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Abstract 
 

Every biological cell is surrounded by a membrane, which functions as a barrier to the 

environment and as a support matrix for membrane proteins. Membrane proteins facilitate the 

transport of manifold substrates across the membrane and are involved in fundamental 

cellular processes, such as signalling or energy generation to name a few. The key to the 

function of membrane proteins lies in their three dimensional structure, which can be 

determined by single crystal X-ray crystallography. However, membrane proteins are one of 

the most difficult protein classes to work with, which is reflected by the small number of 

available membrane protein structures. Protein crystallography requires milligram amounts of 

pure protein, which has to be expressed and purified to monodispersity to allow 

crystallisation. As membrane proteins have to be inserted into the membrane, recombinant 

expression yields are often low. In order to obtain enough protein for purification and 

crystallisation studies, the expression of membrane proteins requires screening for the best 

expression conditions. Purification of membrane proteins requires, due to their amphipathic 

character, the use of detergents to solubilise the membrane protein. The optimal combination 

of detergent and membrane protein is crucial for stability in aqueous solution in order to 

allow purification to monodispersity. Furthermore, the detergent has a high influence on the 

crystallisation of membrane proteins.  

An approach to overcome the challenges of membrane protein structural biology is to work in 

a high throughput (HTP) manner to increase the chances of success. The aim is to find the 

most promising targets out of a library of membrane proteins and in the presented work a 

small-scale HTP expression screen was developed in order to find the optimal expression 

conditions for each membrane protein from a target library of 12 E. coli inner membrane 

proteins. The targets were then expressed in the determined optimal conditions in sufficient 

amounts to allow purification. All membrane proteins were subjected to a purification 

pipeline, which employed a subset of parameters, that have proved to be the most successful 

to date in membrane protein purification for structural studies. Five membrane proteins were 

purified to monodispersity and were submitted to crystallisation trials. Crystals of two targets 

were obtained, which diffracted to 7 Å and 15 Å. Furthermore, the data collected on the 

expression and purification behaviour of the 12 membrane proteins, will help to optimise the 

starting parameters for the screening of future targets. 
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Chapter 1 

Introduction 
 

Part one of the introduction to this study on membrane proteins introduces the fundamental 

biology of membranes and membrane proteins. The function of biological membranes, their 

building blocks and macromolecular assembly are described. Membrane proteins use the 

membrane as a matrix for their manifold functions, some of which are reviewed after their 

biogenesis, classification and common structural folding patterns are introduced. The second 

part of the introduction considers the structural biology of membrane proteins, involving all 

relevant steps for this study from recombinant overexpression to purification and 

crystallisation. Part three gives an overview of the benefits of high throughput methods in 

structural biology followed by the aim of this study. The final section introduces the target 

library of the addressed membrane proteins. 

 

1.1 The biological membrane 
 

The creation of membranes was a crucial step in evolution. Membranes prevent the free 

molecular diffusion of compounds and this enabled the development of the first self-

replicating forms of life on Earth. The membrane itself evolved into the most important 

platform of the cell for energy generation, signalling, protection, transport of nutrients and 

facilitates countless other functions.  

The formation of phospholipid bilayers was first described by Gorter and Grendel in 1925 

(Gorter and Grendel 1925) and in 1935 Davson and Danielli proposed a model of the cell 

membrane, in which the phospholipid bilayer was embedded between two layers of globular 

protein (Danielli and Davson 1935). The model could explain the observed surface tension of 

lipid bilayers. The Davson-Danielli model was predominant for 37 years until in 1972 Singer 

and Nicolson published the fluid mosaic model (Singer and Nicolson 1972). They eliminated 

the flanking protein layers of the Davson-Danielli model, which were not supported by new 

experimental evidence and included transmembrane proteins (Singer and Nicolson 1972). 

Refinements of the fluid mosaic model allow a clearer picture of the cell membrane today, 

but many aspects, such as compartmentation or lipid rafts, are still a matter of debate. 
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1.1.1 Membrane structure 
1.1.1.1 Phospholipids as building blocks of membranes 
 

The primary building blocks of biological membranes are phospholipids (Alberts et al. 1983). 

They are in most cases derived from glycerol-3-phosphate, which is connected via ester 

bonds to two long hydrophobic hydrocarbon tails and to a hydrophilic phosphate head-group. 

The amphipathic character of a phospholipid is influenced by the length and saturation state 

of the fatty acids, which form the hydrophobic tail (Voet et al. 2002). The fatty acids contain 

14–24 carbon atoms, with one tail group of the phospholipid usually having one or more cis-

double bonds while the other tail is saturated. The phosphate functions as a linker to various 

hydrophilic head-groups (Alberts et al. 1983; Voet et al. 2002). Figure 1.1 shows a 

representation of the most common phospholipids in biological membranes.  

 

 

Figure 1.1: The most common phospholipids in membranes. For the ease of display the fatty acid tails are 
represented in straight columns. Fatty acid tails often contain cis-double bonds, which lead to a kink in the chain 
as shown for phosphatidylcholine. The figure was created with Microsoft Powerpoint. 
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Lipids have a complex phase behaviour in aqueous solution and different aggregation states 

are observed (Feigenson 2006; van Meer et al. 2008). Driven by the hydrophobic effect, a 

lipid bilayer can be formed in water by exposing the hydrophilic head-groups to the solvent 

and shielding the hydrophobic tails. Lipids can form liposomes in water, which consist of a 

continuous phospholipid bilayer (Alberts et al. 1983; van Meer et al. 2008).  

The fluidity of the membrane is influenced by the length and saturation state of the fatty acid 

hydrocarbon chains and also dependent on the amount of other membrane components such 

as cholesterol (Alberts et al. 1983; Rawicz et al. 2000). The rigid steroid ring system of 

cholesterol hinders the movement of the fatty acid tails of the phospholipids. Cholesterol 

functions as a softening agent and widens the temperature range of membrane fluid phase 

(Alberts et al. 1983). Most biological membranes have transition temperatures between 10 

and 40 °C. Ectothermic organisms such as bacteria or fish can adapt to temperature changes 

of the environment by altering the lipid composition of their membranes. 

New membranes are built in all cells through the extension of the existing membrane (Voet et 

al. 2002). In eukaryotic cells the membrane lipids are in most cases synthesised in the 

membrane of the endoplasmic reticulum and are directed in vesicles to the plasma membrane 

(Alberts et al. 1983). Prokaryotic organisms, such as Escherichia coli (E. coli), feature a cell 

wall followed by the periplasm, which is separated in Gram-negative bacteria from the 

cytoplasm by an inner membrane. Membrane lipids are synthesised in bacteria directly at the 

membrane surface. The thickness of membranes varies around an average of 6 nm but is 

adjusted to the shape and size of its components, especially integral membrane proteins (Voet 

et al. 2002). 

 

 

 

 

 

 

 

 

 

 

 



 

 4 

1.1.1.2 From fluid mosaic to the “picket fence” model of membranes 
 

The macromolecular assembly of the lipid bilayer is still a matter of debate. The proposed 

fluid mosaic model of Singer and Nicolson is based on the principles of Brownian motion 

and predicted lateral and rotational freedom and random distribution of molecular 

components in the membrane (1972). A membrane was described as a two-dimensional 

orientated solution of integral membrane proteins in the viscous phospholipid bilayer. 

Membrane proteins would be evenly distributed and able to freely diffuse in the membrane 

(Singer and Nicolson 1972; Vereb et al. 2003). However, increasing experimental evidence 

challenged this model. The fluid mosaic model could not explain the observation that the 

diffusion rate of lipids in the cell membrane is reduced by up to 5–100 times in comparison to 

synthetic bilayers. Furthermore the great structural variety of phospholipids together with 

their asymmetric distribution in the membrane, indicate molecular heterogeneity and the 

possibility of membrane microdomain formation (Swaisgood and Schindler 1989; Lee et al. 

1993; Shaikh et al. 2001; Fujiwara et al. 2002).  

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: A simplified schematic of a membrane. The lipid bilayer is made up from phospholipids, 
sphingomyelins and cholesterol and is spanned by integral membrane proteins. As described in section 1.2.3, 
peripheral membrane proteins are non-covalently attached to the membrane by interaction with its components. 
Proteins can also be anchored to the membrane by a hydrophobic polypeptide sequence or a transmembrane 
domain. Lipid microdomains or rafts are rich in cholesterol and sphingolipids and are present in a liquid-ordered 
phase. The figure was created using Microsoft Powerpoint. 
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These findings led to the development of the “picket fence” model by the group of Kusumi 

(Fujiwara et al. 2002). This model is based on the assumption that inner membrane proteins 

(IMP), which can be anchored to the cytoskeleton, generate cages confining membrane 

components. The transmembrane helices are the pickets of the fence, which is formed by 

IMPs. The membrane components can diffuse very fast laterally inside these membrane 

compartments, but are hindered in long-range movements by various interactions that give 

rise to membrane domains. However, membrane proteins can still migrate from domain to 

domain by hopping or jumping the domain barriers, as was revealed by single-particle 

tracking (SPT) experiments (Kusumi et al. 1993). Furthermore, the model is able to explain 

increasing observations of domain formations induced through lipid-lipid interactions, lipid-

protein interactions, protein-protein interactions and interactions with the cytoskeleton 

(Kusumi et al. 1993; Sprong et al. 2001; Baumgart et al. 2003; Daumas et al. 2003). 

However, the model cannot explain the cause and origin of all various confinements that have 

been described and so it is constantly being refined. Especially the existence of lipid 

microdomains, or rafts, is difficult to incorporate into the “picket fence” model. These rafts 

were first described in 1988 (Simons and van Meer). The Keystone Symposium on Lipid 

Rafts and Cell Function in March 2006 found a common definition for these microdomains: 

“Membrane rafts are small (10–200 nm), heterogeneous, highly dynamic, sterol- and 

sphingolipid-enriched domains that compartmentalise cellular processes. Small rafts can 

sometimes be stabilised to form larger platforms through protein-protein and protein-lipid 

interactions” (Pike 2006). Although the existence of lipid rafts can be shown in model 

membranes, their presence in an intact biological cell still needs to be proven (Baumgart et 

al. 2007).  

They are supposed to be involved in numerous processes, such as protein sorting, apoptosis, 

signal transduction (Brown and London 1998) or even virus infection processes for influenza 

and human immunodeficiency virus (HIV) (Ono and Freed 2001; Sun and Whittaker 2003; 

Jolly and Sattentau 2005).  

Techniques such as fluorescence recovery after photobleaching (FRAP), SPT, and 

fluorescence correlation spectroscopy (FCS) were developed to investigate the 

macromolecular assembly of lipids and membranes and as they are improved we might 

obtain a clearer picture of membrane structure in vivo (Destainville et al. 2008). 
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1.1.2 Membrane function 
 

The main function of every membrane is the formation of a barrier that separates the cell 

from the environment. Membranes also divide the internal cell volumes into comparable 

isolated compartments. In eukaryotic cells the membranes of the endoplasmic reticulum, 

Golgi apparatus, mitochondria and other membrane-bound organelles separate the inside of 

the specific organelles from the cytoplasm. The membrane makes the passing of polar or 

electrically charged molecules very difficult. This enables the cell to keep its chemical 

composition independently of the surrounding environment, in a range necessary to maintain 

its metabolism (Voet et al. 2002).  

However, cell metabolism relies on a steady-state equilibrium, making the import or export 

of nutrients, ions and other chemicals necessary. The membrane therefore also functions as a 

matrix or platform for membrane proteins. They enable a controlled flow of compounds 

across the membrane and play multiple other important roles in the cell’s ability to respond to 

changes in the environment (Alberts et al. 1983).  

 

 

1.2 Membrane proteins  
 

In most genomes, around 20–30 % of all predicted genes encode membrane proteins (Krogh 

et al. 2001). Biological membranes provide a matrix for membrane proteins, which catalyse 

most of the specific functions associated with membranes. Depending on the cellular 

location, the average amount of membrane protein varies around a mean of 50 % (w/w) 

(Alberts et al. 1983). This section describes the biogenesis of membrane proteins followed by 

their classification, common structural principles and their manifold functions. 
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1.2.1 Biogenesis of inner membrane proteins 
 

The biogenesis of inner membrane proteins (IMP) follows a partly conserved co-translational 

pathway (Luirink et al. 2005). In E. coli, the targeting of the nascent polypeptide chain to the 

membrane involves a signal recognition particle (SRP) and the SRP-receptor (Collinson 

2005). The inner membrane complex SecYEG is responsible for the insertion of the IMP into 

the membrane in E. coli (Luirink et al. 2005; Saier et al. 2008). The membrane protein YidC 

is involved in the late stages of IMP biogenesis in conjunction with SecYEG. YidC is also a 

membrane insertase for Sec-independent membrane proteins (Serek et al. 2004). A 

mechanism of membrane protein biosynthesis in E. coli was proposed based on biochemical 

data supported by electron microscope (EM) and X-ray structures of the SecYEG complex 

(Breyton et al. 2002; Van den Berg et al. 2004; Luirink et al. 2005). Figure 1.3 shows the 

three-step mechanism and more details of the participating proteins are given below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.3: Membrane protein biogenesis in E. coli. In Step 1 the SRP binds to the nascent polypeptide chain 
and the SRP mediates together with FtsY (SRP-receptor) the targeting to the membrane. The second step 
involves the insertion of the polypeptide chain into the membrane, either by YidC or by a complex from 
SecYEG and YidC. The membrane protein is released from the translocon in the third step and folds in the 
membrane. The protein is degraded, if defects are detected.  
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In the first step, the SRP mediates co-translational targeting to the membrane by interacting 

with hydrophobic target sequences of the nascent polypeptide, shortly after the first residues 

exit the ribosome. The SRP in E. coli is one of the simplest and consists of only one protein 

Ffh (fifty-four homolog), a homolog to the eukaryotic SRP54 protein (Luirink et al. 2005). 

The SRP contains a 4.5S RNA component, which is homologous to parts of the mammalian 

SRP 7SL RNA (Luirink et al. 2005; Nouwen et al. 2007; Driessen and Nouwen 2008). The 

SRP-receptor FtsY binds to the ribosome-SRP complex. The receptor contains only one 

subunit, which is a homolog of the mammalian SRα-receptor (Luirink et al. 1994). FtsY 

supports the targeting to the membrane through its affinity for lipids and possibly to the 

translocon component SecY (Luirink et al. 1994). FtsY is supposed to act together with the 

SRP as a GTP-dependent chaperone, feeding the nascent polypeptide chain into the SecYEG 

complex or the YidC translocase (Scotti et al. 1999; Rapoport 2007; Driessen and Nouwen 

2008).  

In the second step, the nascent protein is transferred to a Sec/YidC-translocon, or to a YidC-

translocase, by a poorly understood mechanism (Serek et al. 2004). Although the exact 

function of YidC is unclear, it is believed to act as an insertion and folding chaperone for 

membrane proteins (Luirink et al. 2005). The SecYEG complex belongs to the class of type 

II general secretory translocases and is universal. Homologues have been found in every 

bacterium, archaeon and eukaryote that has a fully sequenced genome (Kinch et al. 2002). 

SecYEG has also been reported to facilitate the export of some secretory proteins such as 

DsbA, β-lactamase and several autotransporters (Takamatsu et al. 1997; Sijbrandi et al. 

2003). The insertion of IMP in the membrane and the export of proteins by the Sec-system 

are driven by ATP/GTP hydrolysis and stimulated by the proton motive force (Geller 1991; 

Rapoport et al. 1996; Nouwen et al. 2007; Driessen and Nouwen 2008). 

In the third step the transmembrane segments of the polypeptide are laterally integrated in the 

membrane by the SecYEG translocon, with the help of YidC. Once in the membrane the new 

membrane protein folds and assembles into its native structure. Incorrectly folded proteins 

are detected, degraded and removed (Luirink et al. 2005).  
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1.2.2 Transmembrane domains 
 

The membrane-spanning domains of proteins have a high content of amino acids with 

nonpolar side chains, due to the hydrophobic membrane environment (Alberts et al. 1983). 

The nonpolar side chains of the amino acids in transmembrane domains (TMD) are exposed 

to the membrane in order to shield the polar peptide bonds of the protein’s polypeptide chain 

from the hydrophobic membrane environment. The peptide backbone of the TMD cannot 

access the aqueous phase and can only form hydrogen bonds between its peptide groups 

(Voet et al. 2002). The transmembrane domain folds that facilitate internal hydrogen bond 

formation are either α-helices or β-barrels. These motifs are retained also for multipass 

transmembrane proteins where the polypeptide chain crosses the membrane multiple times 

(Alberts et al. 1983; Voet et al. 2002). Figure 1.4 (A) shows a structure of the helix-bundle 

membrane protein ClC, an E. coli antiporter of chloride ions and protons and Fig. 1.4 (B) the 

E. coli sucrose porin, which forms a β-barrel.  

 

 

 
 

 

 

 

 

Figure 1.4: Examples for the helix-bundle fold (A) and β-barrel (B) fold of membrane proteins. A shows the 
structure of the E. coli ClC Cl-/H+ antiporter (PDB ID 1KPK), while B displays the β-barrel fold of the E. coli 
sucrose porin (PDB ID IA0S). The figure was created with PyMOL software. 

 

The preference for structural motifs is dependent on the cellular location of the membrane 

protein. The transmembrane-helix bundle is the fundamental structural motif of plasma 

membrane proteins, as was finally revealed by the high resolution structures of 

bacteriorhodopsin in 1996 (EM) and 1997 (X-ray) (Grigorieff et al. 1996; Pebay-Peyroula et 

al. 1997). In contrast membrane proteins located in the bacterial, mitochondrial and 

chloroplast outer-membrane generally, but not exclusively, have a β-barrel motif (Buchanan 

1999; Schulz 2000). 

A B 
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The group of helix-bundle proteins is more diverse and nearly all medically important 

membrane proteins such as receptors, transporters, channels, etc are found in this group 

(Heijne 2007). The hydrophobic part of transmembrane helices is made of apolar amino acids 

such as leucine, isoleucine, alanine, valine and phenylalanine. Furthermore tryptophan and 

tyrosine, two normally rare aromatic residues, are enriched near the ends of the 

transmembrane helices, in the parts of the protein that are embedded in the lipid head-group 

regions (Heijne 1999). The few charged or polar residues that are found between the apolar 

amino acids are usually facing the inside of the helix bundle and are responsible for specific 

functions (Heijne 2007). 
 

 

1.2.3 Classification of membrane proteins 
 

Membrane proteins can be classified into integral and peripheral membrane proteins, 

depending on their association with the membrane. Integral membrane proteins are 

amphiphatic. They consist of at least one hydrophobic membrane spanning segment and can 

extend out of the membrane, with their hydrophilic part of the polypeptide chain. Integral 

membrane proteins are tightly associated with the membrane through hydrophobic 

interactions with the fatty acid tails of the lipids (Alberts et al. 1983; Heijne 2007). Peripheral 

membrane proteins do not extend into the hydrophobic bilayer and are linked to the 

membrane usually by non-covalent interactions with other membrane proteins or lipid head-

groups. They can easily be separated from the membrane by gentle extraction procedures, 

such as changes in pH or with changes in the ionic strength of the solute (Alberts et al. 1983). 

Proteins that are attached to the membrane, with for example a glycosylphosphatidylinositol 

(GPI) anchor, form a third class. (Alberts et al. 1983; Voet et al. 2002).  
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1.2.4 Function of membrane proteins  
 

Membrane proteins are involved in a wide range of important cellular functions. Virtually 

any object that enters or leaves a cell, whether a nutrient, a virus or a waste product, must 

penetrate one or more enclosing membranes. Membrane proteins mediate this process and 

only a small number of compounds, such as oxygen and nitrogen, can enter a cell without the 

help of a membrane protein (Rees et al. 2009). To grasp the magnitude of transport across 

membranes, a good example is the glucose uptake of an actively growing E. coli cell. In order 

to feed its metabolic demands, it is estimated that a single cell needs to import up to 106  

glucose molecules per second (Phillips and Quake 2006; Rees et al. 2009). Furthermore the 

pumping of molecules across membranes is estimated to consume 10–60 % of ATP required 

by bacteria and humans, depending on conditions (Skou 1998; Rees et al. 2009).  

The list of membrane protein functions includes transport of ions, metabolites and larger 

molecules such as entire proteins and RNA. Membrane proteins are essential in chemical 

signalling to propagate electrical impulses that are required, for example, in the nervous 

system and muscle contraction. In addition, membrane proteins are used as anchors to attach 

to neighbouring cells, the extracellular matrix or to simply bind enzymes at specific cellular 

locations. Not only is the transport across the membrane regulated by membrane proteins, but 

also the intracellular vesicular transport and the control of lipid composition of the membrane 

and the maintenance of the shape of organelles and the cell itself (Alberts et al. 1983; Heijne 

1999). With the crucial role of membrane proteins in energy generation the list goes on 

(Heijne 2007).  

Work in this thesis deals with E. coli inner membrane proteins, especially transporters of the 

ATP binding cassette (ABC) superfamily and of the major facilitator superfamily (MFS). The 

following introduces these two superfamilies with regard to their distribution, medical 

importance, general architecture and transport mechanisms.  
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1.2.4.1 The ATP-binding cassette transporter superfamily 
 

The largest group of primary transporters is the ATP-binding cassette (ABC) transporter 

superfamily (Ames et al. 1992; Higgins 1992). Members of this family are present in 

organisms from all kingdoms of life (Rees et al. 2009). ABC exporters are found in both 

eukaryotes and prokaryotes, although importers were only found in prokaryotic organisms 

(Rees et al. 2009). In E. coli, ABC transporters form the largest membrane protein family 

with up to 80 distinct sub-families, representing 5 % of the genome (Linton and Higgins 

1998). In contrast only about 50 different ABC transporters have been identified in humans 

(Dean et al. 2001). The human ABC transporters are involved in cholesterol and lipid 

transport, multidrug resistance, antigen presentation, mitochondrial Fe homeostasis and the 

ATP-dependent regulation of ion channels (Rees et al. 2009). Mutations in these proteins 

lead to diseases such as cystic fibrosis (King et al. 2004), hypercholesterolaemia and 

diabetes. Multidrug resistance of tumour cells is an important challenge to overcome in 

cancer therapy (Higgins 2007), while ABC transporters in prokaryotes are responsible for 

increasing antibiotic resistance (McKeegan et al. 2002).  

The first structure of an ABC transporter to be published was the E. coli vitamin B12 

importer, BtuCD (Locher et al. 2002). Several other ABC transporter structures shed light on 

the molecular assembly and the general mechanism of ABC transporters. They minimally 

comprise four domains, two transmembrane domains (TMD) and two nucleotide binding 

domains (NBD) (Hollenstein et al. 2007). The latter are located in the cytoplasm and are 

highly conserved, whereas the transmembrane domain sequences are variable. The variance 

in the TMD sequences reflect the requirements for different transported substrates (Rees et 

al. 2009). Additional elements can fuse to the TMD and to the NBDs and probably have 

regulatory functions. In the case of prokaryotic importers these extra domains are highly 

substrate specific binding proteins (Biemans-Oldehinkel et al. 2006). Figure 1.5 shows as an 

example the ABC transporter structure of BtuCD, with its two TMDs and two NBDs, 

together with its periplasmic binding domain BtuF (Hvorup et al. 2007). 
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Figure 1.5: Structure of the E. coli vitamin B12 importer BtuCD together with its periplasmic binding domain 
BtuF in ribbon presentation. The horizontal lines indicate the approximate membrane boundaries. Figure created 
with PyMOL software (PDB ID 2QI9). 

 

The transport itself is powered by the hydrolysis of ATP. Its mechanism is based on 

alternating access and release of the substrate to push it across the membrane, with enormous 

conformational changes between the inward- and outward-facing states of the transporter 

(Heijne 2007; Rees et al. 2009).  
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1.2.4.2 The major facilitator superfamily 
 

The second largest membrane protein superfamily in E. coli is represented by the major 

facilitator superfamily (MFS). Up to 25 % of all known membrane transport proteins in 

prokaryotes belong to this superfamily of secondary transporters, which comprises 58 distinct 

families with about 15,000 sequenced members identified so far (Saier 2003; Law et al. 

2008). MFS transporters exist in all kingdoms of life and comprise targets of significant 

medical and pharmaceutical importance (Law et al. 2008).  

Three different kinetic transport schemes are found in MFS transporters. The first are 

uniporters, transporting only one substrate driven by its concentration gradient. The second 

group comprises symporters, which transport two or more substrates at the same time in the 

same direction by using the energy stored in the electrochemical gradient of one substrate. 

Antiporters make up the third class and are transporting two or more substrates in different 

directions across the membrane (Law et al. 2008).  

Individual MFS transporters have a strict substrate specifity. But as a group, they show a 

broad spectrum of transported compounds ranging from ions, sugars and sugar phosphates, 

drugs, neurotransmitters, amino acids to peptides and many more other molecules (Law et al. 

2008). The most intensively studied MFS symporter is the E. coli lactose/proton symporter 

LacY, whose structure was determined in 2003 (Abramson et al.). Figure 1.6 shows the 

structure of the E. coli symporter LacY. MFS antiporters are less well understood, but the 

structures of the E. coli sn-glycerol-3-phosphate:phosphate (GlpT) and EmrD transporters 

help to shed light on the function of MFS antiporters (Huang et al. 2003; Yin et al. 2006).  

 

 

 

 

 

 

 

 

 

 
Figure 1.6: Crystal structure of E. coli LacY. Horizontal lines indicate the approximate membrane boundaries. 
The figure was produced with PyMOL software (PDB ID 1PV6)  
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A translocation pore, which is surrounded by two domains, is the common and highly 

conserved architecture shared by all MFS proteins and can be observed in the structure of 

LacY in Fig. 1.4. The high substrate variance in the MFS transporter family is enabled 

through changes in only few residues in the substrate-binding site and the translocation 

pathway. A rocker-switch mechanism was proposed for the transport of substrates across the 

membrane by MFS transporters (Lemieux et al. 2004; Smirnova et al. 2007; Law et al. 

2008). 

 

The named examples reflect only a small number of membrane protein functions. Their 

importance for fundamental cellular processes makes them desired targets in structural 

biology. To fully understand the function and the involvement of a membrane protein at an 

atomic level, its structure is an essential piece of information. However, membrane proteins 

belong to the most difficult proteins to work with and their structure determination remains a 

major challenge.  
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1.3 Structural biology of membrane proteins 
1.3.1 Introduction 
 

The function of any protein is determined by and is dependent upon its three-dimensional 

structure. Obtaining a detailed picture of a protein at an atomic level, is possible by the 

interpretation of diffraction images of X-rays obtained from many identical protein molecules 

present in a crystal. Single-crystal X-ray crystallography is today still the most powerful and 

successful technique for structure determination of proteins. However, the amphipathic 

nature of membrane proteins makes them one of the most difficult classes of protein 

structures to obtain. The publishing of the structure of the photosynthetic reaction centre in 

1985 by Deisenhofer et al. marked the beginning of high resolution membrane protein 

structure determination (Deisenhofer et al. 1985). Since known, only a little more than 200 

unique membrane protein structures have been obtained (White 2008; McLuskey et al. 2009). 

The challenges in obtaining membrane protein structures are illustrated by the difference in 

deposited structures between soluble and membrane proteins in the protein data bank (PDB), 

where structural information on proteins is archived. Despite exponential growth of the 

number of membrane protein structures in the PDB, membrane proteins account for less than 

one percent of all deposited structures (Heijne 2007; McLuskey et al. 2008).  

X-ray crystallography relies on the availability of well-ordered protein crystals. Despite the 

reduced amounts of protein needed today, through increased use of high-throughput (HTP) 

methods and robotics for crystallisation experiments, many problems with membrane 

proteins arise during expression and purification. In general, structural studies require 

milligram amounts of pure and monodisperse membrane protein (Carpenter et al. 2008). 

Substantial difficulties are encountered, however, in the expression and purification of large 

quantities of stable membrane proteins. The following sections describe the challenges in 

membrane protein structure determination from their expression and purification to their 

crystallisation 
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1.3.2 Overexpression of inner membrane proteins 
 

In the majority of cases, the natural amount of membrane protein is not sufficient for 

structural studies and the target of choice needs to be overexpressed. The recombinant 

overexpression of IMPs is not straightforward and has to overcome a number of difficulties. 

Often the expressed membrane protein is toxic to the cell and protein yields are low 

(Carpenter et al. 2008). Target specific, optimal expression conditions are dependent on a 

range of parameters, all of which need to be screened and optimised in order to obtain 

sufficient amounts of target for its purification. The variable parameters to choose from 

include different expression vectors, tags for purification, host organism, cell lines, 

expression media, induction methods, expression duration and temperature (McLuskey et al. 

2008).  

Unlike soluble proteins, which are accumulated in the cytoplasm in bacteria, membrane 

proteins have to be targeted and inserted into the membrane as described in section 1.2.1. In 

E. coli, the overexpressed targets are co-translationally integrated into the plasma membrane 

or aggregate as inclusion bodies in the cytoplasm (Wagner et al. 2007). The refolding of 

membrane proteins from inclusion bodies has proved very difficult for IMPs and the 

preferred option is their accumulation in the inner membrane (Drew et al. 2003). However, 

this is often accompanied by changes of the membrane integrity and toxicity to the host 

(Miroux and Walker 1996).  

Available vectors for protein overexpression are genetically engineered to enhance the speed 

of expression and the required target DNA sequence is cloned into a vector to form a 

construct. Powerful promoters, developed for the expression of soluble proteins, lead to a fast 

increase of target mRNA levels after induction. This can result in the saturation of the cell’s 

translocation machinery. Saturation hinders the cell’s ability to carry out essential 

maintenance of membrane components and leads to a reduced amount of respiratory chain 

complexes in the membrane (Wagner et al. 2007). This triggers the less efficient acetate-

phosphotransacetylase pathway for ATP production and the down regulation of the 

tricarboxylic acid cycle, leading to reduced bacterial growth, which is accompanied by low 

protein yields (Wagner et al. 2007). Furthermore, if the SecYEG complex cannot integrate all 

nascent membrane proteins into the membrane, they remain in the cytoplasm and are likely to 

aggregate to inclusion bodies (Wagner et al. 2007). 
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To date, the most commonly used induction method is based on the use of isopropyl-β-D-

thiogalactoside (IPTG) (Berrow et al. 2006; Graslund et al. 2008). IPTG is a synthetic lactose 

analogue, that induces the lac-operon in E. coli. In constructs featuring a T7lac-promoter the 

target expression can be controlled and induced in lactose free growth medium by adding 

IPTG (Studier and Moffatt 1986). The optimal IPTG concentration and time of induction 

during bacterial growth to maximise protein yields, is target specific (Studier and Moffatt 

1986; Studier 2005) 

Studier developed a different approach with the invention of autoinduction medium (Studier 

2005). The induction of target expression is mediated by glucose depletion. Autoinduction 

medium contains an optimised ratio of glucose and lactose. Once the cells have metabolised 

all the glucose in the medium (with glucose being a natural inhibitor to the T7lac-promotor), 

lactose needs to be metabolised and this then induces expression. The start of the target 

expression is therefore dependent on the rate of the cell’s metabolism, making autoinduction 

suitable for expression screens where a large number of different cell lines, targets and other 

conditions are tested simultaneously (Studier 2005). Many more expression systems are 

available with all systems having their advantages and drawbacks, however the optimal 

expression system is dependent on the requirements of the specific membrane protein.  

E. coli is the most common host organism for the recombinant overexpression of prokaryotic 

membrane proteins (Berrow et al. 2006; Graslund et al. 2008). Due to the often toxic nature 

of membrane proteins, the optimal expression host is target specific. The optimal growth 

medium and expression temperature is also dependent on the target membrane protein 

(Lundstrom 2006). The medium composition and the temperature during expression, aim at 

providing the perfect environment for the host cell to express the specific target and 

differences in media compositions and temperature have a high impact on protein yield. 

Therefore, despite recent work on the mechanisms of membrane protein overexpression and 

optimisations of protocols, a unique best strategy is still not available and the need to screen 

for the optimal conditions of each target remains (Surade et al. 2006; Wagner et al. 2007). 
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1.3.3 Purification of inner membrane proteins 
 

The amphiphilic nature of membrane proteins requires the use of target specific detergents to 

solubilise and stabilise them in aqueous solution. The IMP has to be separated from the 

membrane by solubilisation with detergent in the first purification step. From this step 

onwards, the protein is always present as protein detergent complex (PDC) in solution. 

Therefore not the protein itself, but the PDC must be purified to monodispersity. 

The detergent is the most important parameter for the successful solubilisation, purification 

and crystallisation of membrane proteins (Carpenter et al. 2008). The following sections give 

an introduction to the physical properties of detergents and their use in membrane protein 

biochemistry.  

 

1.3.3.1 Physical properties of detergents 
 

Detergents are part of the compound group called surfactants. They reduce interfacial surface 

tension in mixtures, such as oil and water, by adsorbing to interfaces (Rosen 2004). 

Detergents are amphipathic compounds that feature a well-segregated polar hydrophilic head-

group and an apolar hydrophobic tail (Seddon et al. 2004). The hydrophilic head-group 

usually occupies more space than the tail, giving it a cone shaped appearance and allows the 

formation of circular micelles in water (Fig. 1.7 (A)) (Landau and Rosenbusch 1996). Lipids 

in contrast feature two tail groups that can lead, next to other aggregation states, to the 

formation of liposomes in solution, which consist of a continuous lipid bilayer (Fig 1.7 (B) 

(Alberts et al. 1983; Privè 2007). A schematic of the shape of detergents, micelles, lipids and 

lipid bilayers are shown in Figure 1.7. 

 

 

 

 

 

 
 

Figure 1.7: Schematic view of detergent (A) and lipid (B) monomers with polar head-groups and the 
hydrophobic tail groups. Driven by the hydrophobic effect, detergents form circular micelles due to their cone 
shape, while lipids can form bilayers that close in on each side, to form circular liposomes.  
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Pure detergent micelles contain from three to up to several hundred molecules, and are 

described by the unique aggregation number of a detergent (Privè 2007). The most important 

physical characteristic of a detergent is the critical micelle concentration (CMC) (Helenius et 

al. 1979; Rosen 2004). The CMC gives the minimal amount of detergent monomers required 

to form a micelle in solution (Helenius et al. 1979). The amphipathic character of the 

detergent monomer limits its solubility and the formation of micelles is driven by the 

hydrophobic effect, at concentrations above the CMC (Neugebauer 1990; Privè 2007). In 

micelles, the surface of the complex is smaller than in the monodisperse form, lowering 

entropy and making micelle formation thermodynamically favourable (Rosen 2004). Despite 

the formation of micelles above the CMC, there is always an amount of free monomers in 

solution, equalling the CMC concentration. The micelle detergent concentration can be 

determined as the total detergent concentration minus the CMC (Anatrace 2008). The CMC 

is most strongly influenced by the length of the alkyl tail group. The solubility of the 

detergent monomer is inversely proportional to the tail length. The CMC will roughly 

decrease by factor 10 for every two methylenes added to the aliphatic chain in a series based 

on the same head-group (Privè 2007). The CMC is for most detergents inversely proportional 

to the temperature, decreasing with increasing temperature (Anatrace 2008). A variety of 

methods can be employed to determine the CMC of a detergent, such as light scattering or, 

more quantitatively, by surface tension measurements (Mittal 1972). 

Micelles have an asymmetrical form in solution. They feature rough surfaces, where the 

detergent monomers are disordered and can extend into the aqueous solution (Garavito and 

Ferguson-Miller 2001). Usually micelles have a size of a few nanometers and weigh less than 

100 kDa. There is a continuous exchange of monomers between the monodisperse and the 

micelle state. The hydrophilic detergent head-group provides the water solubility and three 

different main types of head-groups exist, according to their polarity: ionic (cationic or 

anionic), nonionic or zwitterionic (Anatrace 2008).   
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1.3.3.2 The use of detergents in membrane protein biochemistry 
 

Proteins need to be purified to the highest possible degree to allow crystallisation (Michel 

1983; Rhodes 1993). In order to purify a membrane protein it has to be isolated from its 

native membrane environment. Membrane proteins can be solubilised with the help of 

detergents (Helenius et al. 1979). The amphipathic nature of detergents allows them to 

interact with hydrophobic membrane proteins and keep them water-soluble outside of their 

native bilayer environment (le Maire et al. 2000). When detergent is added slowly to the 

membrane suspension, the detergent monomers first partition into the bilayer and destabilise 

the membrane through detergent-lipid interactions. Mixed lipid-detergent complexes are 

formed and further addition of detergent leads finally to the dissolution of the bilayer and to 

membrane protein solubilisation (Almgren 2000; le Maire et al. 2000). A schematic of the 

solubilisation process of membrane proteins with increasing concentrations of detergent is 

shown in Fig. 1.8. 

In the solubilisation step the so-called critical solubilisation concentration (CSC) dictates the 

minimal amount of detergent necessary to disrupt the membrane assembly into a state, 

dominated by the presence of micelle-protein complexes (Privè 2007). The CSC is dependent 

on the starting parameters of the solubilisation, especially on the lipid content.  
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Figure 1.8: Schematic display of the solubilisation process of membrane proteins with increasing 
concentrations of detergent. The added detergent binds first to the membrane and interferes with the lipids. At 
higher detergent concentrations these interactions increase and break the membrane structure, when detergent 
concentrations close or higher than the CSC are reached. Lysis of the ordered membrane bilayer occurs and 
detergent/lipid/protein-complexes as well as detergent/lipid-micelles are found in solution. The adding of more 
detergent finally leads to the complete delipidation and the dissolution of the membrane and detergent/protein-
micelles are found in solution next to detergent/lipid-micelles and free detergent micelles. However, the 
formation of micelles is always in equilibrium with free detergent monomers in solution.  
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The CSC is dependent on temperature and decreases with higher temperature. However, the 

instability of most membrane proteins requires working at low temperatures, usually 4 °C 

(Seddon et al. 2004). In most cases when the CSC is reached, a change in turbidity of the 

solution can be observed. Once the membrane protein is solubilised, a general rule of thumb 

is to work with detergent concentrations of at least twice the CMC in buffers (Anatrace 

2008). However, the solubilisation of membrane proteins requires far higher detergent 

specific concentrations. A detergent to lipid ratio of at least ten to one is recommended 

(Anatrace 2008). The detergent n-octyl-β-D-glucopyranoside (OG) for example, has a CMC 

of 0.89 % and can often be used for solubilisation at a concentration of 1.2–1.5 %. In 

contrast, dodecyl-β-D-maltoside (DDM), is a milder detergent with a long alkyl chain and a 

CMC of 0.009 %, but needs to be added to a final concentration of 1.5 % (Privè 2007).  

The detergent head-group mediates the solubility of the PDC in the aqueous phase. The 

higher the polarity of the head-group, the better the solubilisation (Privè 2007). Ionic 

detergents such as sodium dodecyl sulphate (SDS), cetyltrimethylammoniumbromide 

(CTAB), N-lauryl sarcosine and sodium cholate perform very well in extracting proteins 

from the membrane. On the other hand, ionic detergents are very harsh and disrupt not only 

protein-membrane interactions, but also protein-protein interactions, and are mainly used as 

denaturants in quantitative protein folding/unfolding studies (Lau and Bowie 1997; Sehgal et 

al. 2005). In structural studies of membrane proteins the most commonly employed 

detergents belong to the group of non-ionic detergents such as maltosides, glucosides and 

polyoxyethyleneglycols, featuring uncharged hydrophilic head-groups. These mild detergents 

are less effective in solubilisation and therefore need to be added in higher concentrations. 

However, they are generally non-denaturing and their mildness increases with the length of 

their alkyl chain (le Maire et al. 2000; Seddon et al. 2004). DDM is a relatively mild 

detergent and a good initial choice for solubilisation and purification of membrane proteins. 

In addition, DDM was used in many successful crystallisation trials yielding membrane 

protein crystals (Privè 2007). 

The group of zwitterionic detergents lies between the ionic and the non-ionic detergents in 

regard to mildness. They are electrically neutral as they feature both, a positive and negative 

charge in their head-group. Examples of zwitterionic detergents are the socalled Zwittergents, 

Fos-Cholines, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS/ 

CHAPSO) as well as amine oxides. Lauryldimethyl amine oxide (LDAO) was, for example, 

successfully used in the structural characterisation of the photosynthetic reaction centre 

(Deisenhofer et al. 1985) and the outer membrane complex BtuB:TonB (Shultis et al. 2006). 
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Dodecylphosphocholine (Fos-Choline 12) is another zwitterionic detergent and has proven to 

be particularly successful in membrane protein structure NMR studies (Hwang et al. 2002; 

Oxenoid and Chou 2005). Physical properties of representatives of all detergent groups are 

shown in Table 1.1. The choice of detergent for membrane protein purification is always a 

compromise between solubilisation efficiency and protein stability (Seddon et al. 2004). 

Following the solubilisation of the target, purification can begin. 

 
Type Detergent Aggregation 

Number 
CMC 
[%] 

Micelle 
size [kDa] 

Schematic representation 

Ionic SDS 50-80 0.075 18 

 
Zwitter 
ionic 
 

LDAO 70 0.023 17–21 
 

Zwitter 
ionic 

Fos-Choline 
14 

108 0.005 47 

 
Non  
ionic 

DDM 78–149 0.009 70 

 
Table 1.1: Physical properties of the detergents SDS (ionic), LDAO and Fos-Cholin 14 (zwitterionic) and DDM 
(non ionic) (Varela et al. 1995; Agostiano et al. 2004; Strop and Brunger 2005; Anatrace 2008). 

 

The purification of membrane proteins employs the same established techniques as the ones 

developed for soluble proteins. Depending on the recombinant construct employed and its 

expressed counterpart, various purification techniques, such as ion exchange, affinity and size 

exclusion chromatography are available. However, the detergent often influences the 

effectiveness of these methods by, for example, interfering in the binding of protein 

purification tags to columns or changing their elution patterns. Instability leading to 

precipitation is often encountered, making a change of purification techniques necessary. The 

purity of the protein is assessed by an array of methods such as SDS-PAGE gel 

electrophoresis or mass spectrometry.  Furthermore the monodispersity of a membrane 

protein sample, which can be estimated by analytical gel filtration or dynamic light 

scattering, is crucial to allow the formation of well-ordered single crystals, necessary for 

protein crystallography. 
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1.3.4 Crystallisation of membrane proteins 
 

Similar to the purification stage, the membrane protein needs to be crystallised in a protein-

detergent complex. The detergent micelle covers, like a belt, the hydrophobic parts of the 

membrane protein, with the polar detergent head-groups facing the aqueous phase. The 

purified protein-detergent complex (PDC) is submitted to crystallisation trials, in which it is 

screened against a large number of conditions that were successful in the crystallisation of 

membrane proteins. The vapour diffusion method in a sitting drop format is the most 

employed method to achieve the supersaturation state of the membrane protein solution, 

needed for nucleation of crystal growth (Carpenter et al. 2008). Polyethylene glycols, 

polyethylene glycol monomethylether or ammonium sulphate and phosphate salts are the 

common precipitants used in different combinations and concentrations in crystallisation 

screens (Hunte et al. 2003). 

The amphipathic surface of membrane proteins allows the formation of two types of three-

dimensional membrane protein crystals (Michel 1983). Type I crystals are ordered stacks of 

two-dimensional crystals grown in a phospholipid bilayer, which contains the ordered protein 

molecules within the membrane plane. Type II crystals are formed by membrane proteins 

integrated in detergent micelles. The crystal contacts are mediated in type II crystals by the 

polar surfaces of the membrane protein, which are not covered by the detergent micelle. 

Mixed type I and II crystals are possible, but most membrane proteins are found to crystallise 

in type II (Michel 1983; Hunte et al. 2003). The different types of three-dimensional 

membrane protein crystals are shown in Fig. 1.9.  
 

 

 

 

 

 

 

 

 

Figure 1.9: Different types of membrane protein crystals. Type I crystals are ordered stacks of two-dimensional 
crystals grown in lipid bilayers. In type II crystals the PDCs align in the shown pattern, so that crystal contacts 
can be formed by the hydrophilic protein parts, which can be enlarged with antibody framents (IIb). Figure 
based on (Hunte et al. 2003). 
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Although short chain detergents can contribute through interactions of their polar head-group 

to the stability of a formed crystal lattice, the detergent micelle requires space in the lattice 

and cannot contribute to rigid crystal contacts (Zulauf 1991). Therefore, membrane proteins 

that feature only small hydrophilic domains or very short solvent exposed loops, such as 

many transporters, are very difficult to crystallise (Hunte et al. 2003). One approach to 

improve the chances of crystal contact formation is to extend the hydrophilic domain through 

means of attachment of specific polar domains, such as antibody fragments (Ostermeier et al. 

1995) or designed ankyrin repeat proteins (DARPINS) (Binz et al. 2004).  

However, as for purification, choosing the right detergent has always been the key to success 

in membrane protein crystallisation (Hunte et al. 2003; Lacapère et al. 2007; Carpenter et al. 

2008). Well-ordered crystals of the photosynthetic reaction centre from the purple bacterium 

Rhodopseudomonas viridis for example, could only be obtained in LDAO (Deisenhofer et al. 

1985). Employment of the decyl homolog that differs only in two carbon atoms did not 

produce crystals. A similar effect was observed with the yeast cytochrome bc1 complex, 

which was crystallised together with an antibody fragment in the detergent dodecyl-

maltopyranoside (DM). No crystals grew in undecyl-maltopyranoside, which feature an alkyl 

chain that is only one carbon atom shorter than DM (Hunte et al. 2003).  

The detergent micelle needs to fit optimally into the crystal lattice of the protein. Therefore, 

crystallisation is usually favoured with small detergent micelles (Michel 1983). This is in 

contrast to the solubilisation and stabilisation properties of detergents in regard to membrane 

proteins and the optimal protein-detergent combination has to be established. 

A different method to obtain membrane protein crystals is lipidic cubic phase 

crystallography. Lipids can form bicontinous three-dimensional bilayers in water, called 

lipidic cubic phases. The idea is that membrane proteins can diffuse in the bilayer, but are 

also able to form three-dimensional contacts, especially with their hydrophobic domains 

(Landau and Rosenbusch 1996). The crystals belong to the type I class of well ordered stacks 

of two dimensional layers. This technique has been successful for obtaining well-diffracting 

crystals for structure determination (Kolbe et al. 2000; Luecke et al. 2001) and an example is 

the structure of monomeric bacteriorhodopsin from purple membranes, which could be 

crystallised in lipidic cubic phases (Landau and Rosenbusch 1996). 

In the case the initial crystallisation screens showed crystalline material, the crystallisation 

condition is refined in order to obtain better diffracting crystals. Small changes, such as pH, 

salt or precipitant concentration, additives, protein concentration and type and concentration 

of the detergent can considerably improve crystal quality and have to be tested empirically.  
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In order to stabilise crystals in the X-ray beam and to trap the protein in a conformational 

state, crystals are flash frozen in liquid nitrogen or directly in the dry airflow of the cryo-

system on the goniometer head (Teng 1990). Finding the optimal cryo-protectant can have a 

big impact on the diffraction quality of the crystal. Membrane protein crystals are more 

vulnerable to freezing, as the solvent content is high and the presence of detergent enhances 

instability (Yoshikawa et al. 1998; Luecke et al. 2001; Hunte et al. 2003). Data collection 

and structure determination is in general the same as with soluble proteins. However, 

membrane protein crystals are usually very fragile and therefore difficult to handle 

(Carpenter et al. 2008). Membrane protein crystals diffract often only to low resolution and 

suffer from radiation damage during the diffraction experiments. Therefore, large numbers of 

crystals need to be screened, as even crystals from the same drop can vary considerably in 

diffraction quality (Carpenter et al. 2008). Access to high throughput facilities for the set up 

of crystallisation screens and to strong synchrotron radiation is very important to increase the 

chances of successful data collection. 

 

1.4 High throughput approach  
 

One way to overcome the problems of membrane protein structure determination is to try a 

large number of targets in the hope that a few will behave relatively well in expression, 

purification and crystallisation. Structural genomics projects for soluble and in increasing 

number also for membrane proteins specialise on the employment of established methods in 

high throughput (HTP) mode or the development of such techniques (Lundstrom 2006). HTP 

methods are used in all steps of the pipeline from cloning to crystallisation. The aim is to find 

promising targets in a short time frame with a minimum use of resources (Carpenter et al. 

2008).  

In the first instance the experiments are designed to work on a small-scale to reduce the 

necessary resources and to ease handling. Targets are often screened in 96-well or larger 

formats at the same time. Although not necessarily required, automatisation is possible for 

many steps and common for the generation of expression clone libraries (Stevens 2000). 

Studies on soluble proteins have shown that small-scale results are a useful indicator, if 

sufficient protein can be produced for large-scale structural studies and this approach is 

increasingly common for structural studies on membrane proteins (Berrow et al. 2006; 

Carpenter et al. 2008; Graslund et al. 2008). 
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In order to maximise the benefits of HTP techniques, all target constructs must be expressed 

in a synchronous fashion. In addition, the applied purification protocol must be as similar as 

possible and produce the high-quality material that is needed for crystallisation. This imposes 

restrictions on the screen set up and on the parameters involved (Stevens 2000). All methods 

have in common that they employ a sub set of parameters that were previously successful. 

The most feasible options for the large number of parameters need to be employed, such as 

cloning strategies, construct design, expression host, temperature and duration, growth media, 

culture size, purification tags and purification methods to only name a few. Furthermore, the 

parallel HTP production of protein targets, expressed under a range of conditions and purified 

with different techniques, will produce a self improving knowledge base about which 

parameters do work and which ones do not. These data can then lead to the further 

optimisation of starting parameters (Stevens 2000).  

However, to obtain fast reliable results, especially for expression screens, a tool to monitor 

overexpression in a fast and easily accessible way is needed. One possibility is the 

measurement of fluorescence intensity of reporter proteins such as green fluorescent protein 

(GFP). The target is cloned into specialised constructs, containing the sequence of GFP and is 

coexpressed as a fusion protein. The measured fluorescence intensity correlates with the 

amount of expressed fusion protein (Drew et al. 2001; Daley et al. 2005). 
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1.5 Aims of the study 
 

The structural characterisation of membrane proteins is very important for our understanding 

of some of the most fundamental cellular processes. The main bottleneck in membrane 

protein structure determination is the expression and the crystallisation, provided the 

membrane protein can be purified to monodispersity (Hunte et al. 2003; Loll 2003; Carpenter 

et al. 2008). 

Therefore, a flexible small-scale HTP expression screen was developed to screen 12 

membrane proteins (see section 1.6) in a short time frame for the best expression. Each target 

was screened for expression levels in 32 conditions. The results were used to express all these 

targets in larger cultures and to identify trends in expression behaviour. All membrane 

proteins were subjected to a purification scheme, which employed a subset of parameters 

such as choice of specific detergents and buffers, that proved to be the most successful to date 

in membrane protein structure determination. Targets that could be purified to 

monodispersity were submitted to crystallisation trials and initial crystals were optimised.  
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1.6 Target membrane proteins 
 

The membrane proteins in this work are all members of the inner membrane proteome of 

E. coli. They were chosen from a library (Daley et al. 2005) of GFP-fusion constructs (see 

section 2.1) on the basis of four criteria. First, only membrane proteins with their C-terminus 

extending into the cytoplasm were selected. This is necessary as GFP folds properly and 

shows fluorescence, only if it is located in the cytoplasm (Feilmeier et al. 2000). Secondly, 

the biological function of the target membrane protein should be known. The third selection 

criterion required, that the membrane protein complex has at least four transmembrane 

helices, as the majority of determined membrane protein structures are from targets featuring 

four or more transmembrane helices (McLuskey, personal communication). The fourth and 

last criterion was that the GFP fluorescence in preliminary tests (Daley et al. 2005) was 

higher than a certain threshold (1.5 AU), indicating the general expression functionality of 

the target. The chosen membrane proteins are listed in Table 1.2, together with relevant 

physical properties and their biological function. The DNA and protein sequences of all 

targets are listed in the appendix (section 7.1). 

 
Target Amino acids MW (kDa) TMD-helices Function 

CcmC 245 27.7 6 Heme exporter 

CodB 419 43.5 12 Cytosine transporter 

FtsX 352 38.4 4 Involved in cell division 

Lgt 291 33.0 5 Lipoprotein biosynthesis 

PnuC 239 27.0 6 Nicotinamide mononucleotide transport 

XylE 491 53.4 12 D-Xylose-proton symporter 

XylH 393 41.0 10 Xylose ABC-transporter; Membrane part  

YdeD 299 32.1 10 Aminoacid metabolite efflux pump 

ChbC 452 48.2 10 N,N’-diacetylchitobiose permease 

PgpB 254 28.8 6 Phosphatidylglycerophosphatase 

YhbE 321 34.8 12 Transporter, EamA-like family 

YdhC 417 43.2 10 Transporter, Major facilitator superfamily 

Table 1.2: The 12 E. coli inner membrane proteins that were chosen for the study. The number of amino acids 
of each target is shown alongside molecular weight (MW), number of transmembrane domain (TMD) helices 
and function.  
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Chapter 2  

Materials and Methods 
 

2.1 Introduction 
 

Throughout this project, work was carried out on 12 membrane proteins. The basic 

biochemical procedures were similar for each protein and this chapter gives an overview of 

the methods and materials used. Unless otherwise described, general molecular biology and 

laboratory techniques were performed as described in Sambrook et al. (1989). Optimisations 

of protocols specific to individual targets are mentioned in the relevant chapters. The 

workflow is described in the order of appearance during this study.  

 

2.2 Target GFP-fusion construct 
 

A library of E. coli membrane protein-GFP fusion constructs was established and the 

constructs for this work kindly provided by Dr. Daniel Daley et al.. The group cloned the 

target membrane protein DNA-sequences into a pGFPe-vector with the restriction enzyme 

combination XhoI/KpnI, yielding a 14 amino acid-long linker sequence 

(SVPGSENLYFQGQF) (Daley et al. 2005). Figure 2.1 shows a schematic of the vector used.  

 

 

 

 

 
 

 

 

 

 

Figure 2.1: Expression vector set-up of target membrane proteins. The target DNA-sequence was inserted 
between the restriction sites XhoI and KpnI. Following expression, it is possible to cleave with TEV-protease 
the GFP-His8 moiety from the target in the shown position. 
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The construct is a pET28-vector derivative that is based on the pWaldo vector (Waldo et al. 

1999). An optimised pWaldo GFP vector (pGFPe) was developed by Rapp et al.  (Rapp et al. 

2004). pGFPe differs from pWaldo in featuring an extended multiple cloning site (5′ XhoI 

and 3′ EcoRI/KpnI/BamHI), as well as carrying a TEV protease site in the linker sequence. 

Furthermore it contains a His8-tag at the GFP C-terminus for purification purposes. The GFP 

is linked to the C-terminus of the target protein and is only fluorescent, if the target fusion 

protein is folded correctly. Fusion protein aggregated in inclusion bodies will not be 

fluorescent (Waldo et al. 1999; Drew et al. 2001) 
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2.3 Molecular biology methods 
2.3.1 Preparation of competent cells 
 

Competent E. coli strains used in this study were initially bought (suppliers see Table 2.1) 

and subsequently made competent according to the RbCl-method (Hanahan 1983). The 

house-keeping strain DH5α T1 was used to generate stocks of target plasmid DNA, while the 

other four strains listed in Table 2.1 were involved in recombinant overexpression of target 

membrane protein.  

 

Strain & Genotype Function Antibiotic resistance Supplier 
DH5α T1 
F- endA1 glnV44 thi-1 
relA1 gyrA96 deoR 
nupG lacZdeltaM15 
hsdR17 

house-keeping  none 

Invitrogen, Paisley, UK 

BL21 Star (DE3)  
F - ompT hsdS B (r B - 
m B - ) gal dcm rne131 
(DE3) 

expression  none 

Invitrogen, Paisley, UK 

BL21(DE3)pLysS 
F–, ompT, hsdSB (rB–, 

mB–), dcm, gal, λ(DE3), 

pLysS, Cmr. 

expression chloramphenicol 

Invitrogen, Paisley, UK 

Rosetta(DE3)pLysS 
F- ompT hsdSB(rB

- mB
-) 

gal dcm (DE3) 
pLysSRARE (CamR) 

expression chloramphenicol 

Novagen, San Diego, USA 

C41(DE3) 
F – ompT hsdSB (rB- 

mB-) gal dcm (DE3) 

expression none 

Lucigen Corp. Middleton, USA 

Table 2.1: The commercial E .coli strains employed, their usage, antibiotic resistances and suppliers.  

 

The working concentrations of all antibiotics used throughout this study are listed below in 

Table 2.2. The detailed protocol of the RbCl-method is described in the following and the 

necessary media, chemicals and buffer compositions are listed in Table 2.3.  

 
Antibiotic Stock concentration [mg/mL] Working concentration [µg/mL] Solvent 

Ampicillin 100 100 dH2O 

Kanamycin 30 30 dH2O 

Chloramphenicol 34 34 Ethanol 

Table 2.2: The antibiotics used, together with their stock concentration, working concentrations and solvent. 
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The RbCl-method for the preparation of competent cells starts with plating out 50 µL of the 

stock of a desired strain onto a Lysogeny Broth (LB) agar plate, containing the necessary 

antibiotics. The plate was incubated at 37 °C for 16 h. A single colony was picked with a 

sterile pipette tip to inoculate 5 mL of LB, containing the appropriate antibiotics (LBA). The 

culture was grown for 16 h at 37 °C and at 220 rpm in a shaking incubator. It was diluted 

1:100 (2.5 mL in 250 mL culture) with LBA and further incubated until the optical density 

(OD600) (see section 2.4.2 for details) reached 0.25−0.30. The cells were incubated on ice for 

5 min, before being centrifuged at 4000×g for 5 min at 4 °C. The supernatant was discarded 

and the pellet resuspended in 100 mL Transformation buffer (Tfb) I buffer and incubated on 

ice for 5 min. The cell suspension was centrifuged at 4000×g for 5 min at 4 °C and the 

supernatant removed. The obtained pellet was resuspended in 10 mL Tfb II buffer and 

incubated on ice for 15 min. The cells were transferred to 50 µL aliquots in 1.2 mL tubes 

(1.2 mL micro-tube cluster plate, ABgene, Epson, UK) on dry ice and finally stored at 

−80 °C. 

 
Reagent Composition Comments 

Lysogeny Broth medium 
(LB) 

1.0 % (w/v) tryptone 
0.5 % (w/v) yeast extract 
1.0 % (w/v) NaCl 

Sterilized by auto-
claving (15 psi for 15 
min) prior to use. 

LB agar LB  
1.5 % (w/v) micro-agar 
1.0 % (w/v) glucose 

Sterilized by auto-
claving (15 psi for 15 
min) prior to use. 
Glucose was added 
after autoclaving 
 

Tfb I buffer 
 

30 mM KOAc 
100 mM RbCl 
10 mM CaCl2 
50 mM MnCl2 
3 mM Hexamine cobalt Cl 
15 % (w/v) glycerol 

Adjusted to pH 5.8 
(acetic acid)  

Tfb II buffer 
 

10 mM MOPS 
75 mM CaCl2 
10 mM RbCl 
15 % (w/v) glycerol 

Adjusted to pH 6.5 
(KOH) 
 

Table 2.3: Media and buffers used in the RbCl-method for the preparation of competent cells (Hanahan 1983). 
Unless stated otherwise, all reagents were sterilized by filtration (0.22 µm filter).  
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2.3.2 Transformation of plasmid DNA into host cells 
 

Plasmid DNA was transformed into the bacterial host using the following protocol. A 50 µL 

aliquot of competent cells was thawed on ice for 15 min. To this, 1.5 µL plasmid DNA 

(75 ng/µL), encoding the target membrane protein, was added and incubated on ice for 20 

min. A 45 second heat shock at 42 °C was followed by a further incubation on ice for 2 min. 

Pre-warmed (37 °C) GS96 medium (MP biomedicals, Illkirch, France) was added to a final 

volume of 500 µL and the reaction mixture was incubated at 37 °C for 1 h. GS96 medium is 

optimised for bacterial growth under low oxygen levels. 25 µL of transformed cells were 

plated out on LBA agar and incubated overnight at 37 °C. Single colonies were picked with a 

sterile pipette tip for inoculation of starter cultures. 
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2.4 Protocols for protein expression and purification 
2.4.1 Medium-scale protein expression 
 

The over expression of the target membrane proteins was achieved by the autoinduction 

method described by Studier (2005). Although four different media were used in this study to 

test expression levels, the general protocol is identical and described in the following. The 

media compositions are listed in table 2.4. 

 

Reagent Composition Comments 
MagicMedia 
 
 

Proprietary; supplied by 
Invitrogen, Paisley, UK 

Sugar component added after 
autoclaving. 

TB overnight express medium 
 

Proprietary, supplied by 
Novagen, San Diego, USA 
 

Sterilized by microwaving 
(2 min, 800 W). 

LB autoinduction medium  
 

1.0 % (w/v) tryptone 
0.5 % (w/v) yeast extract 
1 mM MgSO4 
2 % (v/v) 50×5052 buffer 
5 % (v/v) 20×NPSC buffer 
 

5052 buffer was added after 
autoclaving to preserve the heat 
sensitive sugar content. 

SB autoinduction medium 
 

3.2 % (w/v) tryptone 
2.0 % (w/v) yeast extract 
1 mM NaOH  
1 mM MgSO4 
2 % (v/v) 50×5052 buffer 
5 % (v/v) 20×NPSC buffer 
 

5052 buffer was added after 
autoclaving to preserve the heat 
sensitive sugar content. 

5052 (×50) buffer 
 

25 % (w/v) glycerol 
2.5 % (w/v) glucose 
10 % (w/v) lactose 
 

Sterilised by filtration. 

NPSC (×20)-buffer 
 

7.1 % (w/v) Na2HPO4 
6.8 % (w/v) KH2PO4 
1.4 % (w/v) Na2SO4 
5.4 % (w/v) NH4Cl 
 

Adjusted to pH 6.75. 
Sterilised by filtration. 

Table 2.4: Composition of buffers and media used for autoinduction expression (Studier 2005). Unless stated 
otherwise the components were sterilised prior to use by autoclaving for 15 min at a pressure of 15 psi. 

 

Starter cultures were prepared by inoculating two 50 mL LBA cultures with two single 

colonies from a LB agar plate. Cells were grown for 16 h before being diluted 1:50 into 

500 mL of desired sterile autoinduction medium in 2 L flasks, supplemented with the 

appropriate antibiotics. The different media employed were two commercial media, 
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MagicMedia (Invitrogen, Paisley, UK) and TB overnight express (Novagen, San Diego, 

USA) and two standard media, LB and the richer SB medium. 

The main cultures (500 mL) were incubated in a shaking incubator (220 rpm) for 4 h at 37 °C 

and for a further 18 h at 25 °C. Cells were harvested by centrifugation at 4000×g at 4 °C for 

20 min. The supernatant was removed and the cells were stored at −20 °C. In addition cells 

were grown in a 15 L fermenter using the same conditions as above. 

 

2.4.2 Cell density measurements 
 

The optical density at a wavelength of 600 nm (OD600) can be used to determine the number 

of cells present in a bacterial suspension. The Beer-Lambert Law describes the relationship 

between absorbed light and concentration for dilute solutions: 

 A = log I0/I = εcl             equation 1 

Where A = absorption, I = intensity of light after passing through the sample, Io = intensity of 
light before passing through the sample, ε = extinction coefficient, c = concentration and 
l = path lengh 

A derivation of the Beer-Lambert-Law gives as optical density  

(OD) = log I0/I = kc                        equation 2 

Where I0 = intensity of light before passing through the sample, I = intensity of light after 
passing through the sample, k = apparatus dependent constant and c = concentration (Koch 
1970; Lamanna 1973; Lawrence and Maier 1977). 

The linear relationship between amount of cells and light scattering is only correct for dilute 

solutions, where effects of secondary scattering can be neglected. The necessary dilution 

factor of samples needs to be verified for the spectrophotometer used, in this case a Fluostar 

Optima platereader (BMG Labtech, Aylesbury, UK), and was tested with the following 

procedure. A frozen bacterial sample was thawed and resuspended in PBS buffer. This 

solution (100 %) was then subsequently diluted in a series of 10 % intervals, down to 10 % 

bacterial solution mixed with 90 % PBS. The dilutions were dispensed into a 96 well reading 

plate (Costar® 3799, Corning Inc., New York, USA). This type of plate was used throughout 

this study. The OD600 values of each dilution was measured and plotted against the dilution to 

give the calibration curve displayed in Fig. 2.2. The graph shows that the optical density 

correlates linearly with the amount of cells for an OD600 < 1 and the Beer-Lambert law is 

satisfied. In the developed expression screen, all samples were diluted prior to measurement 

to an OD600 below 1.  
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Figure 2.2: Calibration curve for the plate reader Fluostar Optima (BMG Labtech) with values of optical 
density at 600 nm versus percentage of bacterial solution. Three series of OD600 measurements were averaged 
and the standard error is displayed.  

 

 

2.4.3 Protein analysis 
2.4.3.1 The measurement of protein concentration 
 

The protein concentration was determined utilising the Beer-Lambert law (equation 1, section 

2.4.2) by measuring the absorption of the protein solution with light at a wavelength of 280 

nm with a Lambda 40 spectrophotometer (Perkin-Elmer, Waltham, USA). The extinction 

coefficient of each protein was calculated with the PROTPARAM tool of the EXPASY 

proteomics server (http://www.expasy.ch). PROTPARAM calculates the protein extinction 

coefficient from the amino acid sequence in conjunction with calculated values of tyrosine 

and tryptophan residues (Edelhoch 1967; Pace et al. 1995).  
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2.4.3.2 Sodium dodecyl sulphate polyacrylamide gel electrophoresis  
 

The purity of a protein sample was analysed during purification with sodium dodecyl 

sulphate polyacrilamide gel electrophoresis (SDS-PAGE) based on a method developed by 

Laemmli (Laemmli 1970). The NuPAGE® Pre-Cast Gel System was used in combination 

with NuPAGE gels in MOPS running buffer (Invitrogen, Paisley, UK). Protein samples were 

added to lithium dodecyl sulphate (LDS) loading buffer (6X) (Invitrogen, Paisley, UK) 

supplemented with 1 mM DTT, in a 1:3 ratio (buffer: protein sample) and incubated at 37 °C 

for 30 min prior to loading. The volume loaded was dependent upon well size and protein 

concentration. Samples were loaded alongside SeeBlue Plus 2 Pre-Stained Standard 

(Invitrogen, Paisley, UK) to estimate the molecular weight of protein bands. Gels were run 

under constant voltage (200 V) for 55 min. Protein bands were stained with a solution 

composed of 45 % (v/v) methanol, 10 % (v/v) glacial acetic acid and 2.5 g/L Coomassie® 

Brilliant Blue R250. Gels were destained by slow shaking in water. 

 

2.4.3.3 Mass spectrometry 
 

Mass spectrometry analysis was used to verify the identity of the purified protein. Samples 

were sent to the Sequencing Service (School of Life Sciences, University of Dundee, UK), 

which performed mass spectrometry peptide sequencing following a trypsin digest.  

 

2.4.3.4 Fluorescence intensity  
 

The fluorescence from the GFP-fusion protein was used in expression tests to monitor 

expression levels of the target protein in different growth conditions. Fluorescence intensities 

(excitation 485 nm, emission 512 nm) of bacterial suspensions in a 96-well reading plate 

(Costar plate no. 3799, Corning Inc. New York, USA) were measured in a Fluostar Optima 

fluorimeter (BMG Labtech, Aylesbure, UK). In order to make a direct comparison between 

different conditions possible, the gain-value of the fluorimeter was optimised to enable 

maximum sensitivity and kept constant for all measurements. The detailed procedure is 

described in subsequent chapters. 
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2.4.4 Cell lysis and membrane preparation 
 

The target membrane proteins are located in the inner membrane of the host organism. In 

order to isolate the inner membranes, the cells need to be broken. To lyse the cells, the frozen 

cell pellets were thawed on ice and resuspended in 50 mM Tris-HCl pH 7.5 using 50 mL of 

buffer per 10 g of cells. Complete protease inhibitor tablets (Roche Diagnostics Ltd., Burgess 

Hill, UK) (1 per 100 mL) and 10 mg of DNAse (Sigma-Aldrich, Steinheim, Germany) were 

added. Cell lysis was performed for small volumes using a French pressure cell (Thermo 

Scientific, Waltham, USA) at 14000 psi in three passes. Larger volumes were lysed using a 

constant flow Cell Disrupter (Constant Systems Ltd., Daventry, UK). Three passes (22000 

psi) broke the cell walls. Following lysis, the cell debris was sedimented by centrifugation at 

8000×g for 20 min. The resulting supernatant was centrifuged again for 50 min at 250000×g 

to pellet the cell membranes. The supernatant was discarded and the membranes were 

resuspended in a small volume of 50 mM Tris-HCl pH 7.5 supplemented with 10 % (w/v) 

glycerol using a steel needle. The suspension was finally aliquoted (1.5 mL) into Eppendorf 

tubes, flash frozen in liquid nitrogen and stored at −80 °C. 

 

2.4.5 Solubilisation of membrane proteins 
 

The target proteins need to be isolated from their native membranous environment using 

detergents. In this study, n-dodecyl β-D-maltoside (DDM) (Anatrace, Maumee, USA) was 

used for all solubilisations. Membranes were thawed on ice and diluted in Buffer I (50 mM 

Tris-HCl pH 7.5 and 100 mM NaCl), using 50 mL for 20 g of wet cells. Assuming an 

extinction coefficient of 1 the total protein concentration was measured (A280) and the 

membrane suspension diluted to reach a final concentration of 40 mg/mL. A 10  % (w/v) 

solution of DDM in the above buffer was added dropwise with stirring until a final 

concentration of 1.5 % (w/v) DDM was reached. The protein solution was gently stirred for 

1 h at 4 °C. The unsolubilised material was sedimented by ultracentrifugation for 50 min at 

250000×g. The target protein-detergent complex was now in the supernatant along with other 

membrane proteins that were solubilised by DDM. The desired membrane protein can be 

purified from this solution using the following purification methods. 
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2.4.6 Immobilised metal affinity chromatography 
 

In this work a histidine tag attached to the membrane proteins was used, comprising eight 

histidine residues (His8), for purification with immobilised metal affinity chromatography 

(IMAC). The aromatic ring of the imidazole side chain of the histidines binds to a Ni2+-ion 

that is immobilised with a linker to the column matrix, such as nitriloacetic acid (NiNTA). A 

concentration gradient of imidazole is employed to elute the target protein off the column. 

The following describes the protocol for membrane protein purification based on the IMAC 

method used in this study. Buffers and materials are listed in Table 2.5. 

Any precipitation was removed by centrifugation at 8,000×g for 20 min. The supernatant was 

filtered (0.22 µm) and loaded (2 mL/min) onto a pre-equilibrated (Buffer A) 5 mL Histrap 

column (GE Healthcare, Amersham, UK). The column was washed with three column 

volumes (cv) of Buffer A followed by a step gradient elution, which was composed of four 

steps of increasing imidazole concentrations. Steps were performed on an Äkta purifier (GE 

Healthcare, Amersham, UK) with Buffers A and B (3 mL/min). In the first two concentration 

steps of 65 and 100 mM (each 3 cv) non specific binding proteins were eluted followed by 

target elution (5 cv) with 250 mM imidazole. The final step of 500 mM (5 cv) was used to 

clean the column of any remaining proteins. The eluate was collected in 2 mL fractions for 

the first two imidazole steps and in 1 mL fractions during target elution. The collected 

fractions were examined by SDS-PAGE. In addition, fractions containing target protein 

appeared green in colour due to GFP-fluorescence. These fractions were pooled and 

centrifuged for 20 min at 8000×g to sediment any precipitate.  

 

Buffers & Materials Composition Comments 
Buffer A 
 

20 mM Tris-HCl (pH 7.5) 
150 mM NaCl 
5 % (w/v) glycerol 
0.04 % (w/v) DDM  
 

Sterilised by filtration 

Buffer B 
 

20 mM Tris-HCl (pH 7.5) 
150 mM NaCl 
5 % (w/v) glycerol 
0.04 % (w/v) DDM 
1 M imidazole 
 

Sterilised by filtration 

5 mL HisTrap-column NiNTA Supplied by GE Healthcare 
   
Äkta Purifier 
 

Fast Protein Liquid Chromatography 
(FPLC) 

Supplied by GE Healthcare 

Table 2.5: Buffers and materials used for IMAC purification. Buffer A was also used to equilibrate desalting 
columns and for gel filtration columns. 
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2.4.7 Protein Dialysis 
 

To remove imidazole from the purified protein sample, the protein was filled into pre-wetted 

dialysis tubing (Medicell International Ltd., London, UK), with a molecular weight cut off 

(MWCO) of 10 kDa. The protein solution in the tube was dialysed against 2 L of dialysis 

buffer for 16 h at 4 °C.  

If a target proved unstable, PD-10 desalting columns (GE Healthcare, Amersham, UK) were 

used instead of dialysis. These columns were equilibrated with 25 mL of Buffer A. The 

protein sample was applied to the column in 2.5 mL and eluted with 3.5 mL Buffer A. After 

the removal of imidazole the solution was centrifuged at 8000×g for 20 min. 

 

Buffers & Materials Composition Comments 
Dialysis buffer  
 

20 mM Tris-HCl (pH 7.5) 
150 mM NaCl 
0.04 % (w/v) DDM 
1 mM dithiothreitol (DTT) 
0.5 mM ethylendiamintetraacetic acid       
             (EDTA) 
 

Sterilised by filtration 

Buffer A 20 mM Tris-HCl (pH 7.5) 
150 mM NaCl 
5 % (w/v) glycerol 
0.04 % (w/v) DDM  
 

Sterilised by filtration 

Dialysis tubing  10 kDa MWCO 
 

Medicell International Ltd. 

PD-10 Desalting columns Sephadex-25 GE Healthcare 

Table 2.6: Buffers and materials employed for protein dialysis. 

 

 

2.4.8 TEV-protease production & cleavage 
 

To remove the histidine tagged GFP from the target fusion protein, Tobacco etch virus 

protease (TEVP) is used. TEVP is expressed as a protein featuring a His6-tag. After the 

cleavage the His-tagged GFP and TEVP can be separated from the target protein by IMAC. 

TEVP is overexpressed and purified as described below.  
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2.4.8.1 Expression and purification of Tobacco etch virus-protease 
 

The TEVP-construct, which carries the gene for ampicillin resistance, is transformed into 

BL21(DE3)pLysS cells as described in section 2.3.2.  Single colonies were used to inoculate 

50 mL LBA starter cultures and grown for 16 h at 37 °C and 220 rpm in a shaking incubator. 

Once inoculated the main cultures were grown at 37 °C and 220 rpm until the OD600 reached 

0.6–0.7. Protein expression was induced with 1 mM isopropyl-β-D-thiogalactopyranoside 

(IPTG) and the temperature lowered to 22 °C for a further 16 h. Cells were harvested by 

centrifugation at 4000×g for 20 min. The supernatant was removed and the cell pellet stored 

at −20 °C.  

The frozen cells were thawed and resuspended in TEVP buffer A and a protease inhibitor 

tablet and DNase were added. Lysis was performed using a French pressure cell (14000 psi, 3 

passes). The cell debris was separated by centrifugation (8000×g for 20 min) and the filtered 

supernatant applied to a pre-equilibrated (TEVP-buffer A) NiNTA-column. TEVP was eluted 

against a linear gradient (20 cv, 0–100 %) of TEVP-buffer A and B. The eluate was 

fractionated into glass tubes containing 1 mM DTT and 1 mM EDTA. Column runs were 

performed on an Äkta purifier. The fractions containing protein were determined using SDS-

PAGE analysis and the relevant fractions were pooled. The protein concentration was 

determined, before 500 µL aliquots were flash frozen in liquid nitrogen and stored at −80 °C. 

 

Buffers & Materials Composition Comments 
TEVP buffer A 
 

50 mM phosphate buffer (pH 8.0) 
150 mM NaCl 
10 % (w/v) glycerol 
25 mM imidazole 
 

Sterilised by filtration 

TEVP buffer B 
 

50 mM phosphate buffer (pH 8.0) 
150 mM NaCl 
10 % (w/v) glycerol 
800 mM imidazole 
 

Sterilised by filtration 

   
5 mL HisTrap-column NiNTA Supplied by GE Healthcare 
   
Äkta Purifier 
 

Fast Protein Liquid Chromatography 
(FPLC) 

Supplied by GE Healthcare 

Table 2.7: The buffers and labware used for the expression and purification of TEVP. 
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2.4.8.2 Cleavage of GFP-fusion protein with tobacco etch virus-protease 
 

The necessary amount of frozen TEVP (1:1 molar ratio target to protease) for the cleavage 

reaction was thawed and incubated with the target membrane GFP-fusion for 1 h at 30 °C. 

The resulting GFP-His8 and TEVP-His6 was separated from the now untagged membrane 

protein by IMAC. 

 

 

2.4.9 Size exclusion chromatography 
 

Size exclusion chromatography was used as the final protein purification step as well as to 

assess the monodispersity of the protein sample.  

Before being applied to a gel filtration column, the protein solution was concentrated in a 

100 kDa MWCO Vivaspin II concentrator (Sartorius Stedim Biotech, Aubagne, France) until 

a final volume of 500 µL was reached. The sample was then applied with a 500 µL loop onto 

a Superdex 200 10/300 gel filtration column (GE Healthcare, Little Chalfont, UK), which 

was pre-equilibrated with Buffer A. The target was eluted with 1.5 cv (36 mL) of Buffer A 

and collected in 1 mL fractions. Gel filtration runs were performed on an Äkta purifier 

(FPLC). Fractions were analysed by SDS-PAGE analysis and the samples containing protein 

were pooled and concentrated for use in crystallisation trials. 

 

Buffers & Materials Composition Comments 
Buffer A 20 mM Tris-HCl (pH 7.5) 

150 mM NaCl 
5 % (w/v) glycerol 
0.04 % (w/v) DDM  
 

Sterilised by filtration 

Protein concentrator Vivaspin II concentrator Supplied by Sartorius Stedim 
   
Gel filtration column Superdex 200 30/10 Supplied by GE Healthcare 
   
Äkta Purifier 
 

Fast Protein Liquid Chromatography 
(FPLC) 

Supplied by GE Healthcare 

Table 2.8: The buffer and the required materials used for size-exclusion chromatography. 
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2.5 Crystallisation experiments 
2.5.1 Initial screening 
 

Protein samples were subjected to sparse matrix screens in concentrations from 4.7–

12.3 mg/mL. Initial screening was performed at 22 °C using the sitting-drop vapour-diffusion 

method. The reservoir contained 50 µL and drop volumes (1:1 ratio of protein and reservoir 

solution) ranged from 500 nL to 1 µL. 96-well plates (MRC, SwissSci, Neuheim, 

Switzerland) for initial screens were prepared through dispension of reservoir solution by a 

Hamilton Microlab Star robot (Hamilton Bonaduz AG, Switzerland) and then stored at 4 °C, 

until required. The drops of crystallisation experiments were set up automatically with a 

Cartesian Honeybee nanoliter dispensing system (Genomic Solutions Ltd., Huntington, UK). 

Initial 96-well screening plates were integrated into a Rhombix Crystal Plate Imager (Thermo 

Scientific Waltham, USA) for automatic monitoring or checked by microscope. All trays 

were incubated at 22 °C. Trays were checked for signs of crystal formation after one, three, 

five, seven, ten and fourteen days and weekly thereafter. The commercial screens used for 

initial screening are listed in Table 2.5. 

 
Screen Manufacturer 

MemGold Molecular Dimensions Ltd., Newmarket, UK 

MemSys Molecular Dimensions Ltd., Newmarket, UK 

MemStart Molecular Dimensions Ltd., Newmarket, UK 

Hampton Crystal Screen 1 & 2 Hampton Research, Aliso Viejo, USA 

Peg/Ion 1 & 2 Hampton Research, Aliso Viejo, USA 

JCSGplus 1 & 2 Qiagen, Crawley, UK 

Table 2.9: The commercially available crystallisation screens used in this study. 
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2.5.2 Optimisation screens 
 

Conditions, which yielded crystalline material, were optimised. In the case of appearing 

crystals in initial screens, the successful conditions needed to be optimised. The primary 

method of optimisation was to screen around the initial hit, altering the precipitant 

concentration, the pH or the salt concentrations. Additive Screens 1/2 and Detergent Screens 

1/2 (Hampton Research, Aliso Viejo, USA) were also used in the aim to improve crystal 

diffraction properties. Self-made optimisation screens were designed with the software 

Screen Designer (Hamilton Bonaduz AG, Switzerland) and set up with the Hamilton 

Microlab Star Robot. Further details of optimisations are given in subsequent chapters. 

Larger optimisation screens, using 24-well sitting drop Cryschem plates, were set up and 

sealed with Crystal Clear tape (Hampton Research, Aliso Viejo, USA). The plates contained 

500–1000 µL reservoir solution with total drop volumes ranging from 1 to 5 µL and were set 

up by hand.  

 

 

2.6 X-ray analysis  
 

In order to test cryo conditions, 20 % (v/v) of ethylene glycol or PEG400 was added to a drop 

of reservoir solution. An empty cryo loop was dipped into the resulting cryo-protectant and 

placed in the beam. The frozen protectant was examined for the formation of a clear glass and 

chosen on this performance. Promising crystals were mounted with a loop of appropriate size, 

dipped for 5 seconds into the cryo-protectant and placed straight onto the goniometer head. 

Crystals were immediately flash frozen at −160 °C by the cryo cooling system (Oxford 

Cryosystems, Oxford, UK). The crystals were centred in the X-ray beam and exposed to X-

rays. The in-house X-ray source was a Rigaku MicroMax 007 rotating anode generator 

coupled with a MarResearch 345 image plate detector. Crystals showing diffraction at low 

resolution were stored in liquid nitrogen for additional exposure to stronger synchrotron 

radiation. Crystals were routinely brought to the synchrotron beamlines BM-14 at the ESRF 

(Grenoble, France) and IO-2/4 at the Diamond Light Source (Oxford, UK). 
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Chapter 3 

Expression of target membrane proteins 
 

3.1 Introduction 
 

The amount of naturally produced membrane protein is in many cases too low to obtain 

sufficient amounts of material for functional and structural studies. Most membrane protein 

targets therefore need to be overexpressed. However, most available expression systems have 

been developed to produce high amounts of cytosolic proteins in the host. In contrast to 

cytosolic proteins, the multi-step biogenesis of membrane proteins from targeting the nascent 

chain to the membrane, followed by insertion into and assembly in the membrane is a 

limiting factor in membrane protein overexpression (Drew et al. 2003; Dalbey and Chen 

2004).  

Membrane proteins can be optimised on the molecular level with parameters such as codon 

bias or the stability and translational efficiency of mRNA, with well established and 

documented methods (Peti and Page 2007). However, overexpressed membrane proteins are 

often toxic to the host and the overexpression itself has limitations. The saturation of the 

cell’s ability to process the nascent membrane proteins can lead to the formation of 

aggregated material such as inclusion bodies. Although refolding of membrane proteins is 

possible and has been effective for β-barrel type outer membrane proteins, it is notoriously 

difficult or not possible for inner membrane proteins (Drew et al. 2003; Geertsma et al. 

2008). When it comes to the expression of the target gene, no empirical rules or unique best 

conditions are known to date. The optimisation of parameters such as host strain, medium 

and expression temperature are thought to be target specific (Graslund et al. 2008). 

Due to the high number of variables in the parameters involved, the task of finding the best 

expression conditions for a target protein is similar to other difficult multi-parameter 

problems such as protein crystallisation. The main issue is therefore, given finite resources, 

how to determine most effectively the best conditions to express the target protein (Berrow et 

al. 2006).  
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An economic and time saving way to explore protein expression is to work on a small-scale 

and, if a large number of targets or parameters are under study, to employ high throughput 

(HTP) methods. In order to be able to use these methods effectively an optimised laboratory 

set up needs to be developed. Such a HTP expression screen should be able to find the best 

expression conditions of a large number of targets in a short time frame. Furthermore, the 

results should guide whether expression levels are sufficient to proceed with purification and 

ideally crystallisation.  

 

Below, the development of a small-scale HTP expression screen for the identification of the 

best expression conditions for 12 membrane protein-GFP targets is described and the results 

are presented and discussed. The screen utilises the fluorescence of the GFP-fusion proteins 

to estimate overexpression levels. The fast measurement of fluorescence, together with an 

optimised setup and employment of 96-well blocks, enables each target to be tested in four 

different cell lines, four different media and at two different growth temperatures in only four 

days. Therefore a total of 32 conditions were examined to identify the highest expression 

levels for each target and all together 384 results were obtained. In addition, cell density 

measurements together with the fluorescence data made a comparison of parameters 

influencing the expression possible and trends in the data can be examined.  

Once the best expression condition was identified, all 12 targets were then expressed in larger 

cell cultures, initially in 500 mL flasks but up to 15 L fermenters when required.  
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3.2 Development of a small-scale high throughput 
expression screen 

 

The main parameters involved in expression are the employed construct, cell lines, media and 

temperature. All membrane protein targets were previously cloned in proven and optimised 

GFP-fusion constructs (Drew et al. 2001; Daley et al. 2005), leaving the remaining three 

parameters to be tested. The development of the expression screen aimed at a flexible set up 

that is easy and fast to handle and allows rapid collection of expression data. 

 

3.2.1 Screen set up design 
 

The screen was designed to initially express 12 membrane protein GFP-fusions (P1–P12), by 

screening four cell lines (C1–C4), four medium compositions (medium 1–4) and two growth 

temperatures (T1, T2).  

A lot of thought went into the optimisation of sample handling and data collection to generate 

a time efficient screening protocol. In early experiments the use of eppendorf tubes and single 

channel pipettes made the handling times so long, that a consistent treatment of every 

condition could not be guaranteed. Multi-channel pipettes were introduced and the necessary 

plastic labware in the shape of multi-well blocks had to be sourced to allow the combination 

of the small-scale approach with a HTP method. Based on a 96-well system, a number of 96, 

48 and 24-well blocks and reading plates of different sizes were sourced, tested for their 

suitability and coordinated throughout the screen.  The blocks and plates used are listed in 

Table 3.2.  

The most important step in the screen design was the development of a grid system that 

combines the benefits of blocks and eight channel multi-pipettes to allow an easy workflow 

when pipetting from one block to another, reducing handling times. This grid system was 

maintained throughout the whole experiment and is described in detail below and is shown in 

an example 96-well block in (Fig. 3.1).  

The 96-well (12 columns × 8 rows) block layout is divided into four quadrants (I–IV). Rows 

A–D and columns 1–6 are represented by quadrant I, rows E–H and columns 1–6 by quadrant 

II. The columns 7–12 are represented by quadrant III (rows A–D) and by quadrant IV (rows 

E–H). To make best use of the multi-pipette, the four cell lines were allocated to the rows of 

each quadrant and the first six protein targets (P1–P6) were added sequentially to the columns 
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(1–6) of the first quadrant. The same set up was repeated for the second quadrant with the 

other half of the targets (P6–P12). Furthermore the cell lines were grouped in neighbouring 

rows according to their antibiotic resistances. The multi-pipette could then be employed 

column wise throughout the entire screen.  

 

 
 

 

 

 

 

 

 

 

 

 

Figure 3.1: The grid system used throughout the HTP screen. The cell lines (C1–C4) are in the rows (A–H) of 
the 96-well block and the target proteins (P1–P12) in the columns (1–6). The block is divided into four quadrants 
I–IV.  
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3.2.2 Transformation 
 

To insert the target GFP-fusion construct into the host cell of choice, the transformations 

were carried out using the grid system shown in Fig. 3.1. Initially the competent cells were 

aliquoted in 1.2 mL micro-tubes fitting a 96-well Cluster Plate (AB-0595, ABgene, Epson, 

UK) denoted as transformation block (Fig. 3.2). Unless stated otherwise, the transformation 

block was placed on ice during all handling procedures. 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: The 96-well micro-tube cluster plate that was used as transformation block.  

 

The target DNA was stored and assorted in tubes that make the employment of a multi-

pipette possible. The tubes were organised in two lines (P1–P6 and P7–P12) and then 

transferred row by row into quadrant I (P1–P6) and II (P7–P12) of the assembled 

transformation block. Working in a sterile environment is essential. Furthermore it is 

recommended to visually inspect the tips to ensure each tip has sucked up the correct amount 

of solution.  

As the transformation is required, it was typically carried out in duplicate to give maximum 

chance of success using the second half of the transformation block (quadrants III and IV). 

Following the transfer of the targets DNA and incubation on ice, the rack was placed in a 

water bath at 42 °C for the heat shock treatment. The block was again placed on ice for cell 

recovery before the wells were supplemented with GS96 medium.  
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On such a small-scale, lack of aeration can be a major problem in all steps involving cell 

growth in blocks. In the transformation step this was overcome by using GS96 medium 

instead of more commonly used Super Optimal Culture (SOC) medium. GS96 medium is 

optimised in general for cell growth under low oxygen levels (see section 2.3.2). The medium 

was prepared with the required antibiotics for the specific cell lines added before dispensing 

into the transformation block. This procedure is less error prone than adding the antibiotics to 

each well of the block and is facilitated by the grouping of cell lines with the same 

resistances. In this study, cell lines of rows A and B did not carry any resistance plasmid in 

contrast to the two cell lines of rows C and D, which were resistant to chloramphenicol. 

Furthermore, the construct carries kanamycin resistance and this was added to all media.  

After the GS96 medium was added, the transformation block was incubated at 37 °C for 1 h. 

As the transformation was carried out in quadrants I and II (and often III and IV) of the 

transformation block, the required amount of transformant could easily be transferred from 

the wells of each quadrant to the wells of a 24-well agar plate (Costar 3524, Corning Inc., 

New York, USA) (Fig. 3.3). The two resulting agar plates I and II (III and IV) were incubated 

at 37 °C overnight. 

  
 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

Figure 3.3: Transfer of samples from the 96-well transformation block to the 24-well agar plates. 
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3.2.3 Starter culture  
 

The preparation of starter cultures requires the picking of single colonies from the agar plates. 

This selection step allows a visual control of the transformation efficiency and makes it easier 

to trace back any errors at an earlier stage. Photographs were typically taken to document 

transformation efficiency for each target. Figure 3.3 shows an example of an agar plate with 

the resulting colonies that were used to inoculate the starting cultures. 

 

 

 
 

 

 

 

 

 

 

 
 

 

Figure 3.4: An agar plate containing tansformants after incubation at 37 °C for 16 h. Single colonies can be 
identified in each well and were picked for the inoculation of starter cultures. 

 

The 96-well starter culture block (2.2 mL storage plate Mark II, AB-0932, ABgene, Epsom, 

Uk) was prepared by adding 500 µL of GS96-medium supplemented with the appropriate 

antibiotics to the wells of quadrants I and II. Single colonies were picked with a sterile pipette 

tip from the agar plate resembling quadrant I to inoculate the corresponding wells in quadrant 

I of the starter culture block. The procedure was repeated for the second agar plate and 

quadrant II to maintain the grid system. In general all blocks were covered with a gas 

permeable adhesive seal (AB-0718, ABgene, Epsom, UK) to avoid cross contamination prior 

to incubation in a shaking incubator, at 200 rpm and 37 °C overnight. 
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3.2.4 Expression cultures 
 

The main expression cultures were set up to comprise two expression blocks per tested 

medium, one block for each temperature (T1,T2). The employed 48-well expression blocks 

were 6 mL deep well blocks (DWB)s (6.0 mL storage plate AB-0988, ABgene Epsom, UK) 

that feature bigger wells than typical 96-well blocks, therefore easing the lack of aeration and 

allowing to grow the cells in 2.5 mL of media per well. Inoculation was carried out by 

transferring 50 µL of quadrants I and II of the starter culture block into the expression blocks, 

maintaining the grid system as shown in Fig. 3.5. 

 

 
Figure 3.5: Inoculation of 48-well expression blocks with starter cultures. For each medium two expression 
blocks were prepared, one for each temperature tested.  
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The expression blocks were covered with the same type of breathable seals used for the 

starter culture block and always incubated in a shaking incubator at 220 rpm to improve 

aeration. The system of preparing one expression block per tested temperature in a particular 

medium makes the protocol very flexible. More media compositions or temperatures could be 

screened by simply inoculating more appropriate blocks.  

The choice of induction system was the use of auto-induction medium, as it simplifies the 

protocol and handling times of the blocks. It was estimated and compared with other studies 

e.g (Berrow et al. 2006) that the time necessary for glucose depletion and subsequent 

induction start would be approximately four hours past the incubation start. All main 

expression blocks were incubated at 37 °C for 4 h and then transferred to the expression 

temperature of choice for the remaining 18 hours of incubation. Incubation for 4 h at 37 °C 

allows the cells to reach high densities in the mid-to-late log phase, prior to induction and is a 

commonly used approach in protein expression (for recent examples see (Berrow et al. 2006; 

Graslund et al. 2008).  

 

 

3.2.5 Collection of expression data 
 

The GFP-fluorescence of the targets was used as a measure of their overexpression levels. 

The measurement of whole-cell fluorescence intensity (FI) data (excitation 485 nm, emission 

512 nm) corresponds well with the amount of overexpressed membrane protein-GFP fusion 

(Waldo et al. 1999). Focusing on obtaining the most important information in order to speed 

up data collection and mining, the primary aim was to identify the best expression condition 

for each target. This was achieved by fluorescence intensity measurements, but OD600 data 

was also collected to give information about cell growth and viability in different conditions. 

This allowed the identification of trends in the data of both fluorescence and cell density to 

aid in optimising the starting parameters for future targets. 

Preliminary experiments were thorough in examining the influences of different cell lines, 

media and sample preparations on the outcome of fluorescence and cell density 

measurements. In general, the observed differences between different cell lines and media 

were not large enough to influence the overall results. Relative values between different 

conditions were sufficient to identify the best expression conditions. 
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The key aspect is to work at sufficiently high dilutions of the samples to make fluorescence 

and cell density values more reliable. Diluting the samples to OD600 values of below one, 

avoids both dampening the fluorescence signal through the cells, and deviations in cell 

density measurements through secondary scattering. In the employed OD600 range a linear 

relationship between the amount of cells and the optical cell density could be established, as 

shown in section 2.4.2. 

Fluorescence and optical density measurements are dependent on the chosen instruments. 

Relative comparisons are only possible if the same instruments, settings and sample 

preparations are employed. Therefore, all samples were treated identically and the same 

spectrophotometer (FLUOstar OPTIMA, BMG Labtech, Aylesbure, UK) was used 

throughout the study. The gain value of the spectrophotometer needs to be adjusted to 

achieve maximum sensitivity in fluorescence readings. If known, the samples with the 

highest expected fluorescence should be measured first and the determined gain value kept 

constant for all measurements. OD600 readings were taken directly after fluorescence 

measurements in the same reading plate (Costar 3799, Corning Inc., New York, USA). 

The optimised sample preparation protocol is described in the following and displayed in Fig. 

3.6. From each well of the expression blocks, 100 µL samples were transferred with a multi-

pipette into a 96-well analysis block (2.2 mL storage plate Mark II (AB-0932), ABgene, 

Epsom, UK) maintaining the grid system. 100 µL of quadrants I and II of the expression 

block at temperature 1 were transferred to quadrants I and II of the analysis block, while 

quadrants I and II from the second expression block at temperature 2 were transferred to 

quadrants III and IV of the analysis block, leading to one 96-well analysis block for each 

tested medium. The cells were then pelleted by centrifugation and the supernatant removed. 

The analysis blocks could then be sealed and stored at −20 °C if required. The cell pellets 

were resuspended in PBS buffer using a ten-fold dilution until a homogeneous sample was 

obtained. Resuspension takes time, but the freezing of the sample blocks enables the 

preparation and measurement of one block after another, without time considerations. 

Furthermore this step removes the influence of different media on the measurements. Finally, 

100 µL of the homogeneous cell suspension is transferred to a 96-well reading plate for 

fluorescence intensity and OD600 measurements. 
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Figure 3.6: Preparation scheme of samples from the expression blocks for fluorescence and OD600 
measurements. Temperature 1 is represented by blue and temperature 2 by red colour. 
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3.2.6 Limitations of small-scale expression screening 
 

In order to work with a large number of targets in a high throughput approach, compromises 

in the choice of the screened parameters are necessary to enable the fast and simultaneous 

determination of best expression conditions for the targets.  

Therefore the screen aims to employ the most successful conditions to date already in the 

general set-up. Despite this, there will be a number of false negative clones, that mean 

targets, that did not express under the screen conditions or in the screen set-up, but could 

possibly be expressed under different conditions or in larger culture volumes. For example, 

how recombinant membrane protein expression is influenced by the screen set-up and the 

degree of aeration, is an unknown factor. These parameters do not always scale with culture 

volume (Graslund et al. 2008). The overall results are also dependent on the differences in 

sample preparation and purification between different scales of culture volumes (Graslund et 

al. 2008).  

The screen uses the GFP-fluorescence to estimate target protein overexpression levels in the 

tested conditions relative to others, which is sufficient for the purpose of the screen. 

However it has to be kept in mind, that whole-cell GFP-fluorescence intensity measurements 

are limited to the quantification of the amount of folded protein in the sample. Information 

about the overall expression, including the aggregated fraction, is not resolved. Low 

fluorescence levels could either stand for low protein expression or could indicate a large 

aggregated fraction (Geertsma et al. 2008). The expression behaviour of such a particular 

target could possibly be optimised in order to reduce the amount of aggregated target protein 

in the cells. 

The developed expression screen aims to find the conditions with the highest amounts of 

folded target accumulated in the membrane, which can be easily solubilised for purification. 

Following the examination of the most promising targets in purification and crystallisation it 

is well worth to reanalyse the data and screen suspected false negative targets with a different 

set-up. In the end the successful optimisation of bacterial expression is protein dependent and 

interestingly, even after extensive screening of expression conditions, 30 % of E. coli’s own 

proteins can only be obtained in aggregated form when overexpressed in E. coli (Vincentelli 

et al. 2003; Graslund et al. 2008; Sahdev et al. 2008) 

 

 



 

 59 

3.3 The choice of parameters 
 

The parameters for expression were chosen on the basis of a database, which summarises all 

key parameters of successful membrane protein structure determinations and was established 

by McLuskey (personal communication), and by comparison with other structural genomic 

projects.  

The popularity of the bacterium Escherichia coli as expression host is due to its fast growth 

to high cell numbers in inexpensive media coupled with well-known genetics and a large 

number of available expression vectors and mutant host strains (Jana and Deb 2005; Peti and 

Page 2007). The E. coli strains chosen for this work were BL21 Star (DE3), 

BL21(DE3)pLysS, Rosetta(DE3)pLysS and C41(DE3). All these strains are commonly used 

in structural genomics projects and were genetically optimised for protein overexpression and 

feature different characteristics, which are shortly described in the following (Berrow et al. 

2006; Graslund et al. 2008). The strain BL21 Star (DE3) is mutated in RnaseE, reducing the 

degradation of mRNA in the cell and protein expression may be increased (Kido et al. 1996; 

Lopez et al. 1999). Host cells of the pLysS system carry an extra plasmid coding for T7 

lysozyme, which functions as inhibitor of T7 polymerase. It enables a much tighter 

expression control and reduces basal expression, which can be toxic to the host (Studier and 

Moffatt 1986). Rosetta(DE3)pLysS was originally intended to facilitate the expression of 

eukaryotic genes and harbours the genes for rarely used t-RNAs in E. coli on the pLysS-

plasmid, helping to overcome codon bias problems (Baneyx 1999). The fourth cell line was 

C41(DE3). This member of the so-called Walker strains, was selected on an empirical basis 

and is more resistant to the expression of toxic and membrane proteins (Miroux and Walker 

1996; Terpe 2006).  

In terms of media, two standard laboratory media Lysogeny Broth (LB) (Bertani 1951) and 

the richer Super Broth (SB) were chosen for comparison with the two commercially available 

auto-induction media TB overnight express (from here on referred to as TB) (Novagen, San 

Diego, USA) and MagicMedia (Invitrogen, Paisley, UK). TB and MagicMedia were 

optimised for the expression of cytosolic proteins but had not yet been tested in regard to 

membrane protein overexpression. LB is the most commonly used medium for recombinant 

overexpression of proteins in laboratories combining good bacterial growth with cheap 

ingredients (Berrow et al. 2006; Graslund et al. 2008). SB is an enriched LB medium. LB 

and SB media were used as auto-induction media based on a method developed by Studier 

(2005). Therefore all used media in this study were auto-induction media.  
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Bacterial growth will vary at a given time in different wells of a HTP expression screen, 

depending on the cell lines and the targets and induction at a certain optical density is 

difficult to monitor and to handle. The main advantage of auto-induction medium is the 

induction of protein expression by nutrient depletion of glucose. Auto-induction allows 

efficient screening of many clones in parallel for expression, as cultures have only to be 

inoculated and grown to saturation. Furthermore auto-induction medium is buffered to 

prevent a decrease of pH in the medium, which is caused by the accumulation of metabolic 

products. The buffering can increase cell yields and might therefore also increase protein 

yields (Studier 2005).  

In regard to temperature, the standard temperature for optimal cell growth of the E. coli host 

at 37 °C was compared to the lower temperature of 25 °C. Expression at lower temperature 

reduces the risk of inclusion body formation and is supposed to relieve some of the cell’s 

metabolic stress, giving the cell’s protein production system more time to fold and process 

the expressed proteins (Schein and Noteborn 1988).  

The test was developed and used with the above mentioned parameters but can easily be 

adapted to test other or even more variables.  In a set of any 12 targets, the employment of 

more blocks would make the testing of more different media, other temperatures and more 

fluorescence measurements at different time points possible.  
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3.4 Final small-scale high throughput expression screen 
protocol 

 

The discussed development of the small-scale HTP expression screen led to the final screen 

protocol incorporating the chosen parameters (Table 3.1) for the test of expression levels of 

12 membrane proteins and is described in the following. 

The expression screen tests the expression level of each target in four different cell lines, four 

different media and at two different temperatures. The four cell lines C41(DE3), 

BL21 Star (DE3), BL21(DE3)pLysS and Rosetta(DE3)pLysS are for matters of clarity 

denoted as C1–C4. The used media were LB, SB, TB overnight express (TB) and 

MagicMedia (MM). All media were employed as auto-induction medium. The tested 

temperatures were 37 °C and 25 °C. The protein targets are denoted as P1–P12 (Table 1.2). All 

abbreviations are listed in Table 3.2. 

 
Symbol Parameter 

C1 C41(DE3) 

C2 BL21 Star (DE3) 

C3 BL21(DE3)pLysS 

C4 Rosetta(DE3)pLysS 

LB Lysogeny Broth media / auto-induction 

SB Super Broth media / auto-induction 

TB TB overnight express 

MM MagicMedia 

P1–P12 Membrane protein GFP-fusions (see Table 1.2) 

Table 3.1 Abbreviations for the parameters used in the small-scale HTP expression screen. 

 

Multi-well blocks in the format of 96, 48 and 24-well blocks (Table 3.2) were used in the 

expression screen together with an eight-channel multi-pipettes (Rainin, Mettler Toledo 

Beaumont Leys, UK) for the fast transfer of liquids between the blocks.  

 
Name  Wells Type / manufacturer 
Transformation block 96 1.2 mL Micro-Tube Cluster Plate (AB-0595) ABgene 
Agar plates 24 Costar 3524, Corning Inc. 
Starter cultures 96 2.2 mL storage plate Mark II (AB-0932) ABgene 
Expression block 48 6.0 mL storage plate (AB-0988) ABgene 
Analysis block 96 2.2 mL storage plate Mark II (AB-0932) ABgene 
Reading plate 96 Costar 3799, Corning Inc. 

Table 3.2: The blocks and plates employed for the small-scale HTP expression screen. 
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The screen yields data on 32 expression conditions per target in four days. In order to allow a 

fast handling of blocks, the developed grid system (see Fig. 3.1) was used throughout the 

entire screen.  

Fig. 3.7 shows a flowchart of the screen including all employed multi-well blocks, their 

denotation and the main volumes that are transferred. The positions of the names of the 

specific cell lines in the rows of the blocks are displayed in the first step and although not 

visualized in the following steps, they are not altered. Furthermore, Fig. 3.7 illustrates with 

the steps for each day the overall time frame of the expression screen. 
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Figure 3.7: Workflow graphic of the small-scale HTP screen. Step 1: Transformation block showing all four 
quadrants (I–IV) together with the position of the membrane proteins P1–P12 and cell lines. Step 2: Quadrants I 
and II are copied to 24-well agar plates. Step 3: Single colonies of the agar plates are used to inoculate the 
starter culture block. Step 4: The starter cultures are diluted into two 48-well expression blocks per medium, one 
for each temperature. Step 5: Samples from the two 48-well expression blocks per medium are transferred in the 
shown arrangement into one 96-well analysis block giving finally one analysis block per tested medium. 
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3.4.1 Transformation in the HTP-expression screen 
 

The transformation of target plasmid DNA into the host cells marks the beginning of the 

screen and in step 1, the required competent cells are thawed and the transformation block is 

assembled with 48 microtubes (quadrant I and II) on ice. 10 µL of competent cells, are 

aliquoted according to the different cell lines into the rows A–D of quadrant I and repeated 

for the rows E–H of quadrant II. Then 1 µL (∼ 20 ng/µL of DNA) of each target, P1–P6 and 

P7–P12, is pipetted into columns 1–6 of sections I and II, respectively. A graphic view of the 

transformation block set up and of the resulting agar plates, which reflect the quadrants I and 

II of the transformation block, are shown in Fig. 3.8.  

The transformation block is incubated on ice for 20 min. The cells are transformed by heat-

shock for 45 sec at 42 °C, by placing the transformation block in a water bath. After recovery 

on ice for 3 min, 500 µL of pre-warmed (42 °C) GS96 medium is added to each microtube 

and incubated for 1 h at 37 °C (no shaking required). In step 2, two sterile 24-well agar plates 

are prepared with the appropriate antibiotics and pre-warmed to 37 °C. Maintaining the grid 

system from step 1, 10 µL of each microtube of quadrant I is plated out on the first agar plate 

and the same for quadrant II on the second agar plate. The plates are incubated for 16 h at 37 

°C and stored at 4 °C until required. 

 

 

Figure 3.8: Schematic representation of the transformation block and agar plates.  
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3.4.2 Cell growth 
 

Starter cultures are prepared by adding 500 µL of GS96 medium to quadrants I and II of a 96-

well deep well block (DWB), maintaining the grid system (step 3). Corresponding single 

colonies from the agar plates are picked to inoculate quadrant I and quadrant II of the starter 

culture DWB, respectively. The starter culture block is sealed with a gas permeable adhesive 

seal and incubated for 16 h in a shaking incubator operating at 37 °C and 180 rpm.  

The main expression blocks in step 4 consist out of two 48-well DWB for each medium used, 

one for growth at 25 °C and one for 37 °C. Every 48-well expression block is prepared by 

adding 2.5 mL of the required medium and supplemented with the appropriate antibiotics 

(Table 2.2). The expression blocks are inoculated by adding 50 µL of each well of quadrants 

I and II of the starter culture block to the corresponding wells of all eight expression blocks. 

The expression blocks are first incubated for 4 h at 37 °C and 220 rpm. After 4 h, the blocks 

intended for the lower temperature are removed and incubated at 25 °C for a further 18 h, 

while one block per medium remains at 37 °C for the same amount of time.  

 

 

 

3.4.3 Sample preparation and data collection 
 

Samples are collected for fluorescence intensity and OD600 measurements by transferring 

100 µL samples in one 96-well analysis block for each medium as shown in Fig. 3.9 at the 

end of this section, resulting in four analysis blocks (step 5). The cells in the analysis blocks 

are harvested by centrifugation at 5000×g for 5 min. The supernatant is removed and the 

blocks are sealed before being stored at −20 °C until required. 

Prior to data collection the analysis blocks are thawed and the samples diluted to an OD600 

below 1.0. This is done by adding 900 µL of PBS (phosphate buffered saline) pH 7.4 to each 

well. The samples are mixed thoroughly by pipetting to achieve homogeneity. Subsequently 

100 µL of each well are transferred to a 96-well reading plate and placed in the fluorimeter 

(FLUOstar OPTIMA, BMG Labtech) (see also sample preparation scheme in Fig. 3.6). After 

incubating the plate for 5 min at 37 °C with shaking, the fluorescence intensity is measured 

(excitation 485 nm, emission 512 nm).  
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The gain value of the fluorimeter is optimised to enable maximum sensitivity and is kept 

constant for all measurements to make a comparison of different blocks possible. The 

measurement of OD600 follows directly after the fluorescence reading in the same plate and 

fluorimeter.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: The collection of samples from the expression blocks into one analysis block. Analysis blocks are 
centrifuged to harvest the cells, the supernatant is discarded and the blocks are sealed and stored at –20º C. 
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3.4.4 Results  
 

The main advantage of the small-scale HTP screen is the vast amount of data gathered on the 

expression behaviour of the target membrane proteins, with relatively low amounts of 

reagents and in a short time. This allows not only the best expression condition for each 

target to be identified, but also makes it possible to mine trends in the data, which in turn can 

be used to further optimise the starting parameters.  

Samples were transferred from each of the expression blocks into the corresponding analysis 

blocks after 22 h of incubation. Whole-cell fluorescence intensity data was collected from 

each of the four analysis blocks after sample preparation and transfer to a reading plate.  

The results from the fluorescence intensity measurements are shown in a schematic in Fig. 

3.10. The target names (Table 1.2) are displayed in a column, the cell lines in the rows and 

each row is subdivided in growth media and temperatures. The fluorescence intensity values 

are shown as pictograms for better visualisation. One square equals 100000 fluorescence 

counts while one dot stands for 20000. Values were rounded down to the next multiple of 

20000. Targets with whole-cell fluorescence values 0 < 20000 are displayed as 20000. 

Conditions in which target expression led to cell death are denoted by .  The expression of 

XylE (target No. 6), for example, led to cell death in the cell line BL21 Star (DE3) in all the 

media tested when expression was run at 25 °C.  

A quick look at the overall 384 expression results in Fig. 3.10 already reveals some of the 

trends in the data, which are described in the following sections. With regard to cell lines, 

most targets express best in Rosetta(DE3)pLysS, followed by BL21(DE3)pLysS, C41(DE3) 

and BL21 Star (DE3). While XylE is the target with the highest expression level of the whole 

screen in BL21(DE3)pLysS at 25 °C in SB medium, it appears to be toxic at the same 

temperature to the strain BL21 Star (DE3) in all the media used. The influence of temperature 

is clearly visible with higher expression levels at 25 °C in nearly all cases. The differences in 

fluorescence values between media are less distinctive, but most targets expressed best in SB 

medium at 25 °C. The data from Fig. 3.11 shows the best expression conditions for each 

target, which are listed in Table 3.3. 
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Figure 3.10: Overall expression results for all 12 membrane protein-GFP fusions (listed in columns). A square symbolises a whole-cell fluorescence value of 100000 and a 
dot 20000 fluorescence counts. Temperature is displayed in blue for 25 and red for 37 °C. The fluorescence value for example of CcmC (target No. 1), expressed in 
BL21(DE3)pLysS in SB media at 25 °C is read as 220000 AU. Values were rounded down to the nearest multiple of 20000. Values 0 < 20000 are shown as 20000. Cases in 
which cell death occurred are denoted as . Fluorescence values are measured in arbitrary units. 

Target / 

Cell line 

CcmC CodB FtsX Lgt PnuC XylE XylH ChbC YdeD PgpB YdhC YhbE Temperature 

& Media 

C41(DE3) ! 

! 

! 

! 

! 

! 

!! 

! 

!"

! 

! 

! 

! 

! 

! 

! 

! 

! 

!!! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

##!! 

!!"

## 

! 

#!!!! 

!! 

## 

!!! 

#!!! 

!! 

# 

!!! 

#!! 

!! 

!!!! 

!!! 

##!! 

!!!! 

! 

! 

## 

#"

#!!!! 

# 

#!!!! 

!! 

#!!!! 

! 

#!! 

!! 

!!!! 

!!! 

##!!!! 

!!!! 

##!!! 

!! 

# 

! 

#!!! 

#! 

##!!! 

# 

## 

! 

! 

# 

## 

#! 

! 

! 

! 

! 

! 

! 

! 

! 

25 °C  SB 

37 °C 

25 °C  LB 
37 °C 

25 °C  TB 

37 °C 

25 °C  MM 

37 °C 

BL21 Star

(DE3) 

!!!!

!!

!!!

!!

!!

!!

!!!!!

!!

!!

!!

!!

!!

!!

!!

!!

!!

# 

! 

!! 

! 

!!! 

!!! 

!!!! 

! 

! 

!! 

! 

! 

! 

! 

! 

! 

#!! 

! 

!!!! 

! 

! 

! 

# 

! 

! 

! 

! 

!! 

! 

!! 

!"

! 

#! 

! 

!!!! 

! 

#! 

! 

!! 

! 

#!!!! 

! 

! 

! 

#!! 

! 

#! 

! 

!!! 

! 

!! 

! 

!!! 

! 

!!!! 

! 

!!!! 

! 

!! 

! 

!!!! 

! 

!!! 

! 

! 

!! 

! 

! 

! 

!! 

! 

!!! 

! 

! 

! 

! 

! 

! 

! 

! 

25 °C  SB 

37 °C 

25 °C  LB 
37 °C 

25 °C  TB 

37 °C 

25 °C  MM 

37 °C 

BL21(DE3)

pLysS 

##!!

!!"

#"

!!!

!!

!!

#!!

!!!!

#"

!!!"

!!"

!!"

!"

!!"

#"

!!"

##!!!! 

!!! 

#"

!! 

!! 

!! 

##!! 

!!!! 

# 

!!!! 

!! 

!! 

! 

# 

#! 

!!!! 

#####!!!! 

# 

###! 

!!!! 

###!!! 

# 

### 

!!!! 

######! 

# 

#!!! 

!! 

#!! 

!!!! 

## 

!!!! 

!! 

! 

!! 

##! 

!! 

! 

!!! 

! 

#! 

!!! 

!! 

!!"

!! 

!!! 

#!! 

!!!! 

!!!! 

!! 

!!! 

!! 

! 

!! 

!! 

!!! 

##! 

!!!! 

#! 

!!! 

! 

! 

##!!!! 

#! 

!!!! 

!!! 

!!! 

! 

! 

!! 

#! 

!!!! 

!! 

! 

! 

! 

! 

! 

!! 

! 

25 °C  SB 

37 °C 

25 °C  LB 
37 °C 

25 °C  TB 

37 °C 

25 °C  MM 

37 °C 

Rosetta

(DE3)pLysS 

!!!!

!!

!!!!!

!!

!!

!!

!!!!!

!!

####!!!!

#!

###!!!

!"

###!!

!!!!!

#!

!!!

####!!! 

!!!! 

##!!! 

!! 

! 

! 

## 

!! 

##!!!"

!!! 

### 

! 

## 

!!! 

#!!! 

!! 

## 

!!! 

#!! 

! 

##! 

!!! 

#!!!! 

!! 

# 

! 

!! 

! 

! 

!! 

#"

! 

##! 

!! 

!!! 

# 

#!!! 

!! 

!!! 

!! 

###! 

!!!! 

###!! 

! 

## 

!!!! 

##! 

!!! 

#!! 

!!! 

#!!!! 

! 

#!! 

!!! 

!! 

! 

!!! 

! 

!!! 

! 

!!! 

!! 

#"

! 

##!!!! 

# 

##!! 

!! 

#!!! 

# 

#!!!! 

!!! 

#!! 

! 

# 

!! 

# 

!! 

#! 

!! 

25 °C  SB 

37 °C 

25 °C  LB 
37 °C 

25 °C  TB 

37 °C 

25 °C  MM 

37 °C 

#! = 100000 

 ! =   20000 



 

 69 

 

Target Media Cell line Temperature [°C] 

CcmC SB BL21(DE3)pLysS 25 

CodB SB Rosetta(DE3)pLysS 25 

FtsX SB Rosetta(DE3)pLysS 25 

Lgt LB Rosetta(DE3)pLysS 25 

PnuC SB BL21(DE3)pLysS 25 

XylE SB BL21(DE3)pLysS 25 

XylH SB Rosetta(DE3)pLysS 25 

YdeD LB Rosetta(DE3)pLysS 25 

ChbC SB Rosetta(DE3)pLysS 25 

PgpB SB C41(DE3) 25 

YdhC SB Rosetta(DE3)pLysS 25 

YhbE SB Rosetta(DE3)pLysS 25 

Table 3.3: The best expression condition for each of the screened 12 membrane proteins.  

 

In order to identify the best expressing targets, they can be ranked according to their 

fluorescence values (Table 3.4). As Table 3.4 shows, there is a considerable difference 

between the best expressing target XylE and the worst, YhbE, with XylE showing four 

times higher fluorescence values than YhbE. The ranking was used to start the scale-up 

expression with the targets showing the highest fluorescence values.  

 

Rank Target Maximal fluorescence value (AU) Medium Cell line 

1 XylE 637820 SB BL21(DE3)pLysS 

2 PnuC 580610 SB BL21(DE3)pLysS 

3 CodB 478850 SB Rosetta(DE3)pLysS 

4 FtsX 466140 SB Rosetta(DE3)pLysS 

5 ChbC 342620 SB Rosetta(DE3)pLysS 

6 Lgt 314060 LB Rosetta(DE3)pLysS 

7 PgpB 288650 SB C41(DE3) 

8 YdhC 287660 SB Rosetta(DE3)pLysS 

9 CcmC 232870 SB BL21(DE3)pLysS 

10 XylH 215450 SB Rosetta(DE3)pLysS 

11 YdeD 198040 LB Rosetta(DE3)pLysS 

12 YhbE 156990 SB Rosetta(DE3)pLysS 

Table 3.4: Ranking of target membrane proteins after the HTP small-scale expression screen according to 
their best whole-cell fluorescence intensity value and together with the respective medium and cell line. 
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3.5 Medium-scale expression 
 

After identifying the best expression condition for each target, all membrane proteins 

were expressed in 500 mL cell cultures in 2 L flasks. Fluorescence values were 

measured from samples taken before harvesting after 22 h. Table 3.5 shows the ranking 

of the best expressing proteins in 500 mL cultures, compared to the ranking in the 

small-scale test. XylE expresses best in both rankings. However, as the results in Table 

3.6 show, a real correlation in the rankings of the targets expressed on a small-scale or 

in larger cell cultures is not found. FtsX is the target with the biggest drop in 

fluorescence values in the ranking, compared to other targets. In contrast, targets such as 

PgpB or CcmC, rank higher in the scale-up expression than in the small-scale screen. 

Only XylE and XylH keep their places in the ranking. Therefore it is target specific how 

the cell culture volume affects membrane protein expression in this study. In conclusion 

the small-scale HTP screen identifies the best expression conditions, in order to produce 

enough protein for further purification and crystallisation studies, but a ranking of the 

targets is not transferable to larger cell cultures. It was possible to obtain enough protein 

for further purification studies of all targets, following their expression in the identified 

optimal conditions. The scale-up expression ranking was then used to focus the work on 

purification, to start with the most promising membrane proteins: XylE, PgpB and 

CcmC.  

 

Ranking Scale-up expression Small-scale expression HTP screen 

1 XylE XylE 

2 PgpB PnuC 

3 CcmC CodB 

4 YdhC FtsX 

5 CodB ChbC 

6 ChbC Lgt 

7 PnuC PgpB 

8 Lgt YdhC 

9 YhbE CcmC 

10 XylH XylH 

11 FtsX YdeD 

12 YdeD YhbE 

Table 3.5: Ranking of targets from small-scale and medium-scale expression.  
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3.6 Trends from expression data 
 

The large amount of expression data gathered, makes it possible to examine the 

behaviour of single parameters or combinations thereof. For example, the influence of 

one particular cell line or growth medium at different temperatures on cell growth and 

target expression can be examined. The highest fluorescence observed, identifies the 

best expression condition in the screen, while the cell density (OD600), which was 

measured (see section 2.4.2) simultaneously with the fluorescence intensity, allows 

insight into relations between protein production and cell growth under all tested 

conditions. In the following figures the OD600 data is shown next to the fluorescence 

values to make a direct comparison possible between the cell growth and how much 

protein these cells yielded in relation to others.  

In general, the best expression temperature found for all targets was 25 °C. Ten out of 

twelve membrane proteins expressed best in SB medium and the remaining two in LB 

medium. With regard to cell line, eight targets gave the highest fluorescence readings in 

Rosetta(DE3)pLysS, followed by three targets in BL21(DE3)pLysS and only one in 

C41(DE3). Overall, the combination Rosetta(DE3)pLysS in SB medium at 25 °C was 

the most successful of the screen, with six targets expressing best in this condition.  

The following sections look at trends, which are averaged over all targets, in regard to 

how particular parameters such as media or cell lines perform at different temperatures 

and in relation to each other. 
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3.6.1 Trends in the performance of media 
 

The first set of questions one could ask are, in which medium are, on average, the 

highest fluorescence values obtained? Does this correlate with the cell growth and does 

the temperature influence this trend? When averaging the fluorescence intensity (Fig. 

3.11 (A)) and the optical density data (Fig. 3.11 (B)) of the expression screen over all 

targets and cell lines, it is possible to look at the performance of the tested media in 

relation to each other at different temperatures (Fig. 3.11). The analysis reveals which 

medium produces on average the highest amount of cells and if this correlates to the 

measured fluorescence levels. 

  

  Average protein expression (A) and cell growth (B) in different media 

  

 

 

 

 

 

 

 

 

Figure 3.11: Temperature dependence of cell growth (B) and expression (A) in different media, averaged 
over all targets and cell lines. SB is the best medium at 25 °C with the highest fluorescence and cell 
density values. MagicMedia (MM) yields the highest fluorescence readings at 37 °C, but TB medium the 
highest cell density at this temperature.  

The medium obtaining the highest fluorescence readings and cell density values is SB 

medium at 25 °C. The performance of the medium is however temperature dependent 

and at 37 °C, MagicMedia (MM) performs slightly better than SB medium in regard to 

expression of target GFP-fusion protein and amount of cells. Despite the best cell 

growth at 37 °C and the second best at 25 °C, TB medium ranks only third in the 

fluorescence readings at both temperatures. LB medium has the lowest cell growth and 

expression of all media at 37 °C. In contrast, cell growth in LB medium at 25 °C is 

ranking between the media MM (lower) and TB (higher). However cells growing in LB 
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medium at 25 °C express more target protein-GFP fusion than in TB medium and only 

slightly less than in MM medium.  

In general, temperature has a greater effect on protein expression than on cell growth 

when comparing fluorescence and cell density. The commercial media TB and MM are 

less influenced by different temperatures than LB and SB medium, especially with 

regard to cell growth.  

 

3.6.2 Trends in the performance of cell lines 
 

The second set of questions deals with how the cell lines on average cope with different 

temperatures. Which cell line grows best and does this cell line also express more target 

proteins than the other cell lines? To address these questions, the expression data were 

averaged over all targets and all media. The resulting data, which are presented in 

figures for fluorescence intensity (Fig. 4.12 (A)) and cell density (Fig. 4.12 (B)), make it 

possible to compare trends between the four cell lines used in the screen dependent on 

the temperature. 

 

Average protein expression (A) and cell growth (B) in different cell lines 

 

 

 

 

 

 

 

 

 

Figure 3.12: Temperature dependence of cell growth (OD600) (B) and protein expression (fluorescence) 
(A) in different cell lines, averaged over all targets and media. Rosetta(DE3)pLysS is expressing the most 
target protein GFP-fusion. BL21 Star (DE3) is the only cell line growing better at higher temperature, 
although yielding more protein at lower temperature. C41(DE3) grows to the highest cell densities in the 
study, but only ranks third in terms of fluorescence. Temperature dependency is more distinct in protein 
synthesis than in cell growth.  
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All cell lines express more target GPF-fusion protein at 25 °C, as the increased 

fluorescence values show at this temperature. The cell line Rosetta(DE3)pLysS shows 

the highest fluorescence values at 25 °C followed by BL21(DE3)pLysS, C41(DE3) and 

BL21 Star (DE3). BL21 Star (DE3) is the only cell line that grows better at 37 °C than 

at 25 °C, however it still expresses more target protein at 25 °C, although less than any 

other cell line.  

With regard to cell growth, it is revealed that the cell line growing to the highest cell 

densities at both temperatures, C41(DE3), ranks only third in protein expression. In 

contrast Rosetta(DE3)pLysS ranks third in cell growth at 25 °C and fourth at 37 °C, but 

gives the highest fluorescence readings at 25 °C and the second highest at 37 °C. 

Rosetta(DE3)pLysS has the best ratio of produced target membrane protein per cell 

from the tested cell lines in the expression screen. The fact that eight out of twelve 

targets express best in Rosetta(DE3)pLysS confirms this result. Therefore the amount of 

cells does not necessarily correspond with higher fluorescence and hence target protein 

expression in the screen. 
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3.6.3 Trends in the performance of single cell lines in different 

media 
 

A further question arises in regard to how single cell lines perform in different media 

and at different temperatures.  The data were analysed and averaged over all targets to 

make a comparison of cell line performances in different media and growth 

temperatures possible and the results are presented for each cell line in the following 

sections.  

 

3.6.3.1 Protein expression and cell growth in C41(DE3) 

 

The average performance of the cell line C41(DE3) in regard to target protein 

expression (Fig. 3.13 (A)) and cell growth (Fig. 3.13 (B)) shows that SB medium stands 

out from the other three media with the highest expression and cell growth at 25 °C.  

 

Average protein expression (A) and cell growth (B) in C41(DE3) 

 

 

 

 

 

 

 

 

 

Figure 3.13: Data of fluorescence intensity (A) and cell density (OD600) (B) of C41(DE3) in different 
media averaged over all tested membrane proteins. C41(DE3) grows and expresses best at 25 °C in SB 
medium. LB, TB and MM media all perform on a similar level at lower temperature. 

 

The growth of C41(DE3) and the expression of target protein is less influenced by 

temperature in the media TB and MM. MagicMedia yields the highest fluorescence 

values at 37 °C, while LB medium performs worst. C41(DE3) cells grow in TB medium 

to the highest cell density at 37 °C  and second highest at 25 °C, but the expression 

levels rank only third at 37 °C  and last at 25 °C.  
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3.6.3.2 Protein expression and cell growth in BL21 Star (DE3) 

 

A different trend is observed for BL21 Star (DE3). This cell line grows in all media, 

especially the commercial media TB and MM, the best at 37 °C (Fig. 3.14 (B)). In SB 

and LB media the cell growth does not differ much between temperatures. Despite the 

trend in cell growth, the highest protein expression (Fig 3.14 (A)) in all media is found 

at 25 °C, with BL21 Star (DE3) expressing the most target protein in SB medium. LB 

medium has the lowest cell growth and protein expression at both temperatures relative 

to all other media tested.  

 

Average protein expression (A) and cell growth (B) in BL21 Star (DE3) 

 

 

 

 

 
 

 

 

Figure 3.14: Fluorescence values (A) for average target expression and cell growth (OD600) (B) values in 
B21 Star (DE3). The data was averaged over all 12 membrane protein targets. BL21 Star (DE3) is the 
only cell line growing best in all media at 37 °C, despite having the highest protein expression at 25°C. 
The most successful media in terms of fluorescence is SB followed by MM, TB and LB.  

 

A comparison between C41(DE3) and BL21 Star (DE3) shows, that C41(DE3) reaches 

considerably higher values for cell growth and protein expression, especially in SB 

medium, than BL21 Star (DE3). Possible explanations for the low cell growth and 

protein expression are discussed in the conclusion of this chapter.  
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3.6.3.3 Protein expression and cell growth in BL21(DE3)pLysS 

 

The fluorescence and the cell density data was averaged over all targets for the cell line 

BL21(DE3)pLysS. The resulting graphs show that cell growth (Fig. 3.15 (B)) of 

BL21(DE3)pLysS and target expression (Fig. 3.15 (A)) is highly influenced by 

temperature. The influence of temperature is especially observed for the cell growth of 

BL21(DE3)pLysS in the media SB, LB and MM at 25 °C, where cell density levels are 

considerably higher than at 37 °C. The growth of BL21(DE3)pLysS is less affected by 

temperature in TB medium, but the expression levels are the lowest in this medium. 

BL21(DE3)pLysS grew best and produces the most membrane protein in SB medium, 

followed by MM medium, at 25 °C. 

 

Average protein expression (A) and cell growth (B) in BL21(DE3)pLysS 

 

 

 

 

 

 

 

 

 

Figure 3.15: Fluorescence values (A) for average expression and cell growth (OD600) (B) in 
BL21(DE3)pLysS. The data was averaged over all 12 membrane protein targets. Performance is very 
temperature dependent and BL21(DE3)pLysS yields the most protein in SB media at 25 °C. 
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3.6.3.4 Protein expression and cell growth in Rosetta(DE3)pLysS 

 

Similar to BL21(DE3)pLysS, a strong influence of the temperature on the expression 

levels of target protein (Fig. 3.16 (A)) and the cell growth (Fig. 3.16 (B)) of 

Rosetta(DE3)pLysS can be observed. Rosetta(DE3)pLysS grew best in TB medium. 

Although cell growth in SB medium is ranks only third behind TB and LB media at 

25 °C, more target protein is expressed with SB medium followed by LB and TB media. 

The best ratio of the tested cell lines with the amount of cells to expressed target protein 

is therefore only obtained in SB medium at 25 °C. 

 

Average protein expression (A) and cell growth (B) in Rosetta(DE3)pLysS 

 

 

 

 

 

 

 

 

 

Figure 3.16: Fluorescence values (A) for average expression and cell growth (OD600) (B) in 
Rosetta(DE3)pLysS The data was averaged over all 12 membrane protein targets. A strong influence of 
temperature is observed for cell growth and even more for protein synthesis. Rosetta(DE3)pLysS grows 
best in TB medium at 25 °C but yields more protein in SB medium at the same temperature. 
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3.7 Conclusion 
 

The developed small-scale HTP screen identified the best expression conditions for the 

12 membrane protein GFP-fusions out of 32 conditions per target. The data from 384 

expression results obtained, was used to search for trends in the parameters. It was 

found that the expression temperature is the most important parameter to optimise, 

followed by the choice of cell line and media. Low temperature can reduce the 

metabolic stress of the cells and was observed to lead to higher target expression in all 

cell lines grown in all media. The results, with regard to cell lines, suggest that the two 

main aspects for successful membrane protein expression in E. coli are, first how well 

potential basal expression is suppressed and second how quickly expression takes place. 

All cell lines use the fast and powerful T7 expression system. However the cell line 

C41(DE3) features several mutations in its lacUV5 promoter. These mutations reduce 

the expression efficiency of C41(DE3) cells to a level similar as those obtained with the 

wild type promoter (Wagner et al. 2007). Therefore C41(DE3) is protected by its low 

speed of protein synthesis, which gives the cell more time to translocate the nascent 

membrane proteins into the membrane. C41(DE3) yields the highest cell densities and 

the third highest fluorescence values. The two pLysS strains using the stringent control 

of basal expression by T7Lysozyme to their advantage, allowing them to reach a 

considerably high level of cell density before induction starts. Wagner et al.  (2007) 

found that the effects of the mutations in the lacUV5 promoter of the Walker strains 

(i.e. C41(DE3)) and the finely tuned dampening of T7RNAP activity by T7Lysosyme 

can lead to the same result of reducing recombinant mRNA levels. This is in 

accordance with the good results of the pLysS-strains in this study, which showed 

higher fluorescence values than C41(DE3). The absence of a stringent control of target 

basal expression levels could also explain, why the cell line BL21 Star (DE3) showed 

the lowest levels of cell growth and target expression of all cell lines tested. As all 

tested membrane proteins originate from E. coli, codon bias should not be an issue. It 

can only be speculated, if the presence of rare t-RNAs during transcription in 

Rosetta(DE3)pLysS does influence, or is even responsible for the superior membrane 

protein expression of this strain.  

It was observed that growth and expression results differ widely between different 

media and cell lines. Although SB medium was optimal for cell growth only for 

C41(DE3) and BL21(DE3)pLysS strains, all cell lines expressed the most target protein 
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at 25 °C in SB medium. Growth in TB medium led to the highest cell density in BL21 

Star (DE3) and Rosetta(DE3)pLysS and averaged over all cell lines, TB medium ranks 

second in cell growth, but last in protein expression at 25 °C. The cell growth in the 

commercial media TB and MM is less influenced by temperature, however, TB medium 

expresses less protein at 25 °C than LB medium and MM medium is only slightly 

better. 

Future runs of the developed small-scale HTP expression screen will benefit from the 

results obtained. Parameters that did not show positive results could be exchanged. 

Therefore future screens could not employ the commercial media TB and MM or the 

cell line BL21 Star (DE3). Instead other media such as M9 minimal medium or self 

made TB medium could be tested. In regard to cell lines the second Walker strain 

C43(DE3), or newly available pLysS strains like C41(DE3)pLysS should be screened. 

The tested temperatures will be lowered further.  

 

The small-scale HTP expression screen developed here, was described as part of the 

publication “A protocol for high throughput methods for the expression and purification 

of inner membrane proteins.” by McLuskey et al.  (2008). The results obtained and 

trends identified will be published elsewhere. 
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Chapter 4 

Purification of target membrane proteins 
 

4.1 Introduction 
 

The small-scale screen determined the optimal expression conditions for each target, in 

which they were subsequently overexpressed in 500 mL cultures. The cells were lysed 

and the membranes prepared according to the methods described in section 2.4.4.  

Based on the construct design, a combination of the methods for solubilisation and 

purification described in chapter 2.4.5–9 was employed. Similar to the HTP approach 

for protein expression, the number of targets makes a compromise on the employed 

parameters in the purification protocol necessary. A purification pipeline (Fig. 4.1), 

therefore tries to employ the most successful parameters revealed from previous studies 

on membrane protein purifications (Privè 2007). The initial choice of detergent is very 

important. The purification scheme uses the detergent DDM, which is the most 

commonly employed detergent in purification of membrane proteins and the most 

successful in crystallisation trials (Privè 2007; Newstead et al. 2008). However, 

instability of any membrane protein solubilised in a PDC with DDM does not 

necessarily mean that a target cannot be purified and crystallised in a different 

detergent. Targets showing instability in DDM can be screened in different detergents, 

after the membrane proteins that were identified to be stable in DDM have been 

examined. Compromising by using only one detergent, makes the purification results 

comparable between targets and this can then be used to find stable targets that can be 

purified to monodispersity with a single purification pipeline in a relatively short time 

frame. Monodispersity is a key requirement for crystallisation.  

As mentioned in section 2.2 the construct harbours, in its multiple cloning site, the 

DNA-sequence corresponding to the membrane protein of interest followed, by a linker 

sequence, the gfp sequence and a histidine tag at the C-terminus. The linker sequence 

contains a cleavage site for Tobacco etch virus protease (TEVP) (section 2.4.8). 

Therefore, the target protein can be cleaved from the GFP-reporter protein. A schematic 

of the purification pipeline is shown in Fig. 4.1. and all the purification steps are 

described in detail in the following sections. 
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Figure 4.1: Scheme of the membrane protein purification pipeline used. 

The solubilised target-GFP fusion binds with its histidine tag to the first affinity 

column. It can be eluted from the column with an imidazole step gradient. The 

imidazole is then removed by dialysis and the GFP-His8 moiety is cleaved off the target 

by TEVP. The His-tagged proteins (GFP-His8/TEVP-His6) bind to the next NiNTA 

column, while the target is found in the flow through. The final purification step is size-

exclusion chromatography.  



 

 83 

4.2 Solubilisation 
 

The purification starts with the solubilisation of the membrane proteins with the 

detergent DDM as shown in Fig. 1.8. The CSC of a detergent is very much dependent 

on the lipid content of the preparation, leading to different required detergent 

concentrations for successful solubilisation. It is possible to use the protein content of 

the membrane suspension as a surrogate of the difficult to determine lipid concentration 

(Privè 2007). A fast absorbance (A280) measurement of the membrane suspension can 

estimate its protein content and can be used to calculate the required amount of 

detergent. This assumption for the lipid content is valid as long as the membranes are 

always from the same source and prepared according to the same protocol (Privè 2007). 

Therefore, following resuspension of the membranes in Buffer I, the protein content 

was estimated with an A280 measurement. The membrane suspension was diluted with 

Buffer I to the desired protein/lipid concentration, which was optimised as described 

below and the required amount of detergent, was added. The initial protocol aimed at a 

membrane suspension with an estimated protein concentration of 20 mg/mL. The 

solubilisation levels with different amounts of detergent were determined by SDS-

PAGE. It was found that solubilisation with 1.5 % DDM is sufficient to solubilise all 

membrane proteins used in this study in a membrane suspension with a protein/lipid 

concentration of 40 mg/mL. This effectively reduces the amount of detergent required 

by a factor of two, as it was possible to use twice as much membrane suspension with 

the same amount of detergent. The membrane suspension was therefore diluted with 

Buffer I to a protein/lipid concentration of 40 mg/mL and 1.5 % DDM was added. The 

remaining unsolubilised membranes were removed by ultracentrifugation after 1 h of 

slow stirring at 4 °C. The target protein, now solubilised as PDC, remained in the 

supernatant, which was filtered and subjected to the first affinity chromatography 

column. 
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4.3 First NiNTA-column 
 

The filtered supernatant contains all membrane proteins that could be solubilised with 

the detergent DDM. To purify the target, the solubilised proteins were applied onto a 

NiNTA-column, where the histidine tag of the fusion protein binds to the column. The 

detailed procedure for this is described in section 2.4.6. The column is washed to 

remove non-binding proteins and then subjected to a step gradient of imidazole. The 

first two elution steps with 50 and 100 mM imidazole concentrations remove the non-

specifically bound proteins. Other proteins can bind weakly to the column, if they are 

for example naturally rich in histidines. The 100 mM step proved to be too high, as the 

target protein was partially eluted (Fig. 4.2 A). The peak fractions of the 50 and the 

100 mM steps could be combined and the purification continued. Different gradient 

steps were tested and it was found that a step of 65 mM is sufficient for the removal of 

non-specific binding proteins. At an imidazole concentration of 65 mM, none of the 

targets in this study were partially eluted. Figure 4.2 displays an example of elution 

traces with 50/100 mM (A) and 65 mM imidazole (B) in the purification of the target 

ChbC. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Optimisation of imidazole gradient for the elution of ChbC from the first affinity column.  
(A) Elution trace and gel with initial starting protocol (1.5 L of cell culture). Lanes 5–7 correspond to the 
fractions of the 100 mM imidazole peak and show that target protein is already eluted. Lanes 8–9 show 
the fractions from the main protein elution peak with a 250 mM imidazole step. (B) Elution trace and gel 
after optimisation of the imidazole gradient (2 L of cell culture). The gel shows that at 65 mM (lane 4–5) 
only small amounts of target protein is eluted. Lanes 6–10 show the fractions of the main protein peak 
eluted with a 250 mM imidazole step.  
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The target was eluted with a 250 mM imidazole step in 1 mL fractions. The fractions 

containing fusion-protein showed a green colour (Fig. 4.3). The protein content of the 

samples was checked by SDS-PAGE.  

Large-scale preparations deriving from cell pellets of 3 L cell culture of the two targets 

XylH and PgpB lead to precipitation in the collection tubes due to concentration 

problems. This was eased with a higher fraction volume, but the sharp elution of the 

target proteins still lead to precipitation in most cases. Therefore, an amount of cell 

pellet harvested from a maximum of 2 L of cell culture was used for all subsequent 

protein preparations.  

 

 

 

 

 

 

 

 

Figure 4.3: Example of collected fractions after the first affinity column. The first four fractions show the 
flow through with the unbound part of the sample, followed by the first imidazole step and the elution of 
non-specific binding proteins. The bright green fractions contain target protein eluted with 250 mM 
imidazole.  
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4.4 Dialysis 
 

The fractions containing the target protein were pooled and dialysed overnight at 4 °C 

to remove excess imidazole (see section 2.4.7). This step was a good indicator for the 

stability of the membrane proteins in solution. Nearly all targets showed precipitation 

after dialysis. Depending on the stability of the targets to the TEVP cleavage, the 

dialysis requirements were optimised. In general, heavy precipitation in the dialysis step 

(4 °C) lead to complete precipitation of the membrane protein during the cleavage 

reaction (30 °C). 

Small to medium losses could be avoided in the case of XylH by the use of desalting 

columns. The desalting columns were equilibrated with 25 mL of buffer A (see table 

2.5). The target was applied in a 2.5 mL sample and the protein was eluted with 3.5 mL 

buffer A, while imidazole was retained on the column. However success with desalting 

columns proved to be target specific. In the case of the target PgpB, protein yields could 

not be improved. In either case, after dialysis or desalting column, precipitate was 

removed by centrifugation at 8000!g for 20 min before the supernatant was subjected to 

the cleavage reaction.  

 

 

4.5 Cleavage with Tobacco etch virus protease 
 

This step proved to be the major bottleneck in the purification protocol. The cleavage 

reaction at 30 °C for 1 h rigorously tested the thermal stability of the targets. The 

general trend throughout all purifications found, that if a target was already precipitating 

to some extent in previous steps, it would precipitate completely in the cleavage 

reaction.  

In single cases, such as Lgt (see Fig. 4.4) the effect of temperature and duration was 

examined, but this only influenced the amount of precipitation to a small extent. Figure 

4.4 is described in detail in the Lgt specific section 4.6.8. 
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Figure 4.4: SDS-PAGES of samples from the TEVP cleavage of Lgt and from the following affinity 
column. Sample A of Lgt-GFP fusion was cleaved for 6 h at room temperature (RT) and a second sample 
B was cleaved for 1 h at 30 °C. Two gel samples were taken from B, one after 30 min and one after 1 h. 
The cleavage at RT for 6 h is complete, while in the cleavage reaction at 30°C still uncut fusion protein is 
detectable. See chapter 4.6.8 for details. 

Due to the influence of detergents on TEVP performance (Mohanty et al. 2003; 

Lundbäck et al. 2008), the enzyme was used in a 1:1 molar ratio with respect to the 

target protein. The protease began to precipitate in increasing amounts after 30 min, 

possibly influencing target protein aggregation as well. The precipitation of TEVP 

could not be avoided by going to a lower temperature, as longer cleavage times were 

then required. Therefore the TEVP cleavage functioned on the one hand as a necessary 

step to remove the reporter-GFP and on the other as an important stability assessment 

for thermal and long-term stability of the target proteins.  

Centrifugation at 8000!g for 20 min removed precipitated protease together with any 

aggregated target protein, and their samples were analysed by SDS-PAGE to assess the 

completion of the cleavage reaction. The supernatant now contained the untagged target 

membrane protein as well as GFP-His8 and TEVP-His6.  
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4.6 Second NiNTA-column 
 

The cleavage products were subjected to a second affinity column. GFP-His8 and 

TEVP-His6 bind to the NiNTA-column, while the untagged target protein elutes in the 

flow through. The binding of GFP-His8 to the column was clearly visible and a picture 

of such a column is displayed in Fig. 4.5. The his-tagged GFP and TEVP can be eluted 

by a 250 mM imidazole step and the column can be recovered. 

 

 

 

 

 

 

 

Figure 4.5: Elution of green coloured GFP-His8 from the second affinity column. 

 

The advantage of the second affinity column lies in the possibility to separate the target 

protein from all proteins, that are still present in the sample solution, that bound to the 

first NiNTA-column. This is especially true for the notoriously problematic 

contamination with acriflavine resistance protein B (AcrB) (Veesler et al. 2008).  

AcrB is an E. coli multidrug efflux pump that features a histidine rich cluster at its C-

terminus that binds to NiNTA columns. AcrB has been shown to crystallise from 

preparations where it is present as a contaminant of less than 5 %. This makes it 

invisible on a standard SDS-PAGE or mass spectrometry and leads to false positives in 

crystallisation trials (Veesler et al. 2008). The contamination is often only detectable 

after X-ray diffraction data has been collected and processed.  

All targets after this second NiNTA-column showed high purity on a SDS-gel and were 

submitted to crystallisation trials. Gel electrophoresis, however, does not give 

information about the monodispersity of the purified protein and a further purification 

step to improve and assess homogeneity is necessary. 
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4.7 Size-exclusion chromatography 
  

Despite showing a high degree of purity after the second affinity column, no initial 

crystal hits were obtained with samples purified without a final gel filtration step. In gel 

electrophoresis the samples are denaturated, through sample preparation and the 

influence of SDS and show a single band on the SDS-PAGE. However when size-

exclusion chromatography is employed, it can emerge that for the same protein sample 

different PDCs exist in solution. The sample could contain a mixture of mono- and 

multimeric assemblies of membrane proteins or partially aggregated fractions. In any of 

these cases, the resulting gel filtration trace shows multiple elution peaks. Large 

aggregated fractions are identified through their elution in the void volume of the 

column, due to their high molecular weight. However in this study, large aggregates did 

not emerge in any protein preparations tested. All the membrane proteins used in this 

study eluted as PDCs shortly after the column void volume at 8 mL. The information 

gained from gel filtration traces is based on the shape of the peak that indicates the 

monodispersity of the sample. The main difficulty was that the trace of the eluted PDCs 

showed multiple peaks, which can be caused by various aggregation states. Finding the 

optimal detergent for the target membrane protein is the crucial step to achieve a high 

degree of monodispersity, necessary for crystallisation.  

Until now, all targets were solubilised by DDM. Only in the case of Lgt and PgpB could 

monodispersity be achieved with DDM. The targets XylH, ChbC and YhbC needed on-

column detergent exchange. This is in accordance with results of all membrane protein 

studies that achieved good diffracting crystals, in which for 50 % of all target a different 

detergent was used for solubilisation, purification and for crystallisation (McLuskey et 

al. 2008). Figure 4.6 shows the effects of successful detergent optimisation in the case 

of XylH. The detergent optimisation of single targets is then described in their specific 

sections. 
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Figure 4.6: Effect of different detergents on the monodispersity of XylH in solution. The detergent DDM 
was exchanged to Fos-Choline 14 via a gel filtration column run. 

 

The actual size-exclusion chromatography run was performed according to the protocol 

described in section 2.4.9. On-column detergent exchange was necessary if the gel 

filtration trace did not show monodispersity.  The sample was again concentrated as 

before to a final volume of 100 µL. The protein solution was then diluted with buffer A 

containing a different detergent, to a final volume of 500 µL and applied onto the gel 

filtration column. The column was previously equilibrated with buffer A containing the 

new detergent. In the cases where on-column detergent exchange proved successful, the 

detergent was exchanged for all follow up preparations in the final gel filtration step. 
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4.8 Purification status of targets 
 

The targets were taken through the purification pipeline in the order of the ranking 

derived from the scale-up expression results (Table 3.6). Therefore the target with the 

highest expression level entered the purification stage first. The following gives for each 

membrane protein, a short note about its function, physical properties and shows the 

relevant elution traces and gel pictures of each purification step. 

All purification steps were verified and confirmed with SDS-PAGE gel electrophoresis. 

However the migration of membrane proteins in SDS-gels is specific to the target’s 

structure and dependent on the amount of SDS that binds to the membrane protein. 

Cases have been reported in which the membrane protein migrates faster or slower than 

would be expected from its molecular weight (MW) and the causes are not fully 

understood (Rath et al. 2009). The majority of the targets of this study migrate faster 

than expected, leading to bands corresponding to lower apparent MW. However the 

comparison of gels before and after the cleavage helps to confirm the identity of the 

relevant bands of the target-GFP fusion and of the target alone.  
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4.8.1 XylE 
 

XylE belongs to the major facilitator superfamily (MFS) of transporters and functions 

as a D-xylose/proton symporter. XylE is part of one of two systems in E. coli 

responsible for the uptake of D-xylose. The other system is the ABC transporter 

XylFGH, with XylH being also a target of this study (Davis and Henderson 1987; 

Griffith et al. 1992). 

The membrane protein GFP-fusion has a MW of 83.1 kDa and XylE itself is, with 

53.4 kDa and 12 transmembrane helices (Davis and Henderson 1987), the largest target 

in this study. Furthermore it was the best expressing target in both small-scale and 

medium-scale experiments, but sadly also the one with the largest amount of 

precipitation during purification. XylE was the first target to be purified. The cell pellet 

from 2 L of cell culture was lysed and the intensely green coloured membranes were 

prepared.  

In the solubilisation step, DDM was added to the resuspended membranes in Buffer I, 

until the suspension clarified. The suspension was submitted to ultracentrifugation and 

the insoluble fraction obtained was not of green colour. The supernatant was applied to 

a NiNTA column. The elution trace in Fig. 4.7 of the first affinity column showed a 

major peak in the target elution gradient step of 250 mM imidazole.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: XylE-GFP fusion elution trace of the first affinity column. Employed imidazole concentration 
steps were 50, 100, 250, 500 mM. Membranes derived from 2 L of cell culture were used for the 
preparation. 
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The highlighted peak fractions in Fig. 4.7 were run on a SDS-PAGE, which is shown in 

Fig. 4.8. The 100 mM imidazole step already led to target elution, as the fractions had a 

green colour. However the quality of the gel in Fig. 4.8 is not sufficient to verify this 

finding.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: SDS-PAGE of first NiNTA column of XylE purification. The GFP-fusion accounts for 
83.1 kDa, but to link a specific band to the protein is not possible at this stage. 

 

XylE already started to precipitate in the fraction tubes after the first affinity column 

and the pooled, green coloured, fractions were centrifuged and the supernatant subjected 

to dialysis.   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Precipitation of XylE-GFP fusion in the pooled fractions from the first affinity column .The 
pooled fractions are shown before (left) and after (right) centrifugation.  
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More precipitation of the fusion protein was encountered in the dialysis and cleavage 

step. Gel samples from the supernatant (lane 6) and the insoluble fraction (lane 7) of the 

cleavage are shown on the SDS-PAGE in Fig. 4.10. A comparison shows that the 

cleavage was successful, as no high molecular weight bands are present in the 

supernatant. Lane 7 shows the amount of precipitation of XylE in the insoluble cleavage 

fraction. The supernatant was applied to the second affinity column but no bands 

corresponding to XylE could be detected in the first eleven fractions of the eluate from 

the column (not shown). Figure 4.10 shows fractions 12–15. In the last two fractions 

(lanes 9 and 10) the final elution of bound GFP and TEVP with 250 mM imidazole can 

be observed.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Samples from the second affinity column of XylE purification (lanes 2–5, 9–10). Lanes 6 
and 7 show the cleavage fractions, while lanes 16 and 17 are from the elution of bound GFP and TEVP 
with 250 mM imidazole. 

 

XylE was not considered as promising target due to the amount of precipitation and 

work on this target halted at this stage. 
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4.8.2 PgpB 
 

The main function of phosphatidylglycerophosphatase B (PgpB) may be its 

diacylglycerol pyrophosphate (DGPP) phosphatase activity. DGPP plays an important 

role in phospholipid metabolism and cell signalling. Phosphatidate (PA), lyso-PA and 

phosphatidylglycerophosphate are reported to be other substrates of the enzyme. PA is a 

phospholipid intermediate used for the synthesis of phospholipids and triacylglycerols. 

PA regulates the activity of several lipid-dependent enzymes and is the source of 

signalling lipids, such as diacylglycerol (DG) and lyso-PA (Dillon et al. 1996).  PgpB 

belongs to the PAP2 superfamily. It is reported to be located in both, the outer and the 

inner membrane with the phosphatase activity being higher in the cytoplasmic 

membrane, whereas PA and LPA activity is higher in the outer membrane (Icho 1988). 

PgpB features six transmembrane helices (Touze et al. 2008) and with a MW of 

28.8 kDa it belongs to the “small” targets used in this study. PgpB ranks second in the 

scale-up expression and high amounts of protein could be observed in the elution trace 

(Fig. 4.11) of the first affinity column during its purification. The imidazole gradient 

employed was optimised to 65, 250 and 500 mM and no PgpB-GFP fusion can be found 

in fraction A12 on the corresponding SDS-PAGE shown in Fig. 4.12. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Elution trace of PgpB-GFP fusion from the first NiNTA column. The optimised imidazole 
gradient employed, comprised 65, 250 and 500 mM steps. The green fractions C5–C9 were pooled for 
further purification. Membranes from 2.5 L of initial cell culture were used for the preparation.  
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A SDS-PAGE (Fig. 4.12) of the fractions C4, C6, C7 and C9 confirmed the presence of 

PgpB-GFP in the green fractions of the first affinity column. These were pooled and 

dialysed overnight. The PgpB-GFP fusion migrates slightly faster than its actual size of 

58.6 kDa and appears with an intense band at a corresponding size of 51 kDa in the gel 

of Fig. 4.12. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: SDS-PAGE of samples from the PgpB-GFP fusion elution trace of Fig. 4.11. An intense 
band for the PgpB-GFP fusion (58.6 kDa) can be observed in the range of 51 kDa. The fractions 
corresponding to the framed samples were pooled for further purification.  

 

The protein fusion showed only minor precipitation losses after dialysis, which could 

not be improved through the use of desalting columns. However PgpB proved to be 

thermally stable during the TEVP cleavage and no precipitation of the protein occurred. 

The gel in Fig. 4.13 shows in lane 2 a sample of the supernatant after cleavage, 

indicating the completion of the cleavage, as no PgpB-GFP fusion band is observed. 

The fractions of the second affinity column (lanes 3–8) show a band on the gel in the 

size range of PgpB at 28 kDa, and the highlighted fractions were pooled and subjected 

to gel filtration. 
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Figure 4.13: SDS-PAGE of samples from the cleavage and the second affinity column in PgpB 
purification. Lane 2 shows the completeness of the cleavage reaction as no band for the GFP-fusion can 
be observed. Fractions 1–6 in the highlighted lanes (3–8) contain PgpB as a band can be detected in the 
size range of PgpB at 28.8 kDa. 

 

PgpB eluted from the gel filtration column in a single peak in 0.04 % DDM (Fig. 4.14) 

and no further detergent optimisation was undertaken.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: Gel filtration trace of PgpB in DDM. The peak fractions (A9–B3) were analysed with a 
SDS-PAGE in Fig. 4.15. PgpB eluted from the column in a single peak. 

The gel samples from the peak fraction (A9–B3) of the elution trace show a high degree 

of purity on the gel in Fig. 4.15. Lane 2 shows the applied sample and the purest 

fractions A11 and A12  (lane 5 and 6), which were pooled and subjected to 

crystallisation trials. 
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Figure 4.15: Gel of the final purification samples from PgpB. Lane 2 shows the concentrated sample that 
was applied to the gel filtration column. The purest samples in lanes 5 and 6, fractions A11 and A12 
respectively, were pooled for crystallisation trials. 

The overall yield after purification was 0.4 mg derived from 1 L of initial cell culture.  

The purified PgpB sample was submitted for mass spectrometry peptide sequencing to 

The Sequencing Service (School of Life Sciences, University of Dundee). The sample 

fragmentation was analysed following trypsin digest and the identity of the protein was 

confirmed to be PgpB.  The results of the peptide sequencing can be found in the 

appendix (7.2.1). 
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4.8.3 CcmC 
 

The target CcmC is the integral membrane component of the CcmABC protoheme IX 

ABC transporter and involved in heme transfer for cytochrome c-maturation. It contains 

six transmembrane helices (Schulz et al. 1999; Ahuja and Thony-Meyer 2003). CcmC 

consists of 245 amino acids contributing to a size of 27.7 kDa. The GFP-fusion has a 

size of 57.5 kDa. Figure 4.16 displays the elution profile from the first NiNTA column 

with this protein. The imidazole gradient employed featured 50, 75, 100 and 250 mM 

steps. The highlighted fractions of each protein peak were analysed on a gel. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16: Elution trace of CcmC-GFP fusion from the first NiNTA-column. Gradient steps are 50, 75, 
100 and 250 mM imidazole. Non-specific binding proteins are successfully removed in the first gradient 
step of 50 mM. Preparation based on membranes from 1.5 L cell culture. 

 

The corresponding SDS-PAGE shows in Fig. 4.17 an enhanced protein band emerging 

at a size slightly lower than 51 kDa for the fractions in lanes 7–8, which is supposed to 

be the CcmC-GFP fusion protein. CcmC binds stronger to the affinity column than the 

previous targets as no band for the target can be observed in the fractions E2 and F6 

from the 75 and 100 mM imidazole steps. Lane 2 shows the sample that was applied to 

the first NiNTA column after solubilisation and lane 3 the insoluble fractions after 

solubilisation. In Lane 4 there is a sample of the non-specific binding proteins that were 

removed in the first peak of Fig. 4.16 with 50 mM imidazole. The last four lanes show 

every second fraction collected from the peak elution of the CcmC-GFP fusion, eluted 

with 250 mM imidazole. 
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Figure 4.17: SDS-PAGE of purification samples from CcmC-GFP starting with solubilisation samples 
from the supernatant and the insoluble fraction followed by the samples from fractions from the NiNTA- 
trace of Fig. 4.16. 

Substantial precipitation losses occurred in the dialysis step. More protein precipitated 

in the TEVP-cleavage and led to the elution of insufficient amounts of protein from the 

second affinity column, to continue purification. The SDS-PAGE of Fig. 4.18 shows the 

differences in gel bands after dialysis (lane 2) and after cleavage (lane 3). The cleavage 

reaction is nearly complete as the band for the GFP-fusion disappears almost 

completely. However, in the supernatant after cleavage (lane 3) only bands for GFP-

His8 and TEVP-His6 can be observed leading to the conclusion that CcmC precipitated 

in the cleavage reaction. This is in accordance with the results from the samples 

collected from the flow through of the second affinity column (lanes 4–9), which show 

no bands on the gel corresponding to CcmC (27.7 kDa). 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: SDS-PAGE of CcmC-GFP fusion samples, collected after dialysis, cleavage (soluble 
fraction) and after second NiNTA column (fractions 1–6). 
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Lane 10 corresponds to the sample of bound GFP-His8 (28 kDa) and TEVP-His6 

(27 kDa), which were eluted with 250 mM imidazole. It also shows a third band at 

higher molecular weight, probably due to a small amount of still uncleaved fusion 

protein. 

Work on CcmC was halted at this stage. 

 

 

4.8.4 YdhC 
 

Sequence similarity suggests that YdhC is involved in drug efflux. YdhC is an 

uncharacterised member of the major facilitator superfamily (Marger and Saier Jr 1993). 

It contains ten transmembrane helices and has a size of 43.2 kDa. It ranked in both 

expression rankings in the middle of the field and the elution trace in Fig. 4.19 indicates 

good protein yield. The imidazole gradient employed contained four steps 50, 75, 250 

and 500 mM. The magnified peak fractions were analysed on a SDS-PAGE, which is 

shown in Fig. 4.20. 

 

 

 

 

 

 

 

 

Figure 4.19: Elution trace of YdhC-GFP fusion from the first NiNTA-column with a 50, 75, 250 and 
500 mM imidazole step gradient. The target was partially eluted at 75 mM imidazole. The main fraction 
was eluted at 250 mM. Preparation based on membranes derived of 1.5 L of cell culture. 

 

YdhC-GFP fusion was partially eluted in the 75 mM imidazole step (fraction B8) and 

optimisation of the gradient was necessary. The gel shows an intense double band for 

the green coloured peak fractions (B12–C5) in the range of 51 kDa (highlighted bands).  
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This band disappears after cleavage, as a comparison of lanes 2 and 4 of the gel in Fig. 

4.21 shows. All target protein containing fractions (B8–C5) were pooled and subjected 

to dialysis. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20: SDS-PAGE of fractions of the first affinity column of YdhC-GFP fusion purification. 
Partially elution of target protein occurs at 75 mM imidazole (fraction B8) as a comparison with the main 
elution peak in lanes 5–10 with 250 mM imidazole shows. 

 

Precipitation losses occurred during dialysis. The gel sample of the supernatant and the 

insoluble fraction after dialysis (lane 2 and 3 Fig. 4.21) clearly show the extent of lost 

YdhC-GFP fusion protein.  

 

 

 

 

 

 

 

 

 

 

Figure 4.21: SDS-Page of samples taken from dialysis, cleavage and second affinity column in the 
second part of the YdhC purification. The losses endured in the dialysis and cleavage steps are visible in 
the insoluble fractions of both steps (lane 3 and 5). The fractions from the second affinity column show 
the cleaved target protein YdhC. 
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Although lane 4 indicates that the cleavage reaction was complete, lane 5 shows that a 

substantial amount of YdhC precipitated together with uncut fusion protein. However, 

the samples from the second affinity column in fractions 3–5 contained YdhC and were 

pooled and applied to a gel filtration column which was equilibrated in buffer 

containing 0.03 % Fos-Choline 14. The gel filtration trace obtained (see Fig. 4.22) 

features a single elution peak indicating the homogeneity of the sample.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22: Gel filtration trace of YdhC in Fos-Choline 14. YdhC elutes from the column in a single 
peak. The fractions A7 to A12 and B1 to B3 were analysed on a gel, which is shown in Fig. 4.23. 

 
The samples from the gel filtration fractions (A7–B3) show a reasonable degree of 

purity in the gel (Fig. 4.23) and the fractions A11 and A12 (lanes 6 and 7) were pooled 

for crystallisation trials. 

 

 

 

 

 

 

 

 

 

 

Figure 4.23: SDS-PAGE of samples from the gel filtration run with YdhC. Fractions A11 and A12 (lanes 
6 and 7) were pooled and subjected to crystallisation trials. 
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The target YdhC was only purified once due to the time constraints of this study, but a 

yield of 0.4 mg from 1 L of initial cell culture was obtained. Follow up purifications 

should focus on the optimisation of the initial imidazole gradient and on minimising 

precipitation losses in the dialysis step through the use of desalting columns. 

Furthermore, temperature and duration of the TEVP cleavage could be tried to improve 

stability. Likewise for all other targets, if no initial crystal hits were obtained, more 

detergents should be screened. 

 

 

4.8.5 CodB 
 

CodB (43.6 kDa) belongs to the nucleobase cation symporter-1 (NCS-1) family. It is a 

putative cytosine/proton symporter and features 12 transmembrane helices (Danielsen et 

al. 1992; Danielsen et al. 1995). The first affinity column with this target protein 

employed an imidazole step gradient of 50, 70, 250 and 500 mM and the resulting 

elution trace is displayed in Fig. 4.24. Samples from the solubilisation were analysed 

together with the magnified fractions from the main peaks of the affinity column by gel 

electrophoresis and the gel obtained is shown in Fig. 4.25. 

 

Figure 4.24: Elution trace of CodB-GFP fusion from the first affinity column. Cell pellet from 1.5 L of 
cell culture was used for this preparation. An imidazole step gradient of 50, 70, 250 and 500 mM was 
employed. The target eluted partially with 75 mM imidazole but the main fraction is eluted with 250 mM.  
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Samples from the fractions B6 (50 mM) and C9 (70 mM imidazole) reveal that the 

target has already been eluted, to a considerable amount, at low imidazole 

concentrations. Similar to the target YdhC, no sharp band can be observed for the GFP-

fusion (73.2 kDa), but a double band in the region of 51 kDa is seen.  

 

 

 

 

 

 

 

 

 

 

Figure 4.25: SDS-PAGE from samples of the first part of the CodB purification and from the peak 
fractions of the first affinity column. The highlighted bands are supposed to be CodB-GFP fusion protein. 
Lanes 2 and 3 show the samples of the soluble fraction after solubilisation and the insoluble fraction.  

 
In the second part of the purification, substantial loss of protein in both the dialysis step 

and the cleavage step occurred. A comparison of soluble and insoluble fractions after 

centrifugation of both purification steps, followed by the first fractions of the second 

affinity column, are displayed in the SDS-PAGE in Fig. 4.26. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26: SDS-PAGE of samples from the second purification part of CodB. Lane 2 and 3 makes an 
estimation of losses after the dialysis step possible, while the same can be done for the cleavage fractions 
represented in lanes 4 and 5. Lanes 6–9 show the first three fractions of the second affinity column. 

lane content 

1 standard 

2 sup. after dialysis 

3 insol. after dialysis 

4 sup. after cleavage 

5 insol. after cleavage  

6 flow through  

7 fraction 1 

8 fraction 2 

9 fraction 3 

97 

64 

51 

39 

28 

19 

1 2 3 4 5 6 7 8 9 

CodB 

GFP 

TEVP 

CodB-GFP 

lane content 

1 standard 

2 sup. after solubilisation 

3 insol. after solubilisation 

4 B6 (50 mM imidazole) 

5 C9 (70 mM) 

6 D9 

7 D11   (250 mM) 

8 E1 

9 E3 

97 

64 

51 

39 

28 

19 

1 2 3 4 5 6 7 8 9 



 

 106 

A comparison of the gel samples from the soluble and insoluble fraction from the 

dialysis step (lanes 2 and 3) visualises the amount of precipitated protein. The 

remaining CodB-GFP fusion was subjected to TEVP cleavage. The corresponding band 

for the fusion protein disappears in lanes 4 and 5 indicating that the cleavage was 

successful and the high thermal stability of CodB-GFP fusion. However the insoluble 

fraction after centrifugation of the cleavage products shows, that CodB alone is not 

stable and precipitates in high amounts. 

Figure 4.27 shows very weak bands for CodB (lanes 1 and 3–8) in the SDS-PAGE 

samples from the second NiNTA-column. Imidazole at a concentration of 250 mM was 

used for the elution of GFP-His8 and TEVP-His6 from the column and is starting to 

show effects from lane 8 onwards. However Fig. 4.27 shows that CodB is not purified 

to a high degree at this stage and yields are very low.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.27: SDS-PAGE of samples from the fractions 3–11, eluted from the second affinity column 
during CodB purification. The last three fractions were eluted by a 250 mM imidazole step gradient. 

 

An additional purification step in the form of ion exchange chromatography was added 

but led to the complete precipitation of the target. As a result of this, due to the losses in 

the dialysis and cleavage steps, CodB was classified as unstable and work stopped at 

this point.  
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4.8.6 ChbC 
 

ChbC is classified as a N,N’-diacetylchitobiose permease. It is the membrane 

component of ChbABC, which belongs to the superfamily of the phosphoenol pyruvate 

(PEP)-dependent sugar transporting phosphotransferase system (PTS) (Keyhani and 

Roseman 1997). Like the targets described later in this study, XylH and YdeD, ChbC 

features ten transmembrane helices and is, with a mass of 48.2 kDa, the largest of these 

three targets. It expressed in the screens (rank 5 and 6) better than XylH and YdeD. An 

optimised imidazole gradient of 65, 250 and 500 mM was used for the first affinity 

column. The elution trace in Fig. 4.28 shows a single peak corresponding to the elution 

of high amounts of the ChbC-GFP fusion (77.9 kDa) in the 250 mM imidazole step. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.28: First affinity column trace of ChbC. Preparation based on membranes from 2 L of cell 
culture. The imidazole gradient encompassed the steps 65, 250 and 500 mM. All highlighted fractions 
were analysed by gel electrophoresis. The green coloured fractions C5–C8 were pooled for further 
purification. 

 

The samples from fractions of the solubilisation step and the corresponding samples of 

the peak fractions of the first affinity column are displayed in the SDS-PAGE of 

Fig. 4.29. The highlighted bands mark the large amount of ChbC-GFP fusion in the 

green coloured fractions C4–C8. These fractions were pooled and dialysed overnight. 
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Figure 4.29: SDS-PAGE of solubilisation samples and fractions from the first affinity column of ChbC. 
The fractions correspond with the trace displayed in Fig. 4.38. An intense band in the size range of the 
ChbC-GFP fusion is observed in the green coloured fractions C4–C8 (lane 6–8). 

 

The ChbC-GFP fusion did not precipitate in the dialysis step and only small amounts of 

aggregation were detected in the following TEVP cleavage. However samples from the 

cleavage reaction show that a large amount of the fusion protein was not successfully 

cleaved and the band for ChbC-GFP is clearly detectable in lane 2 of the gel in 

Fig. 4.30.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.30: SDS-PAGE of ChbC samples from the supernatant of the cleavage and fractions from the 
second affinity column. Lane 2 indicates incomplete cleavage of the fusion, leading to its detection also in 
fraction 7. Here it is eluted together with the histidine tagged GFP and TEVP from the affinity column 
with 250 mM imidazole. ChbC is found in the fractions 1–5 and a frame highlights the bands. 
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The uncleaved fusion still features a histidine tag and therefore binds to the second 

column. It elutes together with the histidine tagged GFP and TEVP in the 250 mM 

imidazole step (lane 10). ChbC does not bind to the affinity column and is detected in 

fractions 1–8, which were pooled for further purification by size-exclusion 

chromatography. 

The first gel filtration run of ChbC in DDM lead to the elution trace displayed in (A) of 

Fig. 4.31 on the following page, indicating a low degree of monodispersity of the 

sample. On-column detergent exchange to the previously successful Fos-Choline 14 did 

not improve the elution properties of ChbC (B). Finally with a new preparation the 

exchange from DDM to Cymal-5 (0.3 %) improved monodispersity. (C) shows the 

resulting elution trace of ChbC in Cymal-5 together with the resulting SDS-PAGE of 

the applied sample and the peak fractions. The purest fractions (A10 and A11) were 

pooled for crystallisation trials. The final protein yield for ChbC was 0.9 mg per litre of 

cell culture. 
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Figure 4.31: On-column detergent optimisation for ChbC. Multiple or broad peaks for the detergents 
DDM and Fos-Choline 14 are indicating low monodispersity of the sample. Monodispersity was 
improved with the employment of the detergent Cymal-5 and the samples of the peak fractions shown in 
the SDS-PAGE (lane 6 and 7) were pooled for crystallisation trials. 

 

 

 

 

 

DDM Fos-Choline 14 

Cymal-5 

lane content 

1 loaded sample 

2 standard 

3 A7 

4 A8 

5 A9 

6 A10 

7 A11 

8 A12 

9 B1 

10 B2 

97 

64 

51 

39 

28 

19 

1 2 3 4 5 6 7 8 9 10 

A B 

C 

A7–A12 B1–B2 



 

 111 

4.8.7 PnuC 
 

PnuC is a member of the nicotinamide mononucleotide (NMN) uptake permease family. 

The function of PnuC in E. coli is not well defined, but due to its sequence homology 

with PnuC of Salmonella typhimurium it was suggested to be an integral membrane 

protein and essential for the NMN transport across the cytoplasmic membrane (Foster et 

al. 1990; Zhu et al. 1991). 

PnuC features six transmembrane helices and has a MW of 27 kDa while the PnuC-GFP 

fusion protein has a MW of 56.5 kDa. Solubilisation yields of PnuC were low and the 

corresponding elution peak of the first affinity column was comparably small 

(Fig. 4.32). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.32: Elution trace of PnuC from the first affinity column. The used imidazole step gradient 
encompassed steps of 50, 75, 250 and 500 mM. Yield of PnuC was very low compared to other target 
preparations. The membranes used for this preparation were derived from 1.5 L of cell culture. 

 

Samples from the highlighted peak fractions from the elution trace gave only weak 

bands on the gel shown in Fig. 4.33. The band in lane 5 shows that PnuC-GFP fusion 

was already partially eluted from the column with an imidazole concentration of 75 mM 

imidazole. The light green coloured fractions C1 and C2 were pooled and dialysed 

overnight.  
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Figure 4.33: SDS-PAGE of samples from PnuC solubilisation and from the peak fractions from the first 
NiNTA-column. Very weak bands in a range of 45 kDa could correspond to the PnuC-GFP fusion. 

 
Large amounts of protein precipitated in the dialysis step. A band resembling the PnuC-

GFP fusion protein was observed in the insoluble dialysis fraction (Fig. 4.34). The 

remaining protein aggregated during TEVP cleavage and the gel in Fig. 4.34 shows that 

no protein could be detected after the second affinity column. PnuC was identified as 

unstable and no further work was carried out on this target. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.34: SDS-PAGE of samples from the dialysis fractions of PnuC (soluble/insoluble) and from the 
following NiNTA-column. Lane 9 and 10 show the obtained bands for the elution with 250 mM 
imidazole and most likely belong to GFP or TEVP. PnuC is untagged after the cleavage and should 
appear in the flow through (fractions 1–6).  
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4.8.8 Lgt 
 

The first step of lipoprotein biosynthesis in gram-negative bacteria is catalysed by 

prolipoprotein diacylglyceryl transferase (Lgt). Lgt utilises membrane lipids as 

substrates and transfers a diacylglyceryl moiety onto a highly conserved cysteine in the 

signal peptide sequence (lipobox) of the prolipoproteins.  Homologues of Lgt exist in 

gram-positive bacteria and their pathogenesis and cell cycle is highly influenced by 

surface lipoproteins (Hutchings et al. 2009). 

Lgt (33 kDa) showed stability throughout the purification pipeline with only small 

losses after dialysis and TEVP cleavage. The imidazole step gradient of the first NiNTA 

column lead in the 100 mM step to partial elution of Lgt-GFP fusion (Fig. 4.35, B6). 

This is confirmed by the gel samples of the highlighted peak fractions in the SDS-

PAGE shown in Fig. 4.36.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.35: Elution trace of Lgt from first affinity column. Membranes derived from 1 L of cell culture 
were used in this preparation. The imidazole gradient employed was 50, 100, 250 and 500 mM. The target 
elutes already in the 100 mM imidazole step. Fractions B4–B7 were pooled and treated as sample A. 
Fractions B11, B12 and C1 were pooled to sample B. 

 

The gel in Fig. 4.36 shows samples from the crude membranes, the solubilisation 

fractions and the fractions from the first NiNTA column. The difference of intensity in 

the bands between the soluble and insoluble solubilisation fractions (lane 4 and 5) 

demonstrates the successful solubilisation of the target out of the membrane.  
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Figure 4.36: SDS-PAGE of first purification steps of Lgt, including samples from crude membranes, 
solubilisation and from the fractions of the main peaks of the first NiNTA column. 

 

The target protein containing fractions were pooled (around B6 and C1) (Fig. 4.35) and 

treated as independent samples A and B.  

The two samples A and B were, following dialysis, subjected to different cleavage 

conditions. Sample A was incubated with TEVP for 6 h at room temperature (RT), 

while sample B was incubated at 30 °C for 1 h. Samples A and B were then passed 

through a second affinity column and samples for a SDS-gel were collected. The gels in 

Fig. 4.37 show the results of the cleavage and the second affinity column, which give 

information about the cleavage completion and the impact on protein stability. A 

comparison of the samples from the cleavage supernatant and the insoluble fraction 

show that precipitation levels were low in both cleavage reactions, but sample A was 

completed. Cleavage products of sample B still contain uncleaved fusion protein.  
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Figure 4.37: Gels of samples from the cleavage test for Lgt and from the following affinity column. The 
top gel shows the results of the 6 h room temperature (RT) cleavage of sample A. The lower gel displays 
the cleavage of sample B for 30 min respectively one hour at 30 °C. Cleavage of sample A is complete 
and precipitation levels were low in both samples A and B. 

 

The gel samples from the second affinity columns showed a high degree of purity and 

the fractions from both columns were pooled and concentrated. The overall yield at this 

purification level from 1 L of cell culture was 0.85 mg. Four crystallisation screens 

were set up and are described in section 5.2. However, as none of the screens yielded 

initial crystal hits, a size-exclusion chromatography step was added to the purification 

protocol of Lgt in the following preparation.  
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The optimisation of the imidazole gradient was based on the common finding with the 

previous targets, that an imidazole step of 65 mM is sufficient for the removal of non-

specifically bound proteins. The optimised gradient in the first purification step gave a 

better elution trace (Fig. 4.38). The non-specific binding proteins were now eluted in a 

65 mM imidazole step, followed by target elution with 250 mM imidazole buffer. The 

yield, judged on the height of the 250 mM peak, is compared to other targets low, 

especially as this preparation used membranes from 2.5 L of cell culture. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.38: Elution trace from Lgt, obtained with optimised imidazole gradient of 65 mM, 250 mM and 
500 mM. This preparation used membranes prepared from 2.5 L of cell culture. Fractions A10–B1 
contained unspecific binding proteins followed by the green coloured fractions C3–C5. 

 

Samples of the peak fractions from the first affinity column were analysed on a gel 

(Fig. 4.39) and they show that the Lgt-GFP fusion elutes in a single peak in the fractions 

C3–C5. 
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Figure 4.39: SDS-PAGE of samples from the solubilisation of Lgt and from peak fractions from the first 
optimised affinity column (trace Fig. 4.38) during purification of Lgt. Fractions C3–C5 were pooled. 

 

The fractions C3–C5 were pooled and subjected to dialysis and TEVP-cleavage. The 

samples from the second affinity column showed the same high level of purity as 

observed before in Fig. 4.37. The degree of monodispersity of the protein sample was 

estimated by size-exclusion chromatography on a gel filtration column. The single peak 

in the gel filtration trace of Lgt (Fig. 4.40) indicates monodispersity of the protein 

sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.40: Gel filtration trace of Lgt in DDM. Lgt elutes in a single peak and the purity of the 
highlighted peak fractions were analysed on a SDS-PAGE shown in Fig. 4.41. 
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The protein containing fractions were identified via SDS-PAGE analysis. The gel in 

Fig. 4.41 shows a reasonable degree of purity of the peak fractions. Lane 2 contains the 

concentrated sample that was applied onto the gel filtration column. Lanes 6–8 show the 

peak fractions from the gel filtration with Lgt.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.41: SDS-PAGE of gel filtration peak fractions of Lgt. Lane 2 shows the concentrated sample 
that was applied to the column. Fractions corresponding to lanes 6–8 contain pure Lgt. 

 

Starting from 2.5 L of cell culture the preparation only yielded 0.37 mg of protein, 

which was not sufficient to set up crystallisation trials. Work focused on other, more 

promising targets, which had crystallised in the meantime. 
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4.8.9 YhbE 
 

This target is an uncharacterised conserved membrane protein, which was identified as 

transporter in topology predictions. It belongs to the EamA-like family of transporters 

(http://www.uniprot.org ; Daley et al. 2005). 

YhbE (34.8 kDa) contains ten predicted transmembrane helices (Daley et al. 2005). 

Despite YhbE being ranked last in the small-scale expression screen and ninth in the 

sacle-up expression, the initial affinity column yielded an average amount of protein 

judged on the peak height of the elution trace (Fig. 4.42).  

 

 

 

 

 

 

 

 

 

Figure 4.42: Elution trace of YhbE-GFP fusion from the first affinity column. A 50, 75, 250 and 500 mM 
imidazole step gradient was employed. Preparation used membranes derived from 1.5 L of cell culture. 
The protein precipitated completely in the collected fractions. 

 

The target precipitated immediately in the fraction tubes after elution. YhbE did not 

show sufficient stability in DDM in solution and work was halted on this target. 

Screening of more detergents for solubilisation might improve the precipitation 

problems. 
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4.8.10 XylH 
 

XylFGH is the second D-xylose transport system in E. coli and belongs to the ATP 

Binding Cassette (ABC) superfamily (Wu and Mandrand-Berthelot 1995). XylH is the 

membrane component of the ABC transporter XylFGH, while XylF is the periplasmic 

substrate-binding protein and XylG the ATP-binding protein (Sofia et al. 1994; Sumiya 

et al. 1995). E. coli can import D-xylose, which is the most abundant sugar in nature 

and metabolise it as a sole carbon source if necessary, through the pentose phosphate 

pathway (Song and Park 1998). 

The overexpression of XylH (41.0 kDa) ranked tenth in both categories. Figure 4.43 

displays the elution profile of the XylH-GFP fusion protein (70.6 kDa) followed by the 

SDS-PAGE showing samples from the solubilisation step and from the peak fractions of 

the first NiNTA column in Fig. 4.44. The preparation used membranes derived from 1 L 

of cell culture and judged on the 250 mM imidazole peak, the yield is high compared to 

other targets of this study. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.43: Elution trace of XylH-GFP fusion (70.6 kDa) with optimised imidazole gradient of 65 mM, 
250 mM and 500 mM. The fractions C3–C6 showed green colour. This preparation is based on the 
membranes of 1 L of cell culture.  

 

The applied step-gradient was optimised to 65 mM imidazole for the elution of the 

unbound fraction. An imidazole concentration above 65 mM, lead to partial elution of 

the fusion protein. The GFP-fusion eluted from the first affinity column with 250 mM 

imidazole in a single peak and the fractions C3–C6 showed green colour.  
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The samples from the fractions C3–C6 show, in the gel of Fig. 4.44, intense bands for 

overexpressed XylH-GFP fusion in the highlighted range of 51 kDa (migrating slightly 

faster than its actual size of 70.6 kDa).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.44: SDS-PAGE of solubilisation fractions from XylH-GFP, together with samples from the 
main peaks of the elution profile of Fig. 4.33. The green coloured fractions C3–C6 show an intensive 
band at 51 kDa accounting for XylH-GFP, which is highlighted. 

 

The four fractions C3–C6 were pooled and dialysed overnight. Considerable 

precipitation losses of protein occurred in this step. In follow up preparations the 

dialysis was replaced by desalting columns as described in Chapter 4.2.3 and protein 

yield could be doubled. In contrast to PgpB, desalting columns were successful in 

reducing precipitation and the overall yield of XylH could be doubled.  

XylH proved to be thermally stable during the TEVP-cleavage at 30 °C for 1 h. The gel 

samples in Fig. 4.45 show the completeness of the cleavage in lane 3 for the soluble 

fraction and the lack of precipitated XylH-GFP or XylH in the insoluble cleavage 

fraction (lane 4). The soluble fraction was applied to the second affinity column and the 

flow through was collected (fractions 1–6). Fractions 2–5 were pooled and concentrated 

for the final gel filtration purification step. 
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Figure 4.45: SDS-PAGE of samples from the XylH-GFP dialysis, cleavage and from the second affinity 
column. No precipitated XylH or XylH-GFP can be detected in the insoluble cleavage fraction (lane 4). 
The samples from the fractions from the second affinity column are shown in lanes 5–10 and contain 
XylH. 

 

Initial size-exclusion chromatography in DDM gave an elution trace (Fig. 4.46 (A)) 

with a broad multiple peak indicating that the PDCs containing XylH, were not 

monodisperse in solution and detergent exchange was required. Figure 4.46 shows the 

gel filtration trace of all different detergents that were tried to improve the 

monodispersity of the XylH sample. Two more detergents were screened, (B) with 

0.1 % Lauryldimethyl amine oxide (LDAO) and (C), with 0.03 % Fos-Choline 14 (see 

Table 4.1). LDAO did not improve monodispersity over DDM. The multiple peaks 

show that LDAO is detrimental to the PDC monodispersity of XylH. Fos-Choline 14 

proved to be the right choice of detergent and the resulting elution trace (C), features a 

single sharp peak indicating a high degree of monodispersity of the sample. The 

corresponding SDS-PAGE from the peak fractions is shown next to the Fos-Choline 14 

gel filtration trace. The gel in Fig. 4.47 shows a high degree of purity for the XylH 

containing fractions. The two fractions A11 and A12 were pooled, concentrated and 

submitted to crystallisation trials. 
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Figure 4.46: Optimisation of homogeneity for XylH by on-column detergent exchange. (A) The original 
gel filtration trace in 0.04 % DDM shows a broad peak indicating a low degree of monodispersity. (B) 
The change to 0.1 % LDAO did not improve homogeneity. (C) The detergent Fos-Choline 14 (0.03 %) 
was tested with material from a new preparation and a single elution peak indicates good monodispersity. 
The trace is displayed in conjunction with the corresponding SDS-PAGE from the peak fractions showing 
a high degree of purity. 

 
DDM was subsequently exchanged in all preparations to Fos-Choline 14 on the gel 

filtration column. The final average protein yield after purification was 1.3 mg per litre 

of initial cell culture.  

 

 

!

!

1 2 3 4 5 6 7 8 

97 

64 

51 

39 

28 

19 

lane content 

1 standard 

2 A9 

3 A10 

4 A11 

5 A12 

6 B1 

7 B2 

8 B3 

DDM 
LDAO 

Fos-Choline 14 

A B 

C 

A9–A12 B1–B3 



 

 124 

A later experiment showed that detergent exchange made on the first NiNTA-column of 

the purification protocol improved stability during dialysis of XylH. However, losses 

could be minimised by the use of desalting columns and the relatively expensive Fos-

Choline 14 was introduced in the final purification step. 

The identity of the protein in the purified solution was verified by mass spectrometry 

peptide sequencing. A protein sample was submitted to the Sequencing Service (School 

of Life Sciences of the University of Dundee), where the fragmentation after trypsin 

digest was analysed. The protein in the sample was identified as XylH and the obtained 

sequencing data is listed in the appendix (7.2.2). 
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4.8.11 FtsX 
 

FtsX is, together with FtsE, related to the group of ABC importers. FtsX forms the 

membrane component. It is localised in the septal ring and is essential for cell division. 

Interestingly, ftsE mutant strains can only survive if NaCl is added to the growth 

medium, which led to the proposal that FtsEX transports an ion needed for cell division 

but not for growth per se (Schmidt et al. 2004).  

Despite FtsX ranking third in the small-scale expression screen, its expression levels in 

larger cultures were the second lowest of all targets. This trend was continued in the 

purification of FtsX. Starting from membranes from 1.5 L of initial cell culture the 

resulting FtsX-GFP peak in the elution trace of Fig. 4.47 only reaches around 300 mAU.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.47: The elution trace of FtsX-GFP fusion from the first NiNTA column with an imidazole step 
gradient of 50, 75, 250 and 500 mM. Samples from the highlighted peak fractions were analysed on a 
SDS-PAGE gel Fig. 4.48. 

 

The gel of the peak fractions does not give a clear band at 68.1 kDa, which could 

correspond to the fusion protein. In comparison with migrating characteristics of other 

tested targets, FtsX behaves differently in migrating only slightly faster in the gel (Fig. 

4.48 and 4.49). 
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Figure 4.48: SDS-PAGE of initial samples from FtsX-GFP purification steps. The gel shows the sample 
of the supernatant after solubilisation and samples of the peak fractions corresponding to the trace of Fig. 
4.47. The very weak presumed band for FtsX-GFP is highlighted.  

 

While FtsX was stable during dialysis, it precipitated heavily in the TEVP cleavage 

step. A band for FtsX-GFP cannot be detected in lanes 9 and 10 of the gel in Fig. 4.49, 

where GFP and TEVP were eluted with 250 mM imidazole. This indicates either 

complete cleavage or precipitation. The gel samples from the fractions from the second 

affinity column show a very weak band that could be FtsX, but its stability and yields 

were very low. Work on this target was halted at this stage. 

  

 

 

 

 

 

 

 

 

 

 

Figure 4.49: SDS-PAGE of the second half of attempted purification of FtsX. In lane 2 the band of the 
fusion protein (68.1 kDa) can be seen, which disappears after the cleavage. FtsX (38.5 kDa) bands are 
highlighted and the fractions of the last two lanes were eluted in 250 mM imidazole showing GFP (28 
kDa) and TEVP (27 kDa). 
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4.8.12 YdeD 
 

YdeD is an exporter of O-acetylserine and cysteine and belongs to the major facilitator 

superfamily. It features ten transmembrane helices and has with 299 amino acids a MW 

of 32.1 kDa (Dafller et al. 2000). YdeD ranked 11th in the small-scale expression screen 

and last in the scale-up expression. The ranking corresponds well with the low YdeD-

GFP fusion protein content detected in the elution trace from the first affinity column 

(Fig. 4.50). Precipitation occurred already in the fractions from the first column.  

 

 

 

 

 

Figure 4.50: Elution trace of YdeD-GFP from the first affinity column. Employed imidazole gradient 
steps were 50, 75, 250 and 500 mM. The preparation is based on membranes derived from 1 L of initial 
cell culture. The protein yield is very low and precipitation occurred immediately after elution.  

 

The remaining supernatant of the light green coloured fractions form the 250 mM 

imidazole step was pooled and subjected to dialysis, where the target completely 

precipitated. No further attempts to purify YdeD were undertaken, due to its instability. 

 

 

 

 

 

 

 

 

250 mM 

500 mM 

50 mM 
75 mM 



 

 128 

4.9 Conclusion 
 

Lgt was the only target from 12 membrane proteins entering the purification pipeline 

that did not show precipitation during purification. However, five targets could be 

purified to monodispersity, despite losses in yield due to precipitation. Two of the 

successful targets, Lgt and PgpB, were shown to be monodisperse in the initial 

solubilisation detergent DDM. The other three targets, XylH, ChbC, YdhC, were not 

monodisperse in DDM and detergent exchange was required. This finding is in line with 

literature stating that the optimal detergent is target specific for each membrane protein 

(Garavito and Ferguson-Miller 2001; Iwata 2003; Carpenter et al. 2008). This is 

especially important for these targets that did not show sufficient stability in DDM to 

allow purification. The target XylE, for example, had the highest expression levels in 

small- and medium-scale expression, but precipitated heavily during purification in 

DDM. The screening of more detergents for solubilisation and purification for the 

targets XylE, CcmC, FtsX, YdeD and YhbE could still lead to sufficient stability in 

solution to allow purification. The targets CodB and PnuC were stable in solution with 

DDM to a certain extent but the purification protocol would need optimisation in order 

to reduce precipitation and increase protein yields.  

Work on the successful targets was given higher priority, in order to submit 

monodisperse membrane protein samples to crystallisation trials. A detailed discussion 

with a comparison of the purification results and possible trends can be found in 

Chapter 6. The results show that it is possible to address a set of membrane proteins 

from different families and functions, with a carefully chosen subset of parameters in a 

common purification pipeline and find targets that can be purified to monodispersity. 

These targets then enter crystallisation trials, before returning to the remaining targets 

and further optimise protocols.  

 

 

 

 

 

 

!
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Chapter 5 

Crystallisation 
 

5.1 Introduction 
 

The crystallisation of proteins is a complex multi-parameter problem. The right 

crystallisation conditions for a protein cannot be predicted and need to be found 

empirically. The protein targets used in the presented study were tested in a large 

number of conditions with commercially available sparse matrix screens. The 

commercial screens used throughout this work for initial screening were a combination 

of MemStart/MemSys and MemGold. The screens were designed, after comparing the 

successful conditions for membrane protein crystallisation of all available membrane 

protein structures. These conditions have been grouped in both, a sparse matrix screen 

(MemStart, MemGold) and a systematic screen (MemSys). The latest screen is 

MemGold, which is based on the crystallisation information on 121 polytopic !-helical 

membrane proteins found in the PDB (Newstead et al. 2008). Promising conditions 

showing crystalline material are then optimised for example, by slight changes in the 

pH, salt and precipitant concentration in order to try to obtain better diffracting crystals.  

The crystallisation of membrane proteins is particularly difficult, due to their 

amphipathic character (see section 1.3.4), which requires detergent for stability in 

solution. The membrane protein has to be crystallised in a complex with detergent. 

Therefore, not only the membrane protein, but also the detergent strongly influences the 

outcome of the crystallisation trials. The detergent often hinders crucial crystal contacts 

between the hydrophilic domains of the membrane proteins. Crystal contacts between 

membrane proteins are generally more likely to be formed, when they are solubilised in 

detergents with a short alkyl tail. However, solubilisation and stabilisation properties of 

detergents, in regard to membrane proteins, are inverse proportional to the length of the 

detergent’s alkyl chain, as discussed in section 1.3.3.2. Finding a target specific optimal 

detergent, that is not only good for monodispersity of the membrane protein sample, but 

also for crystallisation, adds another very important parameter to the multi-parameter 

problem of protein crystallisation.  
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5.2 Crystallisation trials 
 

The targets Lgt, XylH, ChbC and PgpB showed enough purity after the second affinity 

column of the purification scheme to be submitted to crystallisation trials. The protein 

sample was concentrated for the set up of at least two 96-well screens (MemStart/Sys, 

MemGold). An initial protein concentration around 10 mg/mL was used, if the amount 

of purified protein was sufficient. This concentration has been recommended as a good 

starting point (Iwata 2003). The method of crystallisation used, was based on vapour 

diffusion in a sitting drop set-up. The crystallisation screens for each target are listed 

together with the protein concentration and the drop size in Table 5.1. All targets were 

initially solubilised with DDM.  

 

Target Screen Protein concentration [mg/mL] 

Lgt MemStart/Sys 4.7 

 MemStart/Sys 5.2 

 MemGold 4.7 

 MemGold 5.2 

   

XylH MemStart/Sys 11.0 

 MemGold 11.0 

   

ChbC MemStart/Sys 7.5 

 MemGold 7.5 

   

PgpB MemStart/Sys 5.0 

 MemGold 5.0 

Table 5.1: Crystallisation screens for Lgt, XylH, ChbC and PgpB, which were set up after the second 
affinity column. The employed crystallisation screens are shown together with the protein concentration 
for the targets Lgt, XylH, ChbC and PgpB after the basic purification protocol. All crystallisation 
experiments were set up in 500 nL (250 nL reservoir +250 nL protein sample) sitting drops. 

 

No crystalline material was observed in any of the screens with any of the targets. The 

protein concentration used with ChbC (7.5 mg/mL) seemed to be in a good range as 

50 % of the drops remained without precipitation. The other targets showed high 

amounts of precipitation in all of the drops.  

Further purification with size-exclusion chromatography of XylH and ChbC revealed 

that half of these samples were not monodisperse in DDM. XylH and YdhC were 
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monodisperse in the zwitterionic detergent Fos-Choline 14, while ChbC was found to be 

monodisperse in Cymal-5. YdhC was after solubilisation and purification in DDM 

directly applied to an on-column detergent exchange and was monodisperse in Fos-

Choline 14. The targets Lgt and PgpB proved to be monodisperse in DDM, but the 

purity of the samples before gel filtration might not have been good enough for 

crystallisation. PgpB for example showed less heavy precipitation in screens following 

size-exclusion chromatography, despite higher protein concentration in the drops. 

The targets XylH, ChbC, PgpB and YdhC were subjected to crystallisation screens, 

after the added purification step of size-exclusion chromatography. The screens for 

ChbC and YdhC are listed in Table 5.2. The crystallisation trials for XylH and PgpB are 

described in their sections, 5.3 and 5.4 respectively. 

The protein concentrations employed were in the range where 50 % of the drops 

remained clear after one week. In the case of YdhC sufficient protein sample was left, 

after setting up trials with MemGold and MemStart/Sys, so with the Peg/Ion 1/2 a third 

screen was also tested. The commercial Peg/Ion 1/2 screen is a systematic screen that 

tests the influence of different molecular weight polyethylene glycols (PEGs) together 

with polyvalent cations and anions. Unfortunately, none of the screens yields crystalline 

material, either for YdhC or for ChbC. The gel filtration traces of both targets showed a 

single elution peak in the optimised detergents. Therefore future screening should 

probably use higher protein concentrations. Another option is to screen more detergents, 

so long as these do allow monodispersity of the membrane protein-detergent complexes. 

 

Target Screen Protein concentration [mg/mL] Detergent 

ChbC  MemStart/Sys 7.5 Cymal-5 

 MemGold 7.5 Cymal-5 

    

YdhC  MemStart/Sys 12.0 Fos-Choline 14 

 MemGold 12.0 Fos-Choline 14 

 Peg/Ion 1/2 12.0 Fos-Choline 14 

Table 5.2: Crystallisation screens for ChbC and YdhC, set up after gel filtration purification. All drops 
had a volume of 500 nL (250 nL reservoir + 250 nL protein sample) in a 96-well sitting drop screen 
format. No initial crystal hits could be obtained for ChbC or YdhC.  
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5.3 Crystallisation of XylH 
 

Fos-Choline 14 improved the monodispersity of XylH. The purified membrane protein 

was subjected to a new row of crystallisation trials and the protein concentration in the 

drops was further varied. The screens used for this stage and their parameters are listed 

in Table 5.3. The drops appeared to stay clear in most of the conditions. The protein 

concentration was varied in the screens MemStart/Sys and MemGold from 8.0 to 

12.3 mg/mL, and only a slight increase in the amount of precipitation was observed. In 

the screens with the highest protein concentration, the additive 1,2,3-heptanetriol was 

tested. Small amphiphilic molecules such as 1,2,3-heptanetriol can reduce the size of 

detergent micelles and may help to enable crystal contacts (Michel 1983). However it 

did not show any effect with XylH.   

 

Screen Protein concentration 

[mg/mL] 

Drop size 

[µL] 

Additives 

MemStart/Sys 8.0 0.5  

 9.5 0.5  

 12.3 1.0 1,2,3-heptanetriol (0.03 %) 

MemGold 8.0 0.5  

 9.5 0.5  

 12.3 1.0 1,2,3-heptanetriol (0.03 %) 

Table 5.3: Initial crystal screens for XylH in Fos-Choline 14. The screened protein concentration is 
shown alongside drop size (1 to 1 ratio of protein to reservoir solution) and additives. The condition C9 
(0.1 M Tris pH 8.5, 1.5 M lithium sulphate) of the MemStart/Sys plate with protein concentration of 
9.5 mg/mL showed initial hits. 

 

All trays were checked under the microscope for the degree of precipitation or 

crystalline material, directly after the set up. It emerged that birefringent plate-like 

crystals had formed in the MemStart/Sys condition C9 of the plate with 9.5 mg/mL 

protein concentration. This condition contains 0.1 M Tris pH 8.5 and 1.5 M lithium 

sulphate. The plate-like crystals are shown in Fig. 5.1. 
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Figure 5.1: Initial crystals in MemStart/Sys screen condition C9 (0.1 M Tris pH 8.5, 1.5 M Li2SO4). 

 

The crystals of Fig. 5.1 dissolved after 20 minutes and did not re-emerge. In order to 

verify, if the observed crystals were not salt, the reservoir solution was examined for the 

formation of salt crystals in the process of drying out. The observed crystals, of lithium 

sulphate were analysed under the microscope but appeared to have different shapes. 

Therefore, this condition was used to set up larger drops and optimisation screens with 

different pH or salt concentrations. A 24-well sitting drop plate with 2 µL (1:1 ratio 

protein sample/reservoir) drops of the MemStart/Sys C9 condition and XylH (9.5 

mg/mL) showed two crystals in two drops after two weeks. The crystals were of 

different appearance and are shown in Fig. 5.2. They grew from a small amount of 

precipitation in otherwise clear drops.  

 

 

 

 

 

 

 

 

Figure 5.2: Suspected XylH crystals grown in the initial condition C9. Derived from a 24-well sitting 
drop plate with 2 µL (1:1 ratio protein sample/reservoir) drops. Crystal A diffracted to 7 Å, while crystal 
B did not show any diffraction at the I02 synchrotron beamline at Diamond Light Source. 

A B 
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In order to find a suitable cryo protectant, 20 % ethylene glycol or PEG 400 was added 

to the reservoir solution and the mixture was lifted with an empty loop and flash frozen 

in the dry air flow of the cryo-flow system. A clear glass was formed with ethylene 

glycol. Reservoir solution mixed with 20 % ethylene glycol was then used as cryo-

protectant. The mounted crystal was dipped for two seconds into cryo-protectant and 

immediately placed and frozen in the cryo-flow on the goniometer head.  Exposure to 

X-rays did not show any diffraction with crystals in the in-house X-ray source, a Rigaku 

MicroMax 007 rotating anode generator coupled with a MarResearch 345 image plate 

detector. No diffraction in the first instance was an indicator that both crystals may be 

protein and not salt. They were, therefore, stored in liquid nitrogen for later exposure to 

more intense synchrotron radiation.  

The crystals were taken to the Diamond Light Source. Crystal B in Fig. 5.2 did not 

show any diffraction. However, crystal A diffracted at the I02 beamline to 7 Å. An 

example of the diffraction pattern of crystal A is shown in Fig. 5.3.  

 

 

Figure 5.3: Diffraction image of XylH (crystal A) obtained at the Diamond Light Source Beamline IO2. 
A zoomed part of the image is displayed on the right.  

 

Unfortunately the data were not of sufficient quality for interpretation and processing. 

The focus of the work was then to reproduce the initial crystal and to further optimise 

the conditions in order to obtain better diffracting crystals. No further crystals were 

found in any other drops of the successful crystallisation screen.  
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Further 24-well optimisations screens were set up, varying the conditions used in the 

initial screen. All the optimisation trays used, are listed in Table 5.4 at the end of this 

section. The first approach was to optimise the protein concentration. Increasing the 

protein concentration aims to bring the protein closer to the supersaturation state in the 

drop. All the drops in previous screens contained small amounts of precipitation and 

XylH proved very stable in solution. Precipitation increased from a protein 

concentration of 20 mg/mL upwards, but even in a tray with a protein concentration of 

38 mg/mL no heavy precipitation was observed.  

The second attempt to obtain more XylH crystals was to find a suitable additive that 

might be capable of changing the micelle size of the PDC, favouring crystal contacts 

and nucleation. Small organic molecules, additional detergents, multivalent salts, and 

chemicals can all have a significant impact on the formation and quality of membrane 

protein crystals (Michel 1983; Iwata 2003; Carpenter et al. 2008). 

The additive 1,2,3-heptanetriol was added, as it can reduce the size of detergent 

micelles, but no effect was observed. Detergents, as additives, were screened with the 

two commercially available Detergent 1/2 screens. But despite leading to further 

precipitation, no signs of crystals emerged. Furthermore, the two sparse matrix screens 

Hampton Crystal 1/2 and JCSGplus 1/2 were tested as additive screens. The screens 

were added in ratios 1:10 and 1:1000 to premade screens containing the initial 

condition, in which XylH had crystallised before. The added screens only had a small 

influence on precipitation in the 1:10 ratio, but crystalline material could not be 

observed.  

Membrane proteins have been shown to prefer crystallisation in a pH range between 5–

9 (Iwata 2003; Newstead et al. 2008). The obtained XylH crystal appeared in the initial 

conditions at a pH of 8.5 and this condition contains no other precipitant other than 

lithium sulphate (1.5 M). The polyvalent cations and anions of salts can be essential for 

crystallisation, because they can stabilise crystal contacts by acting as linkers, but can 

also weaken ionic interactions between proteins if the concentration is too high (Iwata 

2003). In order to explore the influence of the pH and the salt concentration a 24-well 

optimisation screen with 2 µL drops (1:1 ratio) based on the initial condition, was 

prepared with the pH ranging from 7.5–9 and with lithium sulphate concentrations from 

1.25–2.00 M. Nearly all drops remained clear, indicating stability of XylH over a wide 

range of pH and salt concentrations.  



 

 136 

The software Screen Designer and the Hamilton Star Lab robot were used to design and 

to dispense homemade 96-well trays in order to test more parameters in one screen and 

to identify trends. The first designed screen tested both, lithium sulphate and 

ammonium sulphate concentrations, from 1.1–1.8 M. It was found that lithium sulphate 

and ammonium sulphate can be substituted and the salt exchange may favour 

crystallisation (Iwata 2003). In addition to the different salts, each screen contained 

0.1 M Tris in a pH range of 8.3–10.0. A schematic of homemade screen I is displayed in 

Fig. 5.4. Most drops stayed clear and no trend regarding the amount of precipitation 

could be observed.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Homemade screen I for XylH, containing two different salts with lithium sulphate and 
ammonium sulphate in eight different concentrations. Tris-buffer (0.1 M) was used in six different pH 
steps.  

 

The combination of salts was tested with the homemade screen II (Fig. 5.5). 

Ammonium sulphate concentrations from 0.6–2.8 M supplemented with a gradient of 

LiCl as additive from 0.001–0.2 M were screened. The protein concentration 

(10 mg/mL), buffer concentration (0.1 M Tris) and pH (8.5) were held constant.  
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Figure 5.5: Homemade screen II for the test of salt combinations for the crystallisation of XylH. 
Ammonium sulphate in concentrations from 0.6–2.8 M was screened with the addition of 0.001–0.200 M 
LiCl. Buffer concentration and pH and protein concentration remained constant. 

 

Increasing precipitation with XylH was observed in the homemade screen II, at 

ammonium sulphate concentrations of 2.6 M or higher. In screen conditions with a 

concentration of LiCl higher than 0.115, light precipitation with XylH was observed for 

ammonium sulphate concentrations of 2.4 M and higher. However, no further XylH 

crystals could be obtained. The complete list of optimisation screens targeting protein 

concentration, pH range, salt concentrations and combinations of salts as well as 

additives can be found below. Unfortunately it was not possible to reproduce the first 

obtained crystal. 
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Table 5.4: Complete list of optimisation screens for XylH. The drops in Detergent screens 1 and 2 were 
based on the initial condition and contained 2 µL protein sample, 0.5 µL detergent additive and 2.5 µL 
reservoir solution. All other screens were prepared with a 1:1 ratio of protein sample and reservoir. 
Heptanetriol was added to one half of the crystallisation drops in the protein concentration screen. 

Screen Format Prot. conc. 

[mg/mL] 

Drop size [µL] Additives 

Peg/Ion 1/2 96 9.5 0.5  

Detergent 1 24 9.5 5  

pH/concentration 24 9.5 2  

Protein concentration 24 10.0–28.0 2  

Protein concentration 24 38.0 2 1,2,3-heptanetriol  

Detergent 2 24 19.0 5  

Homemade I 96 9.5 1  

Homemade I 96 25.0 1  

Homemade II 96 9.5 1  

Initial condition 96 9.5 1 Hampton Crystal 1/2 1:10 

Initial condition 96 9.5 1 Hampton Crystal 1/2 1:1000 

Initial condition 96 9.5 1 JCSGplus 1/2 1:10 

Initial condition 96 9.5 1 JCSGplus 1/2 1:1000 

Initial condition 96 25.0 1 Hampton Crystal 1/2 1:10 
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5.4 Crystallisation of PgpB 
 

PgpB was monodisperse with the initial solubilisation detergent DDM. The first 

crystallisation trials with PgpB were set up with the screens MemStart/Sys, Peg/Ion 1/2, 

MemGold and Hampton Crystal 1/2. The PgpB concentration in the screens and the 

drop size are listed in Table 5.5.  

 

Screen Protein concentration 

[mg/mL] 

Drop size 

[µL] 

MemStart/Sys 8.8 0.5 

Peg/Ion 1/2 8.8 0.5 

MemGold 8.5 0.5 

Hampton Crystal 1/2 8.5 0.5 

Table 5.5: Initial screens for PgpB following purification with gel filtration, listed together with the used 
protein concentration and drop size (1:1 ratio protein sample to reservoir solution). 

 

Plate-like crystals were observed directly after set up in MemSys condition No. 1 

(0.1 M sodium citrate pH 5.5, 2.5 M magnesium sulphate), but the crystals vanished 

15 min after set up and did not appear again. 

The crystals seen in Fig. 5.6 were obtained after two weeks in the MemSys H10 

condition (0.1 M Tris pH 8.5, 0.1 M NaCl, 0.1 M MgCl2, and 12 % w/v PEG 4000). 

The crystals were exposed to X-rays in the in-house generator and to synchrotron 

radiation at the Diamond Light Source, but did not diffract. Therefore, the crystals were 

presumed to be protein rather than salt and optimisation screens were set up. Two 24-

well pH optimisation screens (pH 7.5–9.0) with different protein concentrations were 

prepared. Furthermore, one 96-well plate of the initial condition (initial screen) was set 

up. However no more crystals were obtained, either with this condition or variations 

thereof.  

 

 

 

 

 

Figure 5.6: Grown crystals in initial MemSys screen with PgpB in DDM. The MemSys H10 condition 
contains 0.1 M Tris pH 8.5, 0.1 M NaCl, 0.1 M MgCl2 and 12 % w/v PEG 4000. The crystals did not 
diffract. 
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Initial tests showed that a protein concentration of 8.5 mg/mL was a good starting point 

with light precipitation in about 50 % of the drops. Detergent screens 1/2 and Additive 

screen 1 were tested, but were not successful in producing more crystals. All 

optimisation screens with PgpB are listed in Table 5.6 at the end of this section. 

Growing detergent crystals of DDM made the identification of potential protein crystals 

in the screens difficult. Fig. 5.7 shows some of the detergent crystals, which usually 

appeared as discs, lacking distinct edges in most cases. A crystal with a different 

appearance than the DDM discs (Fig. 5.7) appeared after four weeks in the MemGold 

screen condition 27 (0.04 M Tris pH 8.0, 0.04 M NaCl, 27 % v/v PEG 350 MME). In 

contrast to detergent crystals, this crystal did not smear or break when mounted into a 

loop.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: PgpB and detergent crystals in condition 27 of MemGold screen. (0.04 M Tris pH 8.0, 
0.04 M NaCl, 27 % v/v PEG 350 MME) 

 

Following tests with PEG 400 and ethylene glycol, 20 % of the latter was mixed with 

the reservoir solution (MemGold 27) and used as cryo-protectant. The crystal was 

mounted into a 0.2 µm loop and dipped for two seconds into the cryo-protectant. The 

loop was immediately placed on the goniometer head, where the crystal was flash 

frozen by the cryo-system at "160 °C. No diffraction was obtained with the in-house 

generator, suggesting the crystal was not salt. The crystal was stored in liquid nitrogen 

until exposure to stronger synchrotron radiation was possible.  
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The PgpB crystal from Fig. 5.7 was exposed to synchrotron radiation at the beamline 

I02 at the Diamond Light Source. The diffraction pattern showed characteristic low-

resolution diffraction spots, which are typical for protein crystals (Rhodes 1993). The 

PgpB crystal diffracted to about 15 Å (Figure 5.8). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Diffraction image of the PgpB crystal obtained at the IO2 beamline of the Diamond Light 
Source. 

 

Optimisation screens were set-up employing the same strategies as for XylH, with the 

screening of additives in the initial conditions. The screens Hampton 1/2 or JCSGplus 

1/2 were added in ratios of 1:10 and 1:1000. No crystallisation or trends regarding the 

precipitation of PgpB in the drops were obvious. The next optimisations screens aimed 

to test different precipitants in various concentrations. The majority of published 

membrane protein structures were obtained from a crystal grown in a condition 

containing polyethylene glycols (PEGs) or a related compound (Iwata 2003; Newstead 

et al. 2008). Particularly successful are small PEGs such as PEG 400. Larger PEGs such 

as PEG 3350 are often used in the crystallisation of soluble proteins, but are prone to 

cause phase separation in membrane protein crystallisation screens. Small PEGs are 

commonly used as precipitants in a concentration range between 15–35 % (Iwata 2003). 

Two more homemade screens were prepared to screen different PEGs. Homemade 

screen III was first set-up and contained 23–33% of PEGs 200, 350, 400 and 1000 in 

concentrations from 23–33 % and NaCl in concentrations from 0–0.06 M. The format of 

homemade screen III is shown in Fig. 5.9.  
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Figure 5.9: Format of the 96-well home made optimisation screen III for the screening of PgpB in 
different PEGs and NaCl concentrations. Red crosses mark the conditions that contained rod-like crystals. 
The screen is based on the successful condition with 0.04 M Tris pH 8, 0.04 M NaCl, 27 % (v/v) 
PEG 350 MME. Four different precipitants are screened with PEG 350 MME (MME= monomethylether), 
200, 400 and 1000 in ranges from 23–33 %. NaCl concentration varied in the range of 0–0.06 M. All 
wells contain 0.04 M Tris pH 8.0. 

 

Precipitate was detected in the homemade III screen after two weeks in all drops with a 

PEG content higher than 29 %. Detergent crystals could be observed for PEG 350 MME 

and PEG 400. Four weeks after set-up, small crystalline rods could be observed in 

conditions containing 25–29 % PEG 400 and 0–0.06 M NaCl in the homemade screen 

III. The rods often grew next to detergent crystals. The relevant wells are marked with 

red crosses in Fig. 5.9. The crystals in the original condition with PEG 350 MME 

appeared later and were smaller in size.  

Homemade screen IV used, in contrast to homemade screen III, different buffer pH and 

PEG 550 MME in a similar concentration range. The Tris and NaCl concentration 

remained constant at 0.04 M. A schematic of the homemade screen IV for PgpB is 

shown in Fig. 5.10. 
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Figure 5.10: Homemade screen IV for the screening with PgpB in different PEGs and buffer pH. The 
screen is based on the initial crystallisation conditions (0.04 M Tris pH 8, 0.04 M NaCl, 27 % (v/v) 
PEG 350 MME). All wells contain 0.04 M Tris buffer and 0.04 M NaCl. The screened PEGs were PEG 
550 MME, 350 MME and 400. The red crosses mark the wells containing the crystals shown in Fig. 5.11. 

 

At the time of writing, homemade screen IV has been incubated for four weeks and has 

produced crystal rods in conditions with 24 and 25 % PEG 400 and a buffer pH of 7.5 

and 8.5. The crystals were larger than the ones obtained with homemade screen III, 

which could be due to the change in buffer pH. Figure 5.11 shows two crystals from 

homemade screen IV. Crystal (A) grew in 0.04 M Tris pH 7.5, 0.04 M NaCl and 25 % 

PEG 400 while crystal (B) was obtained from 0.04 M Tris pH 8.5, 0.04 M NaCl and 

24 % PEG 400. At this time, no crystals have yet been observed in the initial condition 

with PEG 350 MME. Combining the results of both screens crystals could be found in 

conditions with a PEG 400 content between 24 and 29 %, NaCl concentrations from 0-

0.06 M and at pH 7.5–8.5 of 0.04 M Tris-buffer. The salt concentration did not 

influence the crystallisation in the range tested. Figure 5.11 shows two images of the 

crystal rods obtained.  
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Figure 5.11: Examples of the PgpB crystals found in homemade screen III and IV. Crystal (A) grew in 
0.1 M Tris pH 7.5 0.04 M NaCl 25 % PEG 400 and crystal (B) in 0.1 M Tris pH 8.5 0.04 M NaCl 24 % 
PEG 400 of the homemade screen IV. 

 

PEG 400 is a cryo-protectant and present in the crystallisation condition. The crystals 

were therefore directly mounted in a suitable loop and flash frozen in the cold air-flow 

of the cryo-system. The crystals diffracted to 25 Å in the in-house X-ray source and 

were stored in liquid nitrogen for the exposure to stronger synchrotron radiation. A 

diffraction image of crystal A is shown in Fig. 5.11.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.12: Diffraction image of PgpB crystal (A in Fig. 5.11) from homemade screen IV in the in-house 
X-ray source.  

In comparison to the first PgpB crystals, which did not diffract in-house, this is a good 

improvement. In addition not only one but several crystals grew in the drops and 15 

crystals were flash frozen and stored for the next scheduled synchrotron shift.  

A B 
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Finally, Table 5.6 lists all the optimisation screens that were set-up for the 

crystallisation of PgpB. 

 

Screen Format Prot. concentration 

[mg/mL] 

Drop size 

[µL] 

Additives 

pH screen 96 8.5 1  

pH screen 24 13 2  

Det I  24 8.5 5  

Det 2  24 8.5 5  

Add 1 24 8.5 5  

Initial condition 96 8.5 1  

Initial condition  96 8.5 1 Hampton screen 1:10 

Initial condition 96 8.5 1 JCSG screen 1:10 

Initial condition  96 8.5 1 Hampton screen 1:1000 

Initial condition 96 8.5 1 JCSG screen 1:1000 

Homemade III 96 10 1  

Homemade IV 96 10 1  

Table 5.6: Optimisation screens for PgpB. The two pH screens tested a pH range of 7.5–9.0 with two 
different protein concentrations for the condition (0.1 M NaCl, 0.1 M MgCl2, 0.1 M Tris pH 8.5 and 12% 
w/v PEG 4000), in which the first crystals were observed. Detergent and Additive screens for the above 
condition were set-up in a 5 µL drop consisting out of 2 µL protein, 0.5 detergent additive and 2.5 µL 
reservoir solution. The initial conditions yielding the diffracting crystal were 0.4 M Tris pH 8, 0.04 M 
NaCl and 27 % (v,v) PEG 350 MME, which were the starting point for initial screens with additives and 
the homemade III and IV screens. 
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5.5 Conclusion 
 

The five targets Lgt, XylH, ChbC, PgpB and YdhC entered the crystallisation stage and 

XylH and PgpB crystallised. No crystals were observed in any trays, which were set-up 

with samples that had not been purified with size exclusion chromatography. A gel 

filtration step in the purification protocol proved to be essential to get crystals. The 

crystals of XylH and later PgpB were obtained early on and work then primarily dealt 

with the optimisation of their crystallisation conditions. Lgt did not yield any crystals in 

trays after the basic purification and only one protein purification including the final 

step of size-exclusion chromatography was performed. Monodispersity was observed 

for Lgt in DDM, but the protein yield of this single preparation was not sufficient to set-

up crystal trays. ChbC and YdhC did not crystallise in any condition of the initial 

screens. In these cases, no heavy precipitation was observed in the drops. Therefore 

increasing the protein concentration should be the next step in crystallisation screens 

with ChbC and YdhC.  

A strategy for all targets that did not crystallise, or with which crystals did not diffract 

to high resolution, is the screening of more detergents in the gel filtration step. The 

optimisation of detergents has already been shown to be important in the case of XylH 

and ChbC. In general, the choice of detergent is dependent on the solubility and stability 

of the target membrane protein and as there is no simple relationship between these 

parameters (Iwata 2003), only detergent screening can find the optimal combination. 

Furthermore, even if monodispersity of the protein sample is achieved, there is no 

guarantee that this particular detergent-protein combination is more likely to crystallise. 

Two crystals could be obtained in XylH crystallisation trials, of which one diffracted to 

7 Å. The crystal grew in one single drop in the initial conditions out of light precipitate. 

None of the other drops contained crystals and neither screens with the initial condition, 

nor the optimisations listed in table 5.4, produced crystals again. XylH is very stable in 

solution with Fos-Choline 14 and even protein concentrations of 38 mg/mL did not 

cause heavy precipitation in crystallisation drops. The successful condition, in which 

XylH crystallised, does not contain any precipitant other than lithium sulphate, so an 

optimisation screen with a range of PEGs could be tested. Furthermore, on-column 

detergent screening in the gel filtration step, could assess if XylH is monodisperse in 

other detergents. XylH is the membrane component of the ABC transporter XylFGH 

(Sumiya et al. 1995; Wu and Mandrand-Berthelot 1995). To date six ABC transporters 
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have been crystallised (McLuskey et al. 2009). However, all of the obtained structures 

were crystallised together with their nucleotide binding or the substrate binding domains 

(McLuskey et al. ; Rees et al. 2009). These domains are not located in the membrane 

and would enlarge the hydrophilic protein parts, which are necessary for the formation 

of crystal contacts. Another option would be the co-crystallisation of XylH specific 

antibodies or DARPINs, which would bind to the membrane protein and increase the 

hydrophilic surface of the complex or lock the transporter in a conformation (Hunte et 

al. 2003; Binz et al. 2004). However, these approaches would most likely require the 

optimisation of the purification protocol in regard to the new membrane protein 

complex.  

The enzyme PgpB crystallised with DDM as detergent. A crystal grew in initial 

crystallisation trials, which was large enough to be mounted and exposed to X-rays. No 

diffraction could be detected with the in-house X-ray source, but the crystal diffracted to 

15 Å at the synchrotron. PgpB crystals were, although in a different rod-like shape, 

reproduced in the initial condition. Crystals of the same shape were obtained in 

optimisation screens, targeting different precipitant concentrations. These crystals grew 

in a condition containing PEG 400, which is a suitable cryo-protectant. The crystal rods 

diffracted in-house to 25 Å and are awaiting exposure to stronger synchrotron radiation. 

So far optimisations for PgpB dealt mainly with the precipitant and salt concentration, 

therefore additives will be screened. Co-crystallisation with one of PgpB’s substrates 

could be successful by locking the enzyme in a specific conformational state, which 

could improve the quality of crystals. The general strategies described before, such as 

the screening of different detergents, can also be employed on PgpB, if the current 

crystals fail to diffract to high resolution or cannot be improved.  

 

 

 

 

 

 

 

 

 

 



 

 148 

Chapter 6 

Discussion and future perspectives 
 

The HTP approach used in this work aimed at finding the most promising target 

membrane proteins from a construct library, with regard to crystallisation. Every step 

from target selection, expression screening, purification to crystallisation tried to 

employ the methods and parameters providing the highest likelihood of success. The 

process is based on the assumption that what worked before with many membrane 

proteins is likely to work again. In order to increase the chances of success, targets are 

selected in the first step according to criteria, which fit those membrane proteins that 

had been previously crystallised. Most membrane structures in the PDB are from 

prokaryotic membrane proteins and therefore this study chooses in the first instance a 

target construct library of E. coli inner membrane proteins. The four criteria for the 

selection of targets from this library (see section 1.6) are based, on the one hand, on 

requirements by the construct design and, on the other hand, on information from 

databases, listing properties of crystallised membrane proteins, such as number of 

transmembrane helices.  

The recombinant overexpression of membrane proteins is a bottleneck in membrane 

protein structural biology. The small-scale HTP expression screen developed in this 

work shows that it is possible to find optimal expression conditions for a large number 

of targets in a short time frame. The results show that considerable differences exist in 

the expression levels of membrane proteins in different cell lines, media and 

temperatures and that screening for the best combination of these parameters is 

required. All targets were later expressed in the found optimal conditions in medium-

scale cell cultures. The expression levels of targets obtained were in all cases high 

enough to allow purification trials. Trends with regard to successful combinations of 

cell lines and media at different temperatures were identified and can be used to 

optimise the starting parameters of the screen (see section 3.7). 

The question arises, why one should actually screen for conditions and not simply 

express all targets in the most successful condition, as for example the one identified by 

this screen? Examining the fluorescence data of Fig. 3.10, reveals that if all targets had 

been exclusively expressed in the cell line Rosetta(DE3)pLysS grown in SB medium at 
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25 °C, only four of the identified promising targets would have been found. However 

PgpB, one of the targets that yield diffracting crystals, would possibly not have been 

identified as promising target. PgpB is expressed in the above condition at a level nearly 

five-fold lower than in the determined optimal condition. Therefore, the screening of 

expression conditions proved to be a valuable tool to overcome the first bottleneck of 

membrane protein structural biology. 

In contrast to the required screening for protein expression, a more restricted approach 

in the purification of membrane proteins is preferable. The chances are quite high that 

some of the tested targets will be stable in solution when solubilised with DDM. Once 

the promising targets are in crystallisation trials, the nucleation of protein crystals and 

crystal growth can require times from days to weeks or even months and the work on 

the remaining targets can continue in the meantime. Therefore the aim of the 

purification pipeline employed, was to find the targets that can be purified to 

monodispersity and submit these targets to crystallisation trials as fast as possible. Work 

on targets that precipitated heavily or completely in one of the purification steps, 

especially the TEVP cleavage, was halted until all targets were tested.  

Two targets, PgpB and Lgt were monodisperse in solution with DDM, following the 

final size exclusion chromatography. PgpB was submitted to crystallisation trials. The 

protein yield of Lgt was too low to set up crystallisation trials. Lgt did not precipitate 

throughout the entire purification, therefore optimising the expression yield is required. 

The parameters of the small-scale HTP screen should be altered to find better 

expression conditions for Lgt.  

On-column detergent exchange was successful for the three targets XylH, ChbC and 

YdhC, and their monodisperse samples were submitted to crystallisation trials. One of 

those targets, XylH, crystallised. Work focussed then on the two targets PgpB and XylH 

that had crystallised and their purification protocol was optimised. Protein yields for 

XylH could, for example, be doubled through the use of desalting columns instead of 

dialysis tubing. Finally, diffracting crystals of the two membrane proteins PgpB and 

XylH were obtained, showing that it is possible to find promising targets with HTP 

methods and with the restriction on certain parameters. At the time of writing, PgpB 

crystals were reproduced and optimised, leading to higher resolution (in-house).  
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The accumulated data from expression and purification can be analysed for trends. 

Table 6.1 shows next to the molecular weight, number of transmembrane domain 

helices and the rank in medium-scale expression, the purification status reached for each 

target. Furthermore, the purification steps, in which precipitation was observed are 

listed together with the detergents used and the suggested future strategy for each target.  

 

 MW 

(kDa) 

TMD 

H 

Expr. 

rank. 

Purification 

step 

Precip. Detergent Future strategy 

Unstable targets      

XylE 53.4 12 1 Cleavage A/D/C DDM Detergent screening 

CcmC 27.7 6 3 2nd  column D/C DDM Detergent screening 

FtsX 38.4 4 11 Cleavage C DDM Detergent screening 

YdeD 32.1 10 12 1st  column A  DDM Detergent screening 

YhbE 34.8  10 9 1st  column A  DDM Detergent screening 

       

Stable targets       

CodB 43.5 12 5 2nd column D/C DDM Optimise purification 

PnuC 27.0 6 7 Cleavage D/C DDM Optimise purification 

      

Promising targets      

Lgt 33.0 5 8 Gel filtration None DDM Increase yield 

XylH 41.0 10 10 Gel filtration C  DDM/FC-14 Crystals 

ChbC 48.2 10 6 Gel filtration C DDM/Cymal-5 Crystall. screens 

PgpB 28.8 6 2 Gel filtration D/C DDM Crystals 

YdhC 43.2 12 4 Gel filtration D/C DDM/FC-14 Crystall. screens 

Table 6.1: Comparison of target properties with expression and purification performance. The targets are 
grouped according to their stability in DDM in solution. TMDH: transmembrane domain helices; Ranking 
when expressed in medium-scale cultures; Purification step reached in purification pipeline; Precipitation: 
A = affinity column, D = dialysis, C = cleavage; The future strategy describes the steps for each target in 
order to increase stability in solution, purification to monodispersity, crystallisation trials or the 
optimisation of crystals. 

 

The identification of trends in relation to physical properties, such as size or the number 

of transmembrane helices, to the expression and purification behaviour, would be useful 

to refine the selection criteria for target proteins. However, the ranking as promising or 

unstable target shows no trends with the different molecular weights or the number of 

transmembrane domain helices. The group of promising targets has nearly the same size 

distribution as the group of unstable targets and with PgpB the second smallest and with 

XylH the third largest target crystallised. In addition, no correlation was observed with 
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the physical properties of the membrane proteins and their ranking in the medium-scale 

expression. Therefore, the expression and purification behaviour in the group of tested 

targets, is entirely target specific and needs to be screened and optimised. This is in 

accordance with the findings of structural genomics projects as discussed in the 

previous Chapters.  

The accumulated data on the targets gives a good base for future work. After the work 

on the most promising targets is completed, or if time allows in between, the targets in 

the purification pipeline are examined in the order from its end back to the beginning. 

Starting with the targets that did not crystallise, despite being purified to 

monodispersity, more detergents should be screened with on-column detergent 

exchange.  The stable targets in DDM of Table 6.1, CodB and PnuC, would require the 

optimisation of the purification protocol to reduce precipitation. The group of 

membrane proteins, which were found to be unstable when solubilised with DDM, 

should be screened for a better solubilisation detergent for purification. However, the 

targets YdeD and YhbE show very low expression levels and a new run of the small-

scale expression screen with different conditions would be required.  
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Chapter 7 

Appendix 
 

7.1 DNA and protein sequences 

7.1.1 CcmC 
 

7.1.1.1 DNA sequence 
 

ATGTGGAAAACACTGCATCAACTGGCGATCCCACCACGGCTGTATCAAATCTGTGGCTGGTT

TATACCGTGGCTGGCAATTGCCAGTGTGGTCGTGCTTACCGTCGGCTGGATCTGGGGATTCG

GCTTTGCTCCGGCTGATTATCAGCAGGGAAATAGCTACCGCATTATCTACCTGCATGTGCCT

GCGGCGATCTGGTCGATGGGCATTTATGCATCAATGGCAGTGGCAGCGTTTATTGGCCTTGT

CTGGCAGATGAAAATGGCCAACCTGGCGGTGGCGGCGATGGCCCCCATTGGTGCCGTGTTTA

CCTTTATTGCCCTGGTTACCGGCTCTGCATGGGGAAAACCGATGTGGGGCACCTGGTGGGTA

TGGGATGCACGTCTGACTTCTGAACTGGTGCTGCTGTTTTTGTATGTGGGTGTGATTGCCCTG

TGGCACGCCTTCGACGACCGCCGTCTGGCGGGCCGTGCGGCAGGTATCCTGGTGCTGATTGG

CGTGGTGAATCTGCCGATTATTCATTACTCCGTGGAGTGGTGGAACACCCTGCATCAGGGAT

CAACGCGGATGCAGCAAAGTATCGATCCGGCGATGCGTTCGCCGCTGCGCTGGTCGATTTTT

GGCTTCCTGCTCCTGTCTGCCACGCTGACGCTGATGCGGATGCGTAATTTGATTTTGCTGATG

GAAAAACGCCGTCCGTGGGTGAGTGAACTGATACTGAAAAGAGGCCGTAAATGA 

7.1.1.2 Protein sequence 

 

MWKTLHQLAIPPRLYQICGWFIPWLAIASVVVLTVGWIWGFGFAPADYQQGNSYRIIYLHVPAAI

WSMGIYASMAVAAFIGLVWQMKMANLAVAAMAPIGAVFTFIALVTGSAWGKPMWGTWWVW

DARLTSELVLLFLYVGVIALWHAFDDRRLAGRAAGILVLIGVVNLPIIHYSVEWWNTLHQGSTR

MQQSIDPAMRSPLRWSIFGFLLLSATLTLMRMRNLILLMEKRRPWVSELILKRGRK 
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7.1.2 CodB 

7.1.2.1 DNA sequence 

 

ATGTCGCAAGATAACAACTTTAGCCAGGGGCCAGTCCCGCAGTCGGCGCGGAAAGGGGTAT

TGGCATTGACGTTCGTCATGCTGGGATTAACCTTCTTTTCCGCCAGTATGTGGACCGGCGGCA

CTCTCGGAACCGGTCTTAGCTATCATGATTTCTTCCTCGCAGTTCTCATCGGTAATCTTCTCCT

CGGTATTTACACTTCATTTCTCGGTTACATTGGCGCAAAAACCGGCCTGACCACTCATCTTCT

TGCTCGCTTCTCGTTTGGTGTTAAAGGCTCATGGCTGCCTTCACTGCTACTGGGCGGAACTCA

GGTTGGCTGGTTTGGCGTCGGTGTGGCGATGTTTGCCATTCCGGTGGGTAAGGCAACCGGGC

TGGATATTAATTTGCTGATTGCCGTTTCCGGTTTACTGATGACCGTCACCGTCTTTTTTGGCAT

TTCGGCGCTGACGGTTCTTTCGGTGATTGCGGTTCCGGCTATCGCCTGCCTGGGCGGTTATTC

CGTGTGGCTGGCTGTTAACGGCATGGGCGGCCTGGACGCATTAAAAGCGGTCGTTCCCGCAC

AACCGTTAGATTTCAATGTCGCGCTGGCGCTGGTTGTGGGGTCATTTATCAGTGCGGGTACG

CTCACCGCTGACTTTGTCCGGTTTGGTCGCAATGCCAAACTGGCGGTGCTGGTGGCGATGGT

GGCCTTTTTCCTCGGCAACTCGTTGATGTTTATTTTCGGTGCAGCGGGCGCTGCGGCACTGGG

CATGGCGGATATCTCTGATGTGATGATTGCTCAGGGCCTGCTGCTGCCTGCGATTGTGGTGCT

GGGGCTGAATATCTGGACCACCAACGATAACGCACTCTATGCGTCGGGTTTAGGTTTCGCCA

ACATTACCGGGATGTCGAGCAAAACCCTTTCGGTAATCAACGGTATTATCGGTACGGTCTGC

GCATTATGGCTGTATAACAATTTTGTCGGCTGGTTGACCTTCCTTTCGGCAGCTATTCCTCCA

GTGGGTGGCGTGATCATCGCCGACTATCTGATGAACCGTCGCCGCTATGAGCACTTTGCGAC

CACGCGTATGATGAGTGTCAATTGGGTGGCGATTCTGGCGGTCGCCTTGGGGATTGCTGCAG

GCCACTGGTTACCGGGAATTGTTCCGGTCAACGCGGTATTAGGTGGCGCGCTGAGCTATCTG

ATCCTTAACCCGATTTTGAATCGTAAAACGACAGCAGCAATGACGCATGTGGAGGCTAACA

GTGTCGAATAA 

 

7.1.2.2 Protein Sequence  
 

MSQDNNFSQGPVPQSARKGVLALTFVMLGLTFFSASMWTGGTLGTGLSYHDFFLAVLIGNLLLG

IYTSFLGYIGAKTGLTTHLLARFSFGVKGSWLPSLLLGGTQVGWFGVGVAMFAIPVGKATGLDIN

LLIAVSGLLMTVTVFFGISALTVLSVIAVPAIACLGGYSVWLAVNGMGGLDALKAVVPAQPLDF

NVALALVVGSFISAGTLTADFVRFGRNAKLAVLVAMVAFFLGNSLMFIFGAAGAAALGMADISD

VMIAQGLLLPAIVVLGLNIWTTNDNALYASGLGFANITGMSSKTLSVINGIIGTVCALWLYNNFV

GWLTFLSAAIPPVGGVIIADYLMNRRRYEHFATTRMMSVNWVAILAVALGIAAGHWLPGIVPVN

AVLGGALSYLILNPILNRKTTAAMTHVEANSVE 
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7.1.3 FtsX 

7.1.3.1 DNA sequence 

 

ATGAATAAGCGCGATGCAATCAATCATATTCGGCAGTTTGGCGGGCGTCTTGATCGCTTCCG

TAAATCGGTCGGCGGCTCAGGCGACGGCGGTCGTAACGCACCAAAACGCGCGAAATCCTCG

CCAAAACCGGTAAATCGCAAAACCAACGTTTTCAACGAACAGGTGCGCTATGCCTTCCACGG

CGCATTGCAGGATCTGAAAAGCAAACCGTTCGCCACGTTTTTAACGGTGATGGTTATCGCCA

TTTCTCTGACGCTGCCCAGCGTCTGTTATATGGTGTACAAAAACGTTAACCAGGCGGCGACG

CAGTATTATCCGTCACCGCAAATCACTGTTTATCTGCAAAAAACGCTGGACGATGACGCTGC

TGCGGGCGTGGTGGCACAGTTGCAGGCCGAGCAAGGCGTGGAGAAAGTGAACTATCTTTCT

CGTGAAGACGCACTGGGTGAGTTCCGTAACTGGTCTGGTTTTGGTGGTGCGCTGGATATGCT

GGAAGAAAACCCGCTTCCGGCAGTGGCGGTGGTGATCCCGAAACTCGATTTCCAGGGGACG

GAATCACTGAATACGCTGCGTGATCGTATCACGCAGATTAACGGCATTGACGAAGTGCGGAT

GGATGACAGCTGGTTTGCCCGTCTGGCGGCGTTGACCGGGCTGGTCGGGCGCGTTTCGGCGA

TGATCGGCGTGTTGATGGTGGCGGCCGTGTTCCTCGTCATCGGTAACAGTGTGCGTCTGAGT

ATCTTTGCTCGCCGTGACTCCATTAACGTACAGAAACTGATTGGTGCGACAGATGGATTCAT

CCTGCGCCCGTTCCTGTATGGTGGCGCACTGCTGGGATTTTCTGGCGCATTGTTGTCATTAAT

TTTGTCAGAAATTCTGGTGCTGCGATTGTCATCGGCGGTTGCGGAAGTGGCACAGGTTTTCG

GAACGAAGTTTGATATCAATGGCTTATCATTCGATGAATGCCTGCTATTGCTGCTGGTATGCT

CGATGATTGGCTGGGTGGCAGCGTGGCTTGCCACGGTACAACATTTACGCCACTTTACGCCT

GAATAACTGGATCCGAAAACCTGTACTTCCAGGGTCAATTCAGCAAAGGAGAAGAACTTTTC

ACTGGAGTGGTCCCAGTTCTTGTTGAATTAGATGGCGATGTTAATGGGCAAAAATTCTCTGT

CAGTGGAGAGGGTGAAGGTGATGCAACATACGGAAAACTTACCCTTAATTTTATTTGCACTA

CTGGGAAGCTACCTGTTCCATGGCCAACACTTGTCACTACTTTCTCTTATGGTGTTCAATGCT

TCTCAAGATACCCAGATCATATGAAACAGCATGACTTTTTCAAGAGTGCCATGCCCGAAGGT

TATGTACAGGAAAGAACTATATTTTACAAAGATGACGGGAACTACAAGACACGTGCTGAAG

TCAAGTTTGAAGGTGATACCCTTGTTAATAGAATCGAGTTAAAAGGTATTGATTTTAAAGAA

GATGGAAACATTCTTGGACACAAAATGGAATACAACTATAACTCACATAATGTATACATCAT

GGGAGACAAACCAAAGAATGGCATCAAAGTTAACTTCAAAATTAGACACAACATTAAAGAT

GGAAGCGTTCAATTAGCAGACCATTATCAACAAAATACTCCAATTGGCGATGGCCCTGTCCT

TTTACCAGACAACCATTACCTGTCCACACAATCTGCCCTTTCCAAAGATCCCAACGAAAAGA

GAGATCACATGATCCTTCTTGAGTTTGTAACAGCTGCTAGGATTACACATGGCATGGATGAG

CTCTACAAAAAGCTTGCGGCCCATCATCATCACCACCACCACCACTGA 
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7.1.3.2 Protein sequence 
 

MNKRDAINHIRQFGGRLDRFRKSVGGSGDGGRNAPKRAKSSPKPVNRKTNVFNEQVRYAFHGA

LQDLKSKPFATFLTVMVIAISLTLPSVCYMVYKNVNQAATQYYPSPQITVYLQKTLDDDAAAGV

VAQLQAEQGVEKVNYLSREDALGEFRNWSGFGGALDMLEENPLPAVAVVIPKLDFQGTESLNT

LRDRITQINGIDEVRMDDSWFARLAALTGLVGRVSAMIGVLMVAAVFLVIGNSVRLSIFARRDSI

NVQKLIGATDGFILRPFLYGGALLGFSGALLSLILSEILVLRLSSAVAEVAQVFGTKFDINGLSFDE

CLLLLLVCSMIGWVAAWLATVQHLRHFTPE 

 

 

7.1.4 Lgt 

7.1.4.1 DNA sequence 

 

ATGACCAGTAGCTATCTGCATTTTCCGGAGTTTGATCCGGTCATTTTCTCAATAGGACCCGTG

GCGCTTCACTGGTACGGCCTGATGTATCTGGTGGGTTTCATTTTTGCAATGTGGCTGGCAACA

CGACGGGCGAATCGTCCGGGCAGCGGCTGGACCAAAAATGAAGTTGAAAACTTACTCTATG

CGGGCTTCCTCGGCGTCTTCCTCGGGGGACGTATTGGTTATGTTCTGTTCTACAATTTCCCGC

AGTTTATGGCCGATCCGCTGTATCTGTTCCGTGTCTGGGACGGCGGCATGTCTTTCCACGGCG

GCCTGATTGGCGTTATCGTGGTGATGATTATCTTCGCCCGCCGTACTAAACGTTCCTTCTTCC

AGGTCTCTGATTTTATCGCACCACTCATTCCGTTTGGTCTTGGTGCCGGGCGTCTGGGCAACT

TTATTAACGGTGAATTGTGGGGCCGCGTTGACCCGAACTTCCCGTTTGCCATGCTGTTCCCTG

GCTCCCGTACAGAAGATATTTTGCTGCTGCAAACCAACCCGCAGTGGCAATCCATTTTCGAC

ACTTACGGTGTGCTGCCGCGCCACCCATCACAGCTTTACGAGCTGCTGCTGGAAGGTGTGGT

GCTGTTTATTATCCTCAACCTGTATATTCGTAAACCACGCCCAATGGGAGCTGTCTCAGGTTT

GTTCCTGATTGGTTACGGCGCGTTTCGCATCATTGTTGAGTTTTTCCGCCAGCCCGACGCGCA

GTTTACCGGTGCCTGGGTGCAGTACATCAGCATGGGGCAAATTCTTTCCATCCCGATGATTG

TCGCGGGTGTGATCATGATGGTCTGGGCATATCGTCGCAGCCCACAGCAACACGTTTCCTGA 

 

7.1.4.2 Protein sequence 

 

MTSSYLHFPEFDPVIFSIGPVALHWYGLMYLVGFIFAMWLATRRANRPGSGWTKNEVENLLYAG

FLGVFLGGRIGYVLFYNFPQFMADPLYLFRVWDGGMSFHGGLIGVIVVMIIFARRTKRSFFQVSD

FIAPLIPFGLGAGRLGNFINGELWGRVDPNFPFAMLFPGSRTEDILLLQTNPQWQSIFDTYGVLPR

HPSQLYELLLEGVVLFIILNLYIRKPRPMGAVSGLFLIGYGAFRIIVEFFRQPDAQFTGAWVQYISM

GQILSIPMIVAGVIMMVWAYRRSPQQHVS 
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7.1.5 PnuC 

7.1.5.1 DNA sequence 

 

ATGGATTTTTTTAGTGTGCAGAATATCCTGGTACATATACCAATAGGGGCAGGCGGTTATGA

TCTCTCATGGATCGAAGCGGTAGGCACGATCGCCGGGTTGCTGTGTATTGGCCTTGCCAGTC

TGGAGAAGATCAGCAACTACTTCTTTGGCCTGATCAACGTCACCTTGTTTGGCATTATTTTCT

TTCAGATTCAGCTGTATGCCAGCCTGCTATTACAGGTGTTTTTCTTTGCCGCGAATATTTACG

GTTGGTATGCGTGGTCGCGACAAACCAGTCAGAACGAGGCGGAGTTGAAAATTCGCTGGTT

GCCATTGCCGAAGGCACTCAGCTGGTTGGCGGTTTGCGTTGTTTCGATTGGTCTGATGACGG

TATTTATCAATCCGGTGTTTGCATTTTTGACCCGCGTGGCAGTCATGATCATGCAAGCATTAG

GATTACAGGTTGTGATGCCTGAACTGCAACCGGACGCTTTCCCGTTCTGGGATTCATGCATG

ATGGTGTTATCTATCGTGGCAATGATTCTGATGACGCGTAAGTATGTGGAAAACTGGCTGTT

GTGGGTGATTATTAACGTGATTAGCGTCGTTATTTTTGCACTTCAGGGCGTTTACGCCATGTC

TCTGGAGTACATCATCCTGACCTTTATTGCGCTCAACGGCAGCCGGATGTGGATCAACAGCG

CACGTGAAAGAGGCTCACGCGCGCTGTCCCATTAA 

 

7.1.5.2 DNA sequence 

 

MDFFSVQNILVHIPIGAGGYDLSWIEAVGTIAGLLCIGLASLEKISNYFFGLINVTLFGIIFFQIQLYA

SLLLQVFFFAANIYGWYAWSRQTSQNEAELKIRWLPLPKALSWLAVCVVSIGLMTVFINPVFAFL

TRVAVMIMQALGLQVVMPELQPDAFPFWDSCMMVLSIVAMILMTRKYVENWLLWVIINVISVV

IFALQGVYAMSLEYIILTFIALNGSRMWINSARERGSRALSH 
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7.1.6 XylE 

7.1.6.1 DNA sequence 

 

ATGAATACCCAGTATAATTCCAGTTATATATTTTCGATTACCTTAGTCGCTACATTAGGTGGT

TTATTATTTGGCTACGACACCGCCGTTATTTCCGGTACTGTTGAGTCACTCAATACCGTCTTT

GTTGCTCCACAAAACTTAAGTGAATCCGCTGCCAACTCCCTGTTAGGGTTTTGCGTGGCCAG

CGCTCTGATTGGTTGCATCATCGGCGGTGCCCTCGGTGGTTATTGCAGTAACCGCTTCGGTCG

TCGTGATTCACTTAAGATTGCTGCTGTCCTGTTTTTTATTTCTGGTGTAGGTTCTGCCTGGCCA

GAACTTGGTTTTACCTCTATAAACCCGGACAACACTGTGCCTGTTTATCTGGCAGGTTATGTC

CCGGAATTTGTTATTTATCGCATTATTGGCGGTATTGGCGTTGGTTTAGCCTCAATGCTCTCG

CCAATGTATATTGCGGAACTGGCTCCAGCTCATATTCGCGGGAAACTGGTCTCTTTTAACCA

GTTTGCGATTATTTTCGGGCAACTTTTAGTTTACTGCGTAAACTATTTTATTGCCCGTTCCGGT

GATGCCAGCTGGCTGAATACTGACGGCTGGCGTTATATGTTTGCCTCGGAATGTATCCCTGC

ACTGCTGTTCTTAATGCTGCTGTATACCGTGCCAGAAAGTCCTCGCTGGCTGATGTCGCGCG

GCAAGCAAGAACAGGCGGAAGGTATCCTGCGCAAAATTATGGGCAACACGCTTGCAACTCA

GGCAGTACAGGAAATTAAACACTCCCTGGATCATGGCCGCAAAACCGGTGGTCGTCTGCTG

ATGTTTGGCGTGGGCGTGATTGTAATCGGCGTAATGCTCTCCATCTTCCAGCAATTTGTCGGC

ATCAATGTGGTGCTGTACTACGCGCCGGAAGTGTTCAAAACGCTGGGGGCCAGCACGGATA

TCGCGCTGTTGCAGACCATTATTGTCGGAGTTATCAACCTCACCTTCACCGTTCTGGCAATTA 

TGACGGTGGATAAATTTGGTCGTAAGCCACTGCAAATTATCGGCGCACTCGGAATGGCAATC

GGTATGTTTAGCCTCGGTACCGCGTTTTACACTCAGGCACCGGGTATTGTGGCGCTACTGTCG

ATGCTGTTCTATGTTGCCGCCTTTGCCATGTCCTGGGGTCCGGTATGCTGGGTACTGCTGTCG

GAAATCTTCCCGAATGCTATTCGTGGTAAAGCGCTGGCAATCGCGGTGGCGGCCCAGTGGCT

GGCGAACTACTTCGTCTCCTGGACCTTCCCGATGATGGACAAAAACTCCTGGCTGGTGGCCC

ATTTCCACAACGGTTTCTCCTACTGGATTTACGGTTGTATGGGCGTTCTGGCAGCACTGTTTA

TGTGGAAATTTGTCCCGGAAACCAAAGGTAAAACCCTTGAGGAGCTGGAAGCGCTCTGGGA

ACCGGAAACGAAGAAAACACAACAAACTGCTACGCTGTAA 

 

7.1.6.2 Protein sequence 

 

MNTQYNSSYIFSITLVATLGGLLFGYDTAVISGTVESLNTVFVAPQNLSESAANSLLGFCVASALI

GCIIGGALGGYCSNRFGRRDSLKIAAVLFFISGVGSAWPELGFTSINPDNTVPVYLAGYVPEFVIY

RIIGGIGVGLASMLSPMYIAELAPAHIRGKLVSFNQFAIIFGQLLVYCVNYFIARSGDASWLNTDG

WRYMFASECIPALLFLMLLYTVPESPRWLMSRGKQEQAEGILRKIMGNTLATQAVQEIKHSLDH

GRKTGGRLLMFGVGVIVIGVMLSIFQQFVGINVVLYYAPEVFKTLGASTDIALLQTIIVGVINLTFT

VLAIMTVDKFGRKPLQIIGALGMAIGMFSLGTAFYTQAPGIVALLSMLFYVAAFAMSWGPVCWV

LLSEIFPNAIRGKALAIAVAAQWLANYFVSWTFPMMDKNSWLVAHFHNGFSYWIYGCMGVLAA

LFMWKFVPETKGKTLEELEALWEPETKKTQQTATL 
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7.1.7 XylH 

7.1.7.1 DNA sequence 

 

ATGTCGAAAAGCAATCCGTCTGAAGTGAAATTGGCCGTACCGACATCCGGTGGCTTCTCCGG

GCTGAAATCACTGAATTTGCAGGTCTTCGTGATGATTGCAGCTATCATCGCAATCATGCTGTT

CTTTACCTGGACCACCGATGGTGCCTACTTAAGCGCCCGTAACGTCTCCAACCTGTTACGCC

AGACCGCGATTACCGGCATCCTCGCGGTAGGAATGGTGTTCGTCATAATTTCTGCTGAAATC

GACCTTTCCGTCGGCTCAATGATGGGGCTGTTAGGTGGCGTCGCGGCGATTTGTGACGTCTG

GTTAGGCTGGCCTTTGCCACTTACCATCATTGTGACGCTGGTTCTGGGACTGCTTCTCGGTGC

CTGGAACGGATGGTGGGTCGCGTACCGTAAAGTCCCTTCATTTATTGTCACCCTCGCGGGCA

TGTTGGCATTTCGCGGCATACTCATTGGCATCACCAACGGCACGACTGTATCCCCCACCAGC

GCCGCGATGTCACAAATTGGGCAAAGCTATCTCCCCGCCAGTACCGGCTTCATCATTGGCGC

GCTTGGCTTAATGGCTTTTGTTGGTTGGCAATGGCGCGGAAGAATGCGCCGTCAGGCTTTGG

GTTTACAGTCTCCGGCCTCTACCGCAGTAGTCGGTCGCCAGGCTTTAACCGCTATCATCGTAT

TAGGCGCAATCTGGCTGTTGAATGATTACCGTGGCGTTCCCACTCCTGTTCTGCTGCTGACGT

TGCTGTTACTCGGCGGAATGTTTATGGCAACGCGGACGGCATTTGGACGACGCATTTATGCC

ATCGGCGGCAATCTGGAAGCAGCACGTCTCTCCGGGATTAACGTTGAACGCACCAAACTTGC

CGTGTTCGCGATTAACGGATTAATGGTAGCCATCGCCGGATTAATCCTTAGTTCTCGACTTGG

CGCTGGTTCACCTTCTGCGGGAAATATCGCCGAACTGGACGCAATTGCAGCATGCGTGATTG

GCGGCACCAGCCTGGCTGGCGGTGTGGGAAGCGTTGCCGGAGCAGTAATGGGGGCATTTAT

CATGGCTTCACTGGATAACGGCATGAGTATGATGGATGTACCGACCTTCTGGCAGTATATCG

TTAAAGGTGCGATTCTGTTGCTGGCAGTATGGATGGACTCCGCAACCAAACGCCGTTCTTGA 

 

7.1.7.2 Protein sequence 

 

MSKSNPSEVKLAVPTSGGFSGLKSLNLQVFVMIAAIIAIMLFFTWTTDGAYLSARNVSNLLRQTAI

TGILAVGMVFVIISAEIDLSVGSMMGLLGGVAAICDVWLGWPLPLTIIVTLVLGLLLGAWNGWW

VAYRKVPSFIVTLAGMLAFRGILIGITNGTTVSPTSAAMSQIGQSYLPASTGFIIGALGLMAFVGW

QWRGRMRRQALGLQSPASTAVVGRQALTAIIVLGAIWLLNDYRGVPTPVLLLTLLLLGGMFMA

TRTAFGRRIYAIGGNLEAARLSGINVERTKLAVFAINGLMVAIAGLILSSRLGAGSPSAGNIAELD

AIAACVIGGTSLAGGVGSVAGAVMGAFIMASLDNGMSMMDVPTFWQYIVKGAILLLAVWMDS

ATKRRS 
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7.1.8 YdeD 

7.1.8.1 DNA sequence 

 

ATGTCGCGAAAAGATGGGGTGTTGGCGCTACTGGTAGTGGTCGTATGGGGGCTAAATTTTGT

GGTCATCAAAGTGGGGCTTCATAACATGCCACCGCTGATGCTGGCCGGTTTGCGCTTTATGC

TGGTCGCTTTTCCGGCTATCTTTTTTGTCGCACGACCGAAAGTACCACTGAATTTGCTGCTGG

GGTATGGATTAACCATCAGTTTTGCGCAGTTTGCTTTTCTTTTTTGTGCCATTAACTTCGGTAT

GCCTGCTGGACTGGCTTCGCTGGTGTTACAGGCACAGGCGTTTTTTACTATCATGCTTGGCGC

GTTTACTTTCGGGGAGCGACTGCATGGCAAACAATTGGCGGGGATCGCCTTAGCGATTTTTG

GCGTACTGGTGTTAATCGAAGATAGTCTGAACGGTCAGCATGTGGCGATGCTCGGCTTTATG

TTGACCCTGGCGGCAGCATTTAGTTGGGCGTGTGGCAACATCTTCAATAAAAAGATCATGTC 

GCACTCAACGCGTCCGGCGGTGATGTCGCTGGTAATCTGGAGCGCTTTAATCCCAATCATTC

CCTTCTTTGTTGCCTCGCTGATTCTCGATGGTTCCGCAACCATGATTCACAGTCTGGTTACTA

TCGATATGACCACCATCTTGTCTCTGATGTATCTGGCGTTTGTGGCGACAATTGTTGGTTATG

GGATCTGGGGGACGTTACTGGGACGCTATGAAACCTGGCGGGTTGCACCGTTATCGTTACTG

GTGCCCGTAGTAGGACTGGCAAGTGCGGCACTATTGTTGGATGAACGCTTAACGGGTCTGCA

ATTTTTAGGTGCGGTGCTCATTATGACCGGGCTGTATATCAATGTATTTGGCTTGCGGTGGCG

TAAAGCGGTAAAGGTGGGAAGTTAA 

 

7.1.8.2 Protein sequence 

 

MSRKDGVLALLVVVVWGLNFVVIKVGLHNMPPLMLAGLRFMLVAFPAIFFVARPKVPLNLLLG

YGLTISFAQFAFLFCAINFGMPAGLASLVLQAQAFFTIMLGAFTFGERLHGKQLAGIALAIFGVLV

LIEDSLNGQHVAMLGFMLTLAAAFSWACGNIFNKKIMSHSTRPAVMSLVIWSALIPIIPFFVASLIL

DGSATMIHSLVTIDMTTILSLMYLAFVATIVGYGIWGTLLGRYETWRVAPLSLLVPVVGLASAAL

LLDERLTGLQFLGAVLIMTGLYINVFGLRWRKAVKVGS 
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7.1.9 ChbC 

7.1.9.1 DNA sequence 

 

ATGAGTAATGTTATTGCATCGCTTGAAAAGGTACTCCTCCCTTTTGCAGTTAAAATAGGAAA

GCAGCCACACGTTAATGCAATCAAAAATGGCTTTATTCGCTTAATGCCGTTAACCCTTGCGG

GGGCCATGTTTGTATTAATTAACAACGTTTTTCTAAGCTTTGGGGAGGGGTCGTTTTTTTATT

CCTTAGGTATTCGCCTCGACGCCTCAACCATTGAAACACTTAATGGTCTGAAAGGTATTGGC

GGCAACGTATATAACGGAACATTAGGAATAATGTCTTTAATGGCACCGTTCTTTATTGGCAT

GGCGCTGGCAGAAGAGCGTAAAGTCGATGCGCTGGCGGCTGGGTTGTTATCCGTTGCAGCAT

TTATGACCGTCACCCCATATAGTGTCGGTGAGGCCTATGCGGTTGGTGCAAACTGGTTAGGT

GGGGCGAATATCATCTCCGGGATTATTATTGGCCTGGTGGTGGCAGAAATGTTTACCTTTATT

GTCCGCCGCAATTGGGTCATTAAACTGCCCGACAGCGTACCTGCTTCAGTATCGCGTTCCTTC

TCGGCATTAATTCCCGGCTTTATTATTCTTTCCGTGATGGGGATTATTGCCTGGGCGTTGAAT

ACCTGGGGCACCAACTTCCATCAGATCATTATGGATACCATCTCAACCCCACTGGCATCGTT

GGGTAGCGTGGTGGGCTGGGCCTATGTGATCTTTGTTCCACTGCTCTGGTTCTTCGGTATTCA

TGGCGCGCTGGCGCTGACCGCACTGGACAACGGCATTATGACGCCGTGGGCACTGGAAAAT

ATCGCGACCTATCAGCAATATGGTTCCGTCGAAGCGGCGCTGGCAGCCGGTAAGACCTTCCA

TATCTGGGCCAAGCCGATGCTGGACTCCTTTATTTTCCTTGGGGGCAGTGGTGCGACTTTAGG

CCTGATCCTGGCTATCTTTATCGCCTCTCGCCGTGCTGATTATCGTCAGGTGGCAAAACTGGC

GCTGCCGTCCGGCATCTTCCAGATTAACGAACCGATTCTGTTTGGTCTGCCAATTATCATGAA

CCCGGTGATGTTTATCCCGTTTGTACTGGTACAACCGATTCTGGCGGCAATCACCCTCGCAGC

GTACTACATGGGCATTATTCCTCCGGTGACCAATATTGCACCGTGGACCATGCCAACCGGTC

TGGGAGCCTTCTTTAACACCAACGGTAGCGTCGCCGCATTGCTGGTCGCACTCTTCAACCTTG

GCATCGCAACGTTAATTTATCTGCCCTTTGTTGTGGTGGCTAACAAAGCACAAAATGCGATT

GATAAAGAAGAGAGCGAAGAAGATATCGCTAACGCCCTGAAATTTTAA 

 

7.1.9.2 Protein sequence 

 

MSNVIASLEKVLLPFAVKIGKQPHVNAIKNGFIRLMPLTLAGAMFVLINNVFLSFGEGSFFYSLGI

RLDASTIETLNGLKGIGGNVYNGTLGIMSLMAPFFIGMALAEERKVDALAAGLLSVAAFMTVTP

YSVGEAYAVGANWLGGANIISGIIIGLVVAEMFTFIVRRNWVIKLPDSVPASVSRSFSALIPGFIILS

VMGIIAWALNTWGTNFHQIIMDTISTPLASLGSVVGWAYVIFVPLLWFFGIHGALALTALDNGIM

TPWALENIATYQQYGSVEAALAAGKTFHIWAKPMLDSFIFLGGSGATLGLILAIFIASRRADYRQ

VAKLALPSGIFQINEPILFGLPIIMNPVMFIPFVLVQPILAAITLAAYYMGIIPPVTNIAPWTMPTGLG

AFFNTNGSVAALLVALFNLGIATLIYLPFVVVANKAQNAIDKEESEEDIANALKF 
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7.1.10 PgpB 

7.1.10.1 DNA sequence 

 

ATGCGTTCGATTGCCAGACGTACCGCAGTGGGAGCTGCACTATTGCTTGTCATGCCAGTAGC

CGTATGGATTTCTGGCTGGCGTTGGCAACCTGGAGAACAAAGTTGGCTACTAAAAGCGGCTT

TTTGGGTTACTGAAACTGTCACCCAGCCCTGGGGCGTCATTACACATTTGATTTTATTCGGCT

GGTTTCTCTGGTGTCTGCGTTTTCGCATTAAGGCTGCCTTTGTATTATTTGCCATTCTGGCGGC

CGCAATCCTTGTGGGACAAGGCGTTAAATCCTGGATCAAAGACAAAGTCCAGGAACCACGA

CCTTTTGTTATCTGGCTGGAAAAAACACATCATATTCCGGTTGATGAGTTCTACACTTTAAAG

CGAGCAGAACGCGGAAATCTAGTGAAAGAACAGTTGGCTGAAGAGAAAAATATCCCACAAT

ATTTGCGTTCACACTGGCAGAAAGAGACGGGGTTTGCCTTTCCTTCCGGTCACACGATGTTT

GCTGCCAGTTGGGCACTGCTGGCCGTTGGTTTGCTGTGGCCGCGTCGGCGAACGTTAACCAT

TGCTATCTTGCTGGTCTGGGCAACGGGAGTCATGGGAAGCCGCCTGCTGCTCGGGATGCATT

GGCCACGCGATCTGGTAGTAGCTACGTTGATTTCGTGGGCGCTGGTGGCGGTGGCAACGTGG

CTTGCGCAACGAATTTGTGGGCCATTAACACCACCTGCGGAAGAAAATCGCGAAATAGCGC

AACGAGAACAAGAAAGTTAA 

 

7.1.10.2 Protein sequence 

 

MRSIARRTAVGAALLLVMPVAVWISGWRWQPGEQSWLLKAAFWVTETVTQPWGVITHLILFG

WFLWCLRFRIKAAFVLFAILAAAILVGQGVKSWIKDKVQEPRPFVIWLEKTHHIPVDEFYTLKRA

ERGNLVKEQLAEEKNIPQYLRSHWQKETGFAFPSGHTMFAASWALLAVGLLWPRRRTLTIAILL

VWATGVMGSRLLLGMHWPRDLVVATLISWALVAVATWLAQRICGPLTPPAEENREIAQREQES 
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7.1.11 YhbE 

7.1.11.1 DNA sequence 

 

ATGAAGCAGCAGGCAGGCATTGGCATTCTTTTGGCGCTCACCACAGCAATTTGCTGGGGGGC

GTTGCCAATCGCAATGAAGCAGGTGCTGGAGGTGATGGAACCTCCGACAATCGTGTTTTACC

GTTTCTTGATGGCGAGTATTGGCCTGGGTGCCATTCTTGCGGTGAAGAAGAGGTTGCCGCCA

TTACGCGTGTTTCGTAAGCCACGCTGGTTGATTTTGTTGGCAGTGGCGACCGCCGGGCTGTTT

GGGAACTTCATCCTGTTCAGCTCATCCTTGCAATACCTGAGTCCGACCGCTTCGCAGGTGATT

GGGCAACTCTCGCCAGTTGGCATGATGGTTGCCAGCGTATTTATCCTCAAAGAGAAAATGCG

CAGCACTCAGGTTGTAGGGGCATTGATGCTCCTGAGCGGCCTGGTGATGTTTTTTAACACCA

GTCTGGTCGAGATATTTACAAAGCTCACCGATTACACCTGGGGAGTTATCTTTGGGGTCGGT

GCGGCGACGGTTTGGGTGAGTTATGGCGTGGCGCAAAAGGTTTTATTGCGTCGGCTGGCCTC

ACCGCAGATCCTGTTTTTACTGTACACTTTATGTACAATTGCGCTCTTCCCTCTGGCAAAGCC

TGGAGTGATAGCGCAGCTTAGCCACTGGCAGCTCGCATGTTTAATTTTTTGCGGACTGAATA

CCTTGGTAGGATATGGCGCCCTGGCGGAAGCGATGGCTCGCTGGCAGGCAGCGCAGGTGAG

CGCGATCATCACGCTCACCCCACTGTTTACGCTGTTTTTTTCAGATCTTTTATCACTGGCCTG

GCCCGATTTCTTCGCCAGACCGATGTTAAACCTTTTAGGTTATCTCGGTGCGTTTGTCGTGGT

TGCGGGCGCGATGTATTCCGCCATTGGTCATCGTATTTGGGGCGGATTACGTAAGCATACAA

CGGTGGTATCGCAACCCCGCGCAGGCGAATGA 

 

7.1.11.2 Protein sequence 

 

MKQQAGIGILLALTTAICWGALPIAMKQVLEVMEPPTIVFYRFLMASIGLGAILAVKKRLPPLRVF

RKPRWLILLAVATAGLFGNFILFSSSLQYLSPTASQVIGQLSPVGMMVASVFILKEKMRSTQVVG

ALMLLSGLVMFFNTSLVEIFTKLTDYTWGVIFGVGAATVWVSYGVAQKVLLRRLASPQILFLLY

TLCTIALFPLAKPGVIAQLSHWQLACLIFCGLNTLVGYGALAEAMARWQAAQVSAIITLTPLFTLF

FSDLLSLAWPDFFARPMLNLLGYLGAFVVVAGAMYSAIGHRIWGGLRKHTTVVSQPRAGE 

 

 

 

 

 

 

 

 

 



 

 163 

7.1.12 YdhC 

7.1.12.1 DNA sequence 

 

ATGCAACCTGGGAAAAGATTTTTAGTCTGGCTGGCGGGTTTGAGCGTACTCGGTTTTCTGGC

AACCGATATGTATCTGCCTGCTTTCGCCGCCATACAGGCCGACCTGCAAACGCCTGCGTCTG

CTGTCAGTGCCAGCCTTAGTCTGTTCCTTGCCGGTTTTGCCGCAGCCCAGCTTCTGTGGGGGC

CGCTCTCCGACCGTTATGGTCGTAAACCGGTATTATTAATCGGCCTGACAATTTTTGCGTTAG

GTAGTCTGGGGATGCTGTGGGTAGAAAACGCCGCTACGCTGCTGGTATTGCGTTTTGTACAG

GCTGTGGGTGTCTGCGCCGCGGCGGTTATCTGGCAAGCATTAGTGACAGATTATTATCCTTC

ACAGAAAGTTAACCGTATTTTTGCGGCCATCATGCCGCTGGTGGGTCTATCTCCGGCACTGG

CTCCTCTGTTAGGAAGCTGGCTGCTGGTCCATTTTTCCTGGCAGGCGATTTTCGCCACCCTGT

TTGCCATTACCGTGGTGCTGATTCTGCCTATTTTCTGGCTCAAACCCACGACGAAGGCCCGTA

ACAATAGTCAGGATGGTCTGACCTTTACCGACCTGCTACGTTCTAAAACCTATCGCGGCAAC

GTGCTGATATACGCAGCCTGTTCAGCCAGTTTTTTTGCATGGCTGACCGGTTCACCGTTCATC

CTTAGTGAAATGGGCTACAGCCCGGCAGTTATTGGTTTAAGTTATGTCCCGCAAACTATCGC

GTTTCTGATTGGTGGTTATGGCTGTCGCGCCGCGCTGCAGAAATGGCAAGGCAAGCAGTTAT

TACCGTGGTTGCTGGTGCTGTTTGCTGTCAGCGTCATTGCGACCTGGGCTGCGGGCTTCATTA

GCCATGTGTCGCTGGTCGAAATCCTGATCCCATTCTGTGTGATGGCGATTGCCAATGGCGCG

ATCTACCCTATTGTTGTCGCCCAGGCGCTGCGTCCCTTCCCACACGCAACTGGTCGCGCCGCA

GCGTTGCAGAACACTCTTCAACTGGGTCTGTGCTTCCTCGCAAGTCTGGTAGTTTCCTGGCTG

ATCAGTATCAGCACGCCATTGCTCACCACCACCAGCGTGATGTTATCAACAGTAATGCTGGT

CGCGCTGGGTTACATGATGCAACGTTGTGAAGAAGTTGGCTGCCAGAATCATGGCAATGCCG

AAGTCGCTCATAGCGAATCACACTGA 

 

7.1.12.2 Protein sequence 

 

MQPGKRFLVWLAGLSVLGFLATDMYLPAFAAIQADLQTPASAVSASLSLFLAGFAAAQLLWGP

LSDRYGRKPVLLIGLTIFALGSLGMLWVENAATLLVLRFVQAVGVCAAAVIWQALVTDYYPSQ 

KVNRIFAAIMPLVGLSPALAPLLGSWLLVHFSWQAIFATLFAITVVLILPIFWLKPTTKARNNSQD

GLTFTDLLRSKTYRGNVLIYAACSASFFAWLTGSPFILSEMGYSPAVIGLSYVPQTIAFLIGGYGCR

AALQKWQGKQLLPWLLVLFAVSVIATWAAGFISHVSLVEILIPFCVMAIANGAIYPIVVAQALRP

FPHATGRAAALQNTLQLGLCFLASLVVSWLISISTPLLTTTSVMLSTVVLVALGYMMQRCEEVG

CQNHGNAEVAHS ESH 
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7.2 Mass spectrometry peptide sequencing results 

7.2.1 PgpB 
 

 

 

 

 

 

 

 

 

 Mascot Search Results

User            : KABeattie
Email           : 
Search title    : Submitted from Frank-029-2009-NCBI by Mascot Daemon on XCALIBUR
MS data file    : D:\RAW Files for Conversion\2009\090309\PYPB1.msm
Database        : NCBInr  (7969746 sequences; 2747354109 residues)
Taxonomy        : Escherichia coli (80117 sequences)
Timestamp       : 9 Mar 2009 at 12:28:27 GMT
Protein hits    : gi|15801899 phosphatidylglycerophosphatase B [Escherichia coli O157:H7 EDL933]
  gi|15800816 outer membrane protein A [Escherichia coli O157:H7 EDL933]
  gi|15799851 30S ribosomal protein S2 [Escherichia coli O157:H7 EDL933]

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event.

Individual ions scores > 34 indicate identity or extensive homology (p<0.05).

Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

Peptide Summary Report

Format As Peptide Summary  Help

 Significance threshold p< 0.05 Max. number of hits AUTO  

 Standard scoring  MudPIT scoring Ions score or expect cut-off 34 Show sub-sets 0

 Show pop-ups  Suppress pop-ups Sort unassigned Decreasing Score Require bold red 

Select All    Select None    Search Selected    Error tolerant    Archive Report

1.    gi|15801899    Mass: 29003    Score: 740    Queries matched: 38   emPAI: 3.75

 phosphatidylglycerophosphatase B [Escherichia coli O157:H7 EDL933]

Check to include this hit in error tolerant search or archive report

       
      Query  Observed  Mr(expt)  Mr(calc)   ppm  Miss Score Expect Rank  Peptide

192  423.713929  845.413306  845.413025  0.33 0  38  0.016 1   K.EQLAEEK.N

267  516.297408  1030.580264  1030.585144  -4.74 0  (51) 0.0013 1   R.PFVIWLEK.T

268  516.297415  1030.580278  1030.585144  -4.72 0  (44) 0.0059 1   R.PFVIWLEK.T

269  516.297545  1030.580538  1030.585144  -4.47 0  (46) 0.0042 1   R.PFVIWLEK.T

270  516.298126  1030.581700  1030.585144  -3.34 0  (38) 0.022 1   R.PFVIWLEK.T

272  516.298232  1030.581912  1030.585144  -3.14 0  (34) 0.056 1   R.PFVIWLEK.T

275  516.298939  1030.583326  1030.585144  -1.76 0  (36) 0.045 1   R.PFVIWLEK.T

276  516.299134  1030.583716  1030.585144  -1.39 0  (45) 0.005 1   R.PFVIWLEK.T

277  516.299447  1030.584342  1030.585144  -0.78 0  51  0.0012 1   R.PFVIWLEK.T

278  516.299717  1030.584882  1030.585144  -0.25 0  (46) 0.0039 1   R.PFVIWLEK.T

359  561.815412  1121.616272  1121.616791  -0.46 0  44  0.0051 1   R.LLLGMHWPR.D

372  569.813147  1137.611742  1137.611710  0.03 0  (37) 0.027 1   R.LLLGMHWPR.D + Oxidation (M)

567  679.367237  1356.719922  1356.724854  -3.64 1  (56) 0.00044 1   R.GNLVKEQLAEEK.N

569  679.367849  1356.721146  1356.724854  -2.73 1  72  1e-05 1   R.GNLVKEQLAEEK.N

570  679.368385  1356.722218  1356.724854  -1.94 1  (39) 0.022 1   R.GNLVKEQLAEEK.N

571  679.368521  1356.722490  1356.724854  -1.74 1  (67) 3.3e-05 1   R.GNLVKEQLAEEK.N

572  679.369311  1356.724070  1356.724854  -0.58 1  (45) 0.0054 1   R.GNLVKEQLAEEK.N

573  679.369416  1356.724280  1356.724854  -0.42 1  (43) 0.0083 1   R.GNLVKEQLAEEK.N

574  679.369431  1356.724310  1356.724854  -0.40 1  (53) 0.00093 1   R.GNLVKEQLAEEK.N

575  453.248927  1356.724953  1356.724854  0.07 1  (47) 0.0035 1   R.GNLVKEQLAEEK.N

576  679.370006  1356.725460  1356.724854  0.45 1  (55) 0.00049 1   R.GNLVKEQLAEEK.N

596  693.380565  1384.746578  1384.746277  0.22 2  59  0.00019 1   K.SWIKDKVQEPR.P

700  533.942528  1598.805756  1598.809296  -2.21 0  59  0.00029 1   K.THHIPVDEFYTLK.R

701  533.943151  1598.807625  1598.809296  -1.05 0  (48) 0.0029 1   K.THHIPVDEFYTLK.R

702  533.943165  1598.807667  1598.809296  -1.02 0  (43) 0.01 1   K.THHIPVDEFYTLK.R

703  533.943191  1598.807745  1598.809296  -0.97 0  (43) 0.011 1   K.THHIPVDEFYTLK.R

704  533.943265  1598.807967  1598.809296  -0.83 0  (45) 0.0062 1   K.THHIPVDEFYTLK.R

707  800.411660  1598.808768  1598.809296  -0.33 0  (35) 0.064 1   K.THHIPVDEFYTLK.R

711  533.943787  1598.809533  1598.809296  0.15 0  (57) 0.0004 1   K.THHIPVDEFYTLK.R

712  800.412680  1598.810808  1598.809296  0.95 0  (40) 0.021 1   K.THHIPVDEFYTLK.R

713  534.278142  1599.812598  1598.809296  628 0  (39) 0.027 1   K.THHIPVDEFYTLK.R

813  585.975023  1754.903241  1754.910400  -4.08 1  43  0.0093 1   K.THHIPVDEFYTLKR.A

822  586.310989  1755.911139  1754.910400  570 1  (34) 0.074 1   K.THHIPVDEFYTLKR.A

1057  1121.612614  2241.210676  2241.211670  -0.44 2  59  0.00021 1   R.GNLVKEQLAEEKNIPQYLR.S

1058  748.078169  2241.212679  2241.211670  0.45 2  (59) 0.00023 1   R.GNLVKEQLAEEKNIPQYLR.S

1155  871.468559  2611.383849  2611.383881  -0.01 1  42  0.011 1   R.PFVIWLEKTHHIPVDEFYTLK.R

Peptide Summary Report (Submitted from Frank-029-2009-... file:///Users/frankk/Desktop/PhD/ProteinIDs%20Folder/PYP...

1 of 19 11/12/2009 22:14
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7.2.2 XylH 
 

 

 

 

 

 

 

 

 

 

 

 

 

 Mascot Search Results

User            : KABeattie
Email           : 
Search title    : Submitted from Frank-029-2009-NCBI by Mascot Daemon on XCALIBUR
MS data file    : D:\RAW Files for Conversion\2009\090309\XYL1.msm
Database        : NCBInr  (7969746 sequences; 2747354109 residues)
Taxonomy        : Escherichia coli (80117 sequences)
Timestamp       : 9 Mar 2009 at 12:27:36 GMT
Protein hits    : gi|15804114 putative xylose transport, membrane component [Escherichia coli O157:H7 EDL933]

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event.

Individual ions scores > 34 indicate identity or extensive homology (p<0.05).

Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

Peptide Summary Report

Format As Peptide Summary  Help

 Significance threshold p< 0.05 Max. number of hits AUTO  

 Standard scoring  MudPIT scoring Ions score or expect cut-off 34 Show sub-sets 0

 Show pop-ups  Suppress pop-ups Sort unassigned Decreasing Score Require bold red 

Select All    Select None    Search Selected    Error tolerant    Archive Report

1.    gi|15804114    Mass: 41004    Score: 232    Queries matched: 7   emPAI: 0.45

 putative xylose transport, membrane component [Escherichia coli O157:H7 EDL933]

Check to include this hit in error tolerant search or archive report

       
      Query  Observed  Mr(expt)  Mr(calc)   ppm  Miss Score Expect Rank  Peptide

295  617.345203  1232.675854  1232.676498  -0.52 0  (41) 0.013 1   K.LAVPTSGGFSGLK.S

296  617.345784  1232.677016  1232.676498  0.42 0  64  6.7e-05 1   K.LAVPTSGGFSGLK.S

301  624.340238  1246.665924  1246.666946  -0.82 0  37  0.044 1   R.IYAIGGNLEAAR.L

384  702.390910  1402.767268  1402.768051  -0.56 1  51  0.0014 1   R.RIYAIGGNLEAAR.L

385  702.391242  1402.767932  1402.768051  -0.08 1  (38) 0.024 1   R.RIYAIGGNLEAAR.L

431  769.419483  1536.824414  1536.826019  -1.04 0  (66) 4.1e-05 1   R.QALGLQSPASTAVVGR.Q + Gln->pyro-Glu (N-term Q)

446  777.933702  1553.852852  1553.852554  0.19 0  80  1.1e-06 1   R.QALGLQSPASTAVVGR.Q

 

      Proteins matching the same set of peptides:

      gi|218697284    Mass: 41076    Score: 232    Queries matched: 7

 D-xylose transporter subunit ; membrane component of ABC superfamily [Escherichia coli 55989]

Peptide matches not assigned to protein hits: (no details means no match)

      Query  Observed  Mr(expt)  Mr(calc)   ppm  Miss Score Expect Rank  Peptide

153  488.257596  974.500640  974.503250  -2.68 1  34  0.074 1   SKSNPSEVK

302  624.340677  1246.666802  1246.666946  -0.12 0  32  0.13 1   IYAIGGNLEAAR

123  422.256346  842.498140  842.497391  0.89 0  32  0.078 1   LGSAIGIGR

445  777.933100  1553.851648  1553.852554  -0.58 0  30  0.11 1   QALGLQSPASTAVVGR

425  758.904642  1515.794732  1515.796646  -1.26 0  25  0.69 1   AEISMLEGAVLDIR

272  598.295553  1194.576554  1194.580170  -3.03 1  25  0.6 1   IMSESKEDIK + Oxidation (M)

162  508.769534  1015.524516  1015.516083  8.30 0  23  0.74 1   MFEIHPVK + Oxidation (M)

414  742.361995  1482.709438  1482.695923  9.12 1  23  1 1   MPTRTGTGEMQFK

432  769.419546  1536.824540  1536.826019  -0.96 0  23  0.77 1   QALGLQSPASTAVVGR + Gln->pyro-Glu (N-term Q)

106  386.738002  771.461452  771.460281  1.52 0  22  1.1 1   GTVIINR

626  1071.572706  2141.130860  2141.126251  2.15 2  21  1.4 1   QIMLTEGAVLSREEAARIR + Gln->pyro-Glu (N-term Q); Oxidation (M)

116  408.240478  814.466404  814.466080  0.40 0  21  1.3 1   NVSNLLR

628  1071.572818  2141.131084  2141.126251  2.26 2  20  1.8 1   QIMLTEGAVLSREEAARIR + Gln->pyro-Glu (N-term Q); Oxidation (M)

634  1071.573104  2141.131656  2141.126251  2.52 2  20  1.8 1   QIMLTEGAVLSREEAARIR + Gln->pyro-Glu (N-term Q); Oxidation (M)

499  855.983670  1709.952788  1709.953659  -0.51 1  20  0.8 1   RQALGLQSPASTAVVGR

619  1071.571817  2141.129082  2141.126251  1.32 2  20  1.9 1   QIMLTEGAVLSREEAARIR + Gln->pyro-Glu (N-term Q); Oxidation (M)

293  617.342783  1232.671014  1230.675415  1622 2  20  2 1   QAVLTKMAAKR + Dioxidation (M); Gln->pyro-Glu (N-term Q)

644  1071.575347  2141.136142  2141.126251  4.62 2  20  2 1   QIMLTEGAVLSREEAARIR + Gln->pyro-Glu (N-term Q); Oxidation (M)

114  408.240171  814.465790  814.466080  -0.36 0  20  1.4 1   NVSNLLR

620  1071.572528  2141.130504  2141.126251  1.99 2  19  2.2 1   QIMLTEGAVLSREEAARIR + Gln->pyro-Glu (N-term Q); Oxidation (M)

137  457.774727  913.534902  912.539246  1091 1  19  1.3 1   QVKEVLR + Acetyl (N-term)

Peptide Summary Report (Submitted from Frank-029-2009-... file:///Users/frankk/Desktop/PhD/ProteinIDs%20Folder/XYL...

1 of 13 11/12/2009 22:15
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7.3 Formulations of crystallisation screens 

7.3.1 MemStart  
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MemStart™     MD1-21 

 
Tube # Salt Buffer pH Precipitant 

#" $%&'" ()#"*"+%,-./"01'202'" !)3" 4"*"0//%&-./"+.5602'"
4" $%&'" ()#"*"787" 3)9" #"*"0//%&-./"+.5602'"
:" $%&'" $%&'" ;" 4"*"0//%&-./"+.5602'"
!" $%&'" ()#"*"<=-+" >)9" 4"*"0//%&-./"+.5602'"
9" $%&'" ()#"*"$0"?@A@B" C)9" #)9"*"5-2D-./"+.5602'"
3" $%&'" ()#"*"+%,-./"01'202'" !)3" #"*"/0E&'+-./"+.5602'"
C" $%&'" ()#"*"2=-;+%,-./"1-2=02'" 9)3" #"*"/0E&'+-./"+.5602'"
>" ()#"*"5-2D-./"+.5602'" ()#"*"787" 3)9" #"*"/0E&'+-./"+.5602'"
F" $%&'" ()#"*"0//%&-./",-DG,=%E'&"HD%+HD02'" 3)9" $%&'"
#(" ()#"*"0//%&-./"+.5602'" ()9"*",-;H%20++-./"DG,=%E'&"HD%+HD02'I"()9"*"

,-;+%,-./"DG,=%E'&"HD%+HD02'"
C)9" $%&'"

##"
()#*"5-2D-./"+.5602'" ()#"*"+%,-./"01'202'" !)3"

#"*"0//%&-./",-DG,=%E'&"
HD%+HD02'"

#4"
$%&'" ()#"*"2=-;+%,-./"1-2=02'" 9)3"

#"*"0//%&-./",-DG,=%E'&"
HD%+HD02'"

#:"
$%&'" ()#"*"<=-+" >)9"

4"*"0//%&-./",-DG,=%E'&"
HD%+HD02'"

#!" $%&'" $%&'" !)3" 4"*"+%,-./"6%=/02'"
#9" $%&'" $%&'" ;" !"*"+%,-./"6%=/02'"
#3" $%&'" ()#"*"*@B" 3)9" #)!"*"+%,-./"01'202'"
#C" $%&'" ()#"*"$0"?@A@B" C)9" #)!"*"2=-;+%,-./"1-2=02'"
#>" $%&'" ()#"*"$0"?@A@B" C)9" #"*"H%20++-./"+%,-./"20=2=02'"
#F" $%&'" ()#"*"$0"?@A@B" C)9" 4"J"KIK"A@L"!((I"4"*"0//%&-./"

+.5602'"
4(" ()#*"/0E&'+-./"1D5%=-,'" ()#"*"+%,-./"01'202'" !)3" :("J"KIK"A@L"!(("
4#" ()#*"+%,-./"1D5%=-,'" ()#"*"2=-;+%,-./"1-2=02'" 9)3" :("J"KIK"A@L"!(("
44" ()#*"5-2D-./"+.5602'" ()#"*"2=-;+%,-./"1-2=02'" 9)3" :("J"KIK"A@L"!(("
4:" ():"*"5-2D-./"+.5602'" ()#"*"787" 3)9" :("J"KIK"A@L"!(("
4!" ()#"*"/0E&'+-./"1D5%=-,'" ()#"*"$0"?@A@B" C)9" :("J"KIK"A@L"!(("
49" ()#"*"0//%&-./"+.5602'" ()#"*"$0"?@A@B" C)9" :("J"KIK"A@L"!(("
43" ()4"*"2=-;+%,-./"1-2=02'" ()#"*"<=-+" >)9" :("J"KIK"A@L"!(("
4C" ()#"*"M-&1"01'202'" ()#"*"+%,-./"01'202'" !)3" #4"J"NIK"A@L"!O"
4>" ()4"*"0//%&-./"+.5602'" ()#"*"+%,-./"01'202'" !)3" #4"J"NIK"A@L"!O"
4F" $%&'" ()#"*"+%,-./"01'202'" !)3" #4"J"NIK"A@L"!O"
:(" ()#"*"5-2D-./"+.5602'" ()#"*"2=-;+%,-./"1-2=02'" 9)3" #4"J"NIK"A@L"!O"
:#" ()#"*"+%,-./"1D5%=-,'" ()#"*"2=-;+%,-./"1-2=02'" 9)3" #4"J"NIK"A@L"!O"
:4" ()#"*"5-2D-./"+.5602'" ()#"*"787" 3)9" #4"J"NIK"A@L"!O"
::" ()#"*"+%,-./"1D5%=-,'" ()#"*"$0"?@A@B" C)9" #4"J"NIK"A@L"!O"
:!" ()#"*"0//%&-./"+.5602'" ()#"*"$0"?@A@B" C)9" #4"J"NIK"A@L"!O"
:9" ()4"*"/0E&'+-./"1D5%=-,'" ()#"*"<=-+" >)9" #4"J"NIK"A@L"!O"
:3" ()4"*"5-2D-./"+.5602'"DG,=02'" ()#"*"<=-+" >)9" #4"J"NIK"A@L"!O"
:C" ()4"*"0//%&-./"+.5602'" $%&'" ;" #4"J"NIK"A@L"!O"
:>" ()#"*"+%,-./"1D5%=-,'" ()#"*"+%,-./"01'202'" !)3" #4"J"NIK"A@L"3O"
:F" ()#"*"/0E&'+-./"1D5%=-,'" ()#"*"+%,-./"01'202'" !)3" #4"J"NIK"A@L"3O"
!(" ()#"*"/0E&'+-./"1D5%=-,'" ()#"*"787" 3)9" #4"J"NIK"A@L"3O"
!#" ()#"*",-;0//%&-./"DG,=%E'&"

HD%+HD02'"
()#"*"<=-+" >)9" #4"J"NIK"A@L"3O"

!4" #"*"5-2D-./"+.5602'" $%&'" ;" 4"J"NIK"A@L">O"
!:" ()4"*"+%,-./"01'202'" ()#"*"*@B" 3)9" #("J"NIK"A@L">O"
!!" ()4"*"M-&1"01'202'" ()#"*"*@B" 3)9" #("J"NIK"A@L">O"
!9" ()4"*"1051-./"01'202'" ()#"*"*@B" 3)9" #("J"NIK"A@L">O"
!3" $%&'" ()#"*"<=-+" >)9" #("J"NIK"A@L">O"
!C" ()4"*"0//%&-./"+.5602'" $%&'" ;" #("J"NIK"A@L">O"
!>" ()9"*"5-2D-./"+.5602'" $%&'" ;" #("J"NIK"A@L">O"

"
Abbreviations: 

ADAP"$;Q4;71'20/-,%R-/-&%,-01'2-1"71-,S"HEPESP"$;Q4;DG,=%TG'2DG5R;H-H'=0M-&';$U;4;'2D0&'+.56%&-1"01-,S"MESP"4;Q$;/%=HD%5-&%R'2D0&'+.56%&-1"
01-,S"MMEP"*%&%/'2DG5'2D'=S"PEGP"A%5G'2DG5'&'"E5G1%5"Q!OS"3O"0&,">O"1%=='+H%&,"2%"2D'"/%5'1.50="N'-ED2S"-&"2D%.+0&,+"%6"8052%&+S"%6"A@LRS TrisP"
4;7/-&%;4;QDG,=%TG/'2DG5RH=%H0&';#S:;,-%5)"
"

$%2'V"<D'"H?"%6"'01D"6-&05"='0E'&2"-+"1D'1W',"0&,"0,X.+2',"Y01W"2%"2D'"+202',"H?"%6"2D'"Y.66'="QZ()4"H?".&-2+R"0+"0HH=%H=-02')"
"

*0&.6012.='=[+",020+D''2+"0='"0K0-50Y5'"%&"='\.'+2"

"



 

 167 

7.3.2 MemSys 
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MemSys MD1-25 
 

Tube  

Abbreviations: 

No. 
Salt 1 Salt 2 Buffer pH Precipitant 

#$" %&'(" %&'(" )$#"*"%+",-./+.(" 0$0" 1$0"*"+22&'-32"4356+.("
1$" )$#"*"4&7-32",85&/-7(" )$#"*"5-.8-32"4356+.(" )$#"*"%+",-./+.(" 9$0" 9)":";<;"=>?"!))"
9$" )$#"*"4&7-32",85&/-7(" )$#"*"2+@'(4-32",85&/-7(" )$#"*"%+"+,(.+.(" !$0" 9)":";<;"=>?"!))"
!$" )$#"*"4&7-32",85&/-7(" %&'(" )$#"*"%+",-./+.("" 0$0" 9)":";<;"=>?"!))"
0$" )$#"*"4&7-32",85&/-7(" )$#"*"5-.8-32"4356+.(" )$#"*"%+",-./+.(" 0$0" 9)":";<;"=>?"!))"
A$" )$#"*"4&7-32",85&/-7(" )$#"*"2+@'(4-32",85&/-7(" )$#"*"%+",-./+.(" 0$0" 9)":";<;"=>?"!))"
B$" %&'(" %&'(" )$#"*"*>C" A$0" 1$0"*"+22&'-32"4356+.("
D$" %&'(" %&'(" )$#"*"*>C" A$0" 9)":";<;"=>?"!))"
E$" )$#"*"4&7-32",85&/-7(" %&'(" )$#"*"*>C" A$0" 9)":";<;"=>?"!))"
#)$" )$#"*"4&7-32",85&/-7(" )$#"*"5-.8-32"4356+.(" )$#"*"*>C" A$0" 9)":";<;"=>?"!))"
##$" )$#"*"4&7-32",85&/-7(" )$#"*"2+@'(4-32",85&/-7(" )$#"*"*>C" A$0" 9)":";<;"=>?"!))"
#1$" %&'(" %&'(" )$#"*"*F=C" B$)" 9)":";<;"=>?"!))"
#9$" %&'(" %&'(" )$#"*"%+"G>=>C" B$0" 1$0"*"+22&'-32"4356+.("
#!$" )$#"*"4&7-32",85&/-7(" %&'(" )$#"*"*F=C" B$)" 9)":";<;"=>?"!))"
#0$" %&'(" %&'(" )$#"*"%+"G>=>C" B$0" 9)":";<;"=>?"!))"
#A$" )$#"*"4&7-32",85&/-7(" %&'(" )$#"*"%+"G>=>C" B$0" 9)":";<;"=>?"!))"
#B$" )$#"*"4&7-32",85&/-7(" )$#"*"5-.8-32"4356+.(" )$#"*"%+"G>=>C" B$0" 9)":";<;"=>?"!))"
#D$" )$#"*"4&7-32",85&/-7(" )$#"*"2+@'(4-32",85&/-7(" )$#"*"%+"G>=>C" B$0" 9)":";<;"=>?"!))"
#E$" %&'(" %&'(" )$#"*"H/-4" D$0" #$0"*"5-.8-32"4356+.("
1)$" )$#"*"4&7-32",85&/-7(" %&'(" )$#"*"H/-4" D$0" 9)":";<;"=>?"!))"
1#$" )$#"*"4&7-32",85&/-7(" )$#"*"5-.8-32"4356+.(" )$#"*"H/-4" D$0" 9)":";<;"=>?"!))"
11$" )$#"*"4&7-32",85&/-7(" )$#"*"2+@'(4-32",85&/-7(" )$#"*"H/-4" D$0" 9)":";<;"=>?"!))"
19$" )$#"*"4&7-32",85&/-7(" )$#"*"5-.8-32"4356+.(" )$#"*"IJ=CF" E$0" 9)":";<;"=>?"!))"
1!$" )$#"*"4&7-32",85&/-7(" )$#"*"2+@'(4-32",85&/-7(" )$#"*"IJ=CF" E$0" 9)":";<;"=>?"!))"
10$" %&'(" %&'(" )$#"*"%+",-./+.(" 0$0" #$0"*"4&7-32"K8&4K8+.("
1A$" )$#"*"4&7-32",85&/-7(" )$#"*"2+@'(4-32",85&/-7(" )$#"*"%+",-./+.("" 9$0" #1":"L<;"=>?"!M"
1B$" )$#"*"4&7-32",85&/-7(" )$#"*"5-.8-32"4356+.(" )$#"*"%+"+,(.+.(" !$0" #1":"L<;"=>?"!M"
1D$" )$#"*"4&7-32",85&/-7(" %&'(" )$#"*"%+",-./+.(" 0$0" #1":"L<;"=>?"!M"
1E$" )$#"*"4&7-32",85&/-7(" )$#"*"5-.8-32"4356+.(" )$#"*"%+",-./+.(" 0$0" 12 % w/v PEG 4K 

9)$" )$#"*"4&7-32",85&/-7(" )$#"*"2+@'(4-32",85&/-7(" )$#"*"%+",-./+.(" 0$0" 12 % w/v PEG 4K 

9#$" %&'(" %&'(" )$#"*"*>C" A$0" #$0"*"4&7-32"K8&4K8+.("
91$" %&'(" %&'(" )$#"*"*>C" A$0" 12 % w/v PEG 4K 

99$" )$#"*"4&7-32",85&/-7(" %&'(" )$#"*"*>C" A$0" 12 % w/v PEG 4K 

9!$" )$#"*"4&7-32",85&/-7(" )$#"*"5-.8-32"4356+.(" )$#"*"*>C" A$0" 12 % w/v PEG 4K 

90$" )$#"*"4&7-32",85&/-7(" )$#"*"2+@'(4-32",85&/-7(" )$#"*"*>C" A$0" 12 % w/v PEG 4K 

9A$" %&'(" %&'(" )$#"*"*F=C" B$)" 12 % w/v PEG 4K 

9B$" %&'(" %&'(" )$#"*"%+"G>=>C" B$0" #$0"*"K&.+44-32"K8&4K8+.("
9D$" )$#"*"4&7-32",85&/-7(" %&'(" )$#"*"*F=C" B$)" 12 % w/v PEG 4K 

9E$" %&'(" %&'(" )$#"*"%+"G>=>C" B$0" 12 % w/v PEG 4K 

!)$" )$#"*"4&7-32",85&/-7(" %&'(" )$#"*"%+"G>=>C" B$0" 12 % w/v PEG 4K 

!#$" )$#"*"4&7-32",85&/-7(" )$#"*"5-.8-32"4356+.(" )$#"*"%+"G>=>C" B$0" 12 % w/v PEG 4K 

!1$" )$#"*"4&7-32",85&/-7(" )$#"*"2+@'(4-32",85&/-7(" )$#"*"%+"G>=>C"" B$0" 12 % w/v PEG 4K 

!9$" %&'(" %&'(" )$#"*"H/-4"" D$0" #$0""*"K&.+44-32"K8&4K8+.("
!!$" )$#"*"4&7-32",85&/-7(" %&'(" )$#"*"H/-4"" D$0" 12 % w/v PEG 4K 

!0$" )$#"*"4&7-32",85&/-7(" )$#"*"5-.8-32"4356+.(" )$#"*"H/-4"" D$0" 12 % w/v PEG 4K 

!A$" )$#"*"4&7-32",85&/-7(" )$#"*"2+@'(4-32",85&/-7(" )$#"*"H/-4"" D$0" 12 % w/v PEG 4K 

!B$" )$#"*"4&7-32",85&/-7(" )$#"*"5-.8-32"4356+.(" )$#"*"IJ=CF"" E$0" 12 % w/v PEG 4K 

!D$" )$#"*"4&7-32",85&/-7(" )$#"*"2+@'(4-32",85&/-7(" )$#"*"IJ=CF"" E$0" 12 % w/v PEG 4K 

CAPSON"9OPIQ,5&8(RQ5+2-'&SO1O8Q7/&RQO#OK/&K+'(4356&'-,"J,-7"C&7-32"C+5.T Na"HEPESN"%OP1O8Q7/&RQ(.8Q5SOK-K(/+U-'(O
%VO1O(.8+'(4356&'-,"+,-7"4&7-32"4+5.T"MESN"1OP%O2&/K8&5-'&S(.8+'(4356&'-,"+,-7T"MOPS; 9OP%O*&/K8&5-'&SO
K/&K+'(4356&'-,"+,-7T"PEGN"=&5Q(.8Q5('("@5Q,&5"P!M",&//(4K&'7C".&".8("2&5(,35+/"L(-@8.T"-'".8&34+'74"&6"W+5.&'4T"&6"
=>?ST TrisN"1OJ2-'&O1OP8Q7/&RQ2(.8Q5SK/&K+'(O#T9O7-&5$"

"
*+'36+,.3/(/X4"4+6(.Q"7+.+"48((.4"+/("+;+-5+Y5("3K&'"/(Z3(4.$"
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7.3.3 MemGold 
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MemGold    Box 1 - Tubes 1-24   MD1-39 
 

Tube # Salt  Buffer pH  Precipitant 

#$#! %&'(! )$)*!+!,&-./0!1.2342(! 5$"! "$"!+!400&'./0!,/6742(!

#$"! %&'(! )$)#!+!83.,! *$)! #$"!+!23.9,&-./0!1.2342(!

#$:! %&'(! )$)#5!+!23.1.'(! *$5! ";!<!=>?!@AB!;)))!

#$;! )$:C!+!,&-./0!1D6&3.-(>)$#<!=>?!,&-./0!
4E.-(!

)$)#5!+!,&-./0!FD&,FD42(! G$)! H$H!<!=>?!@AB!;)))!

#$5! )$:!+!,&-./0!1D6&3.-(! )$)#!+!83.,! *$)! "G$5!<!=>?!@AB!;)))!

#$C! %&'(! )$""5!+!+AI>J.,923.,! C$C! C$C!<!=>?!@AB!C)))!

#$G! )$#!+!400&'./0!,/6742(!! )$#!+!KA@AI! G$5! #"$)!<!=>?!@AB!;)))>!""!<!?>?!L6M1(3&6!

#$*! )$)"!+!1461./0!1D6&3.-(>)$)#!+!04L'(,./0!
,/6742(>)$)"!+!,&-./0!1D6&3.-(!

)$)"!+!+AI! C$5! G$G!<!=>?!@AB!#5))!

#$H! %&'(! )$)5!+!KA@AI! G$5! "$5!+!400&'./0!,/6742(!

#$#)! %&'(! )$)CC5!+!KA@AI! G$5! #$#!+!23.9,&-./0!1.2342(!

#$##! %&'(! )$#5!+!F&24,,./0!FD&,FD42(! C$5! :$:!+!400&'./0!,/6742(!

#$#"! )$#!+!04L'(,./0!41(242(! )$#!+!,&-./0!1.2342(! 5$*! #;!<!=>?!@AB!5)))!++A!

#$#:! )$#!+!,&-./0!1D6&3.-(! )$)"!+!,&-./0!1.2342(! 5$C! ##!<!=>?!@AB!::5)!

#$#;! )$#!+!,&-./0!1D6&3.-(! )$)"!+!,&-./0!1.2342(! 5$C! 5$5!<!=>?!@AB!::5)!

#$#5! )$)5!+!1461./0!1D6&3.-(>)$)5!+!J43./0!
1D6&3.-(!

)$#!+!83.,! *$"! :"!<!?>?!@AB!;))!

#$#C! )$)5!+!,&-./0!1D6&3.-(! )$#!+!,&-./0!FD&,FD42(! C$"! #C!<!=>?!@AB!;)))!

#$#GN! 0.1 M magnesium chloride 0.03 M Tris-hydrochloride 8.2 19 % w/v PEG 4000 

#$#*! )$"!+!,&-./0!1D6&3.-(! )$)"5!+!KA@AI! G$5! #:!<!=>?!@AB!;)))!

#$#H! %&'(! )$#!+!KA@AI! G$5! ##!<!=>?!@AB!::5)!

#$")! )$#!+!,&-./0!1D6&3.-(! )$)"!+!O+AI! C$G! C$C!<!=>?!@AB!;)))!

#$"#! )$#!+!F&24,,./0!1D6&3.-(! )$)"!+!83.,! G$)! ")!<!=>?!@AB!;)))!

#$""! )$)5!+!04L'(,./0!1D6&3.-(>)$#<!=>?!
,&-./0!4E.-(!

)$#!+!,&-./0!141&-M642(! C$G! C$C!<!=>?!@AB!::5)!

#$":N! 0.2 M potassium chloride 0.1 M sodium citrate 5.5 37 % v/v pentaerythritol propoxylate 

(5/4 PO/OH) 

#$";! %&'(! )$#!+!83.,! *$)! 5$5!<!!=>?!@AB!;)))!

!
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MemGold    Box 1 - Tubes 25-48   MD1-39 
 

Tube # Salt Buffer pH  Precipitant 

1.25 0.1 M sodium chloride 0.02 M Tris 7.0 7.7 % w/v PEG 4000 

1.26 0.1 M magnesium chloride 0.1 M Tris 7.5 22 % v/v PEG 400 

1.27 0.04 M sodium chloride 0.04 M Tris 8.0 27 % v/v PEG 350 MME 

1.28 0.05 M sodium chloride/0.02 M 

magnesium chloride 

0.1 M sodium citrate 6.0 22 % v/v PEG 400 

1.29 None 0.1 M sodium acetate 5.5 8.8 % w/v PEG 2000 MME 

1.30 None 0.4 M ammonium acetate 8.0 13 % w/v PEG 2000 MME 

1.31 None 0.02 M bis Tris 7.0 15 % w/v PEG 2000 

1.32 0.1 M sodium chloride/0.1 M 

magnesium chloride 

0.02 M Tris 7.5 11 % w/v PEG 1500 

1.33 0.1 M sodium chloride/0.1 M 

magnesium chloride 

0.1 M HEPES 8.0 11 % w/v PEG 1500 

1.34 0.2 M sodium acetate/0.2 M Potassium 

Chloride 

0.1 M HEPES 7.0 22 % w/v PEG 3000 

1.35 0.02 M nickel sulfate 0.01 M HEPES 7.0 33 % v/v Jeffamine-M600  

1.36 0.15 M sodium chloride 0.1 M Tris 8.0 13 % w/v PEG 6000 

1.37 0.2 M calcium chloride 0.1 M HEPES 7.5 53 % v/v PEG 400 

1.38 0.05 M magnesium acetate 0.05 M sodium acetate 5.0 28 % v/v PEG 400 

1.39 None 0.05 M HEPES 7.5 22 % v/v PEG 4000 

1.40 0.2 M calcium chloride 0.1 M Tris hydrochloride 8.0 44 % v/v PEG 400 

1.41 0.05 M magnesium acetate 0.05 M sodium acetate 5.4 24 % v/v PEG 400 

1.42 0.2 M calcium chloride 0.1 M MES 6.5 26 % v/v PEG 350 MME 

1.43 0.1 M potassium chloride 0.1 M Tris 8.5 39 % v/v PEG 400 

1.44 0.05 M magnesium chloride 0.1 M glycine 9.0 22 % v/v PEG 400 

1.45 0.1 M ammonium sulfate 0.1 M glycine 3.8 28 % w/v tri-ethylene 

glycol 

1.46 0.15 M sodium formate 0.1 M HEPES 7.2 18 % w/v PEG 3350 

1.47 None 0.2 M sodium acetate 6.8 8.8 % w/v PEG 6000 

1.48 0.2 M potassium chloride 0.1 M MES 6.5 18 % w/v PEG 6000 

!
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MemGold    Box 2 - Tubes 1-24   MD1-39 
 

Tube # Salt  Buffer pH  Precipitant 

2.1 0.22 M sodium citrate 0.1 M Tris 8.0 35 % v/v PEG 400 

2.2 None 0.1 M sodium acetate 4.5 17 % v/v PEG 400 

2.3 None 0.02 M Tris 8.5 1.0 M lithium sulfate/1.8 % 

w/v PEG 8000 

2.4 None 0.02 M Tris 7.5 22 % v/v PEG 550 MME 

2.5 0.05 M sodium chloride 0.02 M glycine 10.0 33 % w/v PEG 1000 

2.6 0.2 M magnesium chloride 0.1 M Tris 8.5 25 % w/v PEG 4000 

2.7 0.2 M magnesium chloride 0.1 M sodium cacodylate 6.5 31 % w/v PEG 2000 

2.8 None 0.64 M sodium acetate 4.6 18 % w/v PEG 3350 

2.9 0.1 M sodium chloride/0.1 M 

cadmium chloride 

0.1 M Tris hydrochloride 8.0 33 % v/v PEG 400 

2.10 None 0.1 M Bicine 8.9 31 % w/v PEG 2000 

2.11 0.05 M sodium sulfate/0.05 M 

lithium sulfate 

0.05 M Tris 8.5 35 % v/v PEG 400 

2.12 0.1 M sodium chloride 0.05 M glycine 9.5 33 % v/v PEG 300 

2.13 0.3 M magnesium nitrate 0.1 M Tris 8.0 23 % w/v PEG 2000 

2.14 0.12 M lithium sulfate 0.02 M Tris/0.1 M sodium 

citrate 

7.5/ 5.0 20 % v/v PEG 300 

2.15 0.1 M sodium chloride 0.12 M Tris 9.4 20 % v/v PEG 400 

2.16 0.2 M sodium chloride 0.1 M HEPES 7.0 22 % v/v PEG 550 MME 

2.17 0.1 M sodium chloride/0.325 M 

sodium acetate 

0.1 M Tris 8.0 21 % v/v PEG 400 

2.18 0.02 M sodium citrate 0.08 M sodium phosphate 6.2 18 % w/v PEG 2000 

2.19 0.02 M potassium nitrate 0.03 M potassium citrate 6.5 7.7 % w/v PEG 4000 

2.20 0.1 M sodium chloride/0.005 M 

magnesium chloride 

0.1 M Tris 8.5 30 % w/v PEG 2000 MME 

2.21 0.2 M calcium chloride 0.1 M HEPES 7.0 33 % v/v PEG 400 

2.22 0.1 M calcium chloride 0.1 M Tris 6.5 13 % w/v PEG 2000 MME 

2.23 0.2 M ammonium sulfate/0.02 M 

sodium chloride 

0.02 M sodium acetate 4.0 33 % v/v PEG 200 

2.24 0.07 M sodium chloride 0.05 M sodium citrate 4.5 22 % v/v PEG 400 
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MemGold    Box 2 - Tubes 25-48   MD1-39 
 

Tube # Salt  Buffer pH  Precipitant 

2.25 0.2 M ammonium sulfate 0.1 M sodium acetate 4.6 28 % v/v PEG 550 MME 

2.26 None 0.05 M glycine 9.0 55 % v/v PEG 400 

2.27 0.1 M magnesium chloride/0.1M 

sodium chloride 

0.1 M Tris 8.5 33 % v/v PEG 400 

2.28 0.1 M lithium sulfate/0.05 M di-

sodium hydrogen phosphate  

0.05 M citric acid None 19 % w/v PEG 1000 

2.29 0.2 M magnesium chloride/ 0.1 M 

potassium chloride 

0.025 M sodium citrate 4.0 33 % v/v PEG 400 

2.30 0.05 M zinc acetate 0.05 M MES 6.1 11 % w/v PEG 8000 

2.31 0.3 M magnesium nitrate 0.1 M Tris 8.0 22 % w/v PEG 8000 

2.32 0.1 M sodium chloride/4% v/v 

ethylene glycol 

0.1 M MES 6.5 33 % v/v PEG 400 

2.33 0.05 M sodium chloride 0.1 M sodium citrate 5.5 26 % v/v PEG 400 

2.34 0.1 M lithium sulfate 0.1 M glycine 9.3 30 % v/v PEG 400 

2.35* 0.15 M potassium citrate/ 0.05 M 

lithium citrate 

0.1 M sodium phosphate - 22 % w/v PEG 6000 

2.36 0.001 M zinc sulfate 0.05 M HEPES 7.8 28 % v/v PEG 600 

2.37 0.1 M sodium chloride 0.1 M sodium phosphate 7.0 33 % v/v PEG 300 

2.38 0.1 M sodium chloride 0.05 M Bicine 9.0 33 % v/v PEG 300 

2.39 0.05 M zinc acetate/6% v/v 

ethylene glycol  

0.1 M sodium cacodylate 6.0 6.6 % w/v PEG 8000 

2.40 0.2 M lithium sulfate 0.1 M sodium citrate 3.5 28 % v/v PEG 400 

2.41 0.1 M sodium chloride 0.1 M Tris 7.5 11 % w/v PEG 4000 

2.42* 0.05 M lithium sulfate 0.1 M tricine 7.4 7 % w/v PEG 3000 

2.43* 0.2 M calcium chloride 0.1 M MES 6.5 33% v/v PEG 400 

2.44* 1 M sodium chloride 0.1 M sodium citrate 6.0 28% w/v PEG 4000 

2.45* None 0.1 M HEPES 7.5 11% w/v PEG 4000 

2.46* 0.002 M zinc sulfate 0.08 M HEPES 7.0 25 % v/v Jeffamine 

ED2001 
2.47* 0.001 M cadmium chloride/0.03 

M magnesium chloride 

0.1 M MES 6.5 30 % v/v PEG 400 

2.48* None 0.1 M bis-tris-propane 7.0 3.0 M sodium chloride 

! *These conditions have been changed from the pre-release (prior to June 2007) beta version of 
MemGold.  The pre-release conditions have been moved to the sister screen MemPlus (MD1-44), a 
new screen for Outer Membrane protein crystallisation." 

 
Abbreviations: 
ADA#!$%&'%()*+,-./01.-.20/.,)*+.)!()./3!Bicine#!$3$%4.5&'%67/8097*+67:1;:7).2*3 CHES#!'%&$%<7):06*97:,-.201*+6,2*!5=:>02.)!()./3!HEPES#!$%
&'%67/8097*+67:1%?.?*8,@.2*%$A%'%*+6,2*5=:>02.)!,)./3 KMES#!'%&$%-08?60:.201*+6,2*5=:>02.)!,)./!?0+,55.=-!5,:+, MES#!'%&$%
-08?60:.201*+6,2*5=:>02.)!,)./3!MME#!B020-*+67:*+6*83!PEG#!C0:7*+67:*2*!;:7)0:3 Tricine#!$%DE8.5&67/8097-*+67:1-*+67:F;:7).2*3!Tris#!'%
(-.20%'%&67/8097-*+67:1?80?,2*%G3H%/.0:3!Tris HCl#!'%(-.20%'%&67/8097-*+67:1?80?,2*%G3H%/.0:3!67/80)6:08./*IF!
!
!
!
!
!
!
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PEG / Ion Screen™ HR2-126  Reagent Formulation

Tube
#
1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.

 
 
 

Solutions for Crystal Growth

                   Salt

0.2 M Sodium fl uoride
0.2 M Potassium fl uoride
0.2 M Ammonium fl uoride
0.2 M Lithium chloride
0.2 M Magnesium chloride hexahydrate
0.2 M Sodium chloride
0.2 M Calcium chloride dihydrate
0.2 M Potassium chloride
0.2 M Ammonium chloride
0.2 M Sodium iodide
0.2 M Potassium iodide
0.2 M Ammonium iodide
0.2 M Sodium thiocyanate
0.2 M Potassium thiocyanate
0.2 M Lithium nitrate
0.2 M Magnesium nitrate hexahydrate
0.2 M Sodium nitrate
0.2 M Potassium nitrate
0.2 M Ammonium nitrate
0.2 M Magnesium formate dihydrate
0.2 M Sodium formate
0.2 M Potassium formate
0.2 M Ammonium formate
0.2 M Lithium acetate dihydrate
0.2 M Magnesium acetate tetrahydrate
0.2 M Zinc acetate dihydrate
0.2 M Sodium acetate trihydrate
0.2 M Calcium acetate hydrate
0.2 M Potassium acetate
0.2 M Ammonium acetate
0.2 M Lithium sulfate monohydrate
0.2 M Magnesium sulfate heptahydrate
0.2 M Sodium sulfate decahydrate
0.2 M Potassium sulfate
0.2 M Ammonium sulfate
0.2 M Sodium tartrate dibasic dihydrate
0.2 M Potassium sodium tartrate tetrahydrate
0.2 M Ammonium tartrate dibasic
0.2 M Sodium phosphate monobasic monohydrate
0.2 M Sodium phosphate dibasic dihydrate
0.2 M Potassium phosphate monobasic
0.2 M Potassium phosphate dibasic
0.2 M Ammonium phosphate monobasic
0.2 M Ammonium phosphate dibasic
0.2 M Lithium citrate tribasic tetrahydrate
0.2 M Sodium citrate tribasic dihydrate
0.2 M Potassium citrate tribasic monohydrate
0.2 M Ammonium citrate dibasic

Tube
#
1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.

                   Polymer

20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350

Tube
#
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.

pH !

7.3
7.3
6.2
6.8
5.9
6.9
5.1
7.0
6.3
7.0
7.0
6.2
6.9
7.0
7.1
5.9
6.8
6.8
6.2
7.0
7.2
7.3
6.6
7.9
7.9
6.4
8.0
7.5
8.1
7.1
6.0
6.0
6.7
6.8
6.0
7.3
7.4
6.6
4.7
9.1
4.8
9.2
4.6
8.0
8.4
8.3
8.3
5.1

PEG / Ion Screen contains forty-eight unique reagents.  To determine the formulation of each reagent, simply read across the page.

!"Measured pH at 25 ° C

O-N

O

O

Nitrate

N-S C
Thiocyanate

Cl -

Chloride

F -

Fluoride

I -

Iodide

C C
-O -OCH3 H3

O O

Acetate Formate

-O -OO- O-P S

O O

O- O-
Phosphate Sulfate

C C C C

OH H

H OH

Tartrate

-O O

O O-

C C CC C

OH

H H

H H

C
O- O

Citrate

-O O

O O-
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PEG / Ion 2 Screen™ HR2-098  Reagent Formulation

Tube
#
1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.

43.

44.
45.
46.
47.
48.

Solutions for Crystal Growth

                   Salt

0.1 M Sodium malonate pH 4.0
0.2 M Sodium malonate pH 4.0
0.1 M Sodium malonate pH 5.0
0.2 M Sodium malonate pH 5.0
0.1 M Sodium malonate pH 6.0
0.2 M Sodium malonate pH 6.0
0.1 M Sodium malonate pH 7.0
0.2 M Sodium malonate pH 7.0
4% v/v Tacsimate pH 4.0
8% v/v Tacsimate pH 4.0
4% v/v Tacsimate pH 5.0
8% v/v Tacsimate pH 5.0
4% v/v Tacsimate pH 6.0
8% v/v Tacsimate pH 6.0
4% v/v Tacsimate pH 7.0
8% v/v Tacsimate pH 7.0
4% v/v Tacsimate pH 8.0
8% v/v Tacsimate pH 8.0
0.1 M Succinic acid pH 7.0
0.2 M Succinic acid pH 7.0
0.1 M Ammonium citrate tribasic pH 7.0
0.2 M Ammonium citrate tribasic pH 7.0
0.1 M DL-Malic acid pH 7.0
0.2 M DL-Malic acid pH 7.0
0.1 M Sodium acetate trihydrate pH 7.0
0.2 M Sodium acetate trihydrate pH 7.0
0.1 M Sodium formate pH 7.0
0.2 M Sodium formate pH 7.0
0.1 M Ammonium tartrate dibasic pH 7.0
0.2 M Ammonium tartrate dibasic pH 7.0
2% v/v Tacsimate pH 4.0
2% v/v Tacsimate pH 5.0
2% v/v Tacsimate pH 6.0
2% v/v Tacsimate pH 7.0
2% v/v Tacsimate pH 8.0
None
None
None
None
None
None
0.02 M Calcium chloride dihydrate, 
0.02 M Cadmium chloride hydrate, 
0.02 M Cobalt(II) chloride hexahydrate
0.02 M Magnesium chloride hexahydrate
0.02 M Nickel(II) chloride hexahydrate
0.02 M Zinc chloride
0.15 M Cesium chloride
0.2 M Sodium bromide
1% w/v Tryptone
1% w/v Tryptone

Tube
#
1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.

43.

44.
45.
46.
47.
48.

                   Buffer !

None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
0.1 M Sodium acetate trihydrate pH 4.6
0.1 M Sodium citrate tribasic dihydrate pH 5.6
0.1 M BIS-TRIS pH 6.5
0.1 M HEPES pH 7.5
0.1 M Tris pH 8.5
0.07 M Citric acid, 0.03 M BIS-TRIS propane / pH 3.4
0.06 M Citric acid, 0.04 M BIS-TRIS propane / pH 4.1
0.05 M Citric acid, 0.05 M BIS-TRIS propane / pH 5.0
0.04 M Citric acid, 0.06 M BIS-TRIS propane / pH 6.4
0.03 M Citric acid, 0.07 M BIS-TRIS propane / pH 7.6
0.02 M Citric acid, 0.08 M BIS-TRIS propane / pH 8.8
None

0.1 M HEPES sodium pH 7.0

None
None
None
0.05 M HEPES sodium pH 7.0
0.05 M HEPES sodium pH 7.0

PEG / Ion 2 Screen contains forty-eight unique reagents.  To determine the formulation of each reagent, simply read across the page.

!"Buffer pH is that of a 1.0 M stock prior to dilution 
with other reagent components: pH with HCl or NaOH.

Tube
#
1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.

43.

44.
45.
46.
47.
48.

                   Polymer

12% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
12% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
12% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
12% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
12% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
12% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
12% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
12% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
12% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
12% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
12% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
12% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
12% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
12% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
12% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
16% w/v Polyethylene glycol 3,350
16% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
16% w/v Polyethylene glycol 3,350
16% w/v Polyethylene glycol 3,350
16% w/v Polyethylene glycol 3,350
16% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
16% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350

20% w/v Polyethylene glycol 3,350

20% w/v Polyethylene glycol 3,350
15% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350
12% w/v Polyethylene glycol 3,350
20% w/v Polyethylene glycol 3,350

© 2007 Hampton Research Corp. all rights reserved
Printed in the United States of America.  This guide or 

parts thereof may not be reproduced in any form without 
the written permission of the publishers.
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7.3.5 JCSG 1/2 
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JCSG-plus   Box 1 of 2    MD1-37 
 

Tube No. Salt Buffer pH Precipitant 

"#"$ %#&$'$()*+),-$.,(/0*1$ %#"$'$.23),-$041*0*1$$ 5#6$ 6%$7$898$:;<$5%%$

"#&$ =2>1$ %#"$'$.23),-$4)*?0*1$$ 6#6$ &%$7$@98$:;<$!%%%$
"#!$ %#&$'$3)A0--2>),-$+B3?2C1>$

4)*?0*1$$
=2>1$ A$ &%$7$@98$:;<$!!6%$

"#5$ %#%&$'$40(4),-$4+(2?)31$ %#"$'$.23),-$041*0*1$$ 5#D$ !%$7$898$':E$
"#6$ %#&$'$-0C>1.),-$/2?-0*1$$ =2>1$ A$ &%$7$@98$:;<$!!6%$
"#D$ %#&$'$()*+),-$.,(/0*1$ %#"$'$F+2.F+0*194)*?0*1$$ 5#&$ &%$7$@98$:;<$"%%%$
"#G$ =2>1$ %#"$'$HI;J$$ K#6$ &%$7$@98$:;<$L%%%$
"#L$ %#&$'$0--2>),-$/2?-0*1$$ =2>1$ A$ &%$7$@98$:;<$!!6%$
"#K$ %#&$'$0--2>),-$4+(2?)31$$ =2>1$ A$ &%$7$@98$:;<$!!6%$
"#"%$ %#&$'$F2*0..),-$/2?-0*1$$ =2>1$ A$ &%$7$@98$:;<$!!6%$
"#""$ %#&$'$0--2>),-$3)+B3?2C1>$

F+2.F+0*1$
%#"$'$M?).$$ L#6$ 6%$7$898$':E$

"#"&$ %#&$'$F2*0..),-$>)*?0*1$$ =2>1$ A$ &%$7$@98$:;<$!!6%$
"#"!$ =2>1$ %#"$'$4)*?0*1$$ 5#%$ %#L$'$0--2>),-$.,(/0*1$
"#"5$ %#&$'$.23),-$*+)24B0>0*1$$ =2>1$ A$ &%$7$@98$:;<$!!6%$
"#"6$ =2>1$ %#"$'$N)4)>1$$ K#%$ &%$7$@98$:;<$D%%%$
"#"D$ =2>1$ %#"$'$I;:;J$$ G#6$ "%$7$@98$:;<$L%%%9$L$7$898$;*+B(1>1$

C(B42($
"#"G$ =2>1$ %#"$'$.23),-$40423B(0*1$ D#6$ 5%$7$898$':E9$6$7$@98$:;<$L%%%$
"#"L$ =2>1$ %#"$'$F+2.F+0*194)*?0*1$ 5#&$ 5%$7$898$;*+0>2(9$6$7$@98$:;<$"%%%$
"#"K$ =2>1$ %#"$'$.23),-$041*0*1$$ 5#D$ L$7$@98$:;<$5%%%$
"#&%$ %#&$'$-0C>1.),-$4+(2?)31$ %#"$'$M?).$$ G#%$ "%$7$@98$:;<$L%%%$
"#&"$ =2>1$ %#"$'$4)*?0*1$$ 6#%$ &%$7$@98$:;<$D%%%$
"#&&$ %#&$'$-0C>1.),-$4+(2?)31$ %#"$'$.23),-$40423B(0*1$ D#6$ 6%$7$898$:;<$&%%$
"#&!$ =2>1$ =2>1$ D#6$ "#D$'$*?)A.23),-$4)*?0*1$$
"#&5$ %#&$'$*?)AF2*0..),-$4)*?0*1$$ =2>1$ A$ &%$7$@98$:;<$!!6%$
"#&6$ %#&$'$.23),-$4+(2?)31$ %#"$'$F+2.F+0*194)*?0*1$$ 5#&$ &%$7$@98$:;<$L%%%$
"#&D$ "#%$'$()*+),-$4+(2?)31$ %#"$'$=0$4)*?0*1$$ 5#%$ &%$7$@98$:;<$D%%%$
"#&G$ %#&$'$0--2>),-$>)*?0*1$$ =2>1$ A$ &%$7$@98$:;<$!!6%$
"#&L$ =2>1$ %#"$'$=0$I;:;J$$ G#%$ "%$7$@98$:;<$D%%%$
"#&K$ =2>1$ %#"$'$=0$I;:;J$$ G#6$ %#L$'$.23),-$3)+B3?2C1>$F+2.F+0*1$

%#L$'$F2*0..),-$3)+B3?2C1>$F+2.F+0*1$
"#!%$ =2>1$ %#"$'$F+2.F+0*194)*?0*1$$ 5#&$ 5%$7$898$:;<$!%%$
"#!"$ %#&$'$O)>4$041*0*1$ %#"$'$.23),-$041*0*1$$ 5#6$ "%$7$@98$:;<$!%%%$
"#!&$ =2>1$ %#"$'$M?).$$ L#6$ &%$7$898$;*+0>2($
"#!!$ =2>1$ %#"$'$=09P$F+2.F+0*1$$ D#&$ &6$7$898$"Q&AF?2F0>13)2($

"%$7$898$<(B41?2($
"#!5$ =2>1$ %#"$'$N)4)>1$$ K#%$ "%$7$@98$:;<$&%Q%%%9$&7$898$E)2R0>1$
"#!6$ =2>1$ %#"$'$.23),-$041*0*1$$ 5#D$ &#%$'$0--2>),-$.,(/0*1$
"#!D$ =2>1$ =2>1$ A$ "%$7$@98$:;<$"%%%9$"%$7$@98$:;<$

L%%%$
"#!G$ =2>1$ =2>1$ A$ &5$7$@98$:;<$"6%%9$&%$7$898$<(B41?2($
"#!L$ %#&$'$-0C>1.),-$4+(2?)31$ %#"$'$=0$I;:;J$$ G#6$ !%$7$898$:;<$5%%$
"#!K$ %#&$'$.23),-$4+(2?)31$ %#"$'$=09P$F+2.F+0*1$$ D#&$ 6%$7$898$:;<$&%%$
"#5%$ %#&$'$()*+),-$.,(/0*1$ %#"$'$.23),-$041*0*1$$ 5#6$ !%$7$@98$:;<$L%%%$
"#5"$ =2>1$ %#"$'$I;:;J$$ G#6$ G%$7$898$':E$
"#5&$ %#&$'$-0C>1.),-$4+(2?)31$ %#"$'$M?).$$ L#6$ &%$7$@98$:;<$L%%%$
"#5!$ %#&$'$()*+),-$.,(/0*1$ %#"$'$M?).$$ L#6$ 5%$7$898$:;<$5%%$
"#55$ =2>1$ %#"$'$M?).$$ L#%$ 5%$7$898$':E$
"#56$ %#"G$'$0--2>),-$.,(/0*1$ =2>1$ A$ &6#6$7$@98$:;<$5%%%9$"6$7$898$

<(B41?2($
"#5D$ %#&$'$40(4),-$041*0*1$ %#"$'$.23),-$40423B(0*1$ D#6$ 5%$7$898$:;<$!%%$
"#5G$ %#"5$'$40(4),-$4+(2?)31$ %#%G$'$.23),-$041*0*1$$ 5#D$ "5$7$898$&AF?2F0>2(9$!%$7$898$<(B41?2($
"#5L$ %#%5$'$F2*0..),-$3)+B3?2C1>$

F+2.F+0*1$
=2>1$ A$ "D$7$@98$:;<$L%%%9$&%$7$898$<(B41?2($
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moleculardimensions.commoleculardimensions.com
 

!"

JCSG-plus   Box 2  of 2    MD1-37"
 

Tube Salt Buffer pH Precipitant 

#$%" &'()" *$%"+",'-./0"121'-3425)"" 6$7" %$*"+"58.9,'-./0"1.5825)"

#$#" *$#"+",'-./0"1:4'8.-)" *$%"+",'-./0"121'-3425)"" 6$7" #$*"+"200'(./0",/4;25)"
#$<" *$#"+",'-./0"1:4'8.-)" *$%"+"=>?>@"" A$7" %*"B"CDC"#9E8'E2('4"
#$!" *$#"+"4.5:./0",/4;25)" *$%"+"F8.,"" G$7" %$#6"+"200'(./0",/4;25)"
#$7" &'()" *$%"+"HI?@"" %*$7" !*"B"CDC"+?J"
#$6" *$#"+"K.(1"21)525)" *$%"+".0.-2K'4)"" G$*" #*"B"LDC"?>M"<***"
#$A" *$#"+"K.(1"21)525)" *$%"+",'-./0"121'-3425)"" 6$7" %*"B"CDC"#9E8'E2('4"
#$G" &'()" *$%"+",'-./0"21)525)"" !$7" %$*"+"-.9200'(./0":3-8'N)("

E:',E:25)"
#$O" &'()" *$%"+"+>@"" 6$7" %$6"+"02N(),./0",/4;25)"
#$%*" &'()" *$%"+"P.1.()"" O$*" %*"B"LDC"?>M"6***"
#$%%" *$%6"+"1241./0"21)525)" *$*G"+",'-./0"121'-3425)"" 6$7" %!$!"B"LDC"?>M"G***D"#*"B"CDC"

N431)8'4"
#$%#" &'()" *$%"+".0.-2K'4)"" G$*" %*"B"LDC"?>M"G***"
#$%<" *$*7"+"12),./0"1:4'8.-)" *$%"+"+>@"" 6$7" <*"B"CDC"Q);;20.()"+96**""
#$%!" &'()" *$%"+"&2"H.5825)"" 7$*" <$#"+"200'(./0",/4;25)""
#$%7" &'()" *$%"+"F8.,"" G$*" #*"B"CDC"+?J"
#$%6" &'()" *$%"+"=>?>@"" A$7" #*"B"CDC"Q);;20.()"+96**""

#$%A" *$#"+"02N(),./0"1:4'8.-)" *$%"+"F8.,"" G$7" 7*"B"CDC")5:34)()"N431'4"
#$%G" &'()" *$%"+"P.1.()"" O$*" %*"B"CDC"+?J"
#$%O" &'()" &'()" A$*" *$G"+",/11.(.1"21.-""
#$#*" &'()" &'()" A$*" #$%"+"JR9024.1"21.-""
#$#%" &'()" &'()" A$*" #$!"+",'-./0"024'(25)"

#$##" %$%"+",'-./0"024'(25)"" *$%"+"=>?>@"" A$*" *$7"B"CDC"Q);;20.()">J9#**%""
#$#<" %$*"+",/11.(.1"21.-"" *$%"+"=>?>@"" A$*" %"B"LDC"?>M"#***"++>"
#$#!" &'()" *$%"+"=>?>@"" A$*" <*"B"CDC"Q);;20.()"+96**""
#$#7" &'()" *$%"+"=>?>@"" A$*" <*"B"CDC"Q);;20.()">J9#**%""
#$#6" *$*#"+"02N(),./0"1:4'8.-)" *$%"+"=>?>@"" A$7" ##"B"LDC"E'4321834.1"21.-"7%**",'-./0"

,245"
#$#A" *$*%"+"1'S245"1:4'8.-)" *$%"+"F8.,"" G$7" #*"B"LDC"E'43C.(34E388'4.-'()"T%7"
#$#G" *$#"+"58.90)5:3420.()"&9'U.-)" *$%"+"F8.,"" G$7" #*"B"LDC"?>M"#***"++>"
#$#O" *$**7"+"1'S245"1:4'8.-)"

*$**7"+"12-0./0"1:4'8.-)"
*$**7"+"02N(),./0"1:4'8.-)"
*$**7"+"(.1V)4"1:4'8.-)"

*$%"+"=>?>@"" A$7" %#"B"LDC"?>M"<<7*"

#$<*" *$#"+",'-./0"024'(25)"" &'()" A$*" #*"B"LDC"?>M"<<7*"

#$<%" *$%"+",/11.(.1"21.-"" &'()" A$*" %7"B"LDC"?>M"<<7*"

#$<#" *$%7"+"JR"9"024.1"21.-" &'()" A$*" #*"B"LDC"?>M"<<7*"

#$<<" *$%"+"E'52,,./0"5:.'132(25)" &'()" 9" <*"B"LDC"?>M"#***"++>"

#$<!" *$%7"+"E'52,,./0"S8'0.-)" &'()" 9" <*"B"LDC"?>M"#***"++>"

#$<7" &'()" *$%"+"P.,"F8.,"" 7$7" #$*"+"200'(./0",/4;25)"

#$<6" &'()" *$%"+"P.,"F8.,"" 7$7" <$*"+",'-./0"1:4'8.-)"

#$<A" &'()" *$%"+"P.,"F8.,"" 7$7" *$<"+"02N(),./0";'8025)"

#$<G" %$*"+"200'(./0",/4;25)" *$%"+"P.,"F8.,"" 7$7" %"B"LDC"?>M"<<7*"

#$<O" &'()" *$%"+"P.,"F8.,"" 7$7" #7"B"LDC"?>M"<<7*"

#$!*" *$#"+"1241./0"1:4'8.-)" *$%"+"P.,"F8.,"" 7$7" !7"B"CDC"+?J"

#$!%" *$#"+"200'(./0"21)525)" *$%"+"P.,"F8.,"" 7$7" !7"B"CDC"+?J"

#$!#" *$%"+"200'(./0"21)525)" *$%"+"P.,"F8.,"" 7$7" %A"B"LDC"?>M"%****"

#$!<" *$#"+"200'(./0",/4;25)" *$%"+"P.,"F8.,"" 7$7" #7"B"LDC"?>M"<<7*"

#$!!" *$#"+",'-./0"1:4'8.-)" *$%"+"P.,"F8.,"" 7$7" #7"B"LDC"?>M"<<7*"

#$!7" *$#"+"4.5:./0",/4;25)" *$%"+"P.,"F8.,"" 7$7" #7"B"LDC"?>M"<<7*"

#$!6" *$#"+"200'(./0"21)525)" *$%"+"P.,"F8.,"" 7$7" #7"B"LDC"?>M"<<7*"

#$!A" *$#"+"02N(),./0"1:4'8.-)" *$%"+"P.,"F8.,"" 7$7" #7"B"LDC"?>M"<<7*"

#$!G" *$#"+"200'(./0"21)525)" *$%"+"=>?>@"" A$7" !7"B"CDC"+?J"

 

Abbreviations: Bis TrisW"P.,9X#9:3-8'U3)5:34Y.0.('958.,X:3-8'U30)5:34Y0)5:2()Z CAPSW &9H314':)U349<920.('E8'E2(),/4;'(.1"21.-, 
CHESW #9X&9H314':)U3420.('Y)5:2()"@/4;'(.1"I1.-, HEPES; #9X!9X#9=3-8'U3)5:34Y9%9E.E)82K.(34Y)5:2(),/4;'(.1"I1.-Z Na HEPESW"#9X!9
X#9=3-8'U3)5:34Y9%9E.E)82K.(34Y)5:2(),/4;'(.1"I1.-"@'-./0"@245Z"MESW"#9X&90'8E:'4.('Y)5:2(),/4;'(.1"21.-Z"MPD; #Z!90)5:34"
E)(52()-.'4Z"PEGW"?'43)5:34)()"N431'4Z TrisW #9I0.('9#9X:3-8'U30)5:34YE8'E2()9%Z<9-.'4$"
 

+2(/;215/8)8[,",2;)53"-252",:))5,"28)"2C2.42S4)"/E'("8)\/),5$"
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7.3.6 Hampton Crystal Screen 1/2 
 

 

 

 

 

Crystal Screen™ HR2-110  Reagent Formulation

Tube
#
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

36.
37.
38.
39.

40.

41.

42.
43.
44.
45.
46.
47.
48.
49.
50.

34 Journey
Aliso Viejo, CA 92656-3317 U.S.A.
Tel: (949) 425-1321 • Fax: (949) 425-1611
E-mail: tech@hrmail.com
Website: www.hamptonresearch.com

© 2000-2007 Hampton Research Corp. all rights reserved
Printed in the United States of America.  This guide or 

parts thereof may not be reproduced in any form without 
the written permission of the publishers. 

Solutions for Crystal Growth

                   Salt

0.02 M Calcium chloride dihydrate
None
None
None
0.2 M Sodium citrate tribasic dihydrate
0.2 M Magnesium chloride hexahydrate
None
0.2 M Sodium citrate tribasic dihydrate
0.2 M Ammonium acetate
0.2 M Ammonium acetate
None
0.2 M Magnesium chloride hexahydrate
0.2 M Sodium citrate tribasic dihydrate
0.2 M Calcium chloride dihydrate
0.2 M Ammonium sulfate
None
0.2 M Lithium sulfate monohydrate
0.2 M Magnesium acetate tetrahydrate
0.2 M Ammonium acetate
0.2 M Ammonium sulfate
0.2 M Magnesium acetate tetrahydrate
0.2 M Sodium acetate trihydrate
0.2 M Magnesium chloride hexahydrate
0.2 M Calcium chloride dihydrate
None
0.2 M Ammonium acetate
0.2 M Sodium citrate tribasic dihydrate
0.2 M Sodium acetate trihydrate
None
0.2 M Ammonium sulfate
0.2 M Ammonium sulfate
None
None
None
None

None
None
None
None

None

None

0.05 M Potassium phosphate monobasic
None
None
0.2 M Zinc acetate dihydrate
0.2 M Calcium acetate hydrate
None
None
1.0 M Lithium sulfate monohydrate
0.5 M Lithium sulfate monohydrate

Tube
#
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

36.
37.
38.
39.

40.

41.

42.
43.
44.
45.
46.
47.
48.
49.
50.

                   Buffer !

0.1 M Sodium acetate trihydrate pH 4.6
None
None
0.1 M TRIS hydrochloride pH 8.5
0.1 M HEPES sodium pH 7.5
0.1 M TRIS hydrochloride pH 8.5
0.1 M Sodium cacodylate trihydrate pH 6.5
0.1 M Sodium cacodylate trihydrate pH 6.5
0.1 M Sodium citrate tribasic dihydrate pH 5.6
0.1 M Sodium acetate trihydrate pH 4.6
0.1 M Sodium citrate tribasic dihydrate pH 5.6
0.1 M HEPES sodium pH 7.5
0.1 M TRIS hydrochloride pH 8.5
0.1 M HEPES sodium pH 7.5
0.1 M Sodium cacodylate trihydrate pH 6.5
0.1 M HEPES sodium pH 7.5
0.1 M TRIS hydrochloride pH 8.5
0.1 M Sodium cacodylate trihydrate pH 6.5
0.1 M TRIS hydrochloride pH 8.5
0.1 M Sodium acetate trihydrate pH 4.6
0.1 M Sodium cacodylate trihydrate pH 6.5
0.1 M TRIS hydrochloride pH 8.5
0.1 M HEPES sodium pH 7.5
0.1 M Sodium acetate trihydrate pH 4.6
0.1 M Imidazole pH 6.5
0.1 M Sodium citrate tribasic dihydrate pH 5.6
0.1 M HEPES sodium pH 7.5
0.1 M Sodium cacodylate trihydrate pH 6.5
0.1 M HEPES sodium pH 7.5
None
None
None
None
0.1 M Sodium acetate trihydrate pH 4.6
0.1 M HEPES sodium pH 7.5

0.1 M TRIS hydrochloride pH 8.5
0.1 M Sodium acetate trihydrate pH 4.6
0.1 M HEPES sodium pH 7.5
0.1 M HEPES sodium pH 7.5

0.1 M Sodium citrate tribasic dihydrate pH 5.6

0.1 M HEPES sodium pH 7.5

None
None
None
0.1 M Sodium cacodylate trihydrate pH 6.5
0.1 M Sodium cacodylate trihydrate pH 6.5
0.1 M Sodium acetate trihydrate pH 4.6
0.1 M TRIS hydrochloride pH 8.5
None
None

Tube
#
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

36.
37.
38.
39.

40.

41.

42.
43.
44.
45.
46.
47.
48.
49.
50.

                   Precipitant

30% v/v (+/-)-2-Methyl-2,4-pentanediol
0.4 M Potassium sodium tartrate tetrahydrate
0.4 M Ammonium phosphate monobasic
2.0 M Ammonium sulfate
30% v/v (+/-)-2-Methyl-2,4-pentanediol
30% w/v Polyethylene glycol 4,000
1.4 M Sodium acetate trihydrate
30% v/v 2-Propanol
30% w/v Polyethylene glycol 4,000
30% w/v Polyethylene glycol 4,000
1.0 M Ammonium phosphate monobasic
30% v/v 2-Propanol
30% v/v Polyethylene glycol 400
28% v/v Polyethylene glycol 400
30% w/v Polyethylene glycol 8,000
1.5 M Lithium sulfate monohydrate
30% w/v Polyethylene glycol 4,000
20% w/v Polyethylene glycol 8,000
30% v/v 2-Propanol
25% w/v Polyethylene glycol 4,000
30% v/v (+/-)-2-Methyl-2,4-pentanediol
30% w/v Polyethylene glycol 4,000
30% v/v Polyethylene glycol 400
20% v/v 2-Propanol
1.0 M Sodium acetate trihydrate
30% v/v (+/-)-2-Methyl-2,4-pentanediol
20% v/v 2-Propanol
30% w/v Polyethylene glycol 8,000
0.8 M Potassium sodium tartrate tetrahydrate
30% w/v Polyethylene glycol 8,000
30% w/v Polyethylene glycol 4,000
2.0 M Ammonium sulfate
4.0 M Sodium formate
2.0 M Sodium formate
0.8 M Sodium phosphate monobasic monohydrate
0.8 M Potassium phosphate monobasic
8% w/v Polyethylene glycol 8,000
8% w/v Polyethylene glycol 4,000
1.4 M Sodium citrate tribasic dihydrate
2% v/v Polyethylene glycol 400
2.0 M Ammonium sulfate
20% v/v 2-Propanol
20% w/v Polyethylene glycol 4,000
10% v/v 2-Propanol
20% w/v Polyethylene glycol 4,000
20% w/v Polyethylene glycol 8,000
30% w/v Polyethylene glycol 1,500
0.2 M Magnesium formate dihydrate
18% w/v Polyethylene glycol 8,000
18% w/v Polyethylene glycol 8,000
2.0 M Ammonium sulfate
2.0 M Ammonium phosphate monobasic
2% w/v Polyethylene glycol 8,000
15% w/v Polyethylene glycol 8,000

Crystal Screen contains fi fty unique reagents.  To determine the formulation of each reagent, simply read across the page.

!"Buffer pH is that of a 1.0 M stock prior to dilution with 
other reagent components: pH with HCl or NaOH.
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Crystal Screen 2™ HR2-112  Reagent Formulation

Tube
#
1.
2.

3.
4.
5.
6.
7.

8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

22.
23.
24.
25.
26.
27.
28.
29.
30.

31.
32.
33.
34.
35.
36.
37.

38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.

Solutions for Crystal Growth

                   Salt

2.0 M Sodium chloride
0.5 M Sodium chloride
0.01 M Magnesium chloride hexahydrate
None
None
2.0 M Ammonium sulfate
None
None

1.5 M Sodium chloride
None
0.2 M Sodium chloride
0.01 M Cobalt (II) chloride hexahydrate
0.1 M Cadmium chloride hydrate
0.2 M Ammonium sulfate
0.2 M Potassium sodium tartrate tetrahydrate
0.5 M Ammonium sulfate
0.5 M Sodium chloride
None
0.01 M Iron (III) chloride hexahydrate
None
None
0.1 M Sodium phosphate monobasic monohydrate
0.1 M Potassium phosphate monobasic 
None
1.6 M Ammonium sulfate
0.05 M Cesium chloride
0.01 M Cobalt (II) chloride hexahydrate
0.2 M Ammonium sulfate
0.01 M Zinc sulfate heptahydrate
None
0.5 M Ammonium sulfate
None

None
0.1 M Sodium chloride
None
0.05 M Cadmium sulfate hydrate
None
None
None

None
0.2 M Magnesium chloride hexahydrate
None
0.01 M Nickel (II) chloride hexahydrate
1.5 M Ammonium sulfate
0.2 M Ammonium phosphate monobasic
None
0.01 M Nickel (II) chloride hexahydrate 
0.1 M Sodium chloride
None
None

Tube
#
1.
2.

3.
4.
5.
6.
7.

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

22.
23.
24.
25.
26.
27.
28.
29.
30.

31.
32.
33.
34.
35.
36.
37.

38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.

                   Buffer !

None
None

None
None
None
None
None

None
0.1 M Sodium acetate trihydrate pH 4.6
0.1 M Sodium acetate trihydrate pH 4.6
0.1 M Sodium acetate trihydrate pH 4.6
0.1 M Sodium acetate trihydrate pH 4.6
0.1 M Sodium acetate trihydrate pH 4.6
0.1 M Sodium citrate tribasic dihydrate pH 5.6
0.1 M Sodium citrate tribasic dihydrate pH 5.6
0.1 M Sodium citrate tribasic dihydrate pH 5.6
0.1 M Sodium citrate tribasic dihydrate pH 5.6
0.1 M Sodium citrate tribasic dihydrate pH 5.6
0.1 M Sodium citrate tribasic dihydrate pH 5.6
0.1 M MES monohydrate pH 6.5
0.1 M MES monohydrate pH 6.5

0.1 M MES monohydrate pH 6.5
0.1 M MES monohydrate pH 6.5
0.1 M MES monohydrate pH 6.5
0.1 M MES monohydrate pH 6.5
0.1 M MES monohydrate pH 6.5
0.1 M MES monohydrate pH 6.5
None
0.1 M HEPES pH 7.5
0.1 M HEPES pH 7.5

0.1 M HEPES pH 7.5
0.1 M HEPES pH 7.5
0.1 M HEPES pH 7.5
0.1 M HEPES pH 7.5
0.1 M HEPES pH 7.5
0.1 M HEPES pH 7.5
0.1 M HEPES pH 7.5

0.1 M HEPES pH 7.5
0.1 M Tris pH 8.5
0.1 M Tris pH 8.5
0.1 M Tris pH 8.5
0.1 M Tris pH 8.5
0.1 M Tris pH 8.5
0.1 M Tris pH 8.5
0.1 M Tris pH 8.5
0.1 M BICINE pH 9.0
0.1 M BICINE pH 9.0
0.1 M BICINE pH 9.0

Tube
#
1.
2.

3.
4.
5.
6.
7.

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

22.
23.
24.
25.
26.
27.
28.
29.
30.

31.
32.
33.
34.
35.
36.
37.

38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.

                   Precipitant

10% w/v Polyethylene glycol 6,000
0.01 M Hexadecyltrimethylammonium bromide

25% v/v Ethylene glycol
35% v/v 1,4-Dioxane
5% v/v 2-Propanol
1.0 M Imidazole pH 7.0
10% w/v Polyethylene glycol 1,000
10% w/v Polyethylene glycol 8,000
10% v/v Ethanol
2.0 M Sodium chloride
30% v/v (+/-)-2-Methyl-2,4-pentanediol
1.0 M 1,6-Hexanediol
30% v/v Polyethylene glycol 400
30% w/v Polyethylene glycol monomethyl ether 2,000
2.0 M Ammonium sulfate
1.0 M Lithium sulfate monohydrate
2% v/v Ethylene imine polymer
35% v/v tert-Butanol
10% v/v Jeffamine M-600 ®
2.5 M 1,6-Hexanediol
1.6 M Magnesium sulfate heptahydrate
2.0 M Sodium chloride

12% w/v Polyethylene glycol 20,000
10% v/v 1,4-Dioxane
30% v/v Jeffamine M-600 ® 
1.8 M Ammonium sulfate
30% w/v Polyethylene glycol monomethyl ether 5,000
25% v/v Polyethylene glycol monomethyl ether 550
1.6 M Sodium citrate tribasic dihydrate pH 6.5
30% v/v (+/-)-2-Methyl-2,4-pentanediol
10% w/v Polyethylene glycol 6,000
5% v/v (+/-)-2-Methyl-2,4-pentanediol
20% v/v Jeffamine M-600 ® 
1.6 M Ammonium sulfate
2.0 M Ammonium formate
1.0 M Sodium acetate trihydrate
70% v/v (+/-)-2-Methyl-2,4-pentanediol
4.3 M Sodium chloride
10% w/v Polyethylene glycol 8,000
8% v/v Ethylene glycol
20% w/v Polyethylene glycol 10,000
3.4 M 1,6-Hexanediol
25% v/v tert-Butanol
1.0 M Lithium sulfate monohydrate
12% v/v Glycerol
50% v/v (+/-)-2-Methyl-2,4-pentanediol
20% v/v Ethanol
20% w/v Polyethylene glycol monomethyl ether 2,000
20% v/v Polyethylene glycol monomethyl ether 550
2.0 M Magnesium chloride hexahydrate
2% v/v 1,4-Dioxane
10% w/v Polyethylene glycol 20,000

Crystal Screen 2 contains forty-eight unique reagents.  To determine the formulation of each reagent, simply read across the page.

!"Buffer pH is that of a 1.0 M (0.5 M for MES monohydrate) 
stock prior to dilution with other reagent components:

pH with HCl or NaOH.

© 2000-2007 Hampton Research Corp. all rights reserved
Printed in the United States of America.  This guide or 

parts thereof may not be reproduced in any form without 
the written permission of the publishers.
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7.3.7 Detergent Screen 1/2 
 

 

 

 

 

 

 

 

Detergent Screen 1™ HR2-410  Reagent Formulation

Tube
#
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Solutions for Crystal Growth

           Classifi cation

Polyoxyethylene(9)dodecyl ether / Thesit ® / !-Dodecyl-"-hydroxy-poly(oxy-
1,2-ethanediyl)

Octaethyleneglycol Mono-n-dodecyl Ether

n-Dodecyl-#-D-maltopyranoside

#-D-Fructopyranosyl-!-D-glucopyranoside monododecanoate / Lauroyl 
sucrose / Dodecanoyl sucrose / Sucrose monododecanoate

6-Cyclohexyl-1-hexyl-#-D-maltoside

Octylphenoxypolyethoxyethanol / Polyethylene Glycol-p-isooctylphenyl
Ether

Hexadecyltrimethylammonium bromide / Cetyltrimethylammonium bromide 
/ Cetrimonium bromide / Palmityltrimethylammonium bromide

N,N-bis-(3-D-Gluconamidopropyl)deoxycholamide

n-Decyl-#-D-maltopyranoside

Lauryldimethylamine-N-oxide / DDAO / N,N-Dimethyl-1-dodecanamine-N-
oxide / n-Dodecyl-N,N-dimethylamine-N-oxide

5-Cyclohexyl-1-pentyl-#-D-maltoside

n-Dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate

n-Nonyl-#-D-glucopyranoside

n-Octyl-#-D-thioglucopyranoside / 1-s-Octyl-#-D-thioglucoside

N,N-Dimethyldecylamine-N-oxide

Methyl-6-O-(N-heptylcarbamoyl)-!-D-glucopyranoside

Sucrose monocaproylate / n-Octanoyl-#-D-fructofuranosyl-!-D-glucopy-
ranoside

Heptyl-#-D-thioglucoside

n-Octyl-#-D-glucopyranoside

3-Cyclohexyl-1-propyl-#-D-maltoside

Cyclohexylbutanoyl-N-hydroxyethylglucamide

n-Decyl-N,N-dimethyl-3-ammonio-1-propanesulfonate

Octanoyl-N-methylglucamide

n-Hexyl-#-D-glucoside

© 2000-2007 Hampton Research Corp. all rights reserved
Printed in the United States of America.  This guide or 

parts thereof may not be reproduced in any form without 
the written permission of the publishers.

           Detergent

C12E9

C12E8

n-Dodecyl-#-D-maltoside

Sucrose monolaurate

CYMAL ® -6

TRITON ® X-100

CTAB

Big CHAP, Deoxy

n-Decyl-#-D-maltoside

LDAO

CYMAL ® -5

ZWITTERGENT ® 3-12

n-Nonyl-#-D-glucoside

n-Octyl-#-D-thioglucoside

DDAO

HECAMEG ®

n-Octanoylsucrose

n-Heptyl-#-D-thioglucopyranoside

n-Octyl-#-D-glucoside

CYMAL ® -3

C-HEGA ® -10

ZWITTERGENT ® 3-10

MEGA ® -8

n-Hexyl-#-D-glucopyranoside

MW

avg. 583.0

538.8

510.6

524.6

508.5

650.0

364.46

862.1

482.6

229.41

494.5

335.6

306.4

308.4

201.35

335.4

468.5

294.4

292.4

466.5

377.5

307.6

321.4

264.3

CMC (mM)

0.05

0.11

0.17

0.3

0.56

0.90

1.00

1.4

1.80

2.0

5.0

4.0

6.50

9.00

10.4

19.5

24.4

30.0

20.0

34.5

35.0

40.0

79.0

250.0

[ Actual ]

0.5

1.1

1.7

3.0

5.6

9.0

10.0

14.0

18.0

20.0

50.0

40.0

65.0

90.0

104.0

195.0

244.0

300.0

200.0

345.0

350.0

400.0

790.0

2500.0

Type 1

N

N

N

N

N

N

I

N

N

N

N

Z

N

N

N

N

N

N

N

N

N

Z

N

N

1  N=NON-IONIC, I=IONIC, Z=ZWITTERIONIC
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Detergent Screen 2 ™ HR2-411  Reagent Formulation

Tube
#
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Solutions for Crystal Growth

           Classifi cation

Polyoxyethylene-polyoxypropylene Block Copolymer / Methyl-oxirane, 
polymer with oxirane, (C3H6O.C2H4O)x / Poloxamer 188 

BRIJ ®-35 / C12E23 / !-Dodecyl-w-hydroxy-poly(oxy-1,2-ethanediyl / 
Polyethylene glycol (23) monododecyl ether 

n-Dodecyl-"-D-maltopyranoside

BRIJ ®-58 / C16E20 / !-Hexadecyl-w-hydroxy-poly(oxy-1,2-ethanediyl / 
Polyethylene glycol (20) monohexadecyl ether 

TRITON ® X-114 / !-[(1,1,3,3-Tetramethylbutyl)phenyl]-w-hydroxy-
poly(oxy-1,2-ethanediyl) 

TRITON ® X-305 / !-[4-(1,1,3,3-Tetramethylbutyl)phenyl]-w-hydroxy-
poly(oxy-1,2-ethanediyl) 

TRITON ® X-405 / !-[4-(1,1,3,3-Tetramethylbutyl)phenyl]-w-hydroxy-
poly(oxy-1,2-ethanediyl) 

TWEEN ® 20 / Polyoxyethylene(20)sorbitan monolaurate / Poly(oxy-1,2-
ethanediyl) derivs., sorbitan monododecanoate 

TWEEN ®  80 / Polyoxyethylene(80)sorbitan monolaurate / Poly(oxy-1,2-
ethanediyl) derivs., (Z)-sorbitan mono-9-octadecanoate
 
Polyoxyethylene(6)decyl ether / 3,6,9,12,15,18-hexaoxaoctacosan-1-ol

Polyoxyethylene(9)decyl ether / !-Decyl-w-hydroxy-poly(oxy-1,2-
ethanediyl) 

Polyoxyethylene(10)dodecyl ether / 3,6,9,12,15,18,24,27,30-
decaoxadotetracontan-1-ol 

Polyoxyethylene(8)tridecyl ether

Isopropyl-"-D-thiogalactopyranoside, ANAGRADE ® / 1-Methylethyl-1-
thio-"-D-galactopyranoside 

None

Decanoyl-N-hydroxyethylglucamide 

Pentaethylene glycol monooctyl ether, ANAGRADE ® / Octyl pentaethylene 
glycol ether / Octylpentaglycol / 3,6,9,12,15-Pentaoxatricosan-1-ol
 
3-[(3-Cholamidopropyl)-dimethylammonio]-1-propane sulfonate / N,N-
Dimethyl-3-sulfo-N-[3-[[3!,5",7!,12!)-3,7,12-trihydroxy-24-oxocholan-
24-yl]amino]propyl]-1-propanaminium hydroxide, inner salt 

3-[(3-Cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate

Cyclohexylpentanoyl-N-hydroxyethylglucamide

Nonanoyl-N-hydroxyethylglucamide

Cyclohexylpropanoyl-N-hydroxyethylglucamide

Octanoyl-N-hydroxyethylglucamide 

Cyclohexylethanoyl-N-hydroxyethylglucamide

© 2000-2007 Hampton Research Corp. all rights reserved
Printed in the United States of America.  This guide or 

parts thereof may not be reproduced in any form without 
the written permission of the publishers.

           Detergent

Pluronic ® F-68

ANAPOE ® -35

2,6-Dimethyl-4-heptyl-"-D-maltopyranoside

ANAPOE ® -58

ANAPOE ® -X-114

ANAPOE ® -X-305

ANAPOE ® -X-405

ANAPOE ® -20

ANAPOE ® -80

ANAPOE ® -C10E6

ANAPOE ® -C10E9

ANAPOE ® -C12E10

ANAPOE ® -C13E8

IPTG

 n-Dodecyl-N,N-dimethylglycine

HEGA ® -10

C8E5

CHAPS

CHAPSO

C-HEGA ® -11

HEGA ® -9

C-HEGA ® -9

HEGA ® -8

C-HEGA ® -8

MW

~ 8400

~ 1198

468.5

~ 1122

~ 536

~ 1526

~ 1967

~ 1228

~ 1310

~ 423

~ 555

~ 627

~ 553

238.31

271.4

379.5

350.5

614.9

630.9

391.5

365.5

363.5

351.5

349.5

CMC (mM)

17.9

0.091

27.5

0.004

0.2

None

0.81

0.059

0.012

0.9

1.3

0.2

0.1

None

1.5

7.0

7.1

8.0

8.0

11.5

39.0

108.0

109.0

277

[ Actual ]

10% w/v

10% w/v

275 mM

10% w/v

10% w/v

10% w/v

10% w/v

10% w/v

10% w/v

10% w/v

10% w/v

10% w/v

10% w/v

10% w/v

15.0 mM

70.0 mM

71.0 mM

80.0 mM

80.0 mM

115.0 mM

390.0 mM

1.08 M

1.09 M

6.6% w/v

Type 1

N

N

N

N

N

N

N

N

N

N

N

N

N

N

Z

N

N

Z

Z

N

N

N

N

N

1  N=NON-IONIC, I=IONIC, Z=ZWITTERIONIC
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7.3.8 Additive screen 
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Solutions for Crystal Growth

 Tube                   Salt
   #

1.   (A1)    0.1 M Barium chloride dihydrate
2.   (A2)    0.1 M Cadmium chloride hydrate
3.   (A3)      0.1 M Calcium chloride dihydrate
4.   (A4)      0.1 M Cobalt(II) chloride hexahydrate
5.   (A5)      0.1 M Copper(II) chloride dihydrate
6.   (A6)   0.1 M Magnesium chloride hexahydrate
7.   (A7)     0.1 M Manganese(II) chloride tetrahydrate
8.   (A8)      0.1 M Strontium chloride hexahydrate
9.   (A9)      0.1 M Yttrium(III) chloride hexahydrate
10. (A10)    0.1 M Zinc chloride
11. (A11)    0.1 M Iron(III) chloride hexahydrate
12. (A12)    0.1 M Nickel(II) chloride hexahydrate
13. (B1)      0.1 M Chromium(III) chloride hexahydrate
14. (B2)      0.1 M Praseodymium(III) acetate hydrate
15. (B3)      1.0 M Ammonium sulfate
16. (B4)      1.0 M Potassium chloride
17. (B5)      1.0 M Lithium chloride
18. (B6)      2.0 M Sodium chloride
19. (B7)      0.5 M Sodium fl uoride
20. (B8)      1.0 M Sodium iodide
21. (B9)      2.0 M Sodium thiocyanate
22. (B10)    1.0 M Potassium sodium tartrate tetrahydrate
23. (B11)    1.0 M Sodium citrate tribasic dihydrate
24. (B12)    1.0 M Cesium chloride
25. (C1)      1.0 M Sodium malonate pH 7.0
26. (C2)      0.1 M L-Proline
27. (C3)      0.1 M Phenol
28. (C4)      30% v/v Dimethyl sulfoxide
29. (C5)      0.1 M Sodium bromide
30. (C6)      30% w/v 6-Aminohexanoic acid
31. (C7)      30% w/v 1,5-Diaminopentane dihydrochloride
32. (C8)      30% w/v 1,6-Diaminohexane
33. (C9)      30% w/v 1,8-Diaminooctane
34. (C10)    1.0 M Glycine
35. (C11)    0.3 M Glycyl-glycyl-glycine
36. (C12)    0.1 M Taurine
37. (D1)      0.1 M Betaine hydrochloride
38. (D2)      0.1 M Spermidine
39. (D3)      0.1 M Spermine tetrahydrochloride
40. (D4)      0.1 M Hexammine cobalt(III) chloride
41. (D5)      0.1 M Sarcosine
42. (D6)      0.1 M Trimethylamine hydrochloride
43. (D7)      1.0 M Guanidine hydrochloride
44. (D8)      0.1 M Urea
45. (D9)      0.1 M !-Nicotinamide adenine dinucleotide hydrate
46. (D10)    0.1 M Adenosine-5’-triphosphate disodium salt hydrate
47. (D11)    0.1 M TCEP hydrochloride
48. (D12)    0.01 M GSH (L-Glutathione reduced),                                                           
                   0.01 M GSSG (L-Glutathione oxidized)

 Tube          Classifi cation   
   #

1.   (A1)    Multivalent 
2.   (A2)      Multivalent
3.   (A3)      Multivalent
4.   (A4)      Multivalent
5.   (A5)      Multivalent
6.   (A6)      Multivalent
7.   (A7)      Multivalent
8.   (A8)      Multivalent
9.   (A9)      Multivalent
10. (A10)    Multivalent
11. (A11)    Multivalent
12. (A12)    Multivalent
13. (B1)      Multivalent
14. (B2)      Multivalent
15. (B3)      Salt
16. (B4)      Salt
17. (B5)      Salt
18. (B6)      Salt
19. (B7)      Salt
20. (B8)      Salt
21. (B9)      Salt
22. (B10)    Salt
23. (B11)    Salt
24. (B12)    Salt
25. (C1)      Salt
26. (C2)      Amino Acid
27. (C3)      Dissociating Agent
28. (C4)      Dissociating Agent
29. (C5)      Dissociating Agent
30. (C6)      Linker
31. (C7)      Linker
32. (C8)      Linker
33. (C9)      Linker
34. (C10)    Linker
35. (C11)    Linker
36. (C12)    Linker
37. (D1)      Linker
38. (D2)      Polyamine
39. (D3)      Polyamine
40. (D4)      Polyamine
41. (D5)      Polyamine / Osmolyte
42. (D6)      Chaotrope
43. (D7)      Chaotrope
44. (D8)      Chaotrope
45. (D9)      Co-factor
46. (D10)    Co-factor
47. (D11)    Reducing Agent
48. (D12)    Reducing Agent

  Tube        Suggested Drop Concentration   
   #

1.   (A1)     0.01 M (10 mM) 
2.   (A2)     0.01 M (10 mM)
3.   (A3)    0.01 M (10 mM)
4.   (A4)      0.01 M (10 mM)
5.   (A5)     0.01 M (10 mM)
6.   (A6)      0.01 M (10 mM)
7.   (A7)      0.01 M (10 mM)
8.   (A8)      0.01 M (10 mM)
9.   (A9)      0.01 M (10 mM)
10. (A10)     0.01 M (10 mM)
11. (A11)     0.01 M (10 mM)
12. (A12)    0.01 M (10 mM)
13. (B1)      0.01 M (10 mM)
14. (B2)      0.01 M (10 mM)
15. (B3)      0.1 M (100 mM)
16. (B4)      0.1 M (100 mM)
17. (B5)      0.1 M (100 mM)
18. (B6)      0.2 M (200 mM)
19. (B7)      0.05 M (50 mM)
20. (B8)      0.1 M (100 mM)
21. (B9)      0.2 M (200 mM)
22. (B10)     0.1 M (100 mM)
23. (B11)    0.1 M (100 mM)
24. (B12)    0.1 M (100 mM)
25. (C1)      0.1 M (100 mM)
26. (C2)      0.01 M (10 mM)
27. (C3)      0.01 M (10 mM)
28. (C4)      3.0%
29. (C5)      0.01 M (10 mM)
30. (C6)      3.0%
31. (C7)      3.0%
32. (C8)      3.0%
33. (C9)      3.0%
34. (C10)    0.1 M (100 mM)
35. (C11)    0.03 M (30 mM)
36. (C12)    0.01 M (10 mM)
37. (D1)      0.01 M (10 mM)
38. (D2)       0.01 M (10 mM)
39. (D3)       0.01 M (10 mM)
40. (D4)       0.01 M (10 mM)
41. (D5)      0.01 M (10 mM)
42. (D6)      0.01 M (10 mM)
43. (D7)      0.1 M (100 mM)
44. (D8)      0.01 M (10 mM)
45. (D9)      0.01 M (10 mM)
46. (D10)    0.01 M (10 mM)
47. (D11)    0.01 M (10 mM)
48. (D12)    0.001 M (1 mM)

Additive Screen ™ HR2-428  Reagent Formulation

Additive Screen contains ninety-six unique reagents beginning at position A1.
To determine the formulation of each reagent, simply read across the page.
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Solutions for Crystal Growth

 Tube                   Salt
   #

49. (E1)      0.1 M Ethylenediaminetetraacetic disodium salt dihydrate
50. (E2)      5% w/v Polyvinylpyrrolidone K15
51. (E3)      30% w/v Dextran sulfate sodium salt (Mr 5,000)
52. (E4)      40% v/v Pentaerythritol ethoxylate (3/4 EO/OH)
53. (E5)      10% w/v Polyethylene glycol 3,350
54. (E6)      30% w/v D-(+)-Glucose monohydrate
55. (E7)      30% w/v Sucrose
56. (E8)      30% w/v Xylitol
57. (E9)      30% w/v D-Sorbitol
58. (E10)    12% w/v myo-Inositol
59. (E11)    30% w/v D-(+)-Trehalose dihydrate
60. (E12)    30% w/v D-(+)-Galactose
61. (F1)      30% v/v Ethylene glycol
62. (F2)      30% v/v Glycerol
63. (F3)      3.0 M NDSB-195
64. (F4)      2.0 M NDSB-201
65. (F5)      2.0 M NDSB-211
66. (F6)      2.0 M NDSB-221
67. (F7)      1.0 M NDSB-256
68. (F8)      0.15 mM CYMAL ® -7
69. (F9)      20% w/v Benzamidine hydrochloride hydrate
70. (F10)    5% w/v n-dodecyl-N,N-dimethylamine-N-oxide, (LDAO, DDAO)
71. (F11)    5% w/v n-Octyl-!-D-glucoside
72. (F12)    5% w/v n-Dodecyl-!-D-maltoside
73. (G1)     30% w/v Trimethylamine N-oxide dihydrate
74. (G2)     30% w/v 1,6-Hexanediol
75. (G3)     30% v/v (+/-)-2-Methyl-2,4-pentanediol
76. (G4)     50% w/v Polyethylene glycol 400
77. (G5)     50% v/v Jeffamine M-600 ® pH 7.0
78. (G6)     40% v/v 2,5-Hexanediol
79. (G7)     40% v/v (±)-1,3-Butanediol
80. (G8)     40% v/v Polypropylene glycol P 400
81. (G9)     30% v/v 1,4-Dioxane
82. (G10)   30% v/v Ethanol
83. (G11)   30% v/v 2-Propanol
84. (G12)   30% v/v Methanol
85. (H1)     40% v/v 1,4-Butanediol
86. (H2)     40% v/v tert-Butanol
87. (H3)     40% v/v 1,3-Propanediol
88. (H4)     40% v/v Acetonitrile
89. (H5)     40% v/v Formamide
90. (H6)     40% v/v 1-Propanol
91. (H7)     5% v/v Ethyl acetate
92. (H8)     40% v/v Acetone
93. (H9)     0.25% v/v Dichloromethane
94. (H10)   7% v/v 1-Butanol
95. (H11)   40% v/v 2,2,2-Trifl uoroethanol
96. (H12)   40% v/v 1,1,1,3,3,3-Hexafl uoro-2-propanol

 Tube          Classifi cation   
   #

49. (E1)      Chelating Agent
50. (E2)      Polymer
51. (E3)      Polymer
52. (E4)      Polymer
53. (E5)      Polymer
54. (E6)      Carbohydrate
55. (E7)      Carbohydrate
56. (E8)      Carbohydrate
57. (E9)      Carbohydrate
58. (E10)    Carbohydrate
59. (E11)    Carbohydrate
60. (E12)    Carbohydrate
61. (F1)      Polyol
62. (F2)      Polyol
63. (F3)      Non-detergent
64. (F4)      Non-detergent
65. (F5)      Non-detergent
66. (F6)      Non-detergent
67. (F7)      Non-detergent
68. (F8)      Amphiphile
69. (F9)      Amphiphile
70. (F10)    Detergent
71. (F11)    Detergent
72. (F12)    Detergent
73. (G1)     Osmolyte
74. (G2)     Organic, Non-volatile
75. (G3)     Organic, Non-volatile
76. (G4)     Organic, Non-volatile
77. (G5)     Organic, Non-volatile
78. (G6)     Organic, Non-volatile
79. (G7)     Organic, Non-volatile
80. (G8)     Organic, Non-volatile
81. (G9)     Organic, Volatile
82. (G10)   Organic, Volatile
83. (G11)   Organic, Volatile
84. (G12)   Organic, Volatile
85. (H1)     Organic, Volatile
86. (H2)     Organic, Volatile
87. (H3)     Organic, Volatile
88. (H4)     Organic, Volatile
89. (H5)     Organic, Volatile
90. (H6)     Organic, Volatile
91. (H7)     Organic, Volatile
92. (H8)     Organic, Volatile
93. (H9)     Organic, Volatile
94. (H10)   Organic, Volatile
95. (H11)   Organic, Volatile
96. (H12)   Organic, Volatile

  Tube        Suggested Drop Concentration   
   #

49. (E1)      0.01 M (10 mM)
50. (E2)       0.5%
51. (E3)       3.0%
52. (E4)       4.0%
53. (E5)       1.0%
54. (E6)       3.0%
55. (E7)       3.0%
56. (E8)       3.0%
57. (E9)       3.0%
58. (E10)     1.2%
59. (E11)     3.0%
60. (E12)     3.0%
61. (F1)       3.0%
62. (F2)       3.0%
63. (F3)       0.3 M (300 mM)
64. (F4)       0.2 M (200 mM)
65. (F5)       0.2 M (200 mM)
66. (F6)       0.2 M (200 mM)
67. (F7)       0.1 M (200 mM)
68. (F8)       0.000015 M (0.015 mM)
69. (F9)       2.0%
70. (F10)     0.5%
71. (F11)     0.5%
72. (F12)     0.5%
73. (G1)      3.0%
74. (G2)      3.0%
75. (G3)      3.0%
76. (G4)      5.0%
77. (G5)      5.0%
78. (G6)      4.0%
79. (G7)      4.0%
80. (G8)      4.0%
81. (G9)      3.0%
82. (G10)    3.0%
83. (G11)    3.0%
84. (G12)    3.0%
85. (H1)      4.0%
86. (H2)      4.0%
87. (H3)      4.0%
88. (H4)      4.0%
89. (H5)      4.0%
90. (H6)      4.0%
91. (H7)      0.5%
92. (H8)      4.0%
93. (H9)      0.025%
94. (H10)    0.7%
95. (H11)    4.0%
96. (H12)    4.0%

Additive Screen ™ HR2-428  Reagent Formulation

Additive Screen contains ninety-six unique reagents beginning at position A1.
To determine the formulation of each reagent, simply read across the page.
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