
Original and Cumulative Prospect Theory:
A Discussion of Empirical Di�erences

HEIN FENNEMA

University of Nijmegen, The Netherlands

PETER WAKKER

University of Leiden, The Netherlands

ABSTRACT

This paper discusses di�erences between prospect theory and cumulative prospect
theory. It shows that cumulative prospect theory is not merely a formal correction
of some theoretical problems in prospect theory, but it also gives di�erent
predictions. Some experiments by Lola Lopes are re-analyzed, and are demon-
strated to favor cumulative prospect theory over prospect theory. It turns out that
the mathematical form of cumulative prospect theory is well suited for modeling
the psychological phenomenon of diminishing sensitivity. *c 1997 by John Wiley
& Sons, Ltd.
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Prospect Theory (PT) has been one of the most important theories of decision making under risk in the
past decade, and has been applied in a wide variety of contexts. By including distortions of probabil-
ities, diminishing sensitivity, and the status quo as a reference point, PT can explain the major
deviations from expected utility such as the Allais paradox, the certainty e�ect, and framing e�ects
(Kahneman and Tversky, 1979). However, there are some theoretical problems in PT. The main
problem is that the functional form of PT violates `stochastic dominance' (Kahneman and Tversky,
1979, pp. 283±284). Stochastic dominance requires that a shift of probability mass from bad outcomes
to better outcomes leads to an improved prospect.

The theoretical problems have recently been solved in a new version of PT, called cumulative
prospect theory (CPT), that was introduced by Tversky and Kahneman (1992); in particular, CPT
satis®es stochastic dominance. Similar forms were introduced by Starmer and Sugden (1989) and Luce
and Fishburn (1991). Cumulative prospect theory adopts the rank-dependent method for trans-
forming probabilities that was introduced by Quiggin (1982); see also Lopes (1984), Luce (1988), and
Allais (1988). For a survey of non-expected utility, see Slovic, Lichtenstein, and Fischho� (1988) and
Camerer (1992).

This paper describes the PT and CPT theories and discusses di�erences. In particular, we ®nd that
CPT does not only avoid some theoretical problems but also gives di�erent empirical predictions that,
for the experiments considered in this paper, are better than those of the original PT. The key feature
of CPT is that it permits a satisfactory modeling of diminishing sensitivity, not only with respect to
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outcomes but also with respect to changes in probabilities. A major motivation for this paper has
been to demonstrate the central role of diminishing sensitivity in human decision making.

The next section describes the theories; empirical predictions are derived subsequently. The
presentation requires some mathematical derivations. We hope, however, that these help to clarify the
features and the meaning of the new CPT theory. We also hope that this paper can be an aid for
making the mathematics of CPT accessible. Because of the empirical importance of CPT, and because
its mathematics is not elementary, such an aid is warranted.

THE THEORIES

This section describes the PT and CPT theories. By (x1; p1; : : : ; xn; pn) we denote the prospect that
yields $xj with probability pj , j � 1; : : : ; n. Throughout, for convenience of the exposition, we arrange
the prospect so that x1 4 : : :4 xn . In PT and CPT, risk attitudes depend both on the attitude towards
outcomes (through a value function) and on the attitude towards probabilities (through a weighting
function). A risk attitude then becomes a combination of both the attitude towards probability and the
attitude towards outcomes.
We ®rst describe PT. In PT, an editing phase is de®ned in which prospects are organized and

reformulated. In the notation of prospects, this implies that same outcomes are to be `collapsed'. For
instance, ( y, 0.3; y, 0.2; z, 0.5) must be rewritten as (y, 0.5; z, 0.5). Hence x1 < : : : < xn is assumed in
the discussion of PT. Let us emphasize that Kahneman and Tversky (1979) only formulated their
theory for prospects with, at most, two nonzero outcomes. We presently extend it in a straightforward
manner to prospects with more outcomes, as it was suggested by Kahneman and Tversky (1979,
p. 288) and has been used frequently by other authors (e.g. Camerer and Ho, 1994; Schneider and
Lopes, 1986; Wakker, 1989). We only give the PT value for prospects (x1; p1; : : : ; xn; pn) with both
positive outcomes (gains) and negative outcomes (losses). Then the PT value is

��p1�v�x1� � : : :� ��pn�v�xn� �1�
Here v is the value function for outcomes, describing the subject's valuation of money. As usual, we set
v�0� � 0 throughout the paper. The probability weighting function p describes the subject's attitude
towards probabilities. PT adopts a di�erent formula for evaluating prospects with only gains or only
losses. As such prospects are not considered in this paper, the formula is not given; for a discussion, see
Miyamoto (1987). Kahneman and Tversky (1979) propose a value function with a re¯ection point at
the status quo outcome, located at zero (see Exhibit 1). They ®nd that v is S-shaped, re¯ecting the
principle of `diminishing sensitivity' for the evaluation of outcomes. For example, the subject
discriminates less between 80 and 100 than between 0 and 20, both when these numbers concern gains
and when they concern losses. Note that for losses the value function in Exhibit 1 contradicts the
common economic assumption of diminishing marginal utility, according to which a dollar is always
appreciated less as a person becomes more wealthy. It is also found that v is steeper for losses than for
gains (`loss aversion'); e.g. a loss of $80 is felt more than a gain of $80.

Kahneman and Tversky ®nd that preferences of subjects can best be modeled by a weighting
function that enhances small probabilities and reduces higher probabilities. Hence the weighting
function is relatively sensitive to changes in probability near the end points 0 and 1, but is relatively
insensitive to changes in probability in the middle region. At the end points the weighting function is
not well behaved. Kahneman and Tversky (1979) give a hypothetical weighting function, conforming
with their data (see Exhibit 2). The function is curved upwards where it is well-behaved, and this has
been the usual assumption in the literature (Camerer, 1989; Starmer, 1992; Lopes, 1993).
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If the probability weighting function for gains were linear (not curved), then the risk attitude for
gains would be entirely determined by the value function, and it is well known that the shape in
Exhibit 1 then would imply risk aversion. If the value function were linear for gains, then the risk
attitude for gains would be entirely determined by the probability weighting function for gains, and it
is well known that the shape in Exhibit 3 implies risk seeking in small-probability prospects and risk
aversion in large-probability prospects. In general, the two functions jointly determine the risk
attitude.

CPT uses a value function v with the same characteristics as in PT. The determination of decision
weights deviates from PT, however. The idea of CPT, elaborated below, is to apply Quiggin's (1982)
`rank-dependent functional' separately to gains and losses, and then take the sum of the two resulting
evaluations. A weighting function w� is de®ned for the probabilities associated with gains, and a
separate weighting function wÿ is de®ned for probabilities associated with losses. This allows for
di�erent attitudes towards probability for gains than for losses. CPT permits that outcomes are
not distinct in the notation (x1; p1; : : : ; xn; pn) for prospects. Suppose for simplicity that
x1 4 : : :4 xk 4 04 xk�1 4 : : :4 xn. Then the CPT value of the prospect (x1; p1; : : : ; xn; pn) is given
by the following formula:

Xk
i�1

�ÿi v�xi� �
Xn
i�k�1

��i v�xi� �2�

where the decision weights (i.e. the numbers �ÿi ; �
�
i ) are de®ned by:

�ÿ1 � wÿ�p1�; �ÿi � wÿ�p1 � : : :� pi� ÿ wÿ�p1 � : : :� piÿ1� 24 i4 k

��n � w��pn�; ��i � w��pi � : : :� pn� ÿ w��pi�1 � : : :� pn� k� 14 i4 nÿ 1

The novelty of this formula as compared to PT is the more subtle way of transforming probabilities. It
is instructive to ®rst consider the CPT formula (2) for the special case where w�p� � p for all p,
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i.e. probabilities are not transformed. Then the decision weights pi are all equal to pi , yielding the
traditional expected utility formula. This reasoning shows that CPT is indeed a generalization of
expected utility.

To explain the above formula, let us ®rst repeat that in PT probabilities for the receipt of separate
outcomes were transformed, i.e. each probability pi for receiving the separate outcome xi was
transformed into the decision weight p(pi). In the above formula, `cumulative probabilities' are
transformed for gains, and `decumulative probabilities' for losses. We ®rst consider the case of gains. A
cumulative probability describes the probability for receiving an outcome or anything better than that
outcome. For instance, pi � : : :� pn is the cumulative probability of receiving outcome xi or anything
better. Decision weights for gains are obtained as di�erences between transformed values of
cumulative probabilities. Similarly, for losses decision weights are obtained as di�erences between
transformed values of consecutive decumulative probabilities, i.e. probabilities describing the receipt
of an outcome or anything worse than that outcome.
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Tversky and Kahneman (1992) ®nd that for the majority of subjects the weighting function is as
depicted in Exhibit 3. This weighting function exhibits `diminishing sensitivity' with respect to
probability changes, i.e. the function is relatively sensitive to changes in probability near the end points
0 and 1 but is relatively insensitive to changes in probability in the middle region. The weighting
function in Exhibit 3 is the estimate w� for gains; the loss weighting function wÿ has, on average, a
similar shape, but it seems to be somewhat higher and less curved.

The problem of the calculation of decision weights in PT, with regard to the generalization to many
(di�erent) outcome prospects, can be illustrated by the following example. Suppose we have a prospect
with many di�erent outcomes as follows: (ÿ10; 0:05; 0; 0:05; 10; 0:05; 20; 0:05; 30; 0:05; : : : ;
180; 0:05). If p (0.05) is larger than 0.05 (as is commonly found) then each outcome is overweighted,
and for the common value functions the prospect will be valued higher than its expected value $85 for
sure. It is very implausible that people will prefer the prospect to its expected value for sure. This

Exhibit 3. A typical CPT weighting function



anomaly is a consequence of the overweighting of all outcomes, a phenomenon that also underlies the
violations of stochastic dominance.

The new way of transforming probabilities circumvents the above problem. Only the extreme
outcomes are overweighted. For example, the $180 outcome receives decision weight w�(0.05), and the
7$10 outcome receives decision weight wÿ(0.05); as Exhibit 3 shows, these outcomes are over-
weighted. The middle outcomes receive small decision weights; for example, the $100 outcome receives
a decision weight of w��0:45� ÿ w��0:40�. Here Exhibit 3 shows that this outcome is underweighted
according to CPT. This agrees with a principle of diminishing sensitivity with respect to the impact of
outcomes. Intuitively, it seems clear that people will be most sensitive to extreme outcomes and less to
intermediate outcomes. The experiments below show that this intuition is correct and also that this can
be modeled by CPT and not by (the straightforward generalization of ) PT. Arguments for the
plausibility of the cumulative form have been given by Wakker (1989). For further elucidations and
worked-out numerical examples, see Weber (1994).

The next section describes some empirical di�erences between PT and CPT. This demonstrates that
CPT is not merely a formal correction of some theoretical problems in PT, but that it also gives
di�erent predictions. We show that two experiments, conducted by Lopes (1993) to test PT, are
especially suited for discriminating between PT and CPT. The ®rst experiment tests the shape of the
weighting function. The S-shaped weighting function of CPT explains the data better than the
weighting function that is commonly assumed for PT (see Exhibit 2). The ®rst experiment does not
reject the general formula of PT, i.e. PT with the S-shaped weighting function of CPT explains the data
as well as CPT does. A test of the general formula of PT against that of CPT is provided by the second
experiment. PT's transformation of separate probabilities is rejected in favor of CPT's transformation
of cumulative probabilities. Let us repeat that Kahneman and Tversky (1979) only formulated their
form for prospects with, at most, two nonzero outcomes. The experiments below extend the form to
four and six nonzero outcomes.

EXPERIMENT 1

In the ®rst experiment two prospects are considered, the Bimodal prospect and the Peaked prospect
(Exhibit 4). The outcome of each prospect is decided by randomly drawing one ticket from twenty
numbered tickets. For example, the Peaked prospect yields7$200 if ticket 1 or 2 is drawn, . . . , $200 if
ticket 19 or 20 is drawn. Thus,

�ÿ200; 0:10; ÿ100; 0:20; 0; 0:40; 100; 0:20; 200; 0:10�
describes the Peaked prospect. The subjects were undergraduate students, 56 in the original experiment
by Lopes and 49 in a replication performed by us. They were asked to state in which of the two
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prospects a change of one ticket from a 7$200 outcome to a $200 outcome gives the best improve-
ment. Note that these questions elicit strength of preference judgments, and do not refer to direct
choices or preferences.

Following Lopes' analysis, we assume that the elicited strengths of preferences are represented by
di�erences in PT or CPT values. The change in PT value for the Bimodal prospect is obtained by
substituting the PT formula (1) and subtracting. The probability of the $200 outcome increases from
0.25 to 0.30 and therefore its decision weight increases ��0:30� ÿ ��0:25�. Similarly, the decision weight
of the 7$200 outcome decreases by ��0:25� ÿ ��0:20�. For all other outcomes the probabilities and
decision weights remain una�ected. For the Bimodal prospect, the PT change resulting from the
outcome change is therefore

���0:30� ÿ ��0:25��v�$200� ÿ ���0:25� ÿ ��0:20��v�ÿ$200� (3)

For the Peaked prospect, the change is

���0:15� ÿ ��0:10��v�$200� ÿ ���0:10� ÿ ��0:05��v�ÿ$200� (4)

PT makes no clear prediction here. If the weighting function is linear in the region [0.05, 0.30] for most
subjects, then the two changes give approximately the same improvement for most subjects, and
approximately half of the subjects can be expected to prefer the Peaked-change. Assume, as in
Exhibit 2, that the weighting function is actually curved upwards in the region [0.05, 0.30]. Then

(i) ��0:30� ÿ ��0:25� > ��0:15� ÿ ��0:10�, so that the ®rst term in equation (3) is larger than the ®rst
term in equation (4);

(ii) ��0:25� ÿ ��0:20� > ��0:10� ÿ ��0:05�, so that less (a more negative number) is subtracted in
equation (3) than in (4).

Both (i) and (ii) make equation (3) larger than (4). Therefore, PT predicts that a majority of subjects
will prefer the Bimodal-change. Experimentally, however, a clear majority (84% of the subjects in
Lopes' experiment, and 63% in our replication), preferred the Peaked-change. PT can accommodate
these ®ndings if the weighting function is curved downwards in the region [0.05, 0.30], as in Exhibit 3.1

Then the above inequalities are reversed, leading to a preference for the Peaked prospect.
The experimental ®nding can also be explained by CPT, as is demonstrated next. The demonstration

is based on the observation that the changes of outcomes for the Peaked prospect are located at more
extreme tickets than for the Bimodal prospect. CPT predicts that more decision weight is assigned to
extreme outcomes, re¯ecting diminishing sensitivity. Therefore CPT predicts that the changes for the
Peaked prospect induce greater changes in evaluation. Next, we show this mathematically. It is
convenient for the subsequent analysis to denote the outcomes for each ticket separately (which is
permitted in the CPT notations). Thus, we denote the Peaked prospect here by

�ÿ200; 0:05; ÿ200; 0:05; ÿ100; 0:05; : : : ; 100; 0:05; 200; 0:05; 200; 0:05�
and the Bimodal prospect similarly.

In cumulative formulas, it is useful to preserve the rank-ordering of outcomes in the subsequent
analysis because then all prospects have the same decision weights.2 This can be ensured in the
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1 It may be useful here to emphasize that the PT weighting function applies to di�erent probabilities from the one of CPT, i.e. to
®xed-outcome probabilities and not to cumulative probabilities.
2 In general, a prospect �y1; p1; : : : ; yn; pn� with y1 4 : : :4 yk 4 04 yk�1 4 : : :4 yn has the same decision weights �ÿ1 ; : : : ; �

ÿ
k ;

��k�1; : : : ; �
�
n as a prospect �x1; p1; : : : ;xn; pn� with x1 4 : : :4 xk 4 04 xk�1 4 : : :4 xn. This can be inferred from formula (2)

and the subsequent text.



following manner, illustrated in Exhibit 5. First, the change of outcome of7$200 to $200 is performed
in four steps (with changes underlined in the exhibit): from7$200 to7$100, from7$100 to $0, from
$0 to $100, and from $100 to $200. Second, we locate the ®rst change in the Peaked prospect at ticket
number 2, the second at ticket number 6, the third at ticket number 14, and the fourth at ticket
number 18. Then always ticket 1 generates the lowest outcome, . . . , and ticket 20 the highest so that
the rank-ordering of outcomes is indeed preserved. The change in CPT value generated by the ®rst
outcome change in step 1 (changing ÿ200 into ÿ100 for the second ticket) is calculated by substituting
the CPT formula (2) (with k � 10) and subtracting. Because the outcomes for the tickets, other than
the second, are not changed and neither are their decision weights, their contributions to the CPT
formula cancel, and the only di�erence in the CPT formula is due to the second ticket. Before the
outcome change, the second ticket contributed �ÿ2 v�ÿ200� to the CPT value; after the outcome change
it contributes �ÿ2 v�ÿ100�. Hence, the outcome change generates a CPT increase of �ÿ2 �v�ÿ100�ÿ
v�ÿ200��. Similarly, the CPT increases due to the second, third, and fourth outcome changes are
�ÿ6 �v�0� ÿ v�ÿ100��; ��14�v�100� ÿ v�0��, and ��18�v�200� ÿ v�100��, respectively. The sum of these four
CPT changes is the increase in CPT value generated by changing one 7$200 ticket into a $200 ticket
for the Peaked prospect.
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For the Bimodal prospect, the four changes from 7$200 to 7$100, from 7$100 to $0, from $0 to
$100, and from $100 to $200, are located at tickets 5, 9, 11, and 15, and generate increases in CPT
values of �ÿ5 �v�ÿ100� ÿ v�ÿ200��; �ÿ9 �v�0� ÿ v�ÿ100��; ��11 > �v�100� ÿ v�0��, and ��15�v�200�ÿ
v�100��. The sum of these four increases is the increase of CPT value generated by changing one
7$200 ticket into a $200 ticket for the Bimodal prospect.

The ®rst, second, and fourth increases are clearly greater for the Peaked prospect, because
�ÿ2 > �ÿ5 ; �

ÿ
6 > �ÿ9 ; and ��18 > ��15, assuming the weighting function w� of Exhibit 3. For example,

��18 > ��15 can be rewritten as w��0:15� ÿ w��0:10� > w��0:30� ÿ w��0:25�, which inequality can be
inferred from Exhibit 3. The other inequalities can be derived similarly. The third increase is
approximately the same for both prospects. In sum, the overall increase for the Peaked prospect is
larger than for the Bimodal prospect. This prediction of CPT is in agreement with the empirical
®nding.

The above derivation shows that the CPT functional re¯ects diminishing sensitivity with respect to
probability transformations. For the change that is o�ered in the Peaked prospect, the probability of
the most serious loss is reduced from 0.10 to 0.05, whereas in the Bimodal prospect this probability is
reduced from 0.25 to 0.20. Psychologically, the latter change has less impact. On the gain side, the
change o�ered also favors the Peaked prospect, for people are more sensitive to a change in probability
from 0.10 to 0.15 than to a change of 0.25 to 0.30.

EXPERIMENT 2

In the second experiment, the di�erent predictions of CPT are a result of the cumulative method of
valuation, and the general formula of PT is falsi®ed irrespective of what weighting function is used in
PT. We consider the prospect, illustrated in Exhibit 6, that yields 7$300 if ticket 1, 2, or 3 is drawn,
. . . , and $300 if ticket 19, 20, or 21 is drawn. The experiment concerns changes of this prospect
obtained by moving one ticket a category upwards. For example, one ticket that yields $0 can be
changed into a ticket yielding $100. Changing a $300 outcome is not included, so six changes are
possible. Subjects (n � 42, undergraduate students) had to choose between two prospects that both
resulted from the original prospect by a (di�erent) change of a ticket. For all 15 possible pairs of such
altered prospects, subjects had to make a choice. The classical expected utility model with risk aversion
(i.e. diminishing marginal utility) predicts that subjects prefer to move tickets associated with lower
outcomes. Next, we analyze the predictions of PT and CPT. We shall ®nd the strongest divergence for
the preference between changing a 7$300 outcome and changing a 7$200 outcome, and for the
preference between changing a $100 outcome and changing a $200 outcome.
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Consider changing x into x� 100 for one ticket. Such a change is called an `xmove' henceforth. We
calculate the resulting PT change. The probability of the outcome x decreases from 3/21 to 2/21, hence
its contribution to the PT value decreases by ���3=21� ÿ ��2=21��v�x�. The probability of the outcome
x� 100 increases from 3/21 to 4/21. Hence its contribution to the PT value increases by ���4=21�ÿ
��3=21��v�x� 100�. In total, the PT change is

���4=21� ÿ ��3=21��v�x� 100� ÿ ���3=21� ÿ ��2=21��v�x�
Subtracting ���4=21� ÿ ��3=21��v�x� from the ®rst term and adding it to the second gives

���4=21� ÿ ��3=21���v�x� 100� ÿ v�x�� � ���4=21� ÿ 2��3=21� � ��2=21��v�x� �5�
Let us consider the ®rst term in formula (5). This captures the e�ect of curvature of the value

function. For losses, diminishing sensitivity implies that the value di�erence v�x� 100� ÿ v�x� will be
largest for x � ÿ100, smaller for x � ÿ200, and smallest for x � ÿ300. For gains, diminishing
sensitivity implies that the value di�erence will be largest for x � 0, smaller for x � 100, and smallest
for x � 200. Comparisons between gains and losses cannot be predicted with certainty but, because
`losses loom larger than gains',3 the changes for losses will be larger than the changes for the
corresponding gains. At any rate, both for gains and for losses, the ®rst term in formula (5) is larger for
middle values of x than for extreme values.

Next we consider the second term in formula (5); this captures the e�ect of curvature of the
weighting function. For a subject for whom

��4=21� ÿ 2��3=21� � ��2=21�5 0 �6�
(this holds under `convexity', such as in Exhibit 2), the second term is increasing in x, thus is largest for
x � 200, and smallest for x � ÿ300. Combining this with the behavior of the ®rst term, we conclude
that the change at x � ÿ200 then is larger than the change at x � ÿ300. A comparison between the
changes at x � 100 and x � 200 cannot be made directly because the ®rst and second term produce
opposite e�ects.

For a subject for whom

��4=21� ÿ 2��3=21� � ��2=21�4 0 �7�
(this holds under `concavity', such as in Exhibit 3) the second term is decreasing in x, thus is largest for
x � ÿ300, and smallest for x � 200. Combining this with the behavior of the ®rst term, we conclude
that the change at x � 100 then is larger than the change at x � 200. Now a comparison between the
changes at x � ÿ200 and x � ÿ300 cannot be made directly, because the ®rst and second terms
produce opposite e�ects.

Let us summarize the predictions of PT concerning two preferences, the preference between the
ÿ200 move and ÿ300 move, and the preference between the 100 move and the 200 move.

(1) If formula (6) holds for the majority of subjects,
then 7200 move strictly preferred over 7300 move for the majority;
and 100 move ? 200 move (no clear prediction).

(2) If formula (7) holds for the majority of subjects,
then 100 move strictly preferred over 200 move for the majority;
and 7200 move ? 7300 move (no clear prediction).
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If there is no pronounced majority of subjects for whom inequalities (6) or (7) hold, then there will be
majority preferences both for the7200 move over the7300 move, and for the 100 move over the 200
move.

Overall, PT predicts that more subjects will prefer moving middle outcomes than moving extreme
outcomes. Lopes' experiment gave opposite results: a clear majority (90%) preferred the ÿ300 move
over the ÿ200 move, and similarly the majority (86%) preferred the 200 move over the 100 move.

We now turn to an analysis of the above example through CPT, where diminishing sensitivity and
thus the weighting function of Exhibit 3 are assumed. We locate the moves at tickets 3, 6, 9, 12, 15, and
18, respectively, to preserve the rank-ordering where ticket 1 always yields the lowest outcome, . . . ,
and ticket 21 the highest. First, we concentrate on the role of the value function and disregard the e�ect
of the weighting function (i.e. assume it is linear). Then, for losses, diminishing sensitivity of the value
function implies that the ÿ100 move is most preferred, the ÿ200 move is less preferred, and the ÿ300
move is least preferred. For gains, diminishing sensitivity implies that the 0 move is most preferred, the
100 move is less preferred, and the 200 move is least preferred.

Next we concentrate on the role of the weighting function, and disregard the e�ect of the value
function. By diminishing sensitivity of the weighting function wÿ for losses, the tickets associated with
more extreme outcomes get higher decision weights and the ÿ300 move (ticket 3) is preferred to the
ÿ200 move (ticket 6), which in turn is preferred to the ÿ100 move (ticket 9). Similarly, diminishing
sensitivity of the weighting function w� implies that the 200 move is preferred to the 100 move, which is
preferred to the 0 move.

Summarizing, both for gains and for losses, curvature of the value function favors middle-outcome
moves and curvature of the weighting function favors extreme-outcome moves. These e�ects being
opposite, at this stage no de®nite predictions can be made. To decide on the prediction of CPT, we
must decide which e�ect can be expected to be stronger. The outcomes are not very extreme and span
only a small part of the total assets of the subjects (from 7$300 until 7$100 and from $0 until $200,
respectively). Hence, the e�ects of curvature of value are small, and the e�ects of probability weighting
will be stronger. Therefore, a majority preference for the ÿ300 move can be expected over the ÿ200
move, in agreement with the above ®ndings of Lopes' experiment (86%).4 Similarly, a majority
preference for the 200 move over the 100 move is predicted, again in agreement with the experiment
(90%).5

In summary, in the second experiment CPT predicts a majority preference for extreme-outcome
moves, both for gains and for losses, whereas PT predicts that at least in one case there should be a
preference for middle-outcome moves. The great majority of subjects followed the CPT prediction.
This result holds independently of the weighting function that one adopts in PT, and therefore this
experiment provides empirical evidence against the general form of PT.

CONCLUSION

This paper has discussed di�erences between the original prospect theory and the new `cumulative'
prospect theory. The latter has many advantages. Not only does it satisfy stochastic dominance, but
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preference can be explained because the decision weight of the ticket for the ÿ100 move is not much smaller than of the ticket
for the ÿ200 move (wÿ being approximately linear in the interior domain), but the value di�erence for the ÿ100 move is
considerably larger than for the ÿ200 move, v being steepest near 0. Therefore the value function e�ect becomes relevant for the
ÿ100 move, and the move is less clearly dispreferred to the ÿ300 move. This explains why we considered, for losses, the
preference between the ÿ300 and ÿ200 moves in the main text: here the CPT prediction di�ers most strongly from the PT
prediction.
5 The 200 move was preferred over the 0 move by 69% of the subjects. The discussion is similar to the previous footnote.



we also ®nd that it gives a better account for a number of empirical ®ndings. Lopes' ®rst experiment
provides evidence for an S-shaped weighting function as in cumulative prospect theory, and her second
experiment provides evidence against the general formula of prospect theory, independently of the
adopted weighting function.

We hope that this paper has shown that the mathematical forms proposed by cumulative prospect
theory agree well with the psychological principle of diminishing sensitivity.
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