
A Pipelined Configurable Gate Array
for Embedded Processors

Andrea Lodi
ARCES

University of Bologna
Bologna, Italy

andrea.lodi@deis.unibo.it

Mario Toma
ARCES

University of Bologna
Bologna, Italy

mtoma@deis.unibo.it

Fabio Campi
ARCES

University of Bologna
Bologna, Italy

fcampi@deis.unibo.it

ABSTRACT
In recent years the challenge of high performance, low power
retargettable embedded system has been faced with different
technological and architectural solutions. In this paper we
present a new configurable unit explicitly designed to imple-
ment additional reconfigurable pipelined datapaths, suitable
for the design of reconfigurable processors. A VLIW recon-
figurable processor has been implemented on silicon in a
standard 0.18 µm CMOS technology to prove the effective-
ness of the proposed unit. Testing on a signal processing
algorithms benchmark showed speedups from 4.3x to 13.5x
and energy consumption reduction up to 92%.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles—
Gate arrays; C.5.3 [Computer System Implementation]:
Microcomputers—Microprocessors

General Terms
Design, Performance

Keywords
FPGA, Reconfigurable processor, Pipeline, Energy

1. INTRODUCTION
Energy consumption, computing power, increasing mask

and design costs are the major issues in the project of today’s
embedded systems.

A possible solution is represented by mask configurable
microprocessors, which define the processor architecture at
the mask level [1]. This approach provides a user-friendly
environment for application development, allowing to use a
model where the required extensions are accessible as special
functional units from the assembler code, however it is not
efficient when specifications of the application change, with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’03,February 23–25, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-651-X/03/0002 ...$5.00.

very high non-recurrent engineering costs due to design and
mask production.

A more flexible approach introduces a reconfigurable in-
terconnect network to connect a variety of computing ele-
ments [2], but the main drawback is that such an approach
does not lead to an architectural model that makes software
development easy for programmers proficient in high-level
languages.

A different solution exploits the improving FPGA technol-
ogy, by coupling standard programmable processors, such as
microcontrollers or DSP, with embedded configurable gate
arrays that support application specific logic. Flexibility is
enhanced thanks to the possibility to modify at deployment
time the dedicated logic, making this solution more appeal-
ing because of rising mask costs and time-to-market con-
straints. Furthermore dynamic reconfigurability of new gen-
eration FPGAs allows one to even exploit temporal re-use
through run-time modification of the instruction set, based
on the currently executed algorithm (e.g. audio vs. video
decoding). The main drawback of the existing solutions is
that they hardly justify the cost in area due to configurable
logic either because of inefficiency in the configurable unit
and in the system architecture, or because of the increas-
ing burden of the programmer, making the development of
complex code very difficult.

In this paper we present a new architecture tightly cou-
pling a processor with a configurable unit. The integration
of a configurable datapath in the processor core reduces any
communication overhead towards functional units, thus in-
creasing its use in more computation kernels. The approach
adopted overcomes the limitations of similar preceding ar-
chitectures relying on a new field configurable Gate Array,
designed to extend microprocessor datapaths, and on an in-
tegrated software environment providing user-friendly tools
for application development. A VLIW reconfigurable pro-
cessor has been implemented on silicon to prove the effec-
tiveness of the architecture proposed, focusing on speed-up
and energy performance.

Section 2 overviews previous work related to processor
and FPGA coupling. In Section 3 we describe the approach
adopted to design an architectural environment for the im-
plementation of reconfigurable processors. In Section 4 a
new configurable Gate Array is presented suitable for the
architectural approach adopted. Section 5 describes the im-
plementation of a prototype based on a VLIW processor,
and Section 6 the related results. At last, Section 7 con-
cludes our work with final remarks.

21

2. RELATED WORK
Probably the first prototype to couple a configurable hard-

ware with a general purpose processor was the PRISM ma-
chine [3] which consisted of a multi-FPGA board plugged
into a host system. The main contribution was to intro-
duce a new computational model where the configurable
hardware was accessed through instruction set extension. A
similar approach was adopted by the Spyder architecture [4],
but both machines suffered from size limitations of FPGAs
at that time, and from inter-chip communication overhead
between processor and configurable hardware.

One step further was taken when several prototypes in-
tegrated FPGA on the same chip as the microprocessor, to
achieve a higher communication bandwidth. Two main cat-
egories can be identified depending on the degree of FPGA-
processor coupling: tightly coupled and loosely coupled.

In the first case the reconfigurable array is seen just as
another functional unit in the processor datapath, thus fed
with data by the register file. Such prototypes include PRISC
[5], Chimaera [6, 7] and ConCISe [8]. The main limitation
of these architectures is that the reconfigurable hardware
supports only combinatorial circuits, in order to fit in the
processor pipeline stages. Although this approach has the
advantage of keeping the processor control logic unchanged,
unfortunately configurable hardware is not able to exploit
parallelism, resulting in poor speedups. The first version
of OneChip processor [9] tightly couples a RISC processor
with a multi-cycle FPGA, but this resulted in a memory
bandwidth bottleneck. Therefore, in order to overcome this
limitation, a direct access to memory of the gate array was
provided [10] with dedicated instructions accessing blocks of
memory, but again complex addressing strategies can hardly
be handled with this kind of solutions.

In loosely coupled architectures the reconfigurable array is
integrated as a co-processor operating asynchronously, with
a direct access to memory and connected to the processor
host via a bus. This category includes the GARP processor
[11, 12]. Since the FPGA is external, there is an overhead
due to explicit communication using dedicated instructions
to move data to and from the array, thus the use of the array
is convenient only for kernels executed for a great number
of clock cycles without the intervention of the processor.

3. SYSTEM ARCHITECTURE

3.1 Overview
The approach adopted in the architecture proposed is to

provide a microprocessor with an additional pipelined run-
time configurable datapath (PiCo Gate Array, pGA), ca-
pable of introducing a large number of virtual application
specific units. The reconfigurable unit is tightly integrated
in the processor core, just like any other functional unit,
thus receiving inputs from the register file and writing re-
sults back to the register file. Differently from [5] the pGA
does not only allow multicycle latency functions, but it is ex-
plicitly structured to build configurable pipelines, even deep
ones, but unlike PipeRench [13] which performs reconfigu-
ration of a pipe stage in a clock cycle as the data fill in the
device, the pGA has a traditional approach, assuming that a
configuration is stored to be used for a sufficiently long time,
in order to keep configuration power consumption low.

Each configuration implements a peculiar data-path with
a number of stages suitable for the function to be executed

which could even not be known at compile time. In fact
the number of cycles needed to complete the execution may
depend on the pGA pipeline status and on the values of
the inputs when for example for or while loops are entirely
implemented inside the array.

The computational model proposed takes advantage of
the synergy between different application specific functional
units tightly integrated in the same core. An FPGA behav-
ing like a coprocessor needs to implement an entire com-
putational kernel to achieve high throughput because the
communication overhead to the processor core is consider-
able. As a consequence when a kernel is composed of both
functions suitable to be mapped in an FPGA and opera-
tors which could not be efficiently implemented in the con-
figurable unit, it is often completely executed in the pro-
cessor core, leaving the array unused. In our model the
communication overhead between the pGA and the other
functional units is as small as possible, thus allowing to dis-
tribute the different operations included in a single kernel
to the functional unit that best fit them. Wide multipliers,
variable shifters, MACs, which are so difficult to implement
efficiently in FPGA, could be executed in dedicated hard-
wired functional units, while the configurable unit exploits
parallelism of even small portion of kernels. In this way uti-
lization of the pGA considerably increases, justifying its cost
in terms of area for a wide range of applications.

3.2 Architectural Implementations
From an implementation point of view, the introduction of

the pGA requires minor changes of the system architecture.
System control, memory and I/O interface are still operated
by the processor core, while modifications needed are bound
to the peculiarities of the configurable unit: high in/out
band-width and variable latency. The pGA can receive up
to four 32-bit words and produce up to two 32-bit words
as result, thus the register file needs to provide at least 4
ports for read and 2 for write operations. We can distinguish
modifications needed on the base of the underlying processor
architecture:

3.2.1 Superscalar
In superscalar processors a number of units are able to

execute instruction concurrently to exploit instruction level
parallelism. In such systems dynamic scheduling is per-
formed relying on complex hardware structures which ana-
lyze interdependencies between instructions executed in dif-
ferent functional units. The register file is already provided
with multiple read/write ports which could be used to feed
the pGA too. At the same time dynamic scheduling already
provides a solution for the variable latency problem, so that
no real modifications are needed.

3.2.2 VLIW
In Very Long Instruction Word (VLIW) processors inde-

pendent operations are grouped into very long instructions,
supporting the parallel execution of a number of functional
units. Dependencies checking, in order to find independent
operations, and following scheduling is done at compile time.
While multi-ported register file is already provided because
of the necessity to feed a number of functional units, the
pGA must be supported with special hardware to take into
count its variable latency. Read-After-Write (RAW) is the
only data dependency to take care of as it is the only one

22

.

RLC

16x2 16x2
LUTLUT

pG
A

 C
O

N
T

R
O

L U
N

IT

4x32−bit input data bus from Reg File
2x32−bit output data bus to Reg File

192−bit configuration bus from Configuration cache

CONNECTION
BLOCK

C
O

N
N

E
C

T
IO

N
B

LO
C

K

SWITCH
BLOCK

HORIZONTAL

V
E

R
T

IC
A

L
2

2

2

2 2

2

CARRY
CHAIN

2
2

2

OUTPUT

12

pGA control unit signals

LOGIC
INPUT

loop−
back

12 global lines to/from
 R

F

configuration bus

REGISTERS
LOGIC,

EN

Figure 1: PiCoGA structure

that cannot be granted by the compiler which doesn’t know
the pGA latency at compile time. Introducing a register
locking mechanism is the least intrusive way to handle the
problem: when a pGA instruction is decoded, its destination
registers are locked so that if a following instruction needs
to access them, the processor execution is stalled. When the
pGA completes the write-back operation, registers are un-
locked and normal processor execution is restored. Anyway,
in order to avoid frequent stalls of the processor pipelines,
the compiler needs to schedule even pGA instruction, based
for example on their average latency.

3.2.3 RISC
When intagrating the pGA into a RISC core, further to

implementing a register locking mechanism, considerable mod-
ifications affect the register file which needs to be redesigned
multiport. Nevertheless the increment in area implied can
be considered negligible when compared to memories and
the configurable unit. As in VLIW processors special care
must be taken by the compiler when scheduling pGA in-
struction with variable latency.

4. PIPELINED CONFIGURABLE GATE AR-
RAY

In the past a few attempts have been carried out in order
to design a configurable unit tightly integrated in a processor
core and their study led to some guidelines that have to be
followed to achieve a significant gain in the performance of
the overall system.

First of all the configurable unit should be able to perform
complex functions that require multi-cycle latency. The
pGA is designed to implement a peculiar pipeline where
each stage corresponds to a piece of computation, so that
high throughput circuits can be mapped. The array is also
provided with a control unit which controls pipeline activity,
just as if it was a complete additional datapath. In this way

a sequence of pGA instructions can be processed filling the
pipeline in order to exploit parallelism.

Moreover the configurable unit should preserve its state
across instruction executions. A new pGA instruction may
directly use the results of previous ones, thus reducing the
pressure on the register file.

Since most of the control logic would be executed in the
standard processor pipeline, the configurable unit should
have a granularity suitable for multi-bit data-path imple-
mentations, but at the same time it should be flexible enough
to compensate the other functional units for the kind of com-
putations they are not efficient.

Finally a tight integration in the processor core gives the
opportunity to use the pGA in many different computational
cores, therefore run-time reconfiguration is necessary to sup-
port new sets of dynamically defined instruction.

4.1 PiCoGA Structure
The pGA is an array of rows, each representing a possible

stage of a customized pipeline. The width of the datapath
obtained should fit the processor one, so each row is able
to process 32-bit operands. As shown in Figure 1, each row
is connected to the other ones with configurable intercon-
nect channels and to the processor register file with 6 32-bit
busses. In a single cycle four words can be received from
the register file and up to two can be produced for write-
back operation. The busses span the whole array, so that
any row can access them, improving routability.

Pipeline activity is controlled by a dedicated configurable
control unit, which generates two signals for each row of the
array. The first one enables the execution of the pipeline
stage, allowing the registers in the row to sample new data.
In every cycle only rows involved in the piece of computa-
tion to be executed in that cycle are activated, in a dataflow
fashion. In this way a state stored in flip-flops inside the ar-
ray can be correctly held and at the same time unnecessary
power dissipation is avoided. The second signal controls ini-

23

16x2 16x2
LUTLUT

OR, XOR,
CARRY,

>, >=

2 2

44

LOGIC
INITIALIZATION

constant 2

2

2 2 2

loop−
back

OUTPUT

REGISTERS

LOOKAHEAD
CHAIN

EN
pGA control unit signals

INPUTS INVERT/SWAP
LOGIC

Figure 2: Reconfigurable Logic Cells logic structure

tialization steps (see 4.2) of a state held inside the array. In
order to support the implementation of high level language
control constructs such as while and for loops, each row can
generate a signal for the control unit. These signals could for
example represent the boolean value resulting from a com-
parison performed in the array core. Hence pipeline activity
can depend on data values as needed in while loops.

Since most of the remaining portion of control logic not
executed in the processor standard dataflow is implemented
in the configurable control unit, the array core can be data-
path oriented. Therefore the pGA has a 2-bit granularity
for both interconnections and LUTs, which is a good com-
promise taking into count that bit-level operators such as
bit permutation, which are frequent in cryptography algo-
rithms, are badly supported by other functional units. Each
row is composed of 16 Reconfigurable Logic Cells (RLC)
and a configurable horizontal interconnect channel. Vertical
channels are wider (12 pairs) than horizontal ones (8 pairs)
because computation mainly flows in the vertical direction
as a consequence of the array organization. Switch blocks
adjacent to each RLC connect vertical and horizontal wires.

4.2 Reconfigurable Logic Cells
A Reconfigurable Logic Cell (RLC) is composed of a clus-

ter of 2 LUTs. LUTs have 2-bit granularity, that is 4-bit
inputs and 2-bit outputs (4:2). A total of 6 inputs from
the configurable interconnect channels are provided to the
RLC which can be used to implement logic functions with
different granularity combining the two LUTs together. A
two level multiplexing stage controlled by two of the inputs
performs the combination of LUT outputs. In this way map-
ping of either a 6:1 or a 5:2 or 4:4 logic function is allowed.
An RLC contains 4 registers, one for each output, which are
controlled by the configurable control unit.

RLC outputs are internally routed back to the input block,
in order to implement the cascade of two LUTs or logic
holding a state such as accumulators. On the feed back
path a block controlled by the control unit is introduced

1.

2.

3.

4.

d

d b

a

t

b

a

5
b

a

5
b

a

t

RLC

RLC

RLC

RLC

RLC

RLC

 while (cond) {

 pGA_init(d);

 pGA_init();

 out=pGA_op(b);

 out=pGA_op(b);

 while (cond) {
 out=pGA_op(b);

 pGA_init(d);
 while (cond) {

 pGA_init();

 out=pGA_op(b);

 }
 ...

 ...

 while (cond) {

 }
 ...

 }

 ...
 }

 a=5;

 a=a+b;

 a=d;

 a=d;

 while (cond) {
 a=a+b;

 a=5;

 }

 out= ... ;
 ...

 }

 out= ... ;
 ...

 while (cond) {
 t=a+b;
 a=f(t);

 }

 out= ... ;
 ...

 while (cond) {
 t=a+b;
 a=f(t);

 }

 out= ... ;
 ...

 while (cond) {

LUT

LUT

LUT

LUT

LUT

LUT

Figure 3: State initialization conditions with relative
c source and modified code

to support different kinds of state initialization. Given the
array structure, four possible cases have to be considered,
depending on two factors:

• initialization of the state with a constant or with a
variable which necessarily comes from another RLC;

• use of the internal feed back path or implementation
of an external loop through other RLCs.

In Figure 3, the four cases are represented with a portion
of c-like language source code together with the modified

24

Configuration cache layers

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�����������������������
�����������������������
�����������������������
�����������������������
���

���

��

�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

FUNC. 5

FUNC. 3

FUNC. 2

FUNC. 4

FUNC. 1

FUNC. 6

FUNC. 7
BLOCK 3

BLOCK 2

BLOCK 1

PiCoGA

Figure 4: PiCoGA configurations loaded in cache layers and blocks

code where the while construct is executed in the proces-
sor standard datapath whereas the computation inside the
loop is mapped in the pGA. The implementation with RLC
resources is also shown.

Each RLC contains a dedicated carry chain block per-
forming a level 1 look-ahead logic. Dedicated wires along
each row, directly connecting configurable cells, are also
provided to have fast propagation of carry signals. Even
though a standard-cells synthesis and automatic back-end
flow was adopted for the design of RLC logic, comprising
carry logic, a 32-bits addition at 150MHz in a 0.18µm pro-
cess was achieved. A single RLC can implement a 2-bit
adder using the two LUTs to compute both the results with
carry-in equal to 0 or to 1. The same multiplexers, which
combine LUT outputs, can be used to propagate the right
result on the base of the carry-in value in a carry-select fash-
ion. Besides sum carry logic, other bit-serial computations
have been introduced which could take advantage of the fast
dedicated wires, such as comparison, or and xor operators.
Exploiting the input block of the RLC to invert signals, even
more operators can be efficiently mapped in the same way.

4.3 Configuration Caching
Since the pGA is tightly integrated in the processor core, it

could be used frequently, for many different computational
kernels. However reconfiguration of gate arrays can take
hundreds but most frequently thousands of cycles, depend-
ing on the re-programmed region size. Although execution
can still continue on other processor resources, scheduling
will hardly find enough instructions to avoid stalls that could
overcome any benefit from the use of dynamically config-
urable arrays. Furthermore in some algorithms the function
to be implemented is only known at the time it has to be exe-
cuted, so that no preventive reconfiguration can be done. In
such cases many computational kernels cannot take advan-
tage of the presence of a configurable unit, leaving it unused
during their execution in the processor standard datapath.
The efficiency of the overall system in terms of performance
density can be greatly affected, hardly justifying the area
overhead introduced by the pGA.

Three different approaches have been adopted to over-
come these limitations. First of all the pGA is provided
with a first level cache, storing 4 configurations for each
logic cell [14, 15]. Context switch takes place in one clock
cycle, providing 4 immediately available pGA instructions.
Further increase in the number of functions simultaneously
supported by the array can be obtained exploiting region
partitioning. The array is structured in blocks composed of
8 rows each. A block represents the minimum unit of the
pGA that can execute an instruction and be configured in-
dependently. Two or more blocks can be combined together
to implement larger functions. If we consider an array with
24 rows, 3 different instructions occupying just one block
could be supported for each layer of the cache, resulting in
a total of up to 12. The pGA may execute concurrently
one computation instruction and one reconfiguration which
can store the next instruction to be performed. In this way
cache miss should be highly reduced, even when the number
of configurations used is large.

Finally reconfiguration time can be shortened exploiting
a wide configuration bus to the pGA. The RLCs in a row
are written in parallel with 192 dedicated wires, taking up
to 16 cycles to have a complete reconfiguration. A dedicated
second level cache on-chip is needed to provide such a wide
bus, while the whole set of available functions can be stored
in an off-chip memory.

5. PROTOTYPE IMPLEMENTATION
In order to prove the effectiveness of the architectural ap-

proach proposed, a specific implementation of a reconfig-
urable processor has been designed in a 0.18 µm 1.8V, 6
Metal Layers CMOS technology. The basic architecture cho-
sen is a VLIW processor which can already rely on a multi-
port register file to feed the wide in/out busses of the pGA.
The register locking mechanism was implemented together
with the design of an interface block handling configuration
caching and writeback operation. Although a superscalar
processor seems to be the best choice because of its degree of
parallelism and dynamic scheduling, the hardware complex-
ity involved could not be worthwhile with respect to a VLIW

25

DATA

MEMORY

MUX

WRITEBACK CHANNELS

PiC
oG

A
 C

O
N

T
R

O
L

 U
N

IT

PiCoGA WRITEBACK CHANNEL

PiCoGA DATA PATH

XIRISC DATA PATH

INSTRUCTION

MEMORY

PiCoGA

PiCoGA/Processor Interface

R
E

G
IST

E
R

 FIL
E

D
E

C
O

D
E

 L
O

G
IC

CONTROL

CONFIG.

DATA

CHANNEL 1

DATA

CHANNEL 2

CONFIGURATION

CACHE

Figure 5: Implemented prototype architecture

implementation. In fact most of the algorithms analyzed in
the PiCoGA have fixed latency, so that scheduling at com-
pile time is extremely efficient, while parallel execution of
microprocessor and configurable datapath is provided.

A software development environment based on a customiza-
tion of the GNU-Gcc toolchain as shown in [16] has been
used to support architecture programming and benchmark-
ing. The availability of a software profiling environment
offers an appropriate mean to manually determine critical
computation kernels that could be implemented on the pGA.
Starting from the portions of C code identified, configu-
rations for the array have been generated through manual
mapping, in order to find the number of rows needed, latency
and throughput. Since each row of the PiCoGA occupies
0.6mm2 a maximum of 32 rows was considered which would
be more than 50% of the total area of the reconfigurable pro-
cessor, including instruction, data and configuration cache
memories.

For energy consumption performance, measures were con-
ducted on a test-chip of the configurable processor with 8
PiCoGA rows, implementing several algorithms including
DES encryption. Energy consumption of other algorithms
has been estimated through cycle-base analysis, exploiting
the measured average consumption of memories, VLIW core
and PiCoGA rows.

5.1 XiRisc Processor
XiRisc (eXtended Instruction set Risc) [17] is an open core

VLIW processor, providing a flexible architecture which can

be easily customized. It is based on a classic five-stages
pipeline [18]. Two 32-bit instructions are fetched each clock
cycle from the Instruction cache, decoded and executed con-
currently determining two different execution flows (data
channels). A set of multiple latency, hardwired functional
unit is provided, performing general purpose DSP calcu-
lations such as 32-bit and 64-bit multiplication, multiply-
accumulation, parallel byte-wise arithmetics and branch decre-
ment operations. The architecture is fully bypassed, to
maintain high data throughput through hardware resources.
The addition of the pGA extends the architecture to three
concurrent execution flows, allowing to maintain a very high
access rate to memory exploiting the two hardwired chan-
nels, while application specific computational cores are more
efficiently implemented on the configurable unit. A 32-slots
register file features 4 source registers feeding the two hard-
wired data channels, which can also be used for the pGA. On
the other hand the number of destination registers have been
extended from 2 to 4 in order to support completely inde-
pendent write-back operations. This avoids the introduction
of dedicated logic handling competition for the write ports
of the register file as far as pGA instructions have variable
latency.

In order to support the integration of the pGA in a proces-
sor core, the instruction set has to be extended just as when
new functional units are added. In the case of a configurable
unit usually both configuration and execution instructions
are provided, to support preventive load from the second-
level cache of the functions to be executed.

26

Algorithm Rows occupation 1st level cache layers

DES encryption 5 1
CRC 11 1
Median filter (parallel) 32 1
(24bit word, 8 samples)
Median filter (sequential) 17 4
(8bit word, 256 samples)
Motion estimation 24 1
Motion prediction 12 4

Table 1: PiCoGA area required for some signal processing algorithms

Algorithm Speed-up Bottleneck
(vs. Std. VLIW)

DES encryption 13.5x pGA in/out channels
CRC 4.3x Data dependency
Median filter (parallel) 7.7x Area
(24bit word, 8 samples)
Median filter (sequential) 6.2x Memory accesses
(8bit word, 256 samples)
Motion estimation 12.4x Area
Motion prediction 4.5x Memory accesses, area

Table 2: Speedups and bottlenecks for some signal processing algorithms

5.2 Interface Logic
Integration of the pGA in the XiRisc core needs some in-

terface logic. First of all register locking mechanism must
be introduced, together with a FIFO buffer of destination
registers of the instructions currently executing in the pGA.
Interface logic writes destination registers as soon as the
results from the pGA are ready, exploiting dedicated chan-
nels. In this way writeback operations of the configurable
unit is completely handled by dedicated logic different from
the control logic of the core, thus left unchanged.

Moreover a configuration control block has been designed
to handle configuration caching. Dedicated logic decodes the
pGA instructions determining the function to be executed
or loaded. A status table, similar to the one used in [10],
keeps the memory address of the available pGA functions
and a track of the block and the layer in the first-level cache
of the stored configurations.

Finally undesired processor stalls could happen if a con-
figuration load instruction is issued when a reconfiguration
process is already ongoing. From the processor point of view
the pGA would be a busy functional unit and no further in-
structions could be executed. This condition can frequently
occur when scheduling a preventive load of several configura-
tions to be used later. Better performance could be achieved
allowing the parallel execution of any following instruction
different from a configuration load one. Thus the solution
adopted is to provide the interface logic with a buffer of is-
sued configuration load instructions that are performed one
after the other with no intervention of the processor core.

6. RESULTS
PiCoGA was tested on several signal processing algorithms,

in order to explore speed-up and power consumption achieved.
Table 1 shows the pGA area needed to map the algorithms,

which ranges from 5 rows required for the round f imple-
mentation of the DES encryption algorithm to 32 rows for
a parallel implementation of a median filter.

Since our architectural model involves strong interaction
between reconfigurable array and standard VLIW resources
(e.g. typical ALU operations), in order to achieve better
results, computation is often split into few pGA functions,
each mapped on a different layer of the first level cache.
For example, a sequential implementation of the median fil-
ter can be split into 4 pGA instruction, thus involving each
available cache layer. In this case, table 1 reports the max-
imum number of rows required by these 4 functions.

Table 2 shows speedups achieved referring to the imple-
mented reconfigurable VLIW architecture. pGA has proven
to be very flexible, allowing performance gain for every tested
algorithm, ranging from 4.3x to 13.5x. Speedup was cal-
culated counting the number of execution cycles with re-
spect to those of the reference XiRisc VLIW standard ar-
chitecture, namely a 5 stage pipeline processor with two
concurrent parallel datapaths, two instruction fetched each
cycle and dedicated functional units such as a multiplier-
accumulator and a hardware branch-decrement unit. Ta-
ble 2 also shows the computation bottleneck for each tested
algorithm. Thanks to VLIW approach, which allows con-
current memory and pGA operations, memory access band-
width is increased, and also memory-intensive algorithms
(such as motion prediction) become efficient. Nevertheless,
few algorithms (e.g. median filter, motion estimation and
prediction) could achieve higher speedups with an increased
bandwidth between pGA and memory, for example provid-
ing a direct connection. This issue could be overcome with a
different architecture providing a wide data bus connecting
memory and reconfigurable device and allowing complex ad-
dressing. pGA is designed to be easily included in this kind

27

VLIW + PiCoGAOnly VLIW

23.14 uJ
(14385 cycles)

6.42 uJ
(3352 cycles)

Instr. Mem.
39%

Data Mem.
29%

Data Mem.
38%

Instr. Mem.
33%

VLIW Core
14%

PiCoGA
24%23%

VLIW Core

CRC (1Kbyte data)

Figure 6: Energy consumption for CRC algorithm

VLIW + PiCoGAOnly VLIW

24%
VLIW Core

2.47 uJ
(1444 cycles)

0.187 uJ
(106 cycles)

Instr. Mem.
36%

PiCoGA
4%

Instr. Mem.
37%

Data Mem.
38%

Data Mem.
39%

VLIW Core
22%

DES (64 bit)

Figure 7: Energy consumption for DES algorithm

of architectures.
Available array area is a bottleneck for a few algorithms

(e.g. parallel implementation of median filter, motion esti-
mation and prediction), where there is a huge level of paral-
lelism which could be exploited. For other algorithms (e.g.
CRC) exploitable parallelism is low, thus performances show
an upper bound which is independent from hardware speci-
fications. Finally, also the number of input/output channels
from/to pGA could represent a bottleneck when functional-
ity to be mapped requires more than 4 inputs or more than
2 outputs, but typically in these cases the real bottleneck
is memory bandwidth. Only in rare cases when all needed
data are already present in the register file (e.g. DES keys),
the number of in/out channels is a real limitation.

Power consumption is the other key issue. For classical
processor-based architectures, the main source of power con-
sumption is due to memory accesses. Measurements on a
standard VLIW architecture show that the percentage of
energy required by instruction and data memory are typi-
cally above 75% of the overall value, and that every tested
algorithm roughly presents the same distribution (Fig. 6, 7
and 8).

Since every clock cycle a new instruction is fetched, the
only way to reduce instruction memory energy consump-
tion is to reduce the number of execution cycles. In fact,
instruction memory consumption scales proportionally with
speedup, therefore a VLIW architecture enhanced by the
pGA achieves both speedup (table 2) and instruction mem-
ory consumption reduction.

Several tests have shown that also accesses to data mem-

7.24 uJ 1.06 uJ
(570 cycles)(4381 cycles)

VLIW + PiCoGAOnly VLIW

(40 samples, 24 bit word size, window size 8)
Median Filter

21%
VLIW Core

Instr. Mem.
38%

VLIW Core
20%Data Mem.

41%

Data Mem.
38%

Instr. Mem.
34%

PiCoGA
8%

Figure 8: Energy consumption for Median Filter
(parallel implementation)

ory roughly scales with speed-up. In fact, the execution
on pGA allows an improved efficiency for data management
(e.g. data stored locally on pGA), thus reducing data mem-
ory consumption. Fig. 6, 7 and 8 also show that considering
the overall energy consumption of the proposed architecture,
pGA contribution ranges from 4% to 24%, that is from 0.3%
to 6.7% of the original consumption. Fig. 9 shows the rela-
tion between speed-up and energy consumption reduction.
For the reasons mentioned above, this relation is linear, with
a small overhead due to pGA contribution. Results show
that energy consumption is reduced for algorithms present-
ing a speedup higher than 1.5x.

Array reconfiguration requires additional energy consump-
tion due to context switches among the 4 cached configura-
tions inside the array but mostly to second level configura-
tion cache accesses. This contribution is not present during
normal execution, therefore the average additional energy
consumption due to reconfiguration depends on the number
of execution cycles. Fig. 10 shows the relation between the
overall energy consumption (including the reconfiguration
overhead from second level cache), and the number of exe-
cution clock cycles. The impact of this energy consumption
overhead becomes negligible when a given configuration is
used for more than 1000 cycles. Typically, a configuration is
active for a far larger number of cycles. For instance, 1000
cycles are needed to encrypt 80 bytes with DES algorithm
or to compute the parity check of 300 bytes. Therefore, in
most situations, it’s possible to neglect reconfiguration over-
head, considering only execution energy. Results are shown
in fig. 11, where improvement due to pGA is evident.

7. CONCLUSIONS
A new configurable unit, suitable for reconfigurable pro-

cessor implementations, has been presented. Featuring a
run-time reconfigurable pipelined datapath, the PiCoGA
can be tightly integrated in many different processor archi-
tectures, acting as an additional functional unit addressed
through instruction set extension. A prototype including the
pGA and a standard VLIW processor has been implemented,
and testing showed that this approach is very flexible, allow-
ing a more efficient implementation of a wide range of signal
processing algorithms. Through application specific instruc-
tions mapped on pGA, speedups ranging from 4.3x to 13.5x

28

13 14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Median Filter

CRC

DES

7 8 9 10 11 121 2 3 4 5 6

Motion Pred.

Speed−up

1/
(N

or
m

al
iz

ed
 e

ne
rg

y
re

du
ct

io
n)

Figure 9: Speedup vs. energy consumption
for several signal processing algorithm

10 10 10
2 3 4 5

10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ne

rg
y

re
du

ct
io

n

Execution cycles

DES

CRC

Median Filter

Figure 10: Energy consumption vs. number of clock cycles
between two reconfigurations

Median
Filter

Motion
Prediction

0.15

0.22
0.27

0.076

Only VLIW

VLIW + PiCoGA

DES CRC

Normalized Energy Histogram

0

0.3

0.1

0.2

0.4

0.5

0.6

0.7

0.9

0.8

1

Figure 11: Normalized energy consumption for some signal processing algorithms

are achieved, while instruction and data memory accesses
are reduced allowing an energy consumption reduction up
to 93%.

8. ACKNOWLEDGEMENTS
The authors would like to thank L. Lavagno, C. Passerone

and A. La Rosa of the Politecnico di Torino for software
tools development and STMicroelectronics for funding and
support.

9. ADDITIONAL AUTHORS
Additional authors: Andrea Cappelli (ARCES, University

of Bologna), Roberto Canegallo (NVM-DP Department of
STMicroelectronics CR&D) and Roberto Guerrieri (ARCES,
University of Bologna).

10. REFERENCES
[1] Tensilica Inc. http://www.tensilica.com. 2001.

[2] H. Zhang, V. Prabhu, V. George, M. Wan, M. Benes,
A. Abnous, J.M. Rabaey. “A 1V Heterogeneus
Reconfigurable Processor IC for Baseband Wireless
Applications” In Proceedings of the 2000 IEEE
International Solid State Circuits Conference.

[3] P. Athanas and H. Silverman. Processor reconfiguration
through instruction-set metamorphosis. IEEE
Computer, 26(3):11–18, March 1995.

[4] C. Iseli and E. Sanchez. Spyder: a SURE (SUperscalar
and REconfigurable) processor. Journal of
Supercomputing, 9(3):231–252, 1995.

[5] R. Razdan and M. Smith. A high-performance
microarchitecture with hardware-programmable

29

functional units. In Proceedings of the 27th Annual
International Symposium on Microarchitecture,
November 1994.

[6] S. Hauck, T. Fry, M. Hosler, and J. Kao. The Chimaera
reconfigurable functional unit. In Proceedings of the
IEEE Symposium on FPGAs for Custom Computing
Machines, pp.87-96, Napa Valley, California, April
1997.

[7] Z.A. Ye, N. Shenoy, and P. Banerjee. A C compiler for
a processor with a reconfigurable functional unit. In
Proceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays,
February 2000.

[8] B. Kastrup, A. Bink, and J. Hoogerbrugge. ConCISe:
A compiler-driven CPLD-based instruction set
accelerator. In Proceedings of the Seventh Annual IEEE
Symposium on Field-Programmable Custom Computing
Machines, pp.92-100, Napa Valley, California, April
1999.

[9] R. Wittig, and P. Chow. OneChip: An FPGA
Processor With Reconfigurable Logic. In Proceedings of
the IEEE Symposium on Field-Programmable Custom
Computing Machines, pp.126-135, Napa Valley,
California, March 1996.

[10] J. Jacob, and P. Chow. Memory Interfacing and
Instruction Specification for Reconfigurable Processors.
In Proceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays,
pp.145-154, Monterey, California, February 1999.

[11] T. Callahan, J. Hauser, and J. Wawrzynek. The Garp
architecture and C compiler. IEEE Computer,
33(4):62–69, April 2000.

[12] T. Callahan and J. Wawrzynek. Adapting software
pipelining for reconfigurable computing. In Proceedings
of the International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems
(CASES), 2000.

[13] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi,
M Moe and R. Taylor. PipeRench: A reconfigurable
architecture and compiler. In Computer, 33(4): 70-77,
April 2000.

[14] A. DeHon. DPGA-Coupled
Microprocessors:Commodity ICs for the Early 21st
Century. In Proceedings of the IEEE Symposium on
Field-Programmable Custom Computing
Machines,pp.31-39, Napa Valley, California, April 1994.

[15] S. Trimberger, D. Carberry, A. Jhonson and J. Wong.
A Time Multiplexed FPGA. In Proceedings of the
IEEE Symposium on Field-Programmable Custom
Computing Machines ,pp.34-40, Napa Valley,
California, April 1997.

[16] A. La Rosa, L. Lavagno, C. Passerone “A software
development tool chain for a reconfigurable processor”
In Proceeding of the 2002 Int. Conf. on Compilers,
Architecture and Synthesis for Embedded Systems.

[17] F. Campi, R. Canegallo and R. Guerrieri. Ip-reusable
32-bit vliw risc core. In in Proceedings of the 27th
European Solid State Circuits Conference, pages
456–459, 2001.

[18] D. Patterson and J. Hennessy. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann, 1991.

30

	Main Page
	FPGA03
	Front Matter
	Table of Contents
	Author Index

