If the following equations are defined: 

                                         
( ) ( )

( ) ( )

T T T

T T T

t t

t t

f fx V A Bx

y g gH C Dx

α α

α α

∂ ∂∂ = = =
∂ ∂ ∂

∂ ∂ ∂= = =
∂ ∂ ∂

 

then Eqs. (5.7a) and (5.7b) can be expressed in the simplified form: 

( ) ( )

( ) ( )

t t

t t

V A V B

H C V D

= ⋅ +

= ⋅ +
                                                                   (5.8) 

Equations (5.8) are the continuous sensitivity equations, which provide an alternative 

approach to calculate the system output sensitivity function H by a process involving 

forward simulation. 

 

Since the parameter set θ is complete (α is complete) in the interval 1k kt t t +< ≤  the 

disturbance Δθ results in the output variation Δyk+1. Hence, the inverse simulation process 

becomes an inverse problem for finding the value Δθ from the following equation: 

1 ( )ky θ+Δ = Γ Δ                                                                           (5.9) 

where Γ represents the relationship between the variation Δyk+1 and the disturbance Δθ . In 

this paper, the method of solution by inspection (Rosenwasser & Yusupov, 2000) is 

adopted because it can apply to the situation where the relationship between Δθ and 1k+Δy  

in Eq. (5.9) is incorrectly posed. The approximate value for Δθ is found from an 
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intermediate quantity kγΔ in the region around θ such that the distance between 1k+Δy  and 

( )kΔg γ  is minimal. Hence 

( )

0

l
n

k k
n

θ γ γ
=

Δ ≈ Δ = Δ∑                                                               (5.10) 

( ) (0)l
k k kθ γ γ γ≈ = + Δ                                                                 (5.11) 

where l is the number of iterations, and (0)
kγ  is the initial condition for kγ . 

 

Now a relationship can be defined as follows: 

 ( 1)
1( ) ( )n

d,k+ k
+= −y yΕ θ γ                                                           (5.12) 

Using the results above, the term ( 1)( )n
ky γ +  in Eq. (5.12) can be replaced with its first-order 

sensitivity-function approximation. Furthermore, for inverse simulation in the context of 

aircraft and similar engineering applications (such as robotics), the conditions required are 

usually satisfied due to the fact that the nonlinear mathematical model of the aircraft (or 

other engineering system) and the defined output manoeuvre are continuous and smooth: 
( ) ( ) ( ) ( ) ( ) ( )

1( ) [ ( ) Δ ] Δ Δn n n n n n
d.k+ k k k k 1 k k+= − + = −y y H y HΕ θ γ γ γ                  (5.13) 

where ( ) ( )
11 ( ) ( )n n

d,k+k+ kΔ = −y y yθ γ . To update Eq. (5.13), the current values ( )n
kH  and ( )n

kγ  

have to be available in advance. Here it is possible to separate the calculation of ( )n
kH  and 

( )n
kγ by individually calculating ( )n

kH  from Eq. (5.8) with the current value ( )n
kγ , especially 

when the direct analytic input-output relationship of Eq. (5.1b) cannot be found. For such 

cases this method could show advantages in that it allows ( )n
kH  values to be found directly 

by a smooth process involving a traditional one-step ( 1k kt t t +< ≤ ) forward simulation of 

Eq. (5.8) with the initial conditions of Eq. (5.5), which determines sufficient conditions for 

the existence of ( )n
kH . This approach is quite similar to the traditional integration-based 

method in that the latter calculates outputs with the current iterative input through one-step 

forward simulation. In conclusion, the proposed approach could obtain the Jacobian matrix 

through simulation instead of by means of the approximation (Hess et al., 1991).  
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It should be noted that the implementation of the proposed approach to calculate ( )n
kH  

increases the computational demands since the order of Eq. (5.8) is q times larger than that 

of the original system represented by Eqs. (5.1a) and (5.1b). Therefore, there is a need to 

balance the increase in the time required against the improved accuracy. If the analytic 

input-output relationship exists or can be constructed by finding the vector relative degree 

in advance (Appendix-A), the traditional approach remains a candidate. The investigations 

in Chapter 4 have shown that with the constructed input-output relationship, the traditional 

inverse simulation approach provides greater stability and faster convergence than was 

previously believed possible. It can also overcome the problem found by Lin (1993). The 

approach of Rutherford and Thomson (1996), which successfully eliminates the high-

frequency oscillations, belongs to this class of methods. In addition, Eq. (5.8) could be 

suitable for situations when the system [Eqs. (5.1a) and (5.1b)] has no relative degree 

(Ramakrishna et al., 2001) or where high accuracy is required.  

 

Regardless of the method selected, state variables are updated by a one-step forward 

simulation process. Then, it is reasonable to define an LQ performance index Π: 
1 ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 
(Δ Δ ) (Δ Δ )

k

k

tn n n n n n nT
k k k k k k kt

dtY H W Y Hγ γ
+

+ += − −∫Π                     (5.14) 

where W is a weighting matrix. By calculating the derivative of Π with respect to ( )Δ n
kγ , it 

is possible to find the minimum condition for Eq. (5.14): 

1
( )  ( ) ( ) ( ) ( ) ( )

1( )  
( Δ Δ ) 0

Δ
T Tk

T
k

n t n n n n nk
k k k k kn t

k

dtH WH H W Yγ
γ

+

+
∂

= − =
∂ ∫
Π                       (5.15) 

The following equations can be obtained after simplifying the above equation: 

1 1

( ) ( ) ( )

  ( ) ( ) ( ) ( ) ( ) ( )
1  

Δ

Δ
k+ k+T T

k k

n n n
k k k

t tn n n n n n
k k k k k kt t

dt dt

Q P

Q H WH P H W Y

γ

+

=

= =∫ ∫
                         (5.16) 

According to Eq. (5.16), the values ( )n
kQ  and ( )n

kP can be determined by integration over the 

interval and the value ( )Δ n
kγ  can then be found directly. Hence, the parameter ( )Δ n

kγ can be 

updated at each time interval according to the following equation 
( 1) ( ) ( )n n n
k k k kγ γ λ γ+ = + ⋅Δ                                                            (5.17) 
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and thus ( )n
kQ  and ( )n

kP  can also be updated. In Eq. (5.17), λk ( 0 1kλ< < ) is a selectively 

added multiplier, which can increase the convergence speed. 

 

The algorithm will stop if the value ( )Δ n
kγ  is less than a threshold value defined in advance. 

The algorithm will then progress to the next time interval. Hence, the series of values of θ 

can be found in the whole time space and these values again form the input vector.  

 

It should be noted that in Eq. (5.16), the SA method suggests an alternative way to avoid 

the redundancy problem of the control inputs outnumbering the outputs (Hess et al., 1991) 

in that ( )n
kQ is calculated by the sensitivity-function matrix multiplied by its transpose. 

Therefore, the matrix ( )n
kQ is always square and this method can be applied to all kinds of 

systems with arbitrary input and output order. In addition, values of the weighting matrix W 

can be selected to give priority to particular inputs and outputs. However, this may lead to 

more complexity and there is a need to balance this against the potential benefits in terms of 

the objectives. 

 

5.2.2 Convergence rate and stability of the algorithm  

 

The above algorithm has applied the modified approach of solution by inspection to the 

inverse simulation field. Thus the basic rules for the convergence and stability of the 

solution by inspection approach can also be applied here. Rosenwasser and Yusupov (2000) 

show the convergence rate of this approach in the following (n +1)th cost function: 
1( 1) ( ) ( ) ( ) ( )T -n n n n n

k k k k kP Q P+ = −Π Π                                               (5.18) 

In Eq. (5.18), nonsingularity and the symmetric positive definite nature of the matrix ( )n
kQ  

at each iteration step is sufficient to ensure convergence for the iterative process. The 

symmetric positive definite property can be satisfied by selecting the weighting matrix W to 

be symmetric positive definite in Eq. (5.16). 
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In addition, an algorithm with better stability properties, which is based on the Hadamard 

inequality, can be implemented. This method can guarantee convergence of the iterative 

process. 

 

5.2.3 Comparisons of the SA approach with the NR method 

 

 
Fig. 5.1 The comparison of information utilization in the kth time interval 

 

Fig. 5.1 shows the main difference between these two methods within the kth time interval. 

The fourth-order RK algorithm has been selected to carry out the one-step iteration within 

the interval (Δt/M). In that period, both methods involve the same number (M) of 

integrations. However, the integration processes are different in that the SA method will 

measure the difference Δyn between the ideal value and the value after each one-step RK 

iteration as shown in Fig. (5.1a). The SA method also calculates the sensitivity-function 

values after each RK iteration. The expressions for the matrices ( )n
kQ and ( )n

kP in Eq. (5.16) 

include these difference quantities. In contrast, the NR-based inverse simulation process 

only takes into account the values for the final point after the last one-step RK iteration and 

ignores the integration process, as shown in Fig. (5.1b). The NR method uses only these 

final values to update Eq. (2.43). In addition, the structural properties of the matrices ( )n
kQ  

and ( )n
kP provide more information compared with the single Jacobian matrix. The term 

( ) ( )Tn n
k kH WH  relates the elements of ( )n

kH  to each other and the term ( ) ( )
1ΔTn n

k kH W Y +  connects 

( )n
kH with the deviation from the ideal value. 



 Page - 84 - 

 

Although the SA method is similar in some respects to the NR method it should be noted 

that the SA approach is not equivalent to carrying out an NR-based inverse simulation 

within a divided time interval (Δt/M). If this equivalence existed, the NR method would 

require a different initial value for each divided time interval (Δt/M). However, here the NR 

method keeps the assumed input constant over the whole interval Δt in the same way as is 

done in the SA approach. Moreover, the minimizing optimization of the NR method is 

based on the difference between the actual and ideal values. However the SA approach 

does not minimize the output difference and deals instead with the input part ( )n
kΔγ during 

the inverse simulation process. Finally, the methodologies on which the two approaches are 

based are completely different. In practice, these results also suggest that further 

improvements in numerical accuracy may be obtained by increasing the integration number 

for calculation of ( )n
kQ  and ( )n

kP  for situations where the interval Δt is large, thus avoiding 

the instability discussed by Lin (1993). 

 

 

5.3 Numerical applications 
 

The case studies selected here relate to two mathematical models. One is a fixed-wing 

aircraft, the HS125 (Hawker 800) business jet and details of this model can be found in the 

Appendix-B; the other is a nonlinear Lynx helicopter model (Bagiev, 2006). 

 

5.3.1 Application to a fixed-wing aircraft 

 

The thrust Tt and the elevator angle δe act as the inputs in the algorithm implementations for 

inverse simulation based on the NR and SA methods. The manoeuvres conducted, as been 

presented in Section 2.4, are the hurdle-hop (Rutherford & Thomson, 1996) and pop-up 

(Thomson & Bradley, 1990b) manoeuvres in the z-x vertical plane and is characterized by 

the following polynomials, respectively: 

[ ]3 2 3

-1

( ) 64 ( ) - 3( ) 3( ) -1 ( )  m

( ) 61.87 m sd

d m m m m

f

z t h t t t t t t t t

V t

= +

= ⋅
                (5.19) 
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[ ]5 4 3

-1

( ) 6( ) -15( ) 10( )  m

( ) 61.87 m sd

d m m m

f

z t t t t t t t h

V t

= − +

= ⋅
                         (5.20) 

where tm is the time to complete the manoeuvre and h is the height of the obstacle. In this 

application, the values of h for the hurdle-hop [Eq. (5.19)] and pop-up [Eq. (5.20)] 

manoeuvres are 70m and 50m, respectively. Furthermore, as shown in Eq. (5.19) and Eq. 

(5.20), Vf remains constant during the manoeuvre. The quantity tm for the hurdle-hop 

manoeuvre is calculated by means of Eq. (2.47).  Moreover, in this application, the span 

distance L for Eq. (2.47) is 1200m. In addition, the value tm for the pop-up manoeuvre is 

selected as 10s. 

 
The first priority is to define the calculated manoeuvres in inverse simulation for both 

methods according to the vector relative degree, if it exists. The implemented model has a 

vector relative degree [2, 1]. Hence, the implemented manoeuvres in the application of the 

inverse simulation techniques are defined in terms of acceleration. This guarantees the 

existence of the input-output analytic relationship. Therefore, the H matrix is available in 

advance for both methods. For this case, W is selected as a unit matrix and H and Δγ are 

calculated as shown in Eq. (5.21). A symbolic differentiation program is used to derive this 

analytic formulation (Lee & Kim, 1997). 

1 1

2 2

e

e

e e

e tδ Tt

δ T f ft

e t

z z
δ T
V V
δ T

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎡ ⎤

= = ⎢ ⎥⎢ ⎥ ∂ ∂⎣ ⎦ ⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

H H
H

H H
                e

t

δ
T

Δ⎡ ⎤
Δ = ⎢ ⎥Δ⎣ ⎦
γ                    (5.21) 

In all the following sections the conditions have been defined to give a fair comparison 

between NR-based and SA-based methods by selecting the same integration number (M) 

for Eqs. (2.40) and (5.16) within the same interval Δt. All simulations have been run on a 

Dell desktop PC which has a 2.8 GHz processor and a 1 Gbyte memory.  

 

After a first application of these two manoeuvres, the results are shown in Fig. 5.2 and Fig. 

5.3: 
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Fig. 5.2 Inverse simulation of hurdle-hop manoeuvre for the HS125 aircraft example (Δt = 0.02 s) 
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Fig. 5.3 Inverse simulation of pop-up manoeuvre for the HS125 aircraft example (Δt = 0.02 s) 
 

Clearly Fig. 5.2 and Fig. 5.3 prove that the inverse simulation based on the SA method 

provides the same results compared with the traditional method based on the NR algorithm. 

The computational time and accuracy for the results are included in Table 5.1 for a variety 

of different ∆t values. Here, the accuracy represented by the variance (Var.) describes the 

consistency of the results from the forward simulation with calculated inputs to the desired 

manoeuvre. During the simulation, the values for the Vf channel for both approaches are 

very similar in terms of accuracy. Thus, they are omitted here.  
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Table 5.1 Computer time and accuracy for the HS125 aircraft example (ze channel)–M = 10 
Δt = 0.01, s Δt = 0.02, s Δt = 0.025, s Δt = 0.03, s 

Manoeuvre 
Time, s Var. Time, s Var. Time, s Var. Time, s Var. 

NR 5.6 0.0064 2.6 0.026 2.1 0.0409 1.7 0.0592 Hurdle- 

hop SA 10.5 0.0019 4.4 0.0078 3.4 0.0122 2.8 0.0178 

NR 2.7 0.0008 1.3 0.003 1.0 0.0047 0.89 0.0068 
Pop-up 

SA 4.5 0.0002 2.1 0.0009 1.6 0.0013 1.3 0.0020 

 

Table 5.1 shows that the results from the SA method can be about four times more accurate 

than results from the NR method for each time interval Δt. Although this is achieved at the 

cost of an increase in computation time, it is still acceptable for off-line inverse simulation 

as the data show. 

 

During the investigation, it was found that both algorithms show a high-frequency 

oscillation phenomenon within the sampling-rate interval (0.0285 s, 0.0315 s) for 1M = . 

Moreover, values of Δt smaller than the values within this interval can eliminate this 

problem while larger values can lead to convergence problems for both algorithms 

for 1M = . This phenomenon possibly arises from the fact that the sampling rates lie within 

the interval for which the algorithms encounter convergence problems. The similar 

convergence properties for both algorithms for 1M = are probably due to the iterative 

nature of the calculations in both cases, as shown in Fig 5.1.  

 

It is of interest to investigate whether the high-frequency oscillation phenomenon can be 

substantially reduced by increasing the value of M. The results from the SA-based method 

are shown in Fig. 5.4 and Fig. 5.5. In addition, the same series of tests ( 1M =  to 100M = ) 

have been carried for the NR method and they provide results that are, in all cases, exactly 

the same as the highly oscillatory results shown in Fig. 5.4a and Fig. 5.5a. In other words, 

increasing the value of M in the NR method has no effect on results. The time required and 

the accuracy achieved by the two methods is shown in Table 5.2. 
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Fig. 5.4 Inverse simulation of hurdle-hop manoeuvre with SA method  
for the HS125 aircraft example (Δt = 0.031 s) 
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Fig. 5.5 Inverse simulation of pop-up manoeuvre with SA method  
for the HS125 aircraft example (Δt = 0.031 s) 
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Table 5.2 Computer time and accuracy for the HS125 aircraft example (ze channel, Δt = 0.031 s) 
M = 1 M = 10 M = 20 M = 100 

Manoeuvre 
Time, s Var. Time, s Var. Time, s Var. Time, s Var. 

NR 0.34 0.0632 2.7 0.0632 4.4 0.0632 15.2 0.0632 Hurdle-

hop SA 0.44 0.0632 1.6 0.0191 7.4 0.0168 26.2 0.0161 

NR 0.19 0.0073 0.88 0.0073 1.6 0.0073 7.42 0.0073 
Pop-up 

SA 0.22 0.0073 1.28 0.0022 2.4 0.0020 12.5 0.0018 

 

The above results in Fig. 5.4 and Fig. 5.5 show that the high-frequency oscillation 

phenomenon can be substantially reduced in the SA method with a suitable selection of 

integration number M for Eq. (5.16). Table 5.2 provides information about the effect of M 

on the accuracy of results. For the SA method, an accuracy improvement is evident for 

values from 1M =  to 20M = . Beyond 20M = , these accuracy benefits are still obtained 

but are less marked and lead to significantly increased computation time. This suggests that 

there is a trade-off between accuracy and computation time in the choice of M for practical 

applications. A large value M is preferred but is not essential. In addition, the results also 

show that it is not essential for the SA method to use a small Δt value to achieve good 

results, in contrast with the NR approach. Under some conditions, this means that the 

problems associated with small Δt values which lead to high-frequency oscillations in the 

NR approach (Lin, 1993) could be avoided. The good performance for the SA approach is 

probably due to the increase in the information utilized in the inverse simulation process, as 

discussed in Section 5.2. 

 

5.3.2 Application to a Lynx helicopter model 

 

The model considered in this section is a nonlinear Lynx helicopter developed within the 

University of Glasgow (Bagiev, 2006). This model involves of five subsystems: fuselage, 

tail plane, fin, rotor, and tail rotor. The rotor is modelled as an actuator disk using 

momentum theory and a blade element approach. Similar manoeuvres to the HS125 case 

(i.e. hurdle-hop and pop-up) are used but with parameters selected that are more 

appropriate to helicopter flight (Thomson & Bradley, 1998). The four inputs are the 

traditional four control channels: collective pitch θ0, longitudinal cyclic pitch θ1s, lateral 
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cyclic pitch θ1c, and tail rotor collective pitch θ0tr. The four outputs are the three series of 

equally spaced positional coordinates relative to an earth fixed frame of reference (xe, ye, 

ze,) and the heading angle Ψ.  

 

The original NR-based software package (Bagiev, 2006) is designed on the basis of the 

second derivatives of the outputs. This can improve the numerical stability. To provide a 

useful comparative benchmark, the SA method is also implemented in a similar way. The 

Jacobian matrix in the original package is calculated by the approximation method. 

Because some quantities within the Lynx model are obtained by numerical methods and are 

not expressed in the form of simple analytical relationships in the model equations, it is 

impossible to calculate the sensitivity functions H through the approach suggested in Eq. 

(5.7a) and Eq. (5.7b). Therefore, the approximation method is used to calculate the H 

matrix, which has the following form instead of Eq. (5.8):  

0 1 1 0

0 1 1 0

0 1 1 0

0 1 1 0

e e e e

s c tr

e e e e

s c tr

e e e e

s c tr

s c tr

x x x x
θ θ θ θ

y y y y
θ θ θ θ

z z z z
θ θ θ θ

Ψ Ψ Ψ Ψ
θ θ θ θ

∂ ∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂ ∂
⎢ ⎥
∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂
⎢ ⎥=
⎢ ⎥∂ ∂ ∂ ∂
⎢ ⎥∂ ∂ ∂ ∂
⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂
⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

H              

0

1

1

0

s

c

tr

θ
θ
θ
θ

Δ⎡ ⎤
⎢ ⎥Δ⎢ ⎥Δ =
Δ⎢ ⎥
⎢ ⎥Δ⎣ ⎦

γ                          (5.22) 

After a first application of these two manoeuvres, the results are shown in Fig. 5.6 and Fig. 

5.7: 
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Fig. 5.6 Inverse simulation of pop-up manoeuvre for the Lynx helicopter example (Δt = 0.05 s) 
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Fig. 5.7 Inverse simulation of hurdle-hop manoeuvre for the Lynx helicopter example (Δt = 0.05 s) 
 

Fig. 5.6 and Fig. 5.7 show that the inverse simulation based on the SA method provides 

almost the same results as the traditional method based on the NR algorithm for the Lynx 
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helicopter model. The reason that 2M =  is chosen is mainly to achieve a reasonable 

computation time but relates also to the validity of previous statements concerning the 

choice of M in Section 5.31. The data for the accuracy of the results are included in Table 

5.3 for two different ∆t values. In Table 5.3, the results for 1M =  from the SA and NR 

methods are ignored because they are exactly the same as for 2M =  from the NR method.  

 
Table 5.3 Output accuracy for the Lynx helicopter example (M = 2, 80 kts) 
Output xe, m ye, m ze, m Ψ, deg Manoeuv

re Δt 0.05, s 0.01, s 0.05, s 0.01, s 0.05, s 0.01, s 0.05, s 0.01, s 

NR 0.0024 3.57e-5 0.0013 4.26e-5 0.0534 0.0021 9.34e-10 0.0000 Hurdle- 

hop SA 0.0005 1.72e-5 0.0008 0.0003 0.0131 0.0005 3.35e-7 0.0000 

NR 1.69e-5 6.56e-7 9.44e-5 4.53e-6 0.0297 0.0012 3.13e-11 0.0000 
Pop-up 

SA 3.34e-6 6.00e-7 6.18e-5 4.35e-6 0.0074 0.0003 3.78e-12 0.0000 

 
The manoeuvres adopted here are carried out in the x-z plane. Hence, in comparing the 

accuracy of the results particular attention must be given to the output channels xe and ze.  
The results leading to the figures in Table 5.3 show, as in the previous examples, that the 

accuracy can be increased if the value of M becomes larger (although the results for 1M =  

are not shown in the table). In addition to the benefits from the different M values, Table 

5.3 also shows that the accuracy from the SA method can be more than four times that of 

corresponding results from the NR method for each time interval Δt. It should be noted that 

comparison of the computational time is of little relevance in this case, since even for the 

NR method, the inverse simulation process requires hours of computer time for this 

complex nonlinear model. The time for the SA method is greater than for the NR method 

but by less than the factor of two. 

 

 

5.4 Summary 
 
In this chapter a procedure for inverse simulation based on sensitivity analysis has been 

developed. Its stability and convergence properties have been discussed. This approach 

provides a new way to calculate the Jacobian matrix by solving a sensitivity equation. 

Although it involves increased computational complexity this method avoids the 
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approximations involved in other published approaches. In addition, the new approach can 

be applied to arbitrarily redundant situations. The simulations with an HS125 aircraft model 

and a Lynx helicopter model for the hurdle-hop and pop-up manoeuvres show that the new 

method provides more accurate results than the traditional approach with an acceptable 

increase of the computational time. In addition, it can deal with the high-frequency 

oscillation problem that appears in the inverse simulation process by increasing the 

integration number.  
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Chapter 6  

 

A Constrained Derivative-free Inverse 

Simulation Approach 
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The requirement for derivative information in the traditional approaches to inverse simulation may reduce 

their applicability for situations involving discontinuous manoeuvres or input constraints and discontinuities 

within the model. This chapter presents a new algorithm, based on the constrained NM method of 

optimisation, for inverse simulation which is derivative-free to overcome these problems. The results from 

applications to problems in the marine field show that the new method has better convergence and numerical 

stability properties compared with the traditional approach for cases that include input saturation in the model 

or involve a discontinuous manoeuvre. The method has been included in the paper submitted from publication 

in Control Engineering Practice (Lu et al., 2007a) and in Simulation Modelling Practice and Theory (Lu et 

al., 2007d) 

 

 

6.1 Introduction 
 

In the control field, it is well known that the performance of a controller may be degraded if 

the control system designer fails to take account of the input saturation effects. These exist 
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in real physical systems due to inevitable limitations of mechanical or electrical sub-

systems (Lan, Chen & He, 2006; Soroush, Valluri & Mehranbod, 2005). Investigation of 

the effect of input constraints on control system performance has become an active research 

topic in recent years (Angeli et al., 2005). However, in the inverse simulation field, the 

previous investigations have given particular consideration to situations involving 

saturation constraints or discontinuities in the model and manoeuvres. 

 

In fact, the limit effects could present a challenge to traditionally established approaches, 

involving not only the integration-based approaches (Gao & Hess, 1993; Hess et al., 1991; 

Rutherford & Thomson, 1996) but also differentiation-based methods (Kato & Saguira, 

1986; Thomson, 1987; Thomson & Bradley, 1997) and the optimisation approaches 

(Avanzini et al., 1999; 2001; Celi, 2000; de Matteis et al., 1995; Lee & Kim, 1997; Lu, et 

al., 2007c). All these techniques involve derivative or gradient information since these 

approaches depend on continuous and smooth properties of the model and the manoeuvre 

for inverse simulation.  

 

The integration technique based on the NR method and the differentiation approaches both 

require calculation of the Jacobian matrix. Although the two-timescale method (Avanzini et 

al., 1999; 2001; de Matteis et al., 1995) could deal with the input constraints, it may fail if 

the manoeuvre or the model being investigated is discontinuous since derivative 

information is required in the calculation of the Hessian matrix. Besides, the application of 

this approach involves additional complexity when compared with other methods of inverse 

simulation. The related contents can refer to Chapter 1 and Chapter 2 in which the historic 

developments as well as the latest contributions made to the inverse simulation field have 

been discussed. 

 

To avoid the above problems and achieve increased numerical stability with additional 

physical insight, a new algorithm for inverse simulation based on the constrained NM 

method, has been developed and is described in this chapter. It is well known that the NM 

algorithm can handle discontinuities satisfactorily, particularly if they do not occur near the 

optimum solution (Lagarias et al., 1998; Luersen, Le Richem & Guyon, 2004; Nelder & 
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Mead, 1965). Furthermore, the derivative-free property can facilitate investigation of some 

of the numerical issues that exist in the more traditional inverse simulation methods. The 

new proposed method is an approach that combines optimization with the integration 

method and does not make use of any numerical or analytic gradient information. In 

addition, to provide a meaningful and illustrative benchmark for comparison and to show 

the advantages achieved by the newly developed approach, this chapter focuses on 

comparisons with the integration technique based on the NR method (Hess et al., 1991) 

because of its widespread use. 

 

The chapter will begin by discussing problems met in cases involving input saturation and 

discontinuous manoeuvres in the integration-based inverse simulation procedure. Then the 

mathematical development of the new constrained NM method and the theory on which it 

is based are presented. Finally, comparisons with traditional inverse simulation methods are 

presented using results from an application of inverse simulation techniques to five ship 

models for four different types of manoeuvre. 

 

 

6.2 Problems with input saturation and discontinuous manoeuvres 
 

If saturation of the control input is considered, the convergence characteristics of the 

inverse simulation algorithm based on the NR approach may not be as simple as the 

situation without saturation limits. The inclusion of saturation limits allows the inverse 

simulation to be more closely related to the characteristics of the actuator and other related 

mechanical or electrical subsystems, thus providing more physical insight but introduces 

additional difficulties. The problem may be explained by considering Fig. 6.1 which is a 

block diagram illustrating what happens in the kth discretized interval for the mth iteration. 
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Fig. 6.1 The kth discretized interval of inverse simulation with input saturation 
 
In this diagram the input u0,k represents the initial value of u at the first iteration for the kth 

discretized interval. When the chosen manoeuvres are demanding, particular subsystems 

such as actuators and control surfaces may reach their maximum limits. This means that the 

amplitudes of the inputs that would be required to perform the manoeuvre would be larger 

than the saturation level umax or minu . Therefore, if the mathematical model represents the 

real physical system accurately enough, the amplitudes of the calculated input values would 

be larger than the saturation levels. However, as shown in Fig. 6.1, before being fed into the 

model block, the absolute values of input variables have to be limited to umax or minu . This 

will make the elements of the corresponding column of the Jacobian matrix zero, as can be 

seen from Eq. (2.44). Thus, the NR algorithm then fails to converge because the Jacobian 

matrix is singular. This non-convergence, or no-solution problem, is also consistent with 

failure of the system to perform such a demanding manoeuvre. 

 

As a consequence, it is more physically meaningful to consider the effects of inclusion of 

input saturation. However, even when the saturation limits are not reached, the inverse 

simulation process may not be as simple as the situation without saturation limits. The NR 

method is known to depend on a proper choice of a starting point for good convergence 

Cheney & Kincaid, 2004). From the mathematical viewpoint, if 0,1 maxu u> or 0,1 minu u< , the 

actual values u are equal to umax or umin. Therefore, initial values, which the designer 

considers as good values to assure satisfactory convergence of the inverse simulation 
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process, may be inappropriate and undesirable in this case with saturation limits present. 

After a one-step forward simulation, the saturation effect is likely to cause the NR 

algorithm to fail to converge. Hence, initial values must be selected more carefully in such 

situations, compared with the case without saturation. Trial and error methods may be 

necessary in dealing with practical applications. 

 

In addition to failure to converge at the first-step, unexpectedly large inputs occurring 

during the iterative process may also cause non-convergence. Although the chosen 

manoeuvre may be assumed to be smooth and not severe, the NR algorithm may give a 

result u which is larger than umax or minu  during the iterative process. This computed value 

may not be abnormal but arises simply as a result of the numerical process. Such a value 

would not affect the iterative consistency if the model being considered did not include 

input saturation. However, the inverse simulation process may break down when saturation 

is included since the updated input has to pass through this nonlinearity. As a consequence, 

the output from the one-step forward simulation will diverge from what the NR algorithm 

is 'expecting'. 

 
 

Fig. 6.2 Illustration of a discontinuous point 
 

Finally, a discontinuous manoeuvre can also lead to non-convergence of the inverse 

simulation. This is because a discretization process is involved in the traditional inverse 

simulation approach, as illustrated in Fig. 6.2, where a discontinuous point is located within 

the time interval tk to tk+1. When the inverse simulation process meets this special point, 
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the initial input guess values u0,k and the calculated Jacobian matrix J may not guarantee 

that a solution can be found for the large transient value 1( ) ( )k kt ty y y+Δ = − . Therefore, the 

inverse simulation process cannot converge. In addition, the method proposed by 

Rutherford and Thomson (1996) may fail since it depends on smoothness properties of the 

manoeuvre. 

 

 

6.3 Development of the constrained NM method 
 

All the methods discussed in Chapter 2 introduce additional derivative calculations, such as 

those associated with the Jacobian matrix or Hessian matrix. However, the direct gradient 

information is not always available from the model. This issue, as well as other problems 

existing in the NR method, have been discussed in Chapter 4. For example, values of some 

parameters in the ship models will depend on environmental factors. Direct search methods, 

being derivative free and thus avoiding issues associated with discontinuity and input 

saturation, could provide alternative approaches that might show advantages. 

 

Lewis, Torczon and Trosset (2000) have reviewed the history and development of direct 

search methods and point out that they remain popular because of their simplicity, 

flexibility, and reliability. Among direct search methods, the most widely used is the 

downhill simplex method of Nelder and Mead (1965). It is a popular method for 

minimizing a scalar-valued nonlinear function of q real variables using only function values, 

without any derivative information (explicit or implicit). The latest developments of this 

method (Chelouah & Siarry, 2003; Luersen et al., 2004; Wolff, 2004) have expanded its 

functions so that it can be used to tackle multimodal, discontinuous, and constrained 

optimization problems but these developments inevitably make the algorithm more 

complex. The algorithm developed in this chapter is based on the version (Lagarias et al., 

1998) with an additional input-constrained function (Errico, 2005). 

 

As with the NR method, the NM approach is developed in the interval [tk, tk+1]. One of the 

distinct differences between the NR and NM methods is that the former updates the input 
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values by means of Eq. (2.43), but the latter relies exclusively on values of the cost function 

to find the optimal solution (Lewis et al., 2000). Hence, it is important for the NM method 

to define a good form of the cost function, which may be described by equations of the 

form: 

2
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where L[·] is the cost function. If the NM algorithm fails for the quadratic cost-function 

form of Eq. (6.1), the following equation based on the absolute value can provide an 

alternative: 
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It is not easy to handle the second constrained condition in Eq. (6.2) by the augmented 

Lagrangian method since it includes the first-derivative term. However, this problem can 

be handled by using the structure of the integration-based approach so that the process to 

find solutions is divided into two sub-processes: one-forward simulation to obtain x(tk+1) 

and then calculation of the solution u(tk) from Eq. (6.1) or Eq. (6.3) with the available 

values x(tk+1). The first constrained condition of Eq. (6.2), or even more complicated 

inequalities, can be handled by the adaptive linear penalty function (Luersen et al., 2004). 

However, this method is quite complicated and unnecessary in the case of the inverse 

simulation application in that only the input saturation conditions are of interest. For the 

proposed method in this chapter, the inequalities in Eq. (6.2) are solved by four steps, as 

shown in the following (Errico, 2005): 
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Step 1–transformation of input constraints  
 

The purpose of this step is to transform the original domain of the input variables into a 

new space before searching for the solution using the NM algorithm. The unconstrained 

input variables will be left alone. If an input variable is constrained by only a lower or an 

upper bound, a quadratic transformation will be performed by means of the following 

equations: 

if ( ) or ( )
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where ua is the transformed input vector. If both the lower and upper bounds are required, a 

sin transformation can be defined as follows: 
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             (6.5) 

where the added term 2π in Eq. (6.5) is introduced to avoid problems at zero in the NM 

algorithm. If this is not done the initial simplex is vanishingly small. 

 

Step 2–transformation back to the original domain with the constraints 

This step is used to transform the new input domain back into the original domain with the 

constraints for the each evaluation of the cost function. Thus, the searching domain for 

input values is based on the values transformed from Eq. (6.4) and Eq. (6.5) and the actual 

function values evaluated by the NM algorithm have to be obtained by application of a 

second transformation.  

 

In the approach adopted the unconstrained input variables remain unchanged. For the input 

variables that are constrained in terms only of a lower or an upper bound, the 

transformation is applied as follows (Errico, 2005): 
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For the lower bound : ( )

For the upper bound : ( )
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where ua is the transformed or finally calculated input values. If inputs are constrained in 

terms of both lower and upper bounds, a sin transformation can be applied. This 

transformation is defined as follows: 

For the lower and upper bounds :

1 {sin[ ( )] 1} ( )2b, j a, j k max,j min,j min,jtu u u u u
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                    (6.7) 

The constrained conditions in the cost functions of Eq. (6.1) or Eq. (6.3) may be handled by 

the above two steps so that the transformed values ub,j are bounded for the NM algorithm.  

 

Step 3–finding of a solution by means of the NM algorithm  

A particular form of NM algorithm, which is the modified version described by Lagarias et 

al (1998), is used to find the solutions in the constrained domain but with the function 

values evaluated in the original domain. It can be summarised as follows. The algorithm 

first characterises a simplex in q-dimensional space by 1q + distinct vertices. Then, based 

on four rules that involve processes of reflection (ρ), expansion (χ), contraction (γ) and 

shrinkage (σ), a new point in or near the current simplex is generated at each step of the 

search. Then a new simplex can be constructed by replacing a vertex in the old simplex, 

after the function value from Eq. (6.1) or Eq. (6.3) at the new point is compared with the 

function's values at the vertices of the old simplex. This process is repeated until the 

diameter of the simplex is less than the specified tolerance. Optimum solutions are thus 

found for the step under consideration. If each step converges successfully, the complete 

input time histories u(t) can be formed by combining together the solutions obtained over 

each interval.  

 

The values of the four important coefficients: ρ, х, γ, and σ used are those recommended by 

Lagarias et al (1998). These are also almost universal choices for the standard NM 

algorithm and are 

1 2 0.5 0.5ρ χ γ σ= = = =                                                 (6.8) 
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Step 4– transformation back to the original domain with the constraints 

The final solutions from the NM algorithm have to be transformed back to the original 

domain. This process is similar to Step 2. 

 

The complete computational process can be illustrated by the following flow chart: 

 

  
 

Fig. 6.3 Flow chart for the kth interval of inverse simulation with the constrained NM algorithm 
      

Luersen et al (2004) describes a more complicated NM method that can globalise a local 

search by probabilistic restarts. The essence of this approach is to summarize the topology 

of the basins of attraction in which a fixed total cost can be reached by a Gaussian Parzen-

Windows algorithm (Duda, Hart & Stork, 2000). For the method proposed in this chapter, 

the initial guess values for uk+1,0 are the calculated values uk from the previous step. Thus, if 

the manoeuvre is smooth and continuous, this could be a good starting point. If it includes 

discontinuous points, the probability is still high for the NM algorithm to find a global 

solution because of the narrow searching vector space from uk to uk+1 instead of the whole 

space u(t). Hence, the problem of the discontinuous point in the manoeuvre discussed in 

Section 2 may be avoided.   
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6.4 Numerical examples 
 

To compare the new algorithm with the NR method, five case studies have been selected. 

They relate to five nonlinear mathematical models − the nonlinear Norrbin model described 

in Appendix-D, the “Mariner” ship model, a model of a Container ship, a model of a 

Tanker  ship, and a complicated model of an autonomous underwater vehicle (AUV) 

(Fossen, 1994). These models being considered are different from those considered in most 

previous inverse simulation investigations in that they include input saturation for each 

input control channel. Furthermore, for the Norribin, "Mariner", Container, and Tanker ship 

models, the rudder rate is also constrained, as shown in Fig. 6.4. These limitations degrade 

the performance of the rudder and result in limited controllability of the system (McGookin 

et al., 2000). The reason for this is due to the fact that the integral term normally included 

in the controller tends to infinity when the rudder saturates (Donha et al., 1998). In addition, 

some coefficient values are not fixed and change according to the sea conditions. This is 

another source of discontinuity that increases the problems of inverse simulation. 

1
s

maxδ
1
τ

 
 

Fig. 6.4 Diagram illustrating rudder amplitude and rate limit (Fossen, 1994) 
 

where the value for the time constant τ is selected to be 1 s. The three kinds of manoeuvres 

investigated are the turning circle, a zigzag, and a pullout (Lóez et al., 2004). To ensure 

physical meaning and realism, the manoeuvres implemented in this chapter are produced 

from the ship models themselves. This can avoid issues of non-physical problems discussed 

in Section 6.2. The pullout manoeuvre, whose shape is similar to the one shown in Fig. 6.2, 

in fact represents one kind of discontinuous manoeuvre. In addition, due to the symmetry of 

the pullout manoeuvres in two port and starboard directions, only one of them is carried out 

as the ideal manoeuvre for inverse simulation. 
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Table 6.1 Input saturation values for the different ship models 
 Norrbin “Mariner” Container Tanker  AUV 

maxδ , deg 35 40 10 10 20 (five rudder 
controls) 

maxδ , deg/s 7 5 5 2.33 -- 

maxn , rpm -- -- 160 80 1500 

 

The Norrbin model is a SISO model. The other models are MIMO cases. For example, 

there are two-output channels in the cases of the “Mariner” and Container models and four 

outputs for the AUV model. These are determined from physical reasoning taking account 

of the convergence qualities of the NM and NR algorithms, to describe the manoeuvres for 

each model. The numbers of input channels for the “Mariner”, Container ship, Tanker ship, 

and AUV models are 1, 2, 3, and 6 respectively, as shown in Table 6.1 (including the 

rudder-rate). This table also gives the numerical values of the saturation limits for each 

input channel. 

 

6.4.1 Application to a nonlinear Norrbin model 

 

The details about the Norrbin model are included in Appendix-D. The third equation in Eq. 

(C.4) there is related to the steering machine structure, as described in Fig. 6.4, where the 

rudder and rudder-rate limiters are involved in the model. The limiting values shown in Fig. 

6.4 are given in Table 6.1. 

  

A third-order reference model, as shown in Eq. (6.9), is used to generate the desired 

heading response.  

3 2
d m

r m m m

c
s a s b s c

Ψ
=

Ψ + + +
                                                        (6.9) 

where am, bm, and cm are constants. In the current application, these values are selected as 

follows (Unar, 1999): 

0.9341,  0.2040 and 0.0182m m ma b c= = =                             (6.10) 

This choice of reference model can guarantee sufficient smoothness of the heading 

acceleration. 
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Inverse simulation has been carried out for a Norrbin type model of the ROV Zeefakkel (RZ) 

ship (Unar, 1999) with the forward speed 10 m/sU  =  and the set heading angles are 20 deg 

and 50 deg. The quality of the results from inverse simulation has been validated by the 

feedforward simulation (FFS) with the calculated inputs. This procedure can be described 

by the following diagram: 

 
 

Fig. 6.5 Validation of inverse simulation 
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Fig. 6.6 Inverse simulation of the RZ ship without saturation limits (Δt =0.2 s, NR) 

 

0 10 20 30 40 50
-50

0

50

100

150

Time,s

δ,
de

g

IS-U= 3 m/s
IS-U= 5 m/s
IS-U= 10 m/s

0 10 20 30 40 50
0

10

20

30

40

50

60

Time,s

Ψ
,d

eg

FFS-U= 3 m/s
FFS-U= 5 m/s
FFS-U= 10 m/s
Ideal

a.) b.)  
Fig. 6.7 Inverse simulation of the RZ ship without saturation limits (Δt =0.2 s, NR) 
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As shown in Fig. 6.6 and Fig. 6.7, the results from the inverse simulation and the FFS agree 

well with each other for both heading angles of 20 and 50 degrees. The right-hand parts of 

Fig. 6.6 and Fig. 6.7 also contain results from three forward speeds (U = 3, 5, 10 m/s). 

These results demonstrate the successful application of inverse simulation to the nonlinear 

RZ ship model without saturation limits. From these figures, it may also be seen that the 

rudder angles are beyond their limits for part of the time history for the case where 

3 m/sU  =  and also for 5 m/sU  = for a heading angle of 50 degrees. In addition, a further 

series of tests of inverse simulation based on both the NR and NM algorithms have been 

successfully run on the RZ model with the forward speeds varying from 1 m/s to 20 m/s. 

The results are not presented here since they are similar to those shown in Fig. 6.6 and Fig. 

6.7. 

 

Inverse simulation also has been investigated on the models with the saturation limits 

included. As shown in Table 6.1, the rudder limit is 35 degrees and the rudder-rate limit is 7 

deg/s. This situation is quite different from the one without the limiters. The inverse 

simulation based on the NR algorithm fails to converge for the set heading angle of 20 deg 

if the forward speed U is less than 9 m/s, or for the set heading angle of 50 deg if U is less 

than 15 m/s. This problem of convergence failure is a feature of the NR algorithm when 

saturation limits are reached, as discussed in Section 6.2.  In this application it arises to a 

considerable extent from the fact that the inputs or the rate of change of inputs required to 

track the ideal manoeuvres become larger as the forward speed decreases, as is clearly 

shown in Fig. 6.6 and Fig. 6.7. In addition, the larger the required heading angle the larger 

will be the required control effort. Therefore, the case of the set heading angle of 50 deg 

will show problems of convergence failure at a larger value of speed compared with the 

case of the set heading angle 20 deg. 

 

However, the inverse simulation based the NM algorithm, which is developed in this 

chapter to overcome the problem of input saturation, can be used to deal with this kind of 

situation. Two typical cases with forward speeds 3 m/s and 8 m/s have been investigated. 

As mentioned above, the NR algorithm failed for both cases. The results from simulations 

are shown in Fig. 6.8 and Fig. 6.9. 
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Fig. 6.8 Inverse simulation of the RZ ship with saturation limits (Δt =0.2 s) using the NM algorithm 
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Fig. 6.9 Inverse simulation of the RZ ship with saturation limits (Δt =0.2 s) using the NM algorithm 

 

Fig. 6.8 shows that the NM-based approach achieves good convergence. For a heading 

angle of 20 deg and the forward speed 8 m/s, the required input is within the saturation 

limits, as shown in Fig. 6.8a and the trajectory from the FFS also complies well with the 

ideal manoeuvre in Fig. 6.8b. However, the rate limit value for the rudder on this vessel is 7 

m/s and the rates encountered without the limiting reached 34 m/s. Therefore, it is not the 

rudder amplitude limiter but the rudder-rate limiter that leads the NR-based approach to fail 

to converge. For a heading angle 20 deg and the forward speed 3 m/s, the amplitude of the 

required input reaches the saturation level at two periods around the time points 8 and 20 

seconds. These saturations further lead to the slight discrepancy between the results of the 

FFS and the ideal manoeuvre, as shown in Fig. 6.8b. In addition, the input result shows the 

slowly oscillating shape, which is also shown in the results of the FFS. 
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The situation becomes worse for the case where the heading angle of 50 deg is considered. 

Fig. 6.9a shows that the results are affected by high-frequency oscillations after the 22 

second time point, although the case for 8 m/sU  =  does converge. However, the smooth 

results from the FFS comply with the ideal manoeuvre, as shown in Fig. 6.9b. This may be 

due to the filtering effect of the model, as mentioned in Section 6.2. The case of 

3 m/sU  = is quite challenging since the required inputs are significantly larger. Fig. 6.7 

shows that the maximum require input can reach a value of 130 degrees with the minimum 

of –40 degrees. As a result, the inverse simulation process is in the saturation state during 

two long periods, shown in Fig. 6.9a and this naturally leads to a large discrepancy from the 

ideal manoeuvre shown in Fig. 6.9b. 

 

6.4.2 Application to a nonlinear model of the “Mariner” vessel 

 

The parameters configured to generate the manoeuvre are as follows: the time point at 

which the manoeuvre is started (the time at which the rudder is moved) is 10 s for both the 

turning circle and the zigzag; the set value for the rudder angle (δ ) is 20 deg (< maxδ ); the 

cost function is defined, based on Eq. (6.3), as: 

1 21 1 1 2 1 1[ ( )] = [ ( ), ( )] ( ) [ ( ), ( )] ( )k k k d k k k d kL t t t t t t tu g u x y g u x y+ + + +− + −              (6.11) 

The two-output channels for Eq. (6.11) for the turning circle are the surge velocity (u) and 

the sway velocity (v), which are variables defined in the body-axis system. The reason for 

using the body-axis system is that the investigations have shown that both the NM and NR 

algorithms tend to show poorer convergence when manoeuvres are defined in the Earth-

axis system, although it would appear to make more physical sense to define the turning 

circle in the Earth-axis system (Thomson & Bradley, 1998). For the zigzag and pullout 

manoeuvres, the r (yaw velocity) and Ψ (yaw angle) variables are the quantities considered 

for the two-output channels because these manoeuvres have most influence on these two-

output variables. The input channel is the commanded rudder angle in all cases. 
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Table 6.2 Convergence of the NM and NR methods without input saturation (Mariner) 
Δt, s 20 10 8 6 4 3 2 1 0.5 

Turnc √ √ √ √ √ √ √ √ √ 

Zigzag √ √ √ √ √ √ √ √ √ NM 

Pullout × √ √ √ √ √ √ √ √ 
Turnc √ √ √ √ √ √ √ √ √ 
Zigzag √ × × × × × × × √ NR 
Pullout × × × × × × × × √ 

 
Table 6.3 Convergence of the NM and NR methods with input saturation (Mariner) 

Δt, s 20 10 8 6 4 3 2 1 0.5 
Turnc √ √ √ √ √ √ √ √ √ 

Zigzag √ √ √? √? √? √? √ √ √ 
NM 
(not 

constrained) Pullout √ √ √? √? √? √? √ √ √ 
Turnc √ √ √ √ √ √ √ √ √ 
Zigzag √ √ √ √ √ √ √ √ √ NM 

(constrained) 
Pullout √ √ √ √ √ √ √ √ √ 
Turnc √ √ √ √ √ × × × × 
Zigzag √ × × × × × × × × NR 
Pullout × × × × × × × × × 

 

Two sets of tests, without or with input saturation, have been carried out and the results are 

compared with those of the NR methods shown in Table 6.2 and Table 6.3. In these tables 

the abbreviation “Turnc” represents the turning-circle manoeuvre, the symbol √ stands for 

convergence, √? represents convergence but bad consistency, and × means no convergence. 

The term “consistency”, as used here, relates to the difference between the results from the 

FFS using calculated inputs and the corresponding values for the desired manoeuvre.  

 

Table 6.2 and Table 6.3 show that even for an ideal input value within the saturation limit, 

the convergence of the NM method is better than that of the NR approach. In Table 6.2, the 

NM method achieves good convergence for all three manoeuvres, except for the case 

of 20t  sΔ = for the pullout manoeuvre. There is a cross in this box because the Mariner 

model fails to generate the ideal pullout manoeuvre without input saturation. It does not, in 

this particular case, mean non-convergence. The same explanation can be applied to the 

cross at 20 st  Δ = for the NR method for the pullout manoeuvre. From Table 6.3, it can be 
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observed that the NR method can only converge for the turning-circle manoeuvre for values 

of Δt larger than 4 s but fails for intervals below that value. However, the NR method 

cannot converge for the zigzag and pullout manoeuvres except for the case of 20 st  Δ = for 

the zigzag. 

 

Some results in Table 6.2 and Table 6.3 are plotted in Fig. 6.10 to Fig. 6.13. The results for 

the cases without saturation are ignored because they are similar to these plots since the 

input value to generate the ideal manoeuvre is far smaller than the saturation limit. 
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Fig. 6.10 Inverse simulation of the Mariner ship with saturation limits and the corresponding 
FFS results compared with the ideal manoeuvre (Δt =1 s, turning circle, NM method) 
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Fig. 6.11 Plots of rudder angle for zigzag (a) and pullout (b) manoeuvres obtained from  
inverse simulation of the Mariner ship with saturation limits (Δt =1 s, NM method) 
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Fig. 6.12 Results obtained from the FFS of the Mariner ship with saturation limits 
showing comparison with the ideal manoeuvre (Δt =1 s, zigzag, NM method) 
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Fig. 6.13 Results obtained from the FFS of the Mariner ship with saturation limits 
showing comparison with the ideal manoeuvre (Δt =1 s, pullout, NM method) 

 

One of the reasons for different convergence properties for the NR and NM methods 

without input constraints is due to the existence of a second constrained quantity – the 

rudder-rate limit. It has been found that during the inverse simulation process the rudder 

rate may sometimes be above this limit for both these methods. If this saturation effect is 

not included, the NR method is found to achieve good convergence for all the values of Δt 

considered, provided a smooth manoeuvre is implemented, such as the turning circle, as 

shown in Table 6.2 and Fig. 6.10. Moreover, if the value Δt is small enough, the NR 

method also can show good convergence for severe manoeuvres such as the zigzag (Fig. 

6.12) and pullout (Fig. 6.13), as shown in Table 6.2. This is because, when Δt is smaller, 

the searching space becomes narrower. Therefore, there is an increased probability that the 
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NR method will reach the solution. However, when the saturation effect is included it can 

be observed, from Table 6.3, that the NR method still fails for most Δt values. The reason 

for its convergence at several Δt points, which are large for the turning-circle and zigzag 

manoeuvres in Table 6.3 as well as in Table 6.2, is that the discretization process inherent 

in the inverse simulation approach eliminates the information containing the turning points 

(Fig. 6.12) or transient points (Fig. 6.13). In addition, it is found that when saturation is 

included the NR method always fails to converge for the pullout manoeuvre 

around 350 st  = where there is a transient. The reasons for this non-convergence have been 

given in Section 6.2 (Fig. 6.2). 

 

The information about the actual input required by the “Mariner” model to generate the 

manoeuvre can also be obtained from the inverse simulation process. Fig. 6.10 shows that 

the actual inputs are the same as the set value for the turning circle after the executed time 

point 10 st  = . The amplitude value of 20 deg in Fig. 6.11a is completely consistent with the 

given values and the square-pulse shape meets the characteristics of the zigzag manoeuvre.  

Finally, the step down around 350 st  = in Fig. 6.11b is consistent with the transient point in 

the defined manoeuvres, as shown in Fig. 6.13. All this information can help us to 

understand the dynamics of the model being considered. 

 

6.4.3 Application to a nonlinear Container ship model 

 

The nonlinear Container ship model involves two inputs – the rudder angle and propeller 

speed. The parameters configured to generate the manoeuvre are: the time point for rudder 

execution is 10 s for both the turning circle and the zigzag; the set values for the rudder 

angle and propeller speed are –35 deg ( min 10 deg = −δ ) and 80 rpm ( max 160 rpmn  = ), 

respectively; the cost function or the zigzag and pullout manoeuvres are defined based on 

Eq. (6.3), and take the form shown in the following equation:  

1 2

2 2 2
1 1 1 2 1 1[ ( )] = { [ ( ), ( )] ( )} { [ ( ), ( )] ( )}k k k d k k k d kL t t t t t t tu g u x y g u x y+ + + +− + −      (6.12) 

The first-derivative terms (ideal values) in Eq. (6.12) are obtained from the model 

simulation beforehand. This approach can avoid the non-smoothness of the zigzag and 
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pullout manoeuvres. The cost function for the turning circle follows Eq. (6.11). The outputs 

defined for the Container ship model follow the rules applied for the “Mariner” model. 

Apart from the three constrained conditions contained in Table 6.1, the shaft acceleration 

also changes as follows: 

0.3,  *( )*60
5.65

1otherwise, *( )*60
18.83

a
a a a

a a

nn n n n

n n n

⎧ > = −⎪⎪
⎨
⎪ = −
⎪⎩

                                      (6.13) 

where na is the actual shaft velocity.  
 

Table 6.4 Convergence of the NM and NR methods without input saturation (Container) 
Δt, s 10 8 6 4 3 2 1 0.5 0.2 

Turnc √ √ √ √ √ √ √ √ √ 

Zigzag × √ × √ √ √ √ √ × NM 

Pullout × × × √ √ √ × √ × 
Turnc √ √ √ √ √ √ √ √ √ 
Zigzag × × × × √ √ √ √ × NR 
Pullout × × × × × × × × × 

 

Table 6.4 shows the convergence qualities of the inverse simulation methods without input 

saturation. The NM and NR methods achieve similar convergence qualities for the turning 

circle. This is probably due in part to its smooth property compared with the other two 

manoeuvres being considered. For the zigzag manoeuvre, the convergence quality of the 

NM results is slightly better than those from the NR method. However, for the pullout 

manoeuvre, the NR method fails completely to converge. The main reason for poor 

convergence for the NR method is the same as for the cased of the “Mariner” ship in that 

the algorithm cannot overcome the effects of the transient point around 350 st  = . 
 

Table 6.5 Convergence of the NM and NR methods with input saturation (Container) 
Δt, s 20 10 8 6 4 3 2 1 0.5 

Turnc √ √ √ √ √ √ √ √ √ 
Zigzag × × × × √ √ √ √ √ NM 

(constrained) 
Pullout √? √? √? √? √ √ √ √ √ 
Turnc √ √ √ √ √ √ √ √ √ 
Zigzag × × × × × × × × × NR 
Pullout × × × × × × × × × 
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When the model being considered includes input saturation (Table 6.5), good convergence 

is still obtained for both the NR and NM methods for the turning-circle manoeuvre. 

However, the NR method fails completely to converge for both the zigzag and pullout 

manoeuvres. The convergence of the NM method for these two manoeuvres also becomes 

worse and its good convergence can only be achieved for Δt values smaller than 4 st  Δ = . 

This again shows the negative effect of input saturation on the inverse simulation. 
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Fig. 6.14 Results obtained from the FFS of the Container ship without (a) and with (b) saturation  
limits showing comparison with the ideal manoeuvre (Δt = 1 s, turning circle, NM method) 
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Fig. 6.15 Inputs obtained from inverse simulation of the Container ship  

without saturation limits (Δt = 1 s, turning circle, NM method) 
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Fig. 6.16 Inputs obtained from inverse simulation of the Container ship  

with saturation limits (Δt = 1 s, turning circle, NM method) 
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Fig. 6.17 Results obtained from the FFS of the Container ship with saturation limits  

showing comparison with the ideal manoeuvre (Δt = 0.2 s, zigzag, NM method) 
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Fig. 6.18 Inputs obtained from inverse simulation of the Container ship  

without saturation limits (Δt = 1 s, zigzag, NM method) 
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Fig. 6.19 Inputs obtained from inverse simulation of the Container ship  

with saturation limits (Δt = 0.2 s, zigzag, NM method) 
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Fig. 6.20 Results obtained from the FFS of the Container ship with saturation limits  
showing comparison with the ideal manoeuvre (Δt = 1 s, pullout, NM method) 
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Fig. 6.21 Inputs obtained from inverse simulation of the Container ship  
without saturation limits (Δt =2 s, pullout, NM method) 
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Fig. 6.22 Inputs obtained from inverse simulation of the Container ship  
with saturation limits (Δt =1 s, pullout, NM method) 

 

Fig. 6.14 to Fig. 6.22 show some results from the above series of tests. Compared with the 

results for no saturation, inverse simulation with saturation gives a perfect turning circle as 

shown in Fig. 6.14. Also, the calculated input (δ) in this case is limited to the saturation 

level of –10 deg in Fig. 6.16 instead of being equal to the set value of –35 deg as applies 

without saturation (Fig. 6.15(a)). The NM method also achieves good results in Fig. 6.18 

for the zigzag without input saturation but not for the situation with saturation, where the 

results do not match their expected values (10 deg) over the first few seconds at the 

beginning of each square-wave pattern, as shown in Fig. 6.19a. However, it is interesting to 

find that although the calculated inputs (δ and n) do not agree well with their ideal values, 

the results from the FFS with these values still agree well with the ideal manoeuvres. This 

in fact is a multi-solution phenomenon and has been mentioned previously by Gao and 

Hess (1993). Furthermore, the results of the n channel in Fig. 6.21 and Fig. 6.22 show 

oscillations which begin around 350 st  = in the later part of the record. The reasons for this 

have been given already in Section 6.2. 

 

6.4.4 Application to a nonlinear Tanker ship model 

 

In this subsection, the constrained NM method is applied to a nonlinear Tanker model, 

which involves three inputs - rudder angle (δ), propeller speed (n), and depth of water (h). 

The parameters configured to generate the manoeuvres are as follows: the time point at 
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which rudder movement is executed is 10 s for both the turning circle and the zigzag; the 

set values for these manoeuvres are –20 deg ( max 10 deg =δ ), 80 rpm ( max 160 rpmn  = ), and 

200 m ( min 18.46 mh  = ), respectively. Hence, the applications in this section represent 

another kind of redundancy situation in that the number of inputs (three) is larger than the 

number of outputs (two). The output manoeuvres as well as the cost function are defined by 

following the rules applied to the Container ship model. The results from the same series of 

experiments as the previous sections are shown in Table 6.6. 

 
Table 6.6 Convergence of the NM and NR methods with input saturation (Tanker) 

Δt, s 20 10 8 6 4 3 2 1 0.5 

Turnc √ √ √ √ √ √ √ √ √ 
Zigzag √ √ √? √ √ √? √? √? √? 

NM 

(constrained) 
Pullout √ √ √? √ √ √ √? √? √? 
Turnc × × × × × × × × × 

Zigzag × × × × × × × × × NR 

Pullout × × × × × × × × × 

 

Table 6.6 shows the comparison of the convergence qualities of the NR and NM 

approaches. Because of the input redundancy and the additional input saturation, the NR 

method even shows cases of no convergence for the turning-circle manoeuvre. As with the 

Container ship, it fails to converge for the other two manoeuvres. For the NM method, the 

convergence quality also decreases for the zigzag and pullout manoeuvre although it still 

obtains results with good convergence for the turning-circle manoeuvre. This problem is 

possibly due to the increased complexity of this application of inverse simulation compared 

with the other ship models. Some results from the above series of tests are shown in Fig. 

6.23 to Fig. 6.27 as follows: 
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Fig. 6.23 Inverse simulation of the Tanker ship with saturation limits and the corresponding  
FFS results compared with the ideal manoeuvre (Δt = 3 s, turning circle, NM method) 
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Fig. 6.24 Results obtained from the FFS of the Tanker ship with saturation limits 

 showing comparison with the ideal manoeuvre (Δt = 8 s, zigzag, NM method) 
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Fig. 6.25 Inputs obtained from inverse simulation of the Tanker ship  
with saturation limits (Δt = 8 s, zigzag, NM method) 
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Fig. 6.26 Results obtained from the FFS of the Tanker ship with saturation limits 
 showing comparison with the ideal manoeuvre (Δt = 4 s, pullout, NM method) 
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Fig. 6.27 Inputs obtained from inverse simulation of the Tanker ship  
with saturation limits (Δt = 4 s, pullout, NM method) 

 

The output results calculated from the inverse simulation process on the Tanker model 

agree well with the ideal manoeuvres as shown in Fig. 6.23a. The two input channels, shaft 

velocity, and depth, agree well with the set values. The third channel is also limited to the 

saturation level of 10 deg. However, the situation becomes slightly worse for the zigzag and 

pullout cases, as shown in Fig. 6.24 to Fig. 6.27. For instance, the depth results in Fig. 

6.25c and Fig. 6.27c for both manoeuvres do not agree with the expected values (160 rpm). 

The other two input channels are consistent with the saturation limits except for one pulse 

in the shaft velocity channel both for the pullout manoeuvre and the zigzag manoeuvre, 

along with the step-down points. However, the outputs from the FFS using the calculated 

three inputs still comply with the ideal manoeuvres, as shown in Fig. 6.24 and Fig. 6.26. 
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6.4.5 Application to a nonlinear AUV model 

 

In this subsection, the constrained NM method is applied to a nonlinear AUV model, which 

involves six inputs – rudder angle (δr), port and starboard stern plane (δs), top and bottom 

bow plane (δb), port bow plane (δbp), starboard bow plane (δbs), and propeller shaft speed 

(n), and also four outputs – positions in x, y and z-directions and yaw angle (Ψ). The 

parameters configured to generate the manoeuvres are as follows: the time point at which 

rudder movement is executed is 5 s for both the turning circle and the zigzag. Hence, the 

application discussed in this section involves a redundant situation in that the number of 

inputs (six) is larger than the number of outputs (four). The cost function is defined by Eq. 

(6.1) with dimension equal to four.  

 
Table 6.7 Input values to generate the ideal trajectory (AUV) 

Type δr, deg δs, deg δb, deg δbp, deg δbs, deg n, rpm 
Turnc 25 0 0 0 0 1200 
Zigzag 15 15 15 15 15 1200 

 
Table 6.8 Convergence of the NM and NR methods with input saturation (AUV) 

Δt, s 8 7.5 7 6.5 6 5 4 3 2 
Turnc × √ √ √? √ √? √ √? × NM 

(constrained) Zigzag × √ √ √ √ √ √ × × 
Turnc × × × × × × × × × 

NR 
Zigzag × × × × × × × × × 

 

The set values for these manoeuvres are shown in Table 6.7. There the rudder angle for the 

turning-circle manoeuvre exceeds the saturation level. Therefore, the actual rudder input for 

the AUV model is the saturation value (20 deg). The input values configured for the zigzag 

manoeuvre are all within the limits. The results of inverse simulation of the NM and NR 

methods from these manoeuvres on the AUV model with input saturation, as shown in 

Table 6.8, are completely different. The NM method achieves good convergence both for 

the turning-circle and zigzag manoeuvres. In contrast, the NR method fails to converge for 

all situations even for the case of the smooth turning-circle manoeuvre. Besides, it also fails 

for situations without input saturation. The reason for this may be due to the failure of the 
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NR method to deal with such a complicated model including the input constraints. For 

better analysis, some results from the above tests are plotted out as shown in the following. 
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Fig. 6.28 Results obtained from the FFS of the AUV ship with saturation limits 
 showing comparison with the ideal manoeuvre (Δt = 3 s, turning circle, NM method) 
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Fig. 6.29 Inputs obtained from inverse simulation of the AUV  
with saturation limits (Δt = 3 s, turning circle, NM method) 
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Fig. 6.30 Results obtained from the FFS of the AUV ship with saturation limits 
 showing comparison with the ideal manoeuvre (Δt = 7 s, zigzag, NM method) 
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Fig. 6.31 Inputs obtained from inverse simulation of the AUV  
with saturation limits (Δt = 7 s, zigzag, NM method) 

  
Fig. 6.28 and Fig. 6.30 show that the output results calculated from the FFS with the 

calculated inputs applied to the AUV model agree well with the ideal manoeuvres except 

for the case of the yaw angle Ψ which slightly diverges. In Fig. 6.29, the calculated input 
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values − δr, δs, δb, and n, comply well with the expected values. The results for the channels 

δbp and δbs differ from the ideal values but are within the saturation limits. However, the 

outputs from the FFS using these calculated six inputs are still consistent with the ideal 

manoeuvres. This is again a multi-solution phenomenon and the same phenomenon also 

appears in Fig. 6.31. The outputs of the FFS with these calculated inputs still comply well 

with the ideal manoeuvres. This shows that the control efforts required to perform such a 

manoeuvre are not unique. Therefore, inverse simulation possibly provides a tool for 

control allocation (Boskovic & Mehra, 2002) or facilitates finding an optimal trajectory 

from the available data (Williams, 2005). The slight divergence in the yaw angle channel 

may arise from the relatively large Δt value rather than from the poor input consistency 

since the other three output channels x, y, and z follow the ideal values. 

 

 

6.5 Summary 
 

A new, completely derivative-free, procedure has been developed in this chapter for inverse 

simulation, based on the constrained NM algorithm. The problems of inverse simulation 

associated with input saturation and discontinuous manoeuvres have been explored and 

discussed. The proposed approach avoids the augmented Lagrangian method to solve the 

constrained conditions by one-step forward simulation and the application of input 

transformations.  

 

Simulations of five nonlinear marine vehicle models have been considered. These cases 

represent three different situations in terms of the number of inputs and outputs. 

Manoeuvres investigated includes the one generated using a third-order reference model, 

the turning-circle manoeuvre, a zigzag type of manoeuvre, and a pullout manoeuvre. The 

results show that the new method of inverse simulation provides better convergence and 

numerical stability for cases involving input saturation or discontinuous manoeuvres. 

However, for severe manoeuvres such as the zigzag and complex models such as the AUV, 

a multi-solution phenomenon may appear in the results. 
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It is suggested that the multi-solution phenomenon has potential advantages in dealing with 

control reallocation and may allow the optimal control effort to be found by modification of 

the cost-function definition. In addition, the NM method can form a useful reference 

method that can allow a better understanding of some numerical problems associated with 

the other commonly used methods. Also the knowledge gained from inverse simulation 

using the NM approach can help in the design of a FFC, as will be shown in the later 

chapters. 
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Chapter 7  

 

Feedback Controller Design 
 

 

Contents 

7.1 Introduction.............................................................................................................................128

7.2 Review of the H∞ control algorithm.......................................................................................129

7.3 Design of a FBC for the Norrbin ship model ........................................................................131

7.4 Design of a FBC for the helicopter model .............................................................................139

7.5 Design of a FBC for the Container ship model .....................................................................144

7.6 Summary..................................................................................................................................161

 

This chapter focuses on design issues associated with the FBC in the 2DOF scheme for the Norrbin ship 

model, for a linear Lynx-like helicopter model, and for the Son and Nomoto full nonlinear Container ship 

model by the mixed-sensitivity (K/KS) H∞ control methodology. The performance of the controllers designed 

using this approach will be analysed and investigated in detail by means of applications involving the 

different systems mentioned above in a variety of situations. 

 

 

7.1 Introduction 
 

The 2DOF scheme has been reviewed in detail in Chapter 2. As mentioned in that chapter, 

this scheme consists of two parts – the FFC and the FBC, each of which has a different 

function. The FFC is believed to be able to improve the tracking performance and the FBC 

can increase robust stability and achieve good disturbance rejection. In addition, the 

separate procedure to design the FFC and FBC (Giusto & Paganini, 1999), as introduced in 
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Chapter 2, has been adopted in this thesis. Therefore, it is possible to design a FBC 

separately for the 2DOF scheme provided that a suitable design methodology can be found.  

 

In this chapter, the mixed-sensitivity H∞ control methodology is adopted to design the FBC. 

The results achieved here will pave the way for investigating the performance of the 2DOF 

system by introducing the FFC in the next chapter. This chapter will begin with a review 

the historical development of the H∞ control algorithm as well as presenting the latest 

contributions made to this field. Then, the H∞ control algorithm is implemented to design 

the FBC for the Norrbin model, for a linear Lynx-like helicopter model, and for the Son and 

Nomoto full nonlinear Container ship model. In addition, the results from the application 

on the nonlinear Container ship model will be compared with the results obtained from 

application of the classical LQ method. Finally, conclusions are presented based on these 

discussions and results found from the applications. 

 

 

7.2 Review of the H∞ control algorithm 
 

Since the pioneering work of Zames (1981), the H∞ algorithm has been a dominant method 

of design in the multivariable control field and has been investigated intensively in various 

fields of application. Therefore, only a brief introduction to some of the important aspects 

of the H∞ algorithm is presented in this section. H∞ control has been recognized to be good 

at simultaneously meeting the high-precision tracking-performance requirements, reducing 

the risk of control energy saturation, and improving stability robustness with additive and 

multiplicative uncertainties (Yang et al., 2005). The latest work relating to this control 

algorithm in the field of aircraft applications can be found in the references (La Civita et al., 

2003; Luo et al., 2003; Moghaddam & Moosavi, 2005; Postlethwaite et al., 2005; Tanner & 

Geering, 2003) and in the marine field application in the references (Hu et al., 2003; Wang 

& Ren, 2004). 

 

In H∞ controller design, the order of the compensator represents a major challenge. It is 

determined by the system dynamics plus all of the additional state variables associated with 
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the weighting functions at the plant input and outputs. Thus, the order of the resulting 

compensator may be too large to be readily implemented. In fact, it is a technique that 

achieves desired levels of performance robustness but at the cost of increasing the 

controller dimension (Byrns, Jr & Calise, 1994). Some authors have presented methods to 

reduce the complexity and order of the H∞ controller. Osborne (1994) applied an order-

reduction algorithm to design a controller with the standard H∞ algorithm. The designed 

controller is proper instead of strictly proper. Byrns et al (1994) presented an approach that 

designs a fixed-order H∞
 compensator by using an observer canonical form to represent the 

dynamic compensator and by uniquely selecting the quadratic performance index weighting 

matrices.  

 

In the implementation of the H∞ algorithm, all goals are achieved by selecting different 

kinds of weighting functions since their formulae represent the performance specifications. 

Hence, the key point within the H∞ control design process is the choice of proper weighting 

functions. Information about the methods of weighting-function selection can be found in 

references such as (Luo et al., 2003; Min et al., 2005; Yang, Ju & Liu, 1994; Yang, Tai & 

Lee, 1994; Yang et al., 2005). Yang et al (2005) introduced the algorithm to select the 

optimal weighting function using the Taguchi approach and genetic algorithm methods. 

 

The above-mentioned methods can be used to design H∞ controllers for linear systems. 

However, these linear controllers have suffered from some drawbacks such as they can be 

made robust in terms of mathematical meaning but that they are not intrinsically more 

robust and their valid domains are limited. Recently, the robust H∞ control problem for 

nonlinear systems has attracted considerable interest in the aircraft field (Li, 1997; Yang, 

Liu & Kung, 2002). This technique up to now is still under development. A nonlinear 

controller can naturally expand the valid region to cover the whole state space instead of 

the local region within which the traditional linear controller applies. The linear controller 

from the traditional H∞ techniques is obtained by solving a filter-type Riccati equation, a 

control-type Riccati equation, and a coupling condition. In contrast, the nonlinear controller 

is computed by solving a positive definite function from a nonlinear Hamilton-Jacobi 

partial differential inequality (Li, 1997). 
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7.3 Design of a FBC for the Norrbin ship model 
 

The introductory section in Chapter 2 has shown the need to introduce the FBC to 

overcome the effects of external disturbances and plant uncertainties for the 2DOF control 

structure. In this section, the mixed-sensitivity H∞ algorithm has been implemented to 

design the FBC for the Norrbin ship model (Appendix-D). Unar (1999) designed a FBC for 

the RZ ship using a multilayer perceptron network trained using the back-propagation 

learning algorithm. The controller designed in that way showed good robust performance 

for a number of different operation points (different forward speeds). In contrast, this 

section will focus on designing the FBC using the K/KS H∞ algorithm. Investigations are 

again based on the RZ ship model but include the effects of disturbances and measurement 

noise, which were both ignored in Unar’s work. The detailed information about the K/KS 

algorithm can be found in the book (Skogestad & Postlethwaite, 1996) and its latest 

applications in other references such as (Fales & Kelkar, 2005; Ortega & Rubio, 2004). 

 

The FBC is designed using the model linearised from Eq. (D.4) around 10 m/sU  =  by 

ignoring the third equation. The linear model then has the state-space form shown in Eq. 

(7.1).  
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                                                (7.1) 

An additional disturbance model has been included in the design process and the whole 

control system structure for this algorithm is as shown in Fig. 7.1 
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Fig. 7.1 Diagram showing the K/KS H∞ control structure 
 

In Fig. 7.1, n0 represents external measurement noise, r stands for the reference state 

variables, and d is the external disturbance. G(s) and Gd(s) are the nominal model and the 

disturbance model, respectively. W1-5 represent the weighting functions. The variables Z1 

and Z2, represent the tracking-error signal reshaped by the relevant weighting function and 

the reshaped control output u, respectively. The vector y is the vector of system outputs.  

 

The general configuration for synthesis of the system of Fig. 7.1 is shown by the structure 

of Fig. 7.2.  

  
 

Fig. 7.2 General control configuration 
 

In Fig. 7.2, P is the generalised plant. The vectors ω and Z are defined as follows:  

 
1

2

         
r Z

Z
d Z

ω
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

                                                          (7.2) 

The essence of the mixed-sensitivity control is to find a controller to minimise the H∞ norm 

of the following lower linear fractional transformation (LFT) for ω to Z:  
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where the sensitivity function S is equal to 1( )I GK −+ and W5 is ignored because it is 

selected as a unit matrix with the corresponding dimension. 

 

As mentioned in the above section, all goals are achieved by selecting different kinds of 

weighting functions in the application of the H∞
 design algorithm. In Fig. 7.1, the weighting 

function W1(s) is used to shape the tracking error between the output signals and the 

reference input signals. Usually this is selected to be a low-pass filter with a bandwidth 

equal to that of the disturbance since the disturbance is usually a low-frequency signal. 

W2(s) is chosen to be a high-pass filter with a crossover frequency approximately equal to 

that of the desired closed-loop bandwidth. Through this choice, saturation problems in the 

actuators can be avoided. W3(s) is the weighting function on the reference input and the 

values of its elements depend individually on the priority given to each input for the 

application being considered. The weighting function W4(s) = αI (where α is used to adjust 

the performance against disturbances). 

 

The disturbance model Gd consists of two parts as shown in the diagram of Fig. 7.3. 

 

 
 

Fig. 7.3 The structure of the disturbance model 
 

In Fig. 7.3, Gw is the linear model used to generate the wave moments and forces and Gdt is 

the model to describe the influence of Gw on the nominal model G as represented in Eq. 

(7.1). They have the following state-space forms: 
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  (7.4) 

where Adt is equal to the system matrix A in Eq. (7.1) and the selection of Bdt depends on 

the dynamic parameters of the nonlinear RZ model being investigated. The following are 

the chosen values for the weighting functions W1-5(s):  

1
1.41.6

0.001
s

s
W +

=
+

                                                                     (7.5) 

2
0.0010.01
0.9

s
s

W +
=

+
                                                                   (7.6) 

( 3,4,5) 1i iW = =                                                                        (7.7) 

The bandwidths of the weighting functions W1 and W2 are selected to be around 1 rad/s by 

referring to the bandwidth of the disturbance model Gd (1 rad/s), as well as the rudder 

control and rate constraints. The inclusion of the integral action in W1 is used to 

compensate for the wave drift (2nd-order-wave-induced motion). The final cost function 

value (γ) of the H∞ norm is 2.05, which is well within the usually acceptable range of 0 to 4 

(Skogestad & Postlethwaite, 1996). Better controllers may be found by selecting new sets 

of weighting functions (Ortega & Rubio, 2004; Yang et al., 1994). 
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Fig. 7.4 The plots of (I+GK)-1 (a) and GK(I+GK)-1 (b) 
 

Fig. 7.4a shows a plot of the singular value of the sensitivity function (S), which determines 

the performance in terms of disturbance rejection in the low-frequency range (Skogestad & 



 Page - 135 - 

 

Postlethwaite, 1996). Its singular value decreases rapidly in the frequency range of 0 to 1 

rad/s, which is consistent with the bandwidth of the disturbance model. The small peak 

existing in Fig. 7.4a is a NMP phenomenon. Fig. 7.4b shows the singular-value plot of the 

complementary sensitivity function (T), which is useful for determining the tracking 

performance. In that figure, the singular value of the heading channel (Ψ) has a value of 

one within the low-frequency band, which suggests that good tracking performance may be 

achieved for this channel. 

 

In validating the performance of the designed controller, the nonlinear model combined 

with the steering machine structure described in Fig. 6.4 is considered as the simulation 

benchmark, as shown in Fig. 7.5: 
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Fig. 7.5 The whole simulation benchmark 
      

 The results from a series of simulation runs are shown in Figs. 7.6 to 7.9: 
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Fig. 7.6 Simulations of the RZ ship with the FBC alone (Ψd  = 20 deg) 
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Fig. 7.7 Simulations of the RZ ship with the FBC alone (Ψd = 20 deg) 
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Fig. 7.8 Simulations of the RZ ship with the FBC alone (Ψd = 50 deg) 
 

0 20 40 60 80 100
0

10

20

30

40

50

60

Time,s

Ψ
,d

eg U=10 m/s
U=12 m/s
U=17 m/s
U=20 m/s
Ideal

0 20 40 60 80 100
-5

0

5

10

15

Time,s

δ,
de

g

U=10 m/s
U=12 m/s
U=17 m/s
U=20 m/s

a.) b.)  
 

Fig. 7.9 Simulations of the RZ ship with the FBC alone (Ψd  = 50 deg) 
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Figs. 7.6 to 7.9 show that the control system represented in Fig. 7.5 achieves good tracking 

performance as well as perfect rejection of the external disturbance and insensitivity to 

measurement noise, for ideal heading angles of both 20 deg and 50 deg when the forward 

speed U is larger than 6 m/s. However, the FBC displays poor tracking performance for 

2 m/sU  = and 3 m/sU  = . These findings are consistent with the results presented by Unar 

(1999) and correspond to significant variation of the coefficients of Eq. (D.3). This is 

obvious from Table D.1 where it may be seen that when the speed decreases from 6 m/s to 

2 m/s, the parameter m changes from 43 to 387, d1 from 1.7 to 5, and d3 from 0.46 to 12. 

Therefore the FBC fails to deal with such severe variations. Compared with these variations 

at speeds U below 6 m/s, the changes are quite gentle from 6 m/s to 20 m/s, especially from 

10 m/s to 20 m/s. These small variations for the larger values of forward speed contribute to 

a reduction in the control effort required, as shown in the above figures.  

 

For the case of the heading angle of 20 deg, Fig. 7.6 illustrates that the required control 

efforts are within the saturation level for 3 m/sU  = and 2 m/sU  = , in contrast to the results 

given by the inverse simulation process, as shown in Figs. 6.6 and 6.8. This reduced control 

effort proves the effectiveness of the FBC system, although saturation limits are still being 

exceeded for the case of Ψd = 50 deg. The latter effect is due to the fact that the larger 

control effort is required for the larger tracking heading angle and the larger variations of 

coefficient values for the lower speeds as discussed above. 

 

The FBC designed in this section achieves the required tracking performance and 

robustness against variation of the forward speed and thus provides an overall level of 

performance that is as good as the performance obtained by Unar (1999) even allowing for 

the fact that the current work involves the disturbance model and measurement noise. 

Moreover, the design approach implemented in this section has some advantages over the 

approach based on multilayer perceptron networks since it avoids the training procedure 

which will take quite a long time to be completed (around 31 minutes required for this case). 

However, a slightly oscillatory phenomenon has appeared in the time history of rudder 

angle deflections as shown in Figs. 7.7 and 7.9 during the first few seconds of the record for 

the forward speed U larger than 17 m/s. Analysis has indicated that this problem results 
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from the large value of time constant τ shown in Fig. 6.4 and adopted in the steering 

machine model used by Fossen (1994).  In the above applications and the work of Fossen, 

the default value for τ is 1 s, which can be derived from the third equation of Eq. (D.3). In 

fact, the parameterτ plays the same role as a first-order lag between δc andδ, as shown in Eq. 

(7.8), given that the rudder limiter has not been reached.  

( )( )
1

c ss
s

δδ
τ

=
+

                                                                                            (7.8) 

By reducing the valueτ the problem of oscillations can be eliminated, as shown by the 

following results: 
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Fig. 7.10 Rudder angles for a range of different τ values (Ψd = 20 deg) 

 

0 10 20 30 40 50
-2

0

2

4

6

8

Time,s

δ,
de

g

τ=2 s

τ=1 s

τ=0.6 s

τ=0.1 s

0 10 20 30 40 50
-1

0

1

2

3

4

5

6

Time,s

δ,
de

g

τ=2 s

τ=1 s

τ=0.6 s

τ=0.1 s

U=20 m/sU=17 m/s

a.) b.)  
 

Fig. 7.11 Rudder angles for a range of different τ values (Ψd = 50 deg) 
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For the better representation of the results, only the first-half of the time histories (50 s) are 

included. Fig. 7.10 and Fig. 7.11 show that the oscillations in the rudder angle disappear if 

the time constant τ value becomes small enough. The explanation is obvious in that the 

channel from δc and δ will involve a smaller phase lag as the τ value is made smaller. 

 

 

7.4 Design of a FBC for the helicopter model 
 
In this subsection the linear Lynx-like helicopter model, introduced in Chapter 3, is 

considered as a benchmark for the design of a FBC. The state variables and input variables 

are the same as those in the previous description of the model. The main difference is that 

in this case the atmospheric turbulence is modelled as gust velocity components to perturb 

the velocity states u, v, and w by 1 2 3[ ]d d d d= as in the following equations: 

0
x Ax A Bu

d

y Cx

⎡ ⎤
= + +⎢ ⎥

⎣ ⎦

=

                                                                (7.9) 

In addition, the output channels are selected as shown in Table 7.1: 

 
Table 7.1 Output variables for the Westland Lynx linearised helicopter model 

Output Variables Description Unit 

H  Heave velocity ft · s-1 
θ Pitch attitude rad 
Φ Roll attitude rad 
Ψ  Heading rate rad · s-1 
p Roll rate rad · s-1 
q Pitch rate ft · s-1 

  

The design scheme is similar to Fig. 7.1 but a MIMO situation is considered. The latest 

work relating to this control algorithm in the helicopter field of application can be found in 

(Luo et al., 2003; Postlethwaite et al., 2005). The following are the chosen values for the 

weighting functions W1(s), W2(s), and W3(s):  
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1
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                      (7.10) 

 

2
0.0005 0.0005( ) {0.2 ,0.5 ,10 10
0.0005 0.00010.5 ,0.2 }10 10

s ss diag s s
s s                      s s

+ += ⋅ ⋅+ +

+ +⋅ ⋅+ +

W
                                 (7.11) 

  

3( ) {1, 0.1, 0.1, 1, 1, 1}s diag=W                                            (7.12) 

The bandwidths of the weighting functions W1 and W2 are selected to be around 11 rad/s by 

referring to the bandwidth of the disturbance model Gd (10 rad/s), and the unmodelled rotor 

dynamics beyond 10 rad/s. The reasons for selecting W1 and W2 have been given in the 

above subsection. The reasons for the choice of W3 are based on the fact that only the 

channels H , p, q, andΨ  are selected to be outputs. The selected channels are weighted by 

setting their values to be one and the others are forced to be relatively unimportant by 

setting their values to 0.1. With these weighting-function values, the final calculated cost-

function value (γ) is 1.75. W4 is the unit matrix with compatible dimensions. Fig. 7.12 and 

Fig. 7.13 show the quality of the performance of the designed H∞ controller for the 

weighting functions selected.  
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Fig. 7.12 The plot of (I+GK)-1 (a) and GK(I+GK)-1 (b) 
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Fig. 7.13 The plot of K(I+GK)-1 
 

The bandwidths achieved in the results shown in Figs. 7.12 and 7.13 are both close to the 

expected design specification of 10 rad/s. The two singular values (p and q channels) in Fig. 

7.12a which present the constant values (0 dB) in the low-frequency range results from the 

coupling between the aircraft attitudes and angular rates (Yue & Postlethwaite, 1990). The 

other four channels show small amplitudes due to being directly controlled. In addition, the 

sharp decrease in Fig. 7.12b in magnitude in the high-frequency range means that the good 

robust performance has been achieved in the controller against uncertainties resulting from 

unmodelled rotor degrees of freedom.  

 

In the current investigations, two groups of manoeuvres are considered as the ideal tracking 

trajectories. The first group is taken from the standard heave axis response (Walker & 

Postlethwaite, 1996) and redefined based on the latest version of ADS-33E-PRF (Anon, 

2000). The details relating to the definition can be found in Chapter 3. The selection of this 

group of manoeuvres is intended to provide a check on the validity of the proposed method 

in which the FBC is designed using the H∞ algorithm. Compared with the first group, the 

second group is more demanding and has been chosen to facilitate the investigation of the 

tracking performance of the FBC system for severe manoeuvres. Therefore, this group is 

not based on standard ADS-33E height-response manoeuvres and may therefore lack the 

practical significance, in terms of handling qualities and agility measures, of the 

manoeuvres within the first group. The step response of a standard second-order transfer 



 Page - 142 - 

 

function, as shown in Eq. (3.5), is still used to define the heading rate. The other three 

output channels are set to be the step response of the transfer function of Eq. (7.13): 
2

2 2( )
2

n

n n

g s
s s

=
+ +

ω
ζω ω

                                                          (7.13) 

where 0=ξ  and 3, 2, 1.5n   =ω  rad/s for p, q, and Ψ , respectively. The consequent results 

from these applications are shown in Fig. 7.14 and Fig. 7.15. 
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Fig. 7.14 Output tracking of ADS-33E height-response manoeuvre 
with measurement noise and disturbance effects 
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Fig. 7.15 Output tracking of typical demanding manoeuvre 
with measurement noise and disturbance effects 

 

Fig. 7.14 shows that the controlled system provides good tracking performance for the 

standard manoeuvre considered, especially for the heading rate in which nearly perfect 

tracking is achieved. The tracking performance in the other three channels is slightly poorer 

since there are large transients during the first second or so of the records but the responses 

later converge to the ideal values. These results prove the effectiveness of the designed 

FBC for the standard ADS-33E height-response trajectories. However, for the severe 

trajectories, the controlled system only achieves good tracking for the heave velocity (Fig. 

7.15a), and fails to reach good consistency with the ideal trajectories for the other three 

channels, especially for the roll rate (Fig. 7.15b) and pitch rate (Fig. 7.15c) channels in 

which the divergence is very evident. Moreover, this divergence is still present in the long- 

term simulation, from which the results are ignored here due to their similarity to the results 

in Fig. 7.15. This suggests there is a need for more effort to improve the tracking 

performance and this will be further investigated in Chapter 7 by introducing the FFC 

designed from the inverse simulation procedure. 
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7.5 Design of a FBC for the Container ship model 
 

Much research effort has been devoted to the design of controllers which can achieve better 

performance in surface ships, other types of marine vessels and other forms of vehicle. 

Examples include the investigation of a general control system for trajectory tracking of an 

under-actuated ship (Do & Pan, 2006), an autopilot system for the safe navigation of a 

surface vehicle (Alfaro-Cid et al., 2005), and systems for ship steering in waves (Fang & 

Luo, 2005) etc. In addition, knowledge of nonlinear control theory also has been applied to 

solving problems of steering of vehicles (Hu et al., 2003; Tzeng, Goodwin & Crisafulli 

1999).  

 

This section tackles the problem of combined ship roll stabilisation and tracking, by means 

of the LQ control approach and the mixed-sensitivity H∞ control methodology. The 

implementation of a LQ controller outlined in this section is intended to provide a reference 

for comparison with the results from the mixed-sensitivity H∞ method. This section first 

introduces the design of the controllers for a rudder-roll stabilisation system (RRS) using 

the Son and Nomoto Container ship model in the linearised form. The nonlinear counterpart 

of this model has been implemented in Chapter 6 to validate the constrained NM-based 

method for inverse simulation. These designed controllers are subsequently tested using the 

full nonlinear Container ship model. This allows comparisons to be made and provides a 

basis for some concluding remarks. 

 

7.5.1 Design of controllers and simulation with the linear model 

 

A rudder-roll subsystem involving the linearised form of the Son and Nomoto Container 

ship model (Escande, 1997; Fossen et al., 2005), provides a benchmark for designing the 

controllers. This linear RRS involves the sway, roll, and yaw variables and associated 

cross-couplings and its structure can be described by the following equations: 

x Ax Bu Ed

y Cx Du

= + +

= +
                                                                 (7.14) 



 Page - 145 - 

 

where x∈ 5R is the state-variable vector, which consist of the sway velocity (v), the roll 

velocity (p), the yaw velocity (r), the roll angle (Φ), and the heading angle (Ψ). y∈ 5R is the 

vector of output variables which are the five state variables used for feedback. For the 

applications described in this section, all these five state variables are required to design a 

FBC. If they cannot be measured directly, a Kalman filter can be used to estimate the 

unknown values. The input u∈ 1R is the rudder motion and d∈ 1R is a random disturbance. 

 

7.5.1.1 Design of a linear quadratic controller  

 

Because it is a well-known approach, the details of the LQ controller are ignored here and 

the interested reader can refer to the book (Fossen, 1994). The main structure of this 

algorithm is shown in Fig. 7.16: 

∫
x x

 
 

Fig. 7.16 Diagram showing the Linear Quadratic Optimal Control system 
 

In Fig. 7.16, r is the given reference vector. During the design stage of the LQ controller, 

the disturbance term d in Eq. (7.14) is ignored. After calculation using standard LQ 

methods, the values of r, g1, and g2 are as follows: 

[ ] [ ]

[ ]

[ ]

1

2

0 0 0 10

0.1631 -16.1193 -6.7655 -1.1644 -0.4472

0 0 0 0.4472

p r= Φ Ψ =

=

=

r

g

g

                       (7.15) 
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To show the performance of the heading tracking system as well as the rudder-roll 

decoupling in the presence of measurement noise but no wave disturbances, the following 

two situations have been investigated. Firstly the performance has been investigated 

without disturbances and measurement noise, and secondly the performance has been 

considered in the absence of disturbances but with measurement noise. The measurement 

noise is a Gaussian white noise, which is added to each feedback channel at the 

measurement point as shown in Fig. 7.16. In order to highlight the action of the control 

system during the simulation process, the feedback channels of the roll rate (p) and roll 

angle (Φ) are turned on after 300 s and off again after 500 s. The performance against wave 

disturbances will be investigated in the next section. 
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Fig. 7.17 Results from the LQ controller without disturbance and  
measurement noise (linear model) 
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Fig. 7.18 Results from the LQ controller without disturbance 

and measurement noise (linear model) 
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Fig. 7.19 Results from the LQ controller without disturbance 
but with measurement noise (linear model) 
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Fig. 7.20 Results from the LQ controller without disturbance 
but with measurement noise (linear model) 

 

Fig. 7.19 and Fig. 7.20 show that the performance in terms of the heading tracking and the 

rudder-roll decoupling with measurement noise is relatively poor compared with Fig. 7.17 

and Fig. 7.18 which show the case without measurement noise. Moreover, the introduced 

measurement noise has a significant influence on the heading tracking accuracy and the 

control effort required, as shown in Fig. 7.20, where the input to the model reaches a 

maximum magnitude of 40 deg during the period from 300 s to 500 s. This value is far 

larger than the saturation level of 20 deg, and is therefore unacceptable. This large control 

effort required is due to the fact that the effects of the measurement noise can be fed back to 

the input directly and in a linear proportional fashion, as shown in Fig. 7.16. In addition, the 

feedback of the channels p and Φ during the period from 300 s to 500 s has a significant 

influence on the heading tracking accuracy and the control effort for this linear case, as 

shown in Fig. 7.20. Therefore, this application case highlights some weak points of the 

approach based on the LQ controller. 

 

7.5.1.2 Design of a mixed-sensitivity H∞ controller  

 

The mixed-sensitivity H∞ control achieves robust stability and robust performance through 

transfer function shaping by selecting suitable weighting functions (Skogestad & 

Postlethwaite, 1996). The standard procedure to design an H∞ controller introduced in 

Section 7.3 is applied in this section and the only difference is that the calculation of Bdt in 
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Eq. (7.4) depends on the dynamic parameters of the nonlinear Container ship model being 

investigated for this case. By following the similar procedure to select the weighting 

functions, the following are the chosen values for the reference inputs r and the weighting 

functions W1-4(s):  

1
0.12 0.12 0.12{ 0.05 0.05 0.050.05 0.05 0.05

0.1 0.060.02 0.04 }0.001 0.001

s s sdiag  s s s

s s                  s s

W + + += ⋅ ⋅ ⋅
+ + +

+ +⋅ ⋅+ +

             (7.16) 

2
0.0010.12 0.3

s
sW += ⋅
+

                                                                         (7.17) 

3 { 1 1 1 1.1 1 }diag   W =                                                            (7.18) 

4 0.6W =                                                                                             (7.19) 

[0 0 0 0 10]r =                                                                        (7.20) 

The bandwidths of the weighting functions W1 and W2 are selected to be less than 0.3 rad/s 

by referring to the bandwidth of the original model G (0.19 rad/s) and the bandwidth (0.2 

rad/s) of the closed-loop model with the LQ controller designed in the previous section, as 

well as the rudder control and rate constraints. The inclusion of the integral action in W1 is 

used to compensate for wave drift (2nd-order-wave-induced motion) and low-frequency 

ocean current disturbances. The cost-function value (γ) of the H∞ norm of Eq. (7.3) is 2.2. 
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Fig. 7.21 The plots of (I+GK)-1 (a) and GK(I+GK)-1 (b) 
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Fig. 7.21a shows a plot of the singular values of the sensitivity function (S), which 

determines the performance of disturbance rejection in the low-frequency range. Because of 

the five-by-five size of the matrix S and the fact that there is only one-input channel, four 

singular values (corresponding to v, p, r and Φ) will always have a value of one 

(corresponding to 0 dB on a log scale) across all frequencies and the singular value 

corresponding to the heading (Ψ) decreases rapidly in the frequency range of 0 to 1 rad/s 

(the red line), which is consistent with the bandwidth of the disturbance model. The small 

bump existing in one of the singular-value plots is associated with a NMP phenomenon. Fig. 

7.21b shows the singular-value plot of the complementary sensitivity function (T), which is 

useful for determining the tracking performance. In that figure, the singular value of the 

heading channel (the red line) has a value of one within the low-frequency band, which 

suggests that good tracking performance may be achieved for this channel. However, for 

the other four channels, the singular values across the low frequencies are much smaller 

than one. This complies with the difficulty encountered in simulation studies for the 

Container ship system to obtain good tracking for all channels simultaneously. The results 

from the simulation are shown in Fig. 7.22 and Fig. 7.23. 
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Fig. 7.22 Results from the K/KS controller with disturbance and 
measurement noise (linear model) 
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Fig. 7.23 Results from the K/KS controller with disturbance and 
measurement noise (linear model) 

 

From Fig. 7.22 and Fig. 7.23, it can be seen that the K/KS controller achieves good tracking 

performance and disturbance rejection in the presence of disturbances and measurement 

noise. In addition, the feedback of the channels p and Φ during the period from 300 s to 500 

s has almost no influence on the heading tracking and the control effort for this linear case, 

as shown in Fig. 7.23. However, the control is affected by high-frequency oscillations but is 

less noisy compared with the results from the LQ controller. One thing that the reader has 

to keep in mind is that the controller designed above may be not optimal although the γ 

value is quite small. The reason for selecting the terms W1-4 listed above is that they can 

provide good performance both for the linear system and the nonlinear system which will 

be discussed in later sections.  

 

7.5.2 Simulation using the nonlinear model 

 

In this section, the controllers designed in the above sections are applied to the full 

nonlinear Son and Nomoto Container ship model with wave-induced roll-moment 

disturbances (Fossen et al., 2005). This model has twelve state variables and two inputs. 

The input constraints, as well as other necessary information, can be found in the given 

reference. 
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Four forward speed (U) situations: 5 m/s, 7.3 m/s, 10 m/s, and 13 m/s, are simulated to 

validate the robust performance and stability of the designed controllers, which are 

designed based on the model linearised around the forward speed 7.3 m/s. For these four 

situations, the tests both with or without measurement noise are also carried out to show the 

effectiveness of the K/KS approach against measurement noise, though a lot of approaches 

(such as the Kalman filter) are available for computing noise-free estimates of the states. 

Results from the other three forward speeds are not presented here due to the fact that they 

are very similar to those from the forward speed 7.3 m/s. 

 

The Matlab function wgn is used to generate the Gaussian white measurement noise with 

output power 1 dBW and load impedance 0.005 Ohms. In addition, the feedback channels v, 

r, and Ψ and the roll-moment channels p and Φ are filtered by a low-pass filter and a high-

pass filter, as shown respectively in Eq. (7.21) and Eq. (7.22), to eliminate the effect of the 

high-frequency motion to counteract the 1st-order wave disturbances and also to avoid 

causing additional wear and tear on the thruster actuators (Fossen, 1994): 

1( ) 0.1Lf s s=
+

                                                                       (7.21) 

( ) 0.05h
sf s s=

+
                                                                     (7.22) 

However, in the present work on H∞ control system synthesis to demonstrate the improved 

performance of the H∞ controller, the above wave filtering is not included in the feedback 

channels. The controllers are synthesised in such a way that they provide the necessary 

filtering action. For all simulations, the feedback of the channels p and Φ are switched on 

over the period from 300 s to 500 s and off at all other times. 

 

7.5.2.1 Application involving the LQ controller 

 

a.) Simulated results without measurement noise  

 

The LQ controller designed in Section 7.5.1.1 is tested on the nonlinear Container ship 

model. The results are shown in Figures 7.24 – 7.25 as follows: 
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Fig. 7.24 Results from the LQ controller with disturbance but 
without measurement noise (nonlinear model, U0 = 7.3 m/s) 
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Fig. 7.25 Results from the LQ controller with disturbance but 
without measurement noise (nonlinear model, U0 = 7.3 m/s) 
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The root-mean-square (RMS) measure is used to quantitatively establish the effectiveness 

of the rudder-roll reduction for the roll angle (Φ) and the roll rate (p) channels. The 

calculated RMS values are: 

3.76 deg 0.80 deg/ s 2.27 deg 0.42 deg/ sw w b b p   p  Φ = = Φ = =           (7.23) 

where the subscript w represents the whole simulation period and b the period when the 

feedback channels Φ and p are switched on. These values show that the roll angle (Φ) has 

been reduced by 1.49 deg and also slightly for the roll rate (p), as shown in Fig. 7.24c and 

Fig. 7.25d. However, Fig. 7.24 also shows the deterioration in heading tracking 

performance (b) as well as the significantly increased magnitude of the rudder angle (a). 

This rudder angle is generated inside the nonlinear model and has nearly reached the 

saturation level (20 deg) at some points. In addition to this, the input u to the nonlinear 

model is quite large and also is shows high-frequency oscillations, as shown in Fig. 7.26: 
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Fig. 7.26 Inputs to the nonlinear model with disturbance but 
without measurement noise (LQ controller, U0 = 7.3 m/s) 

 

The first two spikes in Fig. 7.26 have exceeded the saturation level (20 deg). Furthermore, 

the high-frequency oscillations existing in the input (u) to the nonlinear model have 

resulted in oscillating movements in the rudder deflection δr, as shown in Fig. 7.24a. This is 

believed to have some negative effects such as causing wear and tear. All this means that 

the rudder-roll reduction is achieved by the LQ controller at the cost of introducing extra 

control effort with additional high-frequency oscillations as well as the poorer tracking 

performance. The fuel consumption therefore may be increased. 
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b.) Simulated results with measurement noise  

 

The simulation with the measurement noise in the LQ control synthesis aims to show the 

poor performance of the LQ controller in the presence of measurement noise. The obtained 

results are shown as follows in Figs. 7.27 – 7.29: 
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Fig. 7.27 Results from the LQ controller with disturbance and 
measurement noise (nonlinear model, U0 = 7.3 m/s) 
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Fig. 7.28 Results from the LQ controller with disturbance and 
measurement noise (nonlinear model, U0 = 7.3 m/s) 
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Fig. 7.29 Inputs to the nonlinear model with disturbance and 
measurement noise (LQ controller, U0 = 7.3 m/s) 

 

In this case, the calculated RMS values for channels p and Φ are shown in Eq. (7.24): 

3.82 deg 0.84 deg/ s 2.43 deg 0.54 deg/ sw w b b p   p  Φ = = Φ = =          (7.24) 

Although the rudder-roll control system takes effect, the rudder angle generated within the 

nonlinear model is affected by high-frequency oscillations, as shown in Fig.7.27a. These 
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frequencies are well above the frequency range of the wave disturbances. The values in Eq. 

7.24 show that the roll angle (Φ) has been reduced by 1.39 deg and is also slightly reduced 

for the roll rate (p), as shown in Fig. 7.27c and Fig. 7.28d. Moreover, the magnitudes of the 

input to the model shown in Fig. 7.29 are unacceptably large. The magnitude values mean 

the rudder actually always works at the saturation level and this has been proved by the 

simulation process. 

 

The reason of the poor performance of the LQ control system in suppressing the 

measurement noise is obvious due to the fact that the channel between the input u and the 

measuring point, shown in Fig. 7.1, only involves a linear multiplier factor g2. Therefore, 

the measurement noise will be directly reflected in the input to the nonlinear model. 

 

7.5.2.2 Application involving the K/KS Controller 

 

The mixed-sensitivity controller based on the H∞ algorithm has been tested on the nonlinear 

Container ship model with and without measurement noise. Results are presented in this 

section. Again, the feedback of the channels p and Φ are switched on for the period of time 

from 300 s to 500 s and are switched off at all other times. 

 

a.) Simulated results without measurement noise  

 

The H∞ controller designed in Section 7.5.1.2 is tested on the nonlinear Container ship 

model. The results are shown in Figs. 7.30 – 7.31 as follows: 
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Fig. 7.30 Results from the K/KS controller with disturbance but 
without measurement noise (nonlinear model, U0 = 7.3 m/s) 
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Fig. 7.31 Results from the K/KS controller with disturbance but 
without measurement noise (nonlinear model, U0 = 7.3 m/s) 
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The calculated RMS values for the channels p and Φ are shown in Eq. (7.25): 

2.86 deg 0.63 deg/ s 1.88 deg 0.46 deg/ sw w b b p   p  Φ = = Φ = =        (7.25) 

These values show that the roll angle (Φ) has been reduced by 0.98 deg as well as the roll 

rate (p), as presented in Fig. 7.30c and Fig. 7.31d. Compared with the results obtained by 

the LQ method, the K/KS controller achieves nearly perfect heading tracking although the 

rudder angle is quite large in the first few seconds. However, the rudder is still operating 

within the saturation limits. In addition, the K/KS approach also shows that the roll angle (Φ) 

is reduced during the period when the feedback channels p and Φ are switched on. 

Moreover, the performance in terms of heading and rudder deflection remains good, unlike 

the performance obtained with the LQ approach. No graphical results have been included 

showing the input to the nonlinear model because it is very similar to the result shown in 

Fig. 7.30a. All these results prove the effectiveness of the K/KS H∞ approach for this 

application. Again, better controllers might well be found by further adjustment of the 

weighting functions at the design stage. 

 

b.) Simulated results with measurement noise  

 

This section describes investigation of the insensitivity of the K/KS controller to 

measurement noise. It should be noted that this is achieved without introducing additional 

control complexity such as arises when filters are included in the feedback channels. The 

results are shown as follows in Figs. 7.32 – 7.33: 
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Fig. 7.32 Results from the K/KS controller with disturbance and  
measurement noise ( nonlinear model, U0 = 7.3 m/s) 
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Fig. 7.33 Results from the K/KS controller with disturbance and  
measurement noise (nonlinear model, U0 = 7.3 m/s) 

 



 Page - 161 - 

 

The calculated RMS values for the channels p and Φ at this case are shown in Eq. (7.36): 

2.55 deg 0.59 deg/ s 1.66 deg 0.41 deg/ sw w b b p   p  Φ = = Φ = =               (7.36) 

From the RMS values and the figures shown above, the K/KS controller shows good 

performance in the presence of measurement noise. Neither the magnitude of the input to 

the nonlinear model is too large, nor is it affected by the high-frequency oscillations found 

in the LQ controller case, shown in Fig. 7.32. The input to the nonlinear model is not 

presented here in graphical form because of its very close similarity to the result shown in 

Fig. 7.32a. Furthermore, this case also achieves good heading tracking performance without 

being affected by the disturbances, measurement noise, and the excitation of the rudder-roll 

subsystem. 

 

In fact, the good properties of the K/KS controller in terms of noise attenuation can be 

analysed by referring to Fig. 7.21. The maximum singular value of the complementary 

function ( )Tσ  shown in Fig. 7.21b decreases rapidly for frequencies greater than 0.12 rad/s. 

As a result, unlike the LQ method, the extra complexity to deal with the measurement noise 

is not necessary in this case.  

 

 

7.6 Summary 
 

The feedback control systems designed from the mixed-sensitivity H∞ optimisation method 

show perfect tracking performance as well as good robust stability against external 

disturbances and insensitivity to measurement noise, for the three different models 

considered – the Norbbin ship model, the linear Lynx-like helicopter model, and the 

nonlinear Container ship model. For the case of the Norbbin ship model, the results show 

robustness to changes of the forward speed. Oscillations in the rudder angle have been 

found to be related to the time constant value (τ) in the representation of the steering 

machine and disappear if τ is made small enough. For the Lynx-like helicopter model, the 

designed FBC shows good tracking performance for the standard manoeuvres based on 

ADS-33E recommendations but fails in the case of more severe (but more artificial) 

manoeuvres. 
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When the Son and Nomoto Container ship model is considered, the two approaches (the 

LQ method and the mixed-sensitivity H∞ optimisation method) have been successfully 

developed. The results from the simulation of the linear and nonlinear models have 

validated the effectiveness of these two controllers. The implementation of the mature LQ 

method is the most straightforward because no weighting-function selection is involved. 

Therefore, the LQ method avoids trial and error methods. The mixed-sensitivity H∞ 

optimisation method provides more freedom to improve the robust stability and robust 

performance. However, this is achieved only at the cost of added complexity in the design 

process, especially in terms of the choice of factors such as the weighting functions used 

against the disturbance and measurements noise. The difficulty in implementation of this 

method arises because of the fact that some performance criteria conflict with each other. 

An obvious example of this is the roll moment reduction and the heading tracking accuracy. 

 

For the LQ method, the performance specified in the mathematical optimization process to 

obtain the controller, is well embodied in the final results in the simulation of the nonlinear 

model. One example of this is the reduction achieved in roll. However, this linking of the 

optimisation process and the final performance is not so apparent for the H∞ algorithm 

based methods where it has been found that the gamma value has mathematical meaning 

but little significance in terms of the physical interpretation of performance improvement. 

In addition, the performance of the controller based on the linear model will deteriorate 

when that controller is applied on the nonlinear model. 

 

The both types of controller considered show robustness to changes of forward speed for 

the Son and Nomoto Container ship model. This has been demonstrated in the simulation 

results for the four speed situations: 5 m/s, 7.3 m/s, 10 m/s, and 13 m/s. In addition to this 

performance robustness, the K/KS results show good performance in the presence of 

measurement noise. Therefore no extra design efforts are required to deal with 

measurement noise in this approach. Furthermore, the design achieves good rudder-roll 

reduction with no large variation of the magnitude of the rudder input while maintaining 

good tracking performance. In contrast, the LQ controller fails to achieve such a good 

performance overall for the case of the nonlinear ship model. 
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The primary objective of this chapter is to investigate the use of inverse simulation to develop robust 

feedforward tracking controllers for the traditional 2DOF output-tracking control system structure, thus 

avoiding the involvement of the more complicated and tedious techniques of model inversion. 

 

 

8.1 Introduction 
 

This chapter focuses on a detailed description of the use of inverse simulation techniques 

that have been extensively investigated in the aircraft field over the past decade (as has 

been introduced and developed in the previous chapters) to replace model inversion in the 

traditional 2DOF control structure. The previous investigations have found that, provided a 

suitable value of discretized time interval is used, inverse simulation is preferred to model 

inversion for MP systems. Moreover, unlike most currently available approaches for model 

inversion, inverse simulation provides an alternative more feasible and causal way to 

determine the required inputs to follow a predefined trajectory for a NMP system, 
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depending upon zero redistribution within the process of inverse simulation, as discussed in 

Chapter 3. 

 

These results, combined with the H∞ feedback controllers designed in Chapter 7, are 

demonstrated by applications involving an eighth-order linear Lynx-like helicopter model 

and a full nonlinear Container ship model used in the context of ship steering control and 

roll stabilization. It is believed that the conclusions from this demonstration process may 

help establish the validity and effectiveness of the approach based on inverse simulation to 

replace model inversion for design of the FFC.  

 

This chapter first considers the issue of whether or not to introduce the FFC for different 

levels of uncertainty in the plant model. Then, the FFC is added and combined with the 

results in Chapter 7 to implement the complete 2DOF control structure. The performance of 

this whole system is investigated using the Lynx-like helicopter model and the Container 

ship model. Finally, the main features of the results from these two applications are 

summarized. 

 

 

8.2 Uncertainties in the 2DOF structure 
 

In the absence of plant uncertainties such as parameter uncertainties (termed structured 

uncertainties) and neglected and unmodelled dynamics uncertainty, it is not a challenging 

design problem for the 2DOF control structure reviewed in Chapter 2 to achieve perfect 

output tracking. However, as mentioned above, the performance and accuracy is highly 

dependent on the accuracy of the modelled dynamics of the controlled system. This is due 

to the fact that here model-based inversion methods are applied to achieve high-precision 

output tracking. In addition, the FFC cannot correct tracking errors resulting from plant 

uncertainties. Moreover, it has been shown that larger uncertainties in the controlled model 

lead to degraded tracking performance with the FFC approach. This raises a question about 

whether the FFC structure should still be adopted when the uncertainties are large. In the 

following, the results from previous investigations of parameter uncertainties and 
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unmodelled uncertainties are summarised. All these investigations are based on the use of 

linear system models. 

 

The work of Zhao and Jayasuriya (1994) and Wik et al (2003) mainly focus on plant 

uncertainties that contain the two kinds of uncertainties mentioned above (structured and 

unmodelled). Zhao and Jayasuriya (1994) showed the following conclusions: 

 

a.) The tracking error caused by plant uncertainties only relates to the desired trajectory, 

the plant uncertainties, and the feedback compensator;  

 

b.) The FFC imposes a performance limitation on the tracking error; 

 

c.) The steady-state tracking error will not be zero in the absence of a model of the desired 

trajectory in the control loop. This means that for zero-error tracking, the desired 

trajectory model has to be included into the control loop in the presence of model 

uncertainties. 

 

Wik et al (2003) presented an approach to solve the uncertainty problem through 

optimization methods, and demonstrated that to provide the optimal performance the FFC 

and FBC have to be synthesized jointly. The parameter uncertainties therein are modelled 

using probability density functions. Then, the FFC and FBC are selected through 

expectation-value minimization of the performance index, which is a function of parameter 

uncertainties. In addition, the trade-off among performance, robustness, and controllability 

can be achieved by changing the constraints. 

 

Devasia (2000; 2002) has shown conditions which relate to the issue of when to switch on 

or off the FFC, for the model affected by uncertainties (with respect to the worst-case 

tracking errors), as shown in Fig. 2.1. His results show that the system must satisfy the 

following two assumptions and conditions: 

 

a.) Assumption 1: the nominal square plant G0(s) has full normal rank. 
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b.) Assumption 2: the nominal system, the uncertainty, and the controller are such that the 

nominal and perturbed closed-loop systems are stable. 

 

c.) Condition 1: the nominal plant G0(s) has full rank at a given frequency ω. This means 

that G0(s) does not have poles or transmission zeros at ω. 

 

d.) Condition 2: uncertainty acceptability is satisfied: 

0

0 2
2

( )
( ) ( ) ( )

jω
jω jω jωG

G
δ κΔ ≤ ≤                                                 (8.1) 

where 0 ( )jωGκ is the condition number of the nominal model G0(s), Δ(jω) is the plant 

uncertainties defined by the difference of G0(s) and G(s), and ( )jωδ  is the bounded value 

for uncertainties. 

 

Then the results shown by Devasia can be summarised in Table 8.1 with regard to the 

relationship between the sizes of uncertainties and the nominal model G0(s) divided by its 

condition number. In Table 8.1, the term ( ,*) ( )jωffE represents the worst-case tracking error 

with the inverse FFC and the term ( ,*) ( )jωfbE represents the worst-case tracking error with 

only the FBC. The symbol﹡ (different forms of Δ) is a general symbol for uncertainties for 

the three different situations, represented in Table 8.1 respectively. 

 
Table 8.1 Comparison of the tracking performance with or without the FFC 

Size of uncertainties Comparison of tracking performance 

0

0 2
2

( )
( ) ( )

jω
jω jωG

G
κΔ ≤  

For all controllers and any uncertainty Δ(jω) 
( , ) ( , )( ) ( )jω jωff fbE EΔ Δ≤  

0

0 2
2

( )
( )( )

jω
jωjωG

G
κ < Δ  

There exists a controller and an uncertainty ( )jωΔ  

( , ) ( , )( ) ( )jω jωff fbE EΔ Δ>
 

0 2 2( ) ( )jω jωG < Δ  
For any controller, there exists an uncertainty ˆ ( )jωΔ  

ˆ ˆ( , ) ( , )( ) ( )jω jωff fbE EΔ Δ>  

 

Although the above results quantitatively answer the question whether to use the FFC, 

practical systems always tend to have a relatively large uncertainty modelling error (such as 



 Page - 167 - 

 

in the helicopter field where the rotor dynamics and interactions between rotors and 

fuselage often is a major source of uncertainty). Hence, Devasia (2002) introduced a 

modified inversion approach by first dividing the frequency domain into regions according 

to the degree of severity of the uncertainties. The approach only inverts the system in the 

part of the frequency domain where the uncertainty is sufficiently small. The results have 

shown that the modified approach can improve the tracking performance compared to the 

use of the FBC alone by introducing the FFC in the significant part of frequency range. 

 

 

8.3 Design of the FFC for a linear Lynx-like helicopter model 
 

In Chapter 7, the results have shown that the structure which only includes the FBC 

achieves good tracking performance for the standard ADS-33E manoeuvres but not for the 

severe manoeuvres. In this section, the research will be focused on that whether or not the 

tracking performance can be improved by introducing the FFC. The FFC is now included 

into Fig. 7.1 to form the final simulation model structure, as shown in Fig. 8.1. 

 
 

Fig. 8.1 Diagram of FFC+FBC system for the linear Lynx-like helicopter model 
 

In this section, four groups of manoeuvres are considered. The first group is taken from the 

standard heave axis response (Walker & Postlethwaite, 1996) based on the latest version of 

ADS-33E-PRF (Anon, 2000). This group of manoeuvres is used to check the validity of the 

proposed method in which the FFC is designed using inverse simulation. The second group 

adopted the shape of the bob-up manoeuvre introduced in Chapter 2 for the heave velocity 
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channel. The third group represents a heading changing situation and the fourth group 

represents a different situation in terms of the degree of severity of manoeuvre. Among 

these four manoeuvres, the fourth group of manoeuvre is most demanding but may lack 

practically physical meaning. Taken together, the results from these four different cases 

provide useful insight and have facilitated the investigation of the influence of the FFC on 

the tracking performance.  

 

8.3.1 Application to the first-group of manoeuvres 

 

Since the available helicopter model is linearised around the hover situation, the desired 

vertical rate response is defined as having the qualitative appearance of a first-order lag 

with an additional pure delay, as shown in Eq. (3.12). The other three channels p, q, andΨ  

are set to be zero in terms of their desired responses. The details can be found in Chapter 3 

in this thesis. The results from this application are shown in Fig. 8.2 and Fig. 8.3. 
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Fig. 8.2 Results from 2DOF system with and without FFC for the ADS-33E  

height-response manoeuvre with disturbances and measurement noise 
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Fig. 8.3 Results showing control efforts from 2DOF system with and without FFC for 
the ADS-33E height-response manoeuvre with disturbances and measurement noise 

 

Fig. 8.2 shows that for the simulations of standard manoeuvres the systems with and 

without the FFC provide almost the same tracking performance with disturbances and 

measurement noise. The simulation process is causal since no predefined information is 

required. This is one of the strengths of the proposed method over model inversion, as was 

mentioned in Chapter 3. The results in the channels representing H , p, and q, with and 

without the FFC, are nearly the same. However, in the channelΨ in Fig. 8.2d, the control 

structure with the FFC is apparently better than the one without the FFC. 

 

Fig. 8.3 shows the comparison of control efforts from these different approaches. As shown 

in this figure, the control efforts in these four channels are nearly the same for these two 

control structures. The spikes shown in the channels θ0 and θ0tr in the initiating period result 

from the ‘direct-control' effect of the FFC. Furthermore, this step input in the collective 

pitch θ0 corresponds to an increase of the blade drag and consequently in the engine torque 

to accelerate the system to achieve the first-order step response in terms of heave velocity. 

Meanwhile, the step input in the tail rotor channel θ0tr counteracts the effect of the main 

rotor to keep the heading stable. In addition, control inputs with FFC designed from the 
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inverse simulation procedure are bounded, regardless of the NMP characteristics of the 

vehicle. 

 

Other investigations with increasing noise levels have also been carried out. The results are 

similar to those shown in Fig. 8.2 and Fig. 8.3 and therefore have not been included in this 

section. This property of robustness against measurement noise proves the effectiveness of 

the designed H∞ controller once again. Furthermore, all results from the simulations show 

the validity of the proposed approach in terms of the proposed replacement of model 

inversion by inverse simulation for design of the FFC to improve the tracking performance. 

 

8.3.2 Application to the second and third groups of manoeuvres 
 

In this subsection, the second and third groups of manoeuvres are implemented to 

investigate the performance with the FFC designed from inverse simulation. The definition 

of the second group of manoeuvres follows rules which are similar to those for the first 

group except for the heave velocity channel. Instead of tracking the ADS-33E height-

response manoeuvre, this channel in the second group corresponds to the velocity profile 

(Eq. 2.49) of the bob-up manoeuvre introduced in Chapter 2. The other three channels p, q, 

andΨ  are set to be zero in terms of their desired responses. The results from the second 

group are shown in Fig. 8.4 and Fig. 8.5. The third group, involves use of the step response 

of a standard second-order transfer function, as shown in Eq. (7.13), for the heading rate 

with 0=ξ  and 1.5n =ω  rad/s. The other three output channels are again set to be zero. The 

results from the second group are shown in Fig. 8.6 and Fig. 8.7. 
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Fig. 8.4 Results from 2DOF system with and without FFC for the second group 

of manoeuvres with disturbances and measurement noise 
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Fig. 8.5 Results showing control efforts from 2DOF system with and without FFC 

for the second group of manoeuvres with disturbances and measurement noise 
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Fig. 8.6 Results from 2DOF system with FFC and without FFC for the  
third group of manoeuvres with disturbances and measurement noise 
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Fig. 8.7 Results showing control efforts from 2DOF system with and without FFC for  
the third group of manoeuvres with disturbances and measurement noise 
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Regardless of the different manoeuvres implemented, the results from the second group, as 

shown in Fig. 8.4 and Fig. 8.5, are similar to those from the first group, except in the case 

for the channelΨ in Fig. 8.4d. In general the performance for the control structure with the 

FFC is far better than the one without the FFC. In addition, control inputs with the FFC 

designed from inverse simulation are again bounded regardless of the NMP characteristics 

of the vehicle as well as the different manoeuvre being implemented. 

 

The tracking performance from the third group is a little different from that shown in Fig. 

8.2 and Fig. 8.4. Compared with the situation without the FFC, the case when the FFC is 

included achieves better tracking performance in the channels p (Fig. 8.6b) and Ψ (Fig. 

8.6d). The difference in the heading tracking between these two control structures also is 

shown in the discrepancy of control efforts in the tail rotor channel, as shown in Fig. 8.7d. 

In addition, the sinusoidal shape of the tail rotor pitch follows the heading manoeuvre 

illustrated in Fig. 8.6d. 

 

8.3.3 Application to the fourth group of manoeuvres 

 

In this part, the fourth group, which consists of more demanding manoeuvres, is selected to 

compare the tracking performance with or without the FFC. The specification of this group 

can refer to the definition of the demanding manoeuvres in Section 7.4. The results from 

simulations with the measurement noise and external disturbances are presented in Fig 8.8. 

However, results from other investigations with increasing noise levels are similar to these 

and therefore are not presented here. In addition, control inputs are ignored since these 

manoeuvres lack practical physical meaning and the manoeuvres could not be achieved if 

control input constraints were to be considered. 
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Fig. 8.8 Results from 2DOF system with FFC and without FFC for  
the fourth group of manoeuvres with disturbances and measurement noise 

 

The tracking performance shown in Fig. 8.8 is quite different from that shown in the above 

three cases for the less demanding manoeuvres. From these figures, it can be observed that 

the structure with the FFC always provides good results, which are far better than the 

results without the FFC for the severe manoeuvres. In Fig. 8.8, the structure without the 

FFC achieves good tracking only in the heave rate channel (Fig. 8.8a) and the results of the 

other three channels are unsatisfactory. In addition, further investigations suggest that the 

use of smaller discretization intervals will lead to more accurate tracking with the FFC. 

This suggests that perfect tracking performance is achievable within the simulation 

environment. However, the same results cannot be found for the structure without the FFC.  

 

The different performances from these two types of manoeuvres (demanding or not-

demanding) is probably due to one of the advantages of the FFC in that it can relate the 

system response directly to commands by providing a 'direct-control' channel. In addition, 

it is known that, generally, the smaller the discretization interval, the more accurate will be 

the control inputs obtained from inverse simulation (Hess et al., 1991). In terms of the 

control effort comparison, results are broadly similar for both structures, as shown in Figs. 
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8.3 and 8.5 and 8.7. All these results demonstrate the stability and applicability of the 

algorithm for inverse simulation and the validity of the proposed approach for NMP 

systems for various kinds of manoeuvres. In addition, the inclusion of the FFC can improve 

the tracking performance. 

 

 

8.4 Design of the FFC for a nonlinear Container ship model 
 

In Chapter 7, the performances of the trajectory tracking and the RRS, which are the two 

control objectives to be accomplished, with the FBCs designed from the LQ technique and 

the H∞ algorithm have been compared for the Son and Nomoto full nonlinear Container 

ship model. The results show that better performance is obtained when the H∞ algorithm is 

implemented. Now the final simulation structure is similar to Fig. 8.1 but with the addition 

of a prefilter Fi, as shown in Fig. 8.9. 

 

  
 

Fig. 8.9 Diagram of FFC+FBC system for the nonlinear Container ship 
     

In this diagram, the prefilter Fi, which is a standard second-order system, as shown in Eq. 

(7.13), is added to avoid the numerical problems resulting from large step inputs. Two 

kinds of FFCs, linear and nonlinear, have been designed. For the design of the linear FFC, 

the one input (heading angle) and one output (rudder angle) model similar to the one shown 

in Eq. (7.14), but without the disturbance, is considered as the benchmark for design of the 

linear FFC using inverse simulation, since ship steering is the more important factor. The 
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nonlinear model used to design the nonlinear FFC is similar to the model adopted to 

validate the design of the FBCs with the control constraints, but without the disturbance 

part. In addition, the final simulation is run on a full-scale nonlinear Container ship model 

with a forward surge speed U = 7.3 m/s by replacing G(s) in Fig. 8.9 by the equivalent 

nonlinear description.  

 

Three cases of manoeuvres generated by changing the coefficients in the prefilter 

with 0.015 rad/sn  =ω , 0.05 rad/sn  =ω , and 0.1 rad/sn  =ω  are investigated in this section. 

In addition, for all cases, ξ is selected to have the same value of 0.9. In addition to three 

kinds of manoeuvres, the investigations are also performed for three different situations. 

These are as follows: (a) simulations without the FFC, which have been discussed in detail 

in Chapter 7; (b) simulations with the linear FFC; and (c) simulations with the nonlinear 

FFC.  

 

For the linear FFC, the inverse simulation technique based on the integration process (Hess 

et al., 1991) is implemented for its simplicity and fast convergence. In addition, the 

disturbance model in the linear model shown in Eq. (7.14) has been ignored here. 

Furthermore, there are no input constraints in the adopted linear model. All these can help 

to guarantee good quality results from the inverse simulation approach based on the 

integration process.  

 

As far as the nonlinear model used to design the nonlinear FFC is concerned, the difference 

between this and the nonlinear simulation benchmark model lies in the fact that the 

disturbance model is ignored and input constraints are included. For the methodology to 

design the nonlinear FFC, the constrained derivative-free inverse simulation approach 

based on the NM algorithm, developed in Chapter 6, is adopted due to the failure of the 

integration-based inverse simulation approach for application to this kind of situation in 

which input constraints are included. This represents the motivation for development of the 

NM technique for inverse simulation, which was discussed at length in Chapter 6. 
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The results from the simulation of the first case are shown in Fig. 8.10 and Fig. 8.11 and 

the RMS values in Table 8.2 facilitate quantitative comparison of the performance with or 

without the FFC. The results from the second case are shown in Fig. 8.12 and Fig. 8.13 and 

also in Table 8.3, and those from the third case are shown in Fig. 8.14 and Fig. 8.15 and 

also in Table 8.4. In addition, during the simulation period, the feedback for the channels p 

and Φ are switched on for the period of time from 300 s to 500 s and are switched off at all 

other times, in order to show the performance in terms of roll-moment reduction. 

 
Table 8.2 Comparison of RMS values from 2DOF system with the nonlinear Container ship model  

(ωn = 0.015 rad/s). Band: the time period from 300s to 500 s; total: the whole period 
Structure Φ(Total, deg) Φ(Band, deg) p(Total, deg/s) p(Band, deg/s) u(Total, deg) 

Without 
FFC 2.45 1.84 0.603 0.490 0.838 

With 
linear FFC 3.78 1.77 0.879 0.407 1.22 

With 
nonlinear FFC 2.86 1.57 0.683 0.438 0.886 
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Fig. 8.10 Results from 2DOF system with the nonlinear Container ship model  

(U = 7.3 m/s, ωn = 0.015 rad/s) 
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Fig. 8.11 Inputs from 2DOF system with the nonlinear Container ship model 
(U = 7.3 m/s, ωn= 0.015 rad/s) 

 

Table 8.3 Comparison of RMS values from 2DOF system with the nonlinear Container ship model  
(ωn = 0.05 rad/s). Band: the time period from 300s to 500 s; total: the whole period 

Structure Φ(Total, deg) Φ(Band, deg) p(Total, deg/s) p(Band, deg/s) u(Total, deg) 

Without FFC 3.56 2.44 0.815 0.593 1.50 

With linear 
FFC 2.26 1.91 0.540 0.476 1.46 

With 
nonlinear FFC 2.91 1.73 0.693 0.478 1.35 
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Fig. 8.12 Results from 2DOF system with the nonlinear Container ship model  
(U = 7.3 m/s, ωn = 0.05 rad/s) 

0 100 200 300 400 500 600
-5

0

5

10

u,
de

g

W ith Linear FFC

0 100 200 300 400 500 600
-10

-5

0

5

10

u,
de

g

W ith Nonlinear FFC

0 100 200 300 400 500 600
-5

0

5

10

Time,s

u,
de

g

No FFC

a.)

c.)

b.)

 
 

Fig. 8.13 Inputs from 2DOF system with the nonlinear Container ship model 
(U = 7.3 m/s, ωn= 0.05 rad/s) 
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Fig. 8.14 Results from 2DOF system with the nonlinear Container ship model  
(U = 7.3 m/s, ωn = 0.1 rad/s) 
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Fig. 8.15 Inputs from 2DOF system with the nonlinear Container ship model  
(U = 7.3 m/s, ωn = 0.1 rad/s) 
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Table 8.4 Comparison of RMS values from 2DOF system with the nonlinear Container ship model  
(ωn = 0.1 rad/s). Band: the time period from 300 s to 500 s; total: the whole period 

Structure Φ(Total, deg) Φ(Band, deg) p(Total, deg/s) p(Band, deg/s) u(Total, deg) 

Without 
FFC 2.84  2.16 0.630 0.501 1.95 

With 
linear FFC 4.01 1.84 0.927 0.421 3.46 

With 
nonlinear FFC 2.73 1.60 0.654 0.407 3.50 

 

From the graphs and the RMS values shown in the tables above, the structures of the K/KS 

FBC systems with or without the FFC both show good performance against the 

measurement noise and disturbances. The word 'Band' in the tables signifies the period of 

time from 300 s to 500 s and 'Total' represents the whole time period.  

 

For the case of the gentle manoeuvre with ωn = 0.015 rad/s, these values in Table 8.2 show 

that the roll angle (Φ) has been reduced by 0.6 deg and the roll rate (p) by 0.12 deg/s when 

the roll-moment feedback is switched on for the case without the FFC. When the linear 

FFC is introduced, the performance improvement in the band period is slightly better and is 

further reduced down to 1.77 deg (Φ) and 0.407 deg/s (p), as shown in Table 2. However, 

the performance over the whole time period is worse (3.78 deg) as can be observed in Fig. 

8.10c in which some roll angles are significantly larger. If the nonlinear FFC is included, 

the results correspond to those for the linear FFC case but the band roll angle reduces 

further to 1.57 deg. However, in contrast to the decrease of the roll angle, the value of the 

band roll rate is increased. This is due to the fact that the relationship between the roll angle 

and the roll rate is not a simple integration process and involves the different reference 

systems.  

 

In addition to the roll-reduction achievement, both structures achieve nearly perfect heading 

tracking shown in Fig. 8.10b, although the RMS values of the rudder angles in the whole 

time period for the case with the FFC are slightly larger than the ones without the FFC, as 

presented in Table 8.2. The input values u in Table 8.2 may be different from the values of 

δr shown in Fig. 8.10a in that the values u , which are the control effort summation between 

the FBC and the FFC, are the input for the nonlinear model and in fact it is equal to the 
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term δc in Fig. 6.4. The δr values in Fig. 8.10 involve the actual rudder deflections and are 

equal to the constrained values of u. Among the u values in Table 8.2, the ones with the 

FFC are larger but are still within the constraint limits. This is due to the fact that the u 

values for the case with the FBC involve contributions from both the FFC and FBC. 

 

The analyses for the second case can follow in the same way as for the first case and 

therefore are ignored here.  When the manoeuvres become more severe by increasing the 

ωn value for the prefilter Fi to 0.1 rad/s, both structures achieve nearly perfect heading 

tracking and good roll-reduction as well, as shown in Fig. 8.14 and Table 8.4. However, Fig. 

8.15 shows that the rudder angles u with the FFC are quite large (reaching to around 40 deg) 

in the first few seconds but decrease sharply and the system then operates with very small 

magnitudes of input. The initial large amplitudes with the FFC result, in part at least, from 

the fast tracking requirement for this new manoeuvre. Therefore, compared with the 

previous gentle manoeuvre (ωn = 0.015, 0.005 rad/s), the larger rudder deflections are 

required to provide the necessary control efforts. However, since the maximum values of 

the input amplitude without the FFC are only around 8 deg, the large amplitudes required 

with the FFC are primarily due to the ‘direct-control' function from the control effort of the 

FFC as mentioned earlier. As a result, in this case, the rudder is working under saturation 

conditions, as illustrated in Fig. 8.14a and shown also by the relatively large u values in 

Table 8.3. 

 

As been analysed in Chapter 7, the good properties of the K/KS controller avoid the need to 

introduce the extra complexity of dealing with measurement noise in this case. The same 

analysis can be applied in terms of disturbance rejection. All these results prove the 

effectiveness of the proposed structure with the FFC designed from the inverse simulation 

for these applications.  

 
 
8.5 Summary 
 
The 2DOF structure based on inverse simulation for the FFC has been designed and 

combined with an effective H∞ controller as the FBC. The results from an eighth-order 
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linearised NMP helicopter model have shown the validity and effectiveness of the approach. 

The implemented structure always achieves good tracking performance regardless of the 

manoeuvre adopted. The bounded results from the causal simulation process also prove the 

feasibility of inverse simulation for replacement of more complex model-inversion 

techniques in such situations. In addition, the magnitudes of the control efforts involved in 

the new approach are nearly the same as those without the FFC. 

 

These advantages are further elaborated in case studies involving an application to the Son 

and Nomoto nonlinear Container ship model. The results show good performance against 

measurement noise and disturbances as well as good rudder-roll reduction during periods of 

time when the feedback of the channels p and Φ is switched on. These investigations prove 

the effectiveness of the approach and confirm that inverse simulation may be used 

successfully in the design of the FFC for a complex nonlinear model. The results with the 

nonlinear FFC show the smallest roll angle and it is suggested that this is achieved from the 

additional information contained in the feedforward channel. For gentle manoeuvres, the 

inputs from the combination of the FFC and FBC are within the constraints. However, one 

apparent shortcoming lies in the fact that large control efforts are required in the first few 

seconds of a more severe manoeuvre due to ‘direct control’ components from the FFC. This 

can cause the rudder to operate at the saturation limit for some time. The problem may be 

overcome by adjusting the weighting function W2 to limit the control efforts. 
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Chapter 9  

 

An Investigation of 

Helicopter Ship Landing Using Inverse Simulation 
 

 

Contents 

9.1 Manoeuvre definition..............................................................................................................184

9.2 Inverse simulation of the ship landing process .....................................................................187

9.3 Investigation of ship landing with the 2DOF structure........................................................192 

 
Since the first successful landing by a helicopter on board a merchant ship (the Daghestan) in 1943, the tasks 

performed by helicopters quite often involve marine operations such as civil air-sea rescue and military 

actions. Therefore, much research has been carried out focussing on the issue of helicopter shipboard landing. 

The aim of this chapter is to simulate a helicopter ship landing mission onto a deck using the inverse 

simulation technique and to investigate control based upon the combined 2DOF feedback and feedforward 

controller structure described in earlier chapters. Aspects of the work presented here are based on the 

contribution made by Thomson, Coton and Galbraith (2005).  

 

 

9.1 Manoeuvre definition 
 

As mentioned in Chapter 2, inverse simulation is a methodology that can determine the 

control actions required by the model of a vehicle to track perfectly a specified manoeuvre. 

Therefore, the first step of the inverse simulation procedure is to define an ideal trajectory 

that suits the practical situation. In his thesis McGeoch (2005) breaks the ship landing 

process into six individual manoeuvres: cruising flight, descent and deceleration, a 45o 
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approach, alignment, lateral reposition over the deck, and final touchdown, by following 

the mission task elements within ADS-33 (Anon, 2000). The landing procedure defined in 

this way represents a typical and practical shipboard recovery process but this multi-phase 

approach is complicated and is not feasible to implement for inverse simulation. Therefore, 

a simpler version of the manoeuvre definition needs to be found and the procedure 

described by Thomson et al (2005) has been adopted for this work. In this approach the 

three Earth-fixed reference coordinates with the additional heading angle are used to define 

the four elements of the manoeuvre, as introduced in Chapter 4. The manoeuvre scheme for 

helicopter ship landing is shown diagrammatically as follows in Fig. 9.1. 

 

 
 

Fig. 9.1 Diagram showing definitions of relevant variables  
for the helicopter ship landing situation 

 

In Fig. 9.1, xe, ye, and ze are the set of coordinates of the helicopter within the Earth-fixed 

reference system. The direction of the xe axis corresponds to the heading of the ship which 

is cruising at a speed of Vs. wΨ refers to the angle between the direction of the ship heading 

and the wind. Vw represents the speed of the wind. The centre of gravity of the helicopter is 

consistent with the location of the origin of the Earth-fixed reference system. At the initial 

stage, the helicopter is located at a height h above the ship and is at a distance s on its port 

side. The whole landing process starts from this initial state and can be divided into three 

phases: 
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a. The lateral motion phase 

 

The velocity profile of this lateral motion phase is quite similar to the bob-up manoeuvre 

defined in Chapter 2 but involves lateral rather than vertical motion. The manoeuvre is 

initiated with the helicopter in a hover situation relative to the ship and the helicopter then 

accelerates sideways until the lateral velocity reaches a peak value maxy  at the time point 

t1/2 (where t1 is the time to complete the lateral motion). After this phase of the manoeuvre, 

the vehicle decelerates to a hover directly above the vessel. The total distance covered in 

this period is s. Therefore, the polynomial equation used to describe the bob-up manoeuvre 

in Chapter 2 can still apply to the case being discussed here. 

6 5 4 3
max

1 1 1 1

( ) [ 64( ) 192( ) 192( ) 64( ) ]e
t t t ty t y
t t t t

= − + − +                              (9.1)  

where the value of the parameter t1 can be calculated in a similar fashion to Eq. (2.47). The 

other three channels are defined as follows: 

( )e sx t V= ;   ( ) 0ez t =  ;   ( ) 0tΨ =                                                            (9.2) 

where the heading angle (Ψ) is assumed to be zero. This is sufficient for the still air 

condition but if the effects of wind disturbances have to be taken into consideration, the 

selection of this angle depends on the strategy adopted by pilot. 

 

b. The stabilisation phase 

 

In practical situations, it usually takes several seconds for the helicopter to stabilise over the 

deck before attempting a vertical landing. Therefore, this extra period has been taken into 

consideration in designing the manoeuvre implemented in this part of the work. The time 

consumed in this stabilisation phase is assumed to be t2. The four channels are selected as 

follows: 

( )e sx t V= ;   ( ) 0ey t =  ;   ( ) 0ez t =  ;   ( ) 0tΨ =                                         (9.3) 

c. The vertical landing phase 

 
The velocity profile of this phase is similar to that in the first lateral motion phase, although 

it involves a different axis. Thus, the polynomial equation is adopted as follows: 
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6 5 4 3
max

3 3 3 3

( ) [ 64( ) 192( ) 192( ) 64( ) ]
* * * *

e
t t t tz t z
t t t t

= − + − +                              (9.4)  

where *
1 2( )t t t t= − +  and t3 is the total descent time. This quantity can be found using Eq. 

(2.47) likewise. The other three channels are defined as follows: 

( )e sx t V= ;   ( ) 0ey t =  ;   ( ) 0tΨ =                                         (9.5) 

 
 
9.2  Inverse simulation of the ship landing process 
 
In this section two cases, with and without atmospheric disturbances, are investigated 

during the ship landing process. The values selected for the parameters of the manoeuvre 

scheme shown in Fig. 9.1 are as follows: 

10 knots; 20 m 10 knots

10 m; 5 m/s; 1 s;

s max

max s

V   s = ; y  

h   z  t  = 

= =

= =
                             (9.6) 

The final manoeuvres describing the landing process are shown as follows: 
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Fig. 9.2 The ideal trajectories for inverse simulation for the nonlinear Lynx helicopter model 
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9.2.1 Ship landing in still air 

 

Based on the above manoeuvre definition and configuration, inverse simulation has been 

investigated for the nonlinear Lynx helicopter model (Bagiev, 2006) in still air. The results 

from the simulation process are illustrated from Figs. 9.3 to 9.6.   
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Fig. 9.3 Control efforts from ship landing process for the nonlinear  

Lynx helicopter model (Δt = 0.05 s, V =10 knots) 
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Fig. 9.4 State variable values from ship landing process for the nonlinear  

Lynx helicopter model (Δt = 0.05 s, V =10 knots) 
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Fig. 9.5 State variable values from ship landing process for the nonlinear  
Lynx helicopter model (Δt = 0.05 s, V =10 knots) 
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Fig. 9.6 Trajectory comparisons between ideal values and the ones from inverse simulation for  

ship landing process for the nonlinear Lynx helicopter model (Δt = 0.05 s, V = 10 knots) 
 

Fig. 9.3 shows that the lateral cyclic control channel (θ1c) initiates a step input and then a 

step in the opposite direction to achieve the sideways motion which lasts around 8 seconds. 

During this phase, the input through the collective channel (θ1c) remains almost constant 

since the height of the helicopter has to be maintained. The longitudinal cyclic control input 

(θ1s) also remains almost constant. The slight bump shown in the tail rotor channel (θ0tr) is 
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used to balance the torque generated by the sideways motion. After the one-second 

stabilisation, this channel initiates a pulse to descend to the deck and generates a sinusoidal 

shape of control input time histories. A similar shape can be observed in the other channels 

as well, in order to keep the constant heading and roll and pitch stability. 

 

Figs. 9.4 and 9.5 show the results in terms of the state variables obtained from the inverse 

simulation process. An analysis similar to that presented for the control channels can be 

applied to these variables. Fig. 9.6 shows comparisons between the ideal trajectories and 

the values from the forward simulation with the calculated control efforts. This proves the 

successful implementation of the inverse simulation process for the ship landing situation 

in the absence of wind disturbances. 

 

9.2.2 Ship landing with wind disturbance 

 

In this section, atmospheric disturbances are included in the equations of the helicopter 

mathematical model. In practice, the helicopter model becomes significantly more 

complicated and has time-varying characteristics if the wind disturbances are considered. 

Therefore, a straightforward method has been adopted to avoid this complexity in this work. 

First, the velocity of the helicopter with respect to the wind (Vh,a)e in the Earth-fixed 

reference system is obtained from the speed of the helicopter and the speed of the wind 

both with respect to the ground (Vh,g, Va,g)e; secondly, (Vh,a)e is transformed into the values 

(Vh,a)b in body axes. Here the subscript b represents the body reference system; finally, the 

values (Vh,a)b are added to the corresponding variables in the equations of motion. 

 

Four types of wind situations, as shown in following list, are investigated in this chapter. 

This choice is linked to the convenience of the specification of the wind velocity under 

these situations: 
0

0

0              Tail wind

90            Port wind

w

w

Ψ =

Ψ =
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0

0

180          Head wind

270          Starboard wind

w

w

Ψ =

Ψ =
 

The results based on these four wind situations are shown in Figs. 9.7 and 9.8, respectively. 
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Fig. 9.7 Control efforts from inverse simulation with and without the wind disturbance                             

------------ still air; ----- 40 knots, headwind; ········40 knots, tailwind 
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Fig. 9.8 Control efforts from inverse simulation with and without the wind disturbance                             

------------ still air; ----- 40 knots, port wind; ········ 40 knots, starboard wind 
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Fig. 9.7 shows that the four control efforts have similar shapes but different amplitudes. 

The results are just offset from those obtained in the still air conditions. This illustrates that 

the control strategies for landing on a deck might be similar for the situations involving 

headwind and tailwind. A similar phenomenon can be observed in the channels for the 

longitudinal, the lateral, and the tail rotor inputs in Fig. 9.8, although the collective case 

differs there. The collective channel requires a large control effort to overcome the addition 

contribution from the starboard wind for the sideways motion. In contrast, a lower control 

effort is demanded for the case of the port wind. However, for the both cases a similar 

shape is found in the vertical descending stage.  

 

 

9.3 Investigation of ship landing with the 2DOF structure 
 

This section focuses on two cases of applications of the ship landing manoeuvre using the 

2DOF control scheme shown in Fig. 8.1. The first case involves the same Lynx-like linear 

helicopter model implemented in Section 8.3. The second case is based on a linear Lynx 

helicopter model which is linearised from the nonlinear helicopter model at a forward speed 

of 10 knots (Bagiev, 2006). 

 

9.3.1 Ship landing based on the Lynx-like helicopter model 

 

For this case, all the experimental configurations (except the ideal manoeuvres) are exactly 

the same as the ones investigated in Section 7.4 and Section 8.3, including the presence of 

disturbances and measurement noise. The manoeuvres adopted are derived from the inverse 

simulation process of the ship landing for the nonlinear helicopter model. The final 

simulation results are shown in Fig. 9.9 and Fig. 9.10. 
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Fig. 9.9 Results from 2DOF with FFC and without FFC for ship landing 

with disturbance and measurement noise (Lynx-like helicopter) 
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Fig. 9.10 Results showing control efforts from 2DOF with and without FFC for ship landing 

 with disturbance and measurement noise (Lynx-like helicopter) 
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The results shown in Fig. 9.9 and Fig. 9.10 are quite similar to the ones obtained in Section 

8.3 in that the tracking performance with the FFC is better than without the FFC. This is 

evident in the p and q channels and, especially, in the channelΨ . In addition, the control 

efforts with or without the FFC are not very different. The shapes of these control inputs 

are similar to the results obtained from the inverse simulation for the nonlinear Lynx model, 

as shown in Fig. 9.3. For instance, the sinusoidal shape is present in the first-half time 

period of the lateral cyclic channel and in the later-half period for the tail rotor channel. 

 

9.3.2 Ship landing based on the linear Lynx helicopter model 

 

The model investigated in this section is linearised from the nonlinear Lynx helicopter 

model at a forward speed 10 knots. The selection of this equilibrium point is due to the fact 

that the helicopter has the same initial cruising speed as the ship. In addition, The FBC is 

also designed by the H∞ control algorithm, as already illustrated in detail in Chapter 7 (see 

Fig. 7.1). However, the practical process shows the difficulty of selecting the weighting 

functions if the selection of the six output channels is equal to ones in Table 7.1. 

Consequently, to guarantee the good convergence of the H∞ algorithm, the six output 

channels are selected to be: H , u, v,Ψ , p, and q. This is different from the case in Section 

9.3.1.  

 

The weighting functions W1(s), W2(s), and W3(s) selected for this linear model are shown as 

follows: 

 

4 3.6 5.6( ) {0.6 ,0.48 ,0.7 ,1 0.001 0.001 0.002
2 6.20.6 ,0.02 ,0.02 }0.002 0.005 ( 4)( 4.5)

s s ss diag s s s
s s s                     s s s s

+ + += ⋅ ⋅ ⋅+ + +

+ +⋅ ⋅ ⋅+ + + +

W
                        (9.7) 

 

0.001 0.0010.001 0.001( ) {0.5 ,0.5 ,0.6 ,0.5 }2 10 10 10 10
s ss ss diag s s s s
+ ++ += ⋅ ⋅ ⋅ ⋅+ + + +W      (9.8) 

  

( ) {1, 1, 1, 1, 0.1, 0.1}3 s diag=W                                                         (9.9) 
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The plots of the singular-value of the sensitivity function (S) and the complementary 

sensitivity function (T) are shown in the following:  
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Fig. 9.11 The plot of (I+GK)-1 (a) and GK(I+GK)-1 (b) 
 

The same analysis given in Chapter 7 can be applied to explain that the design 

specifications have been well achieved in Fig. 9.11. After the design of the FBC, the 

procedure followed to design the FFC by the inverse simulation method is essentially the 

same as that in Chapter 3. Therefore, as presented there, the first stage is to find a suitable 

Δt value. From calculation, the linear system being investigated is found to have two RHP 

zeros and five zeros located at the origin. By following the methodology introduced in 

Chapter 3, the magnitude versus the sampling rate is plotted as follows: 
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Fig. 9.12 Variation of magnitude of the zeros with Δt 
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Fig. 9.12(a) shows that there always are some zeroes whose amplitudes are large than one 

when the value Δt is increased. Fig. 9.12(b) is an enlarged interval [0, 0.15 s] which shows 

that the amplitudes of all zeros are not larger than one when the Δt value is less than 0.04 s. 

Therefore Δt = 0.02 s is selected by taking account of the accuracy and convergence speed. 

The final simulation combines the FBC with the FFC designed through inverse simulation.  
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Fig. 9.13 Results from 2DOF with FFC and without FFC for ship landing 

with disturbance and measurement noise (Lynx helicopter) 
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Fig. 9.14 Results showing control efforts from 2DOF with and without FFC for ship 

landing with disturbance and measurement noise (Lynx helicopter) 
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The tracking performances achieved for the xe and ze channels shown in Fig. 9.13 are not 

significantly different with and without the inclusion of the FFC. In fact, both channels 

agree well with the ideal trajectories and thus meet the requirements. However, the ye 

channel shows results in which the performance with the FFC is slightly better than for the 

case without the FFC. This is more obvious in the Ψ  channel where it seems likely that the 

results become unbounded with time for the case without the FFC and the outcome with the 

FFC shows good tracking performance and no signs of tendency of larger divergence. 

 

As far as the control efforts are considered in Fig. 9.14, the collective channel and the tail 

rotor channel records correspond to those in Fig. 9.3 and can be interpreted with full 

physical meaning. In addition, for collective channel and lateral channels, it seems that 

these two channels are affected by minor level noise. However, the noise may not be a 

problem since the controlled model could be considered as a low-pass filter, as 

demonstrated by the smooth tracking performance observed in output channels in Fig. 9.13. 

 

This application again shows the benefit of introducing FFC in that it improves the tracking 

performance. Moreover, because the investigated system is a NMP and nonhyperbolic 

system, the implementation of the classical model inversion techniques would be quite 

complicated (Devasia et al., 1996, Wang & Chen, 2001). However, inverse simulation can 

overcome the NMP and nonhyperbolic problem in a more straightforward and causal way. 
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Chapter 10  

 

Conclusions and Future Work 
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This chapter presents the main conclusion of the thesis and highlights the original contributions. In addition, 

suggestions are made for future work to build on the foundation established here. . 

 

 

10.1 Conclusions 
 

In the introduction which forms the first chapter it is stated that the main aims and 

objectives of this thesis. To accomplish these tasks, a series of investigations have been 

carried out and two new techniques for inverse simulation have been developed and 

implemented in this thesis. In addition, the idea of designing the FFC through inverse 

simulation has been realized and validated for a number of practical applications involving 

ship and aircraft models.  

 

The complexity and tediousness of the traditional model inversion techniques when applied 

to the type of models encountered in the marine and aerospace fields, especially for NMP 

systems, has been the motivation for seeking some other approach that is easier to apply. 

Inverse simulation provides a possible alternative in that it achieves the same objective as 

model inversion, although using an entirely different methodology. As stated in Chapter 2, 
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model inversion based methods obtain the input through inversion of a nonlinear dynamic 

system in advance whereas inverse simulation does this through a numerical process.  

 

Chapter 3 describes a comprehensive investigation of the relationship between inverse 

simulation and model inversion. The link between the two approaches is presented by 

dividing the most widely used inverse simulation process into two stages – the 

discretization process and the iterative procedures based upon the NR algorithm. By a 

suitable discretization interval and the guaranteed stability of the NR algorithm, for the case 

of MP systems, inverse simulation is shown to provide a viable alternative approach. This 

is easier to apply and more feasible in terms of practical implementation, compared with 

traditional model inversion techniques. Moreover, the work carried out shows that for the 

case of NMP systems the discretization process can contribute significantly to the 

successful application of the inverse simulation approach through zero redistribution. This 

is different from the method of Yip and Leng (1998) since it removes the assumption of a 

constant Jacobian matrix and fast convergence to achieve the approximation of the NR 

algorithm. Moreover, the analysis presented in this thesis show that the discretization 

process and the NR algorithm play significant roles of determining the stability of the 

whole inverse simulation process. 

 

The ideas relating to inverse simulation methods have been validated and illustrated 

through applications involving a nonlinear HS125 fixed-wing aircraft model, a linear SISO 

NMP system, and an eighth-order linear Lynx-like helicopter model. The results from these 

applications prove the effectiveness of inverse simulation over model inversion. In addition, 

all the cases considered show that the computational overheads of the proposed approach 

based on inverse simulation are modest, regardless of whether nonlinear or linear systems 

are being considered. Moreover, the speed may be further increased by increasing the 

sampling interval without adversely affecting the accuracy of the results. All these results 

provide support for the innovative idea presented in this thesis that it may be possible and 

practical for inverse simulation to replace model inversion in the output-tracking field or 

other corresponding domains. 
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Chapter 4 reviews and analyses three issues relating to traditional inverse simulation 

algorithms. These involve the high-frequency oscillation phenomenon, the redundancy 

problem, and the phenomenon of constraint oscillations, as outlined in Chapter 1. The first 

two problems are addressed by reviewing historical contributions and most effort has been 

devoted to investigation of the third issue. The findings contrast with traditional 

explanations of the root cause of constraint oscillations. Results from investigations 

involving the nonlinear Lynx helicopter model show that factors such as the sampling rate, 

the type of manoeuvres, and the internal dynamics of the model itself all contribute to this 

special phenomenon. In addition, analysis involving the linearised helicopter model around 

specific trim points has also been useful in this investigation. The reasons of influence from 

the sampling rate are based on the increased information contained in the outputs as a result 

of using smaller sampling rate values. The effects associated with the severity of the 

manoeuvre or the input-output analytic relationship that leads to more distinct oscillations 

are believed to result from the highly coupled nature of helicopter dynamics and the 

relatively complex form of helicopter model being investigated. Finally, the internal 

dynamics is believed to have a critically important role in the generation of constraint 

oscillations. There is much evidence of consistency, in terms of frequency and the general 

nature of observed oscillations, between the overall dynamic characteristics of an inverse 

simulation model and characteristics of the underlying forward model in terms of the zeros 

(of a SISO linearised description) or the internal dynamics (in the more general case such 

as a multivariable nonlinear model).  

 

In Chapter 5 the new SA-based procedure for inverse simulation is developed and validated. 

The new methodology shows advantages over the traditional inverse simulation approaches 

in the number of respects. Firstly, it can deal with the redundancy problem in a natural way. 

Secondly, the development process of this new technique allows for calculation of the 

Jacobian matrix by solving a sensitivity equation, at the cost of computational complexity. 

Therefore, this avoids the traditional numerical approximations to calculate the Jacobian 

matrix and thereby provides greater accuracy in terms of the results. 
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The results from a nonlinear HS125 aircraft model and a nonlinear Lynx helicopter model 

for different manoeuvres such as the hurdle-hop and pop-up manoeuvres show that this new 

SA-based technique is a reliable and flexible tool for inverse simulation. Furthermore, it 

also shows increased stability, better convergence properties, and higher accuracy in 

comparison with the traditional approaches. The high-frequency oscillations that appear in 

the traditional inverse simulation process are largely eliminated in the SA approach by 

increasing the integration number. The only disadvantage of the SA approach is an increase 

of the computation time but this is believed to be acceptable in practice.  

 

Chapter 6 describes work that provides insight into problems of inverse simulation 

associated with input saturation and discontinuous manoeuvres, which have traditionally 

been ignored in the inverse simulation field. A new derivative-free procedure for inverse 

simulation, based on the constrained NM algorithm, is proposed to overcome these 

problems. This proposed approach adopts one-step forward-simulation input 

transformations of the integration-based structure before applying a pattern-search form of 

optimisation method. Therefore, it can avoid use of the augmented Lagrangian method to 

deal with the constrained conditions. 

 

A number of cases have been studied using five nonlinear marine models which represent 

three different situations with respect to the different numbers of inputs and outputs. 

Results from three manoeuvres have been obtained – the turning-circle manoeuvre, a 

zigzag type of manoeuvre, and a pullout manoeuvre – and these prove the effectiveness of 

the new method in terms of improved convergence and numerical stability for cases 

involving input saturation or discontinuous manoeuvres. This improvement in performance 

compared with traditional inverse simulation algorithms also provides a good chance to 

understand better some of the well known numerical problems that commonly occur. In 

addition, the results also show a multi-solution phenomenon in the case of severe 

manoeuvres such as a zigzag and for complex models such as an AUV. 

 

Chapter 7 develops FBCs using the mixed-sensitivity H∞ optimisation method for the 

Norrbin ship model and the linear Lynx-like helicopter model. The designed FBCs show 
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perfect tracking performance against external disturbances and measurement noise for both 

the models investigated. In particular, for the case of the Norrbin ship model the control 

system shows significant robustness in that the same FBC works well for large changes of 

the forward speed. However, the FBC designed for the linear Lynx-like helicopter model 

fails in the case of more severe (but more artificial) manoeuvres.  

 

Subsequently, in addition to the mixed-sensitivity H∞ optimisation method, the LQ method 

is also implemented for the Son and Nomoto Container ship model. The simulation results 

show that the both types of controller considered provide good robustness to changes of 

forward speed within the range 5 m/s, 7.3 m/s, 10 m/s, and 13 m/s. However, the tracking 

performance will deteriorate significantly in the presence of measurement noise. Moreover, 

the required control efforts tends to become unacceptable large.  In contrast, none of these 

deficiencies has been found in the results with the mixed-sensitivity H∞ optimisation 

method and therefore no further design efforts are required to deal with measurement noise. 

Furthermore, good rudder-roll reduction is achieved by the H∞ design with similar rudder 

control effort while maintaining good steering course. 

 

Chapter 8 has achieved two main goals. One is that this chapter presents a systematic 

analysis of the influence of the uncertainties within the linear controlled model on the 

performance of the FFC in the 2DOF control scheme. The other goal is the successful 

development and implementation of the FFC based on inverse simulation combined with an 

effective H∞ controller based on the FBC developed in Chapter 7. This is one of the main 

contributions made in this thesis.  

 

The validity and effectiveness of the approach are demonstrated by two applications. The 

first case study involves an eighth-order linearised NMP and hyperbolic helicopter model 

involving four groups of manoeuvres with differing levels of severity. The causal and 

bounded results prove the feasibility and flexibility of inverse simulation for replacement of 

more complex model-inversion techniques in such situations. The inverting procedure 

would be complicated for an application such as this if the traditional model inversion 

techniques were adopted. For the second case study, the linear and nonlinear robust 



 Page - 203 - 

 

feedforward tracking controllers, based on the constrained NM method introduced in 

Chapter 6, have been successfully implemented for the traditional 2DOF control structure 

for the nonlinear Container ship model. The results prove the effectiveness of this form of 

controller in the context of ship steering and roll stabilization as well as the ability to 

overcome the effects of measurement noise and providing good disturbance rejection. In 

addition, the nonlinear FFC shows better control performance than the linear FFC because 

more information is contained in the feedforward channel.  

 

Chapter 9 has extended the application of inverse simulation to the helicopter ship landing 

field. At first, two cases, with and without atmospheric disturbances, have been investigated 

during the ship landing process. The results from the inverse simulation process with the 

wind disturbance are similar in form to those found in still air conditions, just offset in 

terms of velocity. This may suggests that the control strategies for landing on a deck might 

be similar for the situations involving headwind and tailwind. By following the design 

procedures discussed in Chapter 8, inverse simulation is used to design the FFCs for the 

Lynx-like helicopter model and the linear Lynx helicopter model. The results from these 

investigations again show improved tracking performance, as well as demonstrating yet 

again the effectiveness and feasibility of inverse simulation to design the FFC instead of 

using traditional model inversion. 

 

 

10.2 Future work 
 

Some suggestions and comments relating to possible future work have already been 

mentioned in the main chapters. The most significant areas for further research are listed 

below: 

i. Within this thesis techniques are described which allow inverse simulation techniques 

to be applied to nonlinear MP and linear NMP systems. The results from a series of 

investigation have shown the effectiveness of these methods for these two classes of 

systems. However, the investigation of inverse simulation for the case of nonlinear 

NMP systems requires further consideration and effort. Although inverse simulation 
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has been applied successfully to nonlinear NMP systems such as the nonlinear Lynx 

helicopter model and the nonlinear Container ship model, the reasons why good 

results are achieved in these applications are still not fully understood. Even for 

nonlinear MP systems, further research is needed because such systems may be 

transformed into NMP systems as the operating conditions change during the tracking 

of an ideal trajectory. 

 

ii. In this thesis, inverse simulation has been used to achieve casual inversion in a 

feasible and straightforward way for NMP systems. This is one way in which inverse 

simulation shows an advantage over model inversion in solving inverse problems. 

Compared with the complexity of model inversion techniques, this causal process 

involving inverse simulation may allow the application of this inverse-model based 

control approach to real-time situations. This appears, given the current capabilities of 

modern processors, particularly viable in the ship control field, due to the relatively 

slow dynamics of typical vessels. Because of the limited research time available and 

the objectives of the project, issues associated with practical real-time applications 

based on inverse simulation have not been investigated. These applications, as well as 

further performance comparisons involving model inversion techniques and inverse 

simulation applied to the same systems, are important in future research plans. It may 

appear that further research could lead to more effective and efficient implementation 

of the proposed control algorithm in real-time. 

 

iii. For applications involving the marine system models, a multi-solution phenomenon 

appears in the results from the inverse simulation process based on the constrained 

NM approach, as shown in Chapter 6. This multi-solution phenomenon may have 

potential advantages in dealing with control reallocation and might allow the optimal 

control effort to be found by modification of the cost-function definition. This is an 

interesting field that might be worthy of future research. 

 

iv. An anonymous reviewer of one of the published papers has raised an interesting point 

that the state derivatives in the following equation [Eq. (2.33)] 
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( , )=x f x u  

could be experimentally measured, instead of being computed through the equation 

below [Eq. (2.40)].  
1

1( ) ( ) ( )
 t

k k t
t t dt tk

k
x x x+

+ = +∫  

If this were done it might provide another potential advantage for the use of inverse 

simulation compared with model inversion for control system applications. In the 

inverse simulation process sensor readings (e.g. accelerometer outputs) could be 

integrated directly to provide FFC terms, for systems for which no mathematical 

model can readily be established. This could be a possible area of further 

investigation. 

 

v.  In Chapter 8, the influence of the uncertainties in the control objectives on the 

performance of the FFC has been assessed. However, all those discussions are based 

on linearised models. In the previous work, only a qualitative statement is available 

about the possible improvement in tracking performance of the control system with 

the nonlinear FFC compared with linear FFC. This improvement arises as a result of 

the fact that more information is included in the feedforward channel in the nonlinear 

case. Therefore, further efforts are required to investigate the influence of 

uncertainties on the feedforward channel for a nonlinear system. 

 

vi. Chapter 9 has successfully demonstrated a ship landing control problem with the FFC 

for the linear Lynx helicopter model. However, the research has not yet been applied 

to the nonlinear model. This is due to time constraints as well as the complexity of the 

nonlinear helicopter model. However, it is a further interesting area for future 

research. 
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Appendix-A  

 

Vector Relative Degree 
 

 

This appendix contains an introduction of the definition and concepts associated with the 

vector relative degree for a MIMO square system (Isidori, 1989; Sastry, 1999). Here 

assume a nonlinear MIMO square system can be represented by the following form: 

( ) ( ) ( ) ( )

( ) ( )

t t

t

x f x g x u

y h x

= + ⋅

=
                                                            (A.1) 

where u∈ qR is the input vector, y∈ qR is the output vector, and x∈ mR is the state variable 

vector. The variables f, g, and h are the function matrices with the corresponding orders.  

 

Now differentiate the ith channel of the output vector y of Eq. (A.1) with respect to time to 

obtain the following equation: 

1

( ) ( ) [ ( )]
q

i i i j
j

t L L
=

= +∑ jf gy h x h x u                                                 (A.2) 

If the term ( )iL jg h x in Eq. (A.2) is equal to zero, the input ju will not appear in this 

equation. Therefore, differentiate Eq. (A.2) further until one of the inputs appears in the 

final equations, as follows: 

( ) 1

1

( ) ( ) { [ ( )]}i i
q

i i i j
j

t L L L −

=

= +∑ j

r r
f g fy h x h x u                                      (A.3) 

where ri is the smallest integer such that 1[ ( )] 0i
iL L − ≠

j

r
g f h x , for some x. If all the output 

channels are involved, the following compact equation can be obtained 



 Page - 217 - 

 

 

1 1
1 1 1

( ) ( ) ( )
q q

qq q

L
t

L

r r
f

r

r r
f

y h u
y A x

uy h

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

                                       (A.4) 

where ( )A x is 

1

1

1

11
1 1

1 1

( ) ( )

( )

( ) ( )

q

q

q q

qq q

L L L L

L L L L

−−

− −

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

rr
g f g f

r r
g f g f

h h

A x

h h

                                  (A.4) 

If the following equation 
1[ ( )] 0i

iL L − =
j

r
g f h x        0 2ik≤ ≤ −r  and 1, ,i q=                            (A.5) 

is satisfied in a neighbourhood of x0 and, in addition, the matrix 0( )A x is nonsingular, then 

the system represented in Eq. (A.1) is said to have a vector relative degree 

1 2[ , , ]T
qr r r r= ⋅⋅⋅ . 

 

It is thus apparent that the vector relative degree r is exactly equal to the number of times 

that the output y(t) has to be differentiated with respect to time to explicitly show the input 

u in the equation. 
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Appendix-B  

 

HS125 (Hawker 800) Business Jet  
 

 

This appendix provides a description of the nonlinear longitudinal mathematical model of a 

fixed-wing aircraft, the HS125 (Hawker 800) business jet (Thomson, 2004) which forms 

the basis of some of the work presented in Chapter 3 and Chapter 5. The vehicle equations 

of motion are: 

sin

cos

cos - sin

sin cos

yy

e

e

Xu=-qw+ -g θm

Zw=-qu+ +g θm

Mq= I

q

x u w

z u w

=

=

= +

θ

θ θ

θ θ

                                                                (B.1) 

where u, w are velocity components in body axes, q is pitch angular velocity component in 

body axes, and θ is the fuselage-pitch attitude. X, Z, and M are the external forces and 

moment. The variables xe and ze are the longitudinal and vertical displacements, 

respectively. 

 

Table B.1 provides details of the meaning of each of the parameters of this model and the 

values used.  
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Table B.1 Configuration data for the HS125 (Hawker 800) Business Jet 

Parameter Symbol Value Units 

Aircraft Mass M 7500 kg 

Wing Area S 32.8 m2 

Pitch Moment of Inertia Iyy 84309 Kg⋅m2 

Mean Chord c  2.29 m 

Thrustline above x-axis hT 0.378 m 

Lift Coefficients CL0, CLα, CLδe 0.895,5.01,0.722 - 

Drag Coefficients CD0, CDα, CDαα 0.177,0.232,1.393 - 

Pitching Moment Coefficients. CM0, CMα, CMδe, CMq -0.046,-1.087,-1.88,-7.055 - 

 

In addition, this aircraft trim point at sea level with a velocity of 120 knots can be 

calculated as follows: 

0 0

0 0 0

0

61.8682 m/s 0.8501 m/s 0 rad/s

0.01374 rad/s, 0.0 m, 0.0 me

u  , w  , q  

 x  z  e

= = =

= = =θ
                           (B.2) 

where the “0”subscript indicates that all these values are in a trimmed equilibrium flight 

state. The linearization of the dynamics around the equilibrium point are as follows: 

-0.0573 0.1243 0 -9.8091
-0.3051 -0.8647 61.8682 -0.1348
-0.0015 -0.0367 -0.5455 0

0 0 1.0000 0
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Appendix-C  

 

Inverse Identification 
 

 

In this appendix the sensitivity-analysis technique is used to determine the key parameters 

in the obtained model, and then the traditional identification method is implemented to 

identify these key parameters in the inverse structure.  

 

All the introduced methods in the main context of the thesis, including model inversion and 

inverse simulation, are based on the pure mathematical method to find the desired inputs. 

The inverse identification presented in this appendix is concerned with identifying an 

inverse model from the input and output data sets. This technique is combined with the 

approaches for model inversion in that it utilises the structure of the inverse model. Besides, 

the input vector is constructed according to the relative order r. However, if the component 

value of r is larger than two, in reality, it will lead to the difficulty in constructing the input 

vector. This is due to the fact that the real data is often polluted by noise and its signal-to-

noise ratio (SNR) is not high. Therefore, before applying the approach to real data, it is 

necessary to reprocess the data to select the frequency range of interest etc. In addition, the 

sensitivity analysis method shown in the paper (Sato et al., 2004) is used to determine the 

key parameters to improve the identification process. 

 

Sensitivity analysis is relatively fast and computationally inexpensive but it only describes 

the local behaviour of the model outcome uncertainty as results of the model parameter 

uncertainties (Haverkort & Meeuwissen, 1995). Moreover, the inverse model is derived 

from the forward model which is valid in the local area of the equilibrium point. So these 
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parameters will be only valid in this local area. This coincidently is consisted with the 

necessary condition for the application of the sensitivity analysis method. Furthermore, 

sensitivity analysis will face difficulty if the parameters are dependent or coupled with each 

other. This is a common situation in the aircraft model especially for the helicopter model. 

Fortunately, here the considered model is the noncausal inverse model of the original model. 

These parameters lack physical meaning and this consequently leads to a weak dependent 

relationship among them. 

 

A series of tests with simulated data have been run on the Autogyro longitudinal model 

(Houston, 1998). The vector relative degree r of this system is [1, 1, 1, 2, 1]. Based on this 

value, it is possible to construct the input vector for the inverse model. The ideal system 

matrices of the inverse model are shown as following. 

                         

0.0403 -0.2880 -4.1061 -9.0035 -0.0407
0.3473 0.8317 24.9658 1.9215 - 0.0869
-0.0951 - 0.5347 -1.5902 - 0.3546 0.0085

0 0 1.0000 0 0
0.1306 0.3838 8.6225 0.9926 -0.0288

   
  

 

A

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

                         

0.0010 -0.0095 0.0028 0.0028 0.0291
-0.0095 0.0954 - 0.0277 -0.0277 - 0.2910
0.0028 -0.0277 0.0080 0.0080 0.0844

0 0 0 0 0
0.0291 - 0.2910 0.0844 0.0844 0.8876

   

  

B

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

                         [ ]-4.0733 -16.1973 -13.0081 3.2546 0.328 C =  

                         [ ]0.0954 -0.9541 0.2767 0.2767 2.9101  D =  

Now sensitivity analysis is used to determine the key parameters. The results show that the 

key parameters for A are: A(1,1), A(1,5), A(2,1), A(2,5), A(3,1), A(3,2), A(3,5), A(4,1), 

A(4,2), A(4,3), A(4,4), A(4,5), A(5,1); The same approach is used for the B matrix giving: 

B(1,1), B(1,5), B(2,1), B(2,5), B(3,1), B(3,2), B(3,5), B(4,1), B(4,2), B(4,5) as key 

parameters. 
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The final results have shown the validity of the method. Two sets of parameters have been 

identified by keeping the other parameters at ideal values. Since lacking of the physical 

relationship among the parameters, the components of these two sets are selected randomly. 

The results are presented in Table C.1 to Table C.6 and also show the effect of the 

increasing noise level. Compared with the ideal values, the identified results show good 

results. The first set selects four components of the A matrix and two components of the B 

matrix. In Table C.1, all the parameters obtain well-identified values except the component 

B(2,1) without noise. However it retains the same negative sign as the ideal value. When 

the SNR is reduced, the B(2,1) values quickly turns its negative sign to positive. Other 

parameters show greater robustness to noise. The second set selects three components each 

from the A and B matrices. For this case nearly all the parameters are estimated well shown 

in the Table C.4 to Table C.6. Although the B(1,1) value changes fast with the reduction of 

the SNR, it still keeps the same positive sign. 

 

In addition, the method has also been run on twelve parameters, the combination of the 

above two sets. The results have shown that without noise, all the parameters obtain 

relatively good results except the parameters B(1,1) and B(2,1). They also have not been 

identified well in the previous investigations. The difference from the above results is that 

here the identified results quickly deteriorate when the noise level is increased. This is 

probably due to too many parameters are to be identified at one time. 

 
Table C.1 Parameter identification of the inverse Autogyro longitudinal model  

(Noise level=0 for each channel) 
Components Ideal value Guess value Estimated 

  A(1,1)=   0.0403 0.03 0.0364 
  A(1,5)=   -0.0407 -0.06 -0.0315 
  A(2,1)=   0.3473 0.5 0.3583 
  A(2,5)=   -0.0869 -0.5 -0.1008 
  B(2,1)=   -0.0095 -0.007 -0.0374 
  B(3,5)=   0.0844 0.1 0.0849 
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Table C.2 Parameter identification of the inverse Autogyro longitudinal model  
(Noise level=0.00001 for each channel) 

Components Ideal value Guess value Estimated 
  A(1,1)=   0.0403 0.03 0.0316 
  A(1,5)=   -0.0407 -0.06 -0.025 
  A(2,1)=   0.3473 0.5 0.3404 
  A(2,5)=   -0.0869 -0.5 -0.1026 
  B(2,1)=   -0.0095 -0.007 0.0105 
  B(3,5)=   0.0844 0.1 0.0855 

 
Table C.3 Parameter identification of the inverse Autogyro longitudinal model  

(Noise level=0.0001 for each channel) 
Components Ideal value Guess value Estimated 

  A(1,1)=   0.0403 0.03 0.0369 
  A(1,5)=   -0.0407 -0.06 -0.0096 
  A(2,1)=   0.3473 0.5 0.2969 
  A(2,5)=   -0.0869 -0.5 -0.1068 
  B(2,1)=   -0.0095 -0.007 0.0894 
  B(3,5)=   0.0844 0.1 0.0865 

 
Table C.4 Parameter identification of the inverse Autogyro longitudinal  

(Noise level=0 for each channel) 
Components Ideal value Guess value Estimated 

  A(3,1)=   -0.0951 -0.1 -0.0959 
  A(3,5)=   0.0085 0.005 0.0085 
  A(5,1)=   0.1306 0.1 0.1408 
  B(1,1)=   0.0010 0.006 0.0081 
  B(1,5)=   0.0291 0.01 0.0265 
  B(3,2)=   -0.0277 -0.04 -0.0257 

 
Table C.5 Parameter identification of the inverse Autogyro longitudinal model  

(Noise level=0.00001 for each channel) 
Components Ideal Value Guess Value Estimated 

  A(3,1)=   -0.0951 -0.1 -0.0973 
  A(3,5)=   0.0085 0.005 0.0074 
  A(5,1)=   0.1306 0.1 0.2003 
  B(1,1)=   0.0010 0.006 0.053 
  B(1,5)=   0.0291 0.01 0.0494 
  B(3,2)=   -0.0277 -0.04 -0.0273 

 
Table C.6 Parameter identification of the inverse Autogyro longitudinal model  

(Noise level=0.001 for each channel) 
Components Ideal value Guess value Estimated 

  A(3,1)=   -0.0951 -0.1 -0.1021 
  A(3,5)=   0.0085 0.005 0.0057 
  A(5,1)=   0.1306 0.1 0.3226 
  B(1,1)=   0.0010 0.006 0.173 
  B(1,5)=   0.0291 0.01 0.093 
  B(3,2)=   -0.0277 -0.04 -0.0298 
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Appendix-D  

 

The Nonlinear Norrbin Ship Model 
 

 

This appendix provides information concerning the nonlinear Norrbin ship model. In the 

autopilot design field, the Norrbin model has been used extensively for ship manoeuvring 

studies involving both deep and confined waters (Fossen, 1994; Unar, 1999). In this thesis, 

this model is used to describe the motion of the RZ ship, which will be considered as a 

design benchmark to investigate the inverse simulation technique and the effectiveness of 

the feedback controller designed by the mixed-sensitivity (K/KS) H∞ algorithm. The 

structure of the Norrbin ship model can be represented by the following equation: 

( )NT H KδΨ + Ψ =                                                                  (D.1) 

where δ and Ψ represents the rudder and heading angles, respectively. K and T are 

constants and the nonlinear term ( )NH Ψ is defined as: 

  3 2
3 2 1 0( )NH α α α αΨ = Ψ + Ψ + Ψ +                                           (D.2) 

where αi ( 0,1,2,3i = ) are called Norrbin’s coefficients. For most ships, α3 = α2 = 0. 

Therefore, Eqs. (D.1) and (D.2) can be simplified to form Eq. (D.3):  
3

1 2m d dδ = Ψ + Ψ + Ψ                                                               (D.3) 

where Tm
K

= , 1
1d

K
α

= , and 3
3d

K
α

= . These coefficients will vary according to chosen 

operating point – in this case involving the changing forward speed U. The coefficient 

values correspond to the forward speeds from 1 m/s to 20 m/s can be found in Table D.1. 

Now Eq. (D.3) can be transformed into a state-space form, as shown in Eq. (D.4), for 

facilitating the investigation of inverse simulation. 
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1 2

31 3
2 2 2

1

1 ( )c

x x
d dx x x
m m m

=

= − − +

= −

δ

δ δ δ
τ

                                                        (D.4) 

where x1 = Ψ and τ is the time constant. The third equation in Eq. (D.4) is related to the 

steering machine structure, as described in Fig. 1, where the rudder and rudder rate limiters 

are involved in the model. 

 
Table D.1 Parameter variations with respect to U (Unar, 1999) 

U(m/s) T K m = T/K d1 = α1/K d3 = α3 /K 

1 155.0000 0.1 1550.0000 10.0000 100.0000 

2 77.5000 0.2 387.5000 5.0000 12.5000 

3 51.6667 0.3 172.2222 3.3330 3.7037 

4 38.7500 0.4 96.8750 2.5000 1.5625 

5 31.0000 0.5 62.0000 2.0000 0.8000 

6 25.8333 0.6 43.0556 1.6667 0.4630 

7 22.1429 0.7 31.6327 1.4286 0.2915 

8 19.3750 0.8 24.2188 1.2500 0.1953 

9 17.2222 0.9 19.1358 1.1111 0.1372 

10 15.5000 1.0 15.5000 1.0000 0.1000 

11 14.0909 1.1 12.8099 0.9091 0.0751 

12 12.9167 1.2 10.7639 0.8333 0.0579 

13 11.9231 1.3 9.1716 0.7692 0.0455 

14 11.0714 1.4 7.9082 0.7143 0.0364 

15 10.3333 1.5 6.8889 0.6667 0.0296 

16 9.6875 1.6 6.0547 0.6250 0.0244 

17 9.1176 1.7 5.3633 0.5882 0.0204 

18 8.6111 1.8 4.7840 0.5556 0.0171 

19 8.1579 1.9 4.2936 0.5263 0.0146 

20 7.7500 2.0 3.8750 0.5000 0.0125 
 
 

 

 

 


