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Abstract  
 
Background: The Liver X receptors, LXRα and LXRβ, belong to the superfamily of 

nuclear receptor ligand activated transcription factors. LXRs have been well 

characterised in the context of metabolism through their ability to induce 

reverse cholesterol transport leading to the excretion of cholesterol from the 

body. More recently, LXRs have been shown to play a role in inflammation in 

which they are often ascribed an anti-inflammatory effect. Rheumatoid arthritis 

(RA) is a chronic auto-immune condition manifest as inflammation of the 

diarthrodial joints predominantly in the hands and feet. It is now well recognised 

that RA is not just a local but rather a systemic disease that is associated with 

several co-morbidities including atherosclerosis. A major focus in the field of 

rheumatology is now to understand how cardiovascular disease might contribute 

to the pathogenesis of RA and vice versa and thereby connect metabolism with 

inflammation. Hypothesis: Since LXRs are central to the maintenance of a 

cholesterol homeostasis and have been shown to regulate inflammation we 

hypothesised that LXR agonists would be beneficial for the treatment of RA. 

Methods & Results: Treatment of male DBA1 mice with GW3965 or T1317 in the 

murine model of collagen-induced arthritis dramatically increased the onset and 

severity of disease. Exacerbation of disease severity was characterised by 

increased concentrations of multiple serum pro-inflammatory cytokines and 

chemokines, increased numbers of lymph node derived Th1 and Th17 cells and 

elevated titres of anti-collagen auto-antibodies. The effect of LXR agonist 

administration was mediated specifically by LXRs as the severity of disease was 

not altered in LXR null mice treated with GW3965. Furthermore, activation of 

LXRs in primary human monocytes potentiated the secretion of multiple 

proinflammatory cytokines in response to stimulation with LPS. Similarly, the 

concentration of multiple pro-inflammatory cytokines was also increased in an in 

vitro model of synovitis. Conclusion: These studies demonstrate a novel pro-

inflammatory role of LXR activation in the context of arthritis. Furthermore, 

these results suggest that the development of LXR agonists as a therapy for 

metabolic disorders should be done so with caution.  
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6.1 Nuclear receptors 

6.1.1 Classification of nuclear receptors 

Nuclear receptors (NRs) are a super-family of ligand activated transcription 

factors that represents the largest family of transcription factors in metazoans 

(1). To date 49 NRs have been identified in mice but only 48 have emerged in 

humans which lack the Farnesoid X receptor β (FXRβ), the function and 

consequences of which remain unknown (2, 3). NRs were originally grouped into 

three broad categories dependent upon their ligands:  

• Class I - the steroid family  

• Class II - the non-steroid family  

• Orphan receptors for which ligands are not known  

Profiling the expression of NRs in various murine tissues coincidentally revealed 

that Class I NRs were expressed in tissues associated with reproduction and 

central nervous system (CNS) function whereas Class II NRs were expressed in 

tissues with functions associated with nutrient metabolism and immunity (4). 

This study also led to the reclassification of the orphan NRs based upon the 

function of the tissues in which they are expressed. These groups were 

subsequently further subdivided into Class I A, B and C and Class II A, B and C on 

the basis of tissue specific expression (Figure  6.1). Grouping of NRs on the basis 

of tissue specific expression has revealed potential functional characteristics for 

each NR. Furthermore, grouping of NRs on this basis dictates that LXRα is 

associated with lipid metabolism whilst LXRβ is suggested to predominantly play 

a role in regulation of the CNS and basal metabolism. Moreover this study has 

also revealed potential hierarchical networks of NR interactions. The implication 

of these findings has been supported by other studies. Thus, LXRβ is grouped 

with Rev-erbα and activation of LXRs induces the expression of Rev-erbα which 

in turn negatively regulates the expression of LXR activation and subsequent 

target gene expression forming a self regulating feedback loop (5). Similarly, 

LXRα is found to be co-expressed with the Glucocorticoid Receptor (GR) and the 

Peroxisome Proliferator Activated Receptor γ (PPARγ). Activation of LXRs has 
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been shown to both inhibit the synthesis and activation GR ligands but also 

induce the expression of PPARγ (6-8). So far no interaction of NRs across 

different groups has yet been reported. These studies demonstrate how the 

interaction of NRs is defined by spatial separation. However, it is important to 

take into account another dimension; namely time. Similar studies have also 

analysed the temporal regulation of NRs and have shown that in adipose tissue 

and liver 25 NRs are expressed in a rhythmical cycle e.g. Rev-erbα/β, 

PPARα/δ/γ and Estrogen related receptor (ERRα/β/γ) (9). The temporal 

regulation of NRs in other tissues has not been studied; however, these data 

suggest that the activities and interactions of NRs may be regulated temporally 

as well as spatially within the cell. Together these studies support the 

hypothesis that NRs form hierarchical networks that may serve to regulate the 

expression, activation and the magnitude of adjacent / parallel NR induced 

responses. This provides a tightly regulated network of interactions and 

transcriptional consequences that are now implicated in many aspects of normal 

physiology and increasingly in pathology. 
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Figure  6.1 Nuclear receptor classification 
Classification, grouping and function of nuclear re ceptors based upon their common 
anatomical gene expression in murine tissues. This diagram does not represent nuclear 
receptor phylogeny. Adapted from (4). 

6.1.2 Common Nuclear receptor structure 

NRs regulate transcription of a variety of genes when activated by the binding of 

specific lipophilic ligands; these include entities such as vitamins, steroids and 

lipid molecules. Activation of NRs by ligand binding causes NR localisation to the 

nucleus where they bind to specific DNA sequences and subsequently recruit 

transcriptional co-activators thereby inducing transcription of selected target 

genes. Given this common function all NRs share some common tertiary 

structural domains which are translated as part a single polypeptide chain (10) 

(Figure  6.2). Firstly, each NR has a DNA binding domain (DBD) which binds to 

direct repeats (DR) of a specific hexameric nucleotide sequence separated by 

between 1-7 non-specific nucleotides. The ligand binding domain (LBD) has 

multiple functions as well as binding specific ligands. The LBD also contains a 
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ligand-regulated activation function (AF-2) which is responsible for the binding 

of co-activators, chromatin remodelling proteins such as histone 

acetyltransferases (HATs), required to “open up” chromatin for the initiation of 

transcription. Secondly, the ligand binding domain (LBD) has been implicated in 

the dimerisation of NRs which is required for stringent binding to response 

elements within the promoters of target genes (11). Most NRs also have a ligand 

regulated transcription activation function domain (AF-1) towards the N 

terminus of the DBD. This has been shown to exhibit broad diversity across NRs 

and as such has been proposed to be responsible for distinct effects of similar 

NRs through the binding of different transcriptional co-activators. Additionally, 

the AF-1 domain can synergise with AF-2 to mediate the magnitude of a 

transcriptional response by some NRs (12). 

 

Figure  6.2 Common nuclear receptor structure 
All nuclear receptors share some common structural components; a DNA binding domain 
(DBD), a ligand binding domain (LBD), which contain s a ligand regulated transcription 
activation function domain (AF-2) and most nuclear receptors and a transcription activation 
function domain (AF-1) which can synergise with AF- 2 to bind transcriptional co-activators 
(Adapted from (10)).  

6.2  Liver X receptors: Structure & Function 

6.2.1 Identification of Liver X Receptors 

The Liver X Receptors (LXRs) were first identified as members of the nuclear 

receptor superfamily of transcription factors in 1994 (13). Since their initial 

discovery two members have been identified, LXRα and LXRβ: although they are 

often referred to as “isoforms” LXRα and LXRβ are encoded by distinct genes on 

separate chromosomes (14). At the time of their discovery the endogenous 

ligands for LXRα and LXRβ were unknown and were therefore described first as 

orphan receptors.  

N C DBD 
LBD  
AF-2 AF-1 
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6.2.1.1 LXRα 

LXRα was identified in 1995, one year after LXRβ, and because of its high level 

of expression and subsequent purification from the liver the name “Liver X 

Receptor” was coined with the “X” referring to the lack of an identified ligand 

(14). As well as having a high level of expression in the liver, northern blot 

analysis also revealed a high level of expression in kidney, spleen, intestine and 

the adrenals, subsequently the expression of LXRα has also been demonstrated 

in adipocytes, macrophages, T cells, B cells, neutrophils and dendritic cells in 

both mice and humans (15-19). The anatomical expression profile dictates that 

LXRα is a Class II C NR, grouped with PPARγ and GR, in tissues which 

predominantly regulate lipid and energy homeostasis (4) (Figure  6.1). LXRα is 

encoded by the gene NR1h3 which is located on chromosome 11 in humans and 

chromosome 2 in mice. The murine LXRα gene spans approximately 11 Kb of DNA 

and consists of 10 exons which encode a transcript of approximately 1137 bp in 

length (20).  

6.2.1.2 LXRβ 

LXRβ was firstly described as “Ubiquitous Receptor” (UR) due to its ubiquitous 

expression in a widespread number of analysed rat tissues detected by Northern 

blot analysis; other synonyms included OR-1, Rip-15 and NER (13, 21-23). Using a 

probe homologous to the DBD of other known rat NRs a 1.9 Kb cDNA sequence 

was identified which did not code for any previously recognised NRs but was 

subsequently later identified as human LXRβ. The purified rat cDNA was 

subsequently cloned, sequenced and used to identify a cDNA sequence from 

human prostate cancer cells which had 90% homology. UR was later renamed 

LXRβ based upon the high level of similarity with LXRα, which share 77% amino 

acid sequence similarity within both the LBD and DBD (14) and has been 

positioned in class I C, grouped with RXRβ (Figure  6.1). Murine LXRβ is encoded 

by the gene, Nr1H2, located on chromosome 19q13.3. Nr1H2 consists of 9 exons 

from which a cDNA sequence of 1652 bp has been identified (20). 
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6.2.1.3 The Liver X Receptors are evolutionary cons erved 

Both LXRα and LXRβ have been conserved throughout evolution and as such 

human LXR orthologs have been identified in worms (caenorhabditis elegans), 

flies (drosophila melongaster), fish (fugu ruripes), frogs (xenopus laevis) and 

mice (mus musculus). Murine LXRs are evolutionary closely linked to humans (14, 

24-26). Indeed there is a high degree of amino acid sequence homology of the 

LBD (98% and 94%) and DBD (95% and 90%) for LXRα and LXRβ respectively 

between humans and rodents (13, 14). Furthermore, recent studies have 

demonstrated robust activation of LXRα and LXRβ by both synthetic and 

endogenous ligands in many species throughout evolutionary history (24). These 

studies would suggest that the LXRs have a long evolutionary history and that 

their ability to be activated and bind target sequences has been conserved. In 

addition these data provide support for the use of rodents as a good in vivo 

model system to elucidate the biology of LXRs. 

6.2.2 Liver X receptor ligands 

The activation of LXRs is therefore regulated post-translationally predominantly 

by the binding of endogenous ligands. In screening efforts to identify a potential 

ligand, retinoids were found to activate the expression of a luciferase reporter 

which was ligated in turn to a promoter bound by LXRα (14). However, retinoids 

had previously been shown to specifically activate the Retinoid X Receptors 

(RXRs) and further studies revealed that activation of LXR induced transcription 

was mediated through heterodimerisation with RXR (27). Cholesterol loading of 

macrophages has been shown to induce LXR activation thereby implicating LXRs 

as sensors of cholesterol homeostasis. However, the induction of LXR activation 

by cholesterol has since been shown to be mediated by oxidised cholesterol 

derivatives; oxysterols (28). Oxysterols can be formed by direct ‘attack’ from 

reactive oxygen species or may be absorbed pre-formed in the diet. However, 

the primary pathway of oxysterol formation is by the enzymatic oxidation of 

cholesterol during cholesterol degradation and synthesis by members of the 

cytochrome family of enzymes. Several species of oxysterols were first shown to 

induce LXRα activation in vitro; particularly 22(R) hydroxycholesterol, 24(S) 

hydroxycholesterol, 20(S) hydroxycholesterol and 24(S),25 epoxycholesterol 

(Figure  6.3) (28, 29). Furthermore, it is now known that LXRβ is also activated by 
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similar oxysterol ligands reflecting the high degree of amino acid sequence 

conservation of the LBD between LXRα and LXRβ (14, 30). However, not all 

oxysterols function as LXR agonists as 22(S) hydroxycholesterol has recently been 

shown to have inhibitory effects upon LXR activation and subsequent 

downstream signalling both in vitro and in vivo (31, 32).  

Subsequently, several synthetic LXR agonists have been designed which are 

widely used for the investigation of LXR biology (Figure  6.3). Similar to the 

oxysterol ligands these synthetic agonists are active in many species including 

mice and humans (24). Firstly, Tularik (Amgen) developed T0901317 (T1317) and 

demonstrated that treatment of HEK293 cells with this agent potently induced 

the activation of both LXRα and LXRβ, although the magnitude of LXRα 

activation was greater than that of LXRβ; 35 fold relative to 15 fold respectively 

(33). GlaxoSmithKline later developed a non-steroidal agonist (GW3965) which 

exerted similar levels of potency with respect to the activation of LXRα 

compared to LXRβ and was shown to successfully induce the expression of the 

LXR target gene ABCA1 in vivo (34). More recently several other companies have 

developed LXRα/β dual agonists and demonstrated similar effects upon the 

induction of LXR target genes however their effects remain to be confirmed by 

other investigators (35, 36). Furthermore, elucidation of the individual role of 

either LXRα or LXRβ has until recently been restricted to the use of knockout 

animals as agonists that distinguish between the two did not exist. However, 

there are now reports of agonists that specifically activate LXRα or LXRβ and will 

undoubtedly prove useful in separating the individual roles of LXR activation 

(37). In addition a synthetic LXRα/β dual antagonist has been described although 

its specificity with respect to its effect upon other NRs remains unknown (38).  

In addition to sensing alterations in cholesterol concentrations LXRs have also 

been implicated in the regulation of carbohydrate metabolism. Recently glucose 

has been shown to activate both LXRα and LXRβ in vitro where it was shown to 

induce the expression of a luciferase reporter at levels comparable to synthetic 

LXR agonists (39). Moreover, this was shown to be a direct effect as glucose was 

shown to displace the high affinity LXR ligand T1317 from an LXRE containing 

promoter, recruit transcriptional co-activators and induce transcription of 

multiple LXR target genes.  
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Figure  6.3 Endogenous and synthetic LXR ligands 
The structure of the oxysterols which have been ide ntified as endogenous LXR ligands and 
the most commonly used synthetic LXR agonists GW396 5 and T1317. Glucose has recently 
been identified as a direct activator of LXRs.  

It is therefore evident that there are a multitude of potential LXR ligands all of 

which are intermediates of metabolic processes; in particular they subserve 

either lipid or carbohydrate metabolism. How these different endogenous 

ligands interact and impact the activation of LXRs and down stream target genes 

in physiology is of great interest but remains poorly understood reflecting the 

lack of specificity noted above. However, many studies utilising the synthetic 

LXR agonists have identified a large number LXR target genes and have therefore 

expanded our understanding of LXR biology.  

6.2.3 Regulation of LXR expression 

LXRα and LXRβ are both constitutively expressed across a broad distribution of 

tissues. However, it is possible to modulate the level of LXRα or LXRβ expression 

through tissue specific exogenous and endogenous signalling pathways which 

alters synthesis of LXR transcripts. Changes in LXR expression may ultimately 
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lead to altered LXR induced responses. However, only a few studies have 

focussed upon the factors that regulate the expression of LXRs. As such this is an 

area of considerable interest in terms of understanding their inducible biology.  

After the identification of the genes that encode the LXRs, promoter analysis 

revealed several potential transcription factor binding sites for SP1 (20). SP1 was 

known to bind and regulate the expression of multiple house keeping genes and 

it was proposed that SP1 may be responsible for regulating the basal expression 

of LXRα and LXRβ. However, binding of SP1 to an LXR promoter and regulation of 

LXR expression by SP1 has never been demonstrated, it therefore remains 

unknown how the basal level of the LXRs’ expression is maintained.  

At the same time potential NF-κB and AP-1 binding sites were also identified in 

the promoter of LXRβ which have since been confirmed by other studies. Since 

these signal transducers are implicated primarily in leukocyte activation, this is 

compatible with an additional role of LXRs in immunity. Treatment of human 

hepatic and kidney cell lines with TNFα in vitro inhibits the expression of both 

LXRα and LXRβ (40-42). However, contradictory results have been obtained in 

two further studies where the expression of LXRs has been shown to be 

increased in rabbit adipocytes treated with TNFα (43, 44). TNFα also clearly 

activated NF-κB in these latter studies which suggest that TNFα signalling, 

mediated by interactions of NF-κB with the LXR promoter, may lead to different 

outcomes upon LXR expression in distinct cell types. Microarray analysis has also 

demonstrated that the expression of LXRα was increased upon the 

differentiation of human monocytes with granulocyte/ macrophage-colony 

stimulating factor (GM-CSF) to macrophages (45).  

Activation of LXRs in human macrophages by cholesterol loading and treatment 

with synthetic or endogenous ligands has been shown to up-regulate the 

expression of LXRα (46-48). This capacity was lost upon mutation of LXR binding 

sites within the LXRα promoter suggesting that the expression of LXRα is 

positively auto-regulated. However, this auto-regulatory loop is (i) specific to 

the induction of LXRα expression and not LXRβ, and (ii) is likely to be cell type 

specific since it was not observed in human adipocyte and hepatic cell lines. 

Furthermore, the induction of the LXR target gene ABCA1 expression was greater 

in human macrophages compared to adipocytes or hepatocytes suggesting that 
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this auto-regulatory loop serves to further enhance the induction of LXRα target 

genes specifically in macrophages. In contrast to macrophages, adipocytes and 

hepatocytes apparently lack LXR associated signalling pathways responsible for 

the increased expression of LXRs in human macrophages. Moreover, all studies 

concur in showing that the ability of LXRα to auto-regulate its expression is 

specific to macrophages of a human origin as induction of LXRα expression in 

mouse macrophages was not observed upon treatment with LXR agonists. Further 

analysis revealed that the murine LXRα promoter was found to lack the 5’ region 

containing the LXRE explaining the lack of LXRα auto-regulation in mouse 

macrophages. This is indicative of a species difference in the mechanism 

regulating the expression of LXRα. These studies have important implications for 

LXR biology and add another level of complexity to the regulation of LXR 

transcription. However, caution should be applied when comparing the 

regulation of LXRs and consequent transcription of designated target genes 

between mice and humans. This is also relevant in considering interpretation of 

murine in vivo model studies and human analyses as will become important later 

in my studies. 

Previous investigations studying the regulation of LXR expression have shown 

that PPARγ ligands were able to upregulate the expression of LXRα in human and 

mouse macrophages and consequently LXRα target genes (47, 49). Furthermore, 

sequence analysis identified PPAR response elements (PPRE) within both the 

human and mouse LXRα promoters’. Additionally, treatment with LXR and PPARγ 

ligands drive the expression of LXRα and the effect is synergistic when the 

ligands are added in combination (47). This demonstrates once again how 

multiple signalling pathways may interact to regulate the transcription of LXRs. 

6.2.4 LXR splice variants 

Ongoing attempts to decipher the mechanisms by which LXR expression is 

regulated have identified two additional novel transcripts encoded by the human 

LXRα gene, NR1H3 (50). Similarly, alternative transcript start sites have also 

been identified in the NR1H3 gene in mice (20). LXRα sequence analyses have 

identified these transcripts as alternative splice variants of LXRα and have been 

named LXRα2 and LXRα3; where LXRα1 (referred to throughout as LXRα) is the 
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originally described full length transcript. LXRα3 is transcribed from the same 

promoter as LXRα1, however exclusion of exon 6 caused an in frame deletion of 

50 amino acids from the LBD. The transcription of LXRα2 is regulated by an 

alternative promoter, 5’ of the originally identified promoter sequence, and is 

lacking 45 amino acids in the N terminus AF-1 domain in LXRα1. These structural 

differences are illustrated in Figure  6.4. The sub-cellular localisation of the 

three LXRα isoforms was identical; i.e. predominantly nuclear. However, HEK-

293 cells transfected with LXRα2 or LXRα3 expression vectors and treated with 

the LXR agonist T1317 revealed that the induction of ABCA1 transcripts was 

diminished. These data are suggestive of a decreased capacity of LXRα2 and 

LXRα3 to be activated by known LXR ligands which may be mediated through an 

altered ability to recruit transcriptional co-activators or bind agonist 

respectively. Importantly the transcription of alternative LXRα splice forms may 

provide a regulatory mechanism for the induction of LXR target genes.  

LXRα1 is known to be expressed in a wide variety of tissues; however in 

comparison LXRα2 and LXRα3 are expressed at very low levels except in the 

testes where LXRα2 is highly expressed. Additionally, LXRα2 and LXRα3 were 

expressed at a level comparable to that of LXRα1 in several tumour cell lines 

including Thp-1 cells; notably the expression in primary human monocytes/ 

macrophages was not assessed. Since, the isoforms are expressed at a higher 

level in tumour cell lines this may suggest that LXRα2 and LXRα3 might have 

pathophysiological roles in disease; although this remains to be explored. 

However, the identification of similar LXRα transcripts in the mouse has not 

been reported to date. Additionally, a pseudogene for murine LXRβ (ΨLXRβ) has 

been identified which contains multiple point mutations and deletions in 

comparison to LXRβ cDNA (20). The implications for the (potential) physiological 

role of these LXRα isoforms is not clear however, it is possible that their 

expression may be induced by specific metabolic or inflammatory stimuli. 

Further studies are required to elucidate their endogenous roles.  
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Figure  6.4 Alternative splice forms of LXR α. 
A schematic of the protein polypeptides of the thre e human LXR α splice variants.  LXR α1 is 
encoded by the full length transcript to form the A F-1 domain, DNA binding domain (DBD) 
and the ligand binding domain (LBD). LXR α2 is truncated at the N terminus and is formed by 
use of an alternative promoter and removal of an ex on encoding the AF-1 domain. LXR α3 is 
truncated at the C terminus resulting in partial de letion of the LBD.  

6.2.5 Regulation of Liver X Receptors activation & transcriptional 

activity 

The expression and activation of LXRs is tightly regulated - within the nucleus 

LXRs are in complex with the nuclear receptor Retinoid X Receptor (RXR) 

forming LXRα/RXR or LXRβ/RXR heterodimers (14). In the absence of ligand the 

LXR/ RXR heterodimer complex is present in an inert conformation and is bound 

by transcriptional co-repressors rendering it transcriptionally inactive. Recently 

the corepressors nuclear receptor corepressor (NCoR) and silencing mediator of 

retinoic acid and thryroid receptor (SMRT) have been implicated in the 

regulation of LXR target genes (51). They function by recruiting additional 

transcriptional repressor molecules such as histone deacetylases (HDACs) forming 

large corepressor complexes that promote a ‘closed’ chromatin conformation. 

However, binding of an agonistic ligand to the LXR LBD induces a conformational 

change of the LXR/RXR heterodimer releasing the corepressor complex and 

allowing binding of coactivator complexes and transcription of LXR target genes 

(52). It has been suggested that the extent of LXR activation may be mediated 

by differential cofactor recruitment; indeed partial agonism of LXR has been 

shown to be due to the recruitment of the corepressor NCoR (53).  
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LXRs are predominantly localised within the nucleus regardless whether or not 

they are bound by ligand (54). However, there is a growing body of evidence 

demonstrating that LXRα, but not LXRβ, can translocate between the cytoplasm 

and the nucleus even when bound by agonist. This may impose additional levels 

of regulation upon the transcriptional activity of LXRα (55). Retention of LXRα 

within the nucleus has been shown to be in part regulated by TNFα induced 

phosphorylation within the AF2 region of LXRα (56-58). Additionally, a nuclear 

localisation sequence has been identified on both LXRα and RXR which are 

essential for nuclear import, although RXR mediated translocation of LXR can not 

induce transcription of LXR target genes (59). The activation of LXRs is 

summarised in Figure  6.5.  

 

Figure  6.5 Regulation of LXR transcriptional activation 
Oxygenated forms of cholesterol (oxysterols) or syn thetic LXR agonists bind to the ligand 
binding domain in LXR α or LXRβ which are in partnership with RXR. Ligand binding 
induces the conformational change of the LXR/RXR co mplex inducing the release of 
transcriptional co-repressors and allowing the bind ing of transcriptional co-activators 
thereby switching on target gene transcription. LXR α, but not LXR β, can be translocated 
between the cytoplasm and the nucleus and vice vers a even in the presence of agonist.  
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Upon activation of LXRs within the nucleus they can induce transcription by 

binding to LXR response elements (LXRE) within the promoter region of 

designated target genes. LXREs are formed from two hexameric direct repeats 

(DR) separated by 4 nucleotides as such they are designated DR4 type response 

elements (60). Many genes have now been identified as being directly regulated 

by LXRS by the presence of LXRE within their promoters and in the context of 

reporter based assays. However, although LXRs have been implicated as having 

an immuno-modulatory role most of the LXR target genes that have been 

identified have been ascribed functions regulating lipid metabolism and 

transport e.g. ABCA1, NPC-1 and PLTP. To date the only LXR target genes that 

have been identified with a direct role in inflammation are those encoding 

CCL24, human TLR4 and human MPO (61, 62). A full list of known LXR target 

genes along with a brief description of their assigned functions is shown in Table 

 6.1. 
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Physiological role Target gene Assigned function Ref 

aP2 ↑ Specifically expressed in adipocytes. Activated by binding of fatty acids and regulates 

adipocyte differentiation. 

(63) 

GLUT4 ↑ Widely expressed glucose transporter of which the expression in epididymal white 

adipose tissue is regulated by LXRα.  

(64) 

LGK ↑ Predominantly expressed in the liver, pancreatic β cells and the brain where it 

phosphorylates glucose to glucose-6-phosphate for entry into glycolysis or to be stored 

as glycogen. LGK expression is also regulated by the LXR target gene SREBP-1c thereby 

amplifying the level of expression. 

(65) 

Adiposity and 

glucose metabolism 

PPARγ ↑ Predominantly expressed in adipocytes and is the master regulator of adipocyte 

differentiation. PPARγ activation ameliorates type II diabetes, cardiovascular disease 

and has been shown to exert anti-inflammatory effects.  

(6, 66) 

 PPARα ↑ PPARα is associated with anti-inflammatory effects and regulates uptake of 

triglycerides and glucose in cardio myocytes.  

(67, 68) 
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 UCP-1 ↓ Inhibition mediated by LXRα. UCP-1 regulates thermogenesis in brown adipose tissue   (69) 

ABCA1 ↑ 

ABCG1 ↑ 

Promote efflux of cholesterol from macrophage foam cells onto apoA-I and HDL 

particles and therefore promotes reverse cholesterol transport. Mutations in ABCA1 are 

associated with Tangier disease. 

(49, 70, 

71) 

AIM ↑ Member of the scavenger receptor cysteine-rich superfamily which secreted by and 

protects macrophages from apoptosis. Induction of AIM is regulated by LXRα, but 

deletion of AIM protects against atherosclerosis. (Alias SPα). 

(72) 

Arg II ↑ Catalyses the conversion of L-Arginine to ornithine and urea. Arginine is required for 

nitric oxide synthesis. Arginase II inhibits the production of nitric oxide by 

inflammatory cells.  

(73, 74) 

ApoD ↑ Apolipoprotein which transports cholesterol as part of HDL particles from the periphery 

to the liver for excretion from the body. 

(75) 

Lipid transport and 

metabolism 

 

 

 

 

 

 

 

 

ApoE ↑ Transports cholesterol as part of LDL and VLDL particles from the periphery for 

degradation and excretion as bile through binding to LDL receptors in the liver. ApoE4 

alleles are associated with Alzheimer’s disease.  

(70, 76) 
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ApoA-V ↑ Synthesised in the liver and secreted into the plasma where it is associated with VLDL 

and HDL and regulates the concentration of triglycerides. SNPs in the human 

population correlate with increase triglyceride levels. 

(77, 78) 

CD36 ↑ Scavenger receptor mediated in the cellular uptake of free fatty acids in the liver and 

oxLDL on macrophages. Direct induction of CD36 by LXRs is unique to the liver, 

although CD36 is expressed on a variety of cell types. 

(79) 

CYP7A1 ↑ Regulates the rate limiting step of bile acid synthesis which can in turn repress CYP7A1 

through activation of FXR. 

(80) 

FAS ↑ Synthesis of fatty acids (conversion of melanyl CoA to palmitate) and subsequent 

synthesis and elevation of serum and hepatic triglycerides. 

(33, 81, 

82) 

LDLR ↑ Mediates the endocytic uptake of LDL cholesterol in the liver which has been 

transported by lipoproteins (predominantly HDL) from the periphery. Induction of LDLR 

can be induced by LXRα. 

(83) 

 

NPC-1 ↑ Regulates trafficking of cholesterol from the cholesterol endocytic pathway to the 

plasma membrane and endoplasmic reticulum. Activation of NPC-1 has been 

implicated in the amelioration of atherosclerotic plaques in ApoE-/- mice through 

(84-86) 
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activation of LXRs. Mutation in NPC-1 is causes Niemann-Pick C disease resulting in 

early death.  

 

PLTP ↑ Transfer of phospholipids from VLDL particles to HDL particles during reverse 

cholesterol transport. Also has been implicated in the neutralisation and clearance of 

lipopolysaccharide by transfer from HDL to LDL.  

(87-89) 

 RENIN ↑ A protease expressed in the kidney which converts angiotensinogen to angiotensin I 

which induces the secretion of aldosterone from the adrenal gland to promote salt 

absorption. 

(90) 

 SREBP-1C ↑ Transcription factor that regulates the expression of glycolytic and lipogenic genes e.g. 

FAS, LDL receptor and glucokinase.  

(6, 91, 

92) 

Steroidogenesis 11β-HSD-1 ↓ Is expressed in liver, adipose and macrophages and regulates the activation of inert 

cortisone into biologically active cortisol. Modulation of 11β-HSD1 expression therefore 

impacts upon GC signalling through the GR.   

(7) 

 GR ↓ A nuclear receptor activated by the binding of corticosteroids or synthetic steroids. (93) 
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 StAR ↓ Rate limiting enzyme involved in the synthesis of de novo glucocorticoids in the 

adrenal glands from cholesterol.  

(94) 

Inflammation CCL24 ↑ Chemokine secreted by monocytes and T cells that interact with the chemokine 

receptor CCR3 to induce chemotaxis of eosinophils and basophils. Expression of CCL24 

can be induced phosphorylation of LXRα.  

(56) 

 TLR4 ↑ Binds LPS and activates NF-κB inducing the transcription, translation and secretion of a 

variety of pro-inflammatory cytokines and chemokines. LXR only regulates TLR4 

expression in humans.  

(5, 61) 

 MPO ↓ LXR down-regulates the expression of myeloperoxidase only in human but not mouse 

macrophages and neutrophils.  

(62) 

Table  6.1 LXR target genes 
A description of genes that have been shown to be d irectly transcriptionally regulated by the activati on of LXRs in mice and humans and a brief descripti on 
the assigned function in the context of LXR activat ion. ↑ or ↓ represents increased or decreased expression of ta rget gene respectively. Adipocyte fatty 
acid binding protein 2 (aP2), glucose transporter ( GLUT4), liver glucokinase (LGK), peroxisome prolife rator activated receptor (PPAR), Uncoupling Protein  
1 (UCP-1), ATP binding cassette A1/G1 (ABC A1/G1), apoptosis inhibitor factor expressed by macrophages  (AIM/ SPα), arginase II (Arg II), apolipoprotein D 
(ApoD), apolipoprotein E (ApoE), cholesterol 7 alph a-hydroxylase A1(CYP7A1), fatty acid synthase (FAS) , low density lipoprotein Receptor (LDLR), 
Niemann-Pick C1 (NPC-1), phospholipid transfer prot ein (PLTP), sterol regulatory element binding prote in 1c (SREBP-1c), 11 β hydroxysteroid 
dehydrogenase type 1 (11 β HSD-1), glucocorticoid receptor (GR), steroidogeni c acute regulatory protein (StAR), CCL24 (Eotaxin),  toll like receptor 4 (TLR4) 
and myeloperoxidase (MPO). 
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In addition to the well recognised role as a transcription factor LXRβ has more 

recently been shown to exert regulatory effects upon LXR target gene products 

post translationally (95). In a low cholesterol environment LXRβ was shown to 

associate with ABCA1 at the plasma membrane thereby rendering ABCA1 

inactive. However, upon cholesterol accumulation LXRβ dissociated from ABCA1 

promoting ABCA1 mediated reverse cholesterol transport. This is the first 

example where LXRs have been shown to regulate both the transcription and 

activity of a target gene product and highlights a novel way in which the 

regulatory aspects of LXRs might be considered in complex inflammatory 

systems. 

6.2.6 Liver X Receptors in physiology & disease 

6.2.6.1 Atherosclerosis 

Several studies using synthetic LXR agonists have demonstrated beneficial 

effects of LXR activation upon atherosclerosis in apolipoprotein E knockout 

(ApoE- -/-) and Low Density Lipoprotein Receptor null (LDLR-/-) mice fed a high 

fat diet. Systemic administration of either of two LXR agonists, T1317 and 

GW3965, can inhibit the development of, and promote the regression of 

established atherosclerotic lesions (96, 97). These observations were associated 

with a beneficial lipid profile; reduced total and VLDL cholesterol but increased 

HDL. Amelioration of atherosclerotic plaques by LXR agonists has been shown to 

be mediated primarily through the efflux of cholesterol from macrophage foam 

cells through the increased expression of the cholesterol transporters ABCA1 and 

ABCG1. More recently many more effects of LXR activation have now been 

identified and implicated in the reversal of atherosclerotic plaque development. 

LXRs have been shown to up-regulate the expression of the Niemann- Pick 

protein C-1 (NPC-1) (85). NPC-1 regulates intra-cellular cholesterol trafficking 

and deletion of NPC1 promotes atherosclerotic lesion formation (98). NPC-1 is 

also involved in the generation of oxysterols which may activate LXRs; increased 

expression of NPC-1 may therefore provide a positive feedback loop upon the 

activation of LXRs and subsequently up-regulate the expression LXR target genes 

involved in reverse cholesterol transport e.g. ABCA1 and NPC-1. Activation of 
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LXRs has also been shown to inhibit the uptake of cholesterol loaded LDL by 

macrophages thereby preventing foam cell formation (99). More recent studies 

in primates have demonstrated that administration of an LXR agonist reduced 

the concentration of total and LDL cholesterol in a dose dependent manner 

whilst increasing the expression of ABCA1 (100).  

Such studies in rodents and primates have provided support that administration 

of LXR agonists may be beneficial for the treatment of atherosclerosis. However, 

it is evident that the dual activation of LXRα and LXRβ in rodents, as with T1317 

or GW3965, causes the undesirable effects of hepatic steatosis and 

hypertriglyceridaemia which may lead to liver cirrhosis. These lipogenic effects 

are mediated through the increased induction of fatty acid synthase (FAS), CD36 

and sterol regulatory element binding protein 1c (SREBP-1c) expression. These 

genes have been shown to be predominantly regulated by LXRα. As such the 

activation of LXRβ in LXRα-/-, ApoE-/- double KO mice has been shown to reduce 

the size of atherosclerotic plaques but did not induce hepatic steatosis or 

hypertriglyceridaemia (101, 102). These studies therefore suggest that the 

development of agonists that specifically activate LXRβ may be more beneficial 

for the treatment of atherosclerosis in humans. Given the high level of homology 

in the LBD between LXRα and LXRβ this may prove to be problematic although 

there are now reports emerging demonstrating the development of compounds 

with a degree of LXRβ selectivity (103). The specificity of such compounds 

remains to be confirmed by additional groups and there efficacy is yet to be 

assessed in models of atherosclerosis.  

Atherosclerotic plaques are associated with chronic low grade inflammation and 

as LXRs have been ascribed a recent novel role in inflammation LXR agonists 

have also been suggested to inhibit inflammation associated with CVD. Indeed, 

serum analysis by ELISA and hepatic microarray gene analysis demonstrated a 

decrease in the pro-inflammatory cytokines IL-1 and IL-6 in ApoE-/- mice treated 

with T1317 (104). However, although the investigators reported a predominantly 

anti-inflammatory effect the administration of T1317 was associated with an 

increase in TNFα and MMP9. Additionally, oxysterols, which activate LXRs, have 

been shown to enhance the expression of the adhesion molecules, inter-cellular 

adhesion molecule 1 (ICAM 1) and vascular cell adhesion molecule 1 (VCAM1) 

(105). ICAM1 and VCAM1 are expressed on the surface of endothelial cells and 
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direct leukocyte migration into tissue and blood vessels during atherosclerotic 

lesion development. The effect of LXR activation upon the inflammatory 

component of atherosclerosis is therefore not clear. Furthermore, the 

development of LXRβ agonists for the treatment of atherosclerosis should be 

done so with caution as the effect of LXRβ agonism upon inflammation has not 

been studied and the effects unknown. 

6.2.6.2 Obesity 

Obesity was originally regarded as simply storage of excess fats within white 

adipose tissue (WAT); however, it is now evident that obesity is associated with 

low grade chronic inflammation. Adipocytes in WAT are situated in close 

proximity to macrophages, dendritic cells and lymphocytes (106-110) in which 

both LXRα and LXRβ are highly expressed. Similarly, the nuclear receptor PPARγ 

is highly expressed in adipocytes where it acts as the master regulator of 

adipocyte differentiation and regulates the expression of LXRs during adipocyte 

development (111). The role of LXRs in adipogenesis and adipocyte lipid 

accumulation has been investigated. Lipid accumulation in LXRα/β double 

knockout mice is reduced when fed a high fat diet over a prolonged period of 12 

months in which the size of adipocytes and WAT is reduced (112). Similarly, LXR 

agonism during adipocyte differentiation has been shown to promote a greater 

accumulation of lipids (111). This effect was shown to be LXRβ specific as LXRα-/- 

mice do not exhibit the same phenotypic changes in the reduction of adipocyte 

and WAT size. It has now been determined that LXRs do not affect adipogenesis, 

but do regulate lipid metabolism within adipocytes (112-115). Reduced lipid 

accumulation in adipocytes deficient in LXRβ has been proposed to be regulated 

through the Uncoupling Protein 1 (UCP-1). UCP-1 regulates mitochondrial 

respiration and increased expression of UCP-1, as seen in LXRβ-/- adipocytes, 

leads to the oxidation of lipids without the production of ATP. Similar to 

observations seen in rodent models the expression of LXRα was found to be 

significantly increased in WAT from obese women. A role of LXRs in obesity has 

further been confirmed through human genetic analysis. Recently several single 

nucleotide polymorphisms (SNPs) were found in Nr1h3 and Nr1h2 which were 

shown to associate with increased and decreased Body Mass Index (BMI) (116). 

This is suggestive of a genetic predisposition to either a protective or predictive 



  40 

phenotype for the onset of obesity which might be regulated by an altered 

functional activity of LXRs. 

Obesity is often associated with type II diabetes. As well as reduced adiposity 

LXRβ-/- mice are also glucose intolerant and exhibit impaired glucose induced 

insulin secretion from pancreatic islet cells (112). Furthermore, activation of 

LXRs has been shown to improve glucose tolerance through the increased 

expression of an insulin sensitive glucose transporter (GLUT4) and suppression of 

gluconeogenesis (114). Since macrophages are involved in both inflammation and 

metabolism a role for them in LXR driven glucose tolerance was investigated. 

However, transfer of LXRα/β double knockout bone marrow into wild-type 

recipients was shown to have no effect upon net body weight gain and glucose 

tolerance (113), although the effect specifically upon adipose associated 

inflammation was not assessed.  

6.2.6.3 Autoimmunity and inflammation 

LXRs have a well defined role in tissues which exhibit metabolic functions and as 

regulators of cholesterol homeostasis. More recently LXRs have been implicated 

as having a modulatory effect upon inflammation in which they have generally 

been ascribed an anti-inflammatory function. However, the role of LXRs in 

inflammation is controversial and the mechanism by which they modulate 

inflammatory processes remains largely unknown. 

LXR agonism was first suggested to exert potent anti-inflammatory effects 

exemplified in the suppression of pro-inflammatory cytokine secretion from 

lipopolysaccharide (LPS) stimulated murine macrophages treated by GW3965, 

T1317 or endogenous agonistic LXR ligands (117). Inhibition of the pro-

inflammatory mediator Cox-2 by this route was shown to be NF-kB dependent. 

LXR activation effectively inhibited the expression of a Cox-2 luciferase reporter 

which was lost upon mutation of the NF-kB binding sites with the promoter 

region. These results suggest that the anti-inflammatory effects attributable to 

LXR activation were mediated through inhibition of NF-kB signalling. However, 

similar studies analysing the role of LXR activation in human macrophages 

demonstrated a bi-modal effect of LXR activation. Pre-incubation of primary LPS 

stimulated monocyte derived macrophages with LXR agonists for less than 24 
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hours inhibited the secretion of TNFα and MCP-1. In contrast cytokine and 

chemokine release was exacerbated when pre-incubation of macrophages with 

T1317 was greater than 24 hours (61). Similar results have also been obtained in 

primary human pulmonary derived macrophages (118). Further studies 

demonstrated an LXRE within the human TLR4 promoter and that the increased 

cytokine secretion in response to TLR4/ LXR ligation was mediated by the 

increased induction of TLR4 expression. These observations therefore 

demonstrate a species difference in the response to endotoxin in the context of 

LXR activation between mouse and humans. To date no other studies have 

analysed the effect of LXR activation upon other pattern recognition receptors 

(PRRs) in mice or humans and whether the regulation of human TLR4 by LXRs is 

unique or is a characteristic of other human TLRs is unknown. 

The potential for LXR activation to modulate an immune response has been 

assessed in pulmonary inflammation. Two studies have independently 

demonstrated that induction of pulmonary inflammation with an LPS aerosol was 

significantly attenuated by systemic administration of T1317 or GW3965. This 

was associated by a reduction of iNOS and IL-1β expression and reduced 

neutrophil infiltration into the trachea (19, 118). However, the inhibition of 

cytokine expression and neutrophil recruitment by LXR activation was shown to 

have detrimental consequences upon intra-tracheal infection of mice with the 

gram negative bacterium K. pneumoniae where the number of lung and spleen 

colony forming units was increased leading to an increased level of mortality. 

However, in an endotoxin free antigen driven model of asthma administration of 

GW3965 significantly increased airway smooth muscle proliferation, reactivity 

and eosinophilia (119). Together these studies suggest that the inflammatory 

context in which LXRs are activated will dictate whether a beneficial or 

detrimental outcome is achieved. Furthermore, LXR activation should therefore 

be described as having an immune modulatory potential as opposed to the 

current anti-inflammatory role which LXRs are generally ascribed.  

LXR agonism has also been shown to inhibit cytokine release and proliferation of 

antigen stimulated murine CD4+ T cells in vitro demonstrating a potential role 

for LXRs in the adaptive immune response (17, 120, 121). Accordingly, the effect 

of LXR activation has been investigated in rodent models of human autoimmune 

disease. Treatment of mice with T1317 ameliorated the severity of an in vivo 
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model of human multiple sclerosis (experimental autoimmune encephalomyelitis 

- EAE) (121, 122). However, ex vivo analysis demonstrated that this was not 

associated with a decrease in antigen driven T cell proliferation contradictory to 

preliminary in vitro observations (121). Furthermore, gene expression analysis of 

human peripheral blood mononuclear cells (PBMCs) from patients with MS 

showed altered levels of LXR expression supporting a role for LXRs in human 

disease pathology. Interestingly, the changes in LXR expression were shown to 

differ between different ethnic and geographical groups (123, 124). It is 

therefore clear that the expression of LXRs and potentially their activity is 

influenced through genetic and/ or environmental differences although the 

specific factors and their magnitude of effect are currently unknown. 

More recently the effects of LXR activation have also been assessed in the 

murine collagen-induced arthritis (CIA) model. Administration of T1317 at high 

dose after antigen challenge was shown to significantly inhibit disease 

progression and was therefore suggestive of a beneficial effect of LXR agonists 

for the treatment of rheumatoid arthritis (RA) (125). However, my work 

presented within this thesis shows a clear contradictory outcome; I have 

demonstrated that administration of either T1317 or GW3965 dramatically 

increase the severity and onset of disease progression in multiple CIA models. 

The results of my studies and an in depth comparison of these studies will be 

presented and discussed in the respective chapters contained herein. 

6.2.7 Liver X Receptor agonists as therapeutics for disease 

It is evident from studies in rodents that synthetic LXR agonists may exert 

potential beneficial effects upon metabolic related pathologies. Several 

pharmaceutical companies are competing to develop LXRβ agonists that will 

mediate these potentially beneficial effects without inducing LXRα activation 

which is implicated in fatty acid and triglyceride synthesis in turn promoting the 

development of hepatic steatosis. Recently, a novel LXRα/ LXRβ dual agonist, 

WAY-252623, was tested in a human recipient and was shown to up-regulate 

ABCA1 expression in PBMCs. These results suggest that the ability of LXR 

activation to induce reverse cholesterol transport in mice, the primary 

mechanism of atherosclerotic lesion size reduction by LXRs, is conserved 
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between rodents and humans in vivo (36). Furthermore, this study provided the 

first evidence that LXRs agonists may indeed be an appropriate therapeutic 

approach for the treatment of human metabolic disorders. The safety of WAY-

252623 has since been tested in a phase I dose ascending study in a total of forty 

volunteers (126). The agonist was shown to be readily absorbed and to induce 

the expression of ABCA1 and ABCG1 in PBMCs; suggestive of sufficient exposure 

of LXRs to agonist at all concentrations by oral administration. However, whilst 

no deaths or serious adverse effects were reported, 55% of the participants 

experienced mild adverse effects of a psychiatric or neurological nature during 

and post termination of their assigned treatment regime. Some of the symptoms 

included forgetfulness, drowsiness and confusion. From this single study it is not 

clear if these adverse effects were a result of agonist toxicity, lack of specificity 

or alteration of LXR function and downstream pathways within the brain. It is 

however clear that further studies are required to elucidate the mechanism of 

these effects if LXR agonists are to go forward to the clinic. 

The role of LXRs in inflammation remains unclear and at this stage it is not clear 

whether development of LXR agonists would be useful in human inflammatory 

diseases. This is particularly relevant since unexpected events could occur 

through the modulation of inflammatory pathways associated with metabolic 

disease.  
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6.3 Rheumatoid arthritis 

6.3.1 Diagnosis 

Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease that 

affects 1% of the population of which approximately 70% of patients are female. 

RA presents as polyarthritis that predominantly affects the hands, feet and 

wrists but can affect any diarthrodial synovial joint. Diagnosis of RA requires the 

presence of four or more of the 1987 American College of Rheumatology (ACR) 

criteria for the classification of RA (Table  6.2) (127). These symptoms must 

persist for at least six weeks to exclude confounding conditions, such as viral 

infection, for a clinician to be confident of the correct diagnosis. Unfortunately 

this also presents a period of time in which symptoms may progress untreated. 

Novel criteria for the classification and diagnosis of RA that recognise these 

deficiencies are in the process of being prepared and will be available in early 

2010 under the direction of EULAR and the ACR. RA is extremely debilitating - 

approximately 80% of patients have reduced functional capacity to varying 

degrees and RA is therefore associated with a high social burden and economic 

cost due to unemployment (128). Therefore, identifying the underlying cause of 

RA and developing remission inducing treatment strategies is essential.   
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Criteria Definition 

Early morning stiffness Stiffness of the joints lasting at least one hour 

Arthritis of > 3 joints Three joint areas that exhibit joint swelling 

Hand joint arthritis Arthritis of at least one area of the hand/ wrist 

Symmetrical arthritis Arthritis of the same joint areas on either side 

of the body 

Rheumatoid nodules Subcutaneous non tender nodules generally 

found at pressure points near joints 

Rheumatoid factor (RF) Presence of an autoantibody against self IgG 

Bone erosions Radiographic changes typical of rheumatoid 

arthritis on hand and wrist including erosions or 

bone decalcification 

Table  6.2 American College of Rheumatology (ACR) criteria  for classification of rheumatoid 
arthritis. 
Diagnosis of rheumatoid arthritis requires the pres ence of at least four of the ACR criteria to 
be diagnosed by a clinician (127). 

6.3.2 Etiology of rheumatoid arthritis 

Although how RA is initiated remains unknown there are a number of factors, 

both genetic and environmental, which are known to contribute to the 

susceptibility of developing RA. These risk factors may confer an increased risk 

of developing RA whilst others may offer protection. Similarly, others factors 

may exert modulatory effects upon the disease once onset. Whether protective 

or causative identifying these risk factors and understanding how they impact 

upon pathogenesis is vital to identifying the cause of RA. 
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6.3.2.1 Genetic associations 

Twin studies suggest that the genetical heritability of RA is approximately 50% in 

the UK (129). The most striking genetic association is with the various HLA-DRB1 

and HLA-DR4 alleles within the MHC class II region on human chromosome 6 

(130). Several HLA-DRB1 genotypes have been shown to confer a higher risk of 

early disease onset whilst others were associated with delayed onset and were 

therefore suggested to be protective (131). Association of MHC class II 

haplotypes with RA has given rise to the shared epitope hypothesis (132). The 

shared epitope hypothesis suggests that mutations in the β chain of the MHC 

class II molecules may alter T cell receptor (TCR) selection in the thymus, the 

recognition of self or modified self peptide by antigen presenting cells or the 

way in which antigen/ MHC class II interacts with the TCR to drive an immune 

response. However, it is evident that not all individuals with these 

polymorphisms develop RA and therefore there must be other contributing 

factors. Genome wide association studies have been utilised to identify further 

genetic risk factors of RA in which genomic markers adjacent to candidate genes 

such as STAT4, TNFα receptor and PTPN22 were identified as being disease 

associated (130). These observations imply that there are multiple pathways 

that may contribute to potentiate the development of RA. Theoretically, by 

understanding the genetics of RA, treatment regimes may be tailored towards 

individuals with a particular genetic predisposition. For example it is proposed in 

one study that mutations within the gene encoding TNFα may predict a poor 

response to antibody mediated anti-TNFα therapies (Infliximab) but not soluble 

TNFα receptor mediated therapy (Etanercept) (133). Many other studies are 

ongoing to clarify such an approach particularly in predicting response to 

biologic therapeutics. However, as susceptibility to RA is also largely influenced 

by environmental variation it is unlikely at present that genetic screening alone 

will be useful for the pre-clinical diagnosis of RA. 

6.3.2.2 Environmental impact 

As the genetic heritability of RA has been estimated to be approximately 30-50% 

it is evident that environmental risk factors confer a large influence upon the 

susceptibility to RA. In particular cigarette smoking, which is of a higher 

incidence in RA populations, has been one of the most widely studied 
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environment risk factors (134). Epidemiological studies have demonstrated that 

smoking is associated with a thirteen fold increase in the incidence of RA and an 

increased severity of disease (134-136). Furthermore, smoking induces long term 

susceptibility as individuals who have stopped smoking for more than ten years 

remain twice as likely to develop RA than the general population (137). 

Cigarette smoking promotes the process of citrullination; the post-translational 

modification of the amino acid arginine by de-imination to citrulline is catalysed 

by the enzyme peptidylarginine deaminase 4 (PAD 4). Citrullinated proteins 

including type II collagen, α-enolase, fibronectin, vimentin and fibrin have been 

identified in RA synovium and have been shown to be targets of an autoantibody 

response (138-140). Indeed, anti-citrullinated protein antibodies (ACPAs) have 

been identified in up to 90% of patients with RA and although they are not 

absolutely specific to RA they do correlate with disease severity (141-143). 

Citrullinated proteins are more immunogenic and have been suggested to 

contribute via the shared epitope hypothesis by modifying self peptide which 

may drive an immune-response (143). In support of this there is a strong 

association of smoking with “pathogenic” HLA-DRB1 alleles and the production of 

ACPAs in RA, thereby providing an example of how genetic and environmental 

factors may interact to drive pathology in RA (144).  

6.3.3 RA synovium 

The primary site of inflammation in RA is the synovial membrane (synovium). In 

a non-inflamed joint a protective smooth layer of cartilage acts as a “shock 

absorber” and provides a low friction surface to allow the bones to slide over 

each other. This is lubricated by synovial fluid which in addition is also a source 

of nutrients to chondrocytes as cartilage lacks blood vessels. A fibrous and 

ligamentous capsule around the joint is lined by the synovial membrane that is 

normally one to three cell layers thick comprising a thin lining layer of 

predominantly synovial fibroblasts and some macrophages with underlying 

adipose cells and a few blood vessels. RA is characterised by articular 

destruction and inflammation mediated by inflammatory infiltration of the 

synovial membrane (synovitis). This in turn drives joint pain and stiffness 

representing typical symptoms. Radiographic examination reveals decreased 

joint space and loss of cortical bone integrity i.e. cartilage and bone erosion, 
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limiting articulation and promoting further bone erosion potentially via 

biomechanical pathways. Articular destruction is accompanied with synovial 

membrane hyperplasia, pannus formation (intrusion by proliferation of the 

synovial membrane into the cartilage and bone interface) and inflammatory cell 

infiltration into the synovium. Infiltrating leukocytes promote synovitis by 

secreting cytokines, chemokines and proteases which mediate cartilage and 

bone erosion and promote a state of hypoxia. Hypoxia in turn induces 

angiogenesis of the synovial membrane and may actually enhance the survival of 

some inflammatory cells e.g. neutrophils (145). The comparison between a 

normal healthy and an inflamed RA synovium is illustrated in Figure  6.6.  

 

Figure  6.6 Rheumatoid Synovium 
Comparison of a normal synovial joint compared to a n inflamed rheumatoid arthritis 
synovial joint. The illustration demonstrates the p resence of inflammatory cell infiltrates 
synovial membrane hyperplasia, cartilage and bone e rosion and angiogenesis. The 
histology photograph is a representative Haematoxyl in & Eosin stained rheumatoid synovial 
membrane. The white arrow indicates a blood vessel (photo kindly supplied by Dr Axel 
Hueber). 
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6.3.4 Inflammatory cell types of the synovium 

It is evident that synovitis is accompanied by an inflammatory cell response 

which drives tissue destruction and inflammation. In order to develop an 

understanding of the processes which drive synovitis it is important to firstly 

identify which cells are present within the synovium and elucidate how they 

might contribute to the ongoing inflammatory response. The interactions 

between inflammatory cells is summarised in Figure  6.7.  

6.3.4.1 The monocyte/ macrophage lineage 

Monocytes are derived from common myeloid progenitor cells within the bone 

marrow. Myeloid progenitors firstly differentiate into monoblasts and 

subsequently pro-monocytes which upon migration into the blood give rise to 

monocytes. However, the monocyte population is not homogenous and in mice 

they have been separated into two general categories; inflammatory monocytes 

(GR1+, CCR2+ and CX3CR1-) and blood resident monocytes (GR1-, CCR2- and 

CX3CR1+) (146). Similarly, human monocytes can be categorised as classical 

monocytes (CD14+CD16-) which are analogous to the murine inflammatory 

monocytes and account for approximately 90% of monocytes in the blood (146, 

147). Additionally, approximately 10% of human monocytes are described as non-

classical monocytes (CD14+CD16+) akin to the murine blood resident monocytes. 

These two monocyte populations give rise to two broad classes of macrophage 

populations, termed M1 and M2, which exert different effects during an 

inflammatory response (discussed below).   

Classically activated/ effector macrophages (M1) differentiate from classical/ 

inflammatory monocytes and are found within the inflamed synovial membrane 

in RA. They are characterised by the expression of inducible nitric oxide 

synthase (iNOS) and are generally associated with bacterial clearance and exert 

pro-inflammatory effects (148). Differentiation of M1 macrophages is induced 

upon exposure to the Th1 cytokine IFNγ in combination with TNFα, both of which 

are elevated in patients with RA. M1 macrophages can also be differentiated in 

an autocrine dependent manner through the secretion of TNFα and IFNβ upon 

stimulation with Toll Like Receptor (TLR) ligands e.g. LPS in response to 

bacterial infection. Furthermore, TLR ligands such as bacterial cell wall 
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fragments, peptidoglycan and double stranded DNA have been identified within 

the synovium of RA patients which may drive polarisation of M1 cells (149). The 

expression of TLR3 and TLR4 are enhanced in synovial tissue from a proportion of 

patients with RA relative to osteoarthritis (OA) (150). Administration of LPS in 

the murine model of CIA also dramatically increases the severity of disease and 

re-initiates disease in mice during remission (151). Additionally, inhibitors of 

TLR7/8 have been shown to reduce TNFα secretion from RA synoviocytes (152). 

This has lead to suggestions that RA may be initiated by bacterial and or viral 

infection although to date no microorganism has been specifically linked to 

pathogenesis. However, it is now recognised that TLRs can be activated by 

endogenous ligands such as heat-shock proteins and double stranded RNA 

released from necrotic synovial cells (153). Therefore, it is possible that the 

local environment within the synovium may potentiate the inflammatory 

response through a TLR mediated pathway by the secretion of pro-inflammatory 

cytokines, e.g. IL-12, IL-23 and TNFα, and activation of other immune cells e.g. 

T cells and fibroblasts. Future studies will almost certainly implicate further 

pattern recognition receptors e.g. NOD family members.  

The effector pathways mediated by classical synovial macrophages are well 

defined and include the secretion of cytokines and chemokines (e.g. TNFα, IL-1, 

IL-6, MIP-1α and MCP-1) and matrix metalloproteinases (e.g. MMP9 and MMP12). 

Additionally, macrophages can induce the activation of other adjacent cells by 

cell contact such as fibroblasts to induce the secretion of GM-CSF, IL-6 and IL-8. 

Although macrophages are not considered as professional antigen presenting 

cells such as dendritic cells and B cells, are it is clear that they can process and 

present peptides through MHC class II to induce the activation of CD4+ T cells. 

Such cellular interactions between macrophages and T cells enforces the 

inflammatory response within the RA synovium. Macrophages can also interact 

with and subsequently induce the activation of endothelial cells. This has been 

suggested to be in part responsible for the sustained influx of inflammatory cells 

into the synovium. Additionally, activated macrophages in RA may also drive 

atherosclerotic plaque development through the interactions with vascular 

endothelial cells. However, as professional phagocytes macrophages also serve 

to resolve inflammation through the phagocytosis of neutrophils and the 

secretion of anti-inflammatory cytokines such as IL-10 and TGF-β. 
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Although the function of the non-classical/ resident monocytes is poorly 

understood they have recently been described as patrolling monocytes since 

they migrate along the luminal surface of blood vessel walls (154). These cells 

are ideally situated for immuno-surveillance and rapidly extravasate upon 

surrounding tissue damage and bacterial infection to provide a rapid and early 

but short lived (< 8hrs) inflammatory response. These monocytes were also 

characterised by the induction of arginase 1 and mannose receptor (CD206) 

expression which is typical of alternatively activated (M2) macrophages. M2 

macrophages can be differentiated in vitro upon exposure to the Th2 cytokines 

IL-4 and IL-13 and are generally associated with a wound healing response and 

an anti-inflammatory function (148). Although M2 macrophages do not appear to 

have a dominant role in bacterial clearance they have been implicated in the 

clearance of nematode parasite infections (155). To date the presence of 

alternatively activated macrophages within the synovium, either in a healthy or 

pro-inflammatory environment, has not been demonstrated and their potential 

role is unknown. However, providing they are present in the first instance, it is 

likely that during propagating stages of synovial inflammation that they are 

differentiated towards or replaced by macrophages exerting a pro-inflammatory 

phenotype.  

The role of M1 and M2 macrophages has been studied in the pathogenesis of 

many inflammatory disorders. However, it is now evident that these M1 and M2 

phenotypes represent two extremes of the macrophage activation spectrum that 

is in fact rather plastic (148). Furthermore, the monocyte lineage is highly 

heterogeneous and upon migration into tissues they will differentiate according 

to the external signals they receive. This is of importance in RA since ligation of 

receptor activator of NF-kB ligand (RANKL) expressed on synovial fibroblasts and 

T cells with its cognate receptor on monocytes, RANK in the presence of M-CSF 

induces the differentiation of osteoclasts. These are multi-nucleated cells that 

promote bone resorption and are responsible for the degradation of bone 

commonly seen in RA. Thus monocyte lineages can not only promote 

inflammation by virtue of cytokine and enzyme release but can also contribute 

directly to the resorption of bone by alternate differentiation.  

It is evident that monocytes and macrophages are central to the cellular 

responses involved in the pathogenesis of RA. Understanding the signals that 
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induce monocyte/ macrophage differentiation and the subsequent implications 

upon their activities is therefore crucial to understanding the development of RA 

pathology. 

6.3.4.2 Dendritic cells 

As well as giving rise to monocytes myeloid progenitor cells can also 

differentiate into dendritic cells (DCs) - classical/ inflammatory monocytes may 

also be able to replenish specific dendritic cell populations e.g. Langerhans cell 

in the skin. DCs are highly phagocytic and endocytotic cells that are able to both 

recognise and respond to microbial infection and thereafter present antigen and 

are therefore central to the cross-talk between the innate and adaptive immune 

response. DCs are found in tissues in an inactive state however upon immune-

activation, either by TLR ligands or antigen uptake they down-regulate their 

phagocytic capacity but up-regulate antigen processing and presentation and are 

directed to lymph nodes via CCR7 dependent pathways to induce T cell 

activation (156). Two major subsets of dendritic cells have been identified; 

plasmacytoid dendritic cells (pDCs) and myeloid dendritic cells (mDCs). mDC 

have a dominant role in antigen uptake and subsequent presentation. They 

express a large variety of TLR and NOD receptors and rapidly sense tissue 

damage or ‘danger’.  They predominantly produce cytokines such as IL-12, IL-23, 

IL-15, IL-18 and by this means mediate significant effects on subsequent T cell 

differentiation. pDC in contrast have equivocal antigen presenting function but 

particularly upon viral infection are a major source of type I interferon synthesis 

and release. In RA circulating numbers of mDC and pDC are both reduced and 

both correlate with disease activity inversely as assessed by correlation with CRP 

(157). Depletion of murine pDCs in vivo has recently been shown to enhance an 

anti-collagen response suggesting that they mediate mainly anti-inflammatory or 

regulatory effects (158, 159). mDCs in contrast when transferred into recipient 

mice and pulsed with collagen induce erosive arthritis and as such they seem 

likely to exert pro-inflammatory effects in arthritis (159).  

6.3.4.3 Synovial T cells 

CD4+ effector T cells can be divided into distinct lineage subsets depending upon 

their cytokine secretion profile. Th1 cells are categorised by the secretion of the 
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pro-inflammatory cytokine IFNγ and IL-2 which is required for T cell proliferation 

whereas Th2 cells are typified by the secretion of the cytokines IL-4, IL-5 and IL-

13. In addition a new subset of CD4+ T cells has recently been described termed 

Th17 due to their secretion of the pro-inflammatory cytokine IL-17A, together 

with IL-17F, IL-22 and CCL20.  

Cytokines secreted by activated macrophages regulate T cell activation and 

survival; thus IL-12 secretion from M1 macrophages or mDCs induces the 

polarisation of naïve CD4+ T cells towards a Th1 IFN-γ secreting phenotype. 

Th1,CD4+ IFNγ+, cells are detectable in synovial membrane at an elevated ratio 

to Th2 cells (160). In addition to IFNγ and IL-2, ligation of the T cell receptor 

(TCR) induces the secretion of TNFα and potentially a variety of other cytokines. 

However, whilst synovial T cells secrete TNFα a proportion also secrete IL-10 and 

only a very small number are found to express IFNγ in situ in the tissue (161).  

Therefore only a proportion of synovial T cells fit the classical Th1 cytokine 

secretion profile. 

Synovial T cells were shown to have a similar phenotype to cytokine activated T 

cells (TcKs). These can be generated in vitro by treatment with IL-6, TNFα and 

IL-2 which when co-cultured with M-CSF matured macrophages induce the 

secretion of multiple macrophage derived pro-inflammatory cytokines including 

TNFα (162). IL-2, IL-6 and TNFα are all detectable at elevated levels within the 

synovium and histological analysis of synovial membrane has revealed that 

macrophages and T cells are within close proximity to each other. In accordance 

co-culture of synovial membrane derived T cells with macrophages was shown to 

induce the secretion of macrophage derived TNFα in a cell-contact dependent 

manner independent of TCR ligation. In comparison treatment with IL-15 alone 

has also been shown to induce proliferation and activation of T cells akin to the 

cytokine cocktail IL-2, IL-6 and TNFα. Furthermore, co-culture of IL-15 activated 

T cells induced macrophage derived secretion of TNFα (163). IL-15 is expressed 

primarily by macrophages, fibroblast like synoviocytes and endothelial cells and 

is found at elevated levels in the serum and synovial fluid of RA patients relative 

to osteoarthritis (OA) patients (164). Serum and synovial fluid concentrations 

correlate strongly to disease severity, CRP and DAS28, in established disease 

thus suggesting a central role in disease pathogenesis (165). 
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IL-15 has also been shown to induce the secretion of IL-17 from PBMCs and RA 

synoviocytes (166). IL-17 is found at elevated levels in RA synovial fluid and was 

first shown to be produced by CD4+ T cells termed Th17 cells (167). Deletion of 

IL-17 or administration of an anti IL-17 antibody markedly reduced the severity 

of CIA whereas overexpression of IL-17 exacerbated disease severity (168, 169). 

As noted above however, Th17 cells are present in low numbers in inflamed RA 

synovium (170). Differentiation of CD4+ T cells towards a Th17 phenotype can be 

induced in vitro by IL-21, IL-6 and TGF-β whilst the expansion of Th17 cells is 

mediated by IL-23. However, the frequency of Th17 cells is low and Th1 cells 

may even predominate within the synovium (171). It is not clear whether this 

represents plasticity of the Th17 lineage or differentiation of a proportion of 

naïve T cells present within the heterologous Th17 population. However, Th17 

cells also secrete IL-22 and CCL20 and in humans a proportion of Th17 cells are 

IFNγ+ (172). Additionally, it is now evident that IL-17 is also secreted by non 

CD4+ T cells; specifically NK cells, γδ T cells, CD8 T cells, macrophages and more 

recently mast cells (unpublished data Hueber et al) (173-175). It is therefore 

unlikely that the observed phenotype upon deletion of IL-17 or IL-17 blockade is 

completely attributable to Th17 cells, contrary to initial suggestions, but rather 

a combination of cellular sources. Secretion of IL-17 drives activation of 

monocytes/ macrophages and synovial fibroblasts to secrete a milieu of pro-

inflammatory cytokines and chemokines e.g. IL-1, IL-6, IL-8, TNFα and GM-CSF 

(176). Blockade of IL-17 is therefore expected to be beneficial and is an 

attractive therapeutic target for the treatment of RA. 

In addition to the Th1, Th2 and Th17 subsets is the CD4+, CD25+ regulatory T cell 

lineage(s) (Tregs) that express forkhead box p3 (Foxp3). Unlike CD4+ effector T 

cells which promote an inflammatory reaction the role of Tregs is to regulate 

effector T cell activation and are therefore generally ascribed an anti-

inflammatory property. Tregs have been shown to suppress inflammation 

through direct cell-cell contact and by the secretion of the anti-inflammatory 

cytokines IL-10 and TGF-β. However, the precise mechanisms by which Tregs 

mediate inflammatory suppression are not fully understood. Although Tregs are 

detectable in peripheral blood and synovial fluid of patients with RA they have a 

decreased capacity to suppress IFNγ production from CD4+ T cells (177). 

Intriguingly the ability of Tregs to inhibit effector T cell IFNγ secretion was 
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shown to be mediated through TNFα; as treatment of RA patients with anti-TNFα 

antibodies (Infliximab) restored the capacity of Tregs to suppress pro-

inflammatory cytokine secretion. Thus the synovial inflammatory environment 

may inhibit the action of Tregs and thereby potentiate effector T cell 

proliferation and subsequent monocyte/macrophage activation through 

enhanced cytokine secretion.  

CD8+ T cells are typically described as cytotoxic T cells due to their ability to 

recognise virus infected cells and induce programmed cell death (apoptosis). 

This is mediated by the release of lytic granules which form pores in plasma 

membranes and digest proteins and nucleic acids. Additionally CD8+ T cells also 

secrete IFNγ which inhibits virus replication and increases the expression of MHC 

class I.  CD8+ T cells are found diffusively spread within the RA synovium (178).  

Interestingly whilst the number of CD4+ T cells was shown to positively correlate 

with leukocyte infiltration the frequency of CD8+ T cells was inversely associated 

with synovial membrane leukocyte numbers. This therefore suggests that CD8+ T 

cells could promote or regulate an inflammatory response within the RA 

synovium. However, the role of CD8+ T cells in RA is unclear and reports are 

conflicting as CD8+ T cells have also been suggested to modulate formation of 

germinal centres (179, 180).  

6.3.4.4 B cells 

RA is associated with autoantibody production against self citrullinated proteins 

(ACPA) and IgG (rheumatoid factor - RF) which are detectable in serum up to 10 

years prior to the clinical onset of RA (181). Additionally, B cell depletion by the 

anti-CD20 targeting monoclonal antibody, rituximab, has been successful in 

ameliorating disease in a large number of patients with RA (discussed below). It 

is therefore evident that B cells are central to driving the pathology of RA. B 

cells drive the inflammatory response in part through antigen presentation 

thereby inducing T cell activation and proliferation. Upon activation by antigen 

B cells will migrate to the lymph nodes or spleen where they will differentiate 

into antibody secreting plasma cells. Auto-antibody production can then induce 

the activation of inflammatory cells through binding of the Fc portion of 

antibodies to Fc receptors expressed on leukocytes. The importance of antibody 

mediated immune cell activation has been confirmed by the induction of 



  56 

arthritis through the transfer of serum from an immunized mouse into a non-

immunized recipient in which type II collagen is thought to be the dominant 

epitope (182). Furthermore, anti-collagen antibody cocktails have been shown to 

induce the development of collagen-antibody induced arthritis (CAIA) which is 

characterized by macrophage and polymorphonuclear inflammatory cell 

infiltrate (183). Finally B cells may act as a source of inflammatory cytokines in 

RA synovial membrane and promote inflammation by that route. 

Analysis of synovial membrane has revealed the presence of lymphoid like 

structures in a proportion of patients with RA (184, 185). These structures, 

which resemble lymph node germinal centres, range from loose T and B cell 

aggregates to highly organised lymphoid like structures. These ectopic germinal 

centres are in an environment surrounded by self antigen and pro-inflammatory 

cytokines; they therefore provide an ideal setting for antigen presentation, 

plasma cell differentiation, survival and auto-antibody production without the 

requirement for trafficking to peripheral lymph nodes (186). However, it is 

difficult to assess the role that ectopic germinal centres play in the pathology of 

RA. Most samples obtained are small biopsies which consist of only a small 

proportion of the total potentially involved synovial membrane and therefore 

determining even a correlation between the presence of ectopic germinal 

centres relative to disease severity has proven problematic. Further, studies are 

therefore required to define the role of such lymphoid structures upon B cell 

activation and how this may affect the pathology of RA. 

6.3.4.5 Other inflammatory cells 

Mast cells & Neutrophils 
 
In addition to lymphocytes, DCs and macrophages, mast cells are also thought to 

play a role in RA and are present within the RA synovium at sites of cartilage 

damage (187). However, arthritic protocols in mice to study the role of mast 

cells upon the initiation of inflammation have yielded conflicting results (188, 

189). Whereas it is uncertain if mast cells are crucial for the initiation of 

arthritis it is evident they can mediate disease severity (190). However, unlike 

mast cells, depletion of neutrophils prevents the onset of adjuvant induced 

arthritis suggesting a role for neutrophils in the effector phase of RA (191). 

Neutrophils are concentrated within synovial fluid which in part is due to the 



  57 

nature of the synovial environment as synovial fluid in conjunction with hypoxia 

enhance neutrophil survival (145). Stimulation of fibroblasts with TNFα and IL-

17, two cytokines central to RA pathology, induces the secretion of GM-CSF 

which can promote the survival of neutrophils (192).  

Fibroblasts 
 
Fibroblasts are the major cell type of the synovial membrane and it is well 

established that they contribute towards pathology in RA. Activation of 

fibroblasts either by cytokines e.g. GM-CSF or by TLR ligands induces the 

secretion of a variety of cytokines including IL-1, IL-6, TNFα and M-CSF which 

can in turn potentiate the survival and activation of leukocytes such as 

macrophages. The secretion of inflammatory cytokines by fibroblasts also serves 

as an auto-regulatory loop to upregulate the expression of adhesion molecules 

ICAM-1 and VCAM-1 promoting the interaction of fibroblasts with T cells (193). 

Such interactions enforce the inflammatory response through the increased 

expression and secretion of pro-inflammatory cytokines such as IL-1. The 

secretion of pro-inflammatory cytokines by fibroblasts and other immune cells 

also induces the secretion of chemokines, e.g. CXCL2 and CCL8, which can 

induce the chemotaxis of neutrophils and monocytes/macrophages respectively 

into the synovium. It is therefore evident that fibroblasts are central to the 

inflammatory response in the RA synovium. Additionally, fibroblasts are also able 

to contribute towards articular destruction directly through the secretion of 

proteinases e.g. collagenase (MMP-1). RA fibroblasts also express higher levels of 

RANKL and therefore drive articular destruction indirectly through the induction 

of osteoclastogenesis (194). 

Osteoclasts & Chondrocytes 
 
Articular structure in healthy individuals is maintained in a stable equilibrium by 

which the rate of bone deposition and resorption and collagen synthesis and 

degradation is in balance. However, in the RA synovium this balance is skewed 

towards bone resorption and collagen destruction leading to articular 

destruction. Osteoclasts are the cells which mediate bone resorption which is 

necessary for skeletal remodelling during development but are also the major 

cause of bone digestion in RA. Osteoclasts are multi-nucleated cells 

differentiated from monocyte precursors through the interaction of RANK/ 
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RANKL. Osteoclast activation and differentiation can be enhanced through the 

actions of cytokines such as TNFα or through cellular interactions where by T 

cells or fibroblasts can promote the differentiation of monocytes to osteoclasts 

(194). Osteoclasts degrade bone through the secretion of acid and MMPs which 

can cleave matrix proteins such as collagen. Similarly collagen turnover is also 

regulated in part by the actions of MMPs although this process is primarily 

mediated through the actions of chondrocytes. The secretion of MMPs, and other 

proinflammatory mediators e.g. IL-17 and IL-6, from chondrocytes can be 

induced by multiple pro-inflammatory cytokines such as IL-1 and TNFα (195). 

Therefore, it is evident that the inflammatory environment within the RA 

synovium can promote articular destruction through several mechanisms.  

 

Figure  6.7 Inflammatory cell types of the synovium 
Schematic demonstrating the interactions of immune cells within an inflamed joint, adapted 
from (196).  
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6.3.5 Cytokines & chemokines in rheumatoid arthritis  

Neutralisation of cytokines is now an established therapeutic regime exemplified 

by the use of anti TNF-α antibodies and soluble receptor fusion proteins in the 

clinic. Therefore, understanding the impact of cytokine networks upon 

inflammation and identifying how they are regulated is central to elucidating the 

mechanisms by which disease progresses (summarised in Table  6.3). 

6.3.5.1 TNFα 

TNFα is detectable in synovial fluid and membrane and is secreted by 

monocytes/ macrophages, T cells, B cells, synovial fibroblasts and neutrophils 

upon cytokine activation, TLR ligation or cell-cell interactions. Binding of TNFα 

to its cognate receptor TNF receptor 1 (TNFR1) induces activation of NF-κB and 

the secretion of multiple pro-inflammatory cytokines, e.g. IL-1 and IL-6, from 

synoviocytes which is blocked by addition of anti-TNFα antibodies in vitro (197, 

198). As such TNFα is now considered to be at the top of the cytokine hierarchy, 

or at least critical to the regulation of such a hierarchy. Several in vivo studies 

demonstrated a pathogenic role for TNFα in arthritis. Transgenic mice expressing 

human TNFα spontaneously develop arthritis and administration of anti-TNFα 

blocking antibodies ameliorated the severity of disease in a dose responsive 

manner (199, 200). Since these observations several TNFα blocking agents have 

been developed for the treatment of human RA (discussed below).  

6.3.5.2 Interleukin-12 superfamily 

Members of the IL-12 superfamily of cytokines are related by their common sub-

units p35, p40 and p19 and are secreted primarily by macrophages and dendritic 

cells upon stimulation by cytokines or TLR activation. IL-12(p35/p40) plays a 

pivotal role in the development of Th1 responses by promoting the polarisation 

of naïve CD4+ T cells towards an IFN-γ secreting phenotype. The role of IL-12 in 

RA is unclear however low levels of IL-12(p35/p40), i.e. biologically active IL-12, 

are detectable in RA synovial membrane and may therefore support the 

expansion of the predominant Th1/ TcK population within the RA synovium 

(201). IL-12 is considered to be a pro-inflammatory cytokine. However mice 

deficient in IL-12p35 display increased severity of CIA, associated with enhanced 



  60 

levels of multiple pro-inflammatory cytokines and chemokines including IL-6, IL-

17 and TNF-α, suggesting IL-12 is protective in this model (202). In contrast, 

studies in other models, e.g. EAE, have demonstrated beneficial effects 

attributable to targeted deletion of the gene encoding the p40 sub-unit (203). 

However, it is now recognised that the p40 sub-unit is shared with IL-

23(p19/p40). Therefore such beneficial effects may be at least in part elicited 

by IL-23 blockade (203, 204). Mice deficient in p19 exhibit reduced severity of 

CIA (202). Interestingly IL-12 is overexpressed in mice deficient for IL-23 

suggesting a mechanism of IL-12/ IL-23 cross regulation. IL-23(p19) has been 

detected at high levels in the serum and synovial fluid and is overexpressed by 

synovial fibroblasts in RA (205). Similarly, we have demonstrated IL-23(p19) 

expression by immunohistochemistry in RA and PsA synovial membrane. 

However, functional IL-23p19/p35 heterodimer was only detectable by ELISA in 

PsA, but not RA, synovial fluid (unpublished data from our group) suggesting that 

at least in established disease and within the synovium IL-23 does not have a 

pathological role in RA. The role which IL-23 plays in early disease is unknown 

however, as well as promoting Th17 cell survival IL-23 has been shown to induce 

the secretion of pro-inflammatory cytokines e.g. IL-6, TNFα and IFNγ from T 

cells (206).  

6.3.5.3 Interleukin - 17 

The IL-17 family consists of six members, IL-17 A through to F, of which IL-17A 

(commonly referred to as IL-17) has been the most widely studied. IL-17 signals 

through the IL-17 receptor A (IL-17RA) which is ubiquitously expressed. The 

secretion of IL-17 has been shown to induce the expression of IL-6 and IL-8 in 

mouse fibroblasts and promote neutrophil survival (207). A pathological role for 

IL-17 in the development of arthritis has now been demonstrated in the murine 

CIA model as previously mentioned. Furthermore, mice deficient in IFNγ were 

more susceptible to the development of CIA which was suggested to be due an 

unrestricted expansion of the Th17 cell population mediated by loss of IFNγ 

(208). Given the highly pathological role of IL-17 there has been a concerted 

effort to elucidate the biology of IL-17 with particular emphasis upon Th17 cells; 

the first identified cellular source of IL-17; although as discussed above multiple 

sources have since been identified. Given the necessity of IL-6 for Th17 cell 

differentiation targeting of IL-6 may inhibit Th17 cell polarisation whilst 
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favouring the development of regulatory T cells mediated by TGFβ and thereby 

promote a protective immune response.  

6.3.5.4 Interleukin- 6 

IL-6 is expressed by monocytes, lymphocytes and fibroblasts and is detectable at 

elevated levels in the serum and synovial tissue of RA patients. Serum 

concentrations of IL-6 correlate with levels of CRP and disease severity (209). 

This strongly suggests a central role in disease pathogenesis and supports the 

suggestion that IL-6 blockade may yield beneficial effects in RA. IL-6 knockout 

mice are resistant to CIA and show reduced levels of serum TNF-α (210). IL-6 

signals through the IL-6R (IL-6Rα and gp130 sub-units) inducing the secretion of 

acute phase proteins (CRP and serum amyloid A), inflammatory chemokines (IL-8 

and MCP-1) and up-regulates the expression of adhesion proteins (211). IL-6 

signalling induces the accumulation of monocytes, promotes neutrophil apoptosis 

and macrophage phagocytosis akin to the resolution phase of many inflammatory 

reactions and which may reflect some of the pleiotropic effects attributable to 

IL-6 (211). To date blockade of IL-6 signalling has been successfully achieved in 

clinical trials using an antibody generated against the IL-6R to inhibit IL-6 

binding. Treatment with Tocilizumab, a humanised anti-human IL-6R monoclonal 

antibody, in RA patients with active disease revealed an improvement in all 

disease activity assessments in a dose responsive manner; normalisation of CRP 

levels and a significant improvement in RF titres relative to the placebo group 

(212). IL-6 blockade is therefore an attractive therapeutic target and the 

development of soluble IL-6 receptors, similar to anti-TNFα therapy, are being 

investigated (213, 214). 

6.3.5.5 Interleukin-1 superfamily 

The IL-1 family comprises eleven structurally related cytokines of which the 

biological activity of only five has been well characterised, namely IL-1α, IL-1β, 

IL-1 receptor antagonist (IL-1Ra), IL-18 and IL-33. Early in vivo studies 

demonstrated that injection of IL-1 into the knee joint of rats caused symptoms 

akin to chronic arthritis due to the secretion of matrix metalloproteinases 

(MMPs) and proteoglycans mediated via macrophage activation, causing cartilage 

and bone destruction. RA is associated with elevated levels of IL-1 in the 
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synovium. Thus much effort has been directed towards finding appropriate 

methods of inhibiting IL-1 activity. Despite positive pre-clinical studies, IL-1 

blockade using Anakinra (IL-1 receptor antagonist) has failed to provide 

adequate therapeutic value in a large enough number of patients. It is not clear 

whether this reflects disease heterogeneity, suboptimal drug design (e.g. short 

half life) or an inadequate understanding of the role of IL-1 in the RA synovial 

cytokine hierarchy. Studies using anti-TNF in combination with IL-1Ra provide an 

additive functional effect upon cytokine inhibition from synovial tissue in vitro 

(215). 

IL-18 is synthesised as a 23kD pro-molecule that is cleaved by caspase 1, 

proteinase 3 or elastase to an 18kD ligand which is then able to bind IL-18R. The 

level of IL-18 within RA serum and synovial fluid correlates with DAS28 and CRP 

and suppression of disease by DMARD therapy (165, 216). IL-18 is able to induce 

expression of multiple cytokines and chemokines, particularly TNFα, in both in 

vitro and in vivo models whilst promote the differentiation of CD4+ T cells 

towards a Th1 phenotype in the presence of IL-12. IL-18 has been also shown to 

induce vascular endothelial growth factor (VEGF) expression in fibroblast like 

synoviocytes implicating IL-18 in angiogenesis. Multiple approaches have 

therefore been employed in an attempt to inhibit its pro-inflammatory effects  

(217). Administration of anti IL-18 antibody suppressed streptococcal cell wall 

arthritis (218). Similar to IL-1 it is unclear what proportion of RA pathology is 

attributable to the effects of IL-18 and the efficacy of IL-18 targeted therapy in 

RA remains to be identified. 

There is no doubt that cytokines represent valid therapeutic targets for the 

treatment of RA, exemplified by the success of anti-TNFα therapy. However, it 

remains unclear to what extent distinct patterns of synovial cytokine hierarchy 

exist within clinical subsets of RA. This is therefore a source of uncertainty in 

the ability to predict clinical effectiveness of specific cytokine blockade alone. 

However, the combination of cytokine blocking agents may prove more 

efficacious in the treatment of RA.  A summary of additional relevant cytokine 

activities is included in Table  6.3. 
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Cytokine Cellular source Role in rheumatoid arthritis 

IL-1 Monocytes, B cells & 

fibroblasts 

Induces cytokine secretion from fibroblasts 

and monocytes and activates osteoclasts. 

IL-6 Monocytes/ 

macrophages, 

fibroblasts, lymphocytes 

Induces proliferation of lymphocytes and 

differentiation of Th17 cells. Supports B 

cell antibody production. 

IL-12 Macrophages & 

dendritic cells 

Primarily secreted upon exposure to TLR 

ligands and induced maturation and 

proliferation of Th1 cells.  

IL-15 Monocytes, fibroblasts, 

mast cells, neutrophils 

& dendritic cells 

Promotes activation of T cells, fibroblasts, 

macrophages and neutrophils.  

IL-17 T cells, macrophages, 

dendritic cells & γδ T 

cells 

Induces the secretion of pro-inflammatory 

cytokines from macrophages, fibroblasts 

and endothelial cells.  

IL-18 Monocytes, neutrophils 

& dendritic cells 

Promotes differentiation of T cells to a Th1 

phenotype and induces activation of 

monocytes/ macrophages.  

IL-23 Macrophages & 

dendritic cells 

Secreted in response to TLR ligands and 

promotes survival and expansion of Th17 

cells. 

APRIL Monocytes/ 

macrophages & 

lymphocytes  

Member of the TNF superfamily and 

promotes B and T cell survival and 

proliferation. 
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BAFF T cells, monocytes/ 

macrophages & 

dendritic cells 

Member of the TNF superfamily and 

promotes B cell survival and maturation.  

GM-CSF Monocytes, osteoclasts, 

fibroblasts & T cells 

Stimulates the differentiation and survival 

of neutrophils and macrophages.  

MCP-1 Osteoclasts and 

macrophages  

Exert chemotactic effects upon 

macrophages, dendritic cells, neutrophils 

and lymphocytes. 

M-CSF Lymphocytes, 

monocytes, fibroblasts 

and osteoclasts 

Regulator of monocyte differentiation and 

proliferation and macrophage survival. 

MIP-1α/β Macrophages Exert chemotactic effects upon 

macrophages, dendritic cells, neutrophils 

and lymphocytes.  

TNFα Adipocytes, monocytes/ 

macrophages, 

fibroblasts, T cells and 

B cells 

Induces the activation of macrophages and 

endothelial cells whilst promoting 

apoptosis of neutrophils. Inhibits the 

regulatory function of regulatory T cells. 

Table  6.3 Cytokines and chemokines implicated in the path ology of rheumatoid arthritis 
A brief description of the cellular source and the role of the major cytokines and 
chemokines implicated in the development of rheumat oid arthritis. Interleukin (IL), a 
proliferating inducing ligand (APRIL), B cell activ ating factor belonging to the TNF family 
(BAFF), granulocyte/ macrophage colony-stimulating factor (GM-CSF), monocyte 
chemoattractant protein -1 (MCP-1), macrophage colo ny stimulating factor (M-CSF), 
macrophage inflammatory protein (MIP) and tumour ne crosis factor α (TNFα). 

6.3.6 Animal models of rheumatoid arthritis 

The complex cellular and cytokine mediated interactions requires sophisticated 

modelling capabilities. Whereas these may be achieved in vitro it is not always 

possible to recapitulate the in vivo inflammatory environment. Furthermore, 

clinical studies analysing the potential pathological components of RA are often 

limited by a restricted time window of observation and, along with genetic and / 
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or environmental diversity, means that interpretation of results can often be 

difficult. It is therefore not uncommon to find contradictory observations 

generated from different clinical studies; e.g. it is still not clear whether lipids, 

particularly total cholesterol, is increased, decreased or stays the same and 

when these changes may occur in the development of human RA. Therefore, 

animal models have been used extensively in studies of RA pathogenesis to allow 

dissection of pathways involved in the disease and despite their limitations, have 

significantly contributed towards major advances in the development of novel 

therapeutics. This is exemplified in the development of anti-TNFα therapy in the 

murine (CIA) model (199). However it is important to realise the limitations and 

advantages of commonly used animal models of arthritis and their comparison to 

the human disease. There are many rodent models of arthritis although many of 

them are not as directly comparable to the pathology of human RA as CIA. The 

aspects of CIA are described below. However, whilst many other models have 

been used to study the arthritis e.g. collagen antibody induced arthritis, 

zymosan arthritis and the human TNFα transgenic mouse, these will not be 

discussed here but have recently been reviewed by Asquith et al (219) and are 

summarised in Table  6.4.  

6.3.6.1 Collagen-induced arthritis 

Collagen-induced arthritis shares many similarities with human RA. In particular, 

breach of tolerance and generation of auto-antibodies towards self collagen are 

generated, and as such CIA is considered the gold standard in vivo model to 

study RA. CIA was first described in rats and subsequently shown to be inducible 

in susceptible strains of mice, following inoculation with type II heterologous 

collagen in Complete Freund’s Adjuvant (CFA) (220, 221). Susceptibility is 

restricted to strains that have MHC Class II I-Aq and I-Ar haplotypes, e.g. DBA/1, 

similar to RA in humans (222). CIA can also be initiated in non-human primates, 

making it a useful model in which to better assess efficacy of novel therapeutic 

targets and aid their transition through the primary stages of pre-clinical 

development. Male mice are most widely used to exclude complications with sex 

hormones although CIA is not considered to be sex biased. Clinical signs of 

disease typically develop 21 to 25 days after the initial inoculation and presents 

as a polyarthritis which is most prominent in the limbs and characterized by 

synovial inflammatory infiltration, cartilage and bone erosion and synovial 
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hyperplasia similar to human RA. Disease severity is expected to peak at 

approximately day 35 after which DBA/1 mice enter remission, marked by 

increased concentrations of serum IL-10 and a subsequent decrease in pro-

inflammatory Th1 cytokines (223). In a development of the model, inoculation 

with homologous type II collagen has been reported to cause chronic relapsing 

arthritis more akin to human RA which has been suggested to be more useful for 

studying remission inducing therapies (224).  

The ability to study the effect of genetic modification or targeted gene deletion 

has been problematic in the DBA/1 model as most transgenic mice are on the 

C57BL/6 background which is generally considered resistant to CIA.  However, 

with the recent development of a refined protocol for the induction of CIA in 

C57BL/6 mice, the possibility to study arthritis in genetically modified mice is 

now more amenable (225, 226). There are differences in the onset and 

progression of disease between the DBA/1 and C57BL/6 which may cause 

discrepancies when comparing studies between these two strains. The C57BL/6 

strain develops arthritis approximately 4 to 7 days later eventually reaching 

severity at a level comparable to arthritis in DBA/1 mice but which is sustained 

as opposed to the remitting / relapsing arthritis observed in DBA/1 mice (224). 

This was associated with sustained levels of serum anti-collagen antibody titres, 

higher levels of T cell proliferation and IFNγ secretion in the late stage of 

disease. Therefore, whilst both strains of mice may be a useful to study the 

preclinical development or prophylactic treatment of arthritis, the C57BL/6 

mice may be more suited for analysis of late / established arthritis. 

As eluded to above the CIA model of arthritis is a widely used and is therefore a 

very well characterised model of arthritis. This is may be in part through the 

relative ease as to which arthritis can be induced with the CIA protocol unlike 

the antigen and zymosan induced arthritis which requires a high level of 

operator skill to be able to accurately perform intra-articular injections in mice. 

The CIA model has several more advantages over other in vivo models in which 

to study potential interventions in RA. CIA model is a polyarthritis affecting any 

and potentially all of the limbs and by analysis of serum cytokines it is evident 

that there is a systemic elevation of multiple pro-inflammatory cytokines and 

chemokines akin to human disease. This is in comparison to the zymosan model 

of arthritis which is monoarthritic and may therefore not reflect the systemic 
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nature of disease. Additionally, the CIA model involves both the innate and 

adaptive arms of the immune response whereas inflammation in the collagen 

antibody-induced arthritis relies upon complement activation and is therefore 

predominantly mediated through macrophage and polymorphonuclear cell 

activation. Although useful for dissecting out a role for particular arms of the 

immune response, once again this does not reflect the inflammation in RA. 

Finally, with all interventions in which the aim is to inhibit disease progression 

drugs are required to trialled in primates prior to clinical trials. With the ability 

to induce arthritis in primates as well as rodents the CIA model is ideal for the 

development of potential therapeutics. Therefore, the CIA model was selected 

for all future studies to test whether LXR agonists were potential therapeutics 

for the treatment of RA. 
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Model Species Characteristics Ref. 

Collagen-induced 

arthritis 

Mouse, Rat, 

Rabbit, non-

human primate 

Inducible in susceptible strains of rodents Polyarthritis associated with antibody 

and T cell responses. Low incidence and variability of disease severity in C57BL/6 

mice. Inoculation with homologous collagen induces relapsing/ remitting arthritis 

but otherwise is self limiting.  

(220, 221, 

225, 227, 

228) 

Collagen antibody-

induced arthritis 

Mouse, Self limiting polyarthritis in 100% animals but limited to macrophage and 

polymorphonuclear cell involvement. Can be induced in most strains of mice. 

(182, 183, 

229) 

Zymosan-induced 

arthritis 

Mouse, Rat Monoarthritis and requires a high degree of technical ability but can be induced in 

multiple strains of mice. TLR 2 dependent and therefore recapitulates infection 

driven pathology. 

(230, 231) 

Antigen induced 

arthritis 

Mouse, Rat Requires a high degree of technical ability and precludes analysis of the systemic 

component of disease. 

(232, 233) 

Spontaneous 

transgenic models 

of arthritis. 

Mouse Spontaneous chronic and progressive polyarthritis, onset of disease at 3-4 weeks of 

age. This includes the KBxN, SKG and DNase II-/-IFN-IR-/- and human TNFα 

transgenic mice. These mutations have so far only been identified in mice.  

(200, 234-

236) 

Table  6.4 Animal models of arthritis.  
The characteristics of the most commonly used anima l models of arthritis with explanation of their adv antages, limitations and the species they can be 
induced in. 
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6.3.7 Cardiovascular disease in rheumatoid arthritis 

RA is associated with multiple co-morbidities and reduced life expectancy. The 

increased mortality rate is largely attributable to cardiovascular disease (CVD) 

and many studies have now suggested that CVD contributes directly to disease 

pathology emphasising the systemic nature of RA.  I shall give detailed 

consideration to this co-morbidity since one attraction of the LXRs in RA as a 

regulatory molecular pathway resides in their capacity to modulate both 

inflammatory and metabolic events of relevance.  

6.3.7.1 Atherosclerosis 

Atherosclerosis is characterised by the formation of fatty lesions (plaques) in 

arterial vessel walls. The environment within an atherosclerotic plaque is highly 

pro-inflammatory and plaque progression is associated with immune cell 

infiltration, lipid accumulation and the secretion of multiple pro-inflammatory 

cytokines and chemokines. Formation of an atherosclerotic plaque is suggested 

to be initiated by vascular endothelial cell damage and subsequent activation, 

although the precise mechanisms that induce damage are not known. 

Hypercholesterolemia is a major risk factor for the development of 

atherosclerosis and predicts disease progression. Indeed, feeding mice an 

atherogenic diet correlates with plaque size development (237). Low density 

lipoprotein (LDL) cholesterol can penetrate the vascular endothelium into the 

intima where it can be oxidised forming oxidised LDL (oxLDL) causing endothelial 

cell activation in which the expression of the adhesion molecules, typically 

VCAM-1 and ICAM-1, are up-regulated (238). In addition, to an elevated plasma 

lipid profile, hypertension is another well recognised risk factor for the 

development of atherosclerosis. Atherosclerotic plaques generally form in 

arteries and are typically located at sites of hemodynamic strain; high blood 

flow and shear stress. Exposure of human umbilical vein endothelial cells 

(HUVECs) to dynamic flow in vitro induces cytoskeleton rearrangements, NF-κB 

activation and the expression of VCAM-1, ICAM-1 and IL-1β (239). Furthermore, 

hemodynamic stress may also enhance the “leakiness” of the vascular 

endothelium allowing LDL penetration into the intima and thereby present a 

mechanism by which hypercholesterolemia and hypertension may synergise to 

promote vascular inflammation.  
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Inflammatory cells, typically monocytes and T cells, roll and bind to the 

adhesion molecules expressed on the blood vessel wall and then migrate into the 

intima directed by the interactions of chemokines and chemokine receptors e.g. 

MCP-1/ CCR2 and Rantes/ CCR1. Differentiation of monocytes into macrophages 

is necessary for the progression of atherosclerosis demonstrated by the 

amelioration of plaques in M-CSF-/- mice (240, 241). Macrophage differentiation 

is marked by the up-regulation of scavenger receptors which internalise a variety 

of lipoprotein molecules including oxLDL (242). In a state of 

hypercholesterolemia the rate of oxLDL uptake exceeds the rate of cholesterol 

clearance, excess cholesterol is therefore stored in cytoplasmic lipid droplets 

resulting in macrophage foam cell formation. Lipid loading of macrophages is 

also associated with the secretion of IL-1β, TNFα, MMPs and augmentation of 

oxidative stress (243, 244). Accumulation of foam cells and extracellular lipids 

forms a lipid core within a plaque which is surrounded by a cap of endothelial 

cells, smooth muscle cells and a collagen matrix. Atherosclerotic plaques are 

generally stable structures which can occlude the vessel lumen reducing blood 

flow and may cause angina or tissue ischemia but in a large proportion of 

patients the presence of atherosclerotic plaques are asymptomatic. However, 

plaque destabilisation can cause plaque rupture and thrombus formation leading 

to myocardial infarction and/ or stroke. Plaque destabilisation can occur through 

a variety of mechanisms including the actions of pro-inflammatory cytokines and 

proteases as found in RA (245-247). It is therefore evident that inflammation is 

central to plaque development. Understanding the inflammatory processes and 

how they interact with lipid metabolism is now subject to intense investigations 

for the development of future therapeutic targets for the treatment of 

atherosclerosis.  

6.3.7.2 Cardiovascular disease related mortality in  rheumatoid arthritis 

The life expectancy of patients with RA is significantly reduced by up to 10 years 

and death is predominantly due to cardiovascular disease (CVD) related events. 

One study followed 603 RA patients relative to 603 sex and age matched healthy 

controls from the same geographical population for the development of coronary 

heart disease (CHD) related events (248). Data regarding CHD events was 

collected retrospectively from the subjects’ medical records over a mean period 

of approximately 15 years. This study revealed that the risk of myocardial 
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infarctions in the RA population was more than five times more prevalent than 

that in the non-RA population. Similarly, the number of sudden deaths was twice 

that found in the non-RA population and in total nearly 50% of the RA subjects 

died of CVD related symptoms. These results were confirmed by an independent 

study which prospectively followed 114,342 women for the development of RA 

and CVD (134). The study revealed that of the 527 women that developed RA the 

prevalence of myocardial infarctions was approximately three fold higher than 

compared to subjects without RA. Although in both studies cigarette smoking 

was significantly more frequent in the RA cohorts the observations that CHD is 

increased in RA subjects could not be explained by other traditional CVD risk 

factors e.g. BMI, type II diabetes and hypertension. This therefore suggests that 

RA itself may be a risk factor for the initiation and progression CVD. Indeed a 

follow-up study revealed that Erythrocyte Sedimentation Rate (ESR), RF 

seropositivity, joint swelling and radiographic changes, as markers of systemic 

inflammation and RA disease severity, conferred a significant additional risk for 

CVD related deaths in subjects with RA (249). Interestingly the duration of RA 

disease had no impact upon CVD related outcomes. Subsequently many studies 

have tried to investigate the specific aspects of RA associated CVD with 

particular emphasis on potential changes in vascular function and alterations in 

serum lipids. 

6.3.7.3 The atherogenic profile in rheumatoid arthr itis  

It is evident that prevalence of CVD and associated risk factors are elevated in 

RA. Indeed, carotid intima media thickness (IMT), as an indicator of 

atherosclerotic plaques, is increased in RA (250, 251). Many studies have since 

confirmed these observations and carotid IMT has been shown to predict the 

development of CVD in RA (252). Furthermore, it is evident that there are 

changes in the plasma lipid profile up to ten years prior to the clinical onset of 

RA (253). This was marked by an increase in plasma triglycerides and total 

cholesterol concentrations but a decrease in protective HDL-cholesterol. 

Although altered levels of serum lipids were suggested to be a potential 

mediator for the manifestation of clinical RA RF is also detectable many years 

prior to the clinical development of RA. This supports the consensus that sub-

clinical RA is present many years prior to its clinical manifestation. However 

whether cardiovascular disease drives the manifestation of clinical RA remains 
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unknown. Similarly, analyses of lipid profiles in patients with established RA 

have demonstrated increased concentrations of triglycerides and in some cases 

total cholesterol but a decrease in HDL-cholesterol which negatively correlated 

with CRP (254, 255). These studies suggest that the lipid profile in RA is pro-

atherogenic and may accelerate the formation of atherosclerotic plaques. 

Moreover, it is plausible that the inflammatory profile associated with RA may 

drive plaque destabilisation and may be in part responsible for the increased 

prevalence of myocardial infarctions and strokes in RA.  

It is now widely accepted that the inflammatory state associated with RA may 

promote atherogenesis however, how dyslipidemia and the inflammatory aspect 

of atherosclerosis impacts synovial inflammation is not known. However, oxLDL 

has been detected in RA synovial fluid and serum oxLDL concentrations correlate 

with CRP (256, 257). Elevated levels of oxLDL may promote macrophage 

activation directly within the synovium or indirectly by the secretion of pro-

inflammatory cytokines from atherosclerotic plaques.  

A better understanding of how inflammation and metabolism interact to drive 

the pathology of RA and associated CVD are therefore required for the 

development of therapeutics with higher degree of efficacy. Given the 

multifactorial nature of RA modern therapeutics may have to be more than just 

modulators of inflammation and treating RA associated co-morbidities may 

improve disease prognosis. Indeed it is already evident that a reduction of 

general inflammation in RA by some therapeutics is associated with an improved 

lipid profile as discussed below.  

6.3.8 Current therapeutics 

With an advancing knowledge of the mechanisms that drive RA pathogenesis the 

expectations of modern therapeutic regimes are now much greater. It is now no 

longer the aim to simply inhibit disease progression (although this reflects 

current clinical reality) but rather prevent the initial onset of disease through 

the identification of novel therapeutic targets and better biomarkers of disease 

activity.  
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6.3.8.1 DMARDs 

Disease modifying anti-rheumatic drug (DMARDs), in particular Methotrexate, 

have been widely used for the treatment of RA for nearly three decades. Several 

studies demonstrated that Methotrexate use is associated with improvement in 

disease activity e.g. measured as DAS28 in a proportion of patients (258-260). 

However, clinical improvements were often of short duration and in general a 

70% improvement of disease severity, ACR70 response, was only observed in less 

than 15% of patients (261). Even in the patients that enter clinical remission 

(DAS28 < 2.6) radiographic bone erosion is irreversible. Several studies suggest 

that radiographic damage progresses in some patients receiving DMARD therapies  

despite exhibiting ‘satisfactory’ clinical responses (262-264). Furthermore, up to 

60% of patients have reported adverse reactions to Methotrexate including 

nausea, diarrhoea, hepatitis and leukopenia which have only been resolved upon 

discontinuation of therapy (260). Methotrexate therefore does not exert 

therapeutic benefits in a large enough proportion of patients and simply delays 

the progression of disease onset and severity. Other DMARDs include 

sulphasalazine, hydroxychlorquine, leflunamide, and gold all of which mediate 

clinical benefit in a proportion of patients but often associated with significant 

toxicity and limited duration of benefit. Crucially none are used on the basis of 

sound pathological understanding of RA for which mechanism specific drug 

selections have been made.  Combinations of these agents have been shown to 

increase the benefits achieved and paradoxically to reduce adverse events.  

Despite this remission rates remain low and drug retention over the course of a 

chronic illness remains unacceptably low.  

Glucocorticoids have been widely used as an anti-inflammatory therapeutic in RA 

with some success. Glucocorticoids predominantly mediate their effects in RA 

via the suppression of T cell proliferation but also promote apoptosis of 

neutrophils whilst inducing macrophage phagocytosis and thereby promote 

inflammatory resolution (265-267). However, although glucocorticoids exert 

predominantly anti-inflammatory effects it is now well recognised that 

glucocorticoids are implicated in the progression of various metabolic disorders 

(268-270). Indeed, corticosteroid therapy was associated with a two fold 

increase of CVD related deaths in RA (248, 249, 271). The relationship between 

inflammation and cardiovascular disease in RA is complex. However, with an 



  74 

increased understanding of the mechanisms that drive RA pathogenesis several 

novel biologics have been developed that target either the cellular source(s) or 

the components of molecular pathways that mediate inflammation. As such 

modern biologics have given promise of more efficacious therapies for the 

treatment of RA.   

6.3.8.2 Rituximab and B cell targeted therapies 

Rituximab is a humanised monoclonal antibody which targets the cell surface 

protein CD20 exclusively expressed on mature B cells, but not plasma cells. The 

use of rituximab as a potential immuno-therapy was first demonstrated in 

primates where it was shown to potently induce B cell depletion (272). 

Rituximab was first used as a treatment for non-Hodgkin’s lymphoma but was 

subsequently shown to be a highly effective therapy in RA (273, 274). Although 

several studies have suggested that CD20 may function as a calcium channel or 

as a cell surface signalling receptor the function of CD20 and the mechanism by 

which rituximab initiated B cell depletion in RA remains unknown (275). Several 

mechanisms have been suggested including antibody dependent cell mediated 

cytotoxicity, complement dependent cytotoxicity and inhibition of NF-κB. 

Effects in RA synovitis may result from reduced antibody production, altered 

antigen presentation or reduced secretion of B cell derived pro-inflammatory 

cytokines. Beneficial effects of single doses of rituximab have been reported 

from 3-12 months whilst repeated courses of therapy have lead to improvements 

lasting up to 5 years thus far (276). Interestingly, Rituximab was shown to 

transiently improve endothelial dysfunction (277). As such B cell depletion is 

now a favourable strategy for the treatment of RA. Therefore much effort has 

been expended in developing biologics against BLyS (B-lymphocyte stimulator) 

and APRIL (A Proliferation Induced Ligand) which are members of the TNF 

superfamily of cytokines and promote B cell survival, differentiation and 

activation. Belimumab an anti-BLyS human monoclonal antibody is now in 

clinical trials for the treatment of systemic lupus erythematosus (SLE) and 

similar studies are likely to be extended to RA (278).  
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6.3.8.3 Anti-TNF α 

TNFα blockade in the clinic is clearly associated with a reduction in articular 

inflammation and damage (279, 280). There are now three TNFα antagonists, 

Infliximab, Etanercept and Adulimumab, which are used for the treatment of RA 

with varying modes of TNFα inhibition. Two further agents will shortly be 

generally available namely golimumab and certolizumab. Infliximab and 

Adalimumab are humanised monoclonal antibodies specifically raised against 

TNFα whereas Etanercept is a TNF-receptor Fc fusion protein and acts as a 

soluble receptor. In all cases TNFα is prevented from interacting with the TNF 

receptor on the surface of immune cells. Although, TNFα blockade is more 

effective than methotrexate alone it is effective in approximately 70% of 

patients and is usually used in combination with MTX with which it has 

synergistic benefits (281). In addition to the anti-inflammatory effects treatment 

with anti-TNFα therapeutics has been shown to reduce carotid intima-media 

thickness and improve the atherogenic lipid profile in RA, although this remains 

controversial (282-284).   Once again therefore novel biologics suggest a 

relationship between inflammatory pathways and vascular events in the RA 

population.  

6.3.8.4 Anti IL- 6 Receptor 

The success of TNFα blockade has raised the expectations for novel therapeutics 

and provided proof of concept that cytokine blockade represents a valid therapy 

in RA. However, as anti-TNFα therapy is not effective in a proportion of patients 

other therapeutic options are required. In particular anti-IL-6R therapy with 

Tocilizumab, a humanised monoclonal antibody against the IL-6 receptor has 

provided encouraging results in patients who have previously failed anti-TNFα 

therapy (212, 285, 286). However, moderate increases in serum total cholesterol 

and triglyceride concentrations were observed (212). Similar studies are likely to 

be extended to other cytokines with clinical trials already proceeding for IL-17 

and IL-12/23 neutralising therapies and targeting GM-CSFR (168, 287, 288). 
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6.3.8.5 Abatacept 

Abatacept is a fusion protein of the extracellular domain of the cytotoxic T 

lymphocyte-associated antigen 4 (CTLA4) linked to the Fc portion of human 

IgG1. Abatacept functions to inhibit the activation of T cells by blocking co-

stimulation through the binding of CTLA4 to CD80/86 expressed on the plasma 

membrane of antigen presenting cells. During clinical trials treatment of RA 

patients with abatacept yielded a high ACR response and is now currently 

approved in Europe for the treatment of RA (289). 

6.3.8.6 Statins 

As cardiovascular risk is associated with increased morbidity and mortality 

statins were trialled to assess their therapeutic potential in RA. Statins inhibit 3-

hydroxy3methylglutarylcoenzyme A reductase (HMG-CoA) which is the rate 

limiting enzyme in the synthesis of cholesterol and are therefore widely used for 

the treatment of atherosclerosis. Treatment of patients with Atorvastatin was 

shown to modestly inhibit disease severity in RA associated with a decrease in 

ESR and CRP and improved measures of vascular function and atherogenic lipid 

profiles (290, 291). Whilst at first it was not clear if these beneficial effects 

were attributable to lipid lowering mechanisms or direct regulatory effects upon 

inflammation simvastatin has since been shown to inhibit cytokine secretion 

from synovial fibroblasts (292, 293). These studies demonstrate that statins may 

be able to both improve the atherogenic lipid profile and exert direct anti-

inflammatory effects providing support of statins as a therapy in RA which are 

predicted to improve morbidity whilst reducing CVD associated mortality. 

Certainly many studies indicate that statins mediate anti-inflammatory effects in 

vitro and therefore the foregoing is plausible. 
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7 Materials & Methods
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7.1 General reagents & buffers 

7.1.1 Materials and reagents 

General chemicals: All chemicals were purchased from Sigma (UK) unless 

otherwise indicated. 

Plastics: All plastics used for cell culture were purchased from Corning and 

Gibco unless otherwise indicated.  

Avertin®: 3g 1,1,1 tribromoethanol was mixed with 3ml amyl alcohol and placed 

on a rotator to fully dissolve. Avertin should be stored at 4oC in the dark. Stock 

Avertin was diluted 1:40 with PBS before use and given at a dose of 250 mg/kg 

(~500 µl). 

Lipopolysaccharide (LPS): Ultra pure LPS (Calbiochem) derived from Escherichia 

coli was dissolved in sterile water at a stock concentration of 1 mg/ml and used 

at a final concentration of 100 ng/ml. 

LXR agonists: GW3965 and T0901317 (T1317) were synthesised by Schering-

Plough Corporation (UK) and supplied in 2 g vials. Both T1317 and GW3965 were 

dissolved in 5% Mulgofen (GAF Co, UK)/ PBS or 5% Chremophore (Sigma)/ PBS at 

the indicated dose and administered daily in vivo by either intraperitoneal 

injection, sub-cutaneous injection or by oral gavage as indicated. The 

endogenous LXR agonists 24(S), 25-epoxycholesterol, 22(S) hydroxycholesterol 

and 22(R) hydroxycholesterol were purchased from Biomol or Sigma. For in vitro 

use all agonists were dissolved in DMSO (Riedel-de Haen). 

7.1.2  Buffers & culture media 

0.5M EDTA pH8 (1L): 186.1 g ethylenediaminetetraacetic acid (EDTA) and 20 g 

NaOH was mixed with 800 ml dH2O adjusted to pH8 and then made up to 1 L 

with dH20. 

0.1 M Bicarbonate buffer (50 ml): 0.42 g sodium bicarbonate (NaHCO3) was 

dissolved in a final volume of 50 ml dH2O and stored at 4oC. 
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Complete media: RPMI1640, 10% heat inactivated foetal bovine calf serum, 

Penicillin (100 units/ml), Streptomycin (100 µg/ml) and L-Glutamine (2 mM) (all 

at final concentration from Invitrogen). 

Decalcificaiton buffer: 5.5 g of EDTA disodium salt was dissolved in 90 ml dH2O 

and made up to a final volume of 100 ml with formaldehyde. 

ELISA wash buffer: 1X PBS was mixed with 0.05% (final concentration) Tween 

20.  

PBS: Phosphate buffered saline was purchased from Invitrogen. 

PEA (PBS, EDTA, ALBA): 500 ml PBS, 1 ml 0.5 M filter sterilised EDTA pH8 and 

2.5 ml 4.5% ALBA (Bio Products Laboratory). 

Tris-acetate-EDTA (TAE) buffer: To make a 50x stock solution of TAE, 242 g of 

Tris base was dissolved in 750 ml dH2O. This was then mixed with 57.1 ml glacial 

acetic acid and 100 ml 0.5 M EDTA (Ph8). The final volume was then made up to 

1000 ml with dH2O. The buffer was then diluted 1:50 before use with dH2O. 

Trypan blue: 0.4 g Trypan blue was mixed with 80 ml PBS and brought to a slow 

boil, cooled to room temperature and made up to 100 ml with PBS. Stock Trypan 

blue was then diluted 1:2 with PBS before use. 

Tail tip lysis buffer: 1 ml 2 M Tris, 20 ml 0.5 M EDTA, 6.7 ml 3 M NaCl and 10 ml 

10% Sodium Dodecyl Sulphate (SDS) was dissolved in a final volume of 200 ml 

dH20. 500 µg/ml proteinase K (20 mg/ml stock concentration, Qiagen) was then 

added fresh before use. 

 

7.2 In vivo procedures 

7.2.1 Animal welfare 

All animals were housed in pathogen free conditions within the Biological 

Services Joint Research Facility (JRF) at the University of Glasgow. Animals had 

access to food and water ad libitum. All procedures were carried out in 
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accordance with project licences approved by the United Kingdom Home Office 

and in accordance with the Animals (Scientific Procedures) Act 1986.  

7.2.2 Mice 

C57BL/6 or DBA/1 mice: Male mice were purchased from Harlan at 

approximately eight weeks of age and allowed to acclimatise for one week 

before experimental procedures.  

LXR null mice: LXRα knockout (KO) or LXRβ KO mice and  

wild-type (WT) littermates on a C57BL/6 background were generated by Lexicon 

but supplied by Schering Plough Corporation (UK). These were bred in house and 

used to generate LXRα/β double KO mice (See results).  

All mice were culled by a recommended schedule 1 method or terminal 

anaesthesia by intraperitoneal injection of 700 µl of Avertin. 

7.2.3 Induction of Collagen-induced arthritis 

7.2.3.1 Induction of CIA in DBA1 mice. 

Induction of collagen-induced arthritis (CIA) was firstly described in rats (221) 

and subsequently in susceptible strains of mice (220). Male DBA/1 mice at 8 

weeks of age were used for induction of collagen-induced arthritis. 2 mg/ml 

type II bovine collagen (MD Biosciences) dissolved in 0.05 M glacial acetic acid 

was thawed overnight at 4oC. On the day of immunisation the collagen was 

mixed with an equal volume of 4 mg/ml Complete Freund’s Adjuvant (CFA – MD 

Biosciences) from M. Tuberculosis, to yield a final concentration of 1 mg/ml 

collagen. The collagen/ CFA mixture was emulsified on ice using a hand held 

homogeniser. To check the stability of the emulsification, 1 drop of the emulsion 

was dropped into a beaker of water. The emulsion was considered to be stable if 

it remained as a solid on the water surface. 

On the day of immunisation (day 0) the tail base of each mouse was shaved and 

the skin sterilised with 70% ethanol. Each mouse was intradermally injected with 

50 µl of the collagen/ CFA emulsion either side of the tail base so that each 
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mouse received a total of 100 µg of collagen (Figure  7.1). Mice were monitored 

daily for any signs of ulceration.   

 

Figure  7.1 Injeciton sites for induction of collagen induc ed arthritis. 
The collagen/ CFA is injected intradermally; the ne edle is inserted either side of the tail base 
(indicated by the arrows) and then pushed in approx imately 1 cm further in where the 
emulsification was injected (E). 

Three weeks post immunisation (day 21) 2 mg/ml bovine type II collagen was 

mixed with an equal volume of PBS. Each mouse was injected intraperitoneally 

with 200 µl (200 µg) collagen/ PBS. Mice were monitored daily for signs of 

disease. 

7.2.3.2 Induction of CIA in C57BL/6 mice 

C57BL/6 mice are generally considered resistant to the induction of arthritis as 

they have the H-2b haplotype. Induction of CIA in wild-type or transgenic mice 

on C57BL/6 background (8 – 12 weeks old) was carried out following the protocol 

described by Inglis JJ et al (225). Type II chicken collagen dissolved in 0.05 M 

glacial acetic acid (2 mg/ml - MD Biosciences) was mixed with an equal volume 

of 4 mg/ml CFA and emulsified using a hand held homogeniser and the stability 

of the emulsification checked as above. 

On the day of immunisation (day 0) the tail base of each mouse was shaved and 

the skin sterilised with 70% ethanol. Each mouse was injected intradermally with 

50 µl of the collagen/ CFA emulsification at two sites either side of the tail base 

( total of four injections) so that each mouse received a total of 200 µg of 

collagen. Mice were monitored daily for any signs of ulceration.   

Three weeks post immunisation (day 21) 2 mg/ml chicken type II collagen was 

mixed with an equal volume of PBS. Each mouse was injected intraperitoneally 

EE 
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with 200 µl (200 µg) collagen/ PBS. Mice were monitored daily for signs of 

disease. 

7.2.4 Clinical assessment of arthritis 

Mice were monitored for clinical signs of disease from day 21 onwards. Clinical 

signs were assessed by micro-calliper measurements which measured any 

swelling of the wrist joint. Secondly, a clinical score was assigned to each paw 

based upon disease severity where 1 = swollen digit(s), 2 = erythema, 3 = 

swollen paw/ ankle and 4 = loss of function, visualised and described in Table 

 7.1, allowing a maximum score of 16 per animal. 
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Score Description 
Clinical 

appearance 
Comments 

0 No disease 

 

No swelling or redness of any digits or 

any part of the lower leg. 

1 
Swollen 

digits 

 

Swelling of individual or multiple 

digits, sausage like in appearance, but 

not extending into the upper region of 

the paw. 

2 Erythema 

 

Redness of the paw. This was usually 

transient and lead to swelling of the 

paw. 

3 
Swollen 

paw/ ankle 

 

Swelling of paw and/ or ankle 

extending from the toes along the 

length of the paw. 

4 
Loss of 

function 

 

Usually accompanied by even more 

swelling. Function of front paws was 

assessed by the ability to grip a cage 

lid and/or for the rear paws the ability 

to walk up a cage lid held at an 

inclination of ~45o. 

Table  7.1 Visualisation of murine arthritis. 
Development of arthritis was assessed by clinical o bservations in which a maximum score 
of 4 was assigned to each paw (maximum score per an imal was 16).   

7.2.5 Histological assessment of arthritis 

For histological assessment rear paws were prepared by fixation for three weeks 

in 10% neutral buffered formalin (Sigma) and subsequent decalcification for 

three weeks in decalcification buffer, which was changed weekly, as described 
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(294). Paws were cut to 7 µM sections and stained with haemotoxylin and eosin 

(H&E, See below for details). The severity of arthritis was assessed by a blind 

observer and a histological score assigned. The severity of inflammatory 

infiltrate was scored as 0 = normal, 1 = minimal inflammatory infiltrate, 2 = 

synovial thickening and infiltration, 3 = moderate thickening  and 4 = severe 

thickening more than width of epiphysis. Articular destruction was separately 

graded as 0 = normal, 1 = erosion of < 25% of articular surface, 2 = 26-50%, 3 = 

51- 75% and 4 = > 75%. 

7.3 Ex vivo procedures 

7.3.1 Preparation of paws for histological analysis 

7.3.1.1 Tissue processing, embedding & sectioning 

Tissue processing 

Paws were removed from mice by cutting through the leg just above the ankle 

joint and the toes removed to aid the diffusion of buffers into the tissue. The 

paws were placed in approximately 5 ml of neutral buffered formalin (Sigma) for 

2 weeks at room temperature. After fixation the paws were then decalcified by 

incubating the paws in decalcification buffer (see buffers above) on a rotator for 

two weeks at room temperature. During this period the buffer was replaced 

approximately every three days to prevent re-deposition of calcium.  

The tissues were then dehydrated in an automated tissue processor (Thermo, 

Citodel 1000) which immersed the tissues into increasing concentrations of 

ethanol until they were completely dehyradated and then immersed in wax, to 

allow diffusion into the tissue; detailed below: 

1. Neutral buffered formalin  30 min 

2. 70% ethanol    1 hrs 

3. 90% ethanol    1 hrs 
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4. 95% ethanol    1 hrs 

5. 100% ethanol    2 hrs X 3 

6. Xylene     2 hrs X 3 

7. Paraffin wax     4 hrs X 2 

Tissue embedding 

Once the samples were processed they were embedded into wax blocks (Thermo 

histocentre 3) and allowed to cool. The blocks were then stored at 4oC until they 

were required for sectioning. 

Sectioning of tissue 

Firstly, the blocks were pared on the microtome set at 25 µm to allow quicker 

cutting through the wax. Once the tissue was reached the blocks were removed 

and placed on ice cold water to harden the paraffin wax. Once cooled the 

microtome was set to cut at a thickness of 7 µm and the required number of 

sections cut in ribbons. The ribbons of wax/ tissue were then placed in a floating 

water bath set at 40oC. Each section was then separated using a scalpel and then 

placed on a charged frosted microscope slide (Superfrost plus, VWR) and placed 

on a hotplate (Raymond A Lamb Hotplate) at 55oC at allowed to dry for 

approximately 30 min. The slides were then stored at 4oC until needed for 

staining. 

7.3.1.2 Haematoxylin and Eosin staining 

 
Paws were embedded and prepared in paraffin sections as described above. The 

sections were then stained with Haematoxylin and Eosin (H&E) as described 

below. All reagents were purchased from Sigma. The ethanol solutions were 

prepared by diluting 100% ethanol with dH2O to the required final percentage 

(v/v). 
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Firstly, the wax was softened by incubating the sections in an oven (GenLab) at 

60oC for approximately 35 min and then the wax removed from the sections by 

immersing them in xylene. The sections were then re-hydrated by incubating 

them in step wise decreasing concentrations of ethanol, to allow subsequent 

staining with H&E which are water soluble. 

These steps are summarised below: 

1. Incubate slides at 60oC   35 min 

2. Xylene     3 min X 2 

3. 100% Ethanol    3 min X 2 

4. 95% Ethanol    3 min X 2 

5. 90% Ethanol    3 min 

6. 70% Ethanol    3 min 

7. dH2O     3 min 

The sections were then stained with Harris Haematoxylin (Haematein), which 

binds to nucleic acids, and any excess stain removed by washing the sections 

gently by placing them in a sink with running water, detailed below: 

8. Harris Haematoxylin  2 min 

9. Running water   ~3 min 

After staining with Haematoxylin the sections were then counter stained with 

Eosin which binds to basic cellular and extracellular matrix proteins: 

10. 1% Eosin    2 min 

11. Running water   ~3 min 
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The sections were then dehydrated by incubating the sections in step wise 

increasing concentrations of ethanol. 

12. 70% Ethanol    30 s 

13. 90% Ethanol    30 s 

14. 100% Ethanol    30 s X 2 

15. Xylene*    1 min X 2 

* Clean xylene was used to prevent wax from the de-waxing process from 

sticking to the sections and thereby obscuring fields of view. 

One drop of DPX mount (VWR) was placed over the tissue section using a Pasteur 

pipette and a cover slip (VWR) gently lowered over tissue section. The DPX was 

allowed to dry before visualising slides.  

7.3.2 Anti-collagen antibody analysis 

Serum IgG2a and IgG1 anti-collagen antibodies titres were measured by Enzyme-

Linked Immunosorbent Assay (ELISA) following the general ELISA protocol as 

described in 7.5.1. Plates were coated with the indicated concentration of the 

type II collagen used for immunisation (MD Biosciences). Serum samples were 

serially diluted 1:2 with assay diluent and optical density measured at 450 nm. 

7.3.3 Lymph node intracellular cytokine analysis 

For intracellular cytokine staining inguinal and popliteal lymph nodes were 

removed and single-cell suspensions obtained by crushing the cells through a 

sterile monofilament filter cloth (100 µM- Cadisch). The number of viable cells 

(assessed by Trypan Blue staining) were counted and resuspended at 1 x 106/ml 

in complete media and stimulated overnight with phorbol myristate acetate 

(PMA - 50 ng/ml, Sigma) and Ionomycin (500 ng/ml, Sigma) in the presence of 

Golgi-Plug (1 mg/ml, BD Biosciences) which was added 1 hr after stimulation 

with PMA/ Ionomycin.  
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After incubation the cells were washed by addition of PBS and centrifugation at 

1200 RPM (300 g) and each sample split into three tubes containing 

approximately 3 X 105 cells/ tube. On the first sample an additional three tubes, 

were used for purposes of compensation (Table  7.2). The cells were then stained 

with 2 µl/ tube CD4 FITC or isotype control in 50 µl mouse Fc block (BD 

Biosciences), to inhibit non-specific interactions through the Fc portion of 

antibodies used for staining, and incubated at 4oC for 30 min in the dark. The 

cells were then washed with 2% FCS/ PBS and the supernatant discarded 

followed by incubation with 100 µl/ tube of cytofix/ cytoperm (kit supplied by 

BD Biosciences), to fix and permeabilize the cells, on ice for 20 min. The cells 

were washed in perm wash and then stained with anti-IL-17 PE, anti-IFNγ PE or 

isotype control (all BD Biosciences) and incubated at 4oC for 20 min. The cells 

were then washed and resuspended in 200 µl 2% FCS/ PBS. The cells were 

analysed on a FACS Calibre (BD Biosciences) using Cell Quest software TM. 

Intracellular cytokine staining 

1. Unstained 

2. IgG FITC, IgG PE 

3. CD4 FITC, IgG PE 

4. IgG FITC, IFNγ PE 

5. CD4 FITC, INFγ PE 

6. CD4 FITC, IL-17 PE 

Table  7.2 Stainig for intracellular cytokines 
The different combination of stains used for staining of intracellular cytokines on CD4+ T 
cells. Anti IL-17 PE and anti IFNγ PE share the same isotype. 

7.3.4 PCR Genotyping 

7.3.4.1 Preparation of tail tips for genotyping 

Mice were anaesthetised with isofluorane. Once deeply anaesthetised a 5 mm 

tail-tip was cut and the tail cauterised. 
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The tail-tip was placed in 100 µl tail-tip lysis buffer and incubated overnight at 

55oC. After the overnight incubation 500 µl of DNase free water (Ambion) was 

added to the tail-tip solution and incubated at 100oC for 10 minutes. The tubes 

were then placed on ice and once cooled the tail-tip solution was then 

centrifuged at 13000 RPM for 5 min. The supernatant was then placed in a fresh 

tube to be used for genotyping by polymerase chain reaction (PCR).  

7.3.4.2 PCR genotyping 

The following conditions and primer sequences (designed by Schering- Plough) 

were used for genotyping of the respective LXR null mice. The primers 

(synthesised by VH Bio) were reconstituted in Diethyl Pyrocarbonate (DEPC) 

treated water at a stock concentration of 100 µM and then diluted 1:5 with DEPC 

treated water for a working stock.  

LXRα knockout: 

The following primers were used for PCR genotyping of LXRα KO mice: 

ORG28-2 5’-TAGACACGGATGATTTGG 

ORG028-18 5’-GGAACTCACTATGTAGACC 

1µl of each primer  working stock (0.4 µM final) was added to a 45 µl PCR master 

mix (Thermo Scientific) 2.5 mM MgCl2 (final concentration ) and made up to 50 

µl with DEPC water (Ambion) and the PCR product amplified using on a thermal 

cycler (Eppendorf) using the setting below: 

1. 95oC, 10 min 

2. 95oC, 30 s 

3. 59oC, 30 s 

4. 72oC, 1 min – repeat steps 2 to 4 35 times 

5. 72oC, 10 min 

6. 4oC, 24 hr 
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The primers should amplify an 880 bp from the wild-type allele or a 470 bp PCR 

product from the Cre-excised allele. 

LXRβ knockout: 

The following primers were used for PCR genotyping of LXRβ KO mice: 

ORG029-98 5’-GTCACGAAGCAGCCTGCTGAAC 

ORG029-99 5’-GTTAGGATCTCCCATGATAAGAG 

ORG029-101 5’-TGAGGCCCAGGCTAGAGGTT 

1µl of each primer working stock (0.4 µM final) was added to a 45 µl PCR master 

mix (Thermo Scientific) 1.5 mM MgCl2 (final concentration) and made up to 50 µl 

with DEPC water (Ambion) and the PCR product amplified using on a thermal 

cycler (Eppendorf) using the setting below: 

1. 95oC, 10 min 

2. 95oC, 30 s 

3. 55oC, 30 s 

4. 72oC, 1 min – repeat steps 2 to 4 35 times 

5. 72oC, 10 min 

6. 4oC, 24 hr 

The primers should amplify a 437 bp product from the wild-type allele or a 640 

bp PCR product from the Cre-excised allele. 

7.3.4.3 Agarose gel electrophoresis 

All agarose gels used for PCR genotyping were 2% agarose weight/volume. 

Agarose gels were made by mixing 3 g agarose (Invitrogen) with approximately 

150 ml Tris-acetate-EDTA (TAE) buffer followed by heating in a microwave at full 

power for approximately three minutes until the agarose was dissolved. To 150 
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ml agarose/ TAE solution, approximately 5 µl ethidium bromide (Sigma) was 

added and mixed by gentle shaking. The solution was then poured into an 

agarose gel cast and allowed to set. The gel was then placed in an 

electrophoresis tank containing TAE buffer. Approximately 25 µl of the PCR 

product was then transferred into each well in the agarose gel alongside 5 µg of 

a 1Kbp DNA ladder (Invitrogen). The PCR products were electrophoresed at 100v 

for approximately 25 min followed by visualisation under UV light (Gel logic 200 

imaging system) and Kodak software. 

7.3.5 Preparation of bone marrow macrophages 

Mice were culled by a recognised schedule 1 method. The rear legs were 

removed by cutting through the connective tissue at the top of the tibia and 

placed on ice. All skin and muscle was then removed to give clean and intact 

tibia and femurs. In a tissue culture flow hood sterile scissors were used to cut 

through the top and bottom of each tibia and femur. The bone marrow was then 

flushed out with complete media using a 19G, 20G or 23G needle and syringe 

into a Petri dish. Using a 1ml pipette tip the bone marrow was then pipetted up 

and down several times to generate a single cell suspension and pelleted by 

centrifugation at 1200 RPM (~350 g) for 5min. The supernatant was then 

decanted and 500 µl of red blood cell lysis solution (Sigma) added to the cell 

pellet and incubated at room temperature. After two minutes 5ml of complete 

media was added and the cells pelleted by centrifugation. The number of viable 

cells (assessed by staining with Trypan Blue) were then counted using a 

haemocytometer and then resuspended at a concentration of 7X105 cells/ml in 

complete media supplemented with 10 ng/ml recombinant human MCSF 

(Peprotech). Human MCSF is crossreactive in mouse derived cells. 7x 106 cells 

were then incubated in a petri dish for 4 days at 37oC, 5% CO2. On the fourth day 

the media and non-adherent cells were removed and replaced with fresh media 

supplemented with 10 ng/ml MCSF and incubated for a further 3 days. On day 7 

the media was removed and the cells removed by cell scraping using ice cold 

PBS. The number of viable MCSF matured macrophages were then counted and 

plated out at the required concentration. 
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7.4 Human cell and tissue procedures 

7.4.1 Patients and clinical samples 

Leukocytes were purified from buffy coats or from blood of healthy controls or 

patients meeting ACR criteria for rheumatoid arthritis, CASPAR criteria for 

psoriatic arthritis or New York criteria for the diagnosis of ankylosing spondylitis 

after obtaining written informed consent. All RA patients were receiving DMARD 

therapy. This clinical component of our study was approved by the Glasgow East 

Ethics Committee. 

7.4.2 Separation of human leukocytes from peripheral blood 

If peripheral blood mononuclear cells (PBMCs) were being purified from buffy 

coats then the blood was first diluted 1:2 with PBS. Blood donated from patients 

or healthy controls was used neat. 

Approximately 10 ml of fresh or diluted blood was layered on top of 4 ml room 

temperature Histopaque 1077 and then centrifuged 2000 RPM (400 g) for 20 min 

at room temperature.  The mononuclear cell layer was then carefully removed 

using a pasteur pipette and transferred into a clean 15 ml tube, pooling two cell 

layers per sample. The cells were then washed by addition of 10 ml cold PEA 

followed by centrifugation for 5 min at 1200 RPM (200 g) at 4oC. This was 

continued until all the cells from the same sample were pooled into a single 

tube. The number of viable cells (assessed by Trypan Blue staining) were 

counted using a haemocytometer and then diluted to the required 

concentration. Cells were cultured at 37oC in 5% CO2 controlled environment and 

treated as described. 

 

 



  93 

7.4.3 Purification of human CD14+ monocytes and CD3+ T cells 

Purification of CD14+ monocytes and CD3+ T cells was carried out following 

magnetic associated cells sorting (MACS) protocol described by Miltenyi Biotec 

Inc. 

PBMCs were prepared as previously described. The PBMCs were then incubated 

for 15 min at 4oC in 20 µl of CD14+ or CD3+ human micro beads (Miltenyi) and 180 

µl PEA per 1 X 107 cells on a MACSmix tube rotator (Miltenyi Biotec). 

Approximately 10 ml of PEA was then added to wash the cells and centrifuged at 

1200 RPM (200g). The supernatant was discarded. The cells were then 

resuspended in 1-2 ml PEA and the CD3+ or CD14+ cells purified by positive 

selection on an AutoMACS separator (Miltenyi Biotec) using the possel 

programme. The positive selection process was then repeated on the purified 

cells to increase cell purity; typically greater than 97% as assessed by FACS 

analysis staining for CD3+ or CD14+ cells (see results). The number of viable cells 

were then counted and diluted to the required concentration. Cells were 

cultured at 37oC in 5% CO2 controlled environment and treated as described 

below. 

7.4.4 Assessment of cell purity 

FACS analysis was used to that the recommended level of monocyte and T cell 

purity was being achieved as anticipated when using the Miltenyi MACS method 

of leukocyte purification. After purification cells were firstly washed by addition 

of PBS and centrifugation at 1200 RPM (300 g) and each sample split into two 

tubes per sample containing approximately 1 X 106 cells/ tube. Monocytes were 

stained with CD14-FITC or isotype control and the T cells were stained with CD3-

PE or isotype control (all BD Bioscience) and incubated for 15 min at room 

temperature. The cells were then washed and fixed by addition of 200 µl 

paraformaldehyde (sigma) and incubated for 10 min at room temperature.  The 

cells were then washed, resuspended in 200 µl PEA and stored at 4oC until 

analysis. The cells were analysed on a FACS Calibre (BD Biosciences) using cell 

quest software to determine the percentage of CD14+ or CD3+ cells. 
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7.4.5 Co-culture of human macrophages and T cells 

Co-culturing activated monocytes and T cells was first developed as an in vitro 

model of inflammation by Vey et al in 1992 in which they demonstrated the 

secretion of IL-1β was dependent upon interactions between THP-1 cells and 

phorbol myristate acetate/ phytohemagglutinin (PMA/PHA) stimulated fixed 

peripheral blood derived T cells (295). Since its first description this assay is now 

widely used and is accepted as an in vitro model of chronic inflammation which 

may lead to tissue destruction in diseases such as rheumatoid arthritis (reviewed 

in (296)). 

Human monocytes were purified as described above and resuspended at 5 X 105 

cells/ml in complete media supplemented with 50 ng/ml (final concentration) 

recombinant human Macrophage Colony Stimulating Factor (MCSF - PeproTech). 

The monocytes were cultured in a 96 well plate, 5 X 104 cells/ well, in a final 

volume of 200 µl media for six days. 

At the same time syngeneic T cells were purified as described above and 

resuspended at approximately 2.0 X 106 cells/ml in complete media 

supplemented with recombinant human IL-2 (25 ng/ml), IL-6 (100 ng/ml) and 

TNF-α (25 ng/ml) (all eBioscience) and cultured at 37oC, 5% CO2 in T 25 flasks. 

After six days the media was removed from the MCSF matured macrophages and 

discarded. The cytokine activated T (TcKs) cells were washed by addition of PEA 

and centrifugation at 1200 RPM (200 g) for 5 min. The TcKs were then 

resuspended at 2.0 X 106 cells/ml in complete media and 2.0 X 105 cells were 

transferred into each well containing MCSF matured macrophages; excluding 

three wells in which macrophages were cultured alone as a control. Similarly, 

three wells were reserved for culture of TcKs alone. The final volume of media 

was made up to 200 µl containing LXR agonists at the final concentration as 

indicated in the results. The TcKs were co-cultured for 24 hrs before 

supernatants were removed for cytokine analysis and cells were lysed in buffer 

RLT for TaqMan analysis. 
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7.4.6 Transwell assays 

Human CD14+ monocytes and CD3+ T cells were purified as described above. The 

macrophages were cultured in a HTS transwell 96 well plate (Corning) and 

differentiated with MCSF as described above. The CD3+ T cells were stimulated 

as described above. After six days the media was removed from the 

macrophages and replaced with 117.5 µl of fresh complete media supplemented 

with the LXR agonists at the final concentration as indicated in the results. A 

transwell insert (HTS transwell 96 well permeable support, Corning) was then 

placed into each well; a transwell with a pore size of 0.4 µm was selected to 

allow diffusion of molecules but not chemotaxis of cells. The TcKs were then 

washed, as described above, and resuspended in complete media at a 

concentration of 5.3 x 106 cells/ml.  37.5 µl of cells (2.0 x105 TcKs) was then 

transferred either into the upper or lower compartment so that the TcKS were 

separated or in co-culture with the macrophages respectively. In all conditions 

the final volume of media in the lower and upper compartments was made up to 

235 µl and 75 µl respectively. LXR agonist or vehicle was added to each 

compartment at a final concentration as indicated in the results. The cells were 

then cultured at 37oC, 5% CO2, for 24 hrs after which the supernatant from each 

compartment in each well was removed and pooled for cytokine analysis (see 

below).  

7.4.7 LPS stimulation of human CD14+ monocytes 

Human monocytes were purified as described above and resuspended at 1 x 106 

cells/ml in complete media and plated out at 1 x 105 cells/well in a 96 well 

plate. The monocytes were then treated with LXR agonists, see above for details 

of agonists, at a final concentration between 0.1 µM to 10 µM depending on the 

agonist as indicated in the results or vehicle (DMSO) and incubated for 24 hrs at 

37oC, 5% CO2. After 24 hrs the media was removed and replaced with fresh 

complete media supplemented with fresh agonist at the same final 

concentration and + 100 ng/ml LPS (Calbiochem). The monocytes were then 

cultured for a further 24 hrs after which the culture supernatants were removed 

for cytokine analysis (see below) and the cells lysed in buffer RLT (Qiagen) for 

RNA extraction and gene expression analysis (see below). 
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7.4.8 Dissection of synovial membrane 

Synovial membrane was obtained from patients with rheumatoid arthritis or 

osteoarthritis undergoing synovectomy or joint replacement surgery. Synovial 

membrane samples were obtained following informed written ethical consent 

approved by Glasgow East Ethics Committee. Synovial membrane (SM) was 

dissected out using sterile forceps and scissors and then cut into small pieces of 

tissue using sterile scalpels. The tissue was then digested with 0.2 mg/ml (final 

concentration) LPS free collagenase (Liberase LB3, Roche) and incubated at 37oC 

for 2 hrs in serum free media on a rotator. The digested tissue was then passed 

through a sterile monofilament filter cloth (100 µm- Cadisch) to make a single 

cell suspension. The cells were then washed in PEA by centrifugation at 1200 

RPM (~200 g) for 5 min and then resuspended in complete media. The number of 

viable cells were then counted using a haemocytometer and diluted to 2 x 106 

cells/ml. The cells were cultured at 37oC, 5% CO2 in a 96 well plate at a density 

of 2x 105 cells/ well and treated as described. 

7.5 Cytokine & chemokine analysis 

7.5.1 General ELISA protocol 

Enzyme Linked Immunosorbent assay (ELISA) was used to measure the 

concentration of human IL-6, TNFα and IL-23, murine IL-6 and murine anti-

collagen IgG1 or IgG2a in cell culture supernatants or serum. The concentrations 

of antibodies and buffers used for the analysis of each cytokine are shown in 

Table  7.3. 

Immunol microtiter (Thermo Labsystems) plates were coated with detection 

antibody in the appropriate buffer and incubated overnight at 4oC. The plates 

were then washed with 0.05% Tween/ PBS followed by addition of blocking 

buffer, to block non-specific binding, and incubated for 1 hr at 37oC. An eight 

point standard curve was made using recombinant mouse or human cytokine 

dissolved in complete media at a top standard concentration of 2,000 pg/ml and 

serially diluted 1:2. 100 µl of each concentration of standard was added in 

duplicate to the plate along with two wells containing only media. Samples were 
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then diluted 1:2-5 with complete media (assay and donor dependent) and 100 µl 

transferred to each well. The plates were covered and then incubated for 2 hrs 

at 37oC. The plates were washed with 0.05% Tween/ PBS followed by addition of 

secondary antibody and incubation at 37oC for 1 hr. The plates were washed and 

streptavidin HRP diluted 1:1000 with diluent was added to each well and the 

plates incubated for 1 hr at 37oC. After incubation the plates were washed 

before addition of 100 µl 3,3’,5,5’-tetramethylbenzidine (TMB) peroxidase 

(Biosource). The reaction was stopped by addition of 100 µl Stop Solution 

(Biosource) and the mean intensity was read at 450nm on a microplate reader 

(Dynex Technology). 
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Cytokine Coating solution Blocking 

solution and 

diluent 

Concentration of 

primary antibody 

Concentration of 

secondary antibody 

Streptavidin HRP 

dilution 

Antibody 

supplier. 

Hs IL-6 PBS 0.5% BSA/ 

PBS 

2 µg/ml(100 µl/ 

well) (polyclonal) 

1.5 µg/ml (100 µl/ 

well) (polyclonal) 

1:1250 Invitrogen 

Hs TNFα PBS 0.5% BSA/ 

PBS 

2 µg/ml (100 µl/ 

well) (polyclonal) 

1.5 µg/ml (100 µl/ 

well) (polyclonal) 

1:1250 Invitrogen 

Hs IL-23 PBS 0.5% BSA/ 

PBS 

2 µg/ml (100 µl/ 

well) (polyclonal) 

1.5 µg/ml (100 µl/ 

well) (polyclonal) 

1:1250 Invitrogen 

Mm IL-6 0.1 M 

bicarbonate 

buffer 

10% FCS/ PBS 1 µg/ml: 50 µl/ well 

(MP5-32C11) 

1 µg/ml: 50 µl/ well 

(polyclonal) 

1:1000 (extravidin 

peroxidase) 

BD pharmingen/ 

Sigma 

Mm Anti-

collagen IgG1 

0.1 M 

bicarbonate 

buffer 

10% FCS/ PBS 0.4 µg/ml type II 

collagen (50 µl/ 

well) 

0.5 mg/ml: 50 µl/ 

well (A19-3) 

1:1000 (extravidin 

peroxidase) 

BD pharmingen/ 

Sigma 

Mm Anti-

collagen 

IgG2a 

0.1 M 

bicarbonate 

buffer 

10% FCS/ PBS 0.4 µg/ml type II 

collagen (50 µl/ 

well) 

0.5 mg/ml: 50 µl/ 

well (R19-15) 

1:1000 (extravidin 

peroxidase) 

BD pharmingen/ 

Sigma 

Table  7.3 Cytokine analysis by ELISA 
Human (Hs) and murine (Mm) cytokines were analysed using antibody pairs. The detection antibody was ad ded to each well diluted in the appropriate 
coating buffer and the secondary antibody added in assay diluent. The final concentration of each anti body and the volume added to each well is shown. 
All antibodies are monoclonal unless indicated  and  the clone number is shown in brackets.  
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7.5.2 Luminex assay 

Multiplex cytokine and chemokine analysis of cell culture supernatants or mouse 

serum concentrations was done by Luminex analysis (Biosource) on a Bio-Plex 

system (Bio-Rad). Standards were dissolved in 1 ml of assay diluent to 

reconstitute the each cytokine standard to the required concentration.  

Analysis of human cell culture supernatants 

For human cell culture supernatants the human cytokine twenty five-plex assay 

(Biosource) was able to be analyse the following cytokines and chemokines: 

Eotaxin, GM-CSF, IFNγ, IL-1RA, IL-1β, IL-2, IL-4, IL-5, IL-6 IL-7, IL-8, IL-10, IL-

12p40/p70, IL-13, IL-15, IL-17, IP-10, MCP-1, MIG, MIP-1α, MIP-1β, RANTES and 

TNFα.   

Mouse serum analysis 

Serum cytokines were analysed using the mouse cytokine twenty-plex 

(Biosource) which was able to measure the concentration of the following 

cytokines and chemokines: 

FGF, GM-CSF, IFNγ, IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p40/p70, IL-13, 

IL-17, IP-10, KC, MCP-1, MIG, MIP-1α, TNFα and VEGF.  

For both mouse and human all samples were diluted 1:2 with assay diluent and 

50 µl added to each well, samples were tested in duplicate following the 

manufacturer’s protocol.  

7.6 Gene expression analysis 

7.6.1 Purification of RNA 

DNase digestion was not performed when extracting RNA as all QRT-PCR primers 

and probes were selected on the basis that they crossed intron/ exon boundaries 

and would therefore not detect genomic DNA in a TaqMan assay.  
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7.6.1.1 RNA extraction from tissue 

Tissues were dissected from mice, snap frozen and stored at -80oC until required 

for RNA extraction to maintain RNA stability. 

The tissues were placed in a homogeniser tube (Precellys Kit CK28) and 1 ml of 

Trizol added to each sample. The tissue was then homogenised in a Precellys 

homogeniser set at 2 X 10 sec at 6500 RPM.  

After homogenisation 200 µl of chloroform was added to the sample, vortexed 

and the contents transferred to a fresh RNase free tube (eppendorf). The tubes 

were then centrifuged at 13,000 RPM for 20 min at 4oC to separate out the 

aqueous phase containing the RNA.  

The RNA was then precipitated from the aqueous layer by addition of 500 µl 

propan-2-ol and then pelleted by centrifugation at 13,000 RPM for 20 min at 4oC. 

The propan-2-ol was then removed and the RNA pellet then washed by addition 

of 300 µl 70% ethanol and centrifugation at 13,000 RPM for 5 minutes. The 

ethanol was then removed and the RNA pellet allowed to air dry for 

approximately 5 min before being dissolved in 300 µl Diethyl Pyrocarbonate 

(DEPC) treated water. 

The RNA was then quantified using a spectrophotometer (Amersham Biosciences) 

by diluting 1 µl of the RNA in 49 µl (1:50) of water. The stock RNA was then 

diluted to 0.2 µg/µl with DEPC treated water and stored at -80oC before cDNA 

synthesis. 

7.6.1.2 RNA extraction from cells 

RNA extraction from cells cultured in 96 well plates was done following the 

RNeasy 96 protocol by vacuum technology (Qiagen) as described by the 

manufacturers. The cells were lysed in 100 µl of buffer RLT, gently agitated to 

aid cell lysis and stored at -80oC until required for RNA extraction. The RNA was 

then precipitated by the addition of 100 µl 70% ethanol. The samples were then 

added to the RNeasy 96 plate to bind the RNA and a vacuum applied to remove 
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the supernatant. The columns were then washed to remove protein impurities 

and air dried before eluting the RNA in approximately 60 µl DEPC treated water. 

7.6.2 cDNA Synthesis 

The following pre-reactions were set up in a thin walled 96 well plate and then 

covered with a foil lid: 

1 µg RNA    5 µl* 

Random hexamers 50 ng/µl 1 µl 

10 mM dNTP mix    1 µl 

DEPC water    3 µl* 

Final volume    10 µl 

* RNA extracted from tissue or large volume cell cultures was previously 

quantified and diluted to 0.2 µg/µl using DEPC water. However, if RNA was 

extracted from cells cultured in 96 well plates then 8 µl of RNA was added and 0 

µl DEPC water to maintain a final reaction volume of 10 µl. 

The plate was then pulse centrifuged to mix the contents and the RNA denatured 

in a PCR machine on the following programme:  

1. 65oC 5 min 

2. 0oC 1 min 

3. 4oC  Forever 

A second master mix was then prepared: 

5X RT buffer    4 µl 

50 mM MgCl2    2 µl 

0.1 M DTT    2 µl 

RNase OUT    1 µl 
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Superscript II RT (200 u/ µl) 0.25 µl 

DEPC water    0.75 µl 

Final volume    10 µl 

The master mix was then added to the contents of each well and mixed by pulse 

centrifugation. The cDNA was then synthesised by incubating the plates in a PCR 

machine (eppendorf) on the following programme: 

1. 25oC 2 min 

2. 42oC 50 min 

3. 70oC  15 min 

4. 4oC Forever 

The cDNA was then diluted 1:3 with DEPC water before using for PCR for analysis 

of required target genes. 

7.6.3 TaqMan QRT-PCR 

The cDNA samples were prepared as previously described and assayed in 

quadruplicate in 10 µl final reaction volumes in a 384 well plate format. All 

reagents were purchased from Applied Biosystems. 

The following controls were required for TaqMan quantitative reverse 

transcriptase-polymerase chain reaction (QRT-PCR) when synthesising the cDNA: 

1. no RNA 

2. no template control (only water). 

Nb As all primers and TaqMan probes purchased were designed to span from 

exon to exon over intron gaps no control was required to check for 

contamination of genomic DNA. 
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A master mix of the following reagents for each primer and probe set was made; 

volumes are per QRT-PCR reaction: 

QPCR 2X master mix  5 µl 

Acid on Demand*  0.5 µl 

DEPC treated water  1.5 µl 

    7 µl 

* Acid on Demand (AoD) = Primer and TaqMan probe mix.  

The following AoDs were used for TaqMan analysis of human and mouse cDNA 

samples (Table  7.4). 

Gene name Species Catalogue 
number 

Nr1h3 (LXRα) Human Hs00172885_m1 
Nr1h2 (LXRβ) Human Hs00173195_m1 
TAF2 (TBP) Human Hs00162527_m1 

ABCA1 Human Hs00194045_m1 
TLR4 Human Hs01061963_m1 
TBP Human 4333769F 
TBP Mouse Mm00446973_m1 

Nr1H3 (LXRα) Mouse Mm00443454_m1 
Nr1H2 (LXRβ) Mouse Mm00437262_m1 

ABCA1 Mouse Mm00442646_m1 
Table  7.4 TaqMan AoDs: primers and probes. 
The details of primer and TaqMan probe mixtures purchased from Applied Biosystems used 
for TaqMan analysis of samples from humans or mice. 

The master mix was then added to a 384 well plate using a 16 channel pipette (7 

µl per well). 3 µl of each cDNA sample was then added in quadruplicate and 

covered with an optical cover. The plate was then centrifuged at 2000 RPM for 2 

min to mix the contents. The QRT-PCR reaction was then performed on an 

Applied Biosystems 17900HT machine for 40 cycles. 

The expression of target genes was then quantified relative to the house keeping 

gene using SDS2.2 software. 
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7.7 Statistical analysis 

All results are displayed + standard deviation and all statistical analysis was done 

by students T test or ANOVA test, as indicated in figure legends, using the Graph 

Pad Prism 4 software. A p value of < 0.05 was considered statistically significant. 
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8 Activation of the Liver X Receptors potentiates 

the severity of articular inflammation in vivo 
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8.1 Aims & Introduction 

Activation of LXRs has been confirmed by several studies to exert beneficial 

effects in both the ApoE-/- and the LDLR-/- murine models of atherosclerosis (96, 

97, 102). This is mediated primarily by transcriptional upregulation of LXR target 

genes ABCA1/ G1, ApoE and LDLR which promote reverse cholesterol transport 

and excretion of cholesterol from the body (49). Many pharmaceutical 

companies are currently attempting to develop LXR specific agonists for the 

treatment of metabolic disorders. More recently LXR activation was shown to 

inhibit the release of the pro-inflammatory cytokine IL-6 from murine LPS 

stimulated macrophages in vitro (117). This study was the first to demonstrate 

an immuno-modulatory role for LXRs and although a role for LXR activation upon 

other inflammatory pathways in vivo remained unknown these data suggested an 

anti-inflammatory effect of LXR activation. We therefore hypothesised that 

whilst LXR agonists may be able to ameliorate atherosclerosis through the 

modulation of a cholesterol homeostasis they may also exert anti-inflammatory 

effects and therefore offer potential as a therapy in RA.  

The murine CIA model is a widely utilised model of human RA - it is initiated by 

activation of the immune response to an exogenous antigen that in turn 

promotes breach of tolerance to self antigen. It allows exploration of 

components of both the innate and adaptive arms of the immune response (219). 

The utility of this model has been further exemplified through the development 

of anti-TNFα therapy which was first suggested to offer therapeutic benefit for 

RA through studies in murine CIA (199). The CIA model therefore offers the 

potential to explore the role of LXRs and downstream molecular pathways upon 

inflammation in arthritis. I therefore sought to determine the effects of LXR 

activation upon inflammation generally and the development of arthritis 

specifically in the murine model of CIA. However, to ensure activation of LXRs it 

was first necessary to optimise the route, dose and frequency of agonist 

administration. 
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8.2 Optimisation of LXR agonist delivery 

8.2.1 Intraperitoneal injection is the optimal route for 

administration of LXR agonists 

Several synthetic LXR agonists, including T1317 and GW3965, have been used in 

the literature to explore the role of LXRs in vivo. However, these compounds 

were not commercially available and since patents initially prevented the use of 

GW3965 we were restricted at the outset of my studies to the use of T1317. 

Furthermore, both compounds had previously been administered by oral gavage 

as delivery of medications orally is favoured over injection. It was therefore first 

necessary to determine the optimal route of agonist administration to ensure 

maximum bioavailability of LXR agonists and subsequent activation of LXRs. Male 

7 week old C57BL/6 mice were treated daily with vehicle (5% mulgofen/ PBS) or 

10 mg/kg T1317, a dose which had previously been shown to induce LXR 

activation, by oral gavage, sub-cutaneous injection or intraperitoneal (IP) 

injection daily for seven days. Mice were culled six hours post final drug 

administration. The liver and bone marrow were removed to determine the level 

of LXR transcriptional activation by analysis of ABCA1 expression using Taqman 

QRT-PCR (Figure  8.1). Administration of T1317 caused an approximate two to 

three fold increase in the expression of ABCA1 in the liver relative to the vehicle 

controls by all routes of administration. Similarly, the expression of ABCA1 was 

upregulated by approximately six and eight fold within the bone marrow by IP or 

sub-cutaneous injection respectively. However, the expression of ABCA1 in the 

bone marrow was not altered from basal levels of expression by oral gavage of 

T1317. This suggests that oral administration does not provide sufficient 

bioavailability of LXR agonists to all tissues. Since, IP administration of T1317 

robustly activated LXRs in both tissues with the least degree of variability IP 

injection was selected as the method of LXR agonist administration for future in 

vivo studies. 
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Figure  8.1 Intraperitoneal injection is the optimal route of T1317 administration. 
Male mice were treated daily with 10 mg/kg T1317 or  vehicle (5% mulgofen/ PBS) by oral 
gavage, sub-cutaneous injection (sub-cut) or intrap eritoneal injection (IP) for 7 days. Mice 
were culled approximately 6 hrs after final agonist  administration and the liver and bone 
marrow were removed for analysis of ABCA1 expressio n by Taqman QRT-PCR relative to 
TBP. Results are displayed as fold increase of ABCA 1 expression relative to the respective 
vehicle group. n = 5/ group. 

8.2.2 Optimisation of drug dose 

In order to determine the concentrations of T1317 that would induce the 

activation of LXRs male C57BL/6 mice at 7 weeks of age were treated with 

vehicle or T1317 at the indicated concentrations by daily IP injection for seven 

days. Six hours post final drug administration the livers were removed for 

Taqman QRT-PCR analysis of the expression of ABCA1 expression (Figure  8.2). 
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The expression of ABCA1 was upregulated by all concentrations of T1317 in a 

dose dependent manner relative to the vehicle control with the highest level of 

LXR activation being achieved with a dose of 30 mg/kg T1317. Similarly, the 

expression of ABCA1 was up-regulated by 3 fold upon treatment with 10 mg/kg 

T1317 consistent with the previous experiment (Figure  8.1).  
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Figure  8.2 T1317 induces the activation of LXRs in a dose responsive manner. 
Male mice were treated daily with T1317 or vehicle (5% mulgofen/ PBS) at the indicated 
concentration by IP injection for 7 days. Mice were  culled approximately 6 hrs after final 
agonist administration and the livers were removed for analysis of ABCA1 expression by 
Taqman QRT-PCR relative to TBP. Results are display ed as fold increase of ABCA1 
expression relative to the vehicle group. n = 5/ gr oup. 

LXRs also regulate the expression of FAS which, similar to ABCA1, can also be 

used to confirm activation of LXR mediated transcription. The expression of FAS 

was also significantly upregulated in the liver of mice treated with 20 mg/kg and 

30 mg/kg T1317 but not at lower agonist concentrations (Figure  8.3). FAS is the 

rate limiting enzyme in the synthesis of fatty acids and triglycerides and has 

been shown to be responsible in part for the development of hepatic steatosis in 

mice treated with LXR agonists (81). This is characterised by the presence of 

white lipid droplets which can be visualised at the macroscopic level in the liver. 

In accordance with previous publications the livers of all mice treated with 

T1317 exhibited signs of hepatic steatosis; this was most prominent in the liver 

of mice treated with the highest concentrations of T1317 (Figure  8.4).  
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Figure  8.3 LXR activation induces the expression of FAS. 
Male mice were treated daily with T1317 or vehicle (5% mulgofen/ PBS) at the indicated 
concentration by IP for 7 days. Mice were culled ap proximately 6 hrs after final agonist 
administration and the livers were removed for anal ysis of FAS expression by Taqman QRT-
PCR relative to TBP. Results are displayed as fold increase of FAS expression relative to the 
vehicle group. n = 5/ group. 

 

Figure  8.4 Activation of LXRs induces hepatic steatosis. 
Livers were removed from mice treated with the indi cated concentration of T1317 or vehicle 
(V- 5%mulgofen/ PBS). The livers of all mice treate d with T1317 exhibited hepatic steatosis 
visualised by the accumulation of white lipid dropl ets. Representative livers of n = 5/ group.  



  111 

8.2.3 T1317 is required to be given daily to sustain LXR activation  

Early studies shared with us by Schering Plough had indicated that T1317 was 

undetectable in the circulation of mice within 24 hrs post delivery (data not 

shown). Therefore, it was important to determine the frequency at which LXR 

agonist should be administered in order to sustain activation of LXRs in vivo. 

Mice were injected IP with 10 mg/kg T1317 or vehicle and were culled at 6 hrs, 

24 hrs and 48 hrs post drug administration. The expression of ABCA1 was 

determined by Taqman QRT-PCR (Figure  8.5). Similar to previous experiments 

LXR activation by T1317 induced an approximately 3 fold increase in the 

expression of ABCA1 6 hrs post agonist delivery. However, at 24 hrs and 48 hrs 

post administration of drug the expression of ABCA1 had returned to basal 

levels. This data suggests that daily IP administration of LXR agonist is the 

minimum frequency required, but also the maximum permitted by the Home 

Office, to ensure sustained activation of LXRs. Therefore, daily IP injection was 

selected as the chosen route and frequency of LXR agonist administration for all 

future experiments. 
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Figure  8.5 T1317 is required to be given daily to sustain activation of LXRs. 
Male mice were treated with 10 mg/kg T1317 or vehic le (5% mulgofen/ PBS) by IP. Mice were 
culled 6 hrs, 24 hrs or 48 hrs after agonist admini stration and the livers were removed for 
analysis of ABCA1 expression by Taqman QRT-PCR rela tive to TBP. Results are displayed 
as fold increase of ABCA1 expression relative to th e vehicle group. n = 5/ group. 
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8.2.4 Mulgofen does not impact the severity of CIA 

T1317 is usually dissolved in the vehicle 5% mulgofen/PBS for in vivo delivery. 

Mulgofen is a detergent which improves drug solubility. To ensure that the 

mulgofen did not effect the severity of CIA, arthritis was induced in DBA/1 mice 

treated with PBS or vehicle (5% mulgofen/PBS) by daily IP from day -1 to day 42. 

Daily administration of vehicle did not significantly alter the clinical score (P = 

0.6546) or paw swelling (P = 0.2089) relative to mice treated with PBS (Figure 

 8.6). Furthermore, there was no significant difference in the concentration of 

several pro-inflammatory cytokines assayed in serum (Figure  8.7).  

21 24 27 30 33 36 39 42
0

1

2

3

4

5

6
Vehicle
PBS

A

Day

M
ea

n 
cl

in
ic

al
 s

co
re

21 24 27 30 33 36 39 42
16

17

18

19

20

21

PBS
vehicle

B

Day

P
aw

 t
hi

ck
ne

ss
 (

m
m

X
10

-1
)

 

Figure  8.6 Mulgofen does not affect the severity of CIA. 
Arthritis was induced in mice which were treated da ily IP with vehicle (5% mulgofen/ PBS) 
or PBS. There was no significant difference in the clinical score (A) or paw thickness (B) 
between the two treatment groups. Two Way ANOVA; P = 0.2089. n = 12/group. 
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Figure  8.7 Vehicle does not induce the secretion of pro-in flammatory cytokines in vivo. 
Administration of vehicle (5% mulgofen/PBS) to CIA mice does not alter the concentration 
of serum pro-inflammatory cytokines or chemokines c ompared to PBS measured by 
Luminex analysis. n =12/group. 

Together these data suggest that activation of LXRs could be achieved in vivo 

using concentrations of T1317 between 1 mg/kg and 30 mg/kg when 

administered by daily IP injection; this ensured sufficient bioavailability of 

agonist and maintained satisfactory activation of LXR transcriptional activity. 

Furthermore, these data show that the vehicle had no obvious effect upon 

inflammation and did not affect the severity of murine CIA. Therefore, mulgofen 

is a suitable vehicle in which to dissolve LXR agonists and explore the role of 

LXRs in inflammation in vivo. 
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8.3 Identification of a novel pro-inflammatory role  for 

LXRs in vivo 

8.3.1 LXR activation by T1317 increases the severity of murine 

collagen-induced arthritis 

8.3.1.1 The clinical severity of arthritis is incre ased by T1317 

Since the delivery of LXR agonists in vivo had been optimised it was now possible 

to investigate whether activation of LXRs by T1317 could modulate inflammation 

in murine CIA. Arthritis was induced in male DBA/1 mice at approximately 8 

weeks of age. Power calculations determined that twelve mice per group was 

sufficient to detect a 50% change between active and placebo groups with 

p=0.01. Mice were treated daily IP with 2 mg/kg and 20 mg/kg T1317 or vehicle 

(5% mulgofen/PBS). In order to investigate the ability of T1317 to affect the 

development of pre-clinical or established arthritis T1317 was delivered over 

two time courses; one day prior to the induction of arthritis to day 42 (early 

treatment regime), or from day 24 post induction of arthritis to 42 (late 

treatment regime). The experimental design is summarized in (Figure  8.8). 

 

Figure  8.8 CIA experimental design. 
Mice were inoculated with 100 µg type II bovine col lagen in complete freunds adjuvant (CFA) 
by an intradermal injection on day 0. At day 21 mic e were injected IP with 100 µg type II 
collagen in PBS. Mice were treated with 2 mg/Kg and  20 mg/Kg T1317 over the two different 
time courses by daily IP injection. Vehicle (5% mul gofen/ PBS) was administered by daily IP 
injection over the early time course. n =12/ group.  

Administration of T1317 via the early treatment regime induced an earlier onset 

of disease compared to vehicle recipients (Figure  8.9). From day 21 onwards 
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mice were monitored daily and assessed for the development of arthritis by the 

use of a clinical score and measurement of paw swelling. The severity of disease 

was significantly increased in all the groups receiving T1317 compared to vehicle 

in a dose dependent manner (Figure  8.10). Furthermore, the groups treated with 

both 2 mg/kg and 20 mg/kg T1317 on the longer “early” treatment regime 

exhibited an increased severity of arthritis compared to the respective groups on 

the shorter “late” treatment regime.  
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Figure  8.9 Activation of LXRs increases the incidence of a rthritis. 
Arthritis was induced in male DBA/1 mice and were t reated daily with vehicle (5% 
mulgofen/PBS) or the indicated concentrations of T1 317 by IP injection. T1317 was 
administered over two time course; early: day -1 to  day 42 and late: day 24 to day 42. 
Vehicle was administered by the early treatment reg ime. n = 12/ group.   
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Figure  8.10 The clinical severity of arthritis is increase d in mice receiving T1317. 
Arthritis was induced in male DBA/1 mice and were t reated daily with vehicle (5% 
mulgofen/PBS) or the indicated concentrations of T1 317 by IP injection. T1317 was 
administered over two time course; early: day -1 to  day 42 and late: day 24 to day 42. 
Vehicle was administered by the early treatment reg ime. Mice were monitored daily and 
assigned a clinical score as a measure of arthritis  severity. Two way ANOVA, *** P <  0.001 
relative to vehicle; n = 12/ group.   
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Over the same time period paw swelling was measured as an independent 

measure of arthritis disease severity ( 

Figure  8.11). In accordance with the clinical score, paw swelling was 

significantly increased in all the groups receiving T1317 and did so in a dose 

dependent manner. Similarly, paw swelling was higher in the groups on the early 

treatment regime compared with the late treatment regime.  
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Figure  8.11 Paw swelling is increased in mice receiving T1 317. 
Arthritis was induced in male DBA/1 mice and were t reated daily with vehicle (5% 
mulgofen/PBS) or the indicated concentrations of T1 317 by IP injection. T1317 was 
administered over two time course; early: day -1 to  day 42 and late: day 24 to day 42. Paw 
swelling was measured as a independent indicator of  arthritis severity. Vehicle was 
administered by the early treatment regime. Two way  ANOVA; ** P <  0.01, *** P < 0.001 
relative to vehicle; n = 12/ group.   

In accordance with the Animals (Scientific Procedures) Act 1986 mice were 

required to be euthanised if disease severity was too high (maximum score of 12 

per animal) or if animals were displaying other signs of general ill health, e.g. 

weight loss, scruffy coat or sedentary behaviour, as outlined in the appropriate 

home office project licence. This therefore provided a threshold outcome 

measure for disease severity with which to compare severe disease in the 

groups. More mice in the groups receiving T1317, relative to vehicle, were 

required to be euthanised prior to the planned end of the experiment time 

course due to the greatly increased level of disease severity (Figure  8.12). 
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Figure  8.12 The number of mice required to be euthanised i s increased with T1317. 
More mice in the groups receiving T1317 had to be e uthanised due to the greatly increased 
level of disease severity in accordance with the Ho me Office project licence under the 
Animals (Scientific Procedures) Act 1986. n = 12/gr oup. 

8.3.1.2 T1317 induced the expression of ABCA1 in vivo 

To confirm that administration of T1317 induced the activation of LXRs the liver 

was removed from all mice approximately six hours post drug administration and 

the expression of ABCA1 measured by Taqman QRT-PCR (Figure  8.13). Treatment 

with 2 mg/Kg or 20 mg/Kg T1317 by both treatment regimes up-regulated the 

expression of ABCA1 by approximately 2 and 3 fold respectively in comparison to 

the vehicle control consistent with preliminary experiments (compare to Figure 

 8.2). 
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Figure  8.13 T1317 induces LXR activation and the expressio n of ABCA1 in vivo. 
To confirm LXR activation in the groups treated wit h T1317 liver was removed and the 
expression of the LXR target gene ABCA1 measured by  Taqman QRT-PCR normalised to 
TBP. All groups treated with T1317 exhibited a dose  responsive fold increase in the 
expression of ABCA1 compared to vehicle. n = 12/ gr oup. Students T test; *** P<  0.001. 

8.3.2 T1317 but not low dose GW3965 increases the severity of 

murine CIA 

Other studies in the literature have previously demonstrated clear anti-

inflammatory effects of LXR agonism (117). Therefore, the pro-inflammatory 

effects of LXR activation in CIA were unexpected and needed to be confirmed. 

Furthermore, patents that previously prohibited the use of GW3965 had since 

been withdrawn. GW3965, which is a more specific LXR agonist, could therefore 

be used alongside T1317 to explore and confirm the effect of LXR agonism upon 

inflammation in CIA.  

8.3.2.1 T1317 but not low dose GW3965 increased the  clinical severity of 

collagen-induced arthritis  

To confirm the previous results demonstrating a pro-inflammatory effect of LXR 

agonism in vivo arthritis was induced in male DBA/1 mice at approximately 8 

weeks of age, twelve mice per group. Mice were treated daily IP with vehicle 

(5% mulgofen/PBS), 10 mg/kg and 20 mg/kg T1317 or 10 mg/kg GW3965. T1317 

and GW3965 have been shown to induce the expression of ABCA1 at similar Ec50 
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therefore a concentration of 10 mg/Kg GW3965, similar to T1317 was selected 

(33, 34). In addition another positive control group was treated with 200 µg/kg 

dexamethasone to demonstrate that an anti-inflammatory effect could be 

achieved thereby controlling for operator variability and any adverse effects of 

multiple IP injections. Since the greatest effect of T1317 was previously seen 

over the longer treatment period all drugs were administered one day prior to 

the induction of arthritis to day 41. The experimental design is summarised in 

(Figure  8.14). 

 

Figure  8.14 CIA experimental design utilising T1317 & GW39 65. 
Mice were inoculated with 100 µg type II bovine col lagen in complete freunds adjuvant (CFA) 
by an intradermal injection on day 0 and challenged  on day 21 IP with 100 µg type II collagen 
in PBS. Mice were treated daily with vehicle (5% mu lgofen/ PBS), 200 µg/Kg dexamethasone, 
10 mg/Kg and 20 mg/Kg T1317 or 10 mg/Kg GW3965 from  day -1 to day 41 by IP injection. n 
=12/ group. 

Similar to previous results, administration of T1317 and GW3965 resulted in 

increased incidence of disease compared to vehicle recipients (Figure  8.15). 

Furthermore, as expected, the group treated with dexamethasone did not 

develop any clinical signs of disease. 
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Figure  8.15 Both T1317 and GW3965 increase the incidence o f arthritis 
Arthritis was induced in male DBA/1 mice which were  treated daily with vehicle (5% 
mulgofen/PBS), 200 µg/kg dexamethasone, T1317 or GW 3965 by IP injection from day -1 to 
day 41. n = 12/ group.   

As before, mice were monitored from day 21 onwards for the development of 

arthritis (Figure  8.16). The development and severity of disease was significantly 

increased in all the groups receiving T1317 compared to vehicle in a dose 

responsive manner. The clinical score upon treatment with 20 mg/kg T1317 was 

comparable with that obtained in prior experiments (compare to Figure  8.10). 

However, treatment with 10 mg/kg GW3965 did not significantly alter the 

severity of disease. The clinical scores were also confirmed by two blinded 

observers at several time points throughout the experiment.  
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Figure  8.16 T1317 but not low dose GW3965 increases the se verity of arthritis 
Arthritis was induced in male DBA/1 mice which were  treated daily with vehicle (5% 
mulgofen/PBS), 200 µg/kg dexamethasone, T1317 or GW 3965 by IP injection from day -1 to 
day 41. Mice were monitored daily and assigned a cl inical score for the severity of arthritis. 
Two way ANOVA; *** P <  0.001 relative to vehicle; n = 12/ group.   

Similarly, paw swelling was significantly increased in both groups receiving 

T1317 compared to vehicle (Figure  8.17). Although, paw swelling was greater in 

the group receiving GW3965 this was not statistically significant (P = 0.06). In 

accordance with the clinical score there was no increase in the paw thickness in 

the mice receiving dexamethasone. Moreover, more mice were euthanised in the 

groups treated with T1317, but not GW3965, compared to vehicle control (Figure 

 8.18). Together these data indicate that disease severity was only increased in 

the groups receiving T1317. 
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Figure  8.17 Paw swelling is increased by LXR agonism 
Arthritis was induced in male DBA/1 mice which were  treated daily with vehicle (5% 
mulgofen/PBS), 200 µg/kg dexamethasone, T1317 or GW 3965 by IP injection from day -1 to 
day 41. Paw swelling was measured as an independent  indicator of arthritis severity. Two 
way ANOVA; ** P <  0.01; n = 12/ group.   
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Figure  8.18 Mortality is increased in mice receiving T1317 . 
Arthritis was induced in male DBA/1 mice which were  treated daily with vehicle (5% 
mulgofen/PBS), 200 µg/kg dexamethasone, T1317 or GW 3965 by IP injection from day -1 to 
day 41. Mice were euthanised if the severity of dis ease was too severe or displayed general 
signs of ill health in accordance with the Home Off ice project licence. Mortality was not 
altered in mice receiving GW3965 in comparison to v ehicle. n = 12/ group.   

8.3.2.2 Ex vivo assessment of inflammatory cytokines and antibody titres 

Upon termination of the experiment blood samples were taken by cardiac 

puncture for analysis of serum cytokine and chemokine concentrations measured 

by Luminex analysis (Figure  8.19). The concentration of several serum 
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proinflammatory cytokines, IL-1, IL-17, IL-12 and GM-CSF, were increased in the 

groups treated with T1317 in a dose responsive manner. None of these pro-

inflammatory cytokines were significantly elevated in response to 10 mg/kg 

GW3965. However, the anti-inflammatory cytokine IL-10 was elevated in 

response to treatment with both T1317 and GW3965. Furthermore, treatment 

with T1317 increased the serum concentration of the chemokine MIP-1α, whilst 

the concentration of MIG was higher in both the T1317 and GW3965 groups. The 

concentration of IL-12 was significantly decreased and was the only cytokine 

affected by dexamethasone. IL-12 supports the polarisation of naïve T cell 

towards a Th1 phenotype. Lower concentrations of serum IL-12 are indicative of 

and consistent with findings that steroids ameliorate articular inflammation 

primarily through the inhibition of T cell proliferation. The cytokines and 

chemokines IL-2, IL-4, IL-5, IL-6, IL-13, IFNγ, TNFα, FGF, VEGF, IP-10, KC and 

MCP-1 were not detectable at this time point. 
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Figure  8.19 T1317 increases the concentrations of serum in flammatory cytokines and 
chemokines. 
Serum cytokine and chemokine concentration from mic e at day 41 of the CIA model were 
measured by Luminex analysis. Mice had been treated  daily IP with vehicle ( 5% mulgofen/ 
PBS), 200 µg/kg dexamethasone (Dex), T1317 or GW396 5. Other cytokines or chemokines 
were not detectable at this time point. Unpaired St udents T test; * P <  0.05, ** P < 0.01 and *** 
P < 0.001. n =12/group. 
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To determine the effect of LXR activation by T1317 or GW3965 upon T cell 

activation the popliteal and inguinal lymph nodes were removed and crushed 

through a cell strainer to generate a single cell suspension. Very few cells were 

obtained from the group treated with dexamethasone which precluded analysis 

of T cell function by this method (Figure  8.20). The cells were stimulated 

overnight with PMA and Ionomycin and the percentage of CD4+ cells that were 

IFNγ+ (Th1) or IL-17+ (Th17) was analysed by flow cytometry (Figure  8.21). In the 

groups treated with T1317, despite a dose dependent trend, no significant 

increase in the percentage of IFNγ+ cells was observed (20 mg/Kg T1317; P = 

0.535). However, there was a significant increase in the percentage of CD4- IL-

17+ cells.  
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Figure  8.20 The number of lymph node cells is increased by  LXR agonism. 
The popliteal and inguinal lymph nodes were removed  from mice treated with vehicle (V), 
200 µg/Kg Dexamethasone (Dex), T1317 or GW3965 (mg/ Kg) and crushed through a cell 
strainer to make a single cell suspension and the t otal number of viable cells assessed by 
staining with Trypan blue were counted. The number of cells from the group treated with 
200 µg dexamethasone was significantly reduced rela tive to vehicle control. Unpaired 
students T test; *** P <  0.001, * P < 0.05. n = 12/group. 
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Figure  8.21 Intracellular cytokine analysis of lymph node T cells. 
The cells from popliteal and inguinal lymph nodes o f mice treated with vehicle, T1317 or 
GW3965 at the indicated concentration (mg/Kg) were stimulated overnight with PMA and 
Ionomycin. The percentage of CD4 +IL-17+ or CD4+IFNγ+ T cells was determined by flow 
cytometric analysis. (A) Representative images of f low cytometric analysis from each group. 
(B) Graphical representation of mean percentage IFN γ or IL-17 positive cells from each 
group. Unpaired Students T test; * p <  0.05. n = 12/ group. 
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Murine CIA is associated with anti-collagen antibodies of which IgG2a is the 

predominant isotype. Since 20 mg/kg T1317 had the largest effect upon the 

concentration of serum cytokines and chemokines and lymphocytes activation 

the concentration of serum anti-collagen IgG2a specific antibodies in this group 

was measured by ELISA (Figure  8.22). However, there was no significant 

difference in the concentration of anti-collagen antibodies in the group treated 

with 20 mg/Kg T1317 relative to vehicle at this time point. 
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Figure  8.22 T1317 does not alter serum anti-collagen IgG 2a antibody titres. 
Serum from mice treated with vehicle of 20 mg/Kg T1 317 was serially diluted and the 
concentration of anti-collagen IgG 2a antibodies was measured by ELISA. n = 12/group. 

8.3.2.3 T1317 and GW3965 induce activation of LXRs 

Since treatment of mice with 10 mg/Kg T1317 or 10 mg/Kg GW3965 had 

different effects upon the development of arthritis disease severity it was 

essential to ensure that both compounds had induced the transcriptional 

activation of LXRs (Figure  8.23). In previous experiments the expression of 

ABCA1 had previously been measured in the liver. However, data from Schering 

Plough indicated that GW3965 does not readily induce the expression of ABCA1 

in the liver whereas both T1317 and GW3965 are able to up-regulate ABCA1 

expression in the jejunum (data not shown). The expression of ABCA1 at six 

hours post drug administration was upregulated approximately 10 fold in the 

groups treated with T1317 and GW3965 as measured by Taqman QRT-PCR 
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relative to vehicle control. Treatment with dexamethasone did not alter LXR 

mediated expression of ABCA1. 
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Figure  8.23 Induction of LXR activation by T1317 and GW396 5. 
The expression of the LXR reporter gene ABCA1 was m easured by Taqman QRT-PCR in the 
jejunum of mice treated with 200 µg/kg dexamethason e (dex), T1317 or GW3965 at the 
indicated concentration (mg/Kg). Results are displa yed as mean fold increase of ABCA1 
expression relative to vehicle. n = 12/ group. Stud ents T test; *** P <  0.001. 

8.3.3 LXR agonism by high dose GW3965 promotes articular 

inflammation 

8.3.3.1 LXR activation by GW3965 increases the inci dence and severity of 

arthritis 

The results of the previous two independent experiments have demonstrated 

that LXR activation by T1317 increases the severity of murine CIA in a dose 

responsive manner but not by a lower concentration of GW3965. To address the 

effects of GW3965 administration at a higher concentration, arthritis was 

induced in male DBA/1 mice at approximately 8 weeks of age. Mice were treated 

daily IP with vehicle (5% mulgofen/PBS) or 30 mg/kg GW3965. Drugs were 

administered from one day prior to the induction of arthritis to the expected 

peak of disease at day 31. The experimental design is summarised in (Figure 

 8.24). Treatment with 30 mg/Kg GW3965 dramatically increased the incidence 

of disease compared to vehicle recipients (Figure  8.25). 
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Figure  8.24 CIA experimental design utilising 30 mg/Kg GW3 965. 
Mice were inoculated with 100 µg type II bovine col lagen in complete freunds adjuvant (CFA) 
by an intradermal injection on day 0 and challenged  on day 21 IP with 100 µg type II collagen 
in PBS. Mice were treated daily with vehicle (5% mu lgofen/ PBS or 30 mg/Kg GW3965 from 
day -1 to day 31 by IP injection. n =12/ group. 
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Figure  8.25 GW3965 increases the incidence of arthritis. 
Arthritis was induced in male DBA/1 mice and treate d daily by IP injection with vehicle (5% 
mulgofen/ PBS) or 30 mg/kg GW3965 from day -1 to da y 31. n =12/group. 

Similar to previous experiments, mice were monitored for clinical signs of 

disease. Treatment with 30 mg/Kg GW3965 significantly increased the clinical 

severity of arthritis (Figure  8.26). In agreement with the clinical score the 

extent of paw swelling was also greater in the group receiving 30 mg/Kg GW3965 

(Figure  8.27). Due to the short period of time in which disease was allowed to 

develop and the lack of time points the difference in paw swelling was not 

significant by Two Way ANOVA. However, the individual time points were 

significantly different by Students unpaired T test (not shown). 
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Figure  8.26 GW3965 increases the clinical severity of arth ritis. 
Arthritis was induced in male DBA/1 mice and treate d daily by IP injection with Vehicle (5% 
mulgofen/ PBS) or 30 mg/kg GW3965 from day -1 to da y 31. Mice were monitored and 
assigned a clinical score as a measure of disease s everity. Two Way ANOVA; ** P <  0.01. n 
=12/ group. 
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Figure  8.27 Paw swelling is increased by treatment with GW 3965. 
Arthritis was induced in male DBA/1 mice and treate d daily by IP injection with Vehicle (5% 
mulgofen/ PBS) or 30 mg/kg GW3965 from day -1 to da y 31. Mice were monitored and the 
extent of paw swelling measured as an independent i ndicator of disease severity. The 
increase in paw swelling was not significant by Two  Way ANOVA but the individual time 
points were significantly different by unpaired T t est (not shown). n =12/ group. 

Upon termination of the experiment paws were fixed, decalcified and stained 

for histological analysis of articular inflammation and erosion (Figure  8.28). In 

the group receiving 30 mg/Kg GW3965 histological analysis revealed a marked 

inflammatory infiltrate, cartilage erosion and hyperplasia of the synovial 
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membrane. The overall extent of inflammation and erosion was significantly 

increased in the groups treated with GW3965. 
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Figure  8.28 Histological severity of arthritis is increase d by GW3965. 
(A) Representative H & E staining of joints from mi ce receiving vehicle ( 5% mulgofen/ PBS) 
or 30 mg/kg GW3965. Photos at 10X magnification. Ab breviations; B = bone, C = cartilage, J 
= joint space and M = synovial membrane. Bone erosi on is indicated by the arrow (B) 
Administration of 30mg/kg GW3965 (black bar) increa ses the amount of inflammatory 
infiltrate and the severity of erosion relative to vehicle (open bar). Mann Whitney-test; ** P < 
0.01. n = 12/ group. 

8.3.3.2 Ex vivo cytokine and anti-collagen antibody analysis 

Previously it was necessary to euthanize mice prior to completion of the full 

experimental time course which introduced a degree of variability in the results 

of ex vivo cytokine analysis. Therefore the shorter experimental time course was 

chosen to allow analysis of cytokines at the peak of disease and remove 

variability caused by individuals being culled at multiple time points. Multiple 

pro-inflammatory cytokines, IL-1, IL-6, IL-13, IL-17, GM-CSF, and inflammatory 

chemokines, MIP-1α, MCP-1, MIG, IP-10 and KC, were higher in the group treated 

with 30 mg/Kg GW3965 compared to vehicle controls (Figure  8.29 and Figure 

 8.30). In addition, there was no significant difference in the concentration of 

serum IL-10, IL-12 and FGF between the two groups. IL-2, IL-4, IL-5, TNFα and 

VEGF were not detected at this time point. 
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Figure  8.29 GW3965 increases the concentration of serum pr oinflammatory cytokines. 
Blood samples were removed from mice at day 31 of t he CIA model by cardiac puncture and 
the concentration of serum cytokines was measured b y Luminex. Student T test; * P <  0.05, 
*** P < 0.001. n =12/ group. 
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Figure  8.30 GW3965 increases the concentration of serum ch emokines. 
The concentrations of multiple pro-inflammatory che mokines are increased in mice 
receiving 30 mg/kg GW3965 relative to vehicle as me asured by Luminex analysis. Other 
inflammatory chemokines were below the level of det ection. Unpaired Students T test; * P <  
0.05, *** P < 0.001. n = 12/group. 

To determine the effect of GW3965 upon T cell activation the popliteal and 

inguinal lymph nodes were removed and crushed through a cell strainer to 

generate a single cell suspension. The cells were stimulated overnight with PMA 

and Ionomycin and the percentage of CD4+ cells that were IFNγ+ (Th1) or IL-17+ 

(Th17) was analysed by flow cytometry (Figure  8.31). The percentage of Th1 

(CD4+, IFNγ+) and Th17 (CD4+, IL-17+) cells is higher in mice treated with GW3965 

relative to vehicle. However, the most striking difference was in the CD4- 
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population as there was a significant increase in the percentage of IL-17+ or 

IFNγ+ cells; the identity of which are unknown. 
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Figure  8.31 Increased activation of lymph node cells by GW 3965. 
The percentage of Th1 (CD4 +, IFNγ+) and Th17 (CD4 +, IL-17+) cells is higher in mice treated 
with GW3965 relative to vehicle (5% mulgofen/ PBS).  There is also a significant increase in 
the percentage of CD4 -, IL-17+ or IFNγ+. The identity of these cells is unknown. Unpaired 
Students T test; * P <  0.05, ** P < 0.001. n = 12/group. 

The concentration of serum anti-collagen antibodies was measured by ELISA. The 

titers of IgG2a and IgG1 anti-collagen antibodies were higher in the group 

receiving 30 mg/kg GW3965 relative to vehicle providing clear evidence of 

enhanced antigen specific adaptive responses in GW3965 treated mice (Figure 

 8.32).  
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Figure  8.32 Anti-collagen antibody titres are increased by  GW3965. 
Serially diluted serum analysis of IgG2a and IgG1 a nti-collagen antibodies in mice receiving 
30 mg/kg GW3965 relative to vehicle (5% mulgofen/ P BS).  Unpaired students T test * P <  
0.05, ** P < 0.01. n =12/ group. 

8.3.3.3 GW3965 induced activation of LXRs 

To confirm LXR activation by GW3965 the jejunum was removed six hours post 

drug administration and the expression of ABCA1 was measured by Taqman QRT-

PCR. The expression of ABCA1 was upregulated approximately twenty fold in the 
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GW3965 group relative to the vehicle control indicating robust transcriptional 

activation of LXRs (Figure  8.33). 
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Figure  8.33 Induction of LXR transcriptional activation by  GW3965. 
The expression of the LXR reporter gene ABCA1 was m easured by Taqman QRT-PCR in the 
jejunum of mice treated with 30 mg/Kg GW3965 or veh icle at the indicated concentration. 
Results are displayed as mean fold increase of ABCA 1 expression relative to vehicle. n = 12/ 
group. Students T test; *** P <  0.001. 
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8.4 Discussion & conclusion  

Previous studies have suggested a regulatory role for LXRs upon inflammation. 

Therefore, this study was initiated to determine if LXR agonists could offer 

beneficial effects upon inflammation in the joint. However, contrary to my 

expectations, the incidence and severity of arthritis was markedly increased thus 

suggesting a novel pro-inflammatory role for LXRs.  

Preliminary experiments were set up to determine the optimal route of agonist 

administration. These studies demonstrated that IP injection was a suitable 

route for delivery of LXR agonists in vivo and was optimal for bioavailability LXR 

agonists in the tested tissues; liver and bone marrow. Early studies also 

addressed the use of 5% mulgofen/ PBS as a vehicle in which to deliver agonists. 

These were initiated under the premise that mulgofen may contribute towards 

the inflammatory aspect of arthritis and could be further amplified by LXR 

agonism and thereby potentially explaining the unexpected pro-inflammatory 

effect of LXR agonism. However, comparison of vehicle with PBS showed that 

there was no effect upon inflammation and the subsequent severity of arthritis. 

This suggests that any effect upon inflammation and the severity of disease are 

mediated specifically by drug administration. 

Initial experiments analysing the role of LXRs upon inflammation in arthritis 

were limited by the use of T1317 which increased the severity of disease in a 

dose responsive manner. However, in addition to LXR, T1317 has also been 

shown to agonise Pregnane X receptor (PXR) and Farnesoid X receptor (FXR) 

which primarily regulate carbohydrate, lipid and bile acid metabolism but their 

role in inflammation is as yet unknown (297, 298). Therefore, any observed 

effects could be at least in part attributed to non-specific activation of PXR and/ 

or FXR by T1317. In comparison GW3965 is highly specific and does not exert any 

known off target effects on any other nuclear receptors. Therefore, results 

obtained using GW3965 probably more accurately reflect the role of LXRs in 

inflammation. However, administration of 10 mg/Kg GW3965 did not 

significantly increase the severity of disease. It is possible that the concentration 

of 10 mg/kg GW3965 used was too low. Indeed, although the results were 

significant, 10 mg/kg T1317 had only a small effect upon serum cytokine and 
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chemokine concentrations (Figure  8.19). This is consistent with in vitro findings 

where the effect of GW3965 upon cytokine secretion is generally lower than that 

mediated by T1317(Figure  10.18). Furthermore, treatment of mice at a higher 

concentration, with 30 mg/Kg GW3965, significantly increased the severity of 

CIA. Although the use of these highly selective agonists suggest a specific pro-

inflammatory effect off target effects of LXR agonism can not be precluded and 

will be dealt with in subsequent studies in LXR deficient mice. 

The severity of disease was also increased by a longer time course of T1317 

administration (Figure  8.10). It is unlikely that this reflects accumulation of 

T1317 over a prolonged time course as the expression of ABCA1 was comparable 

between the early and late time courses of agonist administration; suggesting 

that the level of LXR activation, and therefore the tissue specific concentration 

of agonist, was similar between the two treatment groups. These results are 

therefore more likely to reflect the prolonged action of LXRs upon inflammatory 

pathways.  

We hypothesised that LXR agonism would be therapeutic in CIA. Mice were 

therefore treated with drugs up to day 42 as it was unknown in which phase of 

disease LXR agonists would have an effect i.e. the priming or resolution phase of 

disease. However, LXR agonists dramatically increased the severity of disease 

and as such individuals had to be euthanised at multiple time points to comply 

with Home Office regulations. This therefore introduced a large degree of 

variability making it difficult to draw firm conclusions from my first ex vivo 

analysis. This is exemplified in the groups treated with 20 mg/Kg T1317 in which 

although clinical signs of disease were markedly increased, i.e. clinical score and 

paw thickness, there was little or no effect upon serum cytokine/chemokine 

concentrations, lymphocyte activation and anti-collagen antibody titres. CIA in 

the DBA/1 mouse has been well characterised - the severity of disease peaks at 

approximately day 34 after which the anti-inflammatory cytokines IL-10 and 

TGF-β are upregulated leading to inhibition of inflammation and resolution of 

disease. It was therefore necessary to terminate the experiment at an earlier 

time point in subsequent studies in order to accurately analyse the effect of LXR 

agonism upon pro-inflammatory mediators at the peak of disease. As such in 

later experiments, C57BL/6 mice were treated with 30 mg/Kg of GW3965 up to 

day 31 post induction of arthritis in which the level of proinflammatory 
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cytokines/ chemokines, lymphocyte activation and anti-collagen antibody titres 

were clearly elevated compared to controls.  

Together these data support a pro-inflammatory role for LXRs however the 

mechanism whereby LXR agonists promote articular inflammation in vivo is not 

clear. The numbers of activated lymphocytes were increased by LXR agonism 

characterised by an increased number of IL-17 and IFNγ secreting cells 

suggesting amplification of effector T cell subsets, namely Th1 and Th17 cells. 

Interestingly, there was also a substantial increase in the proportion of CD4- IFNγ 

and IL-17 positive cells which likely comprise multiple cell types including NK 

cells, γδ T cells, CD8+ T cells and macrophages (174, 175). Since the effect of 

LXR agonism is not limited to a specific cell type it is possible that the 

amplification of a pro-inflammatory cytokine milieu in vivo is capable of 

supporting T cell differentiation, characterized by increased serum 

concentrations of IL-6, IL-12 and IL-23. Additionally, the increased concentration 

of anti-collagen specific antibodies further suggests that LXR agonism was able 

to exert a general, but context specific, pro-inflammatory effect and thereby 

enhance both the innate and adaptive immune responses. Further, studies will 

therefore be required to identify the affects of LXR agonism on the activation 

and differentiation of specific inflammatory cell types. 

Both T1317 and GW3965 are dual LXR agonists and therefore induce the 

activation of both LXRα and LXRβ. The individual role of LXRα and LXRβ is 

currently being studied in the context of atherosclerosis in which it is evident 

that agonists specifically targeting LXRβ may be more favourable for 

ameliorating atherosclerotic lesions (37, 101, 102, 299). LXR agonism has been 

shown to result in hepatic steatosis in the ApoE-/- model of atherosclerosis. It is 

therefore possible that hepatic steatosis could operate as a potential driver of 

acute phase responses and hence inflammation and thereby enhance disease 

severity. Indeed, in preliminary experiments in which mice were treated for 

seven days with T1317 the expression of FAS, the rate limiting enzyme involved 

in lipogenesis, was significantly upregulated which has been shown to lead to the 

accumulation of triglycerides within the liver (Figure  8.3). The effect of 

prolonged agonist treatment in the CIA model upon hepatic FAS expression and 

lipid accumulation was not tested; this will be addressed in ongoing studies using 

LXR knockout animals. The effect of LXR agonism upon driving hepatic steatosis 
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is lost in ApoE-/-, LXRα-/- double knockout mice. It is now well accepted that 

hepatic steatosis by LXR agonism is primarily driven by LXRα. Therefore, as 

discrete functions are emerging in metabolism, it is also possible that LXRα or 

LXRβ may have different, and potentially opposing, roles in inflammation. 

Further studies are required to identify the individual role of LXRα and LXRβ on 

immune pathways.  

The data obtained from these experiments contradict the work by 

Chintalacharuvu et al, who reported that treatment of established CIA with 

T1317 yielded beneficial effects; i.e. reduced disease severity (125). However, 

there are differences between the two studies. Firstly, Chintalacharuvu et al 

used oral gavage for administration of T1317 whereas we administered all drugs 

IP. Interestingly my preliminary experiments demonstrated that, in comparison 

to IP, oral gavage of T1317 did not induce the expression of ABCA1 in the bone 

marrow suggesting restricted bioavailability of agonist when administered by 

oral gavage. Furthermore, administration of dexamethasone was suppressive 

showing that there were no unexpected adverse effects of multiple IP injections. 

Secondly, the treatment protocols and drug dose are not identical. In other 

studies, T1317 was used at 50 mg/Kg over a much shorter time course, day 27 to 

day 33 post induction of arthritis, with no evidence of dose dependent effects at 

lower agonist concentrations. It is therefore possible that T1317 when used at 

such high concentrations may exert non-specific effects promoting anti-

inflammatory pathways. In addition, these data were not reproduced using the 

highly specific LXR agonist GW3965 or supported by data from LXR deficient 

animals. The precise effects of T1317 upon LXR activation at such high 

concentrations has not previously been reported in the literature. 

Chintalacharuvu et al did not document LXR activation in their model and it is 

therefore possible that increasing concentrations of T1317 may exert 

unrecognised bi-phasic effects upon the activation of LXRs. 

In conclusion, the precise mechanism in which LXRs are able to augment 

articular inflammation is not clear. However, my data suggest that the 

mechanism in vivo is in part through the ability to exacerbate the secretion of 

proinflammatory chemokines and cytokines and thereby enhance the 

recruitment and activation of inflammatory cells to the site of inflammation. In 
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subsequent chapters I shall describe experiments designed to further explore 

these possibilities. 
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9 Exacerbation of articular Inflammation is 

specific to the activation of Liver X Receptors  
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9.1 Introduction & Aim  

Several studies have suggested a novel role for LXRs in inflammation in which 

pharmacological activation of LXRs was generally ascribed an anti-inflammatory 

effect (19, 104, 117, 121). These initial studies demonstrated that activation of 

LXRs would be beneficial for the treatment of human inflammatory disorders. I 

therefore previously sought to determine the effect of LXR activation upon 

inflammation in RA by utilising the murine model of CIA. However, contrary to 

my expectations and other observations in the literature (125), LXR agonism 

exerted potent pro-inflammatory effects and markedly accelerated the time of 

onset and severity of arthritis. In an attempt to prove that the pro-inflammatory 

effect was mediated specifically through the activation of LXRs two 

pharmacologically distinct LXR agonists were used; GW3965 and T1317. Both 

compounds are widely used LXRs agonists; however, whilst both agonists 

demonstrate similar efficacy in murine models of atherosclerosis it is well 

recognised that T1317 activates the nuclear receptors FXR and PXR non-

specifically (297, 298). Moreover, whereas GW3965 is considered to be highly 

specific and does not induce the activation of other nuclear receptors, off target 

effects of GW3965 cannot be discounted as a potential explanation for the 

unexpected pro-inflammatory effects observed in vivo. 

CIA has been widely used as a murine model of arthritis in which susceptibility is 

restricted to strains, such as DBA/1 mice, with the MHC Class II I-Aq haplotype 

(222). Most transgenic mice, including currently available LXRα-/- and LXRβ-/-

mice, are on the C57BL/6 background which is generally considered resistant to 

CIA. However, with the recent development of a refined protocol it is now 

possible to induce CIA in C57BL/6 mice and therefore study the effect of LXR 

agonist administration in LXR deficient mice (225). I therefore sought to 

determine if the pro-inflammatory effects of LXR agonists in the murine 

collagen-induced arthritis model was mediated specifically by the activation of 

LXRs. 
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9.2 Induction of CIA in C57BL/6 mice 

It was first necessary to ensure that CIA could be induced in the C57BL/6 strain. 

Following the protocol by Inglis et al, arthritis was induced in male wild-type 

C57BL/6 mice at 10 weeks of age by inoculation with 200 µg of type II chicken 

collagen/ CFA injected intradermally at the base of the tail (225). Three weeks 

later (day 21) mice were challenged with 200 µg type II collagen/ PBS injected IP 

and monitored for clinical signs of disease. Arthritis was evident from day 21 

onwards and consistent with the findings of Inglis et al 50% of the animals had 

developed clinical signs of arthritis by day 40 (Figure  9.1). The severity of 

disease was also monitored and increased from day 21 onwards. However, unlike 

arthritis in the DBA/1 mice that is self remitting the severity of disease in the 

C57BL/6 mice was maintained for up to ten weeks post induction of arthritis 

(Figure  9.2). These experiments provided evidence that arthritis could 

successfully be induced in the C57BL/6 strain of mice by this protocol. 
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Figure  9.1 Incidence of arthritis in wild-type C57BL/6 mic e. 
Arthritis was induced in male C57BL/6 mice at 10 we eks of age following the published 
protocol by Inglis et al (225). Mice were monitored from day 21 onwards for  clinical signs of 
disease. n = 10. 
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Figure  9.2 Chronic arthritis in C57BL/6 mice. 
The severity of arthritis in C57BL/6 mice was monit ored from day 21 onwards. Mice were 
assigned a clinical score (A) whilst paw swelling w as measured as an independent measure 
of disease severity (B). The severity of disease wa s maintained for up to 10 weeks at which 
point the experiment was terminated. n = 10.  

9.3 Generation of LXR double KO mice 

LXRα-/- and LXRβ-/- (single knockouts) have been generated to study the role of 

LXRs in atherosclerosis however, the effect of LXR deficiency and the role of the 

individual LXR isoforms in the context of inflammation is unknown (101, 102). 

Deletion of LXRα or LXRβ is associated with increased susceptibility to 

atherosclerotic plaque formation and enhanced autoimmunity, this is in part 

mediated through the inability to clear apoptotic thymocytes and B cells (300).  

Both LXRα and LXRβ share some of the same target genes; e.g. ABCA1/ G1, LDLR 

A 

B 
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and NPC-1 (49, 83-85), which suggests that deficiency of one isoform may be 

potentially compensated by the other. Additionally, T1317 and GW3965 are dual 

LXRα/ LXRβ agonists therefore the pro-inflammatory effect of LXR agonism may 

be mediated by either LXRα or LXRβ. Therefore, to further investigate the 

individual role for LXRα and LXRβ and demonstrate an LXR specific pro-

inflammatory effect of GW3965 administration in arthritis it was necessary to 

generate LXRα/β double KO mice (LXRα/β KO). A schematic of the breeding 

programme is illustrated in Figure  9.3. LXRα-/- and LXRβ-/- mice, supplied by 

Schering Plough, were crossed to generate LXRα/β heterozygotes (LXRα+/-, 

LXRβ+/-) (F1 generation); this was confirmed by PCR screening of the LXRβ 

genotype of genomic DNA (Figure  9.4). Seven breeding pairs from the F1 were 

set up and self-crossed to generate the F2 offspring which were all screened by 

PCR for the LXRα and LXRβ genotype. All the potential genotypes are illustrated 

in Figure  9.3 and the chance of generating an LXRα/β KO mouse, of either sex, is 

1:16. Three LXRα/β KO mice were generated; two females #15 and #24 and one 

male #22 (Figure  9.5). From these three mice female #15 and male #24 were 

selected for further breeding to generate more breeding pairs (F3 generation) to 

setup an LXRα/β KO breeding colony. The genotype of the F3 was confirmed by 

PCR screening to be LXRα/β KO before further breeding was allowed (Figure 

 9.6).  
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Genotype α+,β+ α+,β- α-,β+ α-,β- 

α+,β+ α+/+,β+/+ α+/+,β+/- α+/-,β+/+ α+/-,β+/- 

α+,β- α+/+,β-/- α+/+,β-/- α+/-,β+/- α+/-,β-/- 

α-,β+ α+/-,β+/+ α+/-,β+/- α-/-,β+/+ α-/-,β+/- 

α-,β- α+/-,β+/- α+/-,β-/- α-/-,β+/- α-/-,β-/- 

Figure  9.3 Generation of the LXR alpha/beta double knockou t mice 
A schematic showing generation of the LXRα/β KO mice. LXRα-/- mice were crossed with 
LXRβ-/- mice to generate LXR α/β heterozygotes (F1). The F1 generation was then sel f 
crossed (F1 X F1) to generate the LXR double KO mic e (F2). The table demonstrates all the 
potential genotypes that can arise from the F1 cros s and giving a 1:16 chance of generating 
an LXRα/β double knockout mouse of either sex. 

 

 

F2: 
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Figure  9.4 Generation of LXR heterozygotes: F1 generation.  
Tail tips from potential LXRα/β heterozygotes were digested and the genomic DNA ex tracted 
(see materials & methods). A PCR of genomic DNA for  LXRβ was used to confirm the 
genotype which was visualised on a 2% agarose gel; LXRβ KO ~640 bp and LXR β WT ~ 
437bp. Molecular weight ladder (MW) and samples 1 t o 14. 
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Figure  9.5 Generation of LXRα/β double KO mice: F2 generation. 
Tail tips from potential LXRα/β double KO were digested and the genomic DNA extrac ted 
(see materials & methods). A PCR of genomic DNA for  LXRβ (A, C) and LXR α (B, D) was 
used to confirm the genotype which was visualised o n a 2% agarose gel against a molecular 
weight ladder (MW). LXR β

 KO ~640 bp and LXR β WT ~437bp, LXRα KO ~470 bp and LXR α 
WT ~880 bp. Number 15, 24 and 22 were LXR α/β KO; the later was the only male.  
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Figure  9.6 Confirmation of LXR α/β double knockout genotype in F3 offspring. 
(A) Schematic showing that LXR α/β KO mice (F2) were self crossed to generate breedin g 
pairs for an LXR α/β KO breeding colony (F3). PCR screening of genomic DNA for LXR β (B) 
LXRα (C) was visualised on a 2% agarose gel against a m olecular weight ladder (MW). LXR β

 

KO ~640 bp and LXR β WT ~437 bp, LXRα KO ~470 bp and LXR α WT ~880 bp. 
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9.4 Induction of CIA in LXR deficient mice 

9.4.1 The effect of GW3965 in arthritis is mediated specifically by 

activation of LXRs 

With the successful generation of the LXRα/β KO mice and confirmation that it is 

possible to induce CIA in the C57BL/6 strain of mice it was possible to proceed 

and determine if the pro-inflammatory effects of GW3965 in arthritis were 

mediated specifically by agonism of LXRs. Arthritis was induced in male wild-

type, LXRα-/-, LXRβ-/- or LXRα/β KO mice at approximately 8-11 weeks of age 

following the protocol described by Inglis et al (225). GW3965 is a highly specific 

LXR agonist and as a dose of 30 mg/Kg was previously used with the greatest 

pro-inflammatory effect in arthritis this dosing regime was taken forward for 

future studies. Mice were therefore treated with 30 mg/Kg GW3965 or vehicle 

(5% mulgofen/ PBS) from day -1 to day 37. A schematic of the experimental 

design is described in Figure  9.7 and the number of mice in each group is shown 

in Table  9.1. The results of the study are pooled from three independent 

experiments in which each genotype had equal numbers of mice treated with 

GW3965 as with vehicle in the same experiment. The mice were monitored daily 

from the start of the experiment for the development of clinical arthritis. The 

incidence of arthritis was comparable between all the genotypes and did not 

differ between the groups treated with vehicle or GW3965 (Figure  9.8); these 

data are also tabulated in Table  9.1. 
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Figure  9.7 Experimental design for the induction of arthri tis in LXR deficient mice. 
 

Treatment Group Vehicle 30 mg/Kg GW3965 

Genotype Subjects Incident (%) Subjects Incident (%) 

WT 19 10 (52) 18 9 (50) 

LXRα-/- 27 13 (48) 26 12 (46) 

LXRβ-/- 18 9 (50) 24 10 (42) 

LXRα/β KO 9 5 (55) 10 5 (50) 

Table  9.1 The incidence of arthritis in wild-type and LXR  deficient mice. 
Arthritis was induced in male mice at approximately  8-11 weeks of age on the C57BL/6 
background; either wild-type ( WT), LXRα-/-, LXRβ-/- or LXRα/β KO. Mice were treated daily 
with vehicle (5% mulgofen/PBS) or 30 mg/Kg GW3965 b y IP injection. Mice were monitored 
daily for the first signs of clinical arthritis. Th e number of mice that were entered into the 
study (subjects) and the number (and percentage) of  incident mice are described for each 
treatment group of each genotype. Results are poole d from three independent experiments.  

The development of arthritis was monitored from day 21 onwards and mice were 

assigned a clinical score based upon the severity of arthritis as before and 

described in materials & methods (Figure  9.9). In support of a pro-inflammatory 

effect of LXR agonism the severity of disease was significantly increased in wild-
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type mice treated with GW3965 relative to vehicle. This was specific to wild-

type mice as there was no significant difference in the severity of disease in 

LXRα-/- (P = 0.09), LXRβ-/- (P = 0.73) or LXRα/β KO (P = 0.62) treated with 30 

mg/Kg GW3965 compared to vehicle. Similarly, the extent of paw swelling was 

measured as an independent measure of disease severity which was significantly 

increased in wild-type mice receiving GW3965 compared to vehicle (Figure 

 9.10). Consistent with the clinical score there was no significant difference in 

the paw swelling of LXRα-/- (P = 0.3017), LXRβ-/- (P = 0.671) or LXRα/β KO (P = 

0.063) mice treated with GW3965 relative to vehicle controls.  
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Figure  9.8 The incidence of arthritis in LXR deficient mic e. 
Arthritis was induced in male mice at approximately  8-11 weeks of age on the C57BL/6 
background; either wild-type ( WT), LXRα-/-, LXRβ-/- or LXRα/β KO. Mice were treated daily 
with vehicle (5% mulgofen/PBS) or 30 mg/Kg GW3965 b y IP injection. Mice were monitored 
daily from day 21 onwards for the first signs of cl inical arthritis. Results are pooled from 
three independent experiments and are also tabulate d in Table  9.1. 
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Figure  9.9 Increased severity of clinical arthritis is med iated specifically by LXRs. 
Arthritis was induced in male mice at approximately  8-11 weeks of age on the C57BL/6 
background; either wild-type ( WT), LXRα-/-, LXRβ-/- or LXRα/β KO. Mice were treated daily 
with vehicle (5% mulgofen/PBS) (dotted lines) or 30  mg/Kg GW3965 (solid lines) by IP 
injection. Mice were monitored daily and assigned a  clinical score as a measure of arthritis 
severity. Results are pooled from three independent  experiments. The number of 
contributing animals is shown in Table  9.1. Two way ANOVA; * P <  0.05, not significant (n/s), 
with respect to GW3965 vs. vehicle within the same genotype. 
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Figure  9.10 Increased paw swelling is mediated specificall y by LXRs. 
Arthritis was induced in male mice at approximately  8-11 weeks of age on the C57BL/6 
background; either wild-type ( WT), LXRα-/-, LXRβ-/- or LXRα/β KO. Mice were treated daily 
with vehicle (5% mulgofen/PBS) (dotted lines) or 30  mg/Kg GW3965 (solid lines) by IP 
injection. Mice were monitored daily and paw thickn ess was measured as an independent 
measure of arthritis severity. Results are pooled f rom three independent experiments. The 
number of contributing animals is shown in Table  9.1. Two way ANOVA; ** P <  0.01, not 
significant (n/s), with respect to GW3965 vs. vehic le within the same genotype. 
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9.4.2 The induction ABCA1 expression is diminished in LXR 

deficient mice 

To confirm LXR activation, and loss of LXR induced transcription in LXR deficient 

mice, the jejunum was removed from mice at day 37 and snap frozen for RNA 

extraction. Nine samples were chosen at random representative of each group 

and the expression of ABCA1 was measured by Taqman QRT-PCR (Figure  9.11). 

Similar to previous results treatment of wild-type mice with 30 mg/Kg GW3965 

induced an approximate 15 fold increase in the expression of ABCA1 (compare to 

Figure  9.11 to Figure  8.33) . As expected the expression of ABCA1 was also 

significantly increased in LXRα-/- mice treated with GW3965 and to a lesser 

extent in LXRβ-/- by approximately eight and four fold respectively (37, 101, 

102). The expression of ABCA1 in LXRα/β KO mice was not significantly different 

between the vehicle and GW3965 treated group (P = 0.235); however, the basal 

level of ABCA1 expression was approximately three fold higher compared to 

wild-type mice also treated with vehicle. 
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Figure  9.11 Induction of ABCA1 expression is diminished in  LXR null mice. 
Arthritis was induced in wild-type ( WT), LXRα-/-, LXRβ-/- or LXRα/β KO. Mice were treated 
daily with vehicle (5% mulgofen/PBS) (white bars) o r 30 mg/Kg GW3965 (black bars) by IP 
injection. At cull jejunum was removed and the RNA extracted for gene expression analysis 
of ABCA1 by Taqman QRT-PCR. n = 9 per group, chosen  at random which are 
representative of each genotype and treatment group . Students T test; *** P <  0.001, not 
significant (n/s) (relative to vehicle group within  the same genotype). 
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9.5 Discussion & conclusion 

My previous studies suggested a novel pro-inflammatory effect of LXR agonism in 

the context of arthritis. However, these results were controversial to another 

study in the literature (125) and off target effects attributable to T1317 or 

GW3965 could not be discounted as potential drivers of inflammation and 

increased disease severity in CIA. Therefore, this study was initiated to 

determine if the pro-inflammatory effect observed upon administration of LXR 

agonists was mediated specifically by LXRs. Administration of GW3965 markedly 

increased the severity of arthritis in wild-type mice but not in LXRα-/-, LXRβ-/- or 

LXRα/β KO suggesting a specific pro-inflammatory effect of dual LXRα/ LXRβ 

activation. 

LXRα-/- and LXRβ-/- mice are on the C57BL/6 background which is generally 

considered resistant to CIA. However, Inglis et al recently published a study 

describing a detailed protocol for the induction of arthritis in C57BL/6 mice 

(225). Indeed, my preliminary experiments demonstrated that arthritis could be 

induced successfully in C57BL/6 following this protocol. However, it remains 

evident that C57BL/6 mice are generally more resistant to the development of 

arthritis than other strains of mice as disease is only observed in 50% of mice 

(Figure  9.1 and Figure  9.8), similar to previous reports (225, 301), in comparison 

to 80 to 100% incidence in DBA/1. Furthermore, the severity of disease is 

generally lower but more chronic in the C57BL/6, in comparison with DBA/1 

mice, and is characterised with a sustained T cell response and anti-type II 

collagen antibodies (301). Consistent with these findings, DBA/1 mice treated 

with 30 mg/Kg GW3965 exhibited a mean arthritis score of 12 compared to 7 in 

C57BL/6 mice (compare Figure  8.26 to Figure  9.9). Although the ability to induce 

CIA in C57BL/6 mice is an extremely useful model the direct comparison of CIA, 

and the effect of LXR agonism, to DBA/1 is precluded.  

To date the mechanism by which LXRs modulate inflammation is not fully 

understood and the individual role of LXRα or LXRβ in an inflammatory context is 

unknown. GW3965 and T1317 induce the activation of both LXR isoforms 

simultaneously and as isoform specific agonists have not been developed LXR KO 

mice are required to study the individual role of LXRα or LXRβ. Several studies 
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have also demonstrated that in mice deficient of either LXRα or LXRβ the 

expression of some LXR target genes is maintained by the intact LXR isoform; for 

example the induction of ABCA1 expression is maintained in LXRα-/- mice (37, 

101, 102). Therefore, to demonstrate that the pro-inflammatory effect observed 

with GW3965 administration was mediated specifically by LXRs it was necessary 

to generate LXRα/β KO mice. Secondly, by inducing arthritis in LXRα-/- and LXRβ-

/- mice this will aid elucidation of the individual roles of the LXRs in 

inflammation. LXR deficient mice have been generated previously and whilst 

they are more susceptible to atherosclerosis i.e. increased LDL but reduced HDL 

cholesterol and accumulation of foam cells in arterial vessel walls, no other 

severe adverse phenotypes have been reported (299, 302). Indeed, this is the 

first study in which the individual role of LXRα and LXRβ has been assessed in 

inflammation in vivo. Administration of 30 mg/Kg GW3965 significantly increased 

the severity of disease in wild-type but not LXR deficient mice. However, there 

was a large, but non-significant, increase in the paw swelling and clinical score 

in the LXRα/β KO mice treated with GW3965 relative to vehicle. This is primarily 

caused by a high degree of variability and a lack of mice entered into these 

groups. Throughout these studies I have found that LXRα/β KO mice, but not 

LXRα-/- or LXRβ-/-, are poor breeders and produce small litters generally between 

one to four pups. These observations have also been confirmed through personal 

communication with Prof David Mangelsdorf (Southwestern Medical Center, 

University of Texas). Due to the lack of mice the LXRα/β KO group is under 

powered. However, disease severity is not altered in the LXRα-/- or LXRβ-/- 

groups by treatment with GW3965. This suggests that the pro-inflammatory 

effect of GW3965 administration was mediated specifically by LXRs and not off 

target effects. Furthermore, these data suggest that cooperation between the 

two LXR isoforms or downstream effects is required to drive inflammatory 

pathways; at least in the context of arthritis.  

LXRs have been primarily studied in the context of metabolism in which LXRα 

has been shown to primarily regulate the expression of genes involved 

lipogenesis (synthesis of fatty acids and triglycerides) whilst LXRβ regulates the 

expression of genes involved in lipid transport and adipocyte gene expression 

(75, 112, 303). In particular LXRα regulates the expression of FAS and SREBP-1c 

in the liver and prolonged treatment of LXRβ-/- mice with GW3965 or T1317 has 
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been shown to cause the development of hepatic steatosis; a potential driver of 

inflammation in arthritis (33, 81, 92). However, the severity of disease is not 

increased in LXRβ-/- mice that express LXRα. Although I have not measured lipid 

fatty acids and triglyceride concentrations these data suggest that hepatic 

steatosis is not the driver of inflammation and disease severity in arthritis. 

However, of interest the severity of arthritis in the vehicle treated groups is 

elevated in all the LXR deficient genotypes compared to wild-type mice (Figure 

 9.9 and Figure  9.10). The reason for this is unknown; however, as LXR null mice 

develop atherosclerosis it is clear that lipid pathways mediated by LXRs are 

impaired in LXR deficient mice. This may exert functional consequences upon 

inflammation in arthritis as several reports have demonstrated that deletion of 

the cholesterol transporter ABCA1, which is primarily regulated by LXRs, 

enhances the inflammatory response. Deletion of ABCA1 promotes macrophage 

polarisation to an M1 phenotype; increased STAT6 signalling, NF-κB activation 

and pro-inflammatory cytokine secretion, and neutrophil activation in vivo (304-

307). Further in detail analysis of the innate and adaptive immune response 

including analysis of T cell phenotype, serum cytokines and antibodies is 

therefore required to determine the effect of LXR deletion upon inflammation in 

arthritis.  

The expression of ABCA1 is regulated by both LXRα and LXRβ and is increased by 

approximately 13 fold in the jejunum of wild-type mice treated with GW3965 

confirming activation of LXRs (96). Consistent with previous reports induction of 

ABCA1 expression was diminished in LXRα-/- mice but to a greater extent in LXRβ-

/- (302). However, in LXRα/β KO mice although the expression of ABCA1 was not 

altered by GW3965 the basal level of ABCA1 expression was approximately three 

fold higher in LXRα/β KO mice compared to wild-type vehicle treated mice. The 

reason for this is unknown. However, inflammation inhibits reverse cholesterol 

transport in vivo in part mediated by the decreased expression of ABCA1 (308). 

Indeed my own data demonstrates that the expression of ABCA1 is decreased in 

murine LPS stimulated macrophages (Figure  10.7); similar results have also been 

demonstrated in murine kidney cells (41). Inhibition of ABCA1 expression has 

been suggested to be mediated in part through decreased LXRα expression and 

activation. Indeed, the recruitment of co-repressor complexes, e.g. NCoR, is a 

mechanism by which LXRs have been shown to repress the transcription of 
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several target genes including ABCA1, FAS and SREBP-1c  (53). Therefore, 

inflammation may exert inhibitory effects mediated by LXRs upon the expression 

of LXR target genes which will be lost in LXRα/β KO mice potentially leading to 

elevated levels ABCA1 expression. However, further studies are required to 

confirm this hypothesis by examination of NCoR, and other co-repressors, 

recruitment to LXR heterodimers under an inflammatory context. 

These data suggest that the increased severity of arthritis is mediated 

specifically through the activation of LXRα and LXRβ. However, the mechanism 

by which LXR agonism potentiates inflammation in the context of arthritis is 

unknown. Further studies are therefore required to elucidate the function of 

LXRα and LXRβ and the separate pathways they induce in an inflammatory 

context. 
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10  Analysis of Liver X Receptor activation in 

human & murine leukocytes 
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10.1 Aim & introduction 

Whilst it is evident from other studies that activation of LXRs may exert anti-

inflammatory effects my prior data clearly demonstrated that specific 

pharmacological activation of LXRs can promote inflammation in vivo in murine 

CIA. However, the potential role for LXRs in RA disease derived cells or tissues 

remains unknown. 

The primary site of inflammation in RA is the synovium which contains high 

numbers of activated immune cells; macrophages, T cells, B cells and stromal 

derived fibroblasts in close proximity. Although the etiology of RA is unknown 

several mechanisms have been suggested by which inflammation in RA may be 

initiated and/or persist. Several studies have demonstrated increased expression 

of TLR3, TLR4 and TLR7/8 on RA derived synovial tissue leading to the 

hypothesis that viral and/or bacterial infection may promote synovitis (150, 

152). Whilst various potential bacterial derived TLR ligands have been detected 

within the synovium more recently the presence of endogenous self ligands such 

as RNA and heat shock proteins released from necrotic synoviocytes have been 

shown to stimulate TLRs (149, 153). This observation not only provides support 

for a role for TLRs in mediating synovial inflammation but also suggests that the 

local environment within the synovium may potentiate the inflammatory 

response. Leukocyte activation may also occur through cellular interactions by a 

mechanism which is distinct from TLR ligation. For example, co-culture of 

synovial membrane derived T cells with syngeneic macrophages induces the 

secretion of macrophage derived TNFα in a cell contact dependent manner (162, 

198). This can be recapitulated in an in vitro ‘contact assay’ by co-culture of 

cytokine-activated T cells (TcKs) with MCSF matured macrophages as an in vitro 

model of synovitis.  

Although several studies have analysed the role of LXRs in inflammation these 

have been generally restricted to murine cells or rodent models of human 

disease. Both LXRα and LXRβ have been shown to be expressed in a wide number 

of human immune cells including monocytes/ macrophages, T cells, dendritic 

cells, neutrophils and B cells (16-19, 118). However, how activation of LXRs 

affects inflammatory pathways in human cells, specifically in RA, and the 
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downstream impact upon human RA disease pathology remains unknown. I 

therefore sought to determine how LXR agonism may impact upon inflammatory 

pathways in human cells that are relevant to RA disease pathology. 



  164 

10.2 LXR activation exerts differential species spe cific 

effects upon TLR4 stimulation  

10.2.1 Optimisation of in vitro LXR agonist concentrations 

The LXR agonists T1317 and GW3965 have been widely used as a tool to study 

the role of LXRs in physiology and disease. However, they have been utilised 

over a wide range of concentrations, especially in vitro, from as low as 0.01 µM 

up to 100 µM (33). To determine an optimal concentration range of T1317 which 

sufficiently induces the expression of LXR target genes, monocytes were purified 

from the peripheral blood of healthy volunteers and treated with vehicle (DMSO) 

or T1317 for twenty four hours. A range of 2 µM to 20 µM T1317 was selected 

from initial pharmacological studies which identified T1317 as an LXR agonist in 

mice (33). The RNA was extracted and analysed by Taqman QRT-PCR from which 

the fold increase of ABCA1 expression was used as a reporter of LXR activation 

(Figure  10.1). T1317 induced the expression of ABCA1 at all concentrations by 

approximately 8 fold at 2 µM T1317 to 12 fold with 20 µM T1317 relative to 

media alone. However, there was no difference in the expression of ABCA1 

above 6 µM T1317 suggesting maximal stimulation had been achieved. Therefore, 

to identify a sub-optimal concentration range of T1317 which induced the 

expression of ABCA1 in a dose-responsive manner, primary human monocytes 

were treated with vehicle or 0.01 µM to 4 µM T1317. The expression of ABCA1 

was measured by Taqman QRT-PCR to determine the level of LXR transcriptional 

activation (Figure  10.2). T1317 induced the expression of ABCA1 in a dose 

responsive manner by approximately 10 to 40 fold with 0.01 µM and 4 µM T1317 

respectively. T1317 has been shown to non-specifically activate PXR and FXR and 

as the expression of the LXR specific reporter gene ABCA1 was not different with 

concentrations of T1317 above 4 µM, concentrations of T1317 between 0.01 µM 

and 4 µM were selected for future human in vitro analysis (297, 298). 
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Figure  10.1 Induction of LXR activation by T1317 in primar y human monocytes. 
Primary human monocytes were cultured with media al one, vehicle (V - DMSO) or T1317 at 
the indicated concentrations for 24 hours. The fold  increase of ABCA1 expression relative 
to cells treated with media alone was measured by T aqman QRT-PCR and normalised to 
TATA binding protein (TBP). Each condition was test ed in triplicate. 
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Figure  10.2 The expression of ABCA1 is induced with by T13 17 with concentrations between 
0.01 to 4 µM. 
Primary human monocytes were cultured with media al one, vehicle (V - DMSO) or T1317 at 
the indicated concentrations for 24 hours. The fold  increase of ABCA1 expression relative 
to cells treated with media alone was measured by T aqman QRT-PCR normalised to TAT 
binding protein (TBP). Each condition was tested in  triplicate. 

10.2.2 LXR activation inhibits IL-6 secretion from TLR 

stimulated murine macrophages. 

A regulatory role for LXR activation upon pro-inflammatory cytokine secretion 

was first demonstrated by Joseph et al in which LXR agonism suppressed the 

expression of iNOS in murine macrophages stimulated with LPS or infected with 

E.coli (117). To confirm this anti-inflammatory effect of LXR agonism, bone 
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marrow derived macrophages (BMDM) from male wild-type C57BL/6 mice were 

treated with 1 µM to 4 µM GW3965, concentrations similar to that used by 

Joseph et al, for 24 hours and then stimulated with 100 ng/ml LPS. After twenty 

four hours, the concentration of the secreted pro-inflammatory cytokine IL-6 

was measured by ELISA (Figure  10.3). Treatment of LPS stimulated macrophages 

with GW3965 significantly inhibited the secretion of the pro-inflammatory 

cytokine IL-6. These data were consistent with prior observations and confirmed 

that my methodological approach was sufficiently sound to address the relative 

contribution of LXRs towards cytokine secretion. 

More recent reports in human monocytes suggested that LXR agonists could exert 

differential effects upon the secretion of pro-inflammatory cytokines dependent 

upon the length of time that cells were pre-incubated with LXR agonists (61). 

Therefore, to determine if different pre-incubation times might effect the 

secretion of IL-6 murine BMDMs were pre-incubated with 4 µM GW3965 for 6 hrs, 

9 hrs, 24 hrs and 48 hrs; time points which are comparable to the previous 

report, prior to stimulation with 100 ng/ml LPS (Figure  10.4). The concentration 

of IL-6 secreted into the cell culture supernatants was significantly decreased at 

all time points but to a greater extent with longer periods of GW3965 pre-

incubation.  
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Figure  10.3 LXR agonism inhibits the secretion of IL-6 fro m LPS stimulated murine 
macrophages. 
Bone marrow derived macrophages were treated with m edia alone (0), vehicle (V – DMSO) 
or GW3965 at the indicated concentrations for 24 ho urs after which they were stimulated 
with 100 ng/ml LPS. The concentration of IL-6 was m easured by ELISA. Each condition was 
tested in triplicate with macrophages derived from 5 individual mice. Students T test; ** P <  
0.01, *** P < 0.001. 
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Figure  10.4 Prolonged pre-incubation with GW3965 further i nhibits the secretion of IL-6. 
Bone marrow derived macrophages were treated with 4  µM GW3965 for the indicated 
number of hours or vehicle (V –DMSO) for 48 hours p rior to stimulation with 100 ng/ml LPS. 
The concentration of IL-6 was measured by ELISA. Ea ch condition was tested in triplicate 
with macrophages derived from 5 individual mice. St udents T test; * P <  0.05, ** P < 0.01, *** 
P < 0.001. 

My results are consistent with the studies of Joseph et al (117) which suggested 

an anti-inflammatory effect of LXR activation in the context of bacterial 

infection and TLR4 ligation in murine macrophages. However, the effect of LXR 

agonism upon pro-inflammatory cytokine secretion mediated by the ligation of 

other TLRs was unknown. BMDMs were pre-incubated for 48 hrs with 4 µM 

GW3965 prior to stimulation with various TLR ligands; 100 ng/ml LPS (TLR4), 1 

µg/ml PAM3Cys (TLR2), 1 µg/ml Lipoteichoic acid (LTA - TLR2), 10 µg/ml Poly IC 

(TLR3), 1 µg/ ml CL97 (TLR7/8) and 1 µM CpG (TLR9). After stimulation for 24 

hours, the concentration of IL-6 in cell culture supernatants was measured by 

ELISA (Figure  10.5). GW3965 significantly decreased the secretion of IL-6 in cells 

stimulated with LPS, LTA and PAM relative to vehicle. PiC, CpG and CL97 failed 

to induce the secretion of IL-6. This study demonstrates that LXR agonism is able 

to suppress cytokine secretion mediated by other TLR ligands in murine 

macrophages. 

To demonstrate that inhibition of IL-6 secretion induced by PAM and LTA as well 

as LPS was mediated specifically by LXRs, BMDMs were differentiated from male 

wild-type, LXRα-/- and LXRβ-/- mice on the C57BL/6 background. The cells were 

pre-incubated for 48 hrs with 4 µM GW3965 prior to stimulation with TLR ligands 

at the indicated concentrations (Figure  10.6). Consistent with my previous 
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results treatment of LPS, PAM or LTA stimulated BMDMs from wild-type mice 

with 4 µM GW3965 significantly inhibited the secretion of IL-6. Supporting an 

anti-inflammatory effect of LXRs, deletion of LXRα or LXRβ was associated with 

an increased concentration of IL-6 upon ligation of TLR4. Furthermore, the 

inhibitory effect of GW3965 upon the secretion of IL-6 in response to TLR 4 

ligation was diminished in BMDMs from LXRα-/- and LXRβ-/-mice. These data 

suggest that the anti-inflammatory effect observed after treatment of BMDMs 

with GW3965 is mediated specifically through the activation of LXRs. 

Interestingly, inhibition of IL-6 secretion by treatment with GW3965 in response 

to stimulation with PAM or LTA appears to be mediated specifically through the 

actions of LXRβ. This is evident as deletion of LXRβ, but not LXRα, is associated 

with increased concentrations of IL-6 and GW3965 was not effective at reducing 

the concentrations of IL-6 in the LXRβ-/- macrophages. 
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Figure  10.5 LXR activation inhibits IL-6 secretion from TL R activated murine macrophages. 
Bone marrow derived macrophages were pre-incubated for 48 hrs with vehicle (V – DMSO) 
or 4 µM GW3965 prior to stimulation with the follow ing TLR ligands; 100 ng/ml LPS (TLR4), 1 
µg/ml PAM3Cys (TLR2), 1 µg/ml Lipoteichoic acid (LT A - TLR2), 10 µg /ml Poly IC (PiC - 
TLR3), 1 µg/ ml CL97 (TLR7/8) and 1 µM CpG (TLR9). The concentration of IL-6 was 
measured by ELISA. Students T test; * P <  0.05. n = 4 per group. 
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Figure  10.6 Inhibition of TLR induced IL-6 secretion is me diated specifically by LXRs. 
Bone marrow derived macrophages were differentiated  from male wild-type, LXRα-/- and 
LXRβ-/- mice and pre-incubated for 48 hrs with vehicle (V – DMSO) or 4 µM GW3965 (GW) 
prior to stimulation with the following TLR ligands ; 100 ng/ml LPS (TLR4), 1 µg/ml PAM3Cys 
(PAM -TLR2), 1 µg/ml Lipoteichoic acid (LTA - TLR2) . The mean concentration of IL-6 was 
measured by ELISA. Students T test; *** P <  0.001, ** P < 0.01 relative to vehicle control. n = 
4/ group. 
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10.2.3 LXR activation synergises with TLR4 ligation to 

promote pro-inflammatory cytokine secretion  

The role of LXRs, especially in an inflammatory context, has been predominantly 

studied in mice or murine cells in which it is evident that LXR agonism can exert 

an anti-inflammatory effect upon TLR ligation in murine macrophages. The 

effect of LXR agonism upon TLR ligation in human macrophages was unknown. To 

evaluate the effect of LXR activation upon cytokine secretion in humans CD14+ 

monocytes were purified from the peripheral blood of healthy volunteers. The 

monocytes were pre-incubated for twenty four hours with vehicle (DMSO) or 

T1317 prior to stimulation with 100 ng/ml LPS. Taqman QRT-PCR for the 

increased expression of ABCA1 confirmed activation of LXRs by T1317 that was 

significantly inhibited by the addition of LPS (Figure  10.7). In contrast to the 

effect of LXR activation in murine macrophages, treatment of LPS stimulated 

human monocytes with T1317 increased the secretion of the pro-inflammatory 

cytokine IL-6 in a dose responsive manner (Figure  10.8). Treatment of monocytes 

with T1317 alone did not induce IL-6 secretion thus indicating that there was no 

contamination with any TLR ligands that could potentiate the inflammatory 

response.  

To determine if the pro-inflammatory effect of LXR agonism was specific to IL-6 

the concentration of TNFα in the same cell culture supernatants was measured 

by ELISA (Figure  10.9). In accordance with the increased concentrations of IL-6, 

LXR agonism by T1317 also increased the concentration of TNFα from LPS 

stimulated monocytes. These data suggest that LXR agonism exerts a general 

pro-inflammatory effect. Therefore, to determine the cytokine profile induced 

by LXR activation and TLR4 ligation, Luminex analysis was used to measure the 

concentration of multiple pro-inflammatory cytokines and chemokines (Figure 

 10.10 and Figure  10.11). In support of a pro-inflammatory effect of LXR agonism 

the concentration of several pro-inflammatory cytokines, namely IL-1β, IL-6, IL-

7, IL-12 and IL-17, and the inflammatory chemokines, MIP-1α, MIP-1β and 

RANTES, were increased in cell culture supernatants whilst the concentration of 

the anti-inflammatory cytokine IL-10 was significantly reduced. IL-2, IL-4, IL-5 

and IFNγ were not detectable and IL-8 was above the limits of assay detection. 

In agreement with my results, other studies have since demonstrated a pro-
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inflammatory effect of LXR agonists in LPS stimulated human macrophages in 

which they demonstrated that the elevated levels of MCP-1 in the presence of 

LXR agonists was mediated through the increased expression of TLR4 (61). I have 

since confirmed the findings of this study and have also demonstrated that the 

expression of TLR4 in human monocytes was increased by LXR activation (Figure 

 10.12). 
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Figure  10.7 TLR4 ligation inhibits LXR induced transcripti on in primary human monocytes. 
Human CD14 + monocytes were pre-incubated for 24 hrs with media  alone (0), vehicle (V – 
DMSO) or T1317 prior to stimulation with 100 ng/ml LPS (black bars) or media (white bars). 
The fold increase of ABCA1 expression relative to m edia alone was measured by Taqman 
QRT-PCR and normalised to TATA binding protein (TBP ). Each condition was tested in 
triplicate. Students T test; * <  0.05. 
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Figure  10.8 LXR activation increases the secretion of IL-6  from human LPS stimulated 
monocytes. 
Human CD14 + primary monocytes were pre-incubated for 24 hrs wi th media alone (0), 
vehicle (V – DMSO) or T1317 at the indicated concen trations prior to stimulation with 100 
ng/ml LPS. The concentration of IL-6 in cell cultur e supernatants was measured by ELISA. 
Each condition was tested in triplicate. These data  are representative of results from 6 
individual donors. Students T test; * P <  0.05, ** P < 0.01, *** P < 0.001. 
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Figure  10.9 LXR agonism increases the secretion of TNF α from LPS stimulated human 
monocytes. 
Human CD14 + monocytes were pre-incubated for 24 hrs with media  alone (0), vehicle (V – 
DMSO) or T1317 at the indicated concentrations prio r to stimulation with 100 ng/ml LPS. The 
concentration of TNF α in cell culture supernatants was measured by ELISA . Each condition 
was tested in triplicate. Students T test; ** P <  0.01, *** P < 0.001. 
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Figure  10.10 LXR agonism increases the secretion of multip le pro-inflammatory cytokines 
from LPS stimulated human monocytes. 
Human CD14 + monocytes were pre-incubated for 24 hrs with media  alone (0), vehicle (V – 
DMSO) or 4 µMT1317 prior to stimulation with media alone (white bars) or 100 ng/ml LPS 
(black bars). The concentration of cytokines in cel l culture supernatants was measured by 
Luminex. Each condition was tested in triplicate. S tudents T test; * <  0.05, ** < 0.01 *** < 
0.001. 
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Figure  10.11 The secretion of inflammatory chemokines is i ncreased by LXR activation. 
Human CD14 + monocytes were pre-incubated for 24 hrs with media  alone (0), vehicle (V – 
DMSO) or 4 µMT1317 prior to stimulation with 100 ng /ml LPS. The concentration of 
inflammatory chemokines in cell culture supernatant s was measured by Luminex. Each 
condition was tested in triplicate. Students T test ; * < 0.05, ** < 0.01. 
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Figure  10.12 LXR activation increased the expression of TL R4. 
Human CD14 + monocytes were pre-incubated for 24 hrs with media  alone (0), vehicle (V – 
DMSO) or T1317 prior to stimulation with 100 ng/ml LPS (black bars) or media (white bars). 
The expression of TLR4 normalised to TATA binding p rotein (TBP) was measured by 
Taqman QRT-PCR. Each condition was tested in tripli cate. Students T test; * <  0.05 (relative 
to vehicle), ** P <  0.01. 

The importance of an LXR driven pathway in the pathology of RA is unknown. 

Therefore, to determine if the pro-inflammatory effect of LXR activation upon 

TLR4 ligation is conserved in patients with RA, CD14+ monocytes were purified 

from RA peripheral blood. As previously described, the cells were pre-treated 

with media, vehicle, T1317 or GW3965 for 24 hours prior to stimulation with 100 

ng/ml LPS. LXR agonism significantly increased the concentration of LPS induced 

secretion of IL-6 and TNFα in cell culture supernatants as measured by ELISA in a 

dose responsive manner (Figure  10.13). Of interest, in the absence of LPS 

although both TNFα and IL-6 were secreted at low concentrations, reflecting the 

systemic pro-inflammatory environment in RA; LXR agonism did not alter the 

level of cytokine secretion. These results demonstrate that LXR agonism is able 

to induce pro-inflammatory effects in LPS stimulated monocytes in samples from 

both healthy controls and patients with RA. 
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Figure  10.13 LXR agonism promotes cytokine secretion from LPS stimulated RA 
monocytes. 
(A – B) Monocytes were purified from the peripheral  blood of patients with RA and 
incubated for 24 hrs with media alone (0), vehicle (V – DMSO), T1317 and GW3965 at the 
indicated concentrations prior to stimulation with 100 ng/ml LPS. The concentration of TNF α 
(A) and IL-6 (B) was measured by ELISA. Each condit ion was tested in triplicate and the 
results are representative of 3 independent donors.  Students T test; * P <  0.05, ** P < 0.01, 
*** P < 0.001. 

10.2.4 LXR activation has no effect upon pro-inflammatory 

cytokine secretion from inflamed synovial membrane 

The effect of LXR activation at the primary site of inflammation within the RA 

synovium has not previously been defined. Both LXRα and LXRβ are expressed 
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within cells derived from collagenase digested RA synovial membrane 

(synoviocytes) and synovial derived fibroblasts from patients with RA (Figure 

 10.14). Therefore, to determine if LXR activation could potentially increase the 

basal level of cytokine secretion within the synovium freshly isolated RA derived 

synoviocytes were treated with vehicle or T1317 (Figure  10.15). In the absence 

of any exogenous inflammatory stimuli, the RA derived synoviocytes 

spontaneously secreted high concentrations of TNFα. However, addition of T1317 

or GW3965 did not affect the secretion of TNFα. Fibroblasts are the major cell 

type of the synovial membrane. Therefore, fibroblasts derived from inflamed RA 

synovial membrane were treated with T1317 and stimulated with 100 ng/ml LPS 

(Figure  10.16). However, despite induction of the TLR4 pathway, evident by the 

increased secretion of IL-6, LXR agonism did not further increase the 

concentration of IL-6 secreted from RA fibroblasts. Similar results were also 

obtained in RA synoviocytes (Figure  10.17).  
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Figure  10.14 LXRs are expressed in synoviocytes and synovi al fibroblasts. 
(A – B)The expression of LXR α and LXRβ was assessed by RT-PCR. (A) RNA was extracted 
from synovial membrane from RA patients following c ollagenase digestion; n =3 (A) and RA 
synovial derived fibroblast explant cultures at pas sage 5; n = 4 (B). Molecular weight ladder 
(MW), blank (B – no RNA) positive control (+, human  monocytes), negative control ( - , 
without reverse transcriptase). 
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Figure  10.15 LXR agonism does not promote cytokine secreti on from synoviocytes. 
Synoviocytes derived from rheumatoid arthritis syno vial membrane following collagenase 
digestion were treated with media alone (0), vehicl e (V – DMSO), T1317 or GW3965 at the 
indicated concentration for 24 hrs. The concentrati on of TNF α was measured by ELISA. 
Each condition was tested in triplicate. The result s are representative 3 separate donors. 
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Figure  10.16 LXR activation does not increase secretion of  IL-6 from LPS stimulated 
rheumatoid synovial fibroblasts. 
RA synovial fibroblast explant cultures at passage 5 were pre-incubated for 24 hrs with 
media alone (0), vehicle (V – DMSO) or T1317 at the  indicated concentrations prior to 
stimulation with 100 ng/ml LPS. The concentration o f IL-6 was measured by ELISA. Each 
condition was tested in triplicate. The results are  representative 5 separate donors. 
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Figure  10.17 LXR agonism does not promote TNF α secretion from LPS stimulated 
synoviocytes. 
Synoviocytes derived from RA synovial membrane foll owing collagenase digestion were 
treated with media alone (0), vehicle (V – DMSO), T 1317 (T) or GW3965 (GW) at the indicated 
concentration for 24 hrs prior to stimulation with 100 ng/ml LPS. The concentration of TNF α 
was measured by ELISA. Each condition was tested in  triplicate. The results are 
representative of 3 separate donors. 
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10.2.5 LXRs exacerbate cytokine secretion in an in vitro 

model of synovitis 

LXR agonism supports the secretion of inflammatory cytokines and chemokines 

from human LPS stimulated monocytes but not RA synovial tissue derived 

synoviocytes or fibroblasts. The effect of LXR agonism upon other inflammatory 

pathways relevant to RA remains unknown. Whilst RA is considered a Th1 disease 

synovial T cells have a phenotype more similar to cytokine activated T cells 

(TcKs) which are able to induce macrophage activation and consequently the 

secretion of macrophage derived pro-inflammatory cytokines including TNFα 

(162). To determine if LXR activation has the potential to drive an inflammatory 

response through the interaction of macrophages and TcKs, monocytes were 

purified from the peripheral blood of healthy controls and matured to a 

macrophage phenotype with MCSF in the presence of vehicle, GW3965 or T1317. 

Syngeneic CD3+ T cells were simultaneously purified and activated with IL-2, IL-6 

and TNFα. After seven days, macrophages and TcKs were co-cultured for 24 

hours and the concentration of macrophage derived TNFα was measured by ELISA 

(Figure  10.18). Co-culture of macrophages and TcKs induced the secretion of 

TNFα which was significantly increased by treatment with T1317 or GW3965 in a 

dose responsive manner. Luminex analysis was used to assess the effect of LXR 

agonism upon the secretion of other inflammatory cytokines and chemokines 

(Figure  10.19 and Figure  10.20). Indeed, the concentration of multiple pro-

inflammatory cytokines IL-1β, IL-2, IL-5, IL-6, IL-12, IL-13, IL-15, IL-17, GM-CSF, 

IFNγ and TNFα, were significantly increased in cell culture supernatants by 

T1317 and GW3965. Similarly, both T1317 and GW3965 significantly increased 

the concentration of the inflammatory chemokines MIP-1α and MIP-1β. The 

concentration of IL-1Ra, IFNα, IL-4, IL-7, RANTES, IP-10, MIG and MCP-1 were not 

changed, whilst IL-8 and eotaxin were outwith the limits of assay detection. 

These data suggest that LXR agonism may be able to promote an inflammatory 

response mediated through the interaction of cytokine activated T cells and 

macrophages within an inflamed RA synovium. 



  181 

Mϕϕϕϕ TcK 0 V 0.1 4 0.1 4
0

10000

20000

30000

40000

50000

60000

70000

**

T1317 GW3965

*

**

***

T
N

F
- αα αα

 (
pg

/m
l)

 

Figure  10.18 LXR agonism increases the secretion of TNF α in an  in vitro model of synovitis. 
Primary human monocytes were purified and matured t o a macrophages (M Ф) phenotype 
with MCSF. Simultaneously, unfixed syngeneic CD3 + T cells were activated with IL-2, IL-6 
and TNFα (cytokine activated T cells- TcKs). After seven da ys the cells were co-cultured and 
incubated overnight in the presence of media alone (0), vehicle (V – DMSO), T1317 or 
GW3965 at the indicated concentration. The concentr ation of TNF α was measured by ELISA. 
Each condition was tested in triplicate and the res ults are representative of 6 different 
donors. Students T test; * P <  0.05, ** P < 0.01, *** P < 0.001.  
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LXR agonism promotes inflammatory cytokine secretio n from T cell activated macrophages, 
(continued over).  
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Figure  10.19 LXR agonism promotes inflammatory cytokine se cretion from T cell activated 
macrophages. 
Primary human monocytes were purified and matured t o a macrophages (M Ф) phenotype 
with MCSF. Simultaneously, syngeneic CD3 + T cells were activated with IL-2, IL-6 and TNF α 
(cytokine activated T cells- TcKs). After seven day s the cells were co-cultured and 
incubated overnight in the presence of media alone (0), vehicle (V – DMSO), 4 µM T1317 (T) 
or 4 µM GW3965 (GW). The concentration of cytokines  was measured by Luminex. Each 
condition was tested in triplicate. Students T test ; * P < 0.05, ** P < 0.01, *** P < 0.001.  
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Figure  10.20 LXR agonism promotes inflammatory chemokine s ecretion from T cell 
activated macrophages. 
Primary human monocytes were purified and matured t o a macrophages (M Ф) phenotype 
with MCSF. Simultaneously, syngeneic CD3 + T cells were activated with IL-2, IL-6 and TNF α 
(cytokine activated T cells- TcKs). After seven day s the cells were co-culture and incubated 
overnight in the presence of media alone (0), vehic le (V – DMSO), 4 µM T1317 (T) or 4 µM 
GW3965 (GW). The concentration of chemokines was me asured by Luminex. Each condition 
was tested in triplicate. Students T test; * P <  0.05, ** P < 0.01, *** P < 0.001.  

10.2.6 The effects of LXR activation are contact mediated 

The precise mechanism(s) by which TcKs can induce macrophage activation is 

(are) not fully understood although several ligand pairs have been implicated 

e.g. CD40/ CD40L, ICAM1 / LFA-1 and CD45/CD45R (309, 310). Furthermore, how 

LXRs interact with such inflammatory pathways to promote macrophage cytokine 

and chemokine secretion is unknown. To determine whether the effect of LXRs 

was mediated through soluble mediators or via mechanisms that support cell 

surface interactions human macrophages and TcKs were generated as previously 

described. The TcKs were then placed either in co-culture with the macrophages 
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or in the same well but on a transwell insert, to keep the T cells and 

macrophages spatially separated. Cells were treated with media alone, vehicle 

or T1317 (Figure  10.21). Transwell inserts with a pore size of 0.4 µM were 

selected so as to allow the diffusion of soluble proteins but not intact cells. As 

expected, co-culture of MCSF matured macrophages with TcKs induced the 

secretion of TNFα which was increased by approximately two fold by treatment 

with T1317; supporting previous findings suggesting a pro-inflammatory effect of 

LXR agonism. However, when the TcKs were separate from the macrophages 

TNFα was not detectable and addition of T1317 mediated no effect. Similarly, 

pre-treatment of only the TcKs, but not the macrophages, with LXR agonist 

during the cytokine activation stage had no effect upon subsequent TNFα 

secretion (Figure  10.22). These data suggest that the mechanism by which LXR 

agonism potentiates TcK induced macrophage derived inflammatory cytokine 

secretion is mediated through enhancement of cell-cell surface interactions 

rather than via elaboration of soluble mediators and that LXR activation in both 

the TcKS and macrophages is required to increase the secretion of TNFα. 
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Figure  10.21 LXR agonism potentiates T cell induced macrop hage derived pro-inflammatory 
cytokine secretion through cell surface interaction s. 
Human macrophages and cytokine activated T cells we re co-cultured (C) or were physically 
separated by transwell inserts (T) and treated with  media, vehicle (DMSO) or 4 µM T1317. 
The mean concentration of TNF α was measured by ELISA; not detectable (n/d). Each 
condition was tested in triplicate. Representative results from three individual donors. 
Students T test; ** P <  0.01. 
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Figure  10.22 LXR agonism in both TcKs and macrophages is r equired to potentiate the 
secretion of TNF α. 
Human CD14 + monocytes were matured to a macrophage (M Ф) phenotype with MCSF whilst 
syngeneic T cells were cytokine activated (TcKs). T he T cells, but not the macrophages, 
were pre- treated with media alone (0), vehicle (V-  DMSO) 4 µM  T1317 (T) or 4 µM GW3965 
(GW) prior to being co-cultured with macrophages. T he concentration of TNF α was 
measured by ELISA. 

10.2.7 TNFα regulates the expression of LXRs 

10.2.7.1 TNFα induces the expression of LXR α expression in murine 

macrophages 

Several reports suggest a cell type / subset specific capacity for TNFα to 

modulate expression of LXRα and the LXR target gene ABCA1. Specifically, the 

expression of LXRα is increased  by TNFα in rabbit adipocytes whereas in mouse 

and human kidney and liver cells the expression of LXRα is reduced (40, 41, 44). 

However, the effect of TNFα upon LXRα expression in macrophages is unknown.  

Therefore, to determine if TNFα could modulate the expression of LXRα in 

macrophages, BMDM were treated with 5 ng/ml TNFα; a concentration which 

was previously shown to modulate LXRα expression in murine adipocytes (Figure 

 10.23) (44). The macrophages were incubated with TNFα for 4 hrs, 8 hrs, 12 hrs 

or 24 hrs to determine whether any effect of TNFα upon LXRα expression was a 

primary or secondary transcriptional event. Treatment of murine macrophages 

with TNFα significantly increased the expression of LXRα by approximately two 

fold at all time points indicating that the effect of TNFα upon LXRα expression 

was likely a primary transcriptional event. Previous reports have demonstrated 
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that TNFα can alter the expression of LXRα but not LXRβ. BMDM were therefore 

treated with 2.5 ng/ml to 20 ng/ml TNFα for 24 hrs to firstly determine the 

effect of TNFα upon the expression of LXRβ and LXR target genes and to 

secondly determine the optimal concentration of TNFα (Figure  10.24). The 

expression of LXRα was significantly increased by all concentrations of TNFα-

similar to the previous experiment treatment, 5 ng/ml TNFα increased the 

expression of LXRα by approximately two fold. Similarly, the expression of 

ABCA1 was significantly increased by distinct concentrations of TNFα. However, 

although the expression of LXRβ was significantly increased by treatment with 

2.5 ng/ml and 10 ng/ml TNFα these effects were modest. 
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Figure  10.23 TNFα up-regulates the expression of LXR α in murine macrophages. 
Murine bone marrow derived macrophages were treated  with 5 ng/ml TNF α for the indicated 
period of time. RNA was extracted for the analysis of LXRα expression by Taqman QRT-PCR 
and normalised to TATA binding protein (TBP). n = 4 / group. Students T test; * P <  0.05, *** P 
< 0.001. 
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Figure  10.24 TNFα induces the expression of LXR α and downstream LXR target genes. 
Murine bone marrow derived macrophages were treated  with TNF α at the indicated 
concentrations for 24 hrs. RNA was extracted for me an gene expression analysis of LXR α, 
LXRβ and ABCA1 by Taqman QRT-PCR normalised to TATA bin ding protein (TBP).  Each 
condition was tested in triplicate; n = 5/ group. S tudents T test; * P <  0.05, ** P < 0.01, *** P < 
0.001. 

10.2.7.2 TNFα but not IL-6 induces the expression of LXR α in human 

macrophages 

TNFα can induce the expression of LXRα and subsequently ABCA1 in murine 

macrophages. Similar effects upon LXRα expression have also been shown by the 

administration of IL-1 and LPS to human liver cell lines and primary monocytes 

respectively (40, 311). The effect of TNFα and other inflammatory cytokines 

upon the expression and activation of LXRs in primary human monocyte derived 

macrophages was unknown. Therefore, MCSF matured human macrophages were 

treated with increasing concentrations of TNFα or IL-6 for twenty four hours 

after which the expression of LXRα, LXRβ and ABCA1 was measured by Taqman 

QRT-PCR (Figure  10.25). The concentration range of TNFα was derived from 

previous work in the literature and comparable to concentrations used in murine 

macrophages in previous experiments (Figure  10.24) (40, 41). The effect of IL-6 

upon LXR expression has not previously been assessed. IL-6 is effective in vitro 

at 100 ng/ml – for example at this concentration it efficiently promotes T cell 
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activation. Treatment with TNFα significantly increased the expression of LXRα 

but not LXRβ or ABCA1; P = 0.2556 and P = 0.6827 both at concentrations of 12.5 

ng/ml respectively. Treatment with IL-6 did not affect the expression of LXRα, 

LXRβ or ABCA1. These results suggest that TNFα but not IL-6 mediated signalling 

pathways are capable of modulating LXRα expression in human macrophages. 

I next wished to analyse the down stream signal pathways that might explain 

these observations. TNFα binding to the TNF receptor (TNFR1) induces the 

recruitment of the adaptor molecule TRADD which subsequently recruits the 

signalling molecules TRAF2 and TRAF5 leading to activation of NF-κB (reviewed 

in (42)). Similarly, IL-1 and LPS have also been shown to exert modulatory 

effects upon the expression of LXRα both of which ultimately induce the 

activation of NF-κB (40, 311, 312). Both human and murine LXRα contain NF-κB 

response elements within their promoter region proximal to the transcriptional 

start site (Figure  10.26). To determine if the effects of TNFα upon LXRα 

expression were mediated through NF-κB activation murine BMDM were treated 

with 5 ng/ml TNFα and a pharmacological inhibitor of NF-κB, Bay11-7082 

(Bay11), at concentrations between 2.5 µM and 20 µM or vehicle (DMSO) (Figure 

 10.27). Concentrations of Bay11 were selected from previous work in the 

literature which was shown to inhibit NF-κB induced expression of E-selectin at 

an Ec50 of 10 µM (313). Similar to previous experiments TNFα significantly 

increased the expression of LXRα in human macrophages by approximately four 

fold. Addition of Bay11 significantly reduced the expression of LXRα below basal 

levels of LXRα expression.  

Further control experiments were essential to interpret this observation. NF-κB 

activation promotes cell survival and suppresses apoptosis therefore inhibition of 

NF-κB may potentially promote macrophage apoptosis. Therefore, to ensure that 

the macrophages were viable after treatment with Bay 11 BMDM were treated 

with vehicle (DMSO) or 2.5 µM Bay11 for 4 hours and analysed by flow cytometry. 

To assess cell viability after treatment with BAY11 the cells were stained with 

Propidium Iodide (PI) (Figure  10.28). PI stains DNA but can only cross the plasma 

membrane of non-viable cells; therefore PI positive cells are considered 

apoptotic or necrotic. Treatment of BMDM with BAY11 significantly increased the 

percentage of PI positive cells compared to vehicle suggesting that inhibition of 

NF-κB by BAY11 induced macrophage apoptosis. Therefore, although the 



  190 

expression of LXRα was reduced in macrophages treated with BAY11 it is not 

clear if this is due to the induction of apoptotic or necrotic pathways or specific 

inhibition of NF-κB mediated induction of LXRα expression. Further studies 

utilising LXRα luciferase reporters are therefore required to confirm that the 

effect of TNFα upon LXRα expression is mediated through NF-κB. Time 

availability in my thesis studies precluded my performing these experiments.  
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Figure  10.25 TNFα induces the expression of LXR α in human macrophages. 
MCSF matured human macrophages were treated with TN Fα or IL-6 at the indicated 
concentrations for 24 hrs. RNA was then extracted f or gene expression analysis of LXR α, 
LXRβ and ABCA1 measured by Taqman QRT-PCR and normalise d to TATA binding protein 
(TBP). Each condition was tested in triplicate and the results are representative of four 
individual donors. Students T test; * P <  0.05. 
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Figure  10.26 The human and mouse LXR α promoters contain NF- κB response elements.  
A schematic demonstrating the location of the NF- κB binding sites within the human and 
mouse LXR α promoters. The sequence of the NF- κB binding element is shown in bold (5’ to 
3’) and the position relative to the transcriptiona l start site in base pairs is shown below. 
The transcriptional start site is indicated by the arrow.  

 

      GAGGGGATGACCT                                   AAGTGGATGCCCT  

Mouse 

5’ 3’ 
NF-κB NF-κB 

-3358                -3346    +297                 +309    

Human  

5’ 3’ 
NF-κB 

-1011                       -1019        CGGGGAATGTCCTAAG 
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Figure  10.27 Inhibition of NF- κB activation reduces the expression of LXR α. 
Murine bone marrow derived macrophages were treated  with 5 ng/ml TNF α and the 
pharmacological NF- κB inhibitor Bay11-7082 (Bay11) or vehicle (V- DMSO)  for 24 hrs. RNA 
was extracted for gene expression analysis of LXR α, normalised to TATA binding protein 
(TBP) by Taqman QRT-PCR. Each condition was tested in triplicate; n = 4/ group. Students T 
test; *** P <  0.001. 

 

Figure  10.28 Inhibition of NF- κB by BAY11 induced macrophage apoptosis. 
Murine bone marrow derived macrophages were treated  with vehicle (DMSO) or 2.5 µM 
BAY11 for 4 hrs. The cells were then stained with P ropidium Iodide (PI) to assess cell 
viability. Representative results of n = 3 mice. 
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10.2.8 Characterisation of LXR expression in human 

inflammatory arthropathies 

10.2.8.1 Expression of LXRs is increased in PBMCs f rom AS patients 

In addition to the maintenance of a cholesterol homeostasis it is now well 

established that LXRs play an immuno-modulatory role - my data discussed thus 

far suggest a predominantly pro-inflammatory effect upon LXR activation. 

Although the role for LXRs in arthritis is unknown recent reports in the literature 

support a role for LXRs in human disease pathology in which the expression of 

LXRα and LXRβ is altered in the PBMCs of patients with multiple sclerosis (MS) 

but not other neurological conditions (123, 124). Therefore, to determine if the 

expression of LXRs is altered in RA, PBMCs were purified from patients with RA 

and healthy controls (HC). For comparison with other inflammatory 

arthropathies, PBMCs were obtained from patients with ankylosing spondylitis 

(AS) and psoriatic arthritis (PsA) to determine whether any biology around LXR 

expression was specific to RA or common to other autoimmune inflammatory 

conditions. The number of subjects and patient characteristics is shown in Table 

 10.1; all patients had established disease, met ACR diagnostic criteria and were 

receiving DMARD therapy as prescribed by their physician. RNA was extracted 

from the PBMCs and the level of expression of LXRα, LXRβ and ABCA1 was 

measured by Taqman QRT-PCR (Figure  10.29). There was no correlation of LXRα, 

LXRβ or ABCA1 expression with age in any of the subject groups (Table  10.2). 

Therefore, differences in subject age could not account for any changes in the 

level of LXR expression.  

The expression of LXRα was not altered in the patients with RA or PsA relative to 

HC. Unexpectedly, LXRα mRNA expression was significantly higher in AS patients 

by approximately twenty two fold. Similarly, the expression of LXRβ was 

significantly higher in AS compared to HC by approximately seventeen fold. 

There was also a significant, but modest, increase in the expression of LXRβ 

expression in PsA whilst in RA the expression of LXRβ was significantly lower 

than HC. The expression of ABCA1 was measured to determine if increased LXR 

transcriptional activation was associated with increased LXR expression. 

However, the expression of ABCA1 was constant between all subject groups 
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tested. These data demonstrate that the expression of LXRs is increased and 

suggest dysregulation of pathways which mediate the expression of LXRs 

specifically in AS. 

 HC RA PsA AS 

Samples 36 48 22 19 

Sex: Male (%) 

       Female (%) 

20 (56) 

16 (44) 

11 (23) 

37 (77) 

10 (45) 

12 (55) 

16(84) 

3(16) 

Age: Mean (range) 39 (22-64) 60 (35-84) 54 (35-67) 58 (39-73) 

ESR: Mean (range) N/A 14 (1-48) 12 (2-30) 12.7 (4-29) 

CRP: Mean (range) N/A 9.3 (0.5-109) 9.6 (1-35) 10.1 (0.8-44) 

Table  10.1 Characterisitics of patients and healthy contr ol subjects. 
Healthy controls (HC), Rheumatoid arthritis (RA), p soriatic arthritis (PsA) and ankylosing 
spondylitis (AS). Data not available (N/A). 

 

R2 (P) HC RA PsA AS 

LXRα 0.012 (0.52) 0.009 (0.47) 0.002 (0.82) 0.009 (0.76) 

LXRβ 0.06 (0.64) 0.013 (0.39) 0.015 (0.59) 0.103 (0.08) 

ABCA1 0.008 (0.6) 0.001 (0.86) 0.005 (0.75) 0.001 (0.93) 

Table  10.2 The expression of LXRs does not correlate with  age. 
The expression of LXR α, LXRβ and ABCA1 was measured by Taqman QRT-PCR. Healthy 
controls (HC), Rheumatoid arthritis (RA), psoriatic  arthritis (PsA) and ankylosing spondylitis 
(AS). Values shown are linear regression (r 2) and P value of significance in brackets.  
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Figure  10.29 The expression of LXRs is higher in ankylosin g spondylitis. 
The expression of LXR α, LXRβ and ABCA1, normalised to TATA binding protein (TBP ) was 
measured by Taqman QRT-PCR in peripheral blood mono nuclear cells purified from healthy 
controls (HC) or patients with rheumatoid arthritis  (RA), psoriatic arthritis (PsA) and 
ankylosing spondylitis (AS). Students T test; * P <  0.05, *** P < 0.001.  
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CRP/ ESR RA 

 
  

PsA AS 

LXRα 0.004 (0.67)/  

0.034 (0.24) 

0.003 ( 0.82)/ 

0.051 (0.31) 

0.04 (0.43)/  

0.188 (0.07) 

LXRβ 0.062 ( 0.09)/ 

0.141 (0.09) 

0.004 (0.78)/ 

0.141 (0.09) 

0.025 (0.53)/ 

0.012 (0.67) 

ABCA1 0.238 (0.007)/ 0.002 (0.84)/ 0.139 (0.13)/ 

 0.212 (0.002) 0.075 (0.22) 0.003 (0.83) 

Table  10.3 The expression of LXRs or ABCA1 does not corre late with disease severity. 
Linear regression analysis (r 2) of disease severity as measured by CRP and ESR in  
Rheumatoid arthritis (RA), psoriatic arthritis (PsA ) and ankylosing spondylitis (AS); patient 
characteristics and numbers are shown in Table  10.1. The expression of LXR α, LXRβ and 
ABCA1 was measured by Taqman QRT-PCR. Values shown are linear regression of CRP/ 
ESR vs LXR or ABCA1 expression and P values are sho wn in brackets. 

10.2.8.2 LXR mediated cytokine secretion is increas ed in patients with 

ankylosing spondylitis 

I next wished to determine whether this elevated basal level of LXR expression is 

in PBMCs of AS patients had any functional significance. The increased 

expression of LXRs suggests that PBMCs from AS patients may potentially have an 

increased capacity to respond to LXR agonists and subsequently promote 

inflammation. I have previously shown that LXR agonism can increase LPS 

mediated secretion of pro-inflammatory cytokines/ chemokines from human 

primary monocytes (Figure  10.8) an observation which has since been confirmed 

by other studies in the literature (61). Therefore, to determine how increased 

expression of LXRs may impact the secretion of IL-6 in response to TLR4 ligation 

with LPS and LXR agonism PBMCs were purified from subjects with AS, PsA, RA 

and HC. The subject characteristics and numbers are described in Table  10.4. 

PBMCs were pre-incubated with media alone, vehicle (DMSO) or 0.25 µM to 4 µM 
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GW3965 for 36 hours prior to addition of 100 ng/ml LPS. After twenty four hours 

the concentration of IL-6 in the cell culture supernatants was measured by ELISA 

(Figure  10.30). Consistent with previous findings LXR activation significantly 

increased the secretion of IL-6 in response to LPS from PBMCs of HC in a dose 

responsive manner. Similarly, the concentration of IL-6 was also significantly 

increased from LPS stimulated PBMCs of PsA, RA and AS patients in response to 

LXR activation. However, the concentration of IL-6 secreted from AS PBMCs was 

significantly higher than that secreted from HC in response to TLR4 ligation at 

several concentrations of GW3965. Similarly, the concentration of IL-6 secreted 

from PsA PBMCs was significantly higher than HC but only at the highest 

concentration of 4 µM GW3965. There was no significant difference in the 

concentration of IL-6 secreted from RA PBMCs compared to HC (P = 0.6423). 

These data indicate that AS PBMCs have an increased capacity to respond to LXR 

agonists and subsequently promote an inflammatory response mediated by TLR4 

stimulation with LPS. 

 HC RA PsA AS 

Samples 12 11 10 16 

Sex: Male (%) 

       Female (%) 

8 (66) 

4 (33) 

5 (45) 

6 (55) 

3 (30) 

7 (70) 

11 (68) 

5 (32) 

Age: Mean (range) 43 (25 – 59) 60 (57-77) 46.6 (32-64) 48 (24-75) 

ESR: Mean (range) N/A 14.8 (2-56) 15.6 (1.5-57) 8.7 (1.8-25) 

CRP: Mean (range) N/A 15.6 (0.8-33) 13.4 (0.7-29) 9.9 (0.7-9.9) 

Table  10.4 Subject characteristics. 
Healthy controls (HC), Rheumatoid arthritis (RA), p soriatic arthritis (PsA) and ankylosing 
spondylitis (AS). Data not available (N/A). 
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Figure  10.30 LXR mediated cytokine secretion is increased in patients with ankylosing 
spondylitis.  
PBMCs were purified from healthy controls (HC), Rhe umatoid arthritis (RA), psoriatic 
arthritis (PsA) and ankylosing spondylitis (AS) and  pre-incubated with media alone (0), 
vehicle (V- DMSO) or GW3965 at the indicated concen trations for approximately 36 hrs. The 
PBMCs were then stimulated with 100 ng/ml LPS for 2 4 hrs and the concentration of IL-6 in 
the cell culture supernatants was measured by ELISA . The subject characteristics and 
numbers are shown in Table  10.4. Each condition was tested in triplicate. Stud ents T test; * 
P < 0.05 between disease groups and healthy controls a t the same concentration of GW3965 
or # P <  0.05, ## P < 0.01 at concentrations of GW3965 within the same s ubject group 
relative to vehicle control. 
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10.3 Discussion & conclusion 

There is now a large body of evidence supporting a role for LXRs in inflammation 

in which LXR activation is generally ascribed an anti-inflammatory effect. This 

was first demonstrated by the treatment of LPS stimulated murine macrophages 

with LXR agonists which inhibited the expression of iNOS (117). Similarly, my 

own and other studies in the literature have since confirmed these findings and 

have demonstrated similar inhibitory effects of LXR agonism upon LPS 

stimulation in vivo (19, 118, 314, 315). Together these studies suggest a general 

anti-inflammatory effect of LXR agonism in murine systems. In support of this, I 

found that the anti-inflammatory effect of LXR activation is not unique to TLR4 

ligation but is also common to TLR2 induced inflammatory pathways as GW3965 

reduced the secretion of IL-6 from murine macrophages stimulated with the 

TLR2 ligands PAM3Cys or LTA. However, it is unclear what effect activation of 

LXRs has upon other TLR signalling pathways as I was unable to detect IL-6 by 

ELISA in cell culture supernatants from TLR3, TLR7/8 or TLR9 stimulated murine 

macrophages. TLR3, TLR7, TLR8 and TLR9 predominantly sense viral infection 

through the binding of dsRNA and DNA to promote the secretion of IFNα or IFNβ. 

Therefore, measurement of IFNα and IFNβ concentrations in cell culture 

supernatants by ELISA are required to determine if LXR agonism can affect IFN 

secretion and thereby infer a potential role for LXRs in defence against viral 

infection.  

Joseph et al previously demonstrated that the inhibitory effect of LXR agonism 

upon TLR4 induced iNOS expression was mediated by antagonism of NF-κB 

signalling (117). Similar to TLR4 ligation TLR2 also induces the activation of NF-

κB. It is therefore likely that inhibition of TLR2 induced IL-6 secretion by LXR 

agonism is mediated through the inhibition of NF-κB signalling pathways. This 

remains to be formally tested - the use of an NF-κB luciferase reporter would 

inform any inhibitory effect of LXRs upon NF-κB activation. These results suggest 

that LXR activation would be detrimental towards the clearance of a bacterial 

infection. However, contradictory to this hypothesis mice lacking LXRs are highly 

susceptible to Listeria monocytogenes infection and exhibit defective bacterial 

clearance in vivo (316). This was mediated by accelerated macrophage apoptosis 

due to aberrant regulation of the anti-apoptotic factor SPalpha; I conclude at 
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this stage only that the role of LXRs in innate immunity is complex and requires 

further investigation. I am also struck by the distinctions between murine and 

human studies thus far and interpolate cautious interpretation of my own in vivo 

experiments that constituted part of my own volume of work herein.  

The role of LXRs in inflammation has been predominantly studied in rodents or 

rodent derived tissues. Therefore, how LXRs modulate an inflammatory response 

in human cells was until recently unknown. I therefore first sought to determine 

if the anti-inflammatory effect of LXR agonism upon TLR4 induced inflammatory 

pathways in murine macrophages was conserved in humans. Paradoxically, 

treatment of human LPS stimulated monocytes with LXR agonists markedly 

increased the secretion of multiple pro-inflammatory cytokines and chemokines. 

These results demonstrate a novel pro-inflammatory effect of LXR activation in 

humans and are in direct contrast to the effect of LXR agonism in mice. Fontaine 

et al have since confirmed these results and demonstrated that the pro-

inflammatory effect of LXR agonism upon TLR4 activation is through the 

increased expression of TLR4 mediated by LXRα (61). Stimulation of TLR4 with 

LPS induces the phosphorylation of the MAPKs Jnk, Erk and p38 and accordingly 

LXR agonism increases MAPK phosphorylation downstream of TLR4. These data 

suggest that LXR activation potentiates the inflammatory response through 

increased TLR4 expression and downstream signalling pathways leading to 

enhanced pro-inflammatory cytokine secretion. Notably, the LXRE is not present 

within the murine TLR4 promoter hence LXR activation in murine macrophages 

does not alter TLR4 expression. Additionally, Fontaine et al also demonstrated a 

biphasic effect of LXR activation in human macrophages. Pre-treatment of 

human LPS stimulated macrophages with LXR agonists for 12 hrs or less 

decreased the secretion of MCP-1 and TNFα whereas MCP-1 and TNFα secretion 

was increased from macrophages pre-incubated with LXR agonists for 24hrs or 

longer. These observations are in agreement with my results where monocytes 

were pre-incubated with T1317 or GW3965 for 24 hrs or longer.  

The induction of human TLR4 expression by LXRα is a primary transcriptional 

event, evidenced by the direct binding of LXRs to the TLR4 promoter. However, 

the expression of human TLR4 is only increased in macrophages pre-incubated 

with LXR agonists for longer than 24 hrs, hence cytokine secretion is only 

increased in monocyte/ macrophages pre-incubated with LXR agonist for longer 
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than 24 hrs. Although no change in TLR4 expression is observed with shorter 

periods of macrophage/ LXR agonist pre-incubation, it is evident that there is an 

inhibitory effect of LXR agonism upon inflammatory cytokine/ chemokine 

secretion. It is not clear how LXRs mediate the switch between the biphasic 

effects upon the regulation of TLR4 mediated signalling pathways. However, 

LXRs have been shown to promote the expression of the nuclear receptor Rev-

erbα which inhibits TLR4 expression (5). Furthermore, whether LXR agonism in 

human monocytes/ macrophages inhibits NF-κB activation similar to that 

demonstrated in murine macrophages at the earlier time points of agonist 

incubation is unknown. This is summarised in Figure  10.31. The effect of LXR 

agonism upon other TLR mediated pathways in human macrophages has not been 

tested however these studies so far have demonstrated a novel pro-inflammatory 

effect of LXR agonism upon TLR4 mediated inflammation in human monocytes/ 

macrophages. 

 

Figure  10.31 Regulation of TLR4 expression and signalling pathways by LXRs. 
Activation of LXRs is able to upregulate the expres sion of TLR4 in human macrophages 
leading to increased downstream signalling and secr etion of inflammatory cytokines and 
chemokines. However, LXR α can also induce the expression of Rev-erb α which can inhibit 
LXR mediated induction of TLR4; thereby negative fe edback upon TLR4 expression. In 
murine macrophages LXR can also inhibit the activat ion of NF- κB and the expression of 
downstream target genes it is not clear if there is  any interaction between LXR and NF- κB 
signalling pathways in human macrophages. 
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The pro-inflammatory effect of LXR agonism upon TLR4 induced cytokine 

secretion from human peripheral blood derived monocytes is conserved in 

patients with RA. LXR agonism may therefore support the development of an 

inflammatory environment through the secretion of cytokines and chemokines 

induced via the activation of TLR4 by either endogenous or bacterial derived 

ligands. Unlike monocytes/ macrophages treatment of fibroblasts or 

synoviocytes with T1317 or GW3965 did not change the basal or likewise the 

concentration of LPS induced secretion of TNFα or IL-6. This demonstrates that 

fibroblasts and synoviocytes are not already maximally activated as addition of 

LPS increased the secretion of IL-6. Secondly these results suggest that the pro-

inflammatory effect of LXR may potentially be exclusive to the periphery. 

In support of a role for LXRs in driving inflammation in the synovium LXR 

activation increased the secretion of multiple macrophage derived pro-

inflammatory cytokines and chemokines in the TcK/ macrophage contact assay. 

By using a transwell assay system I was able to confirm previous findings 

demonstrating that the secretion of TNFα was mediated through macrophage/ 

TcK cell-cell contact (162). As addition of T1317 did not affect the secretion of 

TNFα from macrophages cultured separately from TcKS this would suggest that 

LXRs were not able to induce the secretion of soluble mediators that were able 

to initiate the inflammatory response. Therefore, how LXR agonism drives 

macrophage derived pro-inflammatory cytokine secretion in this context is 

unknown but may be in part through positive feedback of IL-2, IL-6 and TNFα or 

IL-15 upon TcK activation. 

To explore the role of potential feedback loops upon LXR biology, macrophages 

were treated with TNFα or IL-6. Interestingly, TNFα increased the expression of 

LXRα in both human and murine macrophages. Although the expression of LXRα 

was consistently increased it was not clear what effect TNFα exerted upon LXR 

transcriptional activation as ABCA1 was increased in murine but not human 

macrophages; the effect on other LXR target genes was not tested. These results 

have important implications for the role of LXRs in inflammation especially in RA 

where TNFα is central to disease pathology. My results have demonstrated a 

predominantly pro-inflammatory effect of LXR activation. This may be positively 

regulated by TNFα through the increased expression of LXRα thereby further 

enhancing the inflammatory response mediated by agonism of LXRs. It would 
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therefore be interesting to test the combined effect of TNFα with LXR agonists 

upon the secretion of inflammatory cytokines. Furthermore, if TNFα is able to 

increase the basal level of LXR transcriptional activation; as suggested by the 

increased expression of ABCA1, this would infer that TNFα is able to increase 

signalling pathways which support oxysterol synthesis or cellular uptake. Gas 

chromatography could be used to measure changes in endogenous oxysterol 

concentrations in response to treatment with TNFα to determine if TNFα 

mediates oxysterol synthesis and cholesterol metabolism. Similarly, the 

concentration of intra-cellular vs extra cellular LDL can be measured in 

macrophages treated with acetylated LDL to inform whether TNFα affects 

cholesterol uptake. These findings are summarised in Figure  10.32. 

 

 

Figure  10.32 TNFα positively regulates LXR α expression. 
LXR agonism increases the secretion of TNF α in response to TLR4 ligation or TcK induced 
activation of macrophages (M Ф) by an unknown mechanism. Increased concentrations  of 
TNFα may positively regulate LXR α expression by signaling through the TNF receptor 
(TNFR). TNFα may also positively regulate the transcriptional a ctivation of LXRs as 
suggested by the increased expression of ABCA1 in m urine macrophages. The increased 
secretion of TNF α by LXR agonism may support TcK activation and ther eby increase TcK 
induced activation of macrophages within the synovi um. 
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Together with the pro-inflammatory effects of LXR agonism in vivo and in vitro 

and the potential positive feedback loops of TNFα upon LXRα expression, and 

potentially LXR activation, these results suggest that LXRs may play a role in RA 

disease pathology. Gene expression analysis of LXRα, LXRβ and ABCA1 showed 

that the expression of LXRs in RA PBMCs was similar to that of healthy controls. 

However, these results do not exclude a role for LXRs in RA pathology as LXRs 

are constitutively expressed and are activated by the binding of cholesterol 

derived oxysterol ligands therefore, basal levels of LXR expression, but increased 

LXR activation, may drive inflammation in RA. It is also likely that the 

mechanisms which lead to pathology in RA or PsA compared to AS are different 

and may exert distinct effects upon LXRs.  

The expression of LXRs in RA PBMCs, as well as healthy controls, was also 

compared to that of patients with the spectrum of spondyloarthritis, namely 

psoriatic arthritis (PsA) and ankylosing spondylitis (AS). The expression of LXRα 

and LXRβ was dramatically increased in AS and moderately so in PsA. Both AS 

and PsA are autoimmune inflammatory conditions collectively affecting 

approximately 4% of the population. AS is manifest as inflammation of the 

sacroiliac joints and other enthesis organs, leading to fusion of vertebrae and 

curvature of the spinal column. Whereas PsA can have spinal involvement it is 

associated primarily with synovial and enthesial inflammation in peripheral 

joints and then with articular destruction. It is normally also associated with 

psoriatic skin lesions. Both conditions are distinct from RA by being seronegative 

for RF and ACPA. Although the pathogenesis of AS and PsA is unknown both 

conditions share some common genetic risk factors. SNPs in the IL-23 receptor 

and ERAP1 (ARTS-1) have been identified and are both associated with AS and 

PsA disease (317-321). HLA-B27 is also predictive of erosive arthritis in PsA and is 

present in approximately >90% of AS patients (322). The role of HLA-B27 in PsA 

and AS disease pathology is not full understood however several reports have 

suggested that HLA-B27 misfolding may trigger the unfolded protein response 

(UPR) causing endoplasmic reticulum (ER) stress (323, 324). Indeed, all the AS 

patients were HLA-B27 positive but the HLA-haplotype of the PsA patients was 

unknown.  

A role for LXRs in ER stress has not yet been identified although, activation of 

PPARγ, which can induce the expression of LXRs, has been shown to induce ER 



  206 

stress and attenuate subsequent IL-1 and IFNγ signalling (49, 325). Additionally, 

the transcription factor SREBP-1c, an LXR target gene, is present within the ER 

lumen. ER stress induces the cleavage of SREBP-1c and stabilises its binding to 

the promoters of target genes (326, 327). These observations implicate the LXR 

signalling pathway in ER stress but how ER stress may potentially effect LXR 

expression/ activation is unknown. It would therefore be of interest to further 

explore the association of HLA-B27 with LXR expression and determine how LXRs 

may effect inflammatory cytokine secretion in a context of ER stress. In addition 

to the genetic risk AS and PsA are associated with inflammatory bowel disease 

(IBD); ulcerative colitis and Crohn’s disease. However, as IBD is only present in 

approximately 60% of AS and PsA patients it is unlikely that IBD is the reason for 

the increased expression of LXRs in all the PsA and AS samples tested; although 

the IBD status of these individuals was unknown. Whether the expression of LXRs 

may serve as a suitable biomarker for the development of AS is currently 

unknown but further studies are required to identify the mechanisms leading to 

the increased expression of LXRs specifically in AS. 
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11 Discussion & conclusion 
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At the outset of my studies, some reports suggested an immuno-modulatory role 

of LXR activation. I therefore sought to determine how activation of LXRs could 

impact upon inflammatory signalling pathways with potential consequences for 

RA disease pathology. Unexpectedly, I have demonstrated a profound and novel 

pro-inflammatory effect of LXR agonism. This is exemplified by the dramatic 

increase in articular inflammation and destruction observed with administration 

of T1317 or GW3965 in vivo in a murine model of CIA. Enhanced disease severity 

was associated with elevated numbers of Th1 and Th17 cells and increased 

serum concentrations of multiple pro-inflammatory cytokines and inflammatory 

chemokines. Consistent with these observations the secretion of inflammatory 

cytokines was increased by LXR agonism regardless of mode of activation, 

namely via TLR4 (LPS) or cell-cell interactions; TcK stimulated human 

macrophages. Overall, my results have demonstrated a previously unrecognised 

pro-inflammatory effect of LXR activation that may drive pathology and disease 

severity in arthritis. 

My results contradict previous findings in the literature in which LXR activation 

has been described to exert a general anti-inflammatory effect. Many such 

studies have used murine models of disease or rodent derived tissue ex vivo in 

which an inflammatory response has been initiated by the use of LPS (19, 117, 

118, 120, 314, 315, 328-331). In this context LXR agonism does indeed reduce 

the secretion of pro-inflammatory cytokines and ameliorates disease pathology 

induced by LPS. However, paradoxically LXR agonism in human LPS stimulated 

monocytes/ macrophages supports the secretion of pro-inflammatory cytokines 

(61). Therefore, studies in which inflammation is induced with LPS in rodents or 

rodent derived tissue are unlikely to accurately reflect the action of LXRs in 

human cells; neither do they inform the action of LXRs upon other inflammatory 

pathways. This is best exemplified where LXR agonism was shown to inhibit LPS 

induced airways inflammation in mice whereas administration of GW3965 in an 

LPS free model of asthma is clearly detrimental – thus LXR agonism in such a 

context in mice is pro-inflammatory (19, 119, 315). Likewise LXR activation has 

also been shown to induce the expression of inflammatory markers; ICAM-1, 

VCAM-1 and E-selectin, on human endothelial cells (105).  

LXRs are best known and investigated for their role in lipid regulation and 

transport and therefore separating out whether the effects LXR agonism upon 
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inflammation is mediated directly or is a result of altered lipid metabolism may 

prove problematic. It is evident that LXRs can exert direct effects upon 

inflammatory signalling pathways as mediated by the increased expression of 

human TLR4 induced by LXRα (61). In support of a direct effect and as a 

potential explanation for the pro-inflammatory effects of LXR agonism in the 

murine CIA model, LXRs have been shown to regulate the expression of genes 

involved in glucocorticoid biology. GCs are synthesised and secreted in an inert 

form from the adrenal glands under the control of the hypothalamic-pituitary-

adrenal (HPA) axis. Activation of GCs is mediated by the enzyme 11β-

hydroxysteroid-dehydrogenase-type-1 (11βHSD-1) that catalyses the conversion 

of inert cortisone to active cortisol in humans permitting GC signalling through 

the glucocorticoid receptor (GR). Steroid signalling, as in the case of RA patients 

treated with for example prednisolone or triamcinolone hexanoate, exerts a 

profound anti-inflammatory effect which is mediated by increased T cell 

apoptosis and macrophage phagocytosis of apoptotic leukocytes (265, 266). LXR 

activation has been shown to inhibit the expression of 11βHSD-1 and GR thereby 

reducing GC signalling and potentially the beneficial anti-inflammatory effects 

attributable GC (7, 8, 93). In accordance with an inhibitory effect upon GC 

enhanced disease severity was associated with increased lymph node T cell 

numbers and neutrophil accumulation; potentially mediated through decreased 

macrophage phagocytosis. Further studies are therefore required to elucidate 

how the action of LXRs may impact upon GC/ GR signalling to drive disease 

pathology in RA. 

Part of my original interest in LXR biology came from the well recognised 

association of RA with enhanced vascular risk –indeed I considered at outset the 

possibility that LXR agonism might mediate beneficial effects in both tissue 

compartments namely primary articular disease and comorbid vascular 

atheroma. It is interesting to note that RA patients have accelerated CVD 

characterised by an atherosclerotic lipid profile and the presence of 

atherosclerotic lesions up to fifteen years prior to the clinical onset of RA (250, 

251, 253, 257). It is now widely accepted that pathology associated with 

atherosclerosis and RA may cooperate to promote a state of generally enhanced 

inflammation. As well as understanding a role of LXRs in inflammation this study 

was also initiated in an attempt to understand how altered lipid metabolism may 
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drive RA pathology. I hypothesise that cholesterol degradation within the 

periphery to form oxysterols could drive the development of synovial pathology 

by activation of LXRs. Indeed, my results which suggest a pro-inflammatory 

effect of LXR activation support this hypothesis. However, although my studies, 

as with other reports in the literature using T1317 or GW3965, are informative of 

LXR activation they may not faithfully represent the action of specific 

endogenous oxysterol species upon the activation of LXRs. Synthetic LXR agonists 

induce activation of LXRs systemically whereas endogenous agonists are 

restricted to particular anatomical locations and indeed different oxysterols are 

recognised to differentially activate or inhibit LXRs (29). Further studies are 

therefore required to demonstrate that specific oxysterols do exert pro-

inflammatory effects. Identifying which species of oxysterols are present in the 

serum and synovium of RA patients and if concentrations of these are altered 

relative to healthy controls is also important for understanding whether LXRs 

have a pathological role in RA. It would also be of interest to analyse the 

oxysterol content in patients both prior and post development of clinical 

arthritis. Nevertheless, my results do suggest that elevated levels of cholesterol, 

or altered cholesterol metabolism, may exert detrimental effects upon the 

progression of RA by activation of LXRs. This is in agreement with clinical trials 

performed by the host laboratory in which the use of atorvastatin modified 

markers of cardiovascular risk surrogates and exerted anti-inflammatory effects 

in RA (290). Notably in vivo studies have suggested that some of the anti-

inflammatory effects of statins may be independent of altered cholesterol 

concentrations (332).  

Understanding the individual roles of LXRα and LXRβ is central to understanding 

how lipid metabolism may impact upon inflammation and for the design of 

future therapeutics; for example it is already recognised that agonists designed 

specifically towards the activation of LXRβ are more favourable than dual LXRα/ 

LXRβ agonists for the treatment of atherosclerosis (101, 102). Furthermore, 

deletion of LXRα or LXRβ is protective against the pro-inflammatory effects 

mediated by administration of GW3965 or T1317 in murine CIA and suggests that 

cooperation between the LXR isoforms is necessary to drive inflammation. The 

separate role(s) of LXRα and LXRβ in inflammation is (are) unknown. It would be 

of interest to determine whether cooperation between LXRα and LXRβ is also 
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required to drive inflammation in human cells e.g. in the T cell / macrophage 

contact assay of synovitis. Importantly these findings have considerable 

implications for the development of LXR agonists as future therapeutics in which 

LXR agonists are already in pre-clinical trials for the treatment of atherosclerosis 

(36, 126). My results suggest that dual LXRα/LXRB agonism especially in patients 

with an underlying autoimmune condition or bacterial infection may cause an 

adverse pro-inflammatory effect. The current strategy of pharmaceutical 

companies is to develop agonists specifically targeted towards LXRβ. The use of 

LXRβ specific agonists may avoid the pro-inflammatory effects attributable to 

dual LXRα/ LXRβ agonism whilst preserving the beneficial effects upon the 

regression of atherosclerosis disease progression. However, endogenous 

oxysterol LXR ligands activate both LXRα and LXRβ and together with synthetic 

LXRβ agonists may exacerbate an inflammatory response over a prolonged period 

of time. Therefore, future LXRβ specific agonists should be thoroughly tested 

and used with caution. 

While the new evidence on the potential involvement of LXRs in RA is intriguing, 

major issues remain to be explored. Future studies must identify which 

mediators are responsible for the pro-inflammatory effects of LXRs and should 

elucidate why LXR agonism may exert either a pro or anti-inflammatory response 

in different contexts and indeed species. Finally, understanding what the 

consequences of elevated levels of LXR expression in AS is now a matter of 

paramount importance, representing an entirely novel and unexpected outcome 

from the present studies.
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