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Abstract

Let β(G) and Γ(G) be the independence number and the upper domination num-
ber of a graph G, respectively. A graph G is called Γ-perfect if β(H) = Γ(H), for every
induced subgraph H of G. The class of Γ-perfect graphs generalizes such well-known
classes of graphs as strongly perfect graphs, absorbantly perfect graphs, and circular
arc graphs. In this article, we present a characterization of Γ-perfect graphs in terms
of forbidden semi-induced subgraphs. Key roles in the characterization are played by
the odd prism and the even Möbius ladder, where the prism and the Möbius ladder
are well-known 3-regular graphs [2]. Using the semi-induced subgraph characteriza-
tion, we obtain a characterization of K1,3-free Γ-perfect graphs in terms of forbidden
induced subgraphs. J. Graph Theory 31 (1999), 29-49
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1 Introduction

All graphs will be finite and undirected without multiple edges. Unless otherwise stated,
all graphs have no loops. If G is a graph, V (G) denotes the set, and |G| the number, of
vertices in G. Let N(x) denote the neighborhood of a vertex x, and let 〈X〉 denote the
subgraph of G induced by X ⊆ V (G). Also let N(X) = ∪x∈XN(x) and N [X] = N(X)∪X.
Denote by δ(G) the minimal degree of vertices in G. A path, a cycle and a complete graph
of order n will be denoted by Pn, Cn and Kn, respectively.

A set I ⊆ V (G) is called independent if no two vertices of I are adjacent. A set X
is called a dominating set if N [X] = V (G). An independent dominating set is a vertex
subset that is both independent and dominating, or equivalently, is maximal independent.
The independence number β(G) is the maximum cardinality of a (maximal) independent
set of G, and the independent domination number i(G) is the minimum cardinality taken
over all maximal independent sets of G. The domination number γ(G) is the minimum
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cardinality of a (minimal) dominating set of G, and the upper domination number Γ(G) is
the maximum cardinality taken over all minimal dominating sets of G. For x ∈ X, the set

PN(x, X) = N [x]−N [X − {x}]

is called the private neighborhood of x. If PN(x, X) = ∅, then x is said to be redundant
in X. A set X containing no redundant vertex is called irredundant. The irredundance
number ir(G) is the minimum cardinality taken over all maximal irredundant sets of G,
and the upper irredundance number IR(G) is the maximum cardinality of a (maximal)
irredundant set of G.

The following relationship among the parameters under consideration is well-known
[7, 9]:

ir(G) ≤ γ(G) ≤ i(G) ≤ β(G) ≤ Γ(G) ≤ IR(G).

Definition 1 A graph G is called irredundance perfect (ir-perfect) if ir(H) = γ(H), for
every induced subgraph H of G.

Definition 2 A graph G is called domination perfect (γ-perfect) if γ(H) = i(H), for every
induced subgraph H of G.

Definition 3 A graph G is called upper domination perfect (Γ-perfect) if β(H) = Γ(H),
for every induced subgraph H of G.

Definition 4 A graph G is called upper irredundance perfect (IR-perfect) if Γ(H) =
IR(H), for every induced subgraph H of G.

The classes of upper domination perfect graphs and upper irredundance perfect graphs
in a sense are dual to the classes of domination perfect graphs and irredundance perfect
graphs, respectively. A lot of interesting results on domination perfect graphs [1, 3, 12, 16,
17, 24, 27, 28, 29, 31, 33] and irredundance perfect graphs [3, 4, 10, 20, 21, 25, 26, 32] are
known. A finite induced subgraph characterization of the entire class of domination perfect
graphs was recently obtained in [33], while the problems of characterizing the entire class
of irredundance perfect graphs and upper irredundance perfect graphs are still open. For
a short survey on domination perfect graphs, see also [33].

We summarize the known results on Γ-perfect and IR-perfect graphs. The following
important theorem gives the relationship between the class of Γ-perfect graphs and the
class of IR-perfect graphs.

Theorem A (Gutin and Zverovich [14]) Any Γ-perfect graph is IR-perfect.

Thus, Γ-perfect graphs form a subclass of IR-perfect graphs. On the other hand, a
number of well-known classes of graphs are subclasses of Γ-perfect graphs, and conse-
quently, IR-perfect graphs. Cockayne et al. [7] proved that bipartite graphs are Γ-perfect,
and Jacobson and Peters [23] showed that chordal graphs are Γ-perfect. The next theorem
generalizes these results, since bipartite graphs and chordal graphs are strongly perfect
graphs. Recall that a graph G is called strongly perfect if every induced subgraph H of G
has a stable transversal, where a stable transversal S of H is a vertex subset of H such
that |S ∩ C| = 1 for any maximal clique C of H.
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Theorem B (Cheston and Fricke [5], Jacobson and Peters [22]) A strongly perfect
graph is Γ-perfect.

It may be pointed out that, besides bipartite and chordal graphs, strongly perfect
graphs contain comparability graphs, perfectly orderable graphs, peripheral graphs, com-
plements of chordal graphs, Meyniel graphs, parity graphs, i-triangulated graphs, permu-
tation graphs, cographs, and hence all these classes are subclasses of Γ-perfect graphs.
Hammer and Maffray [15] defined a graph G to be absorbantly perfect if every induced
subgraph H of G contains a minimal dominating set that meets all maximal cliques of
H. It turned out that absorbantly perfect graphs are Γ-perfect (Theorem C). Since every
strongly perfect graph is absorbantly perfect, we see that Theorem B follows from the more
general Theorem C.

Theorem C (Gutin and Zverovich [14]) An absorbantly perfect graph is Γ-perfect.

A graph is called circular arc if it can be represented as the intersection graph of arcs
on a circle.

Theorem D (Golumbic and Laskar [13]) A circular arc graph is Γ-perfect.

The following theorem gives a sufficient condition for a graph to be IR-perfect.

Theorem E (Cockayne, Favaron, Payan and Thomason [7]) If a graph G does not
contain P5, C5, Pr3 − v1 and Pr3 − v1 − v2v3 as induced subgraphs, where Pr3 is shown in
Fig. 1, then G is IR-perfect.

Using Theorem A we see that Theorem F improves Theorem E.

Theorem F (Gutin and Zverovich [14]) If a graph G does not contain P5 and Pr3 in
Fig. 1 as induced subgraphs, then G is Γ-perfect.

Other sufficient conditions for a graph to be Γ-perfect or IR-perfect can be found in
[10, 14, 23, 30], one of them is stated in Corollary 2. A number of authors [6, 7, 8, 11]
investigated graphs G having β(G) = Γ(G), i.e., these parameters are not necessarily equal
for a proper induced subgraph of G. Cockayne et al. [8] proved that

β(G) = Γ(G) = IR(G)

for the representative graph of any hereditary hypergraph. Cheston et al. [6] showed
that this equality is valid for upper bound graphs which extend the class of representative
graphs of hereditary hypergraphs, while Fellows et al. [11] proved that the same equality
holds for trestled graphs. It was also shown by Cheston et al. [6] that β(G) = Γ(G) for
simplicial graphs, which generalize the class of upper bound graphs.

In this article, we introduce the concept of a semi-induced subgraph (Definition 8), and
we present two characterizations of the entire class of Γ-perfect graphs in terms of forbidden
semi-induced subgraphs (Theorems 1 and 2). Key roles in the characterizations are played
by the odd prism and the even Möbius ladder, where the prism and the Möbius ladder are
well-known 3-regular graphs [2]. Using the semi-induced subgraph characterization of Γ-
perfect graphs, we obtain a result of Jacobson and Peters [22] on Γ-perfect graphs (Corollary
1) and also a characterization of K1,3-free Γ-perfect graphs in terms of forbidden induced
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subgraphs. The latter result implies a known sufficient condition for a K1,3-free graph to
be Γ-perfect (Corollary 2). Notice here that K1,3-free graphs are γ-perfect [1], and that
K1,3-free ir-perfect graphs were characterized by Favaron [10], who also found a sufficient
condition for a K1,3-free graph to be IR-perfect.

2 Basic Definitions

We need the following definitions.

Definition 5 Two vertex subsets A, B of a graph G independently match each other if
A∩B = ∅, |A| = |B|, and all edges between A and B form a perfect matching in 〈A∪B〉.

Definition 6 A graph G of order 2k is called a W-graph if there is a partition V (G) =
A ∪ B such that A and B independently match each other. Clearly, |A| = |B| = k. The
sets A and B are called parts, and the graph G is denoted by G(A, B).

It is not difficult to see that a W-graph may have several partitions into parts. Hence
a W-graph is considered in Sections 2 and 3 together with a fixed partition into parts.

Definition 7 Let G be a W-graph, G = G(A, B). Edges between the parts A and B are
called b-edges and denoted in our figures by bold lines. Edges which are not b-edges are
called l-edges and denoted by thin lines.

We can understand the above partition of the edge set as a coloring of the edge set with
two colors ’b’ and ’l’. Note that if the set Eb of b-edges of a connected W-graph G is given,
then there is only one partition V (G) = A ∪ B such that A and B independently match
each other, i.e., G = G(A, B) and Eb is the set of b-edges with respect to this partition.

Definition 8 Let H = H(A, B) be a W-graph with parts A and B. The graph H is called
a semi-induced subgraph of a graph G if H is a subgraph of G, and in the graph G the sets
A and B independently match each other.

In other words, let A and B independently match each other in G and let P be the
perfect matching between A and B in 〈A ∪ B〉. If E1 ⊆ E 〈A〉 and E2 ⊆ E 〈B〉, then the
graph H having V (H) = A ∪ B and E(H) = E1 ∪ E2 ∪ P is a semi-induced subgraph of
G. Thus, any semi-induced subgraph of a graph is a W-graph, and if H is not a W-graph,
then G cannot contain H as a semi-induced subgraph.

Definition 9 A graph G is called a bl-graph if a partition of the set E(G) into the set of
b-edges (bold) and l-edges (thin) is given, provided that the set of b-edges forms a matching
in G. If the b-edges form a perfect matching, then G is called a perfect bl-graph. For
example, any W-graph is a perfect bl-graph. An even (odd) bl-graph has the even (odd)
number of b-edges.

Definition 10 A simple bl-chain P is called alternating if for any two consecutive edges
of P one of them is a b-edge and another is an l-edge. The alternating simple chain P is
called a b-chain (l-chain) if the end edges of P are b-edges (l-edges). Clearly, b-chains and
l-chains always have even order. If we identify the end vertices u1 and u2n in the l-chain
(u1, u2, ..., u2n), where n ≥ 2, then we obtain the simple cycle (u1, u2, ..., u2n−1) which is
called an l-cycle starting with u1.
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Definition 11 For a perfect bl-graph G we define the operation of W-reducibility as fol-
lows. Each vertex u ∈ V (G) is labeled by c(u) ∈ {A, B}. Further, each edge e = vw ∈ E(G)
is replaced by an alternating bl-chain Pe with end vertices v, w in accordance with the next
rule:

• If e is an l-edge and c(v) = c(w), then Pe is an even l-chain.

• If e is an l-edge and c(v) 6= c(w), then Pe is an odd l-chain.

• If e is a b-edge and c(v) = c(w), then Pe is an even b-chain.

• If e is a b-edge and c(v) 6= c(w), then Pe is an odd b-chain.

Definition 12 The prism Prn (n ≥ 3) consists of two disjoint cycles

C1 = (u1, u2, ..., un), C2 = (v1, v2, ..., vn),

and the remaining edges are of the form uivi, 1 ≤ i ≤ n. The prism Pr1 is two loops
connected by the edge u1v1, this is the only case where loops are permitted. If the prism
Prn is considered as a perfect bl-graph, then its set of b-edges is {uivi : 1 ≤ i ≤ n}.

Definition 13 The Möbius ladder Mln is constructed from the cycle C = (u1, u2, ..., u2n)
by adding the edges uiun+i (1 ≤ i ≤ n) joining each pair of opposite vertices of C. If the
Möbius ladder Mln is considered as a perfect bl-graph, then its set of b-edges is {uiun+i :
1 ≤ i ≤ n}.
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FIGURE 1. Odd prisms Pr1, Pr3 and even Möbius ladder Ml2.

The odd prisms Pr1 and Pr3 and the even Möbius ladder Ml2 are shown in Fig. 1. The
odd prisms and the even Möbius ladders play a key role in the definition of basis graphs.

Definition 14 A graph G without loops is called a basis if it can be obtained from the
odd prism Pr2n+1 (n ≥ 0) or the even Möbius ladder Ml2m (m ≥ 1) by the operation of
W-reducibility.

We will prove later that a basis graph is a W-graph whose perfect matching between
the parts consists of b-edges determined by the operation of W-reducibility. A basis graph
G cannot have loops. Hence, if G is obtained from Pr1, then every loop (l-edge) of Pr1

must be replaced in accordance with Definition 11 by an alternating even l-cycle (l-chain
with equal end vertices) having at least two b-edges.
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3 Characterization of Γ-Perfect Graphs

The following theorem gives a characterization of upper domination perfect graphs in terms
of forbidden semi-induced subgraphs.

Theorem 1 A graph G is a Γ-perfect graph if and only if G does not contain any basis
graph as a semi-induced subgraph.

Proof: The proof of Theorem 1 is based on 11 lemmas.

Lemma 1 If G is a W-graph of order 2k, then

Γ(G) = k ≥ β(G).

Proof: Any independent set of G contains at most one vertex of each b-edges, and hence
β(G) ≤ k. Since A is a minimal dominating set, we have Γ(G) ≥ k. Let us prove that
Γ(G) ≤ k. Let D be a minimal dominating set of G of cardinality Γ(G). If deg〈D〉 d > 0
for d ∈ D, then there is a vertex f ∈ V (G)−D such that N(f)∩D = {d}. If deg〈D〉 d = 0
for d ∈ D, then there is a vertex f such that df is a b-edge. Obviously f ∈ V (G) − D.
Thus, for each vertex d ∈ D we can indicate a vertex f from V (G)−D and evidently that
different vertices of D result in different vertices of V (G)−D, i.e., |D| ≤ |V (G)−D|. We
have Γ(G) = |D| ≤ k.

Definition 15 A W-graph G of order 2k is called strong if

β(G) < k.

Lemma 2 A graph G is Γ-perfect if and only if G does not contain any strong graph as
an induced subgraph.

Proof: The necessity follows from the fact that for a strong graph H, β(H) < 1
2
|H|,

while Γ(H) = 1
2
|H| by Lemma 1. To prove the sufficiency, let G′ be an arbitrary induced

subgraph of G, and let D be a minimal dominating set in G′ of cardinality Γ(G′). Denote
by J the set of all isolated vertices in 〈D〉, i.e. J = {v ∈ D : deg〈D〉 v = 0}, and let
A = D − J . Since D is a minimal dominating set, it follows that for each vertex a ∈ A
there is a vertex b 6∈ D such that N(b) ∩D = {a}. Taking such a vertex b for each a ∈ A,
we define B as the union of these vertices. The graph H = 〈A∪B〉 is obviously a W-graph
with parts A and B, and |A| = |B| = k. Since H cannot be strong, we have β(H) ≥ k. Let
I be an independent set of H of cardinality k. It is evident that the set I∪J is independent
in G′. Consequently,

β(G′) ≥ |I|+ |J | = |A|+ |J | = |D| = Γ(G′).

Since β(G′) ≤ Γ(G′), we have β(G′) = Γ(G′). Thus, the graph G is Γ-perfect.

Definition 16 A connected strong graph G(A, B) of order 2k is called critical if δ(G) ≥ 2
and for any l-edge e ∈ E(G),

β(G− e) = k.
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Lemma 3 Any strong graph G with parts A and B contains a critical subgraph G∗ with
parts A∗ ⊆ A and B∗ ⊆ B.

Proof: Let E ′ be the maximum set of l-edges in G such that β(G′) < k, where V (G′) =
V (G) and E(G′) = E(G) − E ′. Since E ′ is maximum and deleting all l-edges from G
produces the graph with independence number k, we obtain β(G′ − e) = k for any l-edge
e ∈ E(G′). Suppose that G′ contains a vertex u of degree 1, and denote by uv the b-edge
incident to u. Let us show that degG′ v = 1. Suppose to the contrary that there is an l-edge
vw in G′. Since β(G′− vw) = k, there is an independent set I in G′− vw of cardinality k.
We have v, w ∈ I, for otherwise I is independent in G′, contrary to the fact that β(G′) < k.
Now the set I ′ = (I − {v}) ∪ {u} is independent in G′ and |I ′| = |I| = k, a contradiction
again. Consequently, degG′ v = 1. Thus, if degG′ u = 1, then the b-edge incident to u is an
isolated edge in G′.

Consider now the connected component G∗(A∗, B∗) of the graph G′ such that A∗ ⊆ A,
B∗ ⊆ B and β(G∗) < k∗, where k∗ = |A∗| = |B∗|. Such a component does exist, for
otherwise β(H) = 1

2
|H| for each connected component H of G′ and hence β(G′) = 1

2
|G′| =

k, a contradiction. We see that G∗ is a connected strong graph of order 2k∗. If δ(G∗) = 1,
then G∗ is an isolated b-edge in G′ and so β(G∗) = k∗ = 1, a contradiction. Hence
δ(G∗) ≥ 2. If there exists an l-edge e in G∗ such that β(G∗ − e) < k∗, then obviously
β(G′ − e) < k, contrary to the maximality of E ′. Thus, β(G∗ − e) = k∗ for any l-edge
e ∈ E(G∗). We conclude that G∗ is a critical graph.

Lemma 4 A graph G is Γ-perfect if and only if G contains no critical graph as a semi-
induced subgraph.

Proof: Let G be a Γ-perfect graph and suppose that G contains a critical graph H(A, B)
as a semi-induced subgraph. We have β(H) < k, where k = |A| = |B|. Consider in the
graph G the induced subgraph F = 〈A ∪ B〉. This graph is obtained from H by adding
some edges in the parts A, B. Therefore, β(F ) < k and F is a W-graph, i.e., F is a strong
graph. This is a contradiction, since, by Lemma 2, the graph G does not contain any
strong graph as an induced subgraph.

Now let G contain no critical graph as a semi-induced subgraph, and suppose that G
is not Γ-perfect. By Lemma 2, the graph G contains a strong graph H as an induced
subgraph. Now, by Lemma 3, H(A, B) contains a critical subgraph H∗(A∗, B∗) such that
A∗ ⊆ A and B∗ ⊆ B, i.e., H∗ is a semi-induced subgraph of H. Therefore, the critical
graph H∗ is a semi-induced subgraph of G, a contradiction.

In the remaining part of the proof we give a description of the class of critical graphs.
In fact we prove that a graph is critical if and only if it is a basis. This result together
with Lemma 4 will provide the characterization of Γ-perfect graphs.

Lemma 5 If G′ is obtained from a perfect bl-graph G by the operation of W-reducibility,
then G′ is a W-graph whose perfect matching between the parts consists of b-edges deter-
mined by the operation of W-reducibility.

Proof: Let G′ be obtained from a perfect bl-graph G by the operation of W-reducibility.
Note that the graph G may have loops only if G = Pr1. In that case the loops (l-edges) of
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G are replaced in accordance with Definition 11 by alternating even l-cycles. If u ∈ V (G′)
is an old vertex, i.e. u ∈ V (G), then u is labeled by c(u) in G′. If u ∈ V (G′) is a new vertex,
then u is a non-end vertex of some chain Pe. We label all vertices from V (G′)− V (G) by
the following inductive rule. If e = uv is an edge of G′ such that u has a label but v has
no label yet, then we put:

• c(v) = A if c(u) = A and e is an l-edge.

• c(v) = B if c(u) = A and e is a b-edge.

• c(v) = A if c(u) = B and e is a b-edge.

• c(v) = B if c(u) = B and e is an l-edge.

Now, the vertices of G′ with label A form the part A, the vertices with label B form
the part B, and the set of b-edges of G′ forms a perfect matching between A and B, i.e.,
the sets A, B independently match each other in G′. Thus, the graph G′ is a W-graph.

Lemma 6 Let G be a perfect bl-graph of order 2k and let C = (u1, u2, ..., u2n+1) be an
l-cycle in G starting with u1. If β(G) = k, then the vertex u1 belongs to no maximum
independent set of G.

Proof: By definition, the edge u2iu2i+1 is a b-edge for any i, 1 ≤ i ≤ n. Suppose that
there is a maximum independent set I containing u1. Since β(G) = k, the set I contains
exactly one vertex of each b-edge. We have u1 ∈ I and hence u2 6∈ I. Therefore, u3 ∈ I. If
we continue this process, we finally arrive at u2n+1 ∈ I. This is a contradiction, since the
set I contains two adjacent vertices u1 and u2n+1.

Definition 17 A perfect bl-graph G is called a semi-basis if G consists of two l-cycles C
and C ′ starting with u and u′ (u 6= u′), respectively, and also of a b-chain P connecting u
and u′. Note that C, C ′ and P do not necessarily contain different vertices. However, any
of the graphs C, C ′ or P has no self-intersections, since it is simple.

Lemma 7 If a perfect bl-graph G of order 2k contains a semi-basis subgraph, then

β(G) < k.

Proof: Suppose to the contrary that G has an independent set I of cardinality k. Then,
obviously, β(G) = k. By Lemma 6, the starting vertices u, u′ of the l-cycles C, C ′ do not
belong to the set I. Let P = (u1, u2, ..., u2m) be a b-chain connecting u = u1 and u′ = u2m.
The edges u2i−1u2i (1 ≤ i ≤ m) are b-edges and the set I contains exactly one vertex of
each b-edge, since β(G) = k. The vertex u = u1 does not belong to I, and so u2 ∈ I.
Hence u3 6∈ I and u4 ∈ I. Going on in the same way, we obtain u2i ∈ I for all i, 1 ≤ i ≤ m.
This is a contradiction, since the vertex u′ = u2m does not belong to the set I.

Lemma 8 A critical graph G is a semi-basis. The graph G − e does not contain a semi-
basis subgraph for any l-edge e ∈ E(G).
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Proof: Let v be an arbitrary vertex of a critical graph G(A, B), say v ∈ A. Put X0 = {v}
and X ′

0 = N(v) ∩ A. For i ≥ 0, we define the sets Xi+1 and X ′
i+1 as follows:

Xi+1 = {x ∈ V (G) : xy is a b-edge, y ∈ X ′
i},

X ′
i+1 = N(Xi+1)− (∪i

j=0X
′
j ∪ {v′}),

where v′ ∈ B and vv′ is a b-edge. The construction of the sequence

X0, X
′
0, X1, X

′
1, ..., Xn, X

′
n

is finished for minimal n such that X ′
n = ∅. Clearly, the above sets are pairwise disjoint.

Put
X = ∪n

j=0Xj,

X ′ = ∪n−1
j=0 X ′

j ∪ {v′}.

Let us show that the set X is not independent. The graph G is critical, and so δ(G) ≥ 2.
Hence there is a vertex w ∈ A adjacent to v. Moreover, β(G− vw) = k = |A| = |B|. Let
I be an independent set of G − vw of cardinality k. Since I is not independent in G, we
have v, w ∈ I. Put

A1 = A− (X ∪X ′),

B1 = B − (X ∪X ′),

I1 = A1 ∩ I,

I2 = B1 ∩ I.

By the definitions, no vertex of X is adjacent to a vertex of A1∪B1. The set I ′ = X∪I1∪I2

has cardinality k, and hence I ′ is not independent in G. On the other hand, I1 ∪ I2 is
independent in G and there is no edge between I1∪ I2 and X in G. We conclude that X is
not independent, and hence xs ∈ Xs is adjacent to yt ∈ Xt. Clearly, s and t have the same
parity. If s < t, then we have a contradiction, since yt must belong to X ′

s but X ′
s ∩Xt = ∅.

Thus, s = t, i.e., xs ∈ Xs is adjacent to ys ∈ Xs. Now we construct two alternating simple
chains. Put

P1 = (xs, x
′
s−1, xs−1, x

′
s−2, ..., x

′
0, x0 = v),

P2 = (ys, y
′
s−1, ys−1, y

′
s−2, ..., y

′
0, y0 = v),

where xi, yi ∈ Xi and x′
i, y

′
i ∈ X ′

i (0 ≤ i ≤ s). Let z be the first common vertex of P1 and
P2 if we go from xs to v (possibly, z = v). Obviously, z ∈ X. Now, the edge xsys, the
(xs, z)-subchain of P1 and the (ys, z)-subchain of P2 form the l-cycle C starting with z. If
z 6= v, then the (z, v)-subchain of P1 is an alternating (z, v)-chain in which z is incident to
a b-edge and v is incident to an l-edge.

In fact we proved the following lemma.

Lemma 9 For any vertex v of a critical graph G, there exists an l-cycle C starting with
z and such that if v 6= z, then there is an alternating (v, z)-chain in which v is incident to
an l-edge, and z is incident to a b-edge, and moreover, z is the only common vertex of this
chain and C.
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We go on with the proof of Lemma 8. Denote by zz1 the b-edge incident to the vertex
z, and apply Lemma 9 to the vertex z1. Let C ′ be the l-cycle starting with z′. If z1 6= z′, let
P be the alternating (z′, z1)-chain in which z1 is incident to an l-edge and z′ is incident to
a b-edge. If z1 = z′, then put P = ∅. Let P+ = P ∪ z1z, thus P+ is the b-chain connecting
the starting vertices z and z′ of the l-cycles C and C ′. The union of the cycles C, C ′ and
the chain P+ produces a semi-basis subgraph G′ of the graph G. The semi-basis graph G′

is shown in Fig. 2 provided that it has no self-intersections.
Let e be an l-edge of the graph G and suppose that the graph G − e contains a semi-

basis subgraph. By Lemma 7, β(G − e) < k. On the other hand, G is critical, and so
β(G − e) = k, a contradiction. Thus, the graph G − e does not contain a semi-basis
subgraph for any l-edge e ∈ E(G). Therefore, the semi-basis subgraph G′ of G contains
all l-edges of G. Since G is critical, we have δ(G) ≥ 2. Hence V (G′) = V (G). Taking into
account that any semi-basis graph is a perfect bl-graph, we conclude that G′ must contain
all b-edges of G. Thus, G′ = G. The proof of Lemma 8 is complete.

Remark 1 The proof of Lemma 8 implies that the cycle C ′ and the chain P − {z1} may
intersect the set V (C)− {z} in the critical graph G, all other intersections are impossible.
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FIGURE 2. Semi-basis graph without self-intersections.

Lemma 10 Any critical graph is a basis.

Proof: Let G be a critical graph. By Lemma 8, the graph G is a semi-basis. Employing
the notation used in Lemma 8 and taking into account Remark 1, we consider all possible
intersections of V (C ′) ∪ (V (P )− {z1}) and V (C)− {z}. Suppose that the intersection of
these sets is empty. The graph G is a W-graph, since G is critical. Hence the cycles C
and C ′ have the even number of b-edges. Therefore, G can be obtained from Pr1 by the
operation of W-reducibility, i.e., G is a basis.

Suppose that u is a common vertex of C ′ ∪ P and C. Let Q be a maximal common
subchain of C ′ ∪ P and C such that Q contains u. Since every vertex in G is incident to
exactly one b-edge, it follows that Q is a b-chain. Maximal common b-chains will be called
intersection intervals. Obviously, degG v = 2 for any non-end vertex v of any intersection
interval.
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Let us show that the set V (P )− {z1} does not intersect the set V (C)− {z}. Suppose
to the contrary that u ∈ (V (P )− {z1}) ∩ (V (C)− {z}) and u is the nearest vertex to the
vertex z in the chain P+. Denote by (u, u′) the corresponding intersection interval. Let L
be the (z, u)-subchain of C such that u′ ∈ L, and let y ∈ L be adjacent to z. Thus, zy is an
l-edge. The (z, u)-subchain of P+ and the (u, z)-subchain of C not containing u′ form the
l-cycle C ′′ starting with u. The (u, z′)-subchain P ′ of the chain P+ connects C ′′ with the
l-cycle C ′ starting with z′. Thus, for the l-edge zy the graph G− zy contains a semi-basis
subgraph formed by C ′, C ′′ and P ′, contrary to Lemma 8. Therefore, V (P ) ∩ V (C) = ∅.

Now consider possible intersections of C ′ − {z′} and C − {z}. Passing round the cycle
C ′ from the vertex z′, denote all intersection intervals by

(u1, u
′
1), (u2, u

′
2), ..., (ut, u

′
t),

where ui, u
′
i (1 ≤ i ≤ t) are end vertices of the intervals. Since C ′ ∩ C 6= ∅, we have t ≥ 1.

In what follows it is always supposed that we pass round the cycle C in the direction from
u′

1 to u1. We will prove that, passing round the cycle C in this direction, the end vertices
of the above intersection intervals are arranged in the following sequence:

u′
1, u1, u

′
2, u2, ..., u

′
t, ut, (1)

and moreover the vertex z belongs to the (ut, u
′
1)-subchain of C. These statements hold

for t = 1, and so we may assume that t ≥ 2.
Suppose that passing round C we arrive to the vertex u′

1 from us (s > 1), i.e. the
(us, u

′
1)-subchain R of C contains no end vertices of any intersection interval excepting us

and u′
1, and the vertex z does not belong to the chain R. We see that R is an l-chain.

Hence the chain R and the (us, u
′
1)-subchain of C ′ containing z′ form the l-cycle C ′′ starting

with z′. Let e = vu′
1 be the l-edge of C ′. Obviously, e 6∈ C ′′ and e 6∈ C, since (u′

1, u1)
is a maximal common b-chain of C and C ′. Thus, G − e contains a semi-basis subgraph
consisting of C, C ′′ and P+, contrary to Lemma 8. Now suppose that passing round C we
arrive to u′

1 from u′
s, and z does not belong to the (u′

s, u
′
1)-subchain R of C. Therefore, R is

an l-chain. The chain R and the (u′
1, u

′
s)-subchain of C ′ not containing z′ form the l-cycle

C ′′ starting with u′
1. Let e = vu′

s be the l-edge of C ′. Obviously, e 6∈ C ′′ and e 6∈ C. Thus,
G− e contains a semi-basis subgraph consisting of C, C ′′, P+ and the (z′, u′

1)-subchain of
C ′ not containing u′

s, contrary to Lemma 8. Therefore, passing round C we arrive to the
vertex u′

1 from z, and the (z, u′
1)-subchain of C contains no end vertex of any intersection

interval excepting u′
1.

Suppose now that passing round C we arrive to the vertex ur and the next end vertex
of the intersection intervals is us. It is evident that we arrived to the vertex ur from the
vertex u′

r. Since us 6= u′
1, the (ur, us)-subchain of C does not contain z and hence it is an

l-chain. Let s > r. Let us define the cycle C ′′ consisting of the (ur, us)-subchain of C and
the (ur, us)-subchain of C ′ containing u′

r. The cycle C ′′ is an l-cycle starting with us. Let
P ′ be the (us, z

′)-subchain of C ′ containing u′
s. Thus, P ′ ∪ P+ is a b-chain from us to z.

Let e = z′w be the l-edge of C ′ such that e 6∈ P ′. Since z′ 6∈ C, we have e 6∈ C. Also,
e 6∈ C ′′. We conclude that the graph G− e contains a semi-basis subgraph consisting of C,
C ′′ and P ′∪P+, contrary to Lemma 8. Now let s < r. Let us define the cycle C ′′ consisting
of the (ur, us)-subchain of C and the (us, ur)-subchain of C ′ containing u′

s. The cycle C ′′

is an l-cycle starting with ur. Let P ′ be the (ur, z
′)-subchain of C ′ containing u′

r. Thus,
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P ′ ∪ P+ is a b-chain from ur to z. Let e = z′w be the l-edge of C ′ such that e 6∈ P ′. We
have, e 6∈ C and e 6∈ C ′′. We conclude that the graph G− e contains a semi-basis subgraph
consisting of C, C ′′ and P ′ ∪ P+, contrary to Lemma 8. Thus, if we arrive to the vertex
ur passing round C, then the next end vertex of the intersection intervals must be u′

s, i.e.,
passing round the cycle C the end vertices of the intersection intervals are arranged in the
following sequence:

u′
1, u1, u

′
f(2), uf(2), ..., u

′
f(t), uf(t),

where f : {2, 3, .., t} → {2, 3, ..., t} is a bijection. Clearly, z belongs to the (uf(t), u
′
1)-

subchain of C. Assume that there is j ∈ {2, 3, ..., t} such that f(j − 1) > f(j). Denote
r = f(j − 1) and s = f(j). Thus, r > s. Let L be the (ur, u

′
s)-subchain of C. We see

that z 6∈ L and hence L is an l-chain. Let L′ be the (u′
s, ur)-subchain of C ′ not containing

z′. Obviously, L′ is an l-chain. Replace the chain L′ in C ′ by the chain L and denote the
resulting cycle by C ′′. The cycle C ′′ is an l-cycle starting with z′. Let e = urw be the
l-edge of L′. It is evident that e 6∈ C ′′ and e 6∈ C. We deduce that the graph G−e contains
a semi-basis subgraph consisting of C, C ′′ and P+, contrary to Lemma 8. Consequently,
the end vertices of intersection intervals while passing round C are arranged in accordance
with (1).

The graph G(A, B) is a W-graph, since G is critical. We label all vertices of G as
follows. Put c(v) = A if v ∈ A, and c(v) = B if v ∈ B. Denote u0 = z and u′

0 = z′.
Furthermore, we construct the graph G∗ by the following rule. Let

Pb = {(ui, u
′
i) : 0 ≤ i ≤ t}

be the set of b-chains of G consisting of the chain P+ and the intersection intervals. Replace
each chain (ui, u

′
i) from Pb by the b-edge uiu

′
i. Note that the chain (ui, u

′
i) is an even b-

chain if ui and u′
i have the same label, and this chain is an odd b-chain otherwise. Now

let
Pl = {(ut, u0), (u

′
t, u

′
0), (ui−1, u

′
i), (u

′
i−1, ui) : 1 ≤ i ≤ t}

be the set of l-chains of G. Replace each chain L from Pl by the l-edge connecting the end
vertices of L. Note that L is an even l-chain if its end vertices have the same label, and
L is an odd l-chain otherwise. The resulting graph G∗ is the odd prism Prt+1 whenever
t ≥ 1 is even, and G∗ is the even Möbius ladder Mlt+1 whenever t ≥ 1 is odd. Moreover,
using the mapping c : V (G∗) → {A, B} constructed above, the graph G is obtained from
G∗ by the operation of W-reducibility. Therefore, G is a basis graph. The proof of Lemma
10 is complete.

Lemma 11 All basis graphs are critical.

Proof: Let G be a basis graph, i.e., G is obtained from Pr2n+1 (n ≥ 0) or Ml2n (n ≥ 1) by
the operation of W-reducibility. By Lemma 5, G is a W-graph, G = G(A, B). Obviously,
δ(G) ≥ 2 and G is a connected graph. Let us show that β(G) < k. By Lemma 7, it is
sufficient to find a semi-basis subgraph in G. If G is obtained from Pr1, then G is evidently
a semi-basis subgraph. Now let G be obtained from Pr2n+1 or Ml2n, n ≥ 1. Since the
operation of W-reducibility preserves semi-basis subgraphs, it is sufficient to find such a
graph in Pr2n+1 or Ml2n, n ≥ 1. In fact we will show that both Pr2n+1 and Ml2n are
semi-basis graphs.
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Recall that in Pr2n+1, the cycles (u1, u2, ..., u2n+1) and (v1, v2, ..., v2n+1) consist of l-
edges, and {uivi : 1 ≤ i ≤ 2n + 1} is the set of b-edges. Define two cycles as follows:

C = (u1, u2, v2, v3, u3, u4, ..., u2n, v2n, v2n+1, u2n+1, u1),

and
C ′ = (v1, v2, u2, u3, v3, v4, ..., v2n, u2n, u2n+1, v2n+1, v1).

The cycle C starting with u1 and the cycle C ′ starting with v1 are l-cycles connected by
the b-chain (u1, v1) = u1v1, i.e., Pr2n+1 is a semi-basis graph for n ≥ 1.

Consider now the Möbius ladder Ml2n. Recall that the cycle (u1, u2, ..., u4n) in Ml2n

consists of l-edges, and {ui, u2n+i : 1 ≤ i ≤ 2n} is the set of b-edges of Ml2n. Define two
cycles as follows:

C = (u1, u2, u2n+2, u2n+3, u3, u4, u2n+4, u2n+5, ..., u2n, u4n, u1),

and
C ′ = (u2n+1, u2n+2, u2, u3, u2n+3, u2n+4, u4, u5, ..., u4n, u2n, u2n+1).

The cycle C starting with u1 and the cycle C ′ starting with u2n+1 are l-cycles connected
by the b-chain (u1, u2n+1) = u1u2n+1, i.e., Ml2n is a semi-basis graph.

Thus, β(G) < k. It remains to prove that β(G − e) = k for each l-edge e ∈ E(G).
Let G be obtained from Pr1 by the operation of W-reducibility. Obviously for any l-edge
e ∈ E(G), the graph G − e contains 1 or 2 vertices of degree 1. Starting with a vertex
(vertices) of degree 1, it is easily to construct the desired independent set of cardinality k.

Now let G be obtained from H = {Pr2n+1, Ml2n : n ≥ 1} by the operation of W-
reducibility, i.e., b-edges are replaced by alternating b-chains and l-edges are replaced by
alternating l-chains. There are two cases to consider.

Case 1. The l-edge e belongs to an l-chain Pf , where f is an l-edge of H. If H = Pr2n+1,
then without loss of generality we may suppose that f = u1u2n+1. Put

I = {u1, u2i+1, v2i : 1 ≤ i ≤ n}.

If H = Ml2n, then we may assume that f = u1u2. In that case put

I = {u1, u2i, u2n, u2n+2i+1 : 1 ≤ i ≤ n− 1}.

The set I is an independent set of H − f of cardinality 1
2
|H|. Now it is not difficult to

construct an independent set of G − e of cardinality k = 1
2
|G|. Indeed, let uv ∈ E(H) be

a b-edge replaced by a b-chain P . Since |I| = 1
2
|H|, we have |{u, v} ∩ I| = 1, say u ∈ I.

From each b-edge of P we add in I one vertex which is nearer to the vertex u in the chain
P . If uv 6= f is an l-edge of H replaced by an l-chain P , then |{u, v} ∩ I| ≤ 1 and we can
add vertices in I in the same way as above. Now suppose that uv = f , and let e = xy.
Then, from each b-edge of Pf −e we add in I one vertex which is nearer to the vertices x, y
in the chain Pf . The constructed set I ′ is an independent set of G − e. Since I ′ contains
one vertex of each b-edge in G− e, we have |I ′| = k. Consequently, β(G− e) = k.

Case 2. The l-edge e belongs to a b-chain Pf , where f is a b-edge of H. If H = Pr2n+1,
then without loss of generality we may suppose that f = u1v1. Put

I = {u2i, v2i+1 : 1 ≤ i ≤ n}.

13



If H = Ml2n, then we may assume that f = u1u2n+1. In that case put

I = {u2i, u2n, u2n+2i+1 : 1 ≤ i ≤ n− 1}.

The set I is an independent set of H − f such that each b-edge of H − f has one vertex
in I and |I| = 1

2
|H| − 1. Note also that the end vertices of f do not belong to I. Adding

vertices in the set I in the same way as in Case 1, we obtain the set I ′ such that I ′ contains
one vertex of each b-edge of the graph G−e. Therefore, |I ′| = k = 1

2
|G|, i.e., β(G−e) = k.

Thus, Lemmas 10 and 11 imply that a graph is critical if and only if it is a basis. Now
the proof of Theorem 1 follows from Lemma 4.

4 Corollaries

In this section we illustrate some applications of the characterization of Γ-perfect graphs in
terms of forbidden semi-induced subgraphs. We say that a graph G is 2-homeomorphic to
H if G can be obtained from H by replacing edges of H by chains of even order 2k, k ≥ 1.
Let the family H consist of graphs 2-homeomorphic to the odd prism Pr2n+1 (n ≥ 0) or
the even Möbius ladder Ml2m (m ≥ 1).

Proposition 1 If H belongs to H, then β(H) < 1
2
|H|.

Proof: For the odd prism we have β(Pr2n+1) = 2n, i.e., β(Pr2n+1) < 1
2
|Pr2n+1|. For

the even Möbius ladder we have β(Ml2m) = 2m − 1, i.e., β(Ml2m) < 1
2
|Ml2m|. Let F ′

be obtained from a graph F by the single 2-partition of the edge uv, i.e., uv is replaced
by the chain P = (u, x, y, v). Let U be a maximum independent set of F ′. Obviously,
1 ≤ |U ∩ P | ≤ 2. If |U ∩ P | = 1, then U − P is an independent set of F of cardinality
|U | − 1 = β(F ′)− 1. If |U ∩P | = 2, then at least one vertex from {u, v} belongs to U , say
u ∈ U . Now U −{x, y, v} is an independent set of F of cardinality |U | − 1 = β(F ′)− 1. In
any case, β(F ) ≥ β(F ′)− 1. Thus, if β(F ) < 1

2
|F |, then

β(F ′) ≤ β(F ) + 1 <
1

2
|F |+ 1 =

1

2
|F ′|.

Since H is obtained from the odd prism or the even Möbius ladder by applying the operation
of 2-partition, we conclude that β(H) < 1

2
|H|.

In our next theorem, the graphs from the family H are forbidden as semi-induced
subgraphs for a graph to be Γ-perfect. Using the fact that a semi-induced subgraph of a
graph is a W-graph, we see that the class of forbidden semi-induced subgraphs of Theorem
2 actually consists of W-graphs from the family H. Note that the class of W-graphs
from H is larger than the class of basis graphs used in Theorem 1. For example, Ml4 =
Ml4({u2, u3, u6, u7}, {u1, u4, u5, u8}) is a W-graph from H and hence it is forbidden in
Theorem 2. On the other hand, Ml4 is not a basis graph. Another difference between
Theorem 1 and Theorem 2 is that a basis graph has a fixed partition into parts determined
by the set of its b-edges, while for a W-graph from H the partition into parts is not fixed.
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Theorem 2 A graph G is Γ-perfect if and only if G does not contain a semi-induced
subgraph 2-homeomorphic to the odd prism Pr2n+1 (n ≥ 0) or the even Möbius ladder
Ml2m (m ≥ 1).

Proof: Let G be a Γ-perfect graph and let H belong to H. If H is not a W-graph, then H
cannot be a semi-induced subgraph of G. Suppose now that H = H(A, B) is a W-graph
and H is a semi-induced subgraph of G. By Proposition 1, β(H) < 1

2
|H|. Let H ′ = 〈A∪B〉.

Evidently, β(H ′) ≤ β(H) and H ′ is a W-graph. Therefore, by Lemma 1,

Γ(H ′) =
1

2
|H ′| = 1

2
|H| > β(H) ≥ β(H ′).

Thus, Γ(H ′) > β(H ′). This is a contradiction, since G is a Γ-perfect graph.
Suppose that G does not contain any graph from H as a semi-induced subgraph. Any

basis graph F is obtained from the odd prism or the even Möbius ladder by replacing its
edges by alternating chains of even order, and the partition into parts of F is determined
by the set of its b-edges. Thus, the graph F is 2-homeomorphic to the odd prism or the
even Möbius ladder and F has a fixed partition into parts. For a W-graph H from H, the
partition into parts of H is not fixed, and hence we may take any partition V (H) = A∪B
such that A and B independently match each other. Therefore, F ∈ H and the graph G
does not contain any basis graph as a semi-induced subgraph. The result now follows from
Theorem 1.

Jacobson and Peters [22] considered the class of graphs G having β(H) = IR(H) for
all induced subgraphs H of G. By Theorem A, this class is exactly the class of Γ-perfect
graphs.

Corollary 1 (Jacobson and Peters [22]) A graph G is Γ-perfect if and only if for any
vertex subsets A, B ⊂ V (G) that independently match each other, the graph 〈A ∪ B〉 has
an independent set of order |A|.

Proof: Let G be a Γ-perfect graph and A, B independently match each other. The set A is
minimal dominating in F = 〈A∪B〉. Hence, β(F ) = Γ(F ) ≥ |A|. To prove the sufficiency,
suppose that G is not Γ-perfect. By Theorem 2, G contains a semi-induced subgraph
H = H(A, B) ∈ H. By Proposition 1, β(H) < |A|. Thus, the sets A, B independently
match each other in G and β〈A ∪B〉 < |A|, a contradiction.

Now we turn to the problem of characterizing Γ-perfect graphs in terms of forbidden
induced subgraphs. A graph G is called minimal Γ-imperfect if G is not Γ-perfect and
β(H) = Γ(H), for every proper induced subgraph H of G.

Proposition 2 If G is a minimal Γ-imperfect graph, then G contains a basis graph F (A, B)
of order 2k as a semi-induced subgraph, G = G(A, B) is a connected W-graph of order 2k,
δ(G) ≥ 2, and β(G) = k − 1.

Proof: By Theorem 1, G contains a basis graph F as a semi-induced subgraph. Since G
is minimal, we have V (G) = V (F ). By Lemma 11, F is critical, i.e., F = F (A, B) is a
connected W-graph of order 2k, δ(F ) ≥ 2 and β(F ) < k. The graph G is obtained from F
by adding edges in the parts A, B. Therefore, G(A, B) is a connected W-graph of order 2k,
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δ(G) ≥ 2 and β(G) < k. Let uv be a b-edge of G. The graph G′ = G−{u, v} is Γ-perfect.
Hence, using Lemma 1, β(G′) = Γ(G′) = k − 1. We obtain β(G) ≥ β(G′) = k − 1. Thus,
β(G) = k − 1.

By Proposition 2, every minimal Γ-imperfect graph has even order n ≥ 6. Let µn denote
the number of nonisomorphic minimal Γ-imperfect graphs of order n. It was proved in [14]
that µ6 = 1 and µ8 = 14. Using a computer search, we discovered that µ10 = 228 and the
number µ12 considerably exceeds µ10. Therefore, it seems unlikely to obtain an explicit list
of all minimal Γ-imperfect graphs, i.e., to provide an induced subgraph characterization
of the entire class of Γ-perfect graphs. However, for K1,3-free Γ-perfect graphs Theorem 1
enables us to obtain such a characterization.

We define the family S consisting of the following classes S1, S2 and S3. Let C =
C4m and C ′ = C4n (m,n ≥ 1) be two cycles, let uv ∈ E(C) and xy ∈ E(C ′), and let
(z1, z2, ..., z2l) (l ≥ 1) be a chain. Add the edges uz1, vz1 and xz2l, yz2l. The resulting
graph belongs to S1. Now let (u1, ..., uk), (v1, ..., vl) and (w1, ..., wm) be three chains such
that k, l, m ≥ 2 and either k, l, m ≡ 0(mod4) or k, l, m ≡ 2(mod4). Adding the edges u1v1,
v1w1, w1u1 and ukvl, vlwm, wmuk, we obtain a graph of the class S2. Lastly, let C = C4m

and C ′ = C4n (m, n ≥ 1) be two cycles and let uv ∈ E(C) and xy ∈ E(C ′). Add the edges
ux, uy, vx, vy. The resulting graph belongs to S3.

Theorem 3 A K1,3-free graph G is Γ-perfect if and only if G does not contain any member
of S as an induced subgraph.

Proof: Any graph H from the family S contains a semi-induced subgraph 2-homeomorphic
to Pr1, Pr3 or Ml2. By Theorem 2, H is not Γ-perfect. To prove the sufficiency, let G
be a minimal counterexample, i.e., G is a K1,3-free graph not containing any member of S
as an induced subgraph, G is not Γ-perfect and G has minimal order. Obviously, G is a
minimal Γ-imperfect graph. By Proposition 2, G contains a basis graph F = F (A, B) as a
semi-induced subgraph, G = G(A, B) is a connected W-graph of order 2k, δ(G) ≥ 2, and
β(G) = k − 1. If the induced subgraph 〈A〉 or 〈B〉 of the graph G contains the induced
chain P3, then G has the induced K1,3, a contradiction. Hence both 〈A〉 and 〈B〉 are
disjoint unions of complete graphs.

Lemma 12 Let G(A, B) be a minimal Γ-imperfect graph of order 2k. If 〈A〉 and 〈B〉 are
disjoint unions of complete graphs, then the following statements hold:

1. If k is odd, then 〈A〉 ∼= 〈B〉 ∼= k−3
2

K2 ∪K3 (k ≥ 3).

2. If k is even, then one of the graphs 〈A〉, 〈B〉 is k
2
K2 and the other is either k−4

2
K2∪K4

(k ≥ 4) or k−6
2

K2 ∪ 2K3 (k ≥ 6).

Proof: Let 〈A〉 be a disjoint union of the complete graphs H1, ..., Hp. Since δ(G) ≥ 2, we
have |Hi| ≥ 2 for any i ∈ {1, ..., p}, and hence p ≤ k/2. Let I be an independent set in
G of cardinality k − 1 = β(G). Put IA = I ∩ A and IB = I ∩ B. The set I contains at
most one vertex of each Hi, and hence |IA| ≤ p ≤ k/2. Analogously, |IB| ≤ k/2. Further,
|IA| = |I| − |IB| ≥ k − 1− k/2 = k/2− 1. Thus,

k/2− 1 ≤ |IA| ≤ k/2. (2)
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Analogously,
k/2− 1 ≤ |IB| ≤ k/2. (3)

Put

s =
p∑

i=1

(|Hi| − 2) ≥ 0.

We have,

k = |A| =
p∑

i=1

|Hi| = s + 2p ≥ s + 2|IA|.

Therefore, using (2),
s ≤ k − 2|IA| ≤ 2.

Thus,
s ∈ {0, 1, 2}.

If k = |A| is odd, then s is also odd, since s = k − 2p. Hence s = 1, k ≥ 3, and
〈A〉 ∼= k−3

2
K2 ∪K3. Analogously, 〈B〉 ∼= k−3

2
K2 ∪K3.

Now let k be even. Using (2) and (3), we see that one of the sets IA and IB has
cardinality k/2 − 1 and the other has cardinality k/2. Without loss of generality, let
|IA| = k/2 − 1 and |IB| = k/2. Since 〈B〉 is a disjoint union of complete graphs and
δ(G) ≥ 2, we have 〈B〉 ∼= k

2
K2. Further, s = k − 2p and k is even. Hence s is even

and s = 0 or 2. If s = 0, then 〈A〉 ∼= k
2
K2 and therefore G is a disjoint union of even

simple cycles. We obtain β(G) = k, a contradiction. Thus, s = 2. Hence k ≥ 4 and
〈A〉 ∼= k−4

2
K2 ∪K4 or k ≥ 6 and 〈A〉 ∼= k−6

2
K2 ∪ 2K3. The proof of Lemma 12 is complete.

By Lemma 12, G has either exactly 6 vertices of degree 3 or exactly 4 vertices of
degree 4, and all other vertices have degree 2. The basis graph F is a spanning subgraph
of G. Therefore, either F has at most 6 vertices of degree 3 and all other vertices have
degree 2, or F has at most 4 vertices of degree 3 and 4 and all other vertices have degree
2. Consequently, F is obtained from Pr1, Pr3 or Ml2 (see Fig. 1) by the operation of
W-reducibility. By Lemma 5, any l-edge of F belongs to A or B.

Suppose that F is obtained from Pr1. Let uu1, u1u
′ be l-edges of one l-cycle of F and let

vv1, v1v
′ be l-edges of the other l-cycle of F . The vertices u, u′, u1 belong to the same part,

and v, v′, v1 belong to the same part. We have, uu′ ∈ E(G) and vv′ ∈ E(G), since G is a
K1,3-free graph. The restrictions on the degrees of vertices of G imply G = F ∪ {uu′, vv′}.
Since G is a W-graph, we see that the cycle C of G such that u, u′ ∈ C and u1 6∈ C has
length 4m, and the cycle C ′ of G such that v, v′ ∈ C ′ and v1 6∈ C ′ has length 4n. Thus,
G ∈ S1, a contradiction.

Assume that F is obtained from Pr3. The prism Pr3 has 6 vertices of degree 3. Hence,
G = F . Suppose that an l-edge of Pr3 was replaced by an l-chain having more than
2 vertices. Then F has the induced K1,3, a contradiction. Therefore, only b-edges of
Pr3 could be replaced by b-chains to obtain F . These chains must be odd b-chains if
C1 = (u1, u2, u3) and C2 = (v1, v2, v3) belong to different parts of F , and they must be even
b-chains if C1 and C2 belong to the same part of F . Any odd b-chain has 4k + 2 vertices,
and any even b-chain has 4m vertices. Therefore, G = F ∈ S2, a contradiction.
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Finally, suppose that F is obtained from Ml2 by the operation of W-reducibility. It is
easy to see that Ml2 has 4 different labelings of V (Ml2) by c(u) ∈ {A, B} up to replacing
A by B. Hence there are 4 cases to consider.

Case 1: c(u1) = c(u4) = A and c(u2) = c(u3) = B. By the definition of W-reducibility,
the l-edges u1u2 and u3u4 had to be replaced by the odd l-chains (u1, v1, ..., vk, u2), k ≥ 2,
and (u3, w1, ..., wm, u4), m ≥ 2. Each of the vertices v1, vk, w1, wm is an end vertex of P3

or P4 consisting of l-edges and hence belonging to A or B. Since any part of G is a disjoint
union of complete graphs, we see that each of the above vertices will have degree at least
3 in G. Thus, G has at least 8 vertices of degree at least 3, a contradiction.

Case 2: c(u1) = c(u3) = A and c(u2) = c(u4) = B. This case is analogous to Case 1,
since the l-edges u1u2 and u3u4 had to be replaced by odd l-chains.

Case 3: c(u1) = c(u2) = c(u3) = A and c(u4) = B. The l-edges u1u4 and u3u4 had
to be replaced by the odd l-chains (u1, v1, ..., vk, u4), k ≥ 2, and (u3, w1, .., wm, u4), m ≥ 2.
Each of the vertices v1, vk, w1, wm is an end vertex of Pr (r ≥ 3) consisting of l-edges.
Hence, each of these vertices has degree at least 3 in G. Thus, G has at least 8 vertices of
degree at least 3, a contradiction.

Case 4: c(ui) = A, 1 ≤ i ≤ 4. If some two l-edges from {u1u2, u2u3, u3u4, u4u1}
were replaced by even l-chains having at least two b-edges, then we derive a contradiction
in the same way as above. Suppose that only one l-edge, say u1u2, was replaced by the
even l-chain (u1, v1, ..., vk, u2), k ≥ 4. Then 〈vk, u2, u3, u4, u1, v1〉 is a P6 in F consisting of
l-edges. Therefore, G contains K6, a contradiction. Thus, only the b-edges u1u3 and u2u4

of Ml2 were replaced by even b-chains and 〈u1, u2, u3, u4〉 is a C4 in F consisting of l-edges.
Hence 〈u1, u2, u3, u4〉 is a K4 in G, and so all other vertices in G must have degree 2, i.e.,
G = F ∪ {u1u3, u2u4}. Since even b-chains have 4m vertices (m ≥ 1), we have G ∈ S3.
This contradiction completes the proof of Theorem 3.
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FIGURE 3. Graph H of Corollary 2.

The next result follows directly from Theorem 3 and Theorem A, since each graph from
S contains either C4 or the graph H of Fig. 3 as an induced subgraph.

Corollary 2 (Jacobson and Peters [23]) If a graph G does not contain either K1,3, C4

or the graph H of Fig. 3 as an induced subgraph, then G is Γ-perfect and IR-perfect.
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Note in conclusion that using properties of minimal Γ-imperfect graphs stated in Propo-
sition 2, it is not difficult to prove Theorems B, C, D, E, or F from Section 1.

Acknowledgment The authors thank the referees for valuable suggestions.
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