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Karen, Riccardo, Matt and Nicola. I also had great support from our technicians,
Colin and Stevie, and the assistance of Alastair Grant as I learned some of the
finer points of analogue electronics. The IGR was a lively and stimulating place
to work, and it was a great privilege to be able to be a part of it; thank you all.
I’d also like to thank PPARC/STFC, the LIGO Scientific Collaboration and the
University of Glasgow for supporting my studies.

I also made some very good friends in the Kelvin Building at Glasgow: Bob,
Hazel, Matt, James, Jen, Jennifer, Bryan, Dave, Siong, Fiona, Iain, Chris and
everyone else who came to lunch, drank tea, attended parties, came to Mr India’s
for curry and were generally all round good sports. My friends outside of physics
helped me keep perspective, in particular Karina, Elaine, Lilith, Paula and the
rest of my knitting group who provided evenings of amazing, diverse conversation
and helped me appreciate the finer fibres. My new colleagues and friends at Birm-
ingham have also been very understanding in the final weeks of thesis writing and
helped cheer me to the finish line.

My family have been brilliantly supportive and encouraging all the way through
my education, and they were especially helpful during the time I was writing up.
John has been a great friend and totally brilliant all the time I’ve known him, and
now this thesis isn’t taking all my time, we can have lots of adventures together.
This is for everyone who knew I could achieve it.

xiv



Preface

This thesis contains descriptions of my studies at the University of Glasgow be-

tween October 2005 and October 2009, where I investigated the mechanical prop-

erties of materials for use in future gravitational wave detectors.

Chapter One describes the phenomenon of gravitational radiation, how it is pro-

duced and how it may be detected using long-baseline laser interferometry. The

network of gravitational wave detectors currently in operation is described and the

routes for upgrades and future detectors are explained.

Chapter Two contains theoretical background on the sources of noise in gravi-

tational wave detectors which are related to and caused by the thermal motions of

the constituent molecules. The connection between thermal noise and mechanical

loss is made and used to motivate the measurement of mechanical loss as a probe

for assessing optical materials for use in future gravitational wave detectors.

In Chapter Three the current status of mechanical loss measurements on materi-

als used in the optics of gravitational wave detectors is assessed. High-reflective

dielectric multilayer coatings are described. The motivation for measuring the me-

chanical loss of a dielectric coating material as a function of temperature is given.
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The apparatus used to produce the cryogenic mechanical loss measurements that

form the basis for Chapters Four, Five and Six is described and explained. The

apparatus was constructed by the author, S. Reid and R. Nawrodt. The semi-

automated measurement software was written by R. Nawrodt. Measurements

were carried out by the author in order to characterise the performance of the

cryostat. The measurements which form the explanation for the low temperature

and thermal cycling anomalies were performed by M. Abernathy using the appa-

ratus constructed by the author.

Chapter Four focuses on cryogenic mechanical loss measurements of silica coat-

ings. Ellipsometric measurements of the thicknesses of the silica coatings and

thermal oxide layers upon the cantilevers were conducted using an ellipsometer

by S. Lewis, P. Murray and S. Reid. All measurements of the silica coated sam-

ple heat-treated at 300oC were carried out by the author. The measurements of

the control sample heat-treated at 300oC were carried out by M. Abernathy. All

measurements of the silica coated samples heat-treated at 600oC and 800oC and

their respective control samples were carried out by the author. The analysis of

the measurements was performed by the author.

Chapter Five concerns cryogenic mechanical loss measurements of hafnia coat-

ings. The measurements of the hafnia coated sample heat-treated at 300oC were

carried out by the author and the control data used to calculate the coating losses

were taken by I. Martin. The electron micrograph and electron diffraction images

were produced by R. Bassiri. The hafnia sample which remained un-heat-treated

was measured by the author and M. Abernathy, and the control data used to cal-

xvi



culate the coating losses were taken by S. Reid.

Chapter Six describes a study of the cryogenic mechanical loss of a hydroxy-

catalysis bond between two silicon components. The silicon cantilevers were ox-

idised by S. Reid. Cryogenic mechanical loss measurements on the component

cantilevers were carried out by the author. The hydroxy-catalysis bonding process

and the infra-red photography was performed by S. Reid. The measurements of

the bonded cantilever structure and the calculations to extract the upper limit for

the mechanical loss of the bond material were performed by the author, using a

method developed during discussions with S. Reid, J. Hough and S. Rowan.

Chapter Seven contains an account of room temperature measurements on mate-

rials considered as mirror substrates for future gravitational wave detectors. The

finite element calculations were carried out in ANSYS by the author. The initial

nodal support was designed and constructed by the author and A. Cumming and

the measurements were carried out in a system refitted by the author, A. Cum-

ming, P. Murray and I. Martin. The mechanical loss measurements of sapphire

and silicon samples on thread suspensions were carried out by P. Murray and all

nodal support measurements were made by the author. Suggestions and assistance

in improving the nodal support were given by J. Faller, M. Perreur-Lloyd and R.

Jones. The profiles of the damaged samples were carried out by the author and

L. Cunningham. The cryostat system used in this chapter was refitted by the

author with the assistance of I. Martin, P. Murray and S. Reid. The mechanical

loss measurements were carried out by the author.

xvii



Appendix One describes work towards developing a system for measuring the

coefficient of thermal expansion and biaxial modulus of coating materials using

the existing coated silicon cantilever samples. The measurement system was de-

veloped by the author and M. Abernathy with the assistance of L. Cunningham.

Ellipsometric measurements and investigations into measurements of the radius of

curvature were carried out by Z. Pierpoint. The analysis of the data was performed

by the author.
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Summary

Gravitational waves are a consequence of General Relativity and while indirect

measurements strongly imply their existence, they have not yet been directly de-

tected. Gravitational waves are manifest as extremely weak quadrupolar strains

in spacetime itself. The effects of these cosmically weak strains upon the travel

of a laser between test particles may be detectable using sophisticated variations

of a Michelson interferometer. Chapter One describes the theoretical basis for the

construction of large ground-based interferometric gravitational wave detectors.

The scientific effort to detect gravitational waves has grown continually since the

inception of the field in the 1960s, and has led to the construction and commis-

sioning of a world-wide network of sophisticated and sensitive instruments for the

detection of gravitational waves. The construction of these detectors has involved

the development of many new technologies for precision measurement, but as sen-

sitive as the detectors are, we have not yet reached the level where a detection is

certain to be made. Chapter One also contains descriptions of the current detec-

tors and outlines of the plans for their future upgrades.

Future generations of gravitational wave detectors will require significant progress

xix



in the reduction of all forms of noise affecting the system. One form of noise it is

critical to reduce is thermal noise, which can be described as the consequence of

the atoms which make up the measurement optics experiencing vibrations because

of their non-zero temperature. The dielectric multilayer coatings of the mirror

in an interferometric gravitational wave detector are known to contribute signifi-

cantly to the overall levels of thermal noise. The next generation of gravitational

wave detectors may need to use exotic coatings, cryogenic operating temperatures

and silicon mirror substrates in an effort to mitigate the effects of thermal noise.

Chapter Two describes thermal noise in detail, and introduces the concepts of

substrate noise, coating noise, thermoelastic dissipation, mechanical loss and the

formulae used to calculate them.

Chapter Three describes the current state of research on the factors affecting me-

chanical loss in dielectric coatings. The technique of probing the structure and

dissipation characteristics of materials by assessing the shape and position of the

low temperature excess loss feature known as a Debye peak is introduced. The

cryogenic mechanical loss measurement apparatus used in Chapters Four, Five and

Six is described and characterised.

Chapter Four concerns the variation of mechanical loss of ion-beam sputtered sil-

ica coatings with temperature and investigates the effects of heat-treatment upon

them. The low-temperature Debye peak was found in some modes of a sample heat

treated at 300oC and an Arrhenius analysis provided a characteristic energy for the

dissipation process of (17.3 ± 2.3)meV. Further heat treatment of silica at 600oC

and 800oC appears to narrow the Debye peak, which is thought to be indicative

xx



of the narrowing of the distribution of bond angles in the amorphous silica network.

Hafnia is investigated as an alternative coating material in Chapter Five. The

mechanical loss of hafnia heat-treated at 300oC was measured and two excess loss

features were discovered, one below 100K and one above 200K. Electron scatter-

ing measurements indicate that this sample may already have developed polycrys-

talline regions which are known to be connected to high levels of mechanical loss.

The mechanical loss of an un-heat-treated hafnia coating is also measured and an

extremely low coating loss of 1.87 × 10−5 is found at 20K.

Chapter Six describes an experiment to find the mechanical loss of a hydroxy-

catalysis bond between silicon cantilevers at temperatures between 10K and 300K.

This new technique for the measurement of the mechanical loss of bond material

produced a minimum upper limit of the bond loss of (0.13 ± 0.03) occurring in

the fundamental mode at 80K and upper limit of the bond loss of (0.19 ± 0.07)

occurring in the third mode at 15K.

Chapter Seven describes the development and testing of a nodal support system to

enable cryogenic measurements of cylindrical bulk mirror substrates to be made.

The efficacy of the support varied significantly with the frequency of the mode and

the cryogenic measurements were partially successful.

Appendix One contains a description of the development of an experimental sys-

tem to simultaneously measure the coefficient of thermal expansion, α and biaxial

modulus, B, of coating materials. The first set of measurements of tantala coat-

xxi



ings on silicon cantilevers produced measurements which excluded the literature

values of α and B.

The major results in this work are the successful measurements of the mechanical

loss of amorphous hafnia coatings at low temperatures and the use of a structure

made from hydroxy-catalysis bonded silicon cantilevers to obtain an upper limit for

the mechanical loss of the bond material. These results may inform technological

advances that reduce the level of thermal noise experienced in future gravitational

wave detectors.

xxii



Chapter 1

The Origin and Detection of

Gravitational Waves

1.1 Introduction

Advances in our knowledge of the Universe have gone hand-in-hand with advances

in the technologies we use to quantify, measure and observe it. In astronomy, ob-

servations are critical. In pre-history, watching the sky provided information on

the changing seasons and gave humanity a sense of place in the Universe. By the

Renaissance, naked eye observations were enhanced by the use of marked quad-

rants to enable the location of bodies to be more precisely measured, and the use

of lenses to create astronomical telescopes provided evidence that the Universe

was a very different place to the one suggested by the prevailing thought of the

time. Over the centuries, the design of astronomical instruments expanded and

improved to provide science with ground-breaking observations of objects over the

whole electromagnetic spectrum, with each new method of observing the sky pro-
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viding views of the previously unexpected, such as other galaxies, pulsars, quasars

and vast clouds of interstellar dust.

As a consequence of Einstein’s 1916 General Theory of Relativity, an opportunity

to supplement the information provided by the electromagnetic observations arises

that has the potential to begin a new area of exploration in astronomy. General

relativity is the interpretation of gravitational forces as resulting from curvature of

spacetime, which reciprocally acts on and reacts to the motion of masses. When

bodies accelerate under certain conditions, they create fluctuations in spacetime

which travel outwards at the speed of light. If these fluctuations - which have

become known as gravitational waves - can be observed when they reach Earth,

they could provide a new observation method for astronomy. Gravitational wave

astronomy could open a window onto the strange world of extreme astrophysical

phenomena, moving beyond the information provided by radiation in the electro-

magnetic spectrum.

1.2 Gravitational Wave Generation and Sources

In order to consider the generation and detection of gravitational waves, it is first

necessary to qualitatively examine General Relativity through the application of

Einstein’s field equations,

Gµν = 8πTµν (1.1)
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which are the set of tensor equations that show the curvature of spacetime, Gµν , in

terms of the density of energy and matter as described by the stress-energy tensor,

Tµν and with units defined so that G = c = 1. Because the perceived gravitational

field acting on a body is contributed to by the gravitational field generated by

the body itself, the general form of Einstein’s field equations is non-linear. The

curvature of spacetime is fully described by the Einstein tensor, Gµν , which may

be expanded as [1],

Gµν = Rµν −
1

2
gµνR. (1.2)

The metric tensor, gµν , defines the distance between points in spacetime and the

symbols Rµν and R represent the Ricci curvature tensor and scalar curvature of

the space-time manifold respectively. These quantities taken together with the

metric tensor, gµν , describe the deviation of the curvature of real spacetime from

the flat, isotropic model spacetime postulated by Minkowski. The flat Minkowski

spacetime metric is called ηµν and is defined as [1],

ηµν =



















−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



















In situations where bodies are not very massive and speeds are only a small

fraction of c, calculations using the full set of Einstein’s field equations give results

which only have small deviations from Newtonian calculations - this gives rise to

the slow speed approximation and the weak field approximation.
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In the region of Earth, there are no local bodies of relativistic masses or veloc-

ities, so a weak field may be assumed and these approximations may be used in

calculations. In this approximation, the local spacetime curvature only deviates

from a flat spacetime, ηµν , by a very small perturbation, hµν , and the metric, gµν

is given by,

gµν = ηµν + hµν . (1.3)

If hµν is the perturbation in spacetime curvature due to the behaviour of a distant

mass, then when this perturbation reaches a set of points, the metric underlying

the local co-ordinate system is changed. Far from the source the perturbation can

be represented as a plane wave of form

hµν = ℜ[Aµνe
−ikx], (1.4)

with amplitude, Aµν , and wave vector, k [1]. The wave travels in the direction of k

at the speed of light, where the amplitude of the wave is related to the amplitude

of the perturbation.

By switching to a particular co-ordinate system, the components of Aµν may be

simplified. The most useful of these systems is the transverse-traceless gauge,

which behaves as if all objects were in free-fall along geodesics in spacetime [2]. In

the transverse-traceless gauge tensors such as the amplitude of the gravitational

perturbation discussed above are constrained to have non-zero components only

in those elements which are transverse to the direction of the tensor. If Aµν is ori-

entated to travel along the z direction, only the transverse elements Ayy, Ayx, Axy
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and Axx may have a non-zero value. The ‘traceless’ part of the name ‘transverse-

traceless’ refers to the sum of the diagonal components of the tensor being equal

to zero. In the case of Aµν , this means that Ayy = −Axx.

This leaves the amplitude of the perturbation of spacetime with only two in-

dependent components. As the average magnitude of the perturbation, hµν , is

proportional to the amplitude, Aµν , the same constraints also carry through to the

perturbation tensor, hµν . This means that the components of the perturbation

can be written as,

hµν =



















0 0 0 0

0 a b 0

0 b −a 0

0 0 0 0



















(1.5)

A perturbation like this can be thought of as the sum of two independent polar-

izations of the gravitational radiation, hµν = ah+ + bh×. This produces a model of

the gravitational wave as the linear sum of two basic orthogonal wave polarisations,

h+ and h×, as written here [2]:

h+ =



















0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0



















(1.6)
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Figure 1.1: The motion of a ring of test particles for incident gravitational waves
of polarisation h+ and hx.

h× =



















0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0



















. (1.7)

The h+ polarisation of a gravitational wave only has non-zero components at

hxx and hyy. The effect of this polarisation is to stretch spacetime in the x-

direction whilst shrinking it in the y-direction, then shrink it in the x-direction

while stretching it in the y-direction, as illustrated in Figure 1.1.

The h× polarisation has non-zero components at hxy and hyx, and causes the

same alternating stretching-shrinking behaviour as the h+ polarisation, but with

principal directions based on rotating the x and y axes by 45◦ [2].
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This stretching and shrinking of distances due to a gravitational wave leads to

the interpretation of gravitational waves as strains in spacetime. By definition,

a strain is the ratio of a length change, δl to the original length, l. Referring

back to the ring of test particles shown in Figure 1.1 , the distance between the

central particle and the particles on the principle axes changes over the course of

one oscillation. The size of this length change is proportional to the size of the

perturbation due to the gravitational wave, and it can be shown that [1],

h =
2δl

l
, (1.8)

where l is the separation of two test particles in the path of the gravitational wave

and δl is the change in separation due to the passing gravitational wave and h is

the metric perturbation due to the gravitational wave.

These gravitational waves are emitted by the acceleration of masses in a man-

ner analogous to the emission of electromagnetic waves by accelerated charges.

The analogy with the generation of electromagnetic radiation falters somewhat,

as there can be no dipole gravitational radiation. Gravitational dipole radiation

is prohibited by the single sign of gravitational ‘charge’ and the conservation of

linear momentum. The lowest multipole moment of a mass distribution which can

produce gravitational radiation is the quadrupole [3].
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1.2.1 Sources of Gravitational Waves

The most readily observable gravitational waves will be those associated with large

spatially non-axisymmetric accelerations of large masses. The lower frequency

limit for ground-based observations is around 1Hz below which fluctuations in the

gravitational field of the Earth will obscure the radiation from distant sources,

although gravitational radiation of a lower frequency is expected to exist. It is

expected that some extragalactic sources emit gravitational waves with frequencies

of up to a few kilohertz, and some cosmological sources could emit gravitational

waves of higher frequency still.

The following section contains examples of potential gravitational wave sources.

This list is not intended to be exhaustive but provides some limits on the source

frequencies and amplitudes which are of relevance to the attempt to detect them.

Compact Binaries

Astrophysical systems composed of two compact stellar objects are expected sources

of gravitational waves. As the bodies orbit each other, part of the energy of the

system is radiated as low frequency gravitational waves. This results in the orbital

decay of the system and the increase in amplitude and frequency of the gravita-

tional waves until the two bodies coalesce, resulting in an audio frequency chirp.

The ‘chirp’ is one of the most likely gravitational waveforms to be detected in

ground-based detectors, due to the distinctive shape of the waveform and the fre-

quency of compact binaries in the Universe.

In general, the gravitational wave amplitude for a binary star system consist-
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ing of objects with masses M1 and M2, with an orbital frequency, f at a distance,

r, from the observer can be estimated as [4],

hbinaries ∼ 10−23

(

100Mpc

r

) (

Mb

1.2M⊙

)
5

3

(

f

200Hz

)
2

3

, (1.9)

where Mb is the mass parameter, given by

Mb =
(M1M2)

3

5

(M1 + M2)
1

5

.

As the objects in these systems orbit each other, energy is lost by electromagnetic

and gravitational radiation and the two compact objects form a tighter and faster

orbit, which corresponds to a gravitational wave signal of increasing frequency

and amplitude. After the last stable orbit, which for a binary system is not rigidly

defined but corresponds to the point at which the rate of increase in gravitational

wave frequency becomes very large, the two objects move closer and coalesce to

form a larger compact object.

Applying equation 1.9 for a neutron star/neutron star binary within the Galaxy

at a distance of 15kPc from Earth with M1 = M2 = 1.4M⊙ orbiting around the

common centre of mass with a frequency, f = 1Hz, gives a gravitational wave

amplitude of h ∼ 2 × 10−21.

The form of compact binary source thought to be most prevalent in the Uni-

verse are black hole/black hole binaries formed in globular clusters, where the

level of gravitational interaction with other systems forces the black holes into

closer orbits which lose most of their energy through gravitational radiation. Ap-
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plying equation 1.9 for a black hole/black hole binary with M1 = M2 = 10M⊙

orbiting around the common centre of mass with a frequency, f = 10Hz, at a dis-

tance of 20MPc from Earth, gives a gravitational wave amplitude of h ∼ 2×10−22.

In the case of a black hole/black hole coalescence this is also thought to pro-

duce a strong burst of gravitational waves with complex signal forms, the study

and prediction of which has been a topic for numerical relativistic modelling and

some results of which can be found in [5].

Other sources of gravitational waves associated with compact objects include the

tidal disruption of a neutron star by a black hole companion, and sources known

as low mass X-ray binaries [6] [7].

Pulsars and Periodic Emitters

Neutron stars may form an important source of gravitational waves - the enormous

density of the nuclear material that constitutes the post-supernova remnant of

a large star combined with the conserved angular momentum provides several

possibilities for gravitational wave emission. If a neutron star which spins with

a frequency, f , develops a mountain which gives the star an ellipticity, ǫ, then

the asymmetry caused by the ’mountain’ will act in the same manner as a an

astrophysical scale mass on a centrifuge. The gravitational wave amplitude can be

estimated as follows [8]:

hpulsar ∼ 6 × 10−25

(

f

500Hz

)2 (

1kpc

r

)

( ǫ

10−6

)

. (1.10)
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The luminosity of the gravitational waves emitted in this way is limited by the

maximum potential size of the mountain on the neutron star, which is limited

by the strength of the surface material. Recent work by Owen suggests that the

maximum ellipticity that can be supported by a neutron star is of the order of

∼ 10−4 [9]. If such a pulsar is within our Galaxy, at r = 15kPc, and rotating at a

frequency of 100Hz then the value of hpulsar ∼ 1× 10−25. These signals from pul-

sars are likely to be detected by coherently averaging data over a long observation

period.

The use of gravitational wave data to provide upper limits to the decay in the

spin rate of known pulsars such as the Crab and Vela is already providing upper

limits on the amount of energy lost through gravitational radiation. Whether we

have already observed the optical counterpart or not, the gravitational wave emis-

sion from relatively nearby pulsars and neutron stars is a potentially important

source of information about their structure.

Gravitational Waves From Supernovae

As the explosive dènouement to the life of a large star in an iron core collapse in

a Type II supernova is one of the most energetic processes in the known universe,

the emission of a proportion of that energy as gravitational radiation would pro-

vide an excellent candidate source. Around 99% of the energy of the core collapse

is thought to be dissipated as neutrinos, with most of the remaining ∼ 1% be-

ing emitted as electromagnetic radiation, leaving only a very small portion to be

emitted as gravitational radiation. The emission of gravitational waves requires

non-axisymmetric acceleration, which could be linked to the rotation of the core
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of the star, asymmetries in the distribution of matter in the core and surrounding

shells of the star or magnetic phenomena [10].

The rate of these cataclysms in the local group of galaxies is less than one event

per decade, which would make detections of these events during the running of a

detection experiment unlikely, but at distances of 3 ∼ 5MPc, core collapse events

are estimated to occur at a rate of 1 per ∼2 years [10]. The proportion of energy

from a core collapse that is emitted as gravitational radiation is a current topic in

numerical modelling, and would allow the calculation of a value for the resultant

h for an observer on Earth.

If the amount of energy emitted from the supernova as gravitational waves, ∆E

is known, then an estimate of the amplitude of a gravitational wave can be made

using the following formula [11],

hsupernova ∼ 10−20

(

∆E

M⊙c2

) (

15Mpc

r

) (

1kHz

f

)(

1ms

∆t

)
1

2

, (1.11)

where ∆t is the time it takes for the supernova to collapse and r is the distance

from the collapsing supernova to the observer and ∆E is the fraction of the core

collapse energy dispersed as gravitational waves.

Stochastic Sources

It is also possible to imagine the detection of gravitational wave emissions which

can only be described in terms of their statistical properties. These emissions

would form a background in the gravitational wave spectrum and could be caused

by two broad ranges of phenomena. A stochastic background of gravitational
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waves could be caused by large populations of astrophysical gravitational wave

sources such as compact binaries or neutron stars.

Alternatively, most cosmological descriptions of the birth and development of the

Universe contain some predictions for gravitational wave emissions. As the inter-

action of gravitational radiation with matter is exceedingly weak, it is likely that

these relic gravitational waves will still exist in a detectable form. Relic gravita-

tional waves are proposed to be amplified remnants of vacuum fluctuations in the

inflationary era of the Universe. Observation of the level of cosmic gravitational

wave background would allow constraints to be placed upon cosmological models

and provide a picture of the Universe 300,000 years before the surface of last scat-

tering seen in the cosmic microwave background and only a very short time after

t = 0. Even the definite non-observation of a gravitational wave background at

a certain level can be used to place bounds and upper limits on Ωgw, the energy

density of gravitational waves in the Universe [12].

1.3 Gravitational Wave Detection: Are Gravita-

tional Waves Detectable?

The analogy between electromagnetic waves and gravitational waves breaks down

when considering their interactions with matter. Because the gravitational force is

around 38 orders of magnitude smaller than the other forces of nature, a gravita-

tional wave hardly interacts with matter as it passes through it. This means that

when it reaches Earth, a gravitational wave from a distant astrophysical source
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will retain the characteristics of the emitted wave to a much greater extent than

an electromagnetic wave emitted from the object would, but the effects of the

interaction of the wave with a detector will be extremely small, making the wave

difficult to detect.

Gravitational waves have already been seen indirectly through the rate of orbital

decay of the binary pulsar PSR 1913+16 [13] [14], resulting in Hulse and Taylor

receiving the 1993 Nobel Prize for Physics. The rate of orbital decay measured

over thirty years of observations agrees with the General Relativistic predictions

of energy loss by gravitational waves to better than 0.2% [15]. No other forms of

energy loss can fully account for the sign and magnitude of the decay rate, so the

observed energy loss must be due to the emission of gravitational radiation.

A direct observation of gravitational waves requires an entirely new form of astro-

nomical instrument - one that can sense the minute interactions of gravitational

waves with matter.

1.4 Principles of Gravitational Wave Detection

Using A Michelson Type Interferometer

As described in Section 1.2, the incident gravitational wave acts like a propagat-

ing strain that compresses space in one transverse direction while simultaneously

stretching it in the orthogonal transverse direction.
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Information about the acceleration of the quadrupolar moment of the gravi-

tational wave source is contained in the perturbation of the metric, hµν . The

perturbation can in principle be measured by considering a distribution of uncon-

strained point masses placed upon geodesics in spacetime. In general relativity,

the distance between these masses is determined by the curvature of the spacetime

between the masses.

When using the transverse-traceless gauge described in section 1.2, the effect

of a passing gravitational wave is to perturb the metric, altering the distances

between the masses without changing their positions relative to their geodesics.

By using the travel time of a light beam to measure the distances between the

masses, the presence of a gravitational wave can be inferred from the variations in

the measured distance.

There is a simple arrangement of masses that allows the measurement of the

changes in spacetime caused by an incident gravitational wave. This consists of

a mass representing the co-ordinate system origin, and two masses with mirrored

faces placed at a distance, L, from the origin mass so that the paths between the

origin mass and the mirror masses are orthogonal - see Figure 1.2 for a diagram.

If the origin mass is taken to be a beam splitter, then this arrangement is recog-

nisable as the Michelson interferometer.

When no gravitational wave is incident upon this instrument, the light takes a

time τ = 2L
c

to travel from the beam splitter to the mirror at the end of the

interferometer arm, be reflected and return to the beam splitter. As the distance
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L is the same for both arms of the interferometer, beams of light which enter the

interferometer coherently will leave in phase.

However, if a suitably polarized gravitational wave passes through the detector

in the z-direction (out of the page, according to the convention used in Figure 1.2)

the differential strain will effectively result in the change of the arm lengths. If the

gravitational wave produces a change in arm length of δl, the light travel time is

now:

τ = 2
(L ± δl)

c
= L

(2 + h)

c
(1.12)

For one arm of the interferometer, the light will take 2δl/c longer to return to the

beam splitter, and for the other arm, the light will take 2δl/c less time to return. It

is more useful to think of these changes in travel time for light as relative changes

of the phase of the light at the output port of the beamsplitter. If the wavelength

of the coherent light used is λ, then the phase change due to a gravitational wave

of amplitude, h, is given by:

δφ = h
4πL

λ
. (1.13)

These changes in phase will be detectable at the output of the beamsplitter, which

implies that a Michelson interferometer can in principle be satisfactorily used to

detect the changes in spacetime caused by an incident gravitational wave [16][2],

subject to obtaining a high enough sensitivity.

16



Input

Output

Mirror

Mirror

L

L

y

x
Figure 1.2: Two mirror masses and a beam-splitter, arranged to form a Michelson
interferometer.
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This technique is still a technical and scientific challenge, as the stiffness of

spacetime, the weakness of the gravitational interaction and the enormous dis-

tances between the sources and the Earthbound observers results in the motions

due to an incident gravitational wave from even the most dramatic of astronomi-

cal events being several orders of magnitude smaller than the radius of an atomic

nucleus. Using the value for the amplitude of a gravitational wave from an inspi-

ralling neutron star binary calculated in Section 1.2.1, h = 2 × 10−21, the change

in the arm length of a 4km interferometer is 1.6× 10−17m and the resultant phase

change for an interferometer employing a 1064nm laser is 9 × 10−11 radians.

1.5 Early Detection Attempts

In order to appreciate the technological advances made in the effort to detect

gravitational waves, it is useful to briefly recount the history of gravitational wave

experimentation. In the late 1950s, Joseph Weber of the University of Maryland

made the first attempt at construction of a serious gravitational wave detector.

These first detectors consisted of one ton aluminium bars, at room temperature,

the resonant modes of which would be excited if a gravitational wave of the ap-

propriate frequency passed through it, with piezoelectric transducers monitoring

for any motion of the mass. Weber claimed to have detected gravitational waves,

but his results could not be reproduced and it was later estimated that the room

temperature bar detectors lacked the sensitivity to detect gravitational waves from

any plausible sources.

The invention of lasers meant that the sensitivity of Michelson type interferometers
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could be improved greatly. Robert Forward’s team at the Hughes Research labora-

tory developed the first Michelson type laser interferometer with suspended optics

that was intended for use as a gravitational wave antenna. The 2m long arms and

low laser power meant that the strain sensitivity was limited to 1−5×10−16
√

Hz,

but this prototype has provided the basic template for all current ground-based

laser interferometer detectors to date [17]. Further small prototypes followed at

MIT, Glasgow, MPI Garching, Caltech, where many of the techniques used in the

current generation of gravitational wave detectors were developed.

1.6 Laser Interferometric Gravitational Wave De-

tectors

In order for a Michelson interferometer to be operated as a useful instrument for

the detection of gravitational waves, the instrument must be operated under a

certain control scheme. If the interferometer is held in a condition where the light

from both arms produces maximum constructive interference, in the terminology

of interferometry, this is known as the ‘bright fringe’. While this is simple to ar-

range, the amplitude change resulting from the altered travel time of the light from

each arm due to a gravitational wave is extremely small in comparison to the base

amplitude of the bright fringe. This arrangement therefore provides poor signal

to noise performance, as the useful signal will only be manifest as a very small

magnitude change against the background of the carrier signal of large magnitude.

A useful alternative would be to set the arm lengths so that the two light beams
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destructively interfere, resulting in an output signal with amplitude close to zero

when no gravitational wave is present and with a small but measurable amplitude

when a differential arm length change occurs. The minimum amplitude observed

at the output of the interferometer is known as the ‘dark fringe’ - operating the

gravitational wave detector in this condition or close to it will result in a better

signal to noise ratio than bright fringe operation.

To make real measurements possible, the interferometer is operated in a ‘locked’

condition. In a locked interferometer, a feedback control system uses the output

signal of the interferometer to control the motion of a part of the interferometer to

bring the output signal close to zero. In this scheme, the actual signal representing

the effects of the gravitational wave is part of the signal used to control the system.

This interferometer operating scheme lies at the heart of all the advanced optical

techniques used in modern gravitational wave detectors.

1.7 Sources of Noise in Long Baseline Interfero-

metric Gravitational Wave Detectors

As the change in interferometer arm length resulting from a gravitational wave is

extremely small and easily swamped by differential mode signals not caused by

gravitational waves, all possible noise sources must be reduced or compensated

for in order to obtain a satisfactory signal to noise ratio. The following sections

outline the major noise components present in interferometric gravitational wave

detectors and the steps taken to reduce them.
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1.7.1 Laser-related Noise and the Standard Quantum Limit

The use of a real laser in a real interferometric system brings the limitations of

instrumentation into focus when considering the measurement of extremely small

displacements. The light from a real laser contains frequency fluctuations, which

contribute unpredictably to the phase difference at the output port of the interfer-

ometer. The size of this phase difference is equivalent to a gravitational wave strain

proportional to the ratio of the size of the fluctuations to the mean frequency of

the laser. The amplitude of the laser light is also subject to fluctuations, and these

also contribute to non-gravitational wave signals at the output of the interferom-

eter [2][18]. Other aspects of the laser light can couple into the interferometer

and lead to noise, such as imperfections in the alignment of the laser beam, beam

jitter, optical scattering and the effect of higher order spatial modes of the laser

beam passing into the interferometer. Many technological achievements have been

made in order to suppress and mitigate these sources of noise.

These technical laser-related noise sources may be challenging, but they do not

fundamentally limit the performance of this form of instrument. The fundamen-

tal limit to the precision of interferometry is related to the quantum interpreta-

tion of what occurs when the gravitational wave detector interacts with the laser

beam. This may be considered as a combination of two complementary effects:

the fluctuating radiation pressure on the gravitational wave detector optics and

the unavoidable phenomenon of shot noise in the electronics detecting photons at

the output port of the interferometer.
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Radiation Pressure Noise

Radiation pressure noise is caused by fluctuations in the number of photons col-

liding with the reflecting surfaces of the test masses of the interferometer. The

photons exchange momentum with the test masses, resulting in slight random

motions of the test mass and causing an intensity change at the output of the

interferometer. The equivalent gravitational wave amplitude due to this form of

noise is given by,

hr.p.(f) =
1

mf 2L

√

~Pin

8π3cλ
, (1.14)

where L is the arm length of the interferometer, m is the mass of the test mass

mirrors, Pin is the laser input power, λ is the wavelength of the laser light and f

is the signal frequency [2].

As can be seen in Equation 1.14, the effects of radiation pressure noise can be

reduced by increasing the mass of the test masses, m and length of the arms, L,

and reducing the laser power, Pin.

Photon Shot Noise

Part of the operation of the interferometer readout involves measuring the inten-

sity of the light at the output port of the interferometer using a photodetector.

Real-world photodetectors have an efficiency, η, which represents the probability

that an incident photon will induce a photoelectron in the detector. In this way,

photon shot noise can be thought of as the statistical uncertainty in the number
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of photo-electrons detected at the output of the interferometer. This process can

be modelled using Poisson statistics, so for every N photo-electrons detected at

the photodiode, there will be an uncertainty of
√

N in the output signal.

An estimate of h, the equivalent strain caused by shot noise in a Michelson inter-

ferometer can be written as,

hshot(f) =
1

ηL

√

~cλ

2πPin
. (1.15)

Where L is the arm length of the interferometer, Pin is the laser input power, η is

the efficiency of the photodiode and λ is the wavelength of the laser light. As can

be seen from the equation above, the effect of this form of noise can be reduced

by increasing the laser power or the length of the interferometer arms [2].

For a simple, ideal Michelson interferometer, the shot noise does not vary with

frequency. When the additional characteristics of the interferometers in gravita-

tional wave detectors are taken into account, extra frequency dependent terms

are required to describe the shot noise spectrum, resulting in higher shot noise for

high frequencies. For a Michelson interferometer in which the arms are Fabry-Perot

cavities, the shot noise is given by [2],

hshot(f) =
1

8FL

√

~λc

πηCPin

√

1 +

(

f

fFP

2)

(1.16)

where F is the finesse of the Fabry-Perot arm cavities, and fFP is the Fabry-Perot

cut-off frequency, given by,
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fFP =
c

4LarmF
. (1.17)

The Quantum Limit for Interferometric Precision

As the effects of radiation pressure noise can be decreased by reducing the laser

power, and photon shot noise can be decreased by increasing the laser power, there

is a tradeoff for the optimum value of input laser power that results in the lowest

level of noise for the two effects combined. For each value of Pin the best sensitiv-

ity to a gravitational wave signal occurs for a different gravitational wave signal

frequency. It is sensible to set Pin to a value that places the frequency of peak

sensitivity at a region of interest on the gravitational wave spectrum.

Taken together, the radiation pressure noise and the photon shot noise form a

lower limit on the sensitivity of this form of detector. The radiation pressure noise

results in a fluctuation of the momentum being imparted to the test mass, ∆p,

and the photon shot noise results in an uncertainty in the position of the mass,

∆x. Provided these two quantities represent uncorrelated noise sources it can be

shown that they can be related by a form of the Heisenberg Uncertainty Principle,

∆x∆p > ~ (1.18)

Radiation pressure and shot noise can also be thought of as the effect of zero-point

fluctuations in the vacuum entering the interferometer by coupling with the un-

used port of the beam splitter. Upon leaving the laser, the light entering the input

port of the interferometer is in a coherent state, which becomes mixed with the
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random vacuum fluctuations upon passing through the beam splitter, resulting in

a random variability in the amount of light impinging upon the arm mirrors and

the photodetector.

The lower limit of the sensitivity of an interferometer is known as the standard

quantum limit or SQL, and is given by [2][19],

hSQL =

√

8~

mω2L2
, (1.19)

where ~ is the reduced Plank constant, m is the mass of the test mass mirrors, ω

is the angular frequency and L is the length of the interferometer arms.

1.7.2 Seismic and Gravity Gradient noise

The experimental environment for a gravitational wave detector must be highly

controlled if the interferometer is to detect the motion of the arm end mirrors due

to a passing gravitational wave. Motions of anthropological, geological, meteoro-

logical and oceanic origin form a background level of vibrations at a wide range

of frequencies. As a certain proportion of the vibrations which couple into the

experimental system are of human origin, regions with less intense human activity

have a more favourable seismic noise profile, but even at remote locations there is

an ambient seismic noise spectrum which would cause motions of the mass on a

scale of 10−9m
(

10Hz
f2

)√
Hz above 10Hz and 10−9m

√
Hz

−1
below 10Hz [2]. Mirror

motions of this size would cause significant difficulty for experimenters wishing to

detect gravitational waves, so attenuation of external vibrations is necessary.
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As the principle of detection requires that the mirrors be free to move, one

obvious solution is that they be suspended as pendulums. A simple pendulum

has the useful function of attenuating the transfer of external vibrations above

its own natural frequency, which can be determined from the length of pendulum

suspension. The transfer function of a single pendulum is similar to that of a

2-pole low pass filter with the poles at the natural frequency and is shown in a

form which takes into account the resonances of the pendulum suspension [2]. By

suspending one pendulum from another pendulum, greater vibrational attenuation

can be achieved.

Figure 1.3: The response function for a single pendulum of length 33cm, showing
the high frequency structure due to the resonances of the suspension wires [2].

There are also vibrational noise sources that cannot be reduced by use of at-

tenuators. Because the detector is placed in Earth’s gravitational field, which also

contains a time-dependent matter distribution, the detector will experience fluc-
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tuating gravitational fields that result in low frequency displacement noise in the

mirror positions. This displacement has become known as gravity gradient noise,

and provides the limit for groundbased gravitational wave detection at around

1Hz, where the gravity gradient noise becomes the dominant source of noise [20].

1.7.3 Thermal noise

This topic will be discussed in more detail in Chapter 2 and encompasses the

effects of non-zero temperature upon the optical and mechanical elements of the

interferometer. The level of thermal noise in an interferometer may be calculated

from the thermomechanical properties of the optical and mechanical components

of the interferometer, with the an important variable being the intrinsic mechanical

loss angle, φ(ω) of the component materials.

1.8 Current Interferometric Gravitational Wave

Detectors

This section contains descriptions of the current generation of interferometric grav-

itational wave detectors. Six detectors based on variations upon the Michelson

interferometer are currently in operation as the beginning of a global network.

They all rely upon the principle of using long interferometer arms to increase the

amount of length change observed for a given gravitational wave strain and use

positional feedback control signals to obtain values for h. As yet, none of these

detectors has identified a definite gravitational wave signal, but ongoing improve-

ments in sensitivity increase the likelihood of detection.
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A network of spatially separated multiple detectors is required because the trans-

mission of gravitational waves through spacetime can be seen as analogous to the

transmission of sound through air, and gravitational wave detectors can be seen

as analogous to an ear or microphone. Unlike an optical telescope, ears and grav-

itational wave detectors have a very wide antenna pattern that is able to receive

signals from the whole sky, although not with uniform strength. By correlating the

signals detected by multiple detectors at different locations, it is possible to obtain

higher sensitivity over a larger proportion of the sky and also provide information

on the position of the sources in the sky. Also, because of the difficulty in ensuring

that a given signal is caused by a gravitational wave, quasi-co-incident events in

non-co-located detectors will be required to discount false positives.

The following sections describe the four large-scale interferometric gravitational

wave detector projects currently in operation.

1.8.1 LIGO

LIGO consists of three interferometers, H1 and H2, with armlengths of 4km and

2km respectively, located in Hanford, Washington State and L1, a 4km arm length

interferometer located at a facility in Livingston, Louisiana [21].

The standard LIGO optical layout consists of a Michelson type interferometer

with additional Fabry-Perot cavities in the 4km arms. The Fabry-Perot cavities

allows light to make multiple trips along the arms before returning to the beam

splitter, which increases the interaction of light with incoming gravitational wave
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signals, therefore increasing the change in phase that occurs for a given gravita-

tional wave amplitude. The level of laser power in the system is increased, leading

to a corresponding decrease in the level of shot noise.

The LIGO detectors also employ power recycling. This technique develops from

the operation of gravitational wave detector interferometers operating on the dark

fringe, as described in Section 1.6, above. If the detector is locked to the dark

fringe, and the optical elements absorb very little power, then almost all the laser

power that has been sent into the interferometer must be exiting the interferometer

through the input port. Power recycling uses an extra controlled mirror at the

input port to send the wasted light back into the interferometer coherently with

the input light from the laser. In this case, the parts of the interferometer after

the beam splitter are effectively acting as a single mirror with extra parameters,

which forms a resonant cavity with the power recycling mirror [18].

The laser in each LIGO detector is a 10W Nd:YAG operating at 1064nm and

undergoes frequency and amplitude stabilisation and is passed through an optical

mode cleaner in order to ensure that only the lowest order spatial mode of the laser

beam enters the interferometer [22]. The interferometer optics are suspended on

steel wire slings which form pendulums with a frequency of 0.76Hz, which provides

seismic isolation of the form 1/f2. The suspended optics are in turn suspended from

4-stage spring/mass stacks which provide 1/f8 attenuation of seismic noise above

1Hz [23].

Since LIGO began running in 2001, there have been five science data taking

periods. The most recent data taking period, S5, began in November 2005 and
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ended in October 2007 and collected data throughout. For a total of 365 days

over the period of S5, science quality data at design sensitivity was taken from all

three detectors simultaneously, otherwise known as ‘triple co-incident’ data. Each

individual interferometer had a duty cycle of around 75% and the overall duty

cycle for triple co-incident data was 53%. Using the data taken in S5, the signal

due to the inspiralling of a 1.4M⊙/1.4M⊙ neutron star binary up to 14Mpc away

would be visible, enabling gravitational astronomy to reach to the Virgo cluster.

The strain sensitivities of the three interferometers are shown in Figure 1.4 [22].

Initial LIGO expects to see neutron star binary coalescences to a radius of 33Mpc

at a rate of one every fifty years, and one black hole binary coalescence every 140

years to a horizon distance of 161Mpc. Advanced LIGO expects to see neutron star

binary coalescences to a radius of 445Mpc at a rate of 40 per year. In Advanced

LIGO the expected detection rate of black hole binaries will increase to 20 per

year to a horizon distance of 2.2Gpc [24].

1.8.2 Virgo

VIRGO is a French-Italian collaboration, based around a 3km arm interferometer

outside Pisa, Italy [25]. The interferometer topology is similar to the LIGO de-

tectors, employing Fabry-Perot cavities in the arms of the detector to increase the

resultant phase shift due to the interaction of a gravitational wave and a power re-

cycling cavity as described above. The laser system comprises of a 20W Nd:YVO4

laser, injection seeded by a 1W Nd:YAG master laser operating at 1064nm [26].

Isolation from seismic disturbances is achieved by an innovative seven stage

pendulum suspension, the superattenuator, which is designed to suppress seismic
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Figure 1.4: The strain sensitivities of the three LIGO detectors (red line: H1, blue
line: H2, green line:L1) and in grey, the design sensitivity [22].

disturbances by ten orders of magnitude for frequencies above 4Hz and allows the

Virgo detector to surpass the LIGO detectors in sensitivity at the lowest part

of the frequency range. The superattenuator consists of a cascade of pendulum

isolation stages, suspended from a tower which acts as an inverted pendulum,

providing additional isolation. The final ’marionetta’ suspension stage consists of

four tungsten wires from which the test mass mirror is suspended [27][28]. The

optical elements, as in the LIGO and GEO600 detectors, consist of fused silica

substrates with silica/tantala multilayer reflective coatings. In its most recent

science run, VSR1, the instrument achieved a duty cycle of 84.2% and a horizon

distance for neutron star binaries of 4.5Mpc.
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1.8.3 GEO600

The GEO600 gravitational wave detector is located in Ruthe, near Hannover in

Germany. The detector consists of a 600m singly folded arm Michelson interfer-

ometer, with signal and power recycling, as shown in Figure 1.6. It has been

operational since 2002 and has participated in four of the five science data gather-

ing runs as part of the LIGO Scientific Collaboration, averaging a strain sensitivity

of 3 × 10−22
√

Hz in the most recent, S5 [29].

Unlike LIGO and Virgo, the arms of GEO600 do not contain Fabry-Perot cav-

ities. However, GEO600 is the first detector to make use of the dual recycling

technique, which builds upon the power recycling technique described and also

uses signal recycling.

The signal recycling technique aims to increase the power of the output light

‘signal’ at the output port of the detector. As the interferometer is operated at

the dark fringe in order to maximise the signal-to-noise ratio, the signal due to

an incoming gravitational wave is rather small. In order to best utilise this light,

a partially transmissive mirror is placed in front of the output port to produce

another cavity that is controlled to resonance in order to produce constructive

interference and improve the size of a gravitational wave signal by a factor related

to the finesse of the new resonant cavity [30].

The optical elements are suspended from triple stage pendulums to provide

seismic attenuation. The final stage is a quasi-monolithic suspension consisting

of fused silica fibres welded onto fused silica ears which are bonded using the
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hydroxy-catalysis technique onto the barrel of the test mass [31].

As will be explained in more detail in Chapter 2, the level of thermal noise in

a system can be calculated from the mechanical loss of the constituent materials.

Fused silica has a lower level of mechanical loss than the steel or tungsten wire used

in the other detectors and can be formed into strong and reliable fibres by heating

and pulling high quality silica rods [31]. The fused silica fibres are attached to the

fused silica optic by the hydroxy-catalysis bonding process rather than by welding

as the bond produces a quasi-monolithic end result. This mitigates some of the

stress in the join that other bonding methods may cause and also eliminates the

dissipation of energy which results from friction between a wire suspension loop

and the mass.
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Figure 1.5: A series of noise curves for GEO600 from the beginning of operation
to Summer 2008.
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Figure 1.6: Optical layout of the GEO600 detector. H. Grote for the Ligo Scientific
Collaboration [29].

Figure 1.7: Summary of the comparative sensitivities of the large scale detectors
in operation.
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1.8.4 TAMA

The TAMA 300 interferometer project has been active since 1999 and has been

taking science data intermittently since 2004. The interferometer is a power-

recycled Fabry-Perot Michelson interferometer with a 300m arm length which has

recently been upgraded to utilise a similar superattenuating suspension technology

to that used in the Virgo detector [32]. The detector optics are composed of

superpolished fused silica, with a diameter of 100mm and a thickness of 60mm

and the high reflection coatings are composed of a multilayer stack of ion beam

sputtered tantala and silica. The main laser is a pre-stabilised 10W Nd:YAG and

the most recent science data run could observe neutron star binaries to a horizon

of 73kpc.

Figure 1.8: The strain sensitivity of the TAMA300 detector as of October 10th,
2008.
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1.9 Future Gravitational Wave Detectors

1.9.1 Enhanced and Advanced LIGO

At the time of writing, the initial improvements to the LIGO detectors to form

Enhanced LIGO are currently underway and aim to forms a bridge between the

current technologies and those to be used in the future Advanced LIGO upgrade.

A major change to the optical system is that the 10W main laser is to be replaced

with a 35W laser to obtain higher levels of optical power within the interferometer,

which brings requirements for additional changes to the optical setup to allow for

accurate operation with higher power levels. The sensing optics at the dark port of

the interferometer are to be placed in vacuum, along with an output mode cleaner

to remove ‘waste’ light outside the lowest energy spatial mode [33].

The tripling of the power entering into circulation in the interferometer brings

with it the prospect of disadvantageous thermal lensing effects and so a thermal

compensation system is to be installed on each of the key optics. The incident

laser spot produces a warm area on the face of each test mass, which the thermal

compensation system mitigates by using a ring heater to heat the outer edge and

reduce the thermal gradient between the centre and edge of the test mass. The

Enhanced LIGO additions to the detectors are expected to produce an increase

in sensitivity by a factor of ∼ 2, which translates into an eightfold increase in

observable volume, extending the observation horizon for a 1.4M⊙/1.4M⊙ neutron

star binary from 15Mpc to 30Mpc [34].
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Advanced LIGO represents the application of second generation detector tech-

nologies to the largest instruments in the global network to move gravitational

wave astronomy from initial detections to full observations of multiple sources.

The baseline design aims to decrease the noise floor by an order of magnitude and

will hopefully produce multiple observations of gravitational waves per year. The

extra sensitivity will allow observation of as many as 40 1.4M⊙/1.4M⊙ neutron

star binary coalescences per year at distances of up to 200Mpc and 20 black hole

binary coalescences per year to a horizon distance of 1Gpc [24].

Laser input power for Advanced LIGO will be increased to 180W, resulting in

800kW of laser power in the resonant cavities. The upgraded detector will increase

the size of the test mass optics from the 25cm diameter, 11kg masses used in the

initial detector to 34cm diameter, 40kg masses [35]. Heavier masses reduce the

displacement caused by radiation pressure and the larger diameter will enable the

optics to support the large increase in laser power.

The optics will be isolated from outside disturbances by a seven stage pendulum

system, consisting of three active stages of horizontal and vertical attenuation and

four passive stages of attenuation. The final attenuating stage will follow the

technology developed in GEO600 and suspend the test mass with four silica fibres,

which are welded to silica ‘ears’ that are silicate bonded to the barrel of the test

mass.

The fruits of decades of research and development in optical coatings is also

expected to be evident in Advanced LIGO and enable the sensitivity of the detector

to reach levels limited by quantum noise sources (as described in Section 1.7.1) in
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the middle of its detection band. The experimental work reported in this thesis is

part of this research and development effort.

Figure 1.9: The strain sensitivity curves showing the design sensitivities of the
current LIGO detectors alongside the design sensitivity for Enhanced LIGO and
Advanced LIGO in both broadband and high frequency operational modes.

1.9.2 Virgo+ and Advanced Virgo

The Virgo+ upgrade project is an analogue to Enhanced LIGO, consisting of

upgrades to first generation technologies in preparation for second generation in-

terferometry. The main upgrades are to the laser system and suspension, where

the wire sling final stage is to be replaced with a quasi-monolithic all-silica sus-
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pension and the original 20W laser is to be increased to 50W by the addition of

an amplifier and replacement of the original laser with a fibre laser. The higher

laser power will induce thermal lensing effects on the detector optics, so a ther-

mal compensation system is to be installed. Some detector optics are also to be

replaced [36].

The Advanced Virgo technology upgrade will provide more than a factor of ten

increase in detection horizon distance for BH-NS and BH-BH binaries.

The interferometer configuration is to be upgraded to a dual-recycled Fabry-Perot

Michelson, similar to the Advanced LIGO configuration, with a tunable signal re-

cycling cavity to secure extra sensitivity in the 10kHz range and the input laser

power is to be increased to around 200W. The end test mass mirrors will be doubled

in mass in order to support the increase in laser power and a wider beam diame-

ter. The new mirrors are likely to be suspended using a quasi-monolithic silicate

bonded final stage as in GEO600 and Advanced LIGO. An improved thermal com-

pensation system will also be installed to minimise thermo-optic disturbances [36]

and as in the LIGO detector upgrades. Improved dielectric coatings are expected

to deliver reduced thermal noise.

1.9.3 The Large Cryogenic Gravitational Telescope (LCGT)

The team who built the Japanese TAMA300 detector intend to construct a grav-

itational wave detector that is capable of detecting at least one neutron star co-

alescence per year of operation. This detector is to consist of a 3km arm-length
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power recycled Fabry-Perot Michelson interferometer operated at 20K, using single

crystal sapphire mirrors with a diameter of 25cm and a mass of 30kg [37]. It is to

be located in the seismically quiet Kamioka mine facility, where the CLIO inter-

ferometer is currently being used in research to establish the technologies required

to support the LCGT [38].

1.9.4 GEOHF

The enhancements to the GEO600 detector, which already uses some advanced

techniques to attain sensitivities on the same order as those in much longer base-

line interferometers, are limited at low frequencies by the shorter arm length.

Therefore, future improvements are aimed at increasing the sensitivity of the de-

tector at high frequencies and to allow for narrowband observations at enhanced

sensitivities [39].

The two limiting noise sources at high frequencies are coating thermal noise

and photon shot noise. It is anticipated that advances in coating research, some

of which are within the scope of the work described here, will provide a level

of reduction in coating thermal noise. Two techniques that are anticipated to

provide significant noise reductions are doping the coating material, and varying

the thickness of the component layers in coatings. Further discussion of thermal

noise in coating materials and how it may be reduced can be found in later chapters.

The shot noise in GEOHF is to be reduced by increasing the power in the

interferometer to the highest sustainable by the optics (approximately 200W) and

to introduce so-called ‘squeezed light’ into the interferometer. This technique uses
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deliberately induced correlations in the vacuum fluctuations at the ports of the

interferometer and therefore reduce the shot noise at the expense of increased

radiation pressure fluctuations [40].

1.9.5 The Einstein Telescope

The Einstein Telescope is the first third generation gravitational wave detector

to be planned, and aims for an order of magnitude increase in sensitivity over

the second generation detectors. A two-year design study to gather together the

knowledge at the forefront of gravitational wave detector technologies and develop

a baseline design and noise budget began in 2008 [41].

It is currently planned that the detector will consist of two or three coincident

interferometers in an underground, seismically quiet location. Current plans are

for the interferometers to consist of very low temperature silicon optics with exotic

coatings and use extremely high powered lasers.

It is also likely that the instrument will utilize measurement techniques that will

allow the Einstein Telescope to surpass the quantum noise limit set by radiation

pressure and photon shot noise described in Section 1.7.1 [40].

1.9.6 LISA

Many interesting gravitational wave sources are predicted to have frequencies be-

low the 1Hz gravity gradient ‘wall’ that limits all earthbound measurements. A

project to build a spacebound instrument to detect gravitational waves between

100µHz and 1 Hz is currently in development [42]. LISA will consist of three iden-
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tical spacecraft travelling in triangular formation around the Sun in the quiet zone,

20◦ behind the Earth. LISA will have an arm length of 5 million km, a peak design

sensitivity of around 10−20m
√

Hz and is predicted to make detections from the

first minutes of operation. This project presents interesting technical challenges

such as low-intensity, high-loss interferometry, precision metrology and actuation

to maintain the ‘free-falling’ proof masses, the locking of an interferometer with

a 33.3s round-trip time for light and the application of all these techniques in the

hostile environment of space [43].
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Chapter 2

Thermal Noise

2.1 The Origins of Thermal Noise

Thermal noise in an interferometric gravitational wave detector is the result of

the thermal motions of the atoms within the optical and suspension elements.

The suspended optics form a system of classical oscillators where thermal excita-

tion contributes mechanical energy equivalent to 1
2
kBT to each degree of freedom,

according to the Equipartition Theorem. This energy is manifest as thermally

induced rotation, translation and vibration of the overall system. While these

motions will be on the molecular scale, in a gravitational wave detector this may

be of the same magnitude as the arm length change induced by a passing gravita-

tional wave. Therefore, thermally induced vibrations can become a critical source

of noise in gravitational wave detectors.

Einstein’s re-examination of the work of Robert Brown on the random motions

of particles [44] provides a starting point for an understanding of the connection
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between microscopic and macroscopic thermal processes relevant to thermal noise.

Brown deduced from his observations of the random motions of pollen grains sus-

pended in water that the bombardment of the grains by thermally excited water

molecules caused fluctuating random forces to be applied to the pollen grains.

Einstein further observed that the kinetic energy of initially excited pollen grains

decreased over time, and hypothesized that the observed energy dissipation was

due to the viscosity of the water. This provides a connection between fluctuations

and a form of dissipation.

This idea was further explored by Callen, Welton and Greene and formulated as

the Fluctuation-Dissipation theorem as described in the papers [45][46][47]. This

states that for any linear system in equilibrium which is capable of undergoing a

dissipative process, there will be fluctuations in a measurable parameter. For the

case of Brownian thermal noise, the driving force is provided by random thermal

excitations of molecular degrees of freedom, which result in fluctuations of the

velocities of the molecules.

This section aims to introduce the calculations which predict the magnitude at

a given frequency of the motion of a gravitational wave detector optic that is due

to thermal excitations of the test mass. If the power spectral density of the fluctu-

ating force due to 1
2
kBT thermal effects is SF (f ), and the mechanical impedance of

the optic is given by Z(f), then according to the Fluctuation-Dissipation theorem,

the relationship between these two quantities is given by,

〈SF (f )〉2 = 4kBTR[Z(f )], (2.1)
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where R[Z(f )] is the real, or dissipative, part of the mechanical impedance [46].

In order to assess the level of noise by finding the power spectral density of the

displacement of the optic, we make use of the relation v = F/Z, which states that a

force is the product of a characteristic impedance and velocity, and the relation be-

tween the mechanical impedance and the mechanical admittance, Y (f ) = Z−1(f ).

Substituting these relations into Equation 2.1 produces the relationship, [48]

〈x(f )〉2 =
4kBT

f 2
R[Y (f )]. (2.2)

This formula describes the magnitude of the displacement of the optic in terms of

the admittance of the system, which can be used to calculate the level of positional

noise in the detector optics.

2.2 Anelasticity, Internal Friction and Mechani-

cal Loss

The dissipation mechanisms present in the suspended optics in a gravitational

wave detector can be divided into two groups - those sources of dissipation exter-

nal to the test mass, and those caused by internal phenomena relating to the test

mass itself. The main external sources of dissipation in gravitational wave detector

optics are viscous damping due to residual gas particles, friction, hysteresis and

electrostatic test mass damping due to excess charge buildup.
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The internal dissipation mechanisms which are related to intrinsic properties of

the test mass are less easily mitigated than the external dissipation mechanisms.

An examination of internal dissipation mechanisms as they relate to thermal noise

in materials requires that the solid be modelled as an arrangement of oscillators.

When considering a perfectly elastic ideal linear oscillator, the relationship be-

tween an applied stress, σ, and the resultant strain, ǫ, is σ = Eǫ, where E is

the Young’s Modulus of the material. For this situation, the appropriate form of

Hooke’s Law is F = −kx, and the strain occurs instantaneously upon the appli-

cation of the stress.

In real materials, however the stress-strain response is not instantaneous, and

the resultant strain lags behind the applied stress by a loss angle, φ. In this case,

the stress and resultant strain can be represented as follows, [49]

σ = σ0e
iωt, (2.3)

ǫ = ǫ0e
i(ωt−φ). (2.4)

This phase-lag between the action and response can be interpreted as the material

moving through a series of intermediate structural, thermal or vibrational states

until it reaches equilibrium, a process known as relaxation. The relaxation process

dissipates energy into the oscillating system which may be interpreted as a com-

plex and frequency dependent value for the elastic modulus E or spring constant, k.

Whichever physical process is involved in the anelastic relaxation, it can be char-
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acterised by three parameters: E, the elastic modulus of the material in a fully

relaxed state, E + δE, the elastic modulus of the material at the instant the ex-

ternal stress is applied and before relaxation has begun, and τ , the characteristic

time taken for the relaxation process to complete.

These parameters can be used to calculate the frequency dependent loss angle,

φ(ω) using the formula, [49]

φ(ω) =
δE

E

ωτ

(1 + ω2τ 2)
, (2.5)

with an equivalent hyperbolic form,

φ(ω) =
δE

2E
sech(ln (ωτ)). (2.6)

The curve φ(ω) describes a function known as a Debye peak. The loss angle due

to a particular process is greatest at the frequency which corresponds to the relax-

ation time, τ−1, and has a value determined by the changes to the elastic modulus

caused by the process under consideration, represented here as δE
E

.

Some of the processes which lead to anelastic dissipation are thermally activated.

If the relaxation process which is responsible for the dissipation of energy is ther-

mally activated, the process has an activation energy Hb and a characteristic rate

parameter, τ−1
0 . The characteristic rate, τ−1, of a thermally activated process as

a function of temperature, T , is given by the Arrhenius formula, [50][49]
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τ−1 = τ−1
0 e

−
Hb

kBT . (2.7)

The relaxation time of the process will be extremely large if the energy provided by

the temperature of the system, kBT , is much less than the barrier height energy,

and the relaxation time becomes very small when kBT > Hb and the thermal

energy of the system is enough to overcome the potential barrier. This formula for

the relaxation time allows the effect of temperature on the dissipative system to

be taken into consideration. Multiplying Equation 2.7 by ω and taking the natural

logarithm of both sides shows that a linear relationship exists between ln(ωτ) and

T−1.

ln(ωτ) = ln(ωτ0) +
Hb

kBT
(2.8)

 φ = Δ/2

ln(ωτ)
ωτ = 1

Figure 2.1: Illustration showing a Debye peak of mechanical loss as a function of
ln(ωτ), as given in Equations 2.5 and 2.6.

49



This can be substituted into Equation 2.6 to give,

φ =
δE

2E
sech

[

ln(ωτ0) +
Hb

kBT

]

(2.9)

Plotting the φ values calculated using Equation 2.9 as a function of reciprocal

temperature produces a curve with the same Lorentzian shape as the φ(ω) curve

as shown in Figure 2.2. The peak of this curve occurs at T−1 = − kB

HB
ln(ωτ0).

The linear relationship between ln(ωτ) and T−1 can be used to determine the

characteristic energy and relaxation times of a particular dissipative process. If

the loss angle of a body is measured at several frequencies over an appropriate

range of temperatures, then the loss measurements will exhibit Debye peaks at

discernable temperatures. Plotting the inverse of each peak temperature against

the natural logarithm of the frequency at which it was measured will produce a

line of gradient kB/Hb, allowing the height of the energy barrier that characterises

the dissipation process to be found [51].

The model of a thermally activated dissipative process with a unique energy barrier

height and relaxation time only represents situations occurring for perfectly crys-

talline materials. However, the amorphous forms of materials are used in current

gravitational wave detector optics. It is postulated that the disordered structure of

the amorphous materials will introduce a distribution of barrier heights, resulting

in the broadening of the Debye peak.
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The concepts of dissipation-related Debye peaks and the Arrhenius relationships

concerning thermally activated dissipation mechanisms are used in Chapter 4, in

the analysis of the mechanical loss of optical coating materials.

2.2.1 Calculating Thermal Noise Due To Brownian Motion

In the case of real anelastic materials such as the fused silica used in gravitational

wave detector optics, the power spectral density of the displacement of the optic

due to Brownian thermal noise may be calculated by modelling each resonant

mode of the system as a harmonic oscillator using the anelastic form of Hooke’s

Law incorporating the complex spring constant [49][2],

F (ω) = −kx(1 + iφ(ω)). (2.10)

Here, F (ω) is the applied force, x is the displacement and the imaginary term φ(ω)

is the phase angle by which x lags F (ω). Using the conventional symbols, we use

Equation 2.10 to describe a damped harmonic oscillator where the force on the

oscillator is given as follows,

F (ω) = iωm
δx

δt
+

k

iω

δx

δt
(1 + iφ(ω)) (2.11)

By applying the Fluctuation-Dissipation theorem as described in the first section

of this of this chapter, it can be shown that there is a relationship between the

thermal noise spectral density due to each mode, Sx(ω), and φ(ω) or the loss angle

of the mode.
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This relationship may be derived by first finding the impedance of the oscilla-

tor system, Z. By definition,

Z =
F

δx/δt
. (2.12)

Applying this to equation 2.11 gives,

Z =
F (ω)
δx/δt

= iωm +
k

iω
(1 + iφ(ω)) (2.13)

which simplifies to:

Z =
−ω2m + k + ikφ(ω)

iω
(2.14)

The admittance of the system, Y , is the reciprocal of the impedance, Y = Z
−1.

Rationalising and inverting Equation 2.14 gives,

Y =
iωk − iω3m + ωkφ(ω)

(k − ω2m)2 + (k2φ2(ω))
(2.15)

The final step is to substitute the real part of equation 2.15 into equation 2.2,

giving the power spectral density of the displacement,

Sx(ω) =
4kBT

ω2

ωkφ(ω)

(k − ω2m)2 − (k2φ2(ω))
. (2.16)
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As k = ω2
0m and for materials used in gravitational wave detectors φ(ω) is very

small, Equation 2.16 can rewritten in terms of the mass and resonant mode fre-

quency of the system,

Sx(ω) =
4kBT

ω

ω2
0φ(ω)

m(ω4
0φ

2(ω) + (ω2
0 − ω2)2)

. (2.17)

This equation can be used to calculate the thermal displacement of an anelastic

oscillator at temperature, T , from its mass, m, resonant frequency, ω0 and me-

chanical loss, φ(ω0). Further information and detail on this subject can be found

in Chapter 7 of [2].

Equation 2.17 may be used in an approximate form for cases where ω ≪ ω0,

Sx(ω0) ≈
4kBTφ(ω0)

mω2
0ω

. (2.18)

2.2.2 Mechanical Loss and The Quality Factor

Alternatively, the dissipation present in a material can be described in terms of

the quality factor of a resonance, Q. This is a common physical descriptor of a

resonance, which allows a connection between the width of the resonance and its

rate of energy loss to be made. In general, the quality factor of a resonance is

given by,

Q(ω0) =
ω0

∆ω
(2.19)
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where ∆ω is the full-width half-maximum of the peak of the resonance in the

frequency domain. Alternatively, the quality factor of a resonance may be defined

as,

Q(ω0) =
2πEstored

Ediss
, (2.20)

where Estored is the total energy stored in the resonating system and Ediss is the

energy dissipated per cycle of the resonance.

Examining the definitions of the loss angle φ shows a connection with Q. The

loss angle is the angle by which strain lags stress in an anelastic material and

represents the proportion of total energy dissipated per oscillatory cycle,

φ(ω) =
Ediss

2πEstored
. (2.21)

By comparing Equation 2.20 and Equation 2.21 it can be seen that at a resonant

frequency ω = ω0, the mechanical loss angle φ(ω0) is equivalent to Q−1.

From the definition of Q, it can be seen that a material whose resonances have a

high quality factor will dissipate most of the energy of a resonance at frequencies

concentrated around ω0. Therefore it is reasonable to assume that materials whose

resonant modes have a high quality factor will have low levels of dissipation away

from the resonant frequency and therefore contribute less thermal noise to the
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assembly at frequencies far from resonance.

As the resonant frequencies of the mirror substrates in a gravitational wave detec-

tor are in the tens of kilohertz, far above the gravitational wave detection band,

the concentration of dissipation at the resonances allows a lower noise floor in the

detection band. The fibres or wires upon which the mirrors are suspended often

have resonant modes in the range of a few 100Hz to several kHz, which lies towards

the high end of the detection band. These resonant modes produce sharp peaks

in the thermal noise spectrum.

2.3 Calculating Thermal Noise for a System with

Multiple Resonances

To calculate the total Brownian thermal noise in a gravitational wave detector

mirror using Equation 2.18 requires the summing of the off-resonance thermal

noise for each of the resonant modes of the substrate. This formula was adapted

to produce the thermal noise spectrum due to n modes of the mirror [52],

Sx(ω) =
∑ 4kBTφn(ω)

αnmω2
nω

, (2.22)

where αn is a coefficient which corrects for the non-point size of the mass by de-

scribing energy coupling to the different resonant mode shapes and φn(ω) is the

loss of the resonant mode at ωn [52].

55



Equation 2.22 is only valid when the stochastic thermal driving forces for each

resonant mode are the same, which is equivalent to assuming a totally homoge-

neous distribution of mechanical loss throughout the system [53]. This method

also has the disadvantage of the computational intensity of the calculation of the

αn coefficients for each element in the summation series.

Another method of calculating the total Brownian thermal noise which may be

a more appropriate physical approximation was proposed by Levin [53] and con-

siders the effect of spatially inhomogeneous and correlated losses. The method

calculates the effect of an oscillating pressure that simulates the effect of the inci-

dent laser beam upon the front face of the test mass, represented by the force F0.

The Fluctuation-Dissipation theorem is then directly applied.

Levin uses the fact that the real part of the admittance, R[Y (f)] is a descrip-

tion of the coupling between the energy dissipated in the test mass per cycle,

Wdiss, and the motion of the front face such that,

R[Y (f)] =
2Wdiss

F 2
0

. (2.23)

By substituting this into the form of the Fluctuation-Dissipation theorem in Equa-

tion 2.2 we find that

Sx(f) =
2kBT

π2f 2

Wdiss

F 2
0

, (2.24)
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Figure 2.2: Illustration of the assumptions made when applying the F-D theorem
directly to a mirror substrate

so the noise spectral density for an arbitrary system can be found if the power

dissipated for an applied force can be calculated. For a homogenous distribution

of dissipation throughout a cylinder, Wdiss may be expressed as,

Wdiss = 2πfUmaxφ(f), (2.25)

where φ(f) is the loss angle for the appropriate frequency and Umax is the elastic

energy stored at maximum compression or expansion due to the applied force F0,

which may be calculated using elasticity theory [53]. To simulate the contact
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of a laser beam with the surface of the optic, the calculation is performed for a

Gaussian beam profile whose centre is co-located with the centre of the test mass

face. We therefore assume that the pressure applied to the test mass face is given

by,

P (f) = F0f(r) = F0
1

πr2
0

e
− r2

r2
0 , (2.26)

where r0 is the distance from the beam centre at which the intensity is 1/e of the

maximum. If the size of the test mass, R ≫ r0 then the size of the optic can

be approximated as infinite when finding Umax. In [53] Levin shows analytically

that the strain energy in a test mass deformed by a Gaussian beam under the

aforementioned assumptions is given by,

Umax =
F 2

0

π2E0r0
(1 − ν2)I

(

1 + O
(r0

R

))

, (2.27)

where I is a geometrical correction factor of 1.87322, ν and E0 are Poisson’s ratio

and the Young’s Modulus for the substrate material, and O( r0

R
) is a geometrical

correction factor for the finite size of the optic. Substituting this expression for

Umax into Equation 2.24 gives,

Sx(f)2 =
4kBT

f

(1 − ν2)

π3E0r0
Iφ

(

1 + O
(r0

R

))

. (2.28)

Sx(f) gives the spectrum of fluctuations in the measurement variable - the x po-
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sition of the surface of the optic - due to the Brownian motion of the molecules

in the mirror when a gaussian-profiled force is applied to one face, assuming that

dissipation is distributed homogeneously throughout the system [53][54].

The assumption that dissipation is distributed homogeneously throughout the

system is unlikely to represent a real mirror well. It is already known that the

high-reflectivity mirror coatings on the mirror faces (φ ∼ 10−4 at room temper-

ature [51][55][56]) are much lossier than the substrate (φ ∼ 1 × 10−8 at room

temperature [57][58]), and that any welds or silicate bonds that link the mass to

the suspension fibres represent regions with higher levels of dissipation.

The loss angle of the optic enters the Levin calculation in the description of the

equivalent force impinging on the front face, shown in Equation 2.25. In [53], it is

shown that a lossy area closer to the point at which the notional force is applied

contributes a higher level of noise than an equivalent area further away. As optical

coatings are by necessity applied on the surface of the optic and therefore placed

extremely close to the exciting force, their contribution to the level of thermal

noise will be greater than if the coating could be placed elsewhere. This unequal

contribution of noise due to the loss present in the coatings along with their al-

ready relatively high loss motivates the research effort to identify and mitigate the

dissipative processes in these coatings and therefore reduce the overall levels of

resulting thermal noise.

Referring back to the Equipartition theorem, one obvious way of reducing the

Brownian thermal noise in a gravitational wave detector is to reduce the tem-
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perature of the system thus reducing the thermal energy available per degree of

freedom. Initial steps towards the significant technical challenge of cryogenic pre-

cision interferometry are underway in the form of the CLIO project [59] which

is a stepping stone towards a fully cryogenic gravitational wave detector, LCGT

[38][37].

Though the decrease in temperature tends to lower thermal motion, Brownian

thermal noise is also affected by any changes in mechanical loss as a function

of temperature. Cryogenic measurements of the materials used in gravitational

wave detector mirror substrates and coatings show that the mechanical loss may

change significantly below room temperature. However, these measurements also

show that there are peaks of high dissipation in the curve of mechanical loss as a

function of temperature, which are connected to the characteristic energies of the

anelastic dissipation processes which occur in the material as discussed in Section

2.2. This topic is one of the core theoretical elements behind the experimental

work in this thesis, with special relevance to Chapters 4 and 5.

2.4 Brownian Noise From Optical Coatings

The direct application of the Fluctuation-Dissipation theorem shows that the po-

sitional distribution of mechanical loss throughout the mirror system has a signif-

icant effect upon the resultant magnitude of the thermal noise. Most importantly,

lossy regions contribute more thermal noise when they are close to the surface

upon which the pressure due to the impinging laser beam occurs.
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When using the direct application of the Fluctuation-Dissipation theorem method

to calculate the effect of a layer of lossy material upon the overall level of thermal

noise, alteration must be made to the terms Umaxφ(ω) in Equation 2.25. These

terms refer to the maximum energy stored in the elastic deformation of the mirror

substrate and the mechanical loss of the substrate. For a coated substrate this

becomes,

Umaxφmirror = USφS + UCφC , (2.29)

where the subscripts S and C refer to the properties of the substrate and coating

respectively. As the thickness of the coating, l, is extremely thin in comparison

with the substrate, UC may be written as δUl, where δU is the elastic energy stored

in an infinitesimal layer of the material. As the vast majority of the energy in the

mirror system is contained within the substrate, US = Umax = U . By substituting

these expressions into Equation 2.29 we find,

φmirror = φS +
δUl

U
φC. (2.30)

This assumes that the material used in the coating is isotropic and homogeneous.

As the coatings for gravitational wave detector mirrors consist of layers of different

materials, this assumption cannot be held. By separating the elastic response and

mechanical loss of the coating into the components which are parallel to the surface

of the substrate and those which are perpendicular, Equation 2.31 becomes, [60]
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φmirror = φS +
δU‖l

U
φ‖ +

δU⊥l

U
φ⊥. (2.31)

The strain energy stored in the mirror system, U , may be approximated as,

U =
(1 − ν2)

2
√

πEr0

(2.32)

where ν is the Poisson’s ratio, E is the Young’s Modulus and r0 is the radius of

the laser beam. The perpendicular and parallel components of the ratio of elastic

strain energy stored in the coating are calculated in Appendix A of [60] and are,

δU⊥

U
=

1√
πω

EC(1 + νS)(1 − 2νS)2 + ESνC(1 + νC)(1 − 2νS)

ES(1 + νS)(1 − νC)(1 − νS)
(2.33)

δU‖

U
=

1√
πω

ES(1 + νC)(1 − 2νC) − ECνC(1 + νS)(1 − 2νS)

EC(1 − νC)(1 + νS)(1 − νS)
(2.34)

Substituting these formulae into Equation 2.31 gives the mechanical loss of the

whole mirror in terms of the Young’s Moduli and Poisson’s ratios of the substrate

and coating and the component mechanical losses,
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φmirror = φS +
1√
π

l

ω

[

ES(1 + νC)(1 − 2νC) − ECνC(1 + νS)(1 − 2νS)

EC(1 − νC)(1 + νS)(1 − νS)
φ‖ + . . .

. . .
EC(1 + νS)(1 − 2νS)2 + ESνC(1 + νC)(1 − 2νS)

ES(1 + νS)(1 − νC)(1 − νS)
φ⊥

]

(2.35)

To obtain the power spectral density of the noise for a coated substrate, Equations

2.32 and 2.35 are substituted into Equation 2.24 to give [60],

Sx(f) =
2kBT

π3/2f

(1 − ν2)

ωE

(

φS +
l√
πω

1

ESEC(1 − ν2
C)(1 − ν2

S)
. . .

. . .

[

E2
C(1 + νS)2(1 − 2νS)2φ‖ + . . .

. . . ECESνS(1 + νS)(1 + νC)(1 − 2νS)(φ‖ − φ⊥) + . . .

. . . E2
S(1 + νC)2(1 − 2νC)φ⊥

])

(2.36)

This equation may be simplified to produce more useful forms in certain situations.

For the current generation of gravitational wave detectors, which use a fused silica

substrate and a coating consisting of Ta2O5 and SiO2, the Poisson’s ratios are all

small (< 0.25) and approximately equal. In [60], it is assumed that the Poisson’s

63



ratios of both the substrate and the coating are equal to zero then the power

spectral density, accurate to around 30%, so the power spectral density of the

coating thermal noise is given by,

Sx(f) =
2kBT

π3/2f

1

ωES

[

φS +
l√
πω

(

ES

EC

φ‖ +
EC

ES

φ⊥

) ]

. (2.37)

As the methods of measuring mechanical loss in coatings are only sensitive to φ‖,

it is assumed that φ‖ ≈ φ⊥. If this is true, then the lowest level of thermal noise for

a coated substrate occurs when the Young’s Moduli of the substrate and coating

are roughly equal.

2.5 Thermoelastic Noise

Another form of dissipation related to thermal effects in the suspended optic is

thermoelastic damping. This occurs when stress fluctuations caused by random

thermal inhomogeneities occurring in the material are transformed by the thermal

expansion of the material into additional motion of the front face of the test mass.

The initial theoretical investigation of this phenomenon was by Zener, and consid-

ered the effect of a thermal gradient on a thin vibrating body [61][62].

If the motion of the vibrating body is modelled as a pure bending mode as shown in

Figure 2.3, then regions where the material of the body is compressed will occur.

As the strain experienced by a body is linked to the temperature by the ther-
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Area in compression, 
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experiencing cooling

ω

Varying thermal gradient

Figure 2.3: Illustration of the connection between the motion of a body and inter-
nal thermal gradients

mal expansion coefficent, the compressed area becomes warmer and conversely,

the parts of the body experiencing expansion will become cooler. This sets up a

thermal gradient across the thickness of the body which the body will attempt

to equalise by dissipating heat into the bulk of the material. The characteristic

time for the relaxation process to equalise the temperature gradient across a thin

vibrating body is given by, [63]

τth =
(a

π

)2 CV

κ
, (2.38)

where a is the thickness of the body and CV and κ are the volumetric heat capacity

and thermal conductivity of the material, respectively.

At the extremes of each cycle of vibration the thermal gradient changes direc-

65



tion, as the compressed region becomes the region in tension and vice versa, which

introduces a frequency dependence for thermoelastic dissipation. If τ−1
th is much

smaller than the vibration frequency, then the relaxation process will never have

enough time to be complete and the amount of energy dissipated will be small. If

τ−1
th is much larger than the vibration frequency, then the body does not undergo

the process of developing and then relaxing a thermal gradient very often, and the

system is effectively static, and so little energy is dissipated. The peak dissipation

occurs when τ−1
th has the same value as the vibration frequency, as each gradient

reversal is perfectly timed to allow each relaxation process to complete before the

next reversal occurs.

As the thermoelastic response is an anelastic relaxation process, it may be de-

scribed in terms of the complex form of Hooke’s Law described in Equation 2.10,

leading to a formula for the loss of the form,

φ(ω)thermoelastic = ∆E
ωτth

1 + (ωτth)2
(2.39)

Where ω is the frequency of the vibrations of the body, τ is the relaxation time as

defined above, and ∆E is a coefficient which describes the strength of the relax-

ation process [63].

The peak thermoelastic dissipation occurs where ωτ = 1, with the value of the

peak thermoelastic loss being given by the relaxation strength, ∆/2. For the

thermoelastic effect, the relaxation strength is the difference between the Young’s
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modulus of the material in its relaxed state and the Young’s modulus in the ther-

mally excited state before relaxation, which can be calculated from the known

thermomechanical properties of the material [63][49]. Substituting the formula for

∆E into Equation 2.39 gives,

φ(ω)thermoelastic =
Eα2T

ρC

ωτth

1 + (ωτth)2
(2.40)

The magnitude of thermoelastic dissipation as a function of temperature exhibits

non-trivial behaviour. As well as the explicit temperature dependence built into

the formulation, the thermoelastic parameters of the material also vary with tem-

perature. For example, silicon experiences points where, α, the linear thermal

expansion passes through zero. This leads to points free of thermoelastic dissi-

pation at around 125K and 18K. A gravitational wave detector that used mainly

silicon-based optics and operated at one of these points would be almost free of

thermoelastic dissipation.

In Figures 2.4 and 2.5, the thermoelastic loss for a 100µm thick silicon wafer is

shown as a function of frequency and temperature respectively. Figure 2.4 shows a

steady increase in the frequency at which the loss peaks occur and the decrease in

the overall magnitude of thermoelastic loss as the temperature is lowered. Figure

2.5 shows the frequency independent points at 125K and 18K at which the ther-

moelastic loss in silicon becomes negligibly small. This method of calculating the

level of thermoelastic dissipation present in a body is used throughout Chapters

4, 5 and 6 to aid in the extraction of the mechanical loss of a coating from the
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measured mechanical loss of a film/substrate system.
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Figure 2.4: Thermoelastic loss for a 100µm thick silicon wafer as a function of
frequency, shown for several temperatures.

2.5.1 Thermal noise due to thermoelastic dissipation for a

substrate

The formulation discussed above specifically refers to thin flexures, where the

characteristic time of the thermoelastic process, τ contains the variables which

contribute to the time it takes a thermal change to dissipate across the body,

but as the thermoelastic effect occurs universally across vibrating bodies, the im-

plications of thermoelastic dissipation processes in the displacement of test mass
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Figure 2.5: Thermoelastic loss for a 100µm thick silicon wafer as a function of
temperature, shown for several frequencies.

substrates are also of interest.

In the calculation of the displacement noise due to thermoelastic dissipation the

driving variable is the collective effect of the thermal fluctuations throughout the

test mass substrate, which couple to displacements of the mirror surface through

the coefficient of thermal expansion.The effect may be calculated either by consid-

ering of the effect of a field of random, normalised thermal fluctuations or by the

direct application of the Fluctuation-Dissipation Theorem to the body, beginning

69



with the application of a periodic force representing the beam spot. If E, ν, and α

are the Young’s modulus, Poisson’s ratio and coefficient of thermal expansion of a

substrate material of density ρ, thermal conductivity κ and specific heat capacity

C, and r0 is the distance from the beam centre at which the intensity is 1/e of

the maximum then the power spectral density of thermoelastic noise for a mirror

which is half-infinite in relation to the width of the Gaussian probe beam will be

given by [64][65],

SSubstrateTE
x =

8√
2π

kBT 2α2(1 + ν)2κ

ρ2C2r3
0ω

2
(2.41)

Thermoelastic dissipation for a film/substrate system

For the case of a thin film applied to a substrate, the effect of thermoelastic

noise requires the thermomechanical mismatch between the substrate and film to

be taken into account. The thermoelastic noise in a substrate comes from ran-

dom temperature gradients occurring within a homogeneous system, which cause

strain gradients that lead to stored energy being dissipated. For a structure that

contains materials with different thermomechanical properties, not only does the

strain occurring from the body vibrating cause thermal fluctuations, but the ther-

mal fluctuations cause differential expansion or contraction in the body which sets

up additional strains, which feeds back into further thermal gradients and further

thermoelastic dissipation.

Following the method in Fejer’s 2004 paper [66], the mechanical loss due to the

thermoelastic dissipation can be calculated, leading to a formula that describes

the temperature and frequency variance of the loss for a body undergoing the pure
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bending mode motion common in mechanical loss measurement experiments,

φthermoelastic =
2Efα

2
fT

Cf (1 − νf )

[

1 − αsEs(1 − νf )Cf

αfEf (1 − νs)Cs

]2

g(ω). (2.42)

This formula assumes that the structure consists of a substrate that is much thicker

than the film, and that the thermal diffusion length through the film is smaller

than the major transverse dimensions of the structure in order that heat diffuses

directly into the substrate. The symbols for Young’s modulus, Poisson’s ratio, the

volumetric heat capacity and the thermal expansion coefficient are E, ν, C and α

are as defined before with the subscripts f and s denoting the film and substrate

respectively.

The frequency dependent term, g(ω) represents the reaction of the structure to

a sinusoidally varying strain field and is calculated as follows,

g(ω) = Im

[

− 1
√

iωτf

sinh(
√

iωτf)

cosh(
√

iωτf) + R sinh(
√

iωτf)

]

. (2.43)

In this equation, τf is the thermal diffusion time across the film,

τf =
l2Cf

κf
, (2.44)

where l is the thickness of the film, Cf is the volumetric heat capacity of the film

material and κf is the thermal conductivity of the material. The coefficient R, is

the following combination of the constants:
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R =

√

κfCf

κsCs
. (2.45)

This case is of special interest to the work carried out in chapters 4 and 5, where

calculations using this formula are carried out for silica and tantala monolayers on

silicon substrates.

To perform this calculation for a gravitational wave detector mirror, the calcu-

lation method requires alteration to account for the effect of the multilayer high

reflectivity coating. The values EF , νF , αF , CF , κF and τF now represent the av-

eraged value across the layers of silica and tantala. This results in the following

changes to Equation 2.42:

φthermoelastic =
2CF T

E
(1−νf )av

[

1

CF

( Eα

1 − ν

)

av
− 1

Cs

( Esαs

1 − νs

)

]2

g(ω). (2.46)

The formula for g(ω) remains as before, with the exception of the changes from

the single film parameters to the averaged multilayer parameters.

For the multilayer coating on a gravitational wave detector mirror the appropriate

equation to calculate the level of thermoelastic noise is,

Sx(f)CoatingTE =
8kBT 2

π2f

l

r2
0

α2
sCf

C2
s

(1 + νs)
2∆̄2g(ω). (2.47)

where all previously defined symbols retain their meanings, r0 is the distance from

the beam centre at which the light intensity has reached 1/e of its peak value and
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∆2 is the following combination of material parameters,

∆2 =

{

Cs

2αsCf

(

α

1 − ν

[

1 + ν

1 + νs
+ (1 − 2νs)

E

Es

])

av

− 1

}2

. (2.48)

2.6 Suspension Pendulum Modes

As described in Chapter 1, the optical elements of an interferometric gravitational

wave detector are suspended to form long period pendulums in order to atten-

uate unwanted external vibrations. As with the other elements of the optical

suspension, the resonant modes of each pendulum are associated with unwanted

thermally excited motion which may be calculated from the mechanical loss of the

material used in the suspension fibres.

Part of the energy of the oscillation of a pendulum is stored in the gravitational

field of the Earth, which can be regarded as having zero mechanical loss. Only

the energy of the oscillation of the pendulum that is stored in the flexing of the

suspension fibre is subject to dissipation due to the mechanical loss of the fibre

material. The effective reduction of the mechanical loss is known as the ‘dilution’,

and allows extremely low loss pendulums to be constructed from moderately lossy

materials.

The mechanical loss of a pendulum is given by,

φpendulum ≈ φfibre
Eflex

Egrav

. (2.49)
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The ratio of the energies stored in the flexure and the gravitational field is equiv-

alent to the ratio of the spring constants. By replacing Eflex and Egrav with

the appropriate formulae for the spring constants (Egrav = mg/L and Eflex =

n
√

TEI/2L2) the mechanical loss of the pendulum is given by,

φpendulum ≈ φfibre
n
√

TEI

2mgL
, (2.50)

where T is the tension in the wire, E is the Young’s Modulus of the wire, I is the

second moment of area of the cross-section of the wire, m and L are the mass and

length of the suspension fibre and n is the number of wires of which the pendulum

is composed [48].

The value for φpendulum can then be used as φ in Equation 2.17. This gives the

displacement of the front face of the optic as a result of the thermal excitation of

the pendulum modes of the suspension,

Sx(ω) ≈ 4kBTφfibre

m

ω2
0

ω5
. (2.51)

2.7 Thermal Noise Contributions

The contributions to the overall thermal noise can be described in terms of the

part of the suspension they relate to - the optical substrate, the high reflection

coating and the suspensions used to isolate the optics. The following section deals

with the procedure for calculating the different thermally induced noise sources in
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each part of the optical suspension chain of a gravitational wave detector.

The components of the optical suspension chain can be broken down into three

categories: the substrate, the coating and the suspension fibre.

2.7.1 Substrates

In all currently operating long-baseline interferometric gravitational wave detec-

tors, the substrate is a single piece of high grade fused silica, typically one of the

Heraeus Suprasil brands [67]. The substrate is machined and polished to exacting

optical standards with very low surface roughness and astigmatism, plus a tight

tolerance on the radius of curvature and parallelism [68].

The thermal noise associated with the optical substrates and coatings is mainly

due to the internal dissipation present. The major noise sources due to the sub-

strate are the Brownian thermal noise and thermoelastic effects that stem from

random thermal fluctuations in the optic. The calculation of Brownian thermal

noise may be performed using equation 2.17 and performing the sum of the noise

levels far from resonance or by the direct application of the fluctuation-dissipation

theorem expressed as above by Equation 2.28. The phenomenon of thermoelastic

noise is further discussed in section 2.4, where Equation 2.41 is used to calculate

the equivalent noise level caused by thermoelastic noise in the substrate.
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2.7.2 Coatings

To obtain the high reflectivity surfaces required to operate a gravitational wave

detector, a coating is deposited upon the reflective surfaces of the substrate. These

coatings are required to have reflectivities in excess of 99% and very low levels of

optical absorption and scatter in order to maintain the high power stored in the

arms of the interferometer. A coating formed from a stack of alternating layers

of a high refractive index dielectric material and a low refractive index dielectric

material can have a very high reflectance.

In one of these coatings, the optical thickness (given by δ = nt where n is the

refractive index of the material and t is the physical thickness of the film) of each

layer is equal to a quarter of the wavelength of the light used in the interferometer,

which is 1064nm in the current generation of gravitational wave detectors. The

reflectance of a multilayer dielectric coating where nH and nL are the refractive

indices of the high and low index materials and m is the number of layers, is given

by [69],

R =

(

1 − (nH/nL)(m−1)(n2

H/ns)

1 + (nH/nL)(m−1)(n2

H/ns)

)2

(2.52)

The gravitational wave detectors currently in operation use tantalum pentoxide

(Ta2O5 with n = 2.03 at 1064nm) as the high refractive index material and silica

(SiO2 with n = 1.45 at 1064nm) as the low refractive index material [70]. By

applying Equation 2.52 for tantala and silica layers upon a silica substrate, the

minimum number of tantala/silica layer pairs to obtain reflectivity greater than
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99% is 15. The reflectivity can be increased by adding more layers or increasing the

ratio between the refractive indices of the high and low index materials. Coatings

for mirrors in gravitational wave detectors are deposited by ion-beam sputtering,

which is a technique known to produce low absorption coatings [71].

These high reflection coatings are required to produce the 99.995% reflectivity

required to operate the interferometer, but have been shown to be a major com-

ponent of thermal noise, which is the dominant source of noise in a gravitational

wave detector in the main detection band between 4Hz and 400Hz [55][56].

Research has shown that the main source of thermal noise in the multilayer coating

is the high refractive index tantala layers [56]. The study of dissipation mecha-

nisms in the ion beam sputtered amorphous materials used in coatings is part of

the following work. Current research indicates that the oxygen atoms in amor-

phous metal oxides are able to flip between two states, and that the energy used

in this process is thought to be a source of dissipation.

The effect of thermoelastic noise from a coating applied to a substrate is com-

plicated by the thermomechanical mismatch between the substrate and coating,

and requires a different calculation method. The method of calculating the level

of this noise for a mirror in a gravitational wave detector is described in Equation

2.47.
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2.7.3 Suspensions

The main contributions to thermal noise from the quasimonolithic silica suspension

elements of a second generation gravitational wave detector are due to the modes

of the silica fibres and in the bonds and welds that fuse the suspension elements

to the optic. The thermal noise due to the pendulum modes can be calculated as

shown in Section 2.6. Initial measurements of the mechanical loss of a silicate bond

between two silicon surfaces are presented in Chapter 4 of this thesis, relating to

the potential requirement for bonding composite test masses and quasi-monolithic

silicon suspensions in a silicon-based third generation gravitational wave detector.

2.8 Summary

This chapter has defined the concept of thermal noise as it applies to gravitational

wave detectors, and describes two methods of calculating the Brownian thermal

noise from known parameters of a gravitational wave detector optic. The mechan-

ical loss angle, φ(ω) is an important parameter to reduce if the level of thermal

noise for a gravitational wave detector is to be reduced. The relationship between

peaks in mechanical loss as a function of temperature and the characteristic rate

and energy of the two-level system thought to be responsible for dissipation in

amorphous materials motivates measurements of φ(ω) as a function of tempera-

ture. The method for calculating the noise spectrum resulting from a coated optic

is also introduced, and motivates low φ(ω) for the coating material. These theoret-

ical factors indicate the usefulness of careful measurements of the mechanical loss

of all materials used in the optics of gravitational wave detectors and specifically

the high-reflectivity coatings.
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Thermoelastic dissipation is also introduced, and a method of calculating an equiv-

alent loss angle for thermoelastic dissipation is given in Equation 2.40. This

method will be used to calculate the level of thermoelastic loss present in the

samples measured in Chapters 4, 5 and 6.
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Chapter 3

Motivation And Methods

3.1 Introduction - The Importance of Coatings

As stated in earlier chapters, the test mass mirrors of gravitational wave detectors

use coatings of extremely high reflectivity to maintain the circulation of extremely

high laser power in the instrument. Currently, the best method for construct-

ing high reflectivity mirror coatings is to build up a stack of quarter-wavelength

thickness layers of dielectric material that alternates between high and low indices

of refraction, so that the reflections from each layer of the coating constructively

interfere to reflect almost all incident light at a selected wavelength.

As described in Chapter 2, the thermal noise contribution of optical coatings may

provide a critical limit to the sensitivity of future generations of gravitational wave

detectors. In order to allow advanced and future gravitational wave detectors to

reach their fullest potential it is necessary to seek a greater understanding of the

processes which cause thermal noise and the variables that shape its effects. From

80



Substrate 

High n (Tantala)

Low n (Silica)

Incoming light Reflected light

Figure 3.1: The arrangement of dielectric layers in a high reflection multilayer
coating.

Equation 2.28 and the discussion of the calculation of thermal noise in Chapter

2, we know that the thermal noise contribution due to an optical coating can be

reduced by reducing the temperature of the coating, reducing the mechanical loss

of the coating and by altering the beam radius and profile. This work seeks to

contribute to the reduction of thermal noise in coatings by investigating the re-

duction of the mechanical loss of the coating materials [72].

In order to reduce the mechanical loss of a coating material, it is first necessary to

identify the relaxation process responsible for the dissipation of energy in the ma-

terial. At present the material for which we have the best model of dissipation is

fused silica. Fused silica is currently used in the mirror substrates and the mono-

lithic suspension elements of gravitational wave detectors and is an amorphous
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oxide, consisting of a network of silica molecules arranged so the material has no

medium or long range order. Because of the random arrangement of molecules

in this form of silica the angle of the bond between the silicon and oxygen atoms

forms a wide distribution around a mean value, rather than the discrete value for

the bond angle which occurs in crystalline materials.

Experiments examining the variation of mechanical loss with temperature in fused

silica have repeatedly found that peaks of maximum dissipation are present in the

curve of mechanical loss as a function of temperature [73][74][72][50]. In fused

silica, the peaks occur between 40K-60K and are broad and frequency dependent.

As discussed in Chapter 2, the temperature at which the peak dissipation occurs

for a given frequency is linked to the energy required to activate the dissipation

process, and the shape of the peak is thought to be a descriptor of the distribution

of bond angles in the material. The width of the distribution of bond angles may

be considered as an indirect measure of the short-medium range order.

Early versions of the model for the relaxation process linked to the Debye peak

in silica were developed in work by Anderson and Bömmel [75], Strakna [76] and

Vukcevich [77], based on the premise that the silica network has two states that

occur with roughly equal probabilities and are separated by a potential barrier

of height EB. Further investigations lead to the model proposed by Gilroy and

Philips in 1981 [78] which modifies the system of two metastable states by assign-

ing the states different energies, ǫ1 and ǫ2. The two states and potential energies

represent different configurations of the amorphous silica matrix, such as oxygen

atoms performing switches between minimum energy positions in elongated ionic
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bonds, the switching of bond angles between two stable values, or the shifting of

the short range tetrahedral units of amorphous silica in relation to one another.

At higher temperatures, there is enough thermal energy in the silica system to

allow the silica to excite and relax between these states freely, but at very low

temperatures, excitation and relaxation between the two states can only occur by

tunnelling through the potential barrier. The tunnelling process occurs with a

rate that varies with the height of the potential barrier and the temperature of the

system, with the maximum tunnelling rate occurring when the temperature of the

system provides exactly EB to the relaxing element. The rate of the tunnelling

process can be described by a form of the Arrhenius equation,

τ−1 = τ−1
0 e

−
EB
kBT . (3.1)

The characteristic time for the relaxation of an asymmetric double-well potential

system can then be used to calculate the mechanical loss of a dissipation peak

caused by this process, using the formula for the shape of Debye peaks discussed

in Chapter 2, Section 2.2.

φ(ω) = ∆
ωτ

1 + (ωτ)2
. (3.2)

If all amorphous materials - a group which includes the materials used as coatings

in gravitational wave detector optics - are assumed to possess similar dissipation

mechanisms to those postulated for fused silica, then the activation energy of the

major dissipation process may be found by measuring the mechanical loss as a
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function of temperature for a range of frequencies. Once factors affecting the ac-

tivation energy and rate of the dissipation process are found, then a method for

reducing the loss by changing the activation energy or altering the structure of the

coating may be formulated.

Research of this kind is well underway - at Glasgow the mechanical loss of Ta2O5

as a function of temperature has been studied by Iain Martin and colleagues [51].

Mechanical loss measurements of a layer of Ta2O5 on a silicon substrate, annealed

at 600oC exhibited a well defined dissipation peak at around 20K. These mea-

surements were compared with a Ta2O5 coating doped with (14.5 ± 1)% Ta2O5,

which had been found to exhibit a lower level of loss at room temperature than the

undoped coating. A dissipation peak was also present in the doped Ta2O5 coat-

ing. By assuming that the dissipation process that caused these peaks had the

characteristics of a Debye process, the Arrhenius equation can be used to convert

the peak temperatures into average activation energies. This experiment indicated

that the addition of TiO2 doping to a Ta2O5 coating increases the average activa-

tion energy from 24.2 ± 1.7meV to 37.1 ± 3.0meV.

The work on doping in Ta2O5 showed that adding TiO2 increases the average

activation energy of a relaxation process in the material. Another process which

may affect the activation energy of a relaxation process in the coating material

is the annealing which occurs after the coating is deposited. The post-deposition

anneal reduces the optical absorption of the coating, but could also make small

changes to the amorphous structure which may affect the level of mechanical loss.
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Iain Martin investigated the effect of post-deposition annealing on the mechan-

ical loss of Ta2O5 coatings by performing mechanical loss measurements on silicon

cantilever substrates coated with 500nm of Ta2O5 which were annealed at 300oC,

600oC and 800oC. The coating annealed at 300oC did not exhibit the sharp low

temperature peak, but instead showed a shallow, broad peak centred around 30K

and Arrhenius plot analysis of the frequency dependence of the temperature of

peak loss showed this peak represented a process with an activation energy of

(138±4) meV and a rate constant of (3.5±0.1)×10−27s. The coating annealed at

600oC showed a sharp low temperature peak at around 30K which could possibly

be superimposed upon a peak similar to the shallow, broad peak observed in the

coating annealed at 300oC. The activation energy calculated from an Arrhenius

plot analysis of the sharp low temperature peak was (24.2 ± 1.7) meV and the

rate factor was (7.3 ± 0.3) × 10−11s. As amorphous tantala is known to begin to

recrystallise at 650oC the sample annealed at 800oC was expected to exhibit a

significant degree of polycrystallisation. The mechanical loss of the coating an-

nealed at 800oC showed two features - a large, sharp peak at around 30K which

was partially obscured by a much larger, broader peak at around 90K. The peak

at around 20K was thought to be related to the same process that caused the

sharp low temperature peak in the coating annealed at 600oC and the 90K peak

was thought to be related to the polycrystalline nature of the heat-treated coating

material.

Chapters Four and Five of this thesis describe a version of the experiment to assess

the effects of post-deposition heat treatment applied to ion-beam sputtered amor-

phous films of silica and hafnia. Ion-beam sputtered amorphous silica is the low
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refractive index material used in the multilayer high reflection coatings, and while

the tantala layers are known to contribute the larger proportion of the thermal

noise effects from the coating, the silica layers also contribute [79]. It is already

known that at room temperature the ion-beam sputtered amorphous form of silica

has a higher level of mechanical loss than fused silica (a few 10−4 at room temper-

ature [51] compared with φ ∼ 1× 10−8 [57][58]) and that the Debye peaks derived

from measurements of coatings deposited by different methods can show signifi-

cant differences [73][74]. This points towards the need to examine the specific form

of the material as used in the coating, as interpolation from the loss character-

istics of amorphous silica deposited by other methods may not be directly relevant.

The samples used in the mechanical loss measurement experiments in Chapters

Four and Five were cantilevers etched from silicon wafers, as shown in Figure

3.2. The dimensions of the cantilevers were selected so that the frequencies of the

50μm

10mm

350μm

Figure 3.2: Schematic of the silicon cantilevers as used in the mechanical loss
measurements in Chapter Four and Five.
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bending modes lie within the observational frequency range of a gravitational wave

detector. For the experiment on ion-beam sputtered amorphous silica, which is

described in Chapter Five, the coatings were applied by the Materials Science and

Engineering Division of CSIRO [80] and the samples were subsequently annealed

at 300oC, 600oC and 800oC to allow for direct comparison with the measurements

of tantala coatings.

While the current formula for creating highly reflective multilayer coatings is highly

refined, the study of alternative coating materials may provide pathways to reduc-

ing thermal noise in gravitational wave detectors. As research has shown that a

large proportion of the coating loss is due to the high index component of the

multilayers [56] - the ion beam sputtered tantalum pentoxide - any material that

outperforms tantala in terms of thermal noise could, if the optical and thermo-

mechanical properties were also favourable, take its place in the high reflective

coating. Also, by investigating the dissipation processes that lead to thermal noise

in different materials, it may be possible to develop a method of applying and

treating a thin film coating to produce the lowest thermal noise possible.

The first alternative coating material to be investigated for future gravitational

wave detectors is hafnia, otherwise known as hafnium dioxide. Like tantalum,

hafnium is a transition metal which may form an amorphous oxide. While current

studies suggest that the level of optical absorption in a typical ion beam sputtered

thin film of hafnia is between 60 and 80 parts per million, which lies well above

the acceptable band for use in gravitational wave detectors [81], observation of the

signature of the dissipation process in this material may provide useful informa-
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tion on the correct treatment and doping of other high refractive index coating

materials with preferable optical characteristics.

In Chapter 5, the mechanical loss characteristics of hafnia films as a function of

temperature are examined. The initial measurements were of an ion-beam sput-

tered film of hafnia applied to a silicon cantilever with dimensions as shown in

Figure 3.2. The sample was annealed at 300oC after the deposition of the coating.

As amorphous hafnia coatings are known to recrystallise readily when annealed to

around 400oC, this sample may show the initial signs of a transition to polycrys-

tallinity.

Due to the lower crystallisation temperature of hafnia films, applying the same

annealing temperatures to the hafnia films as in the post-deposition heat treat-

ment experiments on silica and tantala would have resulted in fully crystallised

coatings. The hafnia coatings used in the post-deposition heat treatment tests

were deposited on silicon substrates with dimensions as shown in Figure 5.11 by

the Materials and Engineering division of CSIRO and annealed for 24 hours at

150oC, 200oC or 400oC. Two final pairs were left unannealed, although the de-

position temperature is roughly equivalent to undergoing an annealing process at

around 100oC.
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100μm

5mm

525μm

10mm

Figure 3.3: The dimensions of the silicon cantilevers manufactured by KNT and
used in the measurements of as-deposited amorphous hafnia coatings in Chapter
5.

3.2 Hydroxy-Catalysis Bonding In Gravitational

Wave Detectors

Hydroxy-catalysis bonding is a technique for creating strong, permanent adhesion

between silica-based optical components. Other technologies for joining optical el-

ements exist, such as optical epoxies and optical contacting, but hydroxy-catalysis

bonding has particular advantages such as high shear strength, high visible and

infra-red transmission and vacuum compatibility that have led to its application

in gravitational wave detectors.

In GEO600, hydroxy-catalysis bonding is used to secure the fused silica suspension

‘ear’ to the barrel of the fused silica mirror substrate to form a quasi-monolithic
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body, onto which silica suspension fibres may be welded. The all-silica final stage

suspension technology is to be included in the advanced upgrades to the LIGO and

VIRGO detectors, reducing the contribution of suspension thermal noise. The re-

duction in the level of thermal noise is partly due to the lower level of mechanical

loss in fused silica fibres than the steel or tungsten wires used in the previous

suspension method and partly due to the removal of an attachment point where

one component is free to rub against the other. The silicate bond may however

contribute to thermal noise in the optical suspension, and so to fully estimate the

effect of more extensive uses of silicate bonding, the mechanical loss of an hydroxy-

catalysis bond must be quantified.

The loss of a 33.2cm2 bond between two similar cylinders of bulk fused silica was

found to be (2.8 ± 0.4) × 10−1 by Sneddon [82]. In this experiment, the bonded

region was co-incident with the suspension loop, which may be a cause of excess

loss when measuring the bonded sample. The experiment was later repeated using

two fused silica cylinders of different lengths, moving the bond region away from

the suspension loop. The measured bond loss varied between (4.8 ± 0.4) × 10−3

and (2.02 ± 0.01) × 10−1 depending on the frequency of the resonant mode used

to make the measurements. Across all the resonant modes measured, the average

mechanical loss of the bond at room temperature was 0.1 ± 0.001 [83].

There are two main reasons for extending the study of the mechanical loss of

a hydroxy-catalysis bond to low temperatures. Firstly, mechanical loss as a func-

tion of temperature is known to provide information on the activation energy of

the associated dissipation process, as described in Section 2.2. Identifying the
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dissipation process from the characteristic energy may provide information which

leads to a method for reducing the loss of the bond. Secondly, if hydroxy-catalysis

bonding techniques are to be used in third generation gravitational wave detectors

which are required to operate at cryogenic temperatures, the value of the bond loss

at the potential operating temperature will be required for thermal noise calcula-

tions. Silicon has been suggested as a replacement for silica as the main optical

material for a third generation cryogenic interferometer. As the bonding technique

requires the presence of oxides, silicon components for hydroxy-catalysis bonding

require an interface layer of oxide to be applied.

Chapter 6 of this thesis describes a measurement of the loss of a hydroxy-catalysis

bond between two thin silicon cantilevers. At the time of writing, there were

no published measurements of the mechanical loss of a hydroxy-catalysis bond

between silicon, but if future gravitational wave detectors are to shift to silicon

optics and deeper infra-red laser optics, then it is important that the mechanical

loss of a representative bond layer is known. The mechanical properties of bonds

between silicon components suggest that they are similar to the properties of bonds

between silica components [84], but the mechanical loss of the bond material is

not known.

Several advantages are obtained by changing the geometry of the bonded samples

from large bulk substrates to silicon cantilevers. Firstly, the resonant frequencies

of the silicon cantilevers lie within the 1Hz-10kHz range and so the measured losses

will be directly applicable to the calculation of thermal noise within the measure-

ment frequencies of a gravitational wave detector. The resonant modes of the large
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bulk substrates are typically in the tens of kHz, so values from these experiments

may not be directly applicable. Secondly, the cantilever samples are a great deal

easier to use in cryogenic measurements - they contain very little thermal mass and

so reach equilibrium quickly and as they may be mounted in a simple clamp, are

less easily affected by external knocks and vibrations. A bulk sample on a thread

suspension would experience sufficient disturbances during the process of cryogen

fills to set it swinging and make measurements difficult. Thirdly, the mechanical

loss of a bare silicon substrate decreases with temperature and does not contribute

its own Debye peak which greatly simplifies the analysis of the measurements.

3.3 The Hydroxy-Catalysis Bonding Process

Hydroxy-catalysis bonding was developed by Dz-Hung Gwo as a method of cre-

ating precise, strong, cryogenically-compatible bonds between fused silica optical

components in science instruments that flew as part of the Gravity Probe B mis-

sion [85]. The technique was adapted to produce the quasi-monolithic fused silica

suspensions used in GEO600.

The bonding process requires that the two surfaces to be bonded consist of oxides,

are free from all organic contaminants and are flat to λ/10. After a thorough multi-

stage cleaning process in a clean room environment, a very small amount of a high

pH solution of sodium or potassium hydroxide in deionized water is applied to the

surface to be bonded. The solution flows over the whole of the uncontaminated,

hydrophilic surface, and the OH− groups present in the solution form attachments

to the free bonds in the surface of the silica, a process known as hydration.
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As the concentration of OH− groups on the surface of the silica increases, the

silica molecules attach to multiple hydroxide groups and leave the bulk silica, be-

coming solutes in the bonding solution. This process etches away the surface to

be bonded, and continues until the concentration of OH− groups in the bonding

solution is lowered enough to reduce the pH of the solution below 11.

Below this pH level, the molecules with multiple hydroxide groups partially dehy-

drate to form a monomer in the solution. As the concentration of the monomers

reaches 1-2%, the monomers form polymeric chains bridging between open bonds

in two etched bonding surfaces, chemically linking them. As the remaining water

escapes from the bond region, the bond becomes rigid, strong and transparent.

3.4 Apparatus and Method for Measurement of

Mechanical Loss

The mechanical losses were measured in a tabletop cryostat as shown in figure

3.5. The cryostat consists of an experimental chamber, one side of which is a cold

plate which is in thermal contact with a reservoir filled with liquid helium. The

experimental chamber and helium reservoir is surrounded by a heat shield cooled

to 77K by connection to a reservoir filled with liquid nitrogen. The experimental

chamber and an outer jacket are evacuated to a level of < 1.0 × 10−6 millibar,

allowing mechanical loss measurements to be carried out in an environment not
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limited by gas damping. The outer vacuum jacket also acts to slow the boiloff rate

of the liquid cryogens. The experimental chamber has two optical viewports for

contactless laser readout and two electrical feedthroughs, one for low voltages with

multiple pins for sensors and monitoring equipment and one for high voltages to

power the electrostatic system within the experimental chamber.

50μm

100μm

10mm

10mm

350μm

350μm

Figure 3.4: A pair of silicon cantilever samples showing major dimensions (not to
scale).

The sample space is equipped with two clamps bolted to the cold plate, arranged

so that the clamping surfaces are level with the height of the viewport. These

clamps cool to near equilibrium with the cold plate, reaching a minimum temper-

ature of 9K.
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Figure 3.5: The tabletop cryostat, showing placement of helium and nitrogen
spaces, evacuated sample space and path of readout laser.

As it is of high importance that the temperature of each the sample is known

as accurately as possible, the temperatures of the clamp are monitored using DT-

670 silicon diode sensors, which have a very well known and highly calibrated

resistive response to temperature change and have an accuracy of ±0.25K below

100K. The sensors are placed in slots made in the clamp a few millimetres below

the position of the sample and are secured using cryogenic and vacuum compatible
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varnish. Two further DT-670 sensors are used to monitor the temperature of the

cold plate and radiation shield as proxy measurements for the level of cryogen in

the helium and nitrogen reservoirs.

In order to ensure a true measurement of the mechanical loss for a particular

temperature, the clamp and sample were held at a stable temperature for the du-

ration of the measurement sequence. This was achieved by a feedback loop which

used the difference between a measured temperature and the set temperature to

alter the power of a heating circuit which acted on the clamp. The four tem-

perature sensors were read by a Lakeshore 340 temperature control unit which

monitored one measured temperature and its rate of change and used this to pro-

vide the appropriate level of power to the heating circuit in order to maintain

a stable temperature. The heating elements consisted of high wattage resistors

connected directly to the clamps and operated electrically in parallel. This meant

that both clamps may be temperature controlled at once, but that the clamps may

not be separately temperature controlled. During cooling, it was observed that the

clamps reached equilibrium at slightly different temperatures. Clamp A cooled to

around 10K, and Clamp B reached temperatures as low as 9.6K. This temperature

gap was likely to be due to differences in the degree of thermal isolation obtained

for each clamp component. A duplicate cryostat system which was used to make

measurements of this kind also observed a difference in temperature between the

two clamps and slightly lower equilibrium temperatures overall.

When loading samples into the cryostat, the clamping block of the sample, the

polished surfaces of the top of the clamp and the clamping bar were cleaned us-
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ing a clean room wipe dampened with methanol to ensure that no contaminants

were present. The sample was placed on centre of the clamping surface so that

the edge of the thick part of the sample (the ‘clamping block’) was aligned with

the edge of the clamp. The clamping bar was then placed upon the sample and

pressure applied to the centre of the clamping bar to prevent the sample slipping

from its original position. The clamping bar was then secured with two M3 bolts,

tightened alternately so as to equalise the stress applied across the clamping bar.

Once the samples were clamped, the cryostat was then sealed and evacuated. The

whole clamping structure around the silicon cantilever is constructed from stain-

less steel, so the clamp, block and M3 bolts may be modelled together as a 350µm

gap in a stainless steel piece in which is placed a 350µm thick silicon cantilever

clamping block. The integrated thermal contraction coefficients of stainless steel

and silicon between 300K and 10K are 30 parts per 104 and 2.2 parts per 104

respectively, indicating that at 10K the 350µm gap in the stainless steel would

contract by around a micron, but that the silicon would only contract by 77nm.

Therefore, the clamping force applied to the cantilever increases as the tempera-

ture is lowered. If the cycling of the temperature during the measurements caused

a hysteresis effect in the applied clamping force, then excess loss could have been

introduced into the measurement system. Clamp hysteresis was counteracted by

reclamping the sample between measurement runs.

A collimated laser beam was shone through the optical feedthroughs, producing

sharp silhouettes of the samples. The movements of the silhouettes was monitored

using a split photodiode, where the shadow is positioned over the split between two

photodiodes. When the shadow moves, the difference in potential difference result-
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ing from the change in the degree of illumination on the photodiode is proportional

to the amount by which the shadow moves. Therefore when the cantilever is at

resonance, the circuit outputs a sinusoidally varying voltage signal which may be

used as a proxy for the measurement of the extent of vertical motion undergone by

the cantilever. This signal was amplified by a simple 2-channel filtering pre-amp

circuit set to attenuate unwanted signals below 10Hz and above 5kHz. A separate

SR560 amplifier1 was used to provide on-the-fly control on gain and filtering for

each channel.

The filtered and amplified signals were recorded using a PC equipped with a

National Instruments data acquisition interface and running a LabVIEW program

written by R. Nawrodt and other colleagues at Friedrich-Schiller University in

Jena. The LabVIEW program automated many aspects of the mechanical loss

measurement process and also communicated with the Lakeshore 340 temperature

control unit and the tank pressure gauges. The LabVIEW program requires a

list of temperature points and likely mode frequencies to be provided by the user.

The program then sets the temperature controller to control the clamp to target

temperature according to the list of set points and locates, excites and records the

ringdown of the modes covered by the provided modes.

The measurement sequence begins automatically when the measured temperature

is within 0.05K of the target temperature and the rate of change of temperature is

less than 0.5K/hr. The frequencies of the resonant modes of each cantilever, which

1SR560 is a low-noise preamplifier produced by Stanford Research Systems which can be used
as a 6dB/octave band pass filter with a frequency range and gain set by the user [86].
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were roughly calculated from the known dimensions and properties of the sample,

were found by sweeping the frequency of a sinusoidally varying electrostatic field

through a range around the roughly calculated value. The electrostatic field was

generated by a high voltage amplifier set to a bias of 800-1000V powering the

live electrode of an electrostatic exciter plate consisting of two interlocking comb

electrodes printed upon a circuit board. A spectrum analyser was used to locate

the frequency of the resonant mode more accurately.

Nitrogen 
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bolt

Figure 3.6: Cross-section of tabletop cryostat, showing the major components and
the arrangement of the dual clamp, temperature sensors and heating elements.

A single mechanical loss measurement consisted of the following steps:

• The mode was electrostatically excited.

• The automated measurement software began to record the amplitude of the

signal from the shadow sensor as the excitation was stopped.

99



Cold

plate

Clamped

sample

Exciter

plate

77K

shield

Electrical

feedthrough

Heating

elements

Temperature

sensor

Thermal

anchor

Clamp

Figure 3.7: Photograph of experimental space of tabletop cryostat, showing cold
plate, clamped samples, electrostatic exciter plates, heating elements and the po-
sitions of the temperature sensors.
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• The automated measurement software recorded the exponentially decaying

amplitude of the signal from the shadow sensor until it reached 10% of the

starting amplitude.

• The exponentially decaying amplitude was fitted to a curve. From this curve

and given the frequency of the mode, a value for the mechanical loss was

calculated.

This single measurement was repeated for each resonant mode that it was possible

to excite in order of ascending frequency, while the temperature feedback controller

held the temperature of the clamp steady. After all the resonant modes were

measured at the starting temperature, the set temperature was increased and upon

reaching the temperature stability level quoted in Section 3.4 the measurement

Figure 3.8: Diagrammatic layout of dual cantilever shadow sensor readout system
showing beam radius, cantilever shadows and photodiode pair outlines.
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step began again. The data acquisition hardware reads in the decaying sinusoid

signal from the split photodiode at a very high rate - if the raw measurements

were used to calculate ringdowns then the complete dataset would require large

amounts of hard disk storage and processing power to manipulate. The LabVIEW

automation program reduces the size of the data set by outputting a file that

contains the modulus of the photodiode signal taken at intervals, with each point

marked with the time at which it occurred. The data in this file can be fit to an

exponential curve as shown in Figure 3.9, the decay rate of which can be used to

calculate the mechanical loss present in the sample.
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Figure 3.9: A typical ringdown dataset showing exponential decay and the expo-
nential fitting curve.

This method and the use of the automated measurement software allowed con-

tinuous measurements with only the occasional intervention of the experimenter.

The measurements made using this apparatus are used in Chapters 4, 5 and 6.
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3.5 Measurement System Characterisation

As part of the calibration of this system, mechanical loss measurements were made

between 10K and 300K using a cantilever coated with 500nm of Ta2O5 . The can-

tilever had previously been characterised in an alternate cryogenic loss measure-

ment system which used an interferometer to read the amplitude of the oscillations

of the cantilever, and formed part of a study into the effects of Ti doping on Ta2O5

films. The interferometric sensor of the previous cryostat was not stable enough to

reliably measure the decaying amplitude of the fundamental modes of cantilever

samples. At frequencies of around 25Hz, a single ‘ringdown’ measurement of a very

low loss fundamental mode can take up to an hour, and it is vital that the readout

system is continuously stable throughout. The shadow sensor was thought to be

a more intrinsically stable sensor for measuring the amplitude of low frequency

cantilever oscillations.

The measured modes of the Ta2O5 coated silicon cantilever were the fundamental

mode at 56.5Hz, and the third and fourth bending modes at 994Hz and 1948Hz

respectively. The measured values for the modes at 994Hz and 1948Hz are shown

in Figures 3.10 and 3.11 alongside the previous measurements, and the measure-

ments of the 56.5Hz are shown alone in Figure 3.12.

Below 200K in the 994Hz mode data and below 77K in the 1948Hz mode data,

there is a strong agreement between two datasets, allowing direct comparisons to

be made between samples measured in the different apparatus. An unexpected

feature in the data from the new cryostat was the apparent feature at very low
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temperatures in the fundamental mode, which is further addressed in Section 3.5.1.

The peak of the low temperature feature in the 994Hz and 1948Hz modes was

fitted to a 5th degree polynomial function in order to locate the temperature of

highest loss. The fitting curves can be seen in Figure 3.13. For the 994Hz mode,

the new cryostat data has a temperature of highest loss of 19.6K, and the previous

dataset placed the peak at 19.5K. For the 1948Hz, where the quality of the data

measured in the new cryostat system was lower, the temperature of peak loss was

19.4K and the previous dataset produced a peak value at 20.2K. If the assumption

that the temperature of highest loss in the feature is an intrinsic property of the

material measured, then there is a discrepancy of 0.1K to 0.8K between the two
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Figure 3.10: Calibration data showing mechanical loss of the 994Hz bending mode
of a tantala coated silicon cantilever. Data measured in the cryostat with a shadow
sensor readout is shown in blue and the measurements made in the previous in-
terferometric readout cryostat system is shown in red.
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measurement setups.

3.5.1 A Low Temperature Anomaly in Fundamental Modes

In the mechanical loss measurements of the fundamental mode of a Ta2O5 coated

silicon cantilever, shown in Figure 3.12, anomalously high levels of mechanical loss

were observed at temperatures below 15K. This feature only manifests itself in

the measurements of the fundamental mode made using the new shadow sensor

cryostat, and was present across all the samples measured in the work described

in Chapters 4, 5 and 6. These samples were of varying sizes, with different sets of

resonant mode frequencies, and yet the anomalously high losses were only present

in the fundamental mode, seemingly without a dependence on the frequency.
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1948Hz Shadow Sensor System
1948Hz Interferometric System

Figure 3.11: Calibration data showing mechanical loss of the 1948Hz bending
mode of a tantala coated silicon cantilever. Data measured in the cryostat with
a shadow sensor readout is shown in blue and the measurements made in the
previous interferometric readout cryostat system is shown in red.
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After the measurements used in Chapters 4, 5 and 6 of this thesis were made,

it was observed that the anomalous losses of the fundamental mode at low tem-

perature were not observed if the measurement was made whilst the high voltage

amplifier driving the electrostatic excitation plate was switched off.

Figure 3.14 shows measurements made using the fundamental mode of a hafnia

coated silicon cantilever, made on the same day during the same cooling period.

The points with higher loss were measured with the high voltage amplifier deliver-

ing a large offset voltage to the excitation plate and the lower losses were measured

with the high voltage amplifier set to zero during the ‘ringdown’ period.

This would seem to indicate that the electric field is able by some mechanism
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Figure 3.12: The mechanical loss measured in the new cryostat with shadow sen-
sor readout on the 56Hz fundamental bending mode of a tantala coated silicon
cantilever, showing the low temperature anomaly.
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to couple to the resonances of the cantilevers, but only at an extremely low tem-

perature. The dissipation mechanism is detectable only in fundamental modes, re-

gardless of frequency, which could indicate that the process couples more strongly

to a particular modeshape, and much more weakly to higher order modes.

The positioning of the excitation plate could be behind the anomaly and the

strong modeshape dependence. The excitation plate is held parallel to, and a few

millimetres apart from the cantilever on threaded rods. As shown in Figure 3.7,

the excitation plates cover more than a third of the length of a cantilever sample

and are placed close to but not at the end of the cantilever. If the damping effect

of the gradient of electric field couples only with the part of the cantilever cov-

ered by the excitation plate, then the fundamental mode will only experience the
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Figure 3.13: The polynomial curves fitted to the low temperature mechanical loss
peaks for the 994Hz and 1948Hz modes of the Ta2O5 coated silicon cantilever.
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damping force along parts of the modeshape which are always moving in the same

direction. The higher order modes will experience the damping force over regions

which are moving in opposite directions, which could allow the damping effect to

be partially cancelled.

Another possibility is that the electrostatic damping effect could increase as the

cantilever moves closer to the excitation plate. The excited oscillations of the fun-
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Figure 3.14: The mechanical loss measured on the 127Hz fundamental mode of a
hafnia coated silicon cantilever, showing the presence and absence of a low tem-
perature anomaly.
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damental mode have the largest initial amplitude and so the fundamental mode

would experience the most damping and higher modes would experience much less.

However, neither of the excitation plate mechanisms would directly explain the

strong temperature dependence of the anomaly. The majority of shifting of inter-

nal resonances of the cryostat, clamps and fittings caused by thermal contraction

occurs at higher temperatures than 15K, and this makes it unlikely that cooling

brought a resonance of the cryostat system into a range that could couple with the

frequency. Regardless of the mechanism by which this anomaly occurred, a simple

solution was found and this issue can be taken into account in future measurements

using the mechanical loss measurement system and other systems of the type.

Data containing the low temperature fundamental anomaly occurs throughout

Chapters 4, 5 and 6. In situations where polynomial curves were fit, the anoma-

lous points below 15K were not used. As it is clear that the anomaly is not a

‘real’ peak or intrinsic feature of the mechanical loss of the measured materials,

low temperature data for the fundamental mode which may be contaminated is

not used in any analysis.

3.5.2 Anomalies Due To Thermal Cycling

A feature was also observed at temperatures between 200K-250K in several of the

datasets discussed in Chapters 4, 5 and 6. The peak height and width of the fea-

ture increase with each cooling and heating cycle, as shown in Figure 3.15. The

feature was observed to reduce in size for the first measurement run after replacing
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the sample and re-tightening in the clamp. In Figure 3.15, the datasets from the

6th to 21st October represent data taken before the sample was reclamped, and

the 27th October and 11th November datasets which show marked reduction in

the size of the feature were taken after the sample was reclamped.

This behaviour led to the conclusion that this anomaly was related to a new

resonance caused by the bolts which secured the clamp bar working loose after cy-

cles of differential thermal contraction and expansions. On several occasions, the

clamp bar bolts, which are tightened to hand tightness and then further tightened

using a hex key in the sample loading procedure, were found to be loose when

opening the cryostat after a measurement run.
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Figure 3.15: The mechanical loss measured on the 127Hz fundamental mode of a
hafnia coated silicon cantilever, showing the development of the thermal cycling
anomaly over several measurement runs.

110



3.6 Summary

The small scale cryostat setup for measuring mechanical losses was built, com-

missioned and characterised and produces mechanical loss measurements which

broadly agree with the previous cryostat system and found temperatures of highest

loss for the Debye peak of tantala which agreed to better than 1K. Two systematic

features of the cryostat were identified, an anomalous level of loss at the lowest

temperatures in the fundamental mode and a feature at around 200-250K which

increases in loss with repeated thermal cycling.
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Chapter 4

The Effect of Post-deposition

Heat Treatment On The

Mechanical Loss of An Ion-Beam

Sputtered Silica Film

The optical coatings used in gravitational wave detectors are annealed to reduce

the film stress and reduce overdense regions and it is already known that post-

deposition heat treatment of thin ion-beam sputtered films can significantly alter

their properties [87]. The work described in this chapter was carried out to as-

certain the effect of the annealing process undergone by optical coating films on

the level of mechanical loss of the films and to let us develop an optimum set of

annealing parameters that will produce a film that fulfills the low-stress criteria

and also has a low mechanical loss.
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50μm
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Figure 4.1: Schematic of silicon cantilevers as used in the mechanical loss mea-
surements in Chapter Four and Five.

Three pairs of silicon cantilevers of dimensions shown in Figure 4.1 were etched

from a 500µm thick silicon wafer by colleagues at Stanford University. All can-

tilevers were oxidised at 900oC to grow a layer of silicon dioxide upon which the

ion-beam sputtered coating could adhere. An amorphous film of 0.5µm of silica

was deposited on one cantilever from each pair using ion-beam assisted sputtering

performed by the Materials Science and Engineering Division of CSIRO [80]. The

remaining cantilever in each pair was not coated. The post deposition annealing

temperatures of 300◦C, 600oC and 800oC were chosen to co-incide with the temper-

atures used in the parallel experiment on tantala coatings. Each set of cantilevers

remained at the heat treatment temperature for twenty-four hours before being

allowed to cool naturally.

The thicknesses of the ion-beam sputtered silica coatings and the thermally grown

silicon oxide layers for the samples annealed at 300◦C, 600oC and 800oC were mea-
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Sample Oxide Film Thickness Sputtered Film Thickness

300C◦ coated - 587 ± 3nm
600C◦ control (top) 6.37 ± 0.79nm

600C◦ control (bottom) 9.31 ± 0.85nm
600C◦ coated (top) 7.71 ± 0.90nm 575.22 ± 3.40nm

600C◦ coated (bottom) 7.75 ± 0.93 nm
800C◦ control (top) 58.95 ± 1.78 nm

800C◦ control (bottom) 62.40 ± 1.67nm
800C◦ coated (top) 51.56 ± 1.20nm 558.31 ± 3.08nm

800C◦ coated (bottom) 51.56 ± 1.20 nm

Table 4.1: Ellipsometric measurements of the thicknesses of the films on the surface
of the cantilever samples.

sured using an ellipsometer by Stephanie Lewis. The results of the measurements

are summarised in Table 4.1 and suggest that the silica coatings are slightly thicker

than the specified 500nm and also show a marked increase in the thickness of the

oxide layer between the samples annealed at 600oC and 800◦C. The thickness of

the oxide layer on the cantilevers heat treated at 300oC could not be measured

using the ellipsometric technique.

The measurements of mechanical loss as a function of temperature were carried

out in the temperature controlled tabletop cryostat using the LabVIEW program

for automating mechanical loss measurements previously described in Chapter 3,

Section 3.4. In parts of this work the uncoated control sample was measured at the

same time as the coated sample. As the resonant mode frequencies of the coated

samples were very close to those of the control, it was important to ensure that

the motion of each cantilever was visible on only the appropriate channel of the

dual channel readout system. Ringdown signal crossover confusion could occur for

several reasons:
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• the divergence of the laser beam is such that the cantilever shadows merge.

• reflections from the faces of the cantilever may enter the output beam if the

input beam is not angled correctly.

• the automated LabVIEW software may record a signal from the wrong mode

if a mode has a similar frequency across two samples.

To avoid crossover confusion, the divergence of the laser beam was adjusted by

changing the position of the lenses controlling the beam width until two distinct,

sharp shadows were seen at the photodiode monitoring point. A spectrum analyser

was used to monitor the level at which the signal from one cantilever was picked

up by the photodiode aligned to the other. When the swept sine signal which was

used to excite two modes which were very close in frequency, the excited modes

were visible in both channels but a cross-coupling amplitude of less than 5%. Re-

flections from the cantilever faces could be avoided by ensuring the laser was held

parallel to the optical bench. As far as was possible, the automated swept sine

was set to sweep through a frequency range that avoided the mode on the opposite

channel. Opposite channel excitation was only unavoidable for modes which were

within 1-2Hz of each other.

The automated software was set to stop the swept sine mode locating process

and begin the ringdown measurement only once the cantilever oscillation signal

reaches a preset voltage level. By setting this voltage level at the height to which

the intended mode becomes excited, which is more than an order of magnitude

above the signal level from the opposite channel, accidental measurement of the

wrong mode is prevented.
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4.1 Samples annealed at 300oC post deposition

The first five bending modes of the silica coated sample heat-treated at 300oC

were measured in the apparatus described in Chapter 3. The control sample heat-

treated at 300oC was measured separately, in apparatus of very similar construc-

tion. The data shown in Figures 4.2 to 4.6 is the mean mechanical loss calculated

from the lowest three values measured at each temperature step.
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 20.5Hz Mode1 Silica Coating (300C Anneal)
24Hz Mode1 Uncoated Control

Figure 4.2: The mechanical loss of a silicon cantilever coated with 550nm of ion-
beam sputtered silica at 20.5Hz and an uncoated silicon cantilever at 24Hz.

The low temperature excess loss anomaly is present below 20K in the 20.5Hz

fundamental mode. The second (125Hz) and third (653Hz) modes showed some

scatter at low temperatures, and produced low temperature loss peaks with peak

loss values of 2 × 10−5 and 4 × 10−5 respectively. The mechanical loss of the

third mode showed the same shape as the fourth and fifth modes although the
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 124Hz Mode2 Silica Coating (300C Anneal)
127Hz Mode2 Uncoated Control

Figure 4.3: The mechanical loss of a silicon cantilever coated with 550nm of ion-
beam sputtered silica at 124Hz and an uncoated silicon cantilever at 127Hz.
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 653Hz Mode3 Silica Coating (300C Anneal)
453Hz Mode3 Uncoated Control

Figure 4.4: The mechanical loss of a silicon cantilever coated with 550nm of ion-
beam sputtered silica at 653Hz and an uncoated silicon cantilever at 453Hz.
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1210Hz Mode5 Silica Coating (300C Anneal)
1370Hz Mode5 Uncoated Control

Figure 4.5: The mechanical loss of a silicon cantilever coated with 550nm of ion-
beam sputtered silica at 1210Hz and an uncoated silicon cantilever at 1370Hz.
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1690Hz Mode5 Silica Coating (300C Anneal)
2040Hz Mode5 Uncoated Control

Figure 4.6: The mechanical loss of a silicon cantilever coated with 550nm of ion-
beam sputtered silica at 1690Hz and an uncoated silicon cantilever at 2040Hz.
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magnitude of the loss was a factor of four higher throughout. The fourth and fifth

modes produced data with less scatter and produced low temperature loss peaks

with peak loss values of 1.41 × 10−5 and 1.48 × 10−5 respectively. For all mode

frequencies, the measured mechanical loss values were several orders of magnitude

above substrate thermoelastic noise except at the higher temperatures.

4.1.1 Coating Losses

The mechanical loss in one part of a structure made of several parts contributes

to the overall loss of the structure proportionally to the amount of strain energy

which is stored in the flexing of that part of the structure. To find the mechanical

loss in the coating, the difference between the measured loss and the interpolated

control loss was scaled by the energy ratio [88],

Ecoating

Etotal
=

3Ysilicatsilica
Ysilicontsilicon

(4.1)

An equivalent substrate loss for each temperature step in the data for the coated

cantilever was estimated from the control cantilever data using a MATLAB spline

interpolation routine. This routine produces a smoothed curve following the shape

of the original control data, from which the value for the appropriate temperature

were selected. It was not necessary to treat the loss of the thermal oxide layer as

a separate coating in these calculations. The control samples bore the same thick-

ness of thermal oxide as the coated samples so subtracting the oxidised control

measurements subtracts the contribution that the thermal oxide makes to the me-

chanical loss measured on the coated sample, leaving only the loss of the ion-beam
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Silicon Silica

Property Value Value

Young’s Modulus 164 ± 3GPa [89] 72GPa [66]

Thickness 50 ± 5µm 587 ± 3nm

Table 4.2: Values used to calculate the ratio of strain energy stored in the silica
coating to the total strain energy in the cantilever heat-treated at 300oC .

sputtered coating.

The values in Table 4.2 were used to calculate the energy ratio,
Ecoating

Etotal
. The small

temperature dependence of Young’s Modulus was not taken into account, and the

large uncertainty on the thickness is due to the lack of a ellipsometric thickness

measurement. The values calculated for the mechanical loss of the 300oC annealed

silica coating are shown in Figures 4.7 to 4.11. The main contributions towards

the magnitude of the error on each value was the process of averaging several mea-

surements.

4.1.2 Features and Peaks

All modes show an increase in coating loss at temperatures below 50K, in keep-

ing with previous measurements of the temperature variance of mechanical loss

in silica. The coating loss increases 1.0 × 10−3 at 10K for the 125Hz mode and

2.1 × 10−3 at 10K for the 653Hz mode. The apparent higher level of coating loss

at low temperature in the fundamental mode is unlikely to be an intrinsic feature
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Coating Loss for 21Hz Mode

Figure 4.7: The calculated coating loss at 20.5Hz for the ion-beam sputtered silica
coating heat-treated at 300oC .
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 124Hz Mode 2 Silica Coating (300C Anneal)
127Hz Mode 2 Uncoated Control

Figure 4.8: The calculated coating loss at 125Hz for the ion-beam sputtered silica
coating heat-treated at 300oC .
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653Hz Mode 4 Silica Coating (300C Anneal)
453Hz Mode 4 Uncoated Control

Figure 4.9: The calculated coating loss at 653Hz for the ion-beam sputtered silica
coating heat-treated at 300oC .
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1210Hz Mode 5 Silica Coating (300C Anneal)
1370Hz Mode 5 Uncoated Control

Figure 4.10: The calculated coating loss at 1210Hz for the ion-beam sputtered
silica coating heat-treated at 300oC .
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1690Hz Mode5 Silica Coating (300C Anneal)
2040Hz Mode5 Uncoated Control

Figure 4.11: The calculated coating loss at 1690Hz for the ion-beam sputtered
silica coating heat-treated at 300oC .

of the material, but is likely to be linked to the low temperature anomaly as pre-

viously observed in calibration measurements.

The loss of the second mode increased at low temperature but due to scatter

in the measurements it was impossible to determine if the measurements show

a Debye peak in the highest losses between 10-35K. The third, fourth and fifth

modes contained well defined loss peaks. Polynomial curves of the fourth and fifth

degree were fitted to the datapoints to locate the local maximum and calculate the

temperature of peak loss,as shown in Figure 4.12. The error values on the temper-

atures of peak loss for each mode were obtained by calculating the standard error

from the two fitted curves.

If the low temperature feature in these measurements was caused by a relaxation
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Figure 4.12: The fitting curves used to determine the temperature of peak loss for
the four viable modes of the silica coated silicon cantilever heat-treated at 300◦C.
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Mode Frequency Peak Loss Temperature

1 20.5Hz no fit
2 124Hz (17.18 ± 0.34)K
4 653Hz (20.44 ± 0.91)K
5 1205Hz (22.74 ± 0.80)K
6 1690Hz (21.38 ± 0.71)K

Table 4.3: The resonant frequency and the temperatures of peak loss for the
measured modes of the 300oC heat-treated silica coating.

process in a two-level system that may be described by the Arrhenius equation as

introduced in Chapter 2, Section 2.2, then the relationship between the logarithm

of the angular frequency of a resonant mode and the temperature at which the

loss feature peaks is given by,

ln(ω0) = ln(τ−1
0 ) +

Hb

kBTpk

, (4.2)

where τ−1
0 is the rate constant of the process and Hb is the average height of the

potential barrier between states in the proposed two level system.

The reciprocal temperature of peak loss for each mode, 1/T , was plotted against

the logarithm of the angular frequency of the resonant mode, ln(ω). Two-dimensional

least squares regression was used to obtain a best fit line for these data. Using

the data from all four modes for which a peak fit could be found, a line of gradi-

ent −201 ± 27.4 and intercept 18.3 ± 1.3 was fitted. Comparing the gradient and

intercept values with Equation 4.2 gave a value of (17.3 ± 2.3)meV for Hb, the

activation or barrier energy, and a value of (8.86±0.43)×107s−1 for the relaxation

rate, τ .
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Figure 4.13: Arrhenius plot showing the line of best fit for the four modes for
which a peak could be fitted and the minimum and maximum gradients from the
fitted gradient of −201 ± 27.4.

At Glasgow, Iain Martin carried out a similar analysis on measurements of a 492nm

thick ion-beam sputtered silica layer deposited on a silicon cantilever by LMA and

annealed at 600oC [51]. This analysis calculated an activation energy of 54.4 ±

5.5meV which is significantly greater than the activation energy calculated from

the measurements described in this work. Another measurement of the activation

energy of this process in silica was performed by Anderson and Bommel, resulting

in a value of 44meV [75]. The value of (17.3± 2.3)meV is significantly lower than

the values from the 600oC heat treated silica.
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4.2 Samples heat-treated at 600oC post deposi-

tion.

The coated sample heat-treated 600oC was initially measured with no other sample

in the two-channel loss measurement apparatus. After the first reclamp, the control

sample was added and measured. It was difficult to obtain useful ringdowns for the

fundamental modes of both the coated and control sample. Across all modes the

measured ringdowns from the control sample at high temperatures were largely

unusable. The first six bending modes of the cantilevers were measured along with

one other mode of the coated sample which did not fit in with the progression of

bending modes, which was likely to be a torsional mode.
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21Hz Coated Sample, 600C Anneal
24Hz Control Sample, 600C Anneal

Figure 4.14: The mechanical loss of a silicon cantilever coated with 557.0± 3.4nm
of ion-beam sputtered silica at 21Hz and heat-treated at 600oC and an uncoated
silicon cantilever at 24Hz.
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125Hz Coated Sample
151Hz Control Sample

Figure 4.15: The mechanical loss of a silicon cantilever coated with 557.0± 3.4nm
of ion-beam sputtered silica at 124Hz and heat-treated at 600oCand an uncoated
silicon cantilever at 151Hz.
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450Hz Coated Sample, 600C Anneal
350Hz Control Sample, 600C Anneal

Figure 4.16: The mechanical loss of a silicon cantilever coated with 557.0± 3.4nm
of ion-beam sputtered silica at 390Hz and heat-treated at 600oC and an uncoated
silicon cantilever at 410Hz.
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710Hz Coated Sample, 600C Anneal
823Hz Control Sample, 600C Anneal

Figure 4.17: The mechanical loss of a silicon cantilever coated with 557.0± 3.4nm
of ion-beam sputtered silica at 750Hz and heat-treated at 600oC and an uncoated
silicon cantilever at 823Hz.
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1215Hz Coated Sample, 600C Anneal
1215Hz Control Sample, 600C Anneal

Figure 4.18: The mechanical loss of a silicon cantilever coated with 557.0± 3.4nm
of ion-beam sputtered silica at 1205Hz and heat-treated at 600oC and an uncoated
silicon cantilever at 1215Hz.
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1790Hz Coated Sample, 600C Anneal
1690Hz Control Sample, 600C Anneal

Figure 4.19: The mechanical loss of a silicon cantilever coated with 557.0± 3.4nm
of ion-beam sputtered silica at 1750Hz and heat-treated at 600oC and an uncoated
silicon cantilever at 1750Hz.
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750Hz Coated Sample, 600C Anneal
823Hz Control Sample, 600C Anneal

Figure 4.20: The mechanical loss of a silicon cantilever coated with 557.0± 3.4nm
of ion-beam sputtered silica at 750Hz and heat-treated at 600oC and an uncoated
silicon cantilever at 823Hz. This mode is believed to be a torsional mode.
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Due to the poor quality of the control data for the 21Hz fundamental mode, the

coating loss was calculated using the control data from the equivalent mode of the

300C control sample. For all other modes, the averaged control data shown in

Figures 4.14 to 4.20 was spline interpolated to provide estimates of the substrate

loss at the temperatures required.

As can be seen from Figures 4.14 to 4.20, the measured loss of the control substrate

for each mode was not always lower than the measured loss of the coated sample,

leading to unphysical negative coating loss values. These have been omitted from

the calculated coating losses in Figures 4.21 to 4.26. The values in Table 4.4 were

used to calculate the coating energy ratio. The small temperature dependence of

Young’s Modulus was not taken into account.

Silicon Silica

Property Value Value
Young’s Modulus 164 ± 3GPa 72GPa

Thickness 50 ± 5µm 557.0 ± 3.4nm

Table 4.4: The parameters used to calculate the coating losses for the silica coating
heat-treated at 600◦C.
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Figure 4.21: The calculated coating loss at 21Hz and 125Hz for the ion-beam
sputtered silica coating heat-treated at 600oC .
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 350Hz Coating Loss, 600C Anneal

Figure 4.22: The calculated coating loss at 410Hz for the ion-beam sputtered silica
coating heat-treated at 600oC .
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 710Hz Coating Loss, 600C Anneal

Figure 4.23: The calculated coating loss at 710Hz for the ion-beam sputtered silica
coating heat-treated at 600oC .
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 1215Hz Coating Loss, 600C Anneal

Figure 4.24: The calculated coating loss at 1215Hz for the ion-beam sputtered
silica coating heat-treated at 600oC .

133



0 50 100 150 200 250 300
0

0.5

1

1.5

2
x 10

−3

Temperature (K)

M
ea

su
re

d 
M

ec
ha

ni
ca

l L
os

s

 

 1690Hz Coating Loss, 600C Anneal

Figure 4.25: The calculated coating loss at 1690Hz for the ion-beam sputtered
silica coating heat-treated at 600oC .
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 750Hz Coating Loss, 600C Anneal

Figure 4.26: The calculated coating loss at 750Hz for the ion-beam sputtered silica
coating heat-treated at 600oC .

134



As the values were calculated from measurements with a high degree of scatter,

the coating losses of the first and second modes do not show any structure. The

third mode has coating losses between 1×10−3 and 3×10−3 below 100K but does

not show a low temperature peak. The coating losses of the fourth, fifth and sixth

modes and also the torsional mode at 750Hz increase below 100K and exhibit low

temperature peak features with maximum coating losses of around 1×10−3. These

modes also show a possible loss peak feature at around 250K. Polynomials were

used to fit curves to the low temperature peaks in the measured loss data, using

the same method described in Section 4.3. Peaks were found for four of the seven

measured modes, using the curves as shown in Figure 4.27.

Mode Frequency Peak Loss Temperature

1 21Hz no fit
2 125Hz (17.78 ± 0.28)K
3 410Hz no fit
4 710Hz (17.76 ± 0.06)K
5 1215Hz no fit
6 1690Hz (15.95 ± 0.47)K
T 750Hz (16.03 ± 0.35)K

Table 4.5: The resonant frequency and the temperatures of peak loss for the
measured modes of the 600oC heat-treated silica coating.

Plotting ln(ω) against 1/T for the low temperature peaks of the sample heat-

treated at 600oC did not show any strong linear relationship, as illustrated in

Figure 4.28. As no line could be fitted to the peak temperature data, no claim can

be made as to whether the relaxation process causing the low temperature loss

peaks is described by the Arrhenius equation can be made.
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Figure 4.27: The fitting curves used to determine the temperature of peak loss for
the four viable modes of the 600oC heat-treated silica coated silicon cantilever.
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Figure 4.28: Arrhenius plot of inverse peak temperature against the logarithmic
angular frequency of the mode of the silica-coated silicon cantilever annealed at
600oC .
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4.3 Samples heat-treated at 800C post deposi-

tion

The coated and control sample were measured together for the duration of the

process. The oxide layer on both the coated and uncoated samples was around

ten times thicker than that seen on the samples heat-treated at 600◦C, which may

have grown during the 800oC heat-treated process. According to the Deal and

Grove model of silicon oxidation, around 90nm of silicon dioxide may be formed

during 24 hours of heat-treatment at 800oC in a dry oxygen atmosphere. The oxide

growth rate scales linearly with the partial pressure of oxygen so a heat-treatment

at 800oC in air could be expected to account for the increase in oxide thickness [90].

A large loss peak was observed in the data from the coated sample at around

250K across modes 2-5. The level of mechanical loss in the data from the un-

coated control sample also increased at around 200K. These increases are thought

to be instances of the thermal cycling anomaly as described in Chapter 3, Section

3.5.2.
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24Hz Mode 1 Coated Sample
27Hz Control Sample

Figure 4.29: The mechanical loss of a silicon cantilever coated with 557.0± 3.4nm
of ion-beam sputtered silica at 24Hz and heat-treated at 800oC and an uncoated
silicon cantilever at 27Hz.
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145Hz Mode 2 Coated Sample
148Hz Control Sample

Figure 4.30: The mechanical loss of a silicon cantilever coated with 557.0± 3.4nm
of ion-beam sputtered silica at 145Hz and heat-treated at 800oC and an uncoated
silicon cantilever at 148Hz.
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400Hz Mode 2 Coated Sample
405Hz Control Sample

Figure 4.31: The mechanical loss of a silicon cantilever coated with 557.0± 3.4nm
of ion-beam sputtered silica at 400Hz and heat-treated at 800oC and an uncoated
silicon cantilever at 405Hz.
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802Hz Mode 4 Coated Sample
812Hz Control Sample

Figure 4.32: The mechanical loss of a silicon cantilever coated with 557.0± 3.4nm
of ion-beam sputtered silica at 802Hz and heat-treated at 800oC and an uncoated
silicon cantilever at 812Hz.
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1332Hz Mode 5 Coated Sample
1345Hz Control Sample

Figure 4.33: The mechanical loss of a silicon cantilever coated with 557.0± 3.4nm
of ion-beam sputtered silica at 1332Hz and heat-treated at 800oC and an uncoated
silicon cantilever at 1345Hz.
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Silicon Silica

Property Value Value
Young’s Modulus 164 ± 3GPa 72GPa

Thickness 50 ± 5µm 557.0 ± 3.4nm

Table 4.6: The parameters used to calculate the coating losses for the 600oC heat-
treated silica coating.

To calculate the energy ratio, the values for the Young’s moduli and thicknesses

shown in Table 4.6 were used. The small temperature dependence of Young’s

Modulus was not taken into account. For the temperatures where the differences

between the coated and control mechanical loss data resulted in an unphysical

negative value for the coating loss, the data has been omitted.
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 Coating Loss Mode 1 (24Hz)

Figure 4.34: The calculated coating loss at 24Hz for the ion-beam sputtered silica
coating heat-treated at 800oC .
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 Coating Loss Mode 2 (145Hz)

Figure 4.35: The calculated coating loss at 145Hz for the ion-beam sputtered silica
coating heat-treated at 800oC .
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 Coating Loss Mode 3 (400Hz)

Figure 4.36: The calculated coating loss at 400Hz for the ion-beam sputtered silica
coating heat-treated at 800oC .
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 Coating Loss Mode 4 (802Hz)

Figure 4.37: The calculated coating loss at 802Hz for the ion-beam sputtered silica
coating heat-treated at 800oC .
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Coating Loss Mode 5 (1332Hz)

Figure 4.38: The calculated coating loss at 1332Hz for the ion-beam sputtered
silica coating heat-treated at 800oC .
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The coating loss at the fundamental mode (24Hz) rose to (4.99 ± 0.63) × 10−2 at

12K, although this is likely to be a recurrence of the low temperature anomaly.

A small feature occurs at around 50K, which could be an intrinsic feature of the

coating material. The rapid increase in calculated coating loss at the top of the

temperature range is due to the difficulty of interpolating the substrate loss accu-

rately from the small number of usable data points in that range.

The second and third modes showed increasing, but scattered coating loss val-

ues below 77K and no peaks could be discerned. The coating loss of the second

mode at 11K was (1.12±0.14)×10−3 and the loss at 12.4K for the third mode was

(1.24±0.16)×10−3 . A low temperature peak feature was visible in the fourth and

fifth modes, with a peak loss of around 1 × 10−3. These modes also showed very

strong loss peaks above 200K, with the maximum loss of (2.40 ± 0.31) × 10−3 for

the fourth mode occurring at 240K, and the maximum loss of (5.83± 0.74)× 10−3

for the fifth mode occurring at 270K. These features are likely to be connected to

the thermal cycling anomaly as described in Chapter 3, Section 3.5.2.

No clear low temperature peaks could be fitted for the first, second or third modes,

although the loss did increase below 77K. The fourth and fifth modes contained

broad, shallow low temperature loss peaks which could be fitted to polynomials.

The temperatures of peak loss for these two modes were calculated as in the two

previous samples, by locating the maximum of the fitted polynomial function. Two

temperature points were not sufficient to perform the linear regression to obtain

the parameters of the Arrhenius equation for this dataset. If the possible feature

at around 43K in the fundamental mode coating data is included to give a third
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Mode Frequency Peak Loss Temperature
1 24Hz no fit
2 145Hz no fit
3 400Hz no fit
4 802Hz (27.08 ± 1.37)K
5 1332Hz (23.34 ± 0.18)K

Table 4.7: The resonant frequency and the temperatures of peak loss for the
measured modes of the 800oC heat-treated silica coating.

point, the line of best fit given by this data results in a negative value for the

height of the potential energy barrier in the hypothetical two-level system, which

would be unphysical.

4.4 Analysis, Dissipation Mechanisms and Fur-

ther Investigations

Figures 4.39, 4.40 and 4.41 show the measured mechanical losses and the calculated

coating losses of the fourth and fifth bending modes over the three heat-treatment

temperatures. From these plots, the low temperature loss feature can be seen to

develop through the levels of heat-treatment. The details of the graphs of coating

loss in Figure 4.41 show that the low temperature peak is widest when the coating

is heat-treated at 300oC and that the coatings heat-treated at 600oC and 800oC

had peaks with similar widths. The magnitude of the peak loss may also increase

slightly with the increasing heat-treatment temperature, but the size of the coating

loss error bars places limits on what can be inferred.
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300C Anneal Mode 4
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800C Anneal Mode 4

Figure 4.39: The calculated mechanical losses for the fifth bending mode of the
silica coating heat-treated at 300◦C, 600oC and 800oC .
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Figure 4.40: The calculated mechanical losses for the fifth bending mode of the
silica coating heat-treated at 300◦C, 600oC and 800oC .
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Figure 4.41: Details of Figures 4.39 and 4.40 between 0-100K.

If the model of the relaxation process causing the low temperature peak as a two-

level asymmetric potential well with a distribution of barrier heights is a good

representation of the real system, and the width of the relaxation peak is a good

proxy measurement for the width of the distribution of barrier heights, then this

data suggests that annealing an ion-beam sputtered silica coating above 300oC

causes a narrowing of the barrier height distribution.

In Figures 4.39 and 4.40, the high temperature thermal cycling feature can be seen

most prominently in the data from the coating heat-treated at 800oC . The same

feature appears only as a slight bump in the data from the coating heat-treated

at 600oC and is not at all noticeable in the data from the coating heat-treated at

300oC .
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4.5 Conclusion

This work has been successful in showing the development of loss features with in-

creasing annealing temperature and has produced Arrhenius parameters of (17.3±

2.3)meV for Hb, the barrier energy, and a value of (8.86 ± 0.43) × 107s−1 for the

relaxation rate, τ for the coating annealed at 300oC . This value is significantly

lower than the values of (54.4±5.5)meV and 44meV from previous work by Martin

[51] and Anderson and Bommell respectively [75]. This implies that there is a sig-

nificant structural difference in the amorphous silica network when heat-treated at

300oC and 600oC or that there is some unknown error in the mechanical loss mea-

surements which were used to locate the temperature of the maxima of the Debye

peaks. The change in shape of the Debye peak between the 300oC heat-treated

silica and the silica treated at higher temperatures indicates that heat-treatment

may narrow the distribution of bond angles in the amorphous silica network, which

could be the mechanism responsible for the change in barrier energy height.

Repeat measurements of the samples, concentrating particularly on tracing De-

bye peaks of each mode with a finer temperature resolution would enable the

Arrhenius equation parameters for the material treated at each temperature to be

extracted. A repeat measurement of the Debye peaks in the fundamental mode of

each sample and the location and measurement of Debye peaks in higher frequency

modes will allow the Arrhenius factors to be found with higher confidence.
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Chapter 5

The Effect of Post-deposition

Heat Treatment On The

Mechanical Loss of An Ion-Beam

Sputtered Hafnia Film

As described in Chapter 3, characterisation of the temperature dependence of

mechanical loss in materials which are not currently used in gravitational wave

detector mirror coatings may provide information on the general model for dissi-

pation in amorphous oxides, and could also lead to a new candidate material for

multilayer coatings in advanced detectors. Hafnia (HfO2) was selected for charac-

terisation as it is a commonly deposited dielectric coating material with a higher

refractive index than tantala. A higher refractive index means that a thinner layer

is required to produce the required λ/4 effective thickness. If the amount of lossy

material used in a mirror can be reduced, the overall level of thermal noise will be
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reduced.

5.1 Initial Measurements of the Mechanical Loss

of a Hafnia Coating Between 10-300K.

The sample used in these measurements was coated by the Materials Science and

Engineering Division of CSIRO [80] using the same ion-beam-assisted sputtering

process used to produce the amorphous tantala used in previous experiments and

the silica coatings measured in Chapter 4. The coating was deposited upon a

40mm x 10mm x 57.2µm cantilever substrate, which was etched from a silicon

wafer by colleagues at Stanford University. After the coating was deposited, the

sample was placed in an oven and heat treated in air at 300oC for 24 hours, then

left to cool naturally to room temperature.

The mechanical losses of the first five pure bending modes of the cantilever were

measured between 10K and 300K, using the cryogenic apparatus described in

Chapter 3. The method remained as described in Chapter 3, but the ringdown

measurements, data taking and temperature settings were performed manually.

The data is shown in Figures 5.2 to 5.6.

Existing measurements of the biaxial modulus
(

B = Y
1−ν

)

, of hafnia [91] where Y

is Young’s Modulus and ν is Poisson’s ratio) obtained from studies of thermally

induced bending of substrates to which thin films were applied show that the form

and method of growth of hafnia can cause variation in the mechanical properties.
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In the referenced study by Thielsch et al, the biaxial modulus of bulk monoclinic

crystalline HfO2 was quoted as 410GPa, while a 272nm thick film of amorphous

ion-beam-sputtered HfO2 was found to have a biaxial modulus of 305GPa. Under

the assumption that the Poisson’s ratio of the thin film HfO2 is the same as the

value of 0.298 for bulk HfO2 , then amorphous thin film hafnia would be found

to have a Young’s Modulus of 220GPa. However, if the change in form from

monoclinic crystalline bulk hafnia to thin film amorphous hafnia is sufficient to

significantly reduce the Young’s Modulus, the Poisson’s ratio may also be altered.

The value used in the coating loss calculations in this chapter is 220GPa, as this

value was calculated using measurements of a sample similar to that used in this

chapter.

Hafnia coated

Uncoated

Figure 5.1: The hafnia coated and uncoated silicon cantilever samples, with a
visible degree of curvature present in the coated sample.
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 300C Annealed Hafnia (56Hz)
Uncoated Control Data

Figure 5.2: The measured mechanical loss of the 56Hz bending mode of a haf-
nia coated silicon cantilever and interpolated control data of an uncoated silicon
cantilever.

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

7

8
x 10

−5

Temperature (K)

M
ea

su
re

d 
M

ec
ha

ni
ca

l L
os

s

 

 
300C Annealed Hafnia (330Hz)
Uncoated Control Data

Figure 5.3: The measured mechanical loss of the 330Hz bending mode of a haf-
nia coated silicon cantilever and interpolated control data of an uncoated silicon
cantilever.
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Figure 5.4: The measured mechanical loss of the 950Hz bending mode of a haf-
nia coated silicon cantilever and interpolated control data of an uncoated silicon
cantilever.
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Figure 5.5: The measured mechanical loss of the 1950Hz bending mode of a haf-
nia coated silicon cantilever and interpolated control data of an uncoated silicon
cantilever.
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Figure 5.6: The measured mechanical loss of the 3300Hz bending mode of a hafnia
coated silicon and interpolated control data of an uncoated silicon cantilever.

Silicon Hafnia

Property Value Value

Young’s Modulus 164 ± 3GPa 220GPa
Thickness 59.2 ± 5.0µm 512 ± 15nm

Table 5.1: Values used to calculate the ratio of strain energy stored in the 300oC
heat-treated hafnia coating to the total strain energy.
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Figure 5.7: The coating loss of a 512nm thick hafnia coating as calculated from
measurements of the first five bending modes, using Yhafnia = 220GPa.
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The main features of the temperature dependence of the mechanical loss of the

amorphous hafnia coating material appear to be two broad, low peaks, one cen-

tered at around 60K and another at around 200K. A peak appears in the data from

the 330Hz mode, and is not thought to be an intrinsic feature of the material, but

an occurrence of the thermal cycling feature as described in Chapter 3. The me-

chanical loss measurements which make up the 330Hz series were only available

from the final thermal cycling before the sample was reclamped - as the size of the

thermal cycling feature increased with repeated thermal cycling and the feature

was ‘reset’ by reclamping, it would follow that the 330Hz mode was worst affected.

If the two-level system model of mechanical loss discussed earlier is valid for all

amorphous oxides, then the loss of hafnia as a function of temperature might be ex-

pected to contain similar features to those observed in studies of the loss of tantala

as a function of temperature. In this case, the peak at lower temperatures could be

a Debye peak, representing a thermally activated relaxation process between two

states that possess different energy levels separated by a potential barrier. By fit-

ting the data between 10-100K to polynomial curves using the method described

in Chapter 4, the temperatures at which the low temperature loss peaked were

found to be (63.6 ± 0.9)K for the 950Hz mode and (85.2 ± 9.0)K for the 1950Hz

mode.

As the hafnia coating had been heat-treated at 300oC , and it is known that amor-

phous hafnia films recrystallise readily at these temperatures, it was necessary to

assess the structure of the coating. The characterisation of tantala coatings [51]

suggested that large mechanical loss features near room temperature may be as-
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sociated with developing levels of polycrystallinity.

In order to investigate levels of polycrystallinity in the studied sample, electron

microscopy and electron diffraction imaging was performed by Riccardo Bassiri, a

Glasgow colleague. Figure 5.9 shows a section through a multilayer hafnia/silica

coating deposited by the same supplier as the hafnia cantilever sample. The multi-

layer coating was sliced and polished into a thin section, and an ion beam was used

to mill a hole in the section to allow electron microscopy. Figure 5.9 is an image of

the hafnia and silica layers closest to the milled hole. In the image, some regions in

the hafnia layer appeared to show granularity indicating regions of polycrystallites,

especially those close to the hole edge. If the polycrystallisation was a result of the

300oC heat-treatment, then it is likely that the coating on the measured cantilever

is also partially polycrystalline. It is possible that the polycrystallisation observed

in the electron micrograph may have been exacerbated by the sample preparation

methods.

Figure 5.10 shows that the electron diffraction pattern of the hafnia coating mate-

rial is a mixture of diffuse rings, which are produced by the diffraction of electrons

through an amorphous material and can be used to calculate average bond lengths

in the material, and diffraction spots which are produced by the diffraction of elec-

trons by crystalline material. These images show that the hafnia coating material

heat-treated at 300oC had begun the transition from an amorphous state to poly-

crystallinity.
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Figure 5.8: Details of the plots shown in Figure 5.7 between 10K and 100K,
showing the polynomials used in curve fitting.
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Figure 5.9: Electron micrograph showing a section through a multilayer haf-
nia/silica coating heat-treated at 300oC . The dark bands show hafnia. Solid grey
in the hafnia regions show amorphous hafnia and speckled dark and light grey
regions show hafnia which has recrystallised. The light grey band is a silica layer
and the lightest region is the hole at the centre of the prepared sample. Image by
R. Bassiri.

Figure 5.10: Electron diffraction pattern of a fragment of the hafnia coating heat-
treated at 300oC , showing diffuse rings which are the signature of amorphous
material and diffraction spots which signal the presence of crystalline material.
Image by R. Bassiri.
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5.2 The Effect of Post-Deposition Heat Treat-

ment on Hafnia Films Between 10-300K

Previous experiments at Glasgow on the effect of post-deposition heat-treatment

on tantala and silica films have used 300◦C, 600oC and 800oC as standard heat-

treatment temperatures to compare the behaviour of the films under these con-

ditions. As Figures 5.9 and 5.10 show, the amorphous hafnia films can begin to

crystallise at 300◦C, so coating samples heat-treated at temperatures below 300oC

were necessary to explore the amorphous form.

A batch of silicon cantilevers were manufactured by Kelvin Nanotechnology (KNT)

to the dimensions shown in Figure 5.11. Cantilevers were produced in pairs and

one cantilever from each pair was coated with 455±5nm of hafnia by the Mate-

rials Science and Engineering Division of CSIRO [80]. The coating thickness was

measured ellipsometrically by Mark Gross of CSIRO [81].

The pair of samples used in this study were not heat-treated after deposition, al-

though the temperature experienced during the deposition process is equivalent to

heat-treatment at around 100oC [92].

The first four modes of the as-deposited hafnia coated cantilever were measured

using the apparatus and method described in Chapter 3. The measured mechani-

cal loss values are shown as a function of temperature in Figure 5.17. The control

values in Figures 5.13 to 5.16 are mechanical loss measurements for an uncoated,

untreated silicon cantilever of the same dimensions as the coated cantilever.
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100μm

5mm

525μm

10mm

Figure 5.11: The dimensions of the silicon cantilevers manufactured by KNT and
used in the measurements of an as-deposited hafnia coating without heat treat-
ment.

The measured mechanical losses for the hafnia-coated untreated cantilever showed

a significant decrease from room temperature to 10K. The measurements are sum-

marised in Table 5.2. The fundamental mode (127Hz) was affected by the low

temperature anomaly below 30K, so the lowest measured φ(ω) at low temperature

is quoted. The third measured mode at 1557Hz was a torsional mode and contains

serious scatter in the 50-100K region. No large peak like that found in silica or

tantala is evident at low temperatures.

Figures 5.13 to 5.16 show that the high losses close to room temperature are

largely due to the thermoelastic loss of the silicon substrate. The thermoelastic
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Figure 5.12: The mechanical loss of a silicon cantilever coated with 455±5nm of
as-deposited hafnia between 10K and 300K for the first four resonant modes.

Mode Frequency φ(ω) at 300K φ(ω) at low temperature

1 127Hz 2.4 × 10−5 at 295K 1.0 × 10−5 at 30K
2 831Hz 3.85 × 10−5 1.01 × 10−5 at 11K
3 1557Hz 7.04 × 10−5 at 295K 1.05 × 10−5 at 11K
4 2357Hz 6.34 × 10−5 6.51 × 10−6 at 20K

Table 5.2: Summary of measured mechanical losses for the cantilever with an
as-deposited hafnia coating.
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Figure 5.13: The mechanical loss of the 831Hz mode of a silicon cantilever coated
with 455±5nm of as-deposited hafnia between 10K and 300K.
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Figure 5.14: The mechanical loss of the 831Hz mode of a silicon cantilever coated
with 455±5nm of as-deposited hafnia between 10K and 300K.
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Figure 5.15: The mechanical loss of the 1557Hz mode of a silicon cantilever coated
with 455±5nm of as-deposited hafnia between 10K and 300K.
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Figure 5.16: The mechanical loss of the 2357Hz mode of a silicon cantilever coated
with 455±5nm of as-deposited hafnia between 10K and 300K.
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Silicon Hafnia

Property Value Value

Young’s Modulus 164 ± 3GPa 288 ± 5GPa(bulk) 220 ± 5GPa (film)

Thickness 100 ± 5µm 455 ± 5nm

Table 5.3: Values used to calculate the ratio of strain energy stored in the as-
deposited hafnia coating to the total strain energy.

loss curve in Figure 5.15 exceeds the loss of the control sample as 1557Hz is a

torsional mode and the formula quoted in Section 2.3 assumes a pure bending

mode. A correction called the ’participation factor’ which is based on the level of

motion in the modeshape may be numerically calculated to give the true level of

thermoelastic loss [93].

The mechanical losses of the as-deposited coating calculated from the measure-

ments are shown in Figure 5.17. The coating loss of the fundamental mode at

127Hz decreases from 5.76 × 10−4 at 295K to 3.18 × 10−4 at 30K and the 831Hz

mode decreases from 4.86×10−4 at 295K to 3.86×10−4 at 15K with a minimum loss

of 2.20×10−4 at 30K. The calculated mechanical loss of the coating at the 1557Hz

torsional mode at high temperatures is affected by the different level of thermoe-

lastic loss and decreases from 1.84× 10−3 at 295K and decreases to 3.38× 10−4 at

11K. The calculated coating loss at 2357Hz decreases from 2.62× 10−4 at 300K to

1.87 × 10−5 at 20K. There is no evidence for a low temperature Debye peak be-

tween 300K and 10K, although these measurements do not rule out the existence

of a Debye peak below 10K. It is also possible that there is a slight increase in
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coating loss at around 240K, but the existence of the intermittent thermal cycling

anomaly described in Chapter 3 makes it difficult to be certain.

Figure 5.18 shows a comparison between the coating losses of the hafnia heat-

treated at 300oC and the as-deposited hafnia. The coatings have roughly the same

mechanical loss at room temperature, but below 200K the un-heat-treated hafnia

is less lossy. The lack of a low temperature Debye peak in the as-deposited hafnia

is also highlighted in this comparison.
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Figure 5.17: The calculated coating loss of a silicon cantilever coated with (455±
5)nm of as-deposited hafnia between 10K and 300K for the first four resonant
modes.
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5.2.1 Comparison of Hafnia, Silica and Tantala

Figure 5.19 shows the coating loss of the silica, tantala and hafnia coatings treated

at 300oC alongside data from the as-deposited hafnia coating. The temperature

variance of mechanical loss in hafnia coatings at both annealing temperatures is

at first glance quite different to that displayed in silica, but closer examination

reveals similar underlying structures.

The silica and tantala coatings display low temperature loss peaks approaching

magnitudes of 1 × 10−3, but the 300oC hafnia low temperature loss peak has a

significantly lower peak loss at around 4 × 10−4. The peaks for hafnia, tantala

and silica also differ significantly in shape. It is currently thought that the width
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Figure 5.18: The coating loss of the 950Hz mode of the initial hafnia coating,
heat-treated at 300oC and the 831Hz mode of the as-deposited hafnia coating.
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Figure 5.19: Comparison of coating losses for modes near 1kHz in tantala, hafnia
and silica coatings.

and shape of the low temperature mechanical loss peak can be used as a form

of proxy measurement of the distribution of potential barrier heights in an amor-

phous system, where narrower peaks represent a tighter distribution of potential

barrier heights in the hypothetical two-level systems in the material and wider

peaks represent wider barrier height distributions.

If the two-level system represented by the loss peak is the flipping of molecules be-

tween two quasi-stable bond angle configurations, then it would be expected that

systems which are closer in form to a crystal would exhibit a narrow peak and

systems which are highly amorphous would produce wider mechanical loss peaks.

It is therefore surprising that the hafnia coating which has begun to recrystallise

shows the very widest and shallowest mechanical loss peak, while the peak in the
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mechanical loss of the tantala coating would suggest, in this model, that the vari-

ation in bond angles of the material was very small.

If the mechanical loss of the material was the sole deciding factor in the choice of

a high-index dielectric coating material for a cryogenic multilayer mirror coating,

then this study indicates that in the 10-15K range, hafnia has a factor of three

lower loss than tantala, leading to a significant reduction in coating thermal noise.
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Chapter 6

The Mechanical Loss of A

Hydroxy-Catalysis Bond between

10-300K

Assessing the variation of the mechanical loss of a hydroxy-catalysis bond at low

temperatures will provide information likely to be useful for the estimation of

noise levels in future cryogenic gravitational wave detectors which may involve

bonds between silicon optical components. The mechanical losses of bonds have

been measured before at room temperature as described in Chapter 3. The earlier

measurements were made using large cylindrical substrates on thread suspensions,

which are difficult to repeat at low temperature. This work describes a method of

measuring the mechanical loss of a bond between samples of the silicon cantilever

type which are known to perform well at low temperatures.
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6.1 The Mechanical Losses of Oxidised Cantilevers

Before Bonding

Figure 6.1: Diagrammatic view of the silicon cantilever samples showing the in-
dividual cantilever samples top and centre and the bonded combination at the
bottom.

Two pairs of silicon cantilevers, with dimensions as shown in Figure 6.1 were ox-

idised for 8 hours to produce the layer of silica required for the hydroxy-catalysis

bonding process. The mechanical losses of the first six bending modes of each ox-

idised cantilever were measured between 10K and 300K in the cryostat apparatus

described in Chapter 3. Measurements continued until each mode had a represen-

tative curve throughout the temperature range and then the sample was reclamped

in order to identify any instances of excess loss which could be connected to the

manner in which sample was clamped. The values shown in Figures 6.3 to 6.15
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Property Value Source
Young’s modulus E 164 ± 3Gpa [94]

Density 2330 kg m−3 [89]
Coefficient of thermal expansion see Figure 6.2 [95]

Specific heat capacity see Figure 6.2 [95]
Thermal conductivity see Figure 6.2 [89]

Table 6.1: The values used to calculate the thermoelastic loss in silicon cantilevers
as a function of temperature.

are the average mechanical loss calculated from the three lowest mechanical loss

measurements at each temperature across all measurement runs, with the size of

the error bars being the standard error in this average.
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Figure 6.2: The thermal expansion coefficient, thermal conductivity and heat ca-
pacity of silicon as a function of temperature.
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The level of thermoelastic loss was calculated for the silicon cantilevers at each

mode frequency using Equation 2.40 and the values in Table 6.1. The calculated

thermoelastic loss is shown on same axes as the measured mechanical losses in

Figures 6.4 to 6.8 and 6.10 to 6.15. At low temperatures, the loss due to thermoe-

lastic effects in the substrate is many orders of magnitude below the measured loss

across all modes on both cantilevers, and can therefore be declared negligible. In

the highest third of the temperature range, however, the loss due to thermoelastic

effects in the substrate approaches the measured loss and for several modes of the

50µm cantilever, the calculated level of thermoelastic loss close to room tempera-

ture is approximately equal to the measured loss of the oxidised cantilever.
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Figure 6.3: The mechanical loss as a function of temperature for the first five
bending modes of a 100µm thick silicon cantilever sample.
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Figure 6.4: The mechanical loss as a function of temperature for the 46Hz funda-
mental bending modes of a 100µm thick silicon cantilever sample showing calcu-
lated levels of thermoelastic loss.
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 307Hz Mode of 100µm Cantilever
Calculated Thermoelastic Loss at 307Hz
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Figure 6.5: The mechanical loss as a function of temperature for the 307Hz pure
bending mode of a 100µm thick silicon cantilever sample showing calculated levels
of thermoelastic loss.
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 872Hz Mode of 100µm Cantilever
Calculated Thermoelastic Loss at 872Hz
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Figure 6.6: The mechanical loss as a function of temperature for the 872Hz pure
bending mode of a 100µm thick silicon cantilever sample showing calculated levels
of thermoelastic loss.
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 1715Hz Mode of 100µm Cantilever
Calculated Thermoelastic Loss at 1715Hz
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Figure 6.7: The mechanical loss as a function of temperature for the 1715Hz pure
bending mode of a 100µm thick silicon cantilever sample showing calculated levels
of thermoelastic loss.
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 2857Hz Mode of 100µm Cantilever
Calculated Thermoelastic Loss at 2857Hz
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Figure 6.8: The mechanical loss as a function of temperature for the 2857Hz pure
bending mode of a 100µm thick silicon cantilever sample showing calculated levels
of thermoelastic loss.

The first five pure bending modes of the 100µm thick cantilever were observable

using the automated mode locating and ringdown measurement program, and are

shown together in Figure 6.3. The measured mechanical loss values for each mode

are plotted on the same axes as the calculated thermoelastic loss at that frequency

in Figures 6.4 to 6.8. The second (307Hz) and third (872Hz) modes showed higher

levels of mechanical loss over the whole temperature range from 10K to 300K. The

low temperature anomaly discussed in Section 3.5.1 is present in the fundamental

mode (46Hz) below 20K, but the data above 20K is likely to be the intrinsic loss

of the cantilever.

The fourth (1715Hz) and fifth (2857Hz) modes showed shallow, broad peaks with

a maximum loss of 4.4×10−6 centered around 20K and 28K respectively which are
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likely to be the Debye peaks of the oxide layer. Above 100K, the mechanical loss

at all frequencies steadily increases with increasing temperature to a few ×10−5,

reaching losses limited by thermoelastic loss close to room temperature.
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Figure 6.9: The mechanical loss as a function of temperature for the first five
bending modes of a 50µm thick silicon cantilever sample.

The first six pure bending modes of the 50µm sample were observable and are

shown in summary in Figure 6.9. The mechanical loss measurements for each

mode are plotted on the same axes as the calculated thermoelastic loss in Figures

6.10 to 6.15. Once again, the fundamental mode (27Hz) displayed the low tem-

perature anomaly, peaking at more than 1× 10−3 at 11K. It was more difficult to

obtain smooth and clear ringdown signals for the 50µm sample as the temperature

increased, and this can be seen in the high degree of scatter above 100K in the fun-

damental mode measurements. Again, the second mode (161Hz) showed an almost
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 27Hz Mode 1 50µm Cantilever
Calculated Thermoelastic Loss at 27Hz

Figure 6.10: The mechanical loss as a function of temperature for the 27Hz funda-
mental bending mode of a 50µm thick silicon cantilever sample showing calculated
levels of thermoelastic loss.
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161Hz Mode 2 50µm Cantilever
Calculated Thermoelastic Loss at 161Hz

Figure 6.11: The mechanical loss as a function of temperature for the 161Hz pure
bending mode of a 50µm thick silicon cantilever sample showing calculated levels
of thermoelastic loss.
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 447Hz Mode 3 50µm Cantilever
Calculated Thermoelastic Loss at 447Hz

Figure 6.12: The mechanical loss as a function of temperature for the 447Hz pure
bending mode of a 50µm thick silicon cantilever sample showing calculated levels
of thermoelastic loss.
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878Hz Mode 4 50µm Cantilever
Calculated Thermoelastic Loss at 878Hz

Figure 6.13: The mechanical loss as a function of temperature for the 878Hz pure
bending mode of a 50µm thick silicon cantilever sample showing calculated levels
of thermoelastic loss.
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1453Hz Mode 5 50µm cantilever
Calculated Thermoelastic Loss at 1453Hz

Figure 6.14: The mechanical loss as a function of temperature for the 1453Hz pure
bending mode of a 50µm thick silicon cantilever sample showing calculated levels
of thermoelastic loss.
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2172Hz Mode 6 50µm cantilever
Calculated Thermoelastic Loss at 2172Hz

Figure 6.15: The mechanical loss as a function of temperature for the 2172Hz pure
bending mode of a 50µm thick silicon cantilever sample showing calculated levels
of thermoelastic loss.
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featureless profile of excess loss, remaining above 2×10−5 through the whole tem-

perature range. The other measured modes (447Hz, 878Hz, 1453Hz and 2172Hz)

all show a similar shallow, broad peak centered around 25K with a peak loss of

7 × 10−6. Above 100K, these modes show a steady increase in mechanical loss

as the temperature approaches 300K, although the scatter in these measurements

makes this feature less visible than in the measurements on the 100µm cantilever.

As both samples have been oxidised, these mechanical losses represent the sum

of the mechanical loss from the silicon substrate and the mechanical loss from the

thermally grown silicon dioxide layer. A good estimate of the mechanical loss of

the thermally grown silicon dioxide layer may be extracted by comparing the mea-

sured losses above with the mechanical loss of a sample of the same type without an

oxide layer and scaling the difference by the ratio of stored elastic energy between

the oxide and substrate. If mechanical loss data is not available for comparison,

as is the case here, an estimate of the upper limit on the mechanical loss of the

thermally grown oxide layer can be calculated by subtracting the calculated level

of thermoelastic loss at each temperature and scaling by the ratio of stored elastic

energy between the oxide and substrate, assuming that the mechanical loss of the

silicon substrate is negligible, which is reasonable in this case.

6.1.1 The Bonding Process and The Mechanical Loss of

the Bonded Structures

The oxidised silicon cantilever pair was bonded by Stuart Reid using the method

described in Chapter 3 of [96]. The cleaning process was altered slightly to avoid
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use of abrasives on the fragile cantilevers. In order to remove contaminants, the

cantilevers were dipped in a warm piranha solution consisting of four parts sul-

phuric acid to one part hydrogen peroxide. This was followed by a rinse in de-

ionised water to remove any traces of piranha solution, and then rinses in acetone

and isopropanol to remove the remnants of the water rinse.

The bonding solution used was one part commercial sodium silicate solution to

six parts de-ionised water, with 0.4µl of bonding fluid used per cm2 of bond area.

The cantilever pairs were bonded and allowed then to cure for four weeks [97]. As

thermally grown silicon dioxide layers can contain fluctuations in thickness and

density, the chemical etching that occurs as part of the bonding process may pen-

etrate the underlying silicon substrate, causing the dissociation of hydrogen which

forms bubbles between the bond layer and the silicon.

The infrared image of the bonded structure in Figure 6.17 shows a number of

darker regions along the length of the cantilever, which are likely to be voids in

the bond layer. Analysis of the infrared image showed that around 5% by area

of the bond region had formed void regions. As these void regions represent dis-

continuities and rough areas, it is likely that they will be responsible for some of

the internal friction present in the bond region and it is possible that temperature

cycling of the cantilever may cause a hydroxy-catalysis bond with gas-filled voids

to degrade.

Ellipsometric measurements by R. Nawrodt and S. Reid found that the average
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Figure 6.16: A pair of 100µm and 50 µm cantilevers bonded together to form a
single structure of thickness 150µm.

thickness of the oxide layer on the outer surfaces of the bonded structure was

140 ± 3nm, with the thickness increasing from 133nm (100µm cantilever) and

134nm (50µm cantilever) at the end of clamping block to 149nm (100µm can-

tilever) and 150nm (50µm cantilever) at the free end.

The mechanical loss of the fully bonded sample was measured as previously de-

scribed in Chapter 3, in the same measurement apparatus. Figure 6.18 shows a

summary of the three measured modes, with the low temperature anomaly visible

in the fundamental mode (75Hz). Figures 6.19 to 6.21 show the mechanical losses

of each mode alongside the estimated thermoelastic loss present. An estimate of

the thermoelastic loss of the bonded structure was calculated using the assumption

that the body could be modelled as a single silicon cantilever with a thickness of

150µm, using the thermomechanical properties set out in Table 6.1.
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Figure 6.17: An infrared image of a pair of 100µm and 50µm cantilevers bonded
together to form a single structure of thickness 150µm showing darker void regions
within the structure. (Image by S. Reid)

6.2 Stored Energy In The Bonded Structure

For the bonded cantilever structure, the total mechanical loss may be broken down

into the intrinsic losses of the silicon substrate, the loss of the thermally grown

silicon dioxide layers and the intrinsic loss of the bond. As discussed in Chapter

2, the thermoelastic loss in the substrate is a calculable component of the overall

loss of such a structure.

In order to examine the relative mechanical losses associated with the different
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parts of the bonded structure, the way in which different losses add must be con-

sidered. The product of the total mechanical loss of the bonded structure and the

total strain energy stored in the system is equal to the sum of the products of the

mechanical losses and stored strain energies for each mechanical loss component.

This may be written as [98],

φtotalEtotal = Esubstrate (φsubstrate + φsub.TE) + Ebondφbond + Eoxideφoxide. (6.1)

As the bond has a much smaller volume than the whole structure, it can be assumed

that almost all the elastic strain energy in the structure is stored in the silicon

substrate, so Esubstrate ≈ Etotal. Rearranging Equation 6.1 for φtotal gives,
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Figure 6.18: The mechanical loss as a function of temperature for a 150µm thick
bonded silicon cantilever sample
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75Hz Mode 1 Bonded Cantilever
Calculated Thermoelastic Loss at 75Hz

Figure 6.19: The mechanical loss as a function of temperature for the 75Hz funda-
mental bending mode of a 150µm thick bonded silicon cantilever sample, showing
calculated levels of thermoelastic loss.

φtotal = φsubstrate + φsub.TE +
Ebond

Etotal
φbond +

Eoxide

Etotal
φoxide. (6.2)

Therefore, to separate out the component losses of a structure with multiple ma-

terials, it is necessary to obtain expressions for the ratios of strain energy stored

in the parts of the system to the total strain energy stored in the whole system.

These energy ratios are the scaling factor by which the intrinsic component loss

are multiplied.

The value of φsubstrate is usually found by measuring an untreated substrate and

the values of φsub.TE may be calculated from the known dimensions and material

properties of the sample. Finding the intrinsic mechanical loss of the material
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470Hz Mode 1 Bonded Cantilever
Calculated Thermoelastic Loss at 470Hz

Figure 6.20: The mechanical loss as a function of temperature for the 470Hz
pure bending mode of a 150µm thick bonded silicon cantilever sample, showing
calculated levels of thermoelastic loss.
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1320Hz Mode 1 Bonded Cantilever

Calculated Thermoelastic Loss at 1320Hz

Figure 6.21: The mechanical loss as a function of temperature for the 1320Hz
pure bending mode of a 150µm thick bonded silicon cantilever sample (Bonded
Structure 1 ) showing calculated levels of thermoelastic loss.

which comprises a thin lossy layer on the surface of a substrate is often the object

of calculations using this form. The method for the calculation of the energy ra-

tio for a a single thin lossy layer of thickness t upon the surface of a rectangular

substrate of thickness a is well known [98][88].

The simplest model of the bonded structure studied in this chapter has similarities

to the case of a lossy layer on a substrate. In this case, the lossy bond layer can be

thought of as being a distance a beneath the surface of a thin rectangular beam

with total thickness a + b, where a and b are the thicknesses of the component

cantilevers as shown in Figure 6.23. As the energy ratio is calculated analytically

using the geometry of the structure, the expression for the stored energy in the

bond layer can be based upon geometric corrections to the known expression for
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the elastic strain energy stored in a coating applied to one surface of a cantilever

[88],

Ecoating =
Y tw

2L
∆L2, (6.3)

where Y is the Young’s modulus of the lossy material, t and w are the thickness

and width of the lossy layer, L is the unstrained length of the structure and ∆L

is the change in the length of the lossy material caused by the applied strain.

Even before beginning to calculate the energy ratios Ebond

Etotal
and Eoxide

Etotal
, some con-

straints can be placed upon the outcome. The energy ratio for a lossy layer located

at the neutral bending axis (the case where the thicknesses of the component can-

tilevers are equal, so a = b) should be 0, and the cases where either a or b are zero,

placing the lossy layer at the effective surface, should be equivalent to the energy

ratio for a coating upon the surface of a substrate,

Ecoating

Etotal

=
3Ycoatingtcoating

Ysubstratetsubstrate

. (6.4)

6.3 The Analytical Stored Energy Calculation

The calculation is based upon quantification of the relative amounts of energy

stored in the parts of a system composed of multiple layers undergoing curvature.

Generally, the stored elastic energy in a volume is equal to the integral of the force

exerted on the volume with respect to the resultant extension. The force exerted

on the volume is given by,

191



F =
Y wt

L
∆L. (6.5)

Where Y is the Young’s modulus of the material, w is the width and t the thickness

of the bent component, L is the natural, unstressed length of the component and

∆L is the amount by which the bending has stretched the component. These

quantities can all be seen in diagram 6.22. Integrating Equation 6.5 with respect

to ∆L gives the equation for the elastic energy stored in a layer extended by

curvature [88],

E =
Y wt

2L
∆L2. (6.6)

In the model of the curved multilayer beam the natural length, L, occurs at the

point where the tensile and compressive stresses in the bent system cancel. This

point is known as the neutral axis, and the distance from the central point to the

neutral axis will be given the symbol, R.

6.4 The Elastic Strain Energy Stored In The Bond

Layer

For the bond section of the system, Equation 6.6 can be applied as follows. Using

the small angle approximation, from observation of Figure 6.24 the length of the

unstressed bond, L, is equal to the angle θ multiplied by the distance from the

central point to the position of the neutral axis: L = θR.

As the cantilevers are both made from the same material, it can be assumed that
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the neutral axis occurs halfway through the sample, along the blue dotted line in

Figures 6.23 and 6.24, which gives L = θ(p + 1/2(a + b)). The position of the bond

at r = p + a allows us to say that L − ∆L for the bond is given by θ(p + a) and

so it follows that,

L − (L − ∆L) = θ(p +
a + b

2
) − θ(p + a) (6.7)

∆L = θ

(

b − a

2

)

(6.8)

As the thickness of the bond, h ≪ a, b it can be assumed that ∆L does not change

by any significant amount between the top and bottom surfaces. This means that

the total energy stored in the bond layer can be written as,

Ebond =
Ybondhw

2L
θ2

(

b − a

2

)2

(6.9)

6.5 The Elastic Strain Energy Stored In The Ox-

ide Layers

The bonded structure is composed of two cantilevers with oxide layers on both

sides. If the oxide layer is not destroyed during the etching stage of the hydroxy-

catalysis bonding process, then the final bonded structure will contain four oxide

layers which will contribute towards φtotal.
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Figure 6.22: The layer dimensions used in Equations 6.5 and 6.6.
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Figure 6.23: The geometry of the bending multilayer beam showing definitions of
symbols used in calculations.
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Figure 6.24: Important variables for bond energy stage, bond highlighted in red

t1

t2
t3

t4

Figure 6.25: The positions of the four oxide layers in the bonded structure are
shown in green, with numbering as used in the calculations.
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The two oxide layers on the outside of the bonded structure, with thicknesses t1

and t4, can be treated as the simple case for a coating on a substrate. Therefore,

Eoxide.1

Etotal

=
3Yoxidet1

Ysubstratetsubstrate

, (6.10)

Eoxide.4

Etotal
=

3Yoxidet4
Ysubstratetsubstrate

. (6.11)

The two oxide layers immediately adjacent to the bond layer with thicknesses t2

and t3 can be treated in the same way as the bond layer itself. This leads to the

following expressions for the energy in each of the inner oxide layers,

Eoxide.2 =
Yoxidet2w

2L
θ2

(

b − a

2

)2

(6.12)

Eoxide.3 =
Yoxidet3w

2L
θ2

(

b − a

2

)2

(6.13)

The term representing the change in length experienced by the oxide layer in Equa-

tions 6.11 and 6.12 is θ2
(

b−a
2

)

, which is the same as that calculated for Equation

6.9. It is possible to derive more expressions for the change in length experienced

by the oxide layer that take into account the effect of the thicknesses of all four ox-

ide layers and the bond layer upon the level of bending experienced by each oxide

layer. For oxide layer 2, the length-change term (given the symbol ∆L) becomes,

∆Loxide.2 = θ

(

1

2
(h + t2 + t3 + t4 − t1) +

1

2
(b − a)

)

(6.14)
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When the bond layer and all the oxide layers have thicknesses close to 100nm,

the difference between the energy ratios calculated by using Equation 6.14 or

Equation 6.8 as the length-change term ∆L is around 2%. In the calculation of

the contribution of the mechanical loss of the oxide layers to the total mechanical

loss of the bonded structure, the simplified versions of the expressions to find the

energy ratios were used.

6.6 Energy Stored In Cantilevers

Assuming that the presence of the bond and the oxide layers does not alter the

overall elastic behaviour, the bonded structure can be considered as a single can-

tilever of thickness T = (a+b). As shown in Appendix A of [88], the energy stored

in a bending cantilever of thickness T , width, w, length, L and Young’s Modulus,

Ysubstrate is given by,

Esubstrate

2
=

1

48

Ysubstratewθ2T 3

L
, (6.15)

where θ is the angle subtended by the radii of curvature. Substituting in a + b for

the thickness of the structure results in,

Esubstrate =
1

24

Ysubstratewθ2(a + b)3

L
. (6.16)

All that remains is to find the ratio Ebond/Esubstrate:
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Ebond

Esubstrate
=

Ybondhw

2L
θ2

(

b − a

2

)2
24L

Ysubstratewθ2(a + b)3
. (6.17)

This cancels to,

Ebond

Esubstrate
=

3Ybond

Ysubstrate

h(a − b)2

(a + b)3
(6.18)

A measurement of the value of Ybond = 7.9GPa using nanoindentation was made

using nanointentation by S. Bull of School of Chemical Engineering and Advanced

Materials, University of Newcastle, and was previously used in calculations of the

loss of a bond between two silica cylinders [82].

6.7 Bond Thickness and Metrology Details

The cross-section of a broken fragment of a bonded structure was examined by J.

Scott and S.Reid using scanning electron microscopy (SEM). Figure 6.26 confirms

the presence of voids in the bond layer. The void regions and clumps of bond

material around them are likely to contribute to a higher level of mechanical loss

in the measurement of the bonded structures. As the process of growing an oxide

layer and making of a hydroxy-catalysis bond in any future gravitational wave

detector will be performed under exacting tolerances, these regions may not occur

in ‘production’ bonds.

The SEM images were also used to measure the thickness of the bond region and
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survey the state of the oxide layer on the inner surfaces of the bonded structure.

The full set of SEM images from which Figure 6.27 was taken showed that the

thickness of the bond varied across the cantilever. For regions which were not

void, the thickness of the bond layer was around (150 ± 50)nm. It was also clear

that the inner oxide layers remained largely intact despite the etching process. The

average values of t2 and t3 from the full set of SEM measurements were (100±6)nm

and (112 ± 11)nm respectively.

The irregular thickness of the bond region and variation in the degree of etching

away of the oxide layer may have been caused by an intrinsic curvature of the

silicon cantilevers. Surface quality measurements using a Talysurf profiler were

performed on the wafer from which the 100µm cantilevers were etched. These

measurements, summarised in Figure 6.29, showed a fluctuation in surface flatness

Silicon

SiliconBond material

Void

Figure 6.26: An SEM image showing irregular clumps of bond material and voids
in the bond layer between the 50µm and 100µm silicon cantilevers (Image J. Scott
and S. Reid)
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of several microns over the length scale of the cantilever. If the cantilever exhibits

a similar degree of curvature to the wafer, then the imperfections in the hydroxy-

catalysis bond are likely to be related. To produce a hydroxy-catalysis bond of the

quality used in a gravitational wave detector, flatness levels of λ/10 are required.

While the thin silicon cantilevers are likely to have been able to flex to conform to

each others shape, the irregular thickness and presence of voids in the bond region

suggest that the adaptations to the bonding process for flexible cantilevers did not

produce the highest quality bond.
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Figure 6.27: SEM images showing a fragment of the bonded cantilever structure
and the bond region in a bonded cantilever structure.(Image J. Scott and S. Reid)
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Figure 6.28: SEM images showing the variations in the thicknesses of the oxide
layers and bond region in fragments of the bonded cantilever structure.(Image J.
Scott and S. Reid)
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Figure 6.29: The surface quality data obtained using a Talysurf profiler on the
100µm thick silicon wafer from which the 100µm thick silicon cantilever was
etched.(Image S. Reid)
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6.8 Calculation of the Component Mechanical

Losses Of the Bonded Structure

If it is assumed that the vast majority of the loss measured in the bonded structure

results from the thermoelastic loss in the substrate, the loss of the bond region

and the losses of the thermal oxide layers, then an upper limit on the loss of the

bond material may be calculated. The sum of the products of mechanical loss and

energy for this case is,

Etotalφmeasured = Esubφsub + Ebondφbond + Esub.TEφsub.TE + Eoxide.1φoxide.1 + . . .

. . . Eoxide.2φoxide.2 + Eoxide.3φoxide.3 + Eoxide.4φoxide.4. (6.19)

Dividing Equation 6.19 through by Etot, and rearranging for φbond gives,

Ebond

Etotal

φbond = φmeasured −
Esub

Etotal

(φsub + φsub.TE) − Eoxide.1

Etotal

φoxide.1 − . . .

. . .
Eoxide.2

Etotal
φoxide.2 −

Eoxide.3

Etotal
φoxide.3 −

Eoxide.4

Etotal
φoxide.4 (6.20)

As the material of all the oxide layers is the same, they are assumed to have the

same mechanical loss. This allows φoxide.1−4 to be set to φoxide. The energy ratios

for the oxide layers were calculated in Section 6.5. The energy ratios and measured

thicknesses for the outer oxide layers are the same, so Eoxide.1

Etotal
= Eoxide.4

Etotal
. As before,
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Esub is assumed to be equal to Etotal. Substituting this into Equation 6.20 gives,

Ebond

Etotal
φbond = φmeasured − φsub − φsub.TE − 2Eoxide.1

Etotal
φoxide − . . .

. . .
Eoxide.2

Etotal
φoxide −

Eoxide.3

Etotal
φoxide. (6.21)

To use Equation 6.21, the amount of mechanical loss contributed by the thermally

grown amorphous silicon dioxide must be extracted. The bonding process required

an oxide layer to be grown on the bonding surfaces of the cantilevers and due to

the method of oxidisation used, oxide also grew upon the outside surfaces. For the

purposes of calculating an energy ratio, the individual cantilevers are considered

as having lossy layers of equal thickness on both sides.

The mechanical losses of the individual cantilevers were not measured before oxidi-

sation, so an experimental value for (φsub+φsub.TE) is unavailable. It is known that

mechanical loss measurements of silicon cantilevers are dominated by thermoelas-

tic loss at the upper end of the temperature range studied here. Measurements

of uncoated silicon cantilevers also show that the mechanical loss at low temper-

atures can be as low as 4.4 × 10−7 and that at high temperatures the measured

mechanical loss is extremely close to the thermoelastic noise [94]. The intrinsic

mechanical loss of silicon is several orders of magnitude lower than the mechanical

loss of the bonded cantilever structure between 10K and 300K. As φsub.TE is the

only substrate component which approaches the measured mechanical loss of the
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substrate, φsub, can be declared negligible.

In the absence of a set of mechanical loss measurements of the cantilevers pre-

oxidisation to use as control measurements, an estimate of the loss due to the

oxide layer on the component cantilevers may be calculated by subtracting the

contribution of thermoelastic loss from the measurements of the oxidised can-

tilevers and scaling the result by the energy ratio for a lossy coating on both sides

of a cantilever,

Eoxide.1

Ecantilever
=

6Yoxidetoxide.1

Ysilicontsubstrate
, (6.22)

which uses the assumption that t1 = t4. For the thick cantilever, tsubstrate =

b = 100µm and for the thin cantilever, tsubstrate = a = 50µm. The results of

the application of this technique to the mechanical loss data from Section 6.1 are

summarised in Figures 6.30 and 6.31. These values are used in the next stage of

the calculation, and represent an upper limit upon the level of mechanical loss

present in the material that makes up the oxide layers.

6.8.1 Calculation of the Bond Loss

The upper limit values for the mechanical loss of the oxide layer calculated above

were used to calculate an average curve for the mechanical loss of the oxide layer

at each mode frequency on each of the cantilevers, which was then interpolated

to give loss values for the temperature values required. The average oxide layers

consisted of the oxide loss estimates calculated from all measured modes except

206



0 50 100 150 200 250 300
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Temperature (K)

M
ec

hc
an

ic
al

 L
os

s

 

 
Thin Cantilever Mode 1 (24Hz)
Thin Cantilever Mode 2 (161Hz)
Thin Cantilever Mode 3 (447Hz)
Thin Cantilever Mode 4 (872Hz)
Thin Cantilever Mode 5 (1452Hz)
Thin Cantilever Mode 6 (2172Hz)

Figure 6.30: The upper limits on the mechanical loss of the oxide layers deposited
on the 50µm cantilever sample.
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Figure 6.31: The upper limits on the mechanical loss of the oxide layers deposited
on the 100µm cantilever sample.
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the excessively lossy second mode (161Hz for the 50µm sample and 307Hz for the

100µm sample).

The upper limits for φoxide were averaged and interpolated to find a value for each

temperature point in the bonded cantilever mechanical loss dataset. The values for

φoxide were scaled by the ratios of the stored energy expressions derived in Sections

6.5 and 6.6 to provide the quantities 2Eoxide.1

Etotal
φoxide,

Eoxide.2

Etotal
φoxide and Eoxide.3

Etotal
φoxide.

The scaled oxide quantities and φsub.TE were subtracted from the mechanical loss

of the bonded cantilever structure, and the remainder was scaled by the ratio Ebond

Etotal

to give an upper limit upon the mechanical loss of the bond material. Usually,

φ << 1 and the small angle approximations apply to calculations using the me-

bonding

Silicon Cantilever

Thermal SiO
2

Bond material

b =100μm

a = 50μm

h =150±50nm 

a = 50μm

b =100μm

t = 140±3nm
4

t = 112±11nm
3

t = 140±3nm
1

t = 100±3nm
2

Figure 6.32: The layers of the cantilevers and structure before and after the bond-
ing process and the dimensions used in the calculation of the energy ratio.
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Property, Symbol Value Source

Cantilever thickness, a (50 ± 1)µm Cantilever etch specifications
Oxide Thickness, t1 (140 ± 3)nm Ellipsometric data [99]
Oxide Thickness, t2 (100 ± 6)nm SEM imaging [100]
Bond Thickness, h (150 ± 50)nm SEM imaging [100]
Oxide Thickness, t3 (112 ± 11)nm SEM imaging [100]
Oxide Thickness, t4 (140 ± 3)µm Ellipsometric data [99]

Cantilever thickness, b (100 ± 1)µm Cantilever etch specifications

Silicon Young’s Modulus, Ysil 164 ± 3GPa [94]
Oxide Layer Young’s Modulus, Yoxide 72GPa [101]
Bond Region Young’s Modulus, Ybond 7.9GPa [82]

Table 6.2: The quantities used in the calculation of the energy ratios used in the
calculation of the mechanical loss of the bond material showing the value, symbol
and source of the measurement.

chanical loss angle. Some of the bond loss values resulting from this calculation are

larger than 1, which means that the small angle approximations in the definition of

mechanical loss cease to apply. The value calculated by the method of subtracting

components and scaling by the stored energy is tan(φbond), so φbond is recovered by

taking the inverse tangent of the calculated results. A critically damped system at

resonance has a mechanical loss of 2. If this is taken to be the largest meaningful

loss angle, then φmax is tan−1(2) = 1.107.

The lowest upper limits found using this method were derived from the data for

the 75Hz mode of the bonded structure. At 285K the upper limit is (1.39± 0.94),

which is much higher than the value of (2.8 ± 0.4) × 10−1 measured in [82], the

values measured in [83] and exceeds the maximum meaningful mechanical loss of

1.107. The lowest value for the upper limit occurred at 80K and was (0.13± 0.03)

and the bond loss at 10K was (0.91± 0.58). The bond losses calculated using the
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470Hz data were close to 1 throughout the temperature range and showed little

variation. The bond losses calculated using the 1320Hz data were above 1.107 and

therefore unphysical near room temperature, but decreased with temperature to

as low as (0.19 ± 0.04) at 16K.

6.9 Discussion and Conclusions

Bonds between oxidised silicon substrates have already been shown to have com-

parable strength to those between fused silica components, and this work shows

that at low temperatures the mechanical loss of silicon-silicon bonds is at least as

good as the loss of previously measured silica-silica bonds at room temperature.

The extension of this work to low temperatures shows a minimum mechanical loss
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Figure 6.33: The upper limit of the mechanical loss of the bond material calculated
using measurements of the first three modes, after the subtraction of the thermoe-
lastic loss in the substrate and the mechanical loss due to the layer of thermally
grown oxide.
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for the bond material at around 80K and now upper limit values exist from 300K

to 10K for the mechanical loss of the material in a hydroxy-catalysis bond between

silicon. If it is possible to strip the outer oxide layers from the bonded structures

without compromising the bond material and the values of the mechanical loss

of comparable silicon cantilevers pre-oxidisation become available, then it will be

possible to adjust this upper limit closer to the real value of the mechanical loss

of the bond material.

At (1.39 ± 0.94) the upper limit set for the room temperature mechanical loss

of the silica-gel network that forms the bond material is several orders of mag-

nitude higher than the loss of more usual forms of silica at room temperature:

amorphous ion beam sputtered silica has a room temperature mechanical loss of

(1.0 ± 0.2)× 10−4[79], thermally grown silica has a room temperature mechanical

loss of 1×10−4 [51] and fused silica has a mechanical loss of 4.3×10−7 [102]. This

wide range of mechanical losses over eight orders of magnitude shows how strongly

mechanical loss may vary with changes in microscopic structure, even in materials

which are chemically very similar.

This previously untested method for obtaining the temperature dependence of

the mechanical loss of the material in a hydroxy-catalysis bond was successful in

producing credible upper limit values for temperatures below 200K. In other mea-

surements using this apparatus, the data above 200K often exhibited large levels

of scatter and excess loss, which has been attributed to the effects of temperature

cycling upon the clamp, so it is not unexpected that the data taken at higher tem-

peratures in this experiment produced a much lossier than expected result. These
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measurements show that for the fundamental mode between 20K and 200K, the

upper limit on the loss of the material in an hydroxy-catalysis bond is around

0.2, with the lowest bond loss of (0.13± 0.03) occurring in the fundamental mode

at 80K and a bond loss of (0.19 ± 0.07) occurring in the third mode at 15K. As

these values are upper limits, the mechanical loss of a hydroxy-catalysis bond in a

gravitational wave detector is likely to be lower across the full temperature range.

Factors such as the surface quality of the silicon wafers from which the component

cantilevers were etched and the surface features and stresses caused by the oxi-

disation process may have contributed to the irregularity of quality of the bonds

measured in this work.
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Chapter 7

Mechanical Loss Measurements

With A Nodal Support

As stated in Chapter 2, the Brownian thermal noise from the mirror substrates is a

contributing factor to the thermal noise in a gravitational wave detector and must

be quantified so that an accurate noise budget may be calculated. As described

in Chapter 2 a prediction of the thermal noise spectrum resulting from the use

of a particular material in the optics may be calculated from the mechanical loss,

φ(ω0), of the material if other parameters such as the Young’s Modulus are known.

Fused silica substrates have been used in the optics of the current LIGO, VIRGO

and GEO600 detectors. The plans for future detectors include the use of lasers of

much higher power than in current detectors, and with the use of Fabry-Perot in-

terferometer arm cavities, very high laser powers will be incident upon the optics.

While the absorption of the fused silica used in the mirrors is only a few parts per

million, with higher laser powers the laser energy absorbed by the substrate leads
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to thermal distortions of the substrate. Thermal distortions cause fluctuations in

the interferometer beam alignment and so must be counteracted or minimised.

To minimise these thermo-optic distortions in future gravitational wave detec-

tors it may be necessary to use a different substrate material in the interferometer

optics. Two candidate materials are silicon and sapphire. Sapphire substrates can

be used in the same optical configurations as fused silica, but a switch to silicon

optics would require more far-reaching changes: either using all-reflective interfer-

ometry schemes or moving to a laser wavelength where silicon is transparent. As

future gravitational wave detectors could operate cryogenically, the properties of

the potential substrate materials require investigation at low temperatures.

7.1 Loss Measurements on Bulk Substrates

As for the cantilever samples measured in earlier chapters, the mechanical loss of

low loss bulk materials is easiest to measure by observation of the resonant modes

of the sample. The principles of mechanical loss measurement in bulk substrates

remain the same as in cantilever samples: the resonant modes must be located

and excited, and then the decay of the oscillation amplitude must be measured.

Many measurements of the bulk mechanical loss of a variety of fused silica samples

have been carried out, stemming from work on ultra-low loss resonators [72]. In

the context of gravitational wave detectors, a mechanical loss of φ = 4.9×10−9 has

been measured at room temperature [103]. The mechanical loss of fused silica ap-

pears to vary between manufacturers [104] and sufficient data has been gathered on
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the variation of mechanical loss with various parameters to allow a semi-empirical

model to be developed that describes the mechanical loss of a piece of silica as a

function of frequency and surface/volume ratio [105]. In this model, the loss of

bulk fused silica is given by,

φ(f,
V

S
) = C1

(

V

S

)−1

+ C2

(

f

1Hz

)C3

+ C4φTE , (7.1)

where V
S

is the volume/surface area ratio of the piece of silica, f is the frequency

and φTE is the thermoelastic loss calculated using Equation 2.40. The constants

C1, C2, C3, and C4 vary with each variety of fused silica.

Sapphire is a crystalline form of aluminium oxide with a rhombohedral crystal

structure that leads to anisotropies in its material properties. Synthetically grown

single sapphire crystals can be sliced and polished to a similar quality to fused

silica optics. The lowest known loss in sapphire at room temperature is 2 × 10−9

for a resonator measured by Braginsky [106]. Sapphire was chosen as the substrate

material for LCGT [37][38] after a study showed that a sapphire cylinder of 100mm

diameter and 60mm length suspended on sapphire fibres had a mechanical loss of

4.0 × 10−9 at 4.2K and 2.2 × 10−7 at 300K [107].

Crystalline silicon is of particular interest for potential cryogenic detectors as the

linear coefficient of thermal expansion drops to zero at around 125K and 18K. As

described in Chapter 2, the magnitude of thermoelastic loss is described by,
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φTE ∼ Eα2T

C
(7.2)

where E represents Young’s Modulus, α is the linear coefficient of thermal ex-

pansion, T is the temperature and C is the heat capacity of the material, the

contribution of thermoelastic dissipation to thermal noise could be negligible at

these temperatures [66]. Investigations of the mechanical loss of silicon over the

temperature range 4K-273K are therefore of interest as part of the investigation

of candidate optical substrate materials for future gravitational wave detectors.

At room temperature, the lowest published mechanical loss for crystalline sili-

con is 1 × 10−8 [104], although unpublished results from Glasgow show that it is

possible to reach lower losses at room temperature - a mechanical loss of 8.51×10−9

was measured for one mode of a silicon cylinder oriented along the (111) crystal

axis [83]. At low temperatures, a Q factor corresponding to a mechanical loss of

5 × 10−10 was measured by at 3.5K on a silicon cylinder oriented along the (111)

crystal axis whose room temperature mechanical loss was 5×10−8 [108]. The very

low mechanical loss of silicon at low temperatures may be approaching the level

of dissipation introduced by the method used to support the sample. A method of

suspending bulk samples for mechanical loss measurements which effectively elim-

inates support losses may improve the quality of low temperature mechanical loss

measurements so that recent measurements of extremely low mechanical losses at

room temperature may lead to measurements of even lower mechanical loss at low

temperatures.
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7.2 Motivation for an Improved Suspension Method

Mechanical loss measurements made at Glasgow and elsewhere suggest that the

method of supporting a bulk sample on a silk thread or tungsten wire can in-

troduce additional mechanical loss, termed ‘support loss’ [106][58]. By rotating a

silicon sample in a silk thread suspension and performing a series of mechanical

loss measurements on resonant modes with four-fold symmetry, it was observed

that the mechanical loss oscillated between higher and lower values with a period

of 90◦, suggesting that some vibrational coupling exists between the motion in cer-

tain resonant modes and the ‘break-off points’ where the thread suspension loses

contact with the barrel of the sample [83].

Kenji Numata, working at the University of Tokyo, developed the nodal support

as a method of securing bulk samples that eliminated the presence of a ’break-off

point’ and could potentially eliminate support losses for certain resonant modes

[109]. Using the nodal support, Numata made a series of mechanical loss mea-

surements on a single crystal silicon cylinder; the lowest measured mechanical loss

was 1 × 10−8. Numata also compared the losses of 21 measured modes with the

r.m.s. mean displacement at the nodal contact point for that mode, and found

that the mechanical loss decreases linearly with decreasing displacement at the

contact point [104].

7.2.1 Finite Element Calculations of Strain Energy Ratios

If the effectiveness of a nodal support for a particular resonant mode depends on

the amount of motion present at the nodal contact point, then it may be possible
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to determine for which modes of a bulk sample a nodal support may outperform

a thread suspension.

By modelling a silica sample of the typical size used in the mechanical loss mea-

surements of bulk substrates using the finite element analysis package, ANSYS,

the deformed shapes and strain energy distribution of the various resonant modes

can be calculated. Figure 7.1 shows the total displacement of the surface of the

substrate, which is d̄ =
√

dx2 + dy2 + dz2 for each element in the simulated sub-

strate. The value for d̄ is normalised to give the value as a dimensionless number

between 0 and 1. In Figure 7.1 dark blue is the lowest level of displacement and

dark red is the highest.

By selecting only the elements where the silk suspension loop contacts the mass

- those around the centre of the barrel of the sample - the ratio of the elastic

strain energy in the contact region to the total elastic strain energy of each mode-

shape can be calculated. Assuming that the additional dissipation in suspended

mechanical loss measurements can be correlated with friction between the most

highly deformed and energetic regions of the mass and the suspension loop, it can

be seen that certain modes ought to experience more support loss than others.

McMahon developed a classification system for the description of mode shapes

in isotropic, elastic cylinders [110]. The degree of rotational symmetry of the dis-

placement of the modeshape corresponds to the order, n, of the mode. The modes

can further be divided into the categories symmetric and antisymmetric, which de-
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Figure 7.1: A summary of the normalised total displacement in the deformed mode
shapes of resonant modes of a silica sample of 25mm diameter and 75mm length.
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scribes whether the motion of the cylinder is symmetric about a plane across the

diameter, halfway along its length. McMahon also gave numbers to modeshapes

within these categories. In the results of the finite element analysis calculations,

the McMahon method of modeshape classification is used to identify particular

modeshapes.

By examining the deformed modeshapes, a broad category of modes which ex-

perience a high degree of deformation around the barrel, and experience little or

no motion at the centre of the face can be identified. These are the modes which

are described by the McMahon system as having a mode order where n > 1. The

common laboratory term that developed for this class was clover-m modes, where

m is the number of areas of high motion around the circumference of the mass

(see Figure 7.1 for pictoral examples). Assuming that some of the excess loss is

support loss caused by friction between the break off point of the suspension ma-

terial and the vibrating mass, then reducing or removing contact with the regions

which vibrate most vigorously could diminish the excess loss. By replacing the

silk suspension loop with a point contact at the points of minimum motion on the

centres of the test mass faces, it may be possible to obtain a loss measurement

which approaches the true intrinsic loss of the material.

In order to illustrate this, the ratio of strain energy present in the region around

the centre of the test mass face to the total strain energy was calculated using the

ANSYS model referred to above. This allows a comparison between the potential

for dissipation in loop suspended loss measurements and nodally supported loss

measurements. The two sets of calculated strain energy ratios can be seen in Fig-
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ure 7.2. A larger strain energy ratio means that larger displacement occurs in that

contact region, and therefore a higher level of excess loss.

Using the model used to produce Figure 7.2 to examine individual modes, it can

be seen that the stored energy ratio for the thread suspension region of the fun-

damental mode at 28.4kHz is significantly larger than the stored energy ratio

Figure 7.2: The ratio of elastic strain energy in the contact region to total elastic
strain energy, with the modeshapes at each frequency for comparison.
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for the nodal support region. This would imply that you would expect that the

nodal support would experience a larger amount of excess support loss than the

thread suspension for this mode. In the cases of the three simple clover-m modes

at 20.1kHz, 37.8kHz and 55.4kHz, the thread suspension energy ratio is always

higher than the nodal support energy ratio, and as m increases, the ‘advantage’

of the nodal support over the thread suspension increases.

These models indicate the lowest excess support losses will be experienced when

using a nodal support to measure high m value clover-m modes.
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7.3 Nodal Support Tests with Sapphire

Mechanical loss measurements on bulk substrates differ in the readout method

used to determine the amplitude of the resonant oscillations. The sample is iso-

lated from external vibrations and disturbances using the chosen support method,

placed in an evacuated vessel and then its resonant modes are excited indepen-

dently using a high frequency oscillating electric field generated by an excitation

plate. The motion of the front face of the bulk sample in any mode is much

smaller in magnitude than that seen in the bending modes of the silicon can-

tilevers measured in earlier chapters and so a simple Michelson interferometer is

used to monitor the amplitude and frequency of the oscillations.

Initial tests of the nodal support were conducted in a high vacuum tank which

had been used previously for thread suspension loss measurements. The proto-

type nodal support was constructed from adapted mirror mounts bolted into an

aluminium baseplate, with support rods tipped with ruby spheres. The nodal sup-

port was constructed for the measurement of cylindrical samples measuring 75mm

in diameter with a thickness of 25mm, and the support rods were positioned in

order to contact the centre of the face of the sample. The baseplate was bolted,

upside down, into the existing suspension frame, and an electrostatic exciter plate

was positioned close to the back face of the sample.

This prototype was used in the measurement of a single crystal sapphire sample

that had previously been thoroughly characterised using a thread suspension [83].
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Figure 7.3: The suspension cradle with a 76mm diameter silica cylinder sample in
a prototype nodal support fitted (left) and a thread suspension (right).
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Figure 7.4: The prototype nodal support showing major features, with a 76mm
diameter silica cylinder sample in position.
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Figure 7.5: Mechanical losses measured on a cylindrical sapphire sample using
two iterations of the prototype nodal support, compared with the best mechanical
losses measured with a thread suspension.

7.3.1 Improvements to the Prototype Nodal Support - De-

signing NS2

These initial tests indicated that the nodal support itself was responsible for some

of the measured dissipation, and that a lossy contact at a node can still be worse in

terms of dissipation than a low loss contact at a region of large displacement. The

nodal support was redesigned to produce NS2, which featured increased rigidity.

The threaded support rods were replaced with heavier, sliding support rods that

were bolted through into the structure of the nodal support. The ruby spheres

were held in press-fit cavities in order to reduce the potential for dissipation caused
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by motion of the ruby ball against the holder.

Sapphire

Sample

Ruby 

contact
V Groove

Sliding 

bar

Figure 7.6: The improved nodal support (NS2), showing one of two ruby spheres
contacting a sapphire sample.

It was also apparent from the small scratches present on the surface of the measured

test masses that the prototype had not always been positioned over the same point

at centre of the face. The improved nodal support was machined to position the

centre of the mass to a higher tolerance and a V-block structure also worked to keep

the support rods in the correct position. In theory, this positioned the centre of

the mass to an accuracy of 0.1mm, by manoeuvreing the sample into the correct

position by the use of two removable catchers that were designed to be of the

correct size to allow the desired contact point to meet the ruby sphere.
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Figure 7.7: The improved nodal support (NS2) showing major features.
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7.4 Room Temperature Measurements of Silicon

Using NS2

One aim for the nodal support is to provide a safe, low-loss support method to

aid in the measurements of bulk samples at low temperatures that will provide

information leading towards a substrate material choice for the optics in future

gravitational wave detectors. With a view to repeating these measurements at

lower temperatures, the improved nodal support was used to measure a silicon

cylinder sample that had previously been measured using a thread suspension.

The silicon sample studied was 75.4mm in diameter, with a thickness of 25.4mm

and the crystal axes aligned so that the [1,1,1] direction is perpendicular to the

front face of the mass. ANSYS modelling of this mass using finite element analysis

found the total normalised surface displacement resonant modes as summarized in

Figure 7.8, where dark blue is minimum displacement and dark red as maximum

displacement [110].

The sample was suspended in the nodal support by placing the sample on two

aluminium catchers that held the sample in a position where the centre of the

face of the mass was at the correct location to be contacted by the ruby tips of

the nodal support rods. The sample was then suspended by compressing the rods

using a specially constructed vice-like device tightened with measured torques ap-

plied with a torque wrench.

Once the sample was held securely, the catchers were then removed, leaving the
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Fundamental 45.6kHz

(1, n=2)

Clover-8 81.37kHz

(24, n=4)
Clover-8 81.34kHz

(24, n=4)
Clover-6 56.69kHz

(20, n=3)

Clover-6 56.46kHz

(20, n=3)

Clover-4 31.85kHz

(16, n=2)

Clover-4 30.21kHz

(16, n=2)

Figure 7.8: Summary of total surface displacements for the resonant modes for a
silicon sample (75mm diameter x 25mm thick).

sample supported only at the centre of each face. The nodal support assembly

was then placed on a bench inside a vacuum tank, with an electrostatic drive plate

positioned ∼2mm away from the back face of the sample. The oscillations of the

front face of the sample were sensed using an interferometric laser readout. The

mechanical loss measured using the NS2 nodal support shows the same frequency

dependence as that measured using the NS1 nodal support. For the lowest fre-

quency modes satisfying the symmetry criterion (16, n=2) [110], the best nodal

support measurements are over an order of magnitude worse than the best mea-

surements made using a silk thread suspension.

The apparent frequency dependence could be due to coupling between the res-

onant modes of the sample and the modes of the nodal support. The contact
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Figure 7.9: Summary of mechanical loss measurements for nine resonant modes of
a silicon sample (75mm diameter x 25mm thick).

region over the centre of the disc encompasses not just the nodal point of zero

motion but also points which are experience displacement in the resonance. The

ANSYS modelling in Section 7.2 suggests that for the lower frequency modes there

is a larger magnitude of motion in the contact region for nodal supports, resulting

in more coupling between the substrate and support. This implies that excess

loss caused by this coupling may be present when measuring the lowest modes

with a nodal support. The highest frequency modes measured in this experiment

produced mechanical losses as low as or lower than the best thread suspensions,

as predicted in Section 7.2.

The main achievement of this series of measurements is that for the pair of reso-

nant modes at 55.6kHz and 55.9KHz, the mechanical loss measured with NS2 was
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lower than that measured with a silk thread suspension. As with the measure-

ments of a sapphire coin using the prototype nodal support in Section 7.3, it was

possible to measure high frequency modes which had been previously inaccessible

using a silk thread suspension. The mechanical loss measured for these modes

was in broad agreement with the loss levels measured for other modes using a silk

thread suspension.

7.4.1 Sample Surface Damage

After repeated use of the nodal support on the silicon sample described above,

damage to the sample was noted. Silicon lies at 6.5 on the Mohs hardness scale

and could therefore be expected to be scratched by a ruby at 9.0, especially when

held in compression. All samples used with the nodal support display some signs

of damage. A Veeco interferometric profiler was used to investigate the damage to

the surface of the silicon sample.

mm

Figure 7.10: Profile of a 8.5mm x 7.9mm region of the surface of cylindrical silicon
sample, 75mm diameter x 25mm thick, showing surface damage caused by the
nodal support.
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um

Figure 7.11: Detail of Figure 7.10, showing the profile of a scratch 7µm deep next
to a chip 3µm deep.

This damage, while worrying in appearance, may not necessarily have had a detri-

mental effect on the mechanical loss values measured. Over several sets of measure-

ments, between which the suspension was changed and the repeated repositionings

presumably increased the level of damage, the measured mechanical loss remained

roughly constant. However, the surface damage makes this nodal support unsuit-

able for use with coated samples or samples with delicate surface features such as

diffraction gratings.

7.5 Cryogenic Measurements With A Nodal Sup-

port

The overall aim of these measurements of mechanical loss is to work towards a

description of the thermal noise in silicon between 273K and 4K. The method for
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measuring mechanical loss at room temperature can be extended to low temper-

atures, but special consideration must be given to the behaviour of the mass and

the nodal support itself during cooling.

7.5.1 Experimental Design

Initial attempts had been made to measure the mechanical losses of bulk sam-

ples supported by thread suspensions cryogenically, but the processes of sealing

the cryostat and cooling the setup caused levels of mechanical vibrations which

caused the extremely delicate suspensions to fail. If the nodal support could be

relied upon not to drop, damage or add excess loss to the sample, then it could be

used for low temperature mechanical loss measurements.

Initial calculations showed that thermal contraction of the nodal support could

have possibly unwanted effects. Between 300K and 77K, 25mm of silicon con-

tracts by 6µ m and a 25mm gap in a body made of aluminium contracts by 97.5µ

m. Effectively, the nodal support will attempt to compress the silicon resulting

in a large increase in the force applied through the ruby contacts. If the nodal

support is not well centred when this compressive force is applied, the sample may

shift in the support or the suspension may fail.

In order to ascertain the effects of the compression from cryogenic contraction,

the silicon sample was suspended in the nodal support in the usual manner, and

then partially lowered into a bath of liquid nitrogen and monitored as it cooled.

Three such trials took place; in the first trial (using 20Nm of torque to secure the
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mass) the mass slipped from the nodal support during the warming phase, and

one of the ruby contacts was found to have shattered. This could be due to a

crack that had formed during manufacture and was exacerbated by cooling, or it

is also possibly that the contraction of the nodal support around the mass could

have caused the ruby to shatter. Two further cooling trials used 15Nm to support

the mass, and were successful.

It was also observed that the mass took much longer to cool than the nodal sup-

port. This supports the idea that, just as the nodal support technique is an effec-

tive method of preventing mechanical dissipation, it is also a poor thermal transfer

route. The force that the nodal support exerts upon the sample can be calibrated

at room temperature using a torque wrench, but as the mass and nodal support

contract during cooling, the clamping force will increase and possibly cause further

surface damage.

7.5.2 NS2 Low Temperature Silicon Measurements

The improved nodal support was used in a cryogenic mechanical loss measuring

setup based around the cryostat pictured in Figures 7.12 and 7.13. The nodal

support sat in a tray suspended from the cold plate of the experimental chamber

by threaded rods.

The temperature of the experimental chamber was monitored using DT-670 sili-

con diode sensors and a Lakeshore 340 temperature controller. One temperature

sensor was attached to the top plate of the chamber and one attached to a support
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Figure 7.12: Schematic of large cryostat showing optical, electrical, vacuum and
cryogen feedthroughs, plus detail showing placement of NS2 in experimental cham-
ber

rod of the nodal support.

The cryostat has two spaces for cryogens, an inner space which is intended for

liquid helium, and an outer space for liquid nitrogen. In these measurements, liq-
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Temperature sensors

Figure 7.13: Detail of schematic of large cryostat showing optical, electrical, vac-
uum and cryogen feedthroughs, plus detail showing placement of NS2 in experi-
mental chamber

uid nitrogen only is used. The most efficient initial cooling was achieved by filling

the helium space with liquid nitrogen and allowing the chamber to cool for six

hours.

Cooling of the experimental chamber proceeded more quickly if the chamber was

at a pressure of 10−4bar, rather than the high vacuum of 10−6bar. Conductive

cooling of the nodal support was fairly slow, due to the poor thermal transfer

route provided by the threaded rods, but operating the tank at a slightly higher

vacuum pressure allowed for a faster cooling rate without risking water vapour

freezing onto the nodal support and mass. After six hours, the nodal support
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was at around 200K and the top plate at around 130K - after this, the nitrogen

and helium spaces were filled alternately with 25L of liquid nitrogen. Filled in

this manner, the experimental chamber cooled at a rate of 5K/h and reached 77K

in just over two days. The setup returned to room temperature naturally at an

average rate of around 3K/h. It can be seen in Figure 7.14 that the nodal support

continues to cool for over 1000 minutes after the temperature of the cold plate be-

gan to rise, indicating that all liquid nitrogen had boiled away. This lag in cooling

is likely to result from the poor thermal conduction path between the cold plate

and the nodal support along the threaded rods. The poor thermal conductivity

also results in a significant lag in the warming of the setup, with the temperature

of the nodal support being lower than that of the cold plate from 3000 minutes to

the end of the cooling run.

During the initial cooling run, water vapour froze onto the inside of the outer-

most viewport, so the laser beam did not contact the test mass face and so no

mechanical loss values could be measured. The seals of the cryostat were remade

and the vacuum system left to pump out water vapor over a weekend, so that on

the second cooling run the viewport remained free of frost. Mechanical loss values

were measured at room temperature and for two lower temperatures, 100K and

150K. The measurements are shown in Figure 7.15 and show that the overall trend

was for mechanical loss to decrease as temperature decreased. As the temperature

sensor was placed upon the clamping bar of the nodal support, rather than the

test mass itself, the recorded temperatures will differ from the true temperature

the test mass itself. The poor thermal transfer through the ruby ball contacts

means that the cooling of the test mass will significantly lag the clamp cooling.
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Figure 7.14: Temperature measured at the nodal support and at the top plate
of the experimental chamber over 6000 hours, showing the times at which liquid
nitrogen was added to the cryostat.

While the clear downward trend in mechanical loss with decreasing temperature

displayed in these results was as expected, the measurements taken in the cryostat

at 294K were an order of magnitude worse than the best values achieved with NS2

in the room temperature tank.

Significant alterations would be required to construct a nodal support that could

produce a credible series of low temperature measurements. The contacts would

be required to exert a constant force upon the sample at all temperatures between

4K and 300K, which requires very careful matching of the thermal contractions

of the components of the nodal support. The central axis of the nodal support

should be made vertical to allow for easier balancing of the sample and to reduce
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Figure 7.15: Summary of low temperature mechanical loss measurements for six
resonant modes of a silicon coin sample.

the amount of force required to secure the sample.

7.6 Conclusions

A nodal-type support may be a good way of effectively removing the excess losses

associated with the sample support, but the NS2 nodal support described in this

work is not suitable for the intended purpose of producing non-destructive mea-

surements of the mechanical loss of silicon at temperatures below 300K.

At room temperature, the lowest measured mechanical loss using a nodal sup-

port was 1.8×10−8 for a 55.6kHz mode and a mechanical loss of 2.3×10−8. When

measured in the cryogenic bulk mechanical loss measurement apparatus, the me-

chanical losses of the 55.6kHz mode ranged from 7.4× 10−7 at 300K to 1.7× 10−7
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at a nodal support temperature of 100K. The lowest loss measured at low temper-

ature was 1.1 × 10−7 for the 93kHz mode.

The poor losses measured at room temperature in the cryostat are likely to be

connected with the lack of rigidity in the system attaching the nodal support to

the cold plate of the cryostat. In the development of the nodal support at room

temperature it was found that the lowest losses were measured when the nodal

support was highly isolated from external vibrations by stiff rubber pads. The

threaded rods used in the cryostat system are unlikely to have provided the req-

uisite level of vibrational isolation. The observed surface damage to the silicon

sample may have caused the low losses measured at all temperatures.
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Chapter 8

Conclusions

The global network of gravitational wave detectors relies on many advanced tech-

nologies to obtain the levels of sensitivity required to even have a chance of detect-

ing a gravitational wave signal from a distant astrophysical event. To increase the

chances of detection, further advances in technology are required to drive down

the levels of all noise types in the interferometer system. Work is underway to

reduce the levels of noise resulting from external vibrations, quantum fluctuations,

and thermally-induced dissipation which is present in the interferometer signal.

A critical factor for future gravitational wave detectors is the reduction of the

thermal noise in the interferometer optics, especially in the dielectric multilayer

coatings used to achieve the high laser powers in the interferometer arms. The

thermal noise resulting from the use of a particular material in an interferome-

ter is proportional to the square root of the mechanical loss of the material. In

this thesis, the variation of mechanical loss with temperature was measured for

some of the candidate materials for future gravitational wave detectors. A table-
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top cryogenic mechanical loss measurement apparatus was constructed to produce

measurements of coated and uncoated silicon cantilever samples between 10K and

300K. Two anomalies in the mechanical loss measurements made using this appa-

ratus were discovered: anomalously high mechanical losses at low temperatures in

the fundamental mode caused by the excitation system and high losses at around

250K related to the thermal cycling of the sample clamping method.

Ion-beam sputtered silica coatings are currently used in the dielectric multilayer

coatings in gravitational wave detectors. In this thesis, measurements of a ion-

beam sputtered silica coating heat-treated at 300oC found a Debye peak, Arrhe-

nius analysis of which provided a characteristic energy of (17.3 ± 2.3)meV for the

dissipation process causing the Debye peak. Measurements of silica coatings heat-

treated at 600oC and 800oC showed that the Debye peak appeared to narrow,

which was thought to be indicative of the narrowing of the distribution of bond

angles in the amorphous silica network. None of the heat-treatment temperatures

significantly reduced the magnitude of the mechanical loss in the Debye peak. Fur-

ther research is still required to reduce the contribution of the silica component

to the thermal noise resulting from multilayer coatings, but the work presented in

Chapter 4 of this thesis adds to the knowledge of the dissipation processes in silica.

Hafnia was investigated as an alternative coating material in Chapter 5. The

mechanical loss of hafnia heat-treated at 300oC was measured and two excess loss

features were discovered below 100K and above 200K, but neither had the sharp

rise in mechanical loss that marked it as a Debye peak. Electron scattering mea-

surements indicate that this sample may already have developed polycrystalline
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regions which are known to be connected to high levels of mechanical loss. The

mechanical loss of an un-heat-treated hafnia coating is also measured and a coating

loss of 1.87×10−5 is found at 20K. At temperatures in the 10-20K range, un-heat-

treated hafnia has a factor of three lower loss than tantala. The combination of

the lower intrinsic mechanical loss and the higher refractive index means that less

material is required to produce the λ/4 optical length required. These two factors

mean that a hafnia/silica multilayer coating would cause less thermal noise at low

temperatures than a tantala/silica multilayer. Unfortunately, the optical absorp-

tion of hafnia is not low enough to sustain the high powered laser beams used in

future detectors. If the optical properties of hafnia coatings can be controlled, haf-

nia is a promising candidate for a high refractive index dielectric coating material.

Future gravitational wave detectors are likely to require the use of hydroxy-catalysis

bonding between silicon components, possibly in the construction of suspensions

or in composite masses. Chapter 6 described a new experimental technique for

measuring the mechanical loss of a hydroxy-catalysis bond between silicon can-

tilevers at temperatures between 10K and 300K. This new technique for the mea-

surement of the mechanical loss of bond material produced an upper limit of

(0.13± 0.03) occurring in the fundamental mode at 80K and an upper limit bond

loss of (0.19 ± 0.07) occurring in the third mode at 15K. The apparent decrease

in the mechanical loss of bond material at low temperatures is a good indication

that hydroxy-catalysis bonding may be a suitable technology for future cryogenic

silicon-based gravitational wave detectors.

The substrates of gravitational wave detectors also contribute thermal noise, and
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in Chapter 7 the development and testing of a nodal support system to enable

cryogenic measurements of cylindrical bulk mirror substrates was described. The

nodal support was effective at producing mechanical loss measurements of high

order clover-type modes, but ineffective for low frequency modes and non-clover-

type modes, as predicted by finite element analysis. The nodal support was found

to cause damage to the contact region of the silicon sample, possibly reducing the

mechanical loss measured from the sample. Low temperature measurements using

the nodal support were partially successful, but improvements are required to the

mounting of the nodal support inside the cryostat to improve the thermal con-

duction paths and damping of external vibrations. The nodal support itself also

requires some alteration to compensate for the difference in thermal contraction

between the support and the sample.

The effort to extend the technology and knowledge of thermal dissipation and me-

chanical loss in optical coatings is important not only to improving the sensitivity

of gravitational wave detectors, but to all fields of optical precision measurement

reaching thermal noise limited performance.
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Appendix A

Towards A Method For

Simultaneous Measurement of the

Elastic Modulus and Coefficient

of Thermal Expansion For A Thin

Film

A.1 Introduction

The evaluation of the suitability of an optical coating for use in a gravitational

wave detector does not rely solely upon the mechanical loss characteristics. Other

properties of the material are required before a full thermal noise spectrum can be

calculated for a particular system. The properties which are of particular inter-

est are Young’s modulus, Poisson’s ratio and the coefficient of thermal expansion
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for each of the materials used in the gravitational wave detector optics. These

values are well known for the bulk materials used as substrates, but are less well

quantified for the thin films used in multilayer coatings. Therefore, a method of

measuring the elastic moduli and coefficient of thermal expansion of thin films of

silica, tantala and other materials of interest is required.

The thermally induced bending technique for measuring the mechanical proper-

ties of thin films on a substrate is suitable for application to the existing set of

cantilever samples, as it is a non-contact, non-destructive technique based on the

simple mechanical principles illustrated by Stoney’s formula, [111][112]

σfilm =
Est

2
s

6(1 − νs)tf

(

1

R0
− 1

R

)

. (A.1)

This form of Stoney’s formula applies to a structure consisting of a substrate and

a thin film, where the thickness of the film is given by tf and the thickness of the

substrate is given by ts. The formula describes the connection between the total

amount of stress in the film, given by σfilm and the measured radius of curvature of

the system, R, relative to an initial radius of curvature, R0, which may be infinite

if the substrate was negligibly curved before the film was applied. This formula

also involves the biaxial modulus for a material, which for the case of the substrate

is written as,

Bs =
Es

(1 − νs)
(A.2)

Where E represents the Young’s Modulus for the substrate material and ν repre-

sents the Poisson’s ratio. The use of the biaxial modulus in these formulae signifies
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that the bending of the film/substrate system is occurring such that the stress in

the film is isotropic. The properties used in the calculation of the biaxial modulus

must be either entirely totally isotropic or isotropic in the plane relevant to the

bending of the structure.

Using the same principles as those occurring in a bimetallic strip, by varying the

temperature of the measured system it is possible to deduce the magnitude of the

film stress which is due to the mismatch of thermomechanical properties between

the material of the substrate and the thin film. The total internal stress in the film

is the sum of the intrinsic stress due to the phase transition which occurred upon

application of the film, σi and the stress resulting from the mismatch of thermal

expansion coefficients, σthermal, can be written as,

σ = σi + σthermal = σi + ((αs − αf)
Ef

(1 − νf
)(T − T0) (A.3)

Where T0 is the temperature at which the film was deposited, T is the temperature

at which the stress is measured, and other symbols are as defined above with the

subscript ’f ’ denoting the property of the film. By differentiating equation A.3 it

can be shown that,

dσ

dT
= (αs − αf )

Ef

(1 − νf )
(A.4)

Therefore, the gradient of a line of best fit plotted through the stresses measured in

the system for a range of temperatures can be used to calculate the biaxial modulus

of the film, assuming the coefficients of thermal expansion of both the substrate

and film are well known. Alternatively the coefficient of thermal expansion may
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be calculated assuming the biaxial modulus is well known. If the same coating is

applied to substrates of two different materials for which the biaxial modulus and

coefficient of thermal expansion are known, then a pair of simultaneous equations

can be formed to allow the coefficient of thermal expansion and biaxial modulus

of the film to be determined [113]. If the properties of the two substrate materials

are distinguished by the subscripts 1 and 2, the equation for the biaxial modulus

of the film is,

Bf =
Ef

(1 − νf )
=

1

α1 − α2

(

dσ1

dT
− dσ2

dT

)

, (A.5)

and the thermal expansion coefficient of the film can be calculated with,

αf = α1 − (α1 − α2)
dσ1

dT

(

dσ1

dT
− dσ2

dT

)−1

. (A.6)

In order to separate the values of Ef , the elastic modulus and νf , the Poisson’s

ratio, from the biaxial modulus given by the experimental result, a third different

substrate material may be used and further simultaneous equations constructed

[114].

A.2 Experimental Design and Preliminary Test-

ing

In order to determine dσf/dT , from which the properties of the film can be extracted,

the thermal mismatch stress in the film is calculated from the radius of curvature of

the film/substrate structure. The radius of curvature of the film/substrate struc-

ture is measured as the temperature of the apparatus is varied, then substituted
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into Equation A.1, along with the appropriate values for the properties of the

substrate, to calculate the stress in the film at each temperature. The calculated

stresses are plotted against their respective temperature measurements, and linear

regression is applied to the dataset to determine the rate of change of film stress

with temperature.

The sample was held in a clamp similar to those used in mechanical loss mea-

surements and heated to thermal equilibrium using resistive heaters. The radius

of curvature was measured by profiling the sample using a Zygo phase shift inter-

ferometer. The radius of curvature was extracted from the profile using the radcrv

function of the MetroPro interferometry analysis package. The extracted radii of

curvature are used to calculated stress values, which were then plotted against the

measurement temperature.

The first iteration of the experimental apparatus consisted of a thermally con-

ductive copper box, upon which was mounted a clamp of the ‘bolt-through’ type

used in mechanical loss experiments, two 24Ω resistive heaters, and three PT100

temperature sensors, two of which were mounted on the clamp and the remaining

one mounted on the surface of the box. This system was bolted to the Zygo grid-

ded mount, resulting in the sample pointing around 40◦ from vertical.

The Zygo phase shift interferometer was used to image the curvature of the can-

tilever. The sample was imaged on the uncoated side, as the tantala layer was

not reflective enough to produce fringes. Initial tests showed that environmental

vibrations and motion of air from the clean room air conditioning was enough to
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cause the interferometric image to be decayed or illegible. The first course of ac-

tion was to make measurements with the air-conditioning turned off. This allowed

the accurate measurement of the radius of curvature of the cantilever at the room

ambient temperature to be made. Over 40 measurements at ambient temperature,

without airconditioning and using the first iteration of the apparatus, the average

radius of curvature was measured to be (−88.13±4.88)m. In order to produce the

Figure A.1: Early iteration of experimental apparatus

stress/temperature gradient, we attempted to measure the radius of curvature as

the sample was first heated and then cooled. It became clear that at a few degrees

above ambient temperature, some effect was causing the cantilever to wave. This

effect was thought to be related to one or more of the following:

• The thermal motion or thermally induced refractive index change of the air

column between the sample and the interferometer
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• Convection currents operating around the sample

• Vibration leaking into the isolation bench

In order to isolate the sample from the motion of external air, a copper lid for

the box was constructed. Using this lid, at a temperature reading of 25◦C, the

average radius of curvature over 7 legible measurements was (−88.70 ± 0.24)m -

indicating good stability. Once the heating process had begun, the measurement

stability was lost and the average radius of curvature was (−90.16 ± 1.30)m

AC off Lid Hood Temperature Radius of Curvature

x 25C (−88.13 ± 4.88)m.

x x 25C (−88.70 ± 0.24)m.

x x 29C (−90.15 ± 1.30)m.

x x 25C (−98.33 ± 7.68)m.

x x x 25C (−85.68 ± 0.32)m.

The level of image stability obtained by containing the heated sample within an

insulated copper box, under a perspex hood with the lab air conditioning turned off

was found to be suitable for making measurements that could detect the expected

amount of thermally induced bending in the sample.

The image obtained from the Zygo shows the curvature of the uncoated side of the

cantilever. By convention, the z-axis is parallel to the direction of the impinging

light, with z = 0 at the wavefront.

From observation of the image, which was taken at room temperature under the

best measurement conditions described above, the film is under tensile stress. The
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Figure A.2: Cutaway diagram showing experimental apparatus

Figure A.3: Final version of experimental apparatus

concave appearance of the cantilever means that all automatic readings of the

radius of curvature will be negative by convention.
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Figure A.4: Final version of experimental apparatus

A.3 Use of Appropriate Values for Known Pa-

rameters

The choice of appropriate values for the elastic modulus and coefficient of thermal

expansion of the substrate are vital to the production of an accurate result of

acceptable precision.

Silicon
Quantity Value Source

E 163GPa ± 4GPa [94]
ν 0.2 ± 0.03 Touloukian [89]
α (2.54 ± 0.1) × 10−6◦C−1 Touloukian [89]
t 92 ± 5µm Cantilever specifications

Table A.1: The values for the properties of silicon used in the analysis of the data
from this experiment, with the source of the measurement.

Substituting the appropriate values in to equation A.4, and assuming the proper-
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Figure A.5: Plots from MetroPro phase shift interferometry software

Tantalum Pentoxide
Quantity Value Source

E 120 ± 20GPa Martin and Bendavid, 1993 [115]
ν 0.23 ± 0.03 Touloukian [89]
α (3.6 ± 0.5) × 10−6◦K−1 Tien and Lee [116]
α (5 ± 1) × 10−6◦K−1 Braginsky and Samoilenko [117]
t 418 ± 2nm Ellipsometric measurement

Table A.2: The values for the properties of tantala used in the analysis of the data
from this experiment, with the source of the measurements. The literature values
of biaxial modulus and α are compared with the results of the measurements.

ties of the tantalum pentoxide samples measured in the literature are similar to

those of the amorphous ion-beam sputtered material measured in this case, the

value of dσ/dT should be −(1.65 ± 0.42) × 105PaT−1.

254



Figure A.6: Profile of curved cantilever, showing wavefront position

Figure A.7: Schematic of bending cantilever, showing film under tensile stress.
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A.4 Measurements of a Tantala Coating

The technique described above was used to characterise a cantilever measuring

35mm×10mm×92µm, coated with (418 ± 2)nm of amorphous tantalum pentox-

ide [118]. The radius of curvature was measured during a cooling cycle (Set A) and

a heating cycle (Set B) on consecutive days using the same calibration of the lat-

eral distance on the Zygo image. Figure A.8 shows the measured radii of curvature.
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Figure A.8: The radii of curvature measurements against the clamp temperature
for a cooling cycle and a heating cycle.

The gradients are obtained using a weighted least squares fit algorithm which

uses the errors in the measured radius of curvature to place an importance value

upon each point. As the errors in the measured radius of curvature remain roughly

constant throughout, the results of the weighted least squares technique yield a so-
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Figure A.9: The film stresses calculated from the radius of curvature measurements
against the clamp temperature for the cooling data from a heating cycle, showing
the gradient and intercept calculated by least squares regression.
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Figure A.10: Film stresses calculated from the radius of curvature measurements
and the clamp temperature for the heating data from a cooling cycle, showing the
gradient and intercept calculated by least squares regression.
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Figure A.11: Film stresses calculated from the radius of curvature measurements
and the clamp temperature for the combined data from the heating and cooling
cycles, showing the gradient and intercept calculated by least squares regression.

lution which only differs from the solution obtained by using a simple least squares

fit which takes no account of the error in X or Y by 2%. The line parameters found

from the least squares fits are in Table A.3.

Dataset Gradient Intercept R2

Cooling −4.68 × 105 1.02 × 105 5.41 × 106

Heating −4.55 × 105 1.01 × 105 2.78 × 106

Combined −4.60 × 105 1.02 × 105 6.12 × 106

Table A.3: The parameters of the lines fitted to the stress/temperature plots in
Figures A.9 to A.11.
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The gradient values quoted in Table A.3 correspond to a set of values for the

expression (αs − αf)
Ef

(1−νf )
. The allowed values are shown as a contour across the

α-B parameter space in Figure A.12, alongside the rectangles representing the

literature values for αtantala and Btantala.
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Figure A.12: The curve representing values allowed by the rate of change of film
stress with temperature shown in Figures A.9 to A.11 and the literature values of
biaxial modulus [115] and the two literature values of thermal expansion [117][116]
for amorphous tantala.

The intersection of the curve of allowed values and the values found in the lit-

erature for αtantala and Btantala suggest that the measured tantala film may have

properties similar to those of the bulk. Further work is needed to improve this

experimental setup so that a two-substrate experiment can be performed to sepa-

rate the product of the thermal expansion coefficient and the biaxial modulus of
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the film and ascertain the level of confidence in these results.

The main areas for ongoing improvement are in the measurement of the radius

of curvature. The usefulness of the Zygo interferometer in this technique is lim-

ited; while the Zygo interferometer was able to correctly identify the profile of

the tantala/silicon sample, the interferometer failed to resolve a profile when the

method was trialled with other samples with a higher degree of curvature. ‘Bulls-

eye’ fringes appeared over small areas of the highly curved samples, indicating that

the surface was too curved to resolve correctly. Other thermally induced bending

experiments use optical lever techniques to monitor the change in curvature of the

sample. The experiment could be altered to use an optical lever readout to mon-

itor the deflection of the end of the cantilever, and Equation A.1 could be recast

in terms of the deflection of a cantilever of a known length.

These initial measurements proved partially successful, but did not lead to a re-

liable procedure for simultaneously measuring the biaxial modulus and thermal

expansion coefficient for an optical thin film material.
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