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Abstract. In this paper we introduce and analyze a new Schur complement approximation
based on incomplete Gaussian elimination. The approximate Schur complement is used to
develop a multigrid method. This multigrid method has an algorithmic structure that is very
similar to the algorithmic structure of classical multigrid methods. The resulting method is
almost purely algebraic and has interesting robustness properties with respect to variation in
problem parameters.
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1 Introduction

In recent years extensive research has been devoted to the development and analysis of multi­
grid methods for elliptic boundary value problems which converge with an optimal rate inde­
pendent of the regularity of the solution (cf. [17], [18] and the references therein). Clearly this
is a form of robustness. Another interesting topic with respect to robustness is the dependence
of the multigrid convergence rate on certain problem parameters. An example of such a prob­
lem parameter is the ratio of anisotropy in an elliptic boundary value problem. There are some
recent papers (e.g. [5], [6], [9], [14]) in which multigrid methods are treated that are robust with
respect to variation in this anisotropy parameter. A convection-diffusion equation is another
example in which we have interesting problem parameters (convection/diffusion ratio, flow
direction). In some recent work ([10], [11], [12]) we studied multigrid methods based on Schur
complement approximation. An important property of these methods is a strong robustness
w.r.t. variation in relevant problem parameters. In this paper we consider a multigrid method
based on Schur complement approximation that is closely related to the methods in [10], [12].
However, in this paper we introduce a new and very simple Schur complement approximation.
This new approximation is based on the algebraic tool of incomplete Gaussian elimination.
We assume two nested grids ("coarse" and "fine") and on the fine mesh the new mesh points
are ordered first and then the coarse grid points. This yields a block two by two partitioning
of the fine grid stiffness matrix A:
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Based on the block LU factorization

we consider a linear iterative method with iteration matrix

(1.1)

In (1.1), SA is a preconditioner of the Schur complement SA and w a scaling parameter. We
will show that the linear iterative method with iteration matrix as in (1.1) can be implemented
using an algorithmic structure that is very similar to the structure of classical two-grid meth­
ods, which is now well understood. As in the classical approach we then obtain a multigrid
(V- or W-) cycle if we apply one or more recursive calls for solving the coarse grid problem
(with matrix SA) approximately.
A main topic of this paper is the choice for SA. Usually, in multigrid methods based on Schur
complement approximation, the approximate Schur complement SA is based on the coarse grid
stiffness matrix (e.g. [1], [2], [9], [12]). In [10] one can find a more advanced approach (resulting
in a better approximation of SA) in which the Schur complement is approximated by the exact
Schur complement of modified fine grid equations. These modified fine grid equations are ob­
tained using information about the underlying differential equation (e.g. convection-diffusion
equation). In this paper we introduce and analyze a very simple incomplete Gaussian elim­
ination approach. Besides the given (fine grid) matrix this incomplete Gaussian elimination
process only uses the underlying structure of a sequence of refined meshes. Thus we obtain a
multigrid method which is almost purely algebraic. In a certain sense our multigrid method is
a "perturbation" of the direct method of Cyclic Reduction (cr. [7], [15]), with a much larger
range of applicability than the Cyclic Reduction method.
Using Fourier analysis we prove that the two-grid method has an interesting robustness prop­
erty with respect to variation in problem parameters.

The remainder of this paper is organized as follows. In Section 2 we derive a few elementary
algebraic properties of (approximate) block Gaussian elimination. In Section 3 we describe the
Schur complement approximation based on incomplete Gaussian elimination. In Section 4 we
apply Fourier analysis to the two-grid method and we derive estimates, both numerically and
theoretically, for the contraction number of the two-grid method. In Section 5 we show results
of numerical experiments with the multigrid W-cycle applied to a few test problems.

2 Block Gaussian elimination

In this section we discuss some algebraic aspects of a two-grid method based on Schur com­
plement approximation.
We consider a second order elliptic linear boundary value problem on a plane polygonal domain
O. Let OR be a given "coarse" mesh on 0 consisting of triangles or quadrilaterals. By Oh
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we denote the corresponding "fine" mesh that results after a standard refinement of OH. The
space of grid functions on OH(Oh) is denoted by UH(Uh). In UH and Uh we use the standard
nodal basis. The ordering of the basis functions in Uh is chosen such that the basis functions
corresponding to nodes in Oh\OH are taken first. This induces a partitioning of u E Uh into
two blocks. We assume a given finite element or finite difference discretization method on Oh,
resulting in a linear system

with Ah : Uh -+ Uh nonsingular. For ease of notation we drop the subscript h, i.e. we write
A = Ah. The ordering of the nodes yields a block partitioning

_ [An A12](2.2) A - ,
A21 A22

in which [An Ad corresponds to the equations in the points of Oh\OH. We assume that An
is nonsingular. We introduce the following notation, in which we use a block partitioning as
in (2.2):

(2.3a)

(2.3b)

(2.3c)

(2.3d)

p ,= [ ~] ,ro= [0 II

[
-All A12 ]

PA:=
I

(" block Jacobi" )

("Schur complement")

(" prolongation, restriction")

(" matrix dependent prolongation") .

Note the identity

i.e., the Schur complement can be obtained with a Galerkin approach if we use a suitable
matrix dependent prolongation.
The nonsingularity of A implies nonsingularity of the Schur complement SA. The Schur
complement originates, in a natural way, from a block LV factorization of A:
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We now assume a given nonsingular Schur complement preconditioner SA. Our choice for SA
will be discussed in Section 3. We also use a parameter w that can be used to correct a possible
wrong scaling of SA compared to SA (such that wSA"ISA ::::::: 1). For given SA and w there is an
obvious candidate for a corresponding iterative method for solving the system in (2.1), namely
the linear iterative method with iteration matrix W defined by

(2.5) W = 1 _ ([ 1 0 ] [ All
A21 Ail 1 0

The choice for SA will be such that SA has properties (e.g. w.r.t. sparsity and stability)
comparable to those of A. Due to this we can solve the coarse grid problem with matrix SA
approximately using a recursive call.
The implementation of classical multigrid methods (cr. [4]) based on presmoothing, coarse
grid correction, postsmoothing is now well understood. The result in (2.6a) below shows that
the method based on approximate LU factorization (iteration matrix as in (2.5)) can be im­
plemented in the classical multigrid style.
By u(M) we denote the spectrum of an operator M.

Lemma 2.1. The following identities hold:

(2.6a)

(2.6b)

(2.6c)

W = J(I - wpSA"lrA)J

W k = PA(I - WSA"ISA)k r (k E IN)

u(W) = u(1 - WSA"ISA) U {O} .

Proof. Using the relations J = PAr, J2 = J, SA = rApA we obtain

On the other hand we also have

( [ I 0][ Au Au ]f(2.8) W=1-
A2l Ail 1 0 W-ISA A

[~
-Ai; An ][r1 0][ I ~]A=1- ~l wSA"1 -A21 Ail

=I-[~
AlII A12 (I - WSA"ISA) ]

- IwSA" SA
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Comparison of the results in (2.7) and in (2.8) yields the identity in (2.6a). The result in (2.8)
shows that (2.6b) holds for k = 1. The identity in (2.6b) for k > 1 follows from a simple
induction argument. Using (2.6b) with k = 1 and rpA = I, we obtain the result in (2.6c). 0

Clearly, the algorithmic structure in (2.6a) is as in a classical two-grid method. As in the
standard approach we obtain a multigrid (V- or W-) cycle if we apply one or more recursive
calls for solving the coarse grid problem approximately. A complete description of a multigrid
W-cycle algorithm is given in Section 5. We emphasize that the method with iteration matrix
as in the right hand side of (2.6a) is not based on smoothing and coarse grid correction, but
is just a special implementation of approximate block LU factorization. Using J2 = J we see
that essentially we have to solve only one An system per iteration of the two-grid method. In
practice (cf. §5) the An system is solved approximately. In general it is rather easy to obtain
a satisfactory efficient approximate solver for the An system. For the analysis in this paper
we assume that the An systems are solved exactly.

Remark 2.2. In certain special cases the choice SA = SA, w = 1 is feasible. For example,
in the ID case if the matrix A corresponds to a 3-point discretization stencil. The multigrid
V-cycle based on (2.6a) then results in a direct method. This multigrid V-cycle is an imple­
mentation of (exact) block Gaussian elimination which is closely related to cyclic reduction
type of methods (cf. [7], [15]). Also, for certain special problems in 2D one can obtain a Schur
complement SA with acceptable fill-in. Examples of such direct block LU factorization meth­
ods are the cyclic reduction method ([7], [15]) and the total reduction method ([13]). However,
for most interesting problems the choice SA = SA is not feasible due to an unacceptable amount
of fill-in.

3 A Schur complement approximation based on incomplete Gaus­
sian elimination

As is indicated in Remark 2.2, for most problems the choice SA = SA is not feasible. The
range of applicability is much larger when we consider approximate Schur complement meth­
ods. Multigrid type of methods based on Schur complement approximation already exist. In
these multigrid methods the Schur complement is approximated using (an approximation of)
the coarse grid stiffness matrix. Examples of such methods can be found in [1], [2] and in
[12]. For a discussion of the differences between these methods we refer to [12]. The method
presented in [12] is based on the two-grid method in (2.6a) with SA = AH, where AH is the
coarse grid stiffness matrix. In [10] one can find a more advanced approach (resulting in a bet­
ter approximation of SA) in which the Schur complement is approximated by the exact Schur
complement of modified fine grid equations. These modified fine grid equations are obtained
using information of the underlying differential equation (cf. Remark 3.2).
In this paper we propose a very simple incomplete Gaussian elimination approach. Besides the
given (fine grid) matrix this incomplete Gaussian elimination process only uses the underlying
structure of a sequence of refined meshes. Thus we obtain a multigrid method which is almost
purely algebraic.

As in Section 2 we consider a coarse mesh D.H and a fine mesh D.h that is obtained after
a standard refinement of D.H.
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Below we use the notion of a directed graph as explained in e.g. [3]. We assume that A results
from a discretization method with linear finite elements on triangles or with 9-point (or 5-point,
7-point) finite differences on a square grid. Thus at a vertex v in the graph of A we have a
typical graph structure as shown in Figure 1.

•
linear finite elements

Fig.

·~~jlij·
.--0-.
2?u~• • •

9-point finite differences

1. Typical graph structures.

• : vertices in the graph at v
-.: edges in the graph at v

: vertex corresponding
to Oh\OH

: vertex corresponding
to OH

•

•

.--~--.I , ,

I ''F,I
+---1':\--~
I' I ~ I
I ,I

.---.-- c.

We now consider Gaussian elimination from a graph theoretical point of view. To obtain the
~

Schur complement system we should eliminate all edges CF, with C a vertex corresponding to
~ ~

a grid point in OH and F a vertex corresponding to a grid point in Oh\OH (note that CF'/;FC
because we have a directed graph).

~

We consider an arbitrary edge CF (cf. Figure 2a) and we perform an incomplete Gaussian
elimination as follows. First we apply a standard Gaussian elimination step using the equation

~

at F to eliminate the edge CF. This results in fill-in edges as shown in Figure 2b. Now fill-in
~

edges CG with G a vertex corresponding to a grid point in Oh\OH are eliminated using a
~

simple linear interpolation process. For example, an edge CG as in Figure 2b with associated
~ ~

value a is removed and replaced by new edges CD I , CD 2 with associated value ~a. An edge
~ ~ ~ ~ ~

CGI (cf. Figure 2b) with associated value a is replaced by edges CD I ,CD2 ,CD3 ,CC with
~

associated value ~a. So after this incomplete elimination step we have removed the edge CF
and created only fill-in edges between vertices corresponding to coarse grid points (cf. Figure

~

2c). Applying this elimination process for all edges CF results in a decoupling of the coarse
grid unknowns from the unknowns corresponding to grid points in Oh\OH. For the Schur
complement approximation SA we use the resulting system of coarse grid equations..--.--.-- ...--.I I I I I

I I IF I I.--.--.--.--..
I I J I I
I I I I I.--.-- --.--.C

Fig. 2a. Edge cF that has to be eliminated.

Remark 3.1. From Figure 2c it is clear that sparsity is preserved in the incomplete Gaussian
elimination process. Also note that if the given matrix A has nonpositive off-diagonal elements
and is weakly diagonally dominant, then the resulting Schur complement approximation SA
has these properties, too. In this sense, stability is preserved.

Remark 3.2. We now comment on implementation aspects of the incomplete Gaussian elimin-
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G D2
.---.:-- --.

I I I
I I I I

.--- .. - *-- ..
I I IG1 I
I I I I• --.....,=-=i~,.,. --•

D3

Fig. 2b. Fill-in edges after elimination cP.

Fig. 2.c Fill-in edges after linear interpolation.

ation process. Consider the situation as shown in Figure 2 (finite difference case). Let /3 be
---+

the value associated with the edge CF. Furthermore, at F we have a 9-point stencil denoted
by

[

-aWW -aN -aNE]
(3.1) -aw a -aE .

-asw -as -aSE

After elimination and linear interpolation we obtain fill-in edges and associated values as shown
in Figure 3.

f31 = /3(as + ~(asE + asw) + Haw + aE))!a
f32 = /3(lasw + ~aw)!a
f33 = /3(1aSE + ~aE)!a
/34 = f3(-'iaNW + ~aw)!a
/35 = /3(aN + HaNE + aNW) + Haw + aE))!a
/36 = /3(~aNE + ~aE)!a.

Fig. 3 Graph with associated values after incomplete Gaussian elimination.

The same result as in Figure 3 is obtained if we first modify the equation in the point F E
---+

Oh\OH and then eliminate the edge C F using this modified equation. The modification process
is based on linear interpolation, Le. the stencil as in (3.1) is replaced by the stencil

(3.2) [
-(!aN~+~aW) : -(aN+!(aNE+a:w)+Haw+aE)) : -(!aN:+~aE)]

-(!asw + ~aw) 0 -(as + ~(asE + asw) + Haw + aE)) 0 -(~asE + ~aE)
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--+-
Elimination of the edge C F using the stencil in (3.2) yields the result shown in Figure 3. In
matrix block form the modified system of equations can be represented as

with An diagonal. The Schur complement approximation SA, based on incomplete Gaussian
elimination, is precisely the exact Schur complement of A:

(3.3)

Based on (3.3) we can implement the incomplete Gaussian elimination using the Galerkin
approach, that is often used in multigrid algorithms. Given A, we first determine the matrix
dependent prolongation PA (here the linear interpolation is used). Then we compute the coarse
grid operator SA = rApA. We emphasize that this Galerkin approach is just a special (and
often convenient) implementation of the incomplete Gaussian elimination described above.

4 Fourier analysis of the two-grid method

We consider the usual setting in which a Fourier analysis is applicable (cf. [4], [16]). On
0:= (-1, IF we introduce a uniform square grid with mesh size h:

(4.1) Dh := {(x, y) E 0 I x = vh, y = jlh, 1 - N ~ v, jl ~ N} ,

with N := Ilh. In f2(D h ) we have 4N2 basis vectors e~1J. defined by

We assume N to be even and introduce a coarse grid space with mesh size H := 2h, NH := N 12,
and DH as in (4.1) with hand N replaced by Hand NH respectively. In f2(DH) we use the
Fourier basis

The vectors in (4.2) form an orthonormal basis with respect to a scaled Euclidean inner product,
and thus the Fourier transform

N

Qh : (avlJ.h-N~v,IJ.~N -+ L aVlJ.e~1J.
v,lJ.=l-N

is unitary. Every "low" frequency (v,jl) with 1 - NH ~ V,jl ~ NH is associated with the
"high" frequencies (Vi, jl), (v, jl/), (Vi, jl/) where Vi, jl' are defined by
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I {v + N if v:::; 0v -
- v - N if v > 0

I_{P,+N ifp,:::;O
p, - p, - N if p, > 0 .

2 2 II II~ II'~ II~' II'~'Clearly f (Qh) is a direct sum of the N subspaces Uh~ := span{eh ,eh ,eh ,eh }, 1-N H :::;

v,p, :::; NH. By Q~~ we denote the 4N2 X 4 matrix with columns these basis vectors of U~~:

We consider an operator A = Ah : f 2(Qh) -+ f 2(Qh) that can be represented by a constant
9-point difference star

(4.3) [A] = [ =~~
-134

4

with 0 :::; Oi,l3i, L (Oi + l3i) = 1. We also assume 01 + 03 =1= 0 and 02 + 04 =1= 0, which
i=1

guarantees that only the constant function is in the kernel of the operator A. The Fourier modes
are eigenvectors of the operator A, i.e. we have (Q~~)*AQ~1t = diag(d~~,d~~,d~~,d~~) (we
use the adjoint w.r.t. the scaled Euclidean inner product). For the eigenvalues d?, 1- NH :::;
v, P, :::; NH, we have the following formulas

(4.4a)

(4.4b)

(4.4c)

(4.4d)

with

(4.5a)

(4.5b)

(4.5c)

d? = 1 - (v + w) - z

d~~ = 1 + (v - w) + z

d~~ = 1 - (v - w) + z

d~~=l+(v+w)-z,

w = w(p,) = 02e1l"i~h + 04e-1l"i~h

z = z(v, p,) = 131 e-1l"i(II-~)h + 132e1l"i(II+~)h + 133e1l"i(II-~)h + 134e-1l"i(II+~)h .

In the remainder we also use the notation

(4.6) Sk = sin(~k1rh), Ck = cos(!kll'h) .

For (v, p,) =1= (0,0) we introduce the harmonic mean of the eigenvalues d?:

(4.7) 1l1l1t := 4 (t lid?) -1 (1 - NH :::; v, p, :::; NH) .
3=1
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In Lemma 2.1 it is shown that for the two-grid iteration matrix W we have u(W) = u(1 ­
WSA

1SA) U {O}. So the convergence (rate) of the two-grid method is determined by u(SA1SA).
Below we derive estimates, both numerically and theoretically, for this spectrum. We use
SA = SA as explained in Section 3 (cf. Remark 3.2). First we derive expressions for the eigen­
values of SAlSA (Lemma 4.1, Lemma 4.2, Corollary 4.3) and then we analyze the dependence
of u(Si1SA) on the coefficients Qj,(3j in the stencil of A.

For SA, the Schur complement of A, we have the following result, that is proved in [10] (cf.
also [12]):

Lemma 4.1. The Fourier mode e';: (1- NH :$ v,j.t:$ NH, (v,j.t) =1= (0,0)) is an eigenvector
of SA with corresponding eigenvalue the harmonic mean of d~l-', d~l-', d~l-', d~l-', Le.:

To be able to apply Fourier analysis to SA = rApA we first introduce some notation. As
discussed in Remark 3.2 we have modified equations [All ..1.12] in the grid points of Oh\OH.
The grid points of Oh\OH are divided in three sets:

O~l) = {(x,y) E Oh\OH I y = kH, k E~}

O~2) = {(x,y) E Oh\OH I x = kH, k E~}

O~3) = (Oh\OH)\(O~l) U O~2)) .

Note that for given j E {I, 2, 3} A has a constant difference star in the points of O~), thus for
a suitable T('J), independent of (x, y) E O~) we have

In Lemma 4.2 it is shown that the eigenvalues of SA can be expressed in terms of these T(,J)
and the eigenvalues of A. A proof of this lemma can be found in [10].

Lemma 4.2. For (v, j.t) =1= (0,0) with 1 - NH :$ v, j.t :$ NH the following holds:

(4.10) S _evi-' - {dVIJ. + 1 (TVIJ. + TVIJ.) (dVIJ. dVIJ.) + 1 (TVIJ. _ TVIJ.) (dVIJ. _ dVIJ.)
A H - 1 4 (1) (2) 4 - 1 4 (1) (2) 2 3

+~T('~((d~IJ. + d~IJ.) - (d~IJ. + d~IJ.))}e';: •

On o~2) we have (cf. Remark 3.2) the stencil

10



_ [ -(!.81 + ~ad 0 -(a2 + !(.81 + .82) + Hal + a3)) 0 -(!.82 + ~a3) ]

[A] = 0 0 1 0 0

-(!.84 + ~al) 0 -(a4 + !(.83 + .84) + Hal + a3)) 0 -(!.83 + ~a3)

A straightforward computation yields that for T('t> as in (4.9) we have the expression

with d?\ V, z, Sv as in (4.4), (4.5), (4.6) and

Similarly, we obtain for T{i) and T('~ the expressions

(4.11b) T{i) =drJL + 1/lILW + 2s;z ,

(4 11) /Ill d/l JL + 2( 2 + 2 )• C T(3) = I S/lW SILV •

When we substitute the results from (4.11) in (4.10), use the definitions in (4.4) and rearrange
the terms in the resulting expression, we obtain

Corollary 4.3. For (v,f..l) i= (0,0) with 1- NH ~ V,f..l ~ NH we have

From Lemma 4.1 and Corollary 4.3 we immediately obtain an expression for the eigenvalues
of SiISA. Using this expression we can analyze (T(S,iISA). Below we first show results of
numerical calculations for a few test problems, and then we derive some theoretical results.

For given coefficients aj, f3j (1 ~ j ~ 4) we computed (using MATLAB) the quantities defined
in (4.13), (4.14). Note that (T(S.,iISA) does not depend on the scaling of the operator A. We
always leave out the constant function (Le. (v, f..l) = (0,0)). We take h = 1/64 and define

(4.13)

where the minimum and the maximum is taken over (T(S.,iISA) and

Experiment 1 (Convection-diffusion, 5-point stencil).
We consider the difference star

11



[
0 -1 0 ] [ 0 0 0] [ 0 0 0]~ -1 4 -1 + cos(<p) -1 1 0 + sin(<p) 0 1 0
o -1 0 0 0 0 0 -1 0

In Table 1 we give the results for shift and p for several values of c and <po

c 1 10 .:..l 10 -4

<p 0 rr/32 rr /8 rr/4 rr/32 rr/8 rr/4
shift 0.85 0.67 0.67 0.67 0.69 0.69 0.69

p 0.19 0.33 0.33 0.33 0.40 0.40 0.40

Table 1

Experiment 2 (Convection-diffusion, 9-point stencil).
We consider the realigned skew upwind scheme proposed in [8]. With C

sin(<p), <p E [O,~], the stencil is given by
COS(<p),8 .-

[

0 -1 0 ] 1 [ 0
~ -1 4 -1 + -- _c2

h 0 -1 0 c+ 8 -C8
o o~ ]1 + C8

_82

Results of numerical computations are given in Table 2.

C 10-2 10-4

<p 2rr /16 3rr/16 4rr/16 2rr/16 3rr/16 4rr/16
shift 0.67 0.67 0.67 0.72 0.71 0.71

P 0.33 0.33 0.33 0.46 0.44 0.44

Table 2

Experiment 3 (random stencil).
We generated random coefficients Qj, {3j E (0,1) (uniform distribution) and computed the cor­
responding values for shift and for p. This was repeated hundred times. The results are shown
in Figure 4.

In the numerical experiments above we see a strong robustness with respect to variation in the
coefficients Qj,{3j. Note that for almost all experiments we have shift ~ 0.7.

We now turn to theoretical bounds for 0'(Si1SA). We only consider the case of a 5-point
stencil, i.e. {3j = 0 for j = 1,2,3,4. For this case the expressions in (4.4) simplify:

(4.15a) d~tL=I-(v+w)

(4.15b) d~tL = 1 + (v - w)

(4.15c) d~tL = 1 - (v - w)

(4.15d) d~tL = 1 + (v + w) .

12



0.7r---r--T"":I:-':r--~-"""'---"""'---""""---'-----'----'

+ + + +
++~ +Iot++++-l++1+*~+~+T!' T!'+ofl:t.+o++*+*+++ ofoH+\t-H*+++l'i'+f:t.\ofI:H+-l+"'+-+"'H-++ ++I+t

0.65

0.6

0.55

0.5

0.45

0.4

0.35 • • • •••

.~lIlI.~·••yl'MlIllE~.~"'~~~lIIIIlIIE:'"
0.30 10 20 30 40 50 60 70 80 90 100

Fig. 4. +: shift, *: p.

Note that for v, w we have:

(4.16a) Re (v) = (al + (3) cos(v1rh)

(4.16b) Ivl:::; al + a3

(4.16c) Re (w) = (a2 + (4) cos(Jl1rh)

(4.16d) Iwl:::; a2 + a4 .

First we show some properties of the eigenvalues d?

Lemma 4.4. For (v, Jl) =I (0,0) with 1 - NH :::; v, Jl :::; NH we have

(4.17a) Re (d?) > 0 for j = 1,2,3,4

(4.17b) Re (d?ld~/l-) ~ 0 for all j,k E {1,2,3,4}.

Proof. The result in (4.17a) is a direct consequence of the definition of d? and the properties
in (4.16). The result in (4.17b) is trivial for j = k. Using Re (liz) = Izl-2 Re (z) it follows
that it is sufficient to consider j < k.
We start with the case j = 1. For (j, k) = (1,2) the result in (4.17b) follows from

Re (dr/l-d~/l-) = Re [(1 - (v + w))(l +v - w)] = Re [((1- w) - v)(l- w +v)]

= 11- wl 2 - Ivl 2 ~ (1-lwl)2 - Ivl 2

= (1- Iwl- Ivl)(l-lwl + Ivl) ~ 0 (use (4.16b,d) and Eai = 1) .
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The same argument with v and w exchanged implies the result for the case (j, k) = (1,3). For
(j, k) = (1,4) we have:

Re (d~~d~~) = Re [(1- (v + w))(1 + (v + w))]

=1 - Iv +wi' <0 1 - (Ivl + Iwl)' <0 1 - (~ "i)' =0 .

We now consider j = 2. For (j, k) = (2,3) we obtain

Re (d~~d;~) = Re [(1 + (v - w))(I- (v - w))]

= 1 -Iv - wi' <0 1 - (Ivl + Iwl)' <0 1 - (~ "i)' = 0 .

For (j, k) = (2,4) we have (cf. (j, k) = (1,2) above):

Re [(1 + (v - w))(1 + (v + w))

Re [(1 + v - w)(1 + v + w)]

= 11 + vl2-lwl2~ (1 -lvl)2 -lwl2

= (1 - Ivl - Iwl)(1 - Ivl + Iwl) ~ 0 .

Finally, the same argument as for the case (j, k) = (2,4), but with v and w exchanged, implies
the result for (j, k) = (3,4). 0

From Lemma 4.1 and Corollary 4.3 we obtain the following expressions for the eigenvalues
of SA and S.4' denoted by e~ (SA) and €V~ (S.4) respectively:

(4.18.) e""(SA) = 1/"" = 4 (~ lid';") -1

(4.18b) e~(s.4) = d~~(2 - dr~) + 2/v~vw ,

with /V~ as in (4.12). Using (4.4) the expression for €V~(SA) can be rewritten in the form

In Lemma 4.5 and Lemma 4.6 we give estimates for ~V~(S.4)/~V~(SA)'

Lemma 4.5. For (v,J.l) # (0,0) with 1- NH S v,J.l S NH we have

14



Proof. First we note that the equalities

hold. Using this and the results in Lemma 4.4 we obtain for j =2,3:

(4.20) Re (dr~d~~ /d?) = Idr~d~~ /d?1 2 Re (d?/(dr~d~~))

=~Idr~d~~ /d?12( Re (d? /d?) + Re (d?/d~~)) ~ 0 .

With a similar argument we obtain for j = 1,4:

Combination of the results in (4.18a), (4.18c), (4.20), (4.21) yields

4

Re (e~(SAJ/e/~(SA)) = Re [((1 - ~'II~)dr~d~~ + ~'II~d~~d~~H (L l/d?)]
j=l

= ~ Re [((1- ~'II~)dr~d~~+ ~'II~d~~d~~)((dr~d~~)-l + (d~~d~~)-l)]

= ~ Re [1 + (1 - ~'II~)drlLd~~/(d~lLd~lL) + ~'lIlLd~lLd~~/(dr~d~IL)]

= ~ + t(1- ~'II~) Re [dr~d~~(I/d~~ + l/d~~)]

+~'11~ Re [d~lLd~~(l/dr~ + l/d~IL)]

~ ~ (note that '11~ E [0,1] holds) .

o

Lemma 4.6. For (v, J.t) =1= (0,0) with 1- NH ~ v, J.t ~ NH we have

Proof. We introduce the notation H14 := dr~d~~, H23 := d~~d~~.

Using (4.18a), (4.18c) we obtain

4

= 11 - (H14 + ~'II~(H23 - H14)H(L l/d?) I
j=l

= 11- H(l- !'II~)H14+ !'II~H23)(Hll + H;l) I

= !1(1 - ~'11~)(1- H14H;l) + !,IIIL(I- H23Hii)1

~ Hl- ~'II~)ll-H14H;11 + t'II~ll- H23Hiil .
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We consider the term 11- HI4Hi"ll. Using

we obtain

(4.24)

We use the notation 0 := al + a3. From (4.16a,d) we get

(4.25) Ivllwl ~ 0(1 - 0) .

For IVIJ. we have the identity

(4.26) 1 - IVIJ. = cos(v7rh) cos(JL7rh) .

The results in (4.16a,d), (4.26) yield:

(4.27) 11- (v - w)21 = 11 - (v - w)lll + (v - w)1

~ Re (1 - (v - w)) Re (1 + (v - w)) = 1 - ( Re (v) - Re (w))2

= 1- (ocos(v7rh) - (1- 0)cos(JL7rh))2

=1- (02COS2(V7rh) + (1- 0)2cos2(JL7rh) - 20(1- 0)(1- IVIJ.))

~ 1 - 02 - (1 - 0)2 + 20(1 - 0)(1 - IVIJ.) = 40(1 - 0)(1 - ~'VIJ.) .

Combination of the results in (4.24), (4.25), (4.27) yields

We now treat the term 11- H 23H1il (cr. (4.23)). Using

and the result in (4.25), we obtain

(4.29)
-1 40(1 - 0)

11 - H 23H 14 I ~ I ( )21 .1- v+w

We also have (cf. (4.26)):
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11- (v + w)21 = 11- (v + w)lll + (v + w)1

~ Re (1 - (v + w)) Re (1 + (v + w)) = 1 - ( Re (v) + Re (w))2

= 1- (8cos(v1rh) + (1- 8) cos(Jl1rh))2

~ 1 - 82 - (1 - 8)2 - 28(1- 8)(1- '/I~) =28(1- 8h/l~ .

Using the latter result in (4.29) yields

(4.30)

Using the inequalities (4.28), (4.30) in (4.23) proves the estimate in (4.22).

As a direct consequence of Lemma 4.5 and Lemma 4.6 we have the following result:

Theorem 4.7. For (v,Jl) =/:- (0,0) with 1- NH ~ v,Jl ~ NH the following holds:

o

Clearly, Theorem 4.7 yields a strong robustness result: for all constant 5-point difference stars
as in (4.3) (e.g. diffusion, anisotropic diffusion, convection-diffusion) the Schur complement
approximation SA based on incomplete Gaussian elimination yields an "optimal" precondi­
tioner of SA.
Numerical experiments (e.g. Experiments 2,3 above) yield the claim that this robustness result
even holds for constant 9-point difference stars as in (4.3). However, we have not been able to
prove this claim.

Remark 4.8. With respect to the sharpness of the result in Theorem 4.7 we note the fol­
lowing. Theorem 4.7 yields that for the spectral condition number of SilSA we have the
inequality

(4.31)

From numerical experiments we see that the bound in (4.31) is about a factor 2 too pessimistic.
For example, for the operator with stencil

[
0 0 0]

[A] = -~ 1 0 ,on a grid with h = 1/64 ,
o -~ 0

the spectrum {~/I~(SA)/e'~(SA) 11 - NH ~ v, Jl ~ NH, (v, Jl) =/:- (0, On is shown in Figure 5.
In this case the spectral condition number is 2.24. Note that from this example we see that the
estimate in Lemma 4.5 is sharp.
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Fig. 5. 0'{8A,8,41) in the complex plane.

5 Numerical experiments

In this section we apply a multigrid W-cycle based on (2.6a) to the following two test problems

(5.1)
{

-c~u + a{x, y)ux + b(x, y)uy = f

u=g

in n = (0,1)2

on an

{

-eO'(I-~)uxx - Uyy = f in n = (0,1)2
(5.2)

u = 9 on an,

with c > 0, a > °problem parameters. The problem in (5.1) is convection-dominated (in a
part of the domain) if c/a« 1 or c/b« 1 (in a part of the domain). The diffusion problem in
(5.2) is strongly anisotropic in a part of the domain. We use standard finite difference discret­
ization on a square mesh nh, resulting in a 5-point stencil and a discrete problem AhXh = bh.
For the first order derivatives in (5.1) we use the full upwind discretization, and thus the matrix
Ah is an M-matrix.
In the experiments below the finest mesh always corresponds to h = 1/128 and the coarsest
mesh size is h = 1/4. For the multigrid method we use the approach as discussed in Remark
3.2. Given the matrix on the finest grid, coarse-grid operators (8Ah) are computed using a
Galerkin approach with matrix dependent prolongations.

We now discuss the approximation used in the block Jacobi method with iteration matrix

J = 1- [Af ~] Ah. In general the matrix All has a condition number 0(1) and then, in
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principle, any basic iterative method for solving AllY = z can be used. However, if we have
strong alignment then cond(All ) deteriorates. Our main interest in this paper in on robust­
ness, so we should use a robust solver for the All systems. Probably the ILU method will
yield a good compromise between robustness and efficiency. In the method we implemented
some efficiency has been sacrificed and we used a simple line Jacobi method. One iteration
of this method consists of a sweep over the"odd" horizontal lines followed by a sweep over
the "odd" vertical lines (these lines together form the pattern of Oh\OH). The result of JL
iterations of such a line Jacobi method with starting vector 0 applied to AllY = z is denoted
by .J1L(All ; 0; z).

Below we use the notation 0h := Oh\OH (i.e. "new" nodes). The two-grid method based on
(2.6a) is as follows:

1. a) dl11~:= (Ahxh - bh)I11~ : compute defect on 0h.
b) Xh:= .J1L(All ; OJ dl11~) : line Jacobi for solving All system.

c) Xh,n c := Xhlnc - Xh : add correction on 0h.
h h

2. a) dl11H := (Ahxh - bh)I11H : compute defect on OH.

b) 8 Ah VH =dl11H : solve coarse grid problem.

c) xhlnH:= xhlnH - WVH : add correction on OH.

3. Repeat 1a,b,c.

This algorithm has the same structure as a standard two-grid algorithm. As in the standard
approach, we use two recursive calls in 2b) to obtain a multigrid W-cyc1e.
In the experiments below we always take the data such that the exact discrete solution is equal
to zero and we take an arbitrary starting vector. As a measure for the error reduction we com­
puted r := (lIe2oI12/lleoI12)1/20, with ek the error in the k-th iteration. For JL, i.e. the number
of line Jacobi iterations, we take J.l = 3. Experiments have shown that this yields sufficiently
accurate approximations when solving the All systems; often even J.l = 2 is sufficient. Based
on the Fourier analysis we take W = 0.7 in all experiments.

Experiment 1 (convection-diffusion). We apply the multigrid W-cyc1e to the discrete ver­
sion of (5.1) with a(x, y) = cos(.8), b(x, y) = sin(,8). In Table 3 the resulting r are given for
several values of .8 and €.

€ .8 0 11"/10 211"/10 311"/10 411"/10 511"/10
10 -I 0.23 0.23 0.23 0.23 0.23 0.23
10-3 0.30 0.40 0.40 0.40 0.40 0.30
10-5 0.37 0.35 0.42 0.42 0.35 0.37

Table 3

Experiment 2 (rotating flow). We define OR := {(x, y) I ((x - ~)2 + (y - ~)2) ~ l6}' and

{

a(x, y) = sin(1I"(Y - ~)) cos(11" (x -~)) if (x, y) E OR, and zero otherwise;

b(x, y) = - cos(1I"(Y - ~)) sin(1I"(x -~)) if (x, y) E OR, and zero otherwise.
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We apply the multigrid W-cycle to the discrete version of (5.1) with these functions a, b. The
results for r are given in Table 4. In Table 4 we also show the values of r corresponding to the
two-grid method. These two-grid results are obtained by applying 5 recursive calls (instead
of 2) on the coarse grid.

IE 10 ·1 10 ·2 10 -3 10 -4 10 -0

W-cyde 0.23 0.25 0.32 0.34 0.34
TG 0.23 0.30 0.36 0.33 0.33

Table 4

Experiment 3. We apply the multigrid W-cycle to the discrete version of (5.2). The result­
ing values for r are given in Table 5. Again, as in Experiment 2 we give the values of r
corresponding to the two-grid method.

eli 1 5
W-cycle 0.33 0.37

TG 0.26 0.28

Table 5

The Fourier analysis in Section 4, which yields a strong robustness result, applies to a two-grid
method, with exact Au-solver, for solving a boundary value problem with periodic boundary
conditions and constant coefficients. In the experiments above we observe that the multigrid
W-cycle, with inexact Au-solver, applied to a boundary value problem with Dirichlet boundary
conditions and variable coefficients is very robust w.r.t. variation in problem parameters, too.
Finally we note that if the Au system is solved approximately using an ILU method then
our two-grid method is a combination of two incomplete Gaussian elimination processes: ILU
for solving the An system and incomplete Gaussian elimination as described in Section 3 for
constructing a sparse coarse grid matrix.
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