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Spreading maps (polymorphisms), symmetriesof Poisson pro
esses, and mat
hing summationYurii A.NeretinAbstra
t. The matrix of a permutationis a partial 
ase of Markov transitionmatri
es.In the sameway, a measure preservingbije
tion of a spa
e (A;�) with �nitemeasure is a partial
ase of Markov transition operators. A Markov transition operator also 
an be 
onsidered as amap (polymorphism) (A;�)! (A;�), whi
h spreads points of (A;�) into measures on (A;�).Denote by R� the multipli
ative group of positive real numbers and byM the semigroupof measures on R�. In this paper, we dis
uss R�-polymorphisms and g-polymorphisms, whoare analogues of the Markov transition operators (or polymorphisms) for the groups of bije
-tions (A;�) ! (A;�) leaving the measure � quasiinvariant; two types of the polymorphisms
orrespond to the 
ases, when A has �nite and in�nite measure respe
tively. For the 
ase,when the spa
e A itself is �nite, the R�-polymorphisms are someM-valued matri
es.We 
onstru
t a fun
tor from g-polymorphisms to R�-polymorphisms, it is des
ribed interms of summations ofM-
onvolution produ
ts over mat
hings of Poisson 
on�gurations.0.0. Notation and terminology. The subje
t of this paper is pure mea-sure theory without any additional stru
tures.The term "measure" in this paper means a positive Borel measure. The term"subset" of a spa
e with measure means a Borel measurable subset.The term spa
e with measure means a Lebesgue measure spa
e, i.e., a spa
e,whi
h is equivalent to the union of some interval of R (the interval 
an be�nite, in�nite or empty) and some 
olle
tion of points having nonzero measures(this 
olle
tion 
an be �nite, 
ountable or empty). We say that the measure is
ontinuous, if all points have zero measure.We denote spa
es with measure by (A;�), (B; �), (M;�) et
., the Latin
apital letter denotes the spa
e, the Greek letter denotes the measure.All our measures are de�ned on Borel �-algebras.The symbol R� denotes the multipli
ative group of positive real numbers.By M we denote the spa
e of �nite positive measures on R�. We equip thisspa
e with the weak 
onvergen
e; a sequen
e uj 2 M weakly 
onverges tou 2 M, if for any bounded 
ontinuous fun
tion  on R�we have the 
onvergen
eR  (x) duj(x) ! R  (x) du(x) (this de�nition forbid departure of the measureto +1 and 0). The expression ��� denotes the 
onvolution of measures on themultipli
ative group R�.0.1. Groups. We 
onsider 4 groups. For a spa
e (A;�) with a �nite
ontinuous measure, we de�ne the following groups.| Ams(A) is the group of all measure preserving bije
tions A! A(Ams is the abbreviation of "automorphisms of the measure spa
e"),| Gms(A) is the group of all maps A ! A leaving the measure � quasiin-variant.For a spa
e (M;�) with an in�nite 
ontinuous measure, we de�ne two groups:| Ams1(M ) is the group of all measure preserving bije
tions M !M ,1



| Gms1(M ) is the group of all maps A! A leaving the measure � quasi-invariant and satisfying the 
onditionZM jq0(m) � 1j d�(m) <1:Remark. The group Gms1(M ) has a homomorphism to the additive groupof R given by q 7! ZM (q0(m)� 1) d�(m):It turn out to be that all these groups admit natural embeddings to semi-groups of spreading maps (or polymorphisms). The semigroup of polymor-phisms related to the group Ams(A) is a well-known obje
t (see [31℄, see also[14℄, [20℄). Re
all its de�nition.0.2. The usual polymorphisms. Let (A;�), (B; �) be spa
es with prob-ability measures. Consider a probability measure P on A � B. We say that Pis a polymorphism or bisto
hasti
 kernel P : A! B if| the image of P under the proje
tion1 A� B ! A is the measure �;| the image of P under the proje
tion A �B ! B is the measure �.By the Rohlin theorem on 
onditional measures (see [28℄), for almost alla 2 A there exists a probability measure Pa on a �B su
h thatP(Q) = ZAPa(Q \ fa�Bg) d�(a):Remarks. 1) Let U , V be sets. Let R be a subset in U � V . We 
an
onsider R as a relation or a multivalued map U ! V . For a point u 2 U , itsimage 
onsists of all the points v 2 V su
h that (u; v) 2 R. For two relationsR � U � V , S � V � W , we de�ne their produ
t T = SR � U � W . It
onsists of all (u;w) 2 U � W su
h that there exists v 2 V satisfying the
onditions (u; v) 2 R, (v; w) 2 S. Multivalued maps appear in a natural way invarious bran
hes of mathemati
s. The most 
lassi
al example is the de�nitionof algebrai
 fun
tions C ! C . Re
all that an algebrai
 fun
tion is a subset inC � C satisfying a polynomial equation p(x; y) = 0.2) Nonformally, a polymorphism P is some kind of a multivalued map thatspreads ea
h point a 2 A into the measure Pa, i.e. we know not only the imageof a point, but also a probability distribution on its image.3) Also polymorphisms are 
ontinuous analogues of Markov transition ma-tri
es (see [31℄ for detailed explanations, see also [9℄).Example. Let q : A ! A be a measure preserving bije
tion. Consider itsgraph graph(q), i.e., the subset of A � A 
onsisting of all the points (a; q(a)).Consider the map A ! A � A given by a 7! (a; q(a)). The image Pq ofthe measure � with respe
t to this map is a measure supported by graph(A).Obviously, Pq is a polymorphism.1it is also 
alled the marginal. 2



Example. The measure � � � is a polymorphism (A;�) ! (B; �). Non-formally, this polymorphism is the total "uniform spreading" of the set A alongthe set B.Let P : (A;�) ! (B; �) and Q : (B; �) ! (C; 
) be two polymorphisms.Let Pa(b) and Qb(
) be the 
orresponding systems of 
onditional measures. Wede�ne the produ
t R = QP : (A;�)! (C; 
) in the terms of these 
onditionalmeasures Ra(
) = ZB Qb(
) dPa(b): (1)Denote by Pol(A;B) the set of all polymorphisms A! B.The set Pol(A;A) is a semigroup with respe
t to the multipli
ation. Thissemigroup 
ontains the group Ams(A).Let Pj ;P : (A;�) ! (B; �) be polymorphisms. We say that the sequen
ePj 
onverges to P if for ea
h measurable subsets U � A, V � B the sequen
eof real numbers Pj(U � V ) 
onverges to P(U � V ).It is readily seen that the spa
e Pol(A;B) is 
ompa
t.It is easy to show (see [31℄, [20℄) that the group Ams(A) is dense in thesemigroup Pol(A;A).Example. Let q 2 Ams(A) be a mixing (i.e., for any subsets U , V 2 A themeasure �(U \ qn(V )) tends to �(U )� �(V ) as n! +1). Then qn 
onvergesto the "uniform spreading" � � � in Pol(A;A). There is a wide literature onpolymorphisms in the ergodi
 theory, see [7℄, [14℄, [31℄.Remark. In fa
t, we have the 
ategory of polymorphisms. The obje
tsare Lebesgue spa
es with probability measure, and morphisms A ! B arepolymorphisms. For groups Gms, Ams1, Gms1, we also des
ribe below some
ategories, whose obje
ts are Lebesgue spa
es with measure.0.3. Closure of an invariant a
tion and the extension problem.Consider a group G a
ting by measure preserving maps on a spa
e A with a�nite 
ontinuous measure �.Extension problem. For a given a
tion of a group G, to �nd the 
losure� of G � Ams(A) in the semigroup of polymorphisms of A.It seems that nothing interesting 
an happen for 
onne
ted non-AbelianLie groups G (the 
ase of Abelian groups is another story). Nevertheless, theproblem be
omes very nontrivial for in�nite-dimensional ("large") groups 2.Indeed, the semigroup PolR�(A;A) is 
ompa
t, and hen
e the semigroup � alsois 
ompa
t. Obviously, any 
ompa
ti�
ation of a large groupG essentially di�ersfrom the group G itself.0.4. Another variant of extension problem. In many 
ases, the semi-group � is known by a priory reasons. Assume that G has some 
olle
tion ofunitary representations. Then usually there exists a 
anoni
al semigroup � � G2It seems that the term "large" group introdu
ed by Vershik is better than "in�nite di-mensional" group. For instan
e, our groups Ams, Ams1, Gms, Gms1 have no stru
ture ofa manifold, but they are "very large". 3



su
h that any unitary representation of the group G admits a 
anoni
al exten-sion to a representation of the semigroup �. This statement was 
laimed byG.I.Olshanski in the end of 70-ies (see [25℄{[26℄, [18℄), for more details see [20℄).This is not a general theorem but an experimental fa
t. Nevertheless, in themost 
ases, there exists a 
onstru
tive des
ription of the semigroup � and itsrepresentations, see [20℄.For many groups G, there exist also a priory theorems about the extensionof representations to �.Examples. 1) ForG = Ams(A), the semigroup � is the semigroup Pol(A;A).The a priory theorem on extension of representations is obtained in [19℄, seealso [20℄, Se
tion 8.4.2) For G = Ams1, Gms, Gms1, the semigroups � are the semigroups ofpolymorphisms de�ned below (Se
tions 1{2), see [19℄.3) If G is the 
omplete orthogonal group of a Hilbert spa
e, then the semi-group � is the semigroup Contr of all operators in the real Hilbert spa
e withthe norm 6 1, [25℄.4) More interesting examples with inordinate � are 
ontained in [26℄, [18℄,[20℄.In many 
ases (see [22℄), it 
an be easily shown, that any homomorphismG! Ams(A) 
an be extended to a homomorphism �! Pol(A;A).Thus we obtain the following variant of the extension problem (this variantis not exa
tly equivalent to previous one).Consider any 
ase, then � is known. For a given measure preserving a
tionof a "large" group G, to �nd an expli
it des
ription of the homomorphism �!Pol.0.5. The purpose of the paper. I know only one work that 
an beattributed to this extension problem. Consider the well-known a
tion of the
omplete in�nite dimensional orthogonal group O(1) on the spa
e with Gaussmeasure (see [29℄, [30℄, see also [20℄). The 
orresponding homomorphism of thesemigroup of 
ontra
tions Contr to Pol was expli
itly des
ribed by Nelson [17℄.A few interesting measure preserving a
tions of large groups are known, andhen
e the polymorphism extension problem has a restri
ted interest. But thezoo of quasiinvariant a
tions is very ri
h (see survey [22℄ and re
ent papers onvirtual permutations and Pi
krell' type inverse limits of symmetri
 spa
es [27℄,[11℄{[12℄, [3℄{[4℄, [24℄).It turn out to be that there are polymorphism-like semigroups related to allthe groups Ams1, Gms, Gms1. We des
ribe them expli
itly below in Se
tions1-2.It seems that the most important of these obje
ts is the semigroup PolR�(A;A)related to the group Gms(A), its elements are measures onA� A�R�satisfying some additional 
onditions. These R�-polymorphisms 
an be 
onsid-ered as "spreading maps", but they spread not only points; also Radon{Nykodimderivatives at points are spreaded. 4



For ea
h quasiinvariant a
tion of a large group G on a measure spa
e (A;�),we obtain a problem about extension of the homomorphism G ! Gms(A) tothe homomorphism from � to PolR�(A).The purpose of this paper is to understand the degree of the interest of thisproblem. We 
onsider the simplest (for my test) nontrivial quasiinvariant a
tionof a large group on a measure spa
e (see the next subse
tion).0.6. Poisson 
on�gurations. LetM be a spa
e with a 
ontinuous in�nitemeasure �. Denote by 
(M ) the spa
e of all 
ountable subsetsm = (m1;m2 : : : )in M . We de�ne the Poisson measure � on 
(M ) by the following 
onditions.1�. Let A � M have �nite measure. Denote by Sk(A) the set of all m 2
(M ) su
h that the set A \m 
onsists of k points. Then�(Sk(A)) = �(A)kk! e��(A):2�. Let sets A1, . . . , An be mutually disjoint. Then the events Sk1(A1),. . . ,Skn (An) are independent, i.e.,�� n\j=1Skj (Aj)� = nYj=1 ��Skj (Aj)�:It is easily shown that these 
onditions de�ne a unique probability measureon 
(M ).Theorem. The measure � on 
(M ) is quasiinvariant with respe
t to thegroup Gms1(M ), the Radon{Nykodim derivative of the transformationm = (m1;m2; : : : ) 7! qm = (qm1; qm2; : : : ); q 2 Gms1(M ); (2)is given by the formulaexpn� ZM (q0(m) � 1) d�(m)o Ymj2m q0(mj): (3)This quasiinvarian
e was obtained by Vershik, Gelfand, Graev [33℄ (in theirpaper, q was a �nitely supported di�eomorphismof a manifold), the in�nitesimalversion of Theorem 0.1 was obtained earlier by Goldin, Grodnik, Powers, Sharp,Meniko� [8℄, [16℄ (see also [1℄); the variant of Theorem given above was obtainedin [19℄, for details see [20℄, Se
tion X.4. Spheri
al fun
tions on the group Gms1with respe
t to the group Ams1 are dis
ussed in [10℄.0.7. The result of the paper. Thus we have the 
anoni
al homomorphismGms1(M )! Gms�
(M )�: (4)In this paper, we des
ribe expli
itly the homomorphism of the semigroupsof polymorphisms extending (4).In fa
t, we 
onstru
t some 
anoni
al family of measures (R�-polymorphisms)on 
(M ) �
(M )�R�:5



They 
an be interpreted as 'spreading maps' of the spa
e 
(M ). Any su
h'map' 
an be obtained as a limit of the transformations (2); thus our R�-polymorphisms themself are some kind of symmetries of Poisson pro
esses. Wede�ne our R�-polymorphisms of 
(M ) in the terms of the mat
hing summationformula (18). In fa
t, this formula is similar to the expressions for the Taylor
oeÆ
ients ofX�klzkul = expnXk;l aklzkul +Xk bkzk +Xl 
lul + do:In these expressions, the s
alars akl, bk, 
l, d are repla
ed by measures on R�and the produ
ts of s
alars are repla
ed by 
onvolutions of the measures. Theanalogue of exp(d) in the formula (18) is a sophisti
ated expression.Mat
hing summation itself appears in mathemati
s in various situations (see[15℄, [21℄), but su
h 
ombinatorial expressions with measures seem unusual.This work is a 
ontinuation of [21℄, but logi
ally these two papers are inde-pendent.0.8. Stru
ture of the paper. Se
tion 1 
ontains preliminaries on R�-polymorphisms, i.e., polymorphisms related to the group Gms. In Se
tion 2, wede�ne g-polymorphisms related to the group Gms1.In Se
tion 3, for any g-polymorphism, we 
onstru
t an R�-polymorphism ofthe 
orresponding spa
es of Poisson 
on�gurations.The result of this paper is the formula (18) and Theorems A-B.A
knowledgments. I thank A.M.Vershik for explanations of Pol(�) anddis
ussions of polymorphisms. I thank the administrators of Erwin S
hr�odingerInstitute (Vienna) for hospitality.1. R�-polymorphismsIn Se
tions 1{2, we apply the double 
oset multipli
ation ma
hinery forprodu
ing the semigroups of polymorphisms. In fa
t, we also give motivationindependent de�nitions of R�-polymorphisms and g-polymorphisms in 1.5-1.8and 2.7-2.8. But it seems that the double 
oset motivation is really ne
essaryin Se
tion 2.On double 
oset multipli
ation and similar operations, see [6℄, [31℄, [25℄{[26℄,a relatively 
omplete list of su
h 
onstru
tions is 
ontained in the book [20℄, itsRussian edition is more 
omplete.Consider a group G and subgroups H, K. The double 
oset spa
e H nG=Kis a quotient spa
e of G with respe
t to the equivalen
e relationg � kgh; where g 2 G; h 2 H; k 2 K:The equivalen
e 
lasses are 
alled double 
osets.1.1. Double 
oset multipli
ation on Ams n Gms=Ams. Fix a spa
e(A;�) with a 
ontinuous probability measure. Let g 2 Gms(A). Consider themap A! R� given by a 7! g0(a):6



Denote by ug the image of this map. Obviously, ug is a probability measure onR�, this measure also satis�es the 
onditionZR� x du(x) = 1: (5)The last property is equivalent toZA g0(a) d�(a) = 1:Denote by L the set of all probability measures on R� satisfying the 
ondition(5).Obviously, for any h1; h2 2 Ams(A), we haveuh1gh2 = ug ;i.e., the map g 7! ug is 
onstant on double 
osets. It is readily seen that themap Ams(A) nGms(A)=Ams(A)! Lde�ned by by g 7! ug is a bije
tion.We 
laim that there exists a natural multipli
ation on the double 
oset spa
eAms nGms=Ams.Consider v;w 2 L. Consider the representatives p; q of the 
orrespondingdouble 
osets, i.e., up = v, uq = w. Of 
ourse, the element upq depends on the
hoi
e of p and q (and it is not determined by u, w).Nevertheless, there exists the following nonformal reasoning. Let h 2 Ams(A)be "as general as possible". It is 
lear that h "very strongly mix" the spa
e A,this imply that uphg is very 
lose to the 
onvolution up � uq. For an 'absolutelygeneri
' h, we will obtain the 
onvolution up � uq itself. Thus the multipli
ationof double 
osets is the 
onvolution of the 
orresponding measures uq .One of ways to say the same reasoning 
arefully is the following.We say that a sequen
e hn 2 Ams(A) is generi
 if it 
onverges to the uniformspreading (see 0.3) in Pol(A;A). The following is a rephrasing of the de�nition:a sequen
e hj is generi
 if:8B;C � A limn!1��hn(B) \C� = �(B)�(C):Remark. If A is a spa
e with �nite nonprobability measure, then the de�-nition of a generi
 sequen
e hn has the form8B;C � A limn!1��hn(B) \C� = �(B)�(C)�(A)2 : (5:a)The following statement is obvious.Lemma. For a generi
 sequen
e hn and any p; q 2 Gms(A), the sequen
euphnq weakly 
onverges to up � uq . 7



Thus we de�ne the multipli
ation of the double 
osets as the 
onvolution ofthe 
orresponding measures.1.2. Partitions. Let A be a spa
e with a probability measure. Considerits �nite or 
ountable partitionT : A = A1 [A2 [ : : :By A=T we denote the quotient-spa
e, i.e., the 
ountable spa
e, where themeasures of the points are �(A1), �(A2),. . . . Denote by Ams(A��T ) the groupAms(A��T ) = Ams(A1)�Ams(A2) � � � � � Ams(A):1.3. Double 
osets. Consider a spa
e (A;�) with a 
ontinuous measure.Consider two partitions of A (they 
an 
oin
ide)S : A = A1 [A2 [ : : : ; T : A = B1 [B2 [ : : :Consider the quotients A=S and A=T . Denote their points by a1, a2, . . . andb1, b2, . . . respe
tively. Denote the measures of the points by �1, �2, . . . and�1, �2, . . . .Consider the double 
osetsAms(A��S) nGms(A)=Ams(A��T ): (6)Fix p 2 Gms(A). For ea
h pair Ai, Bj , 
onsider the set Ai \ p�1(Bj). Denoteby pij the image of the measure � restri
ted to Ai \ p�1(Bj) under the mapAi \ p�1(Bj )! R�:Thus we obtain anM-valued matrixP = 0B�p11 p12 : : :p21 p22 : : :... ... . . .1CA ; (7)where ea
h pij is a measure on R�; these measures satisfy the 
onditionsXi ZR� xdpij(x) = �j ; (8)Xj ZR� dpij(x) = �i: (9)The origin of these 
onditions are the identities�(Ai) =Xj ��Ai \ p�1(Bj)�;�(Bj) =Xi ��p(Ai) \Bj� =Xi ZAi\p�1(Bj) p0(a) d�(a):8



It is readily seen that the map p 7! P indu
es a bije
tion from the double 
osetspa
e (6) to the spa
e of all matri
es (7) satisfying the 
onditions (8){(9).1.4. The multipli
ation of double 
osets. For a spa
e (A;�) with a
ontinuous probability measure, 
onsider 3 partitions (they 
an 
oin
ide)S : A = A1 [A2 [ : : : ; T : A = B1 [B2 [ : : : ; R : A = C1 [C2 [ : : :Denote by �1, �2,. . . the measures of the sets B1, B2, . . . .We intend to de�ne the multipli
ation of double 
osetsAms(A��S) nGms(A)=Ams(A��T ) � Ams(A��T ) nGms(A)=Ams(A��R) !! Ams(A��S) nGms(A)=Ams(A��R):We say that a sequen
ehn = (h(1)n ; h(2)n ; : : : ) 2 Ams(A��T ) =Yj Ams(Aj)is generi
 if for ea
h j the sequen
e h(j)n is generi
 in Ams(Aj).Consider a transformation p 2 Gms(A) and the 
orresponding double 
osetin Ams(A��S)nGms(A)=Ams(A��T ), i.e., 
onsider the matrixP = fpijg. Considera transformation q 2 Gms(A) and 
onsider the 
orresponding double 
osetin Ams(A��T ) n Gms(A)=Ams(A��R). Denote by Q = fqjkg the 
orrespondingmatrix.For the produ
t qhnp denote by Rn the 
orresponding double 
oset inAms(A��S) nGms(A)=Ams(A��R).Lemma. The sequen
e ofM-valued matri
es Rn 
onverges (elementwise) tothe matrixR = 0B�r11 r12 : : :r21 r22 : : :... ... . . .1CA = 0B�p11 p12 : : :p21 p22 : : :... ... . . .1CA0B���11 0 : : :0 ��12 : : :... ... . . .1CA0B�q11 q12 : : :q21 q22 : : :... ... . . .1CA ;(10)where the produ
t of matrix elements is the 
onvolution of measures on R�, i.e.,rik =Xj 1�j pij � pjk:Formula (10) de�nes the required produ
t of the double 
osets.Now we will make a de�nition from this Lemma. The de�nition is formaland motivation independent.1.5. R�-polymorphisms of 
ountable spa
es. Consider a 
ountable (or�nite) spa
e A with a probability measure. We denote its points by a1, a2, . . . ,we denote their measures by �1, �2, . . . . Let A, B be two 
ountable spa
es.9



Then an R�-polymorphism A ! B is an M-valued matrix (7) satisfying the
onditions (8){(9).Let A, B, C be 
ountable (or �nite) spa
es with probability measures. LetP : A ! B, Q : B ! C be R�-polymorphisms. Then their produ
t R = QP :A! C is de�ned by the formula (10).1.6. R�-polymorphisms in general 
ase, ([19℄, [20℄). Consider spa
es(A;�), (B; �) with probability measures. An R�-polymorphismP : A! B is ameasure P on A� B �R� satisfying two 
onditions1. The image of the measure P under the proje
tion A�B �R�! A is �.2. Denote by x the 
oordinate on R�. Consider the measure x � P. Werequire the image of x �P under the proje
tion A �B �R�! B to be �.Denote by PolR�(A;B) the set of all R�-polymorphisms A! B.Example. Consider a spa
e A with a 
ontinuous probability measure. Con-sider q 2 Gms(A). Denote by q0(a) its Radon{Nykodim derivative. Considerthe map A! A� A�R� given bya 7! (a; q(a); q0(a)):Denote by P(q) the image of the measure � under this map. Then P(q) is anelement of PolR�(A;A).1.7. Convergen
e. Consider general spa
es (A;�), (B; �) with probabilitymeasures. Consider an arbitrary R�-polymorphismP 2 PolR�(A;B). Fix Borelsubsets M � A, N � B and 
onsider the restri
tion of the measure P toM � N � R�. Denote by p[M;N ℄ the image of this restri
tion under the mapM � N �R�! R�.We say that the sequen
e Pj 2 PolR�(A;B) 
onverges to P 2 PolR�(A;B)if for ea
h M � A, N � B,1. the sequen
e pj[M;N ℄ weakly 
onverges to p[M;N ℄2. the sequen
e xpj[M;N ℄ weakly 
onverges to xp[M;N ℄See examples of the 
onvergen
e below in 1.11.Remark. Consider a spa
e A with a 
ontinuous probability measure �. Itis easy to prove that the group Gms(A) is dense in the semigroup PolR�(A;A)([19℄).1.8. De�nition of produ
t of R�-polymorphisms in general 
ase.Let A be a spa
e with a probability measure. Consider its �nite or 
ountablepartition T : A = A1 [A2 [ : : :By A=T we denote the quotient-spa
e, i.e., the 
ountable spa
e, where themeasures of points are �(A1), �(A2),. . . .Consider also a partition of a spa
e BS : B = B1 [B2 [ : : :For any P 2 PolR�(A;B), we de�neP#T;S 2 PolR�(A=T;B=S)10



as the matrix 
onsisting of the measures p[Ai; Bj℄ (see 1.7).Conversely, 
onsider R 2 PolR�(A=T;B=S):This is a matrix, whose matrix elements rij are measures on R�. For ea
h Ai,Bj , 
onsider the measure on Ai �Bj �R� given by��(Ai) � ��(Bj ) � rij :This de�nes some measure R"T;S onA�B �R� =[ij Ai � Bj �R�:Obviously, R"T;S 2 PolR�(A;B):Also, �P"T;S�# = P, and, obviously, �R#T;S�" is not R.We say that a sequen
e T (j) of partitions is approximative, if a partitionT (j+1) is a re�nement of T (j) and elements of the partitions generate the Borel�-algebra of A.Now we are ready to de�ne the produ
t of P 2 PolR�(A;B) and Q 2PolR�(B;C). Consider approximative sequen
es of partitions T (j), S(j), U (j)of the spa
es A, B, C. We de�ne the polymorphismR = QP 2 PolR�(A;C) aslimj!1�Q#S(j) ;U(j)P#T (j) ;S(j)�"T (j) ;U(j) :Remark. For any group G it is possible to de�ne G-polymorphisms in thesame way, see [19℄, [20℄. For some groups G, there exist nontrivial fun
torsfrom 
ategory of polymorphisms to the 
ategory of Hilbert spa
es and opera-tors ([19℄, [20℄) (G = SL2(R), O(1; n), U (1; n), these fun
tors extend the so-
alled Araki multipli
ative integral 
onstru
tion, see [2℄, [32℄); for some groupsG there exist nontrivial 
entral extensions of 
ategories of G-polymorphisms (forG = Sp(2n;R), U (p; q), SO�(2n), [23℄). It seems that some polymorphism-likestru
tures appears in the mathemati
al hydrodynami
s, see [5℄.1.9. Remark. A
tion of R�-polymorphisms on spa
es Lp. Let w =u + iv be in C , let 0 6 u 6 1. Let A be a spa
e with a 
ontinuous probabilitymeasure. The group Gms(A) a
ts in the spa
e L1=u(A) by the isometriesTw(q)f(a) = f(q(a))q0(a)wLet us extend this a
tion to the a
tion of R�-polymorphisms.Let (A;�), (B; �) be spa
es with probability measures.Proposition. Let P 2 PolR�(A;B). Then the expressionSw(Pjf; g) = ZZZA�B�R� f(a)g(b)xu+iv dP(a; b; x)11



is a bounded bilinear form on L1=(1�u)(A)� L1=u(B) and moreoverjSw(Pjf; g)j 6 kfkL1=(1�u) � kgkL1=u:Let us de�ne the linear operatorTw(P) : L1=u(B)! L1=u(A)by the duality 
onditionZA f(a)Tw(P)g(a) d�(a) = Sw(Pjf; g):Obviously, kTw(P)k 6 1:Proposition. For ea
h spa
es A, B, C with probability measures and ea
hP 2 PolR�(A;B), Q 2 PolR�(B;C),Tw(Q)Tw(P) = Tw(QP):1.10. Remark. A
tion of R�-polymorphisms on M-valued fun
-tions. Let (A;�) be a spa
e with a probability measure. Denote by S(A) thespa
e of all fun
tions a 7! �a on A taking values inM satisfying the 
onditionZA ZR� x d�a(x) d�(a) = 1:Denote by � the single-point spa
e with a probability measure. The spa
ePolR�(A; �) is identi�ed in the obvious way with the spa
e S(A).Any element of PolR�(B;A) indu
es the map PolR�(A; �) to PolR�(B; �) givenby the formula U 7! UP; U 2 PolR�(A; �):Thus we obtain the 
anoni
al map�P : S(A)! S(B):Obviously, for any P 2 PolR�(B;A), Q 2 PolR�(C;B), we have�P�Q = �PQ:1.11. Remarks. Examples of 
onvergen
e. 1) Let A = B be theinterval [0; 1℄. Consider the sequen
e qn of monotoni
 maps [0; 1℄! [0; 1℄ givenby qn(a) = a+ 12�n sin(2�na):Then the limit P of qn is a measure on [0; 1℄� [0; 1℄�R� supported by the set
onsisting of the points (a; a; x); 0 < x < 212



and the density of P on this set is given byda dx�p2x� x2 :2) Let A = B be the same. Then the sequen
e qn(a) = an has no limit inR�-polymorphisms.3) Let A;B be spa
es with 
ontinuous measures. Let S; T be their partitions.Let gn 2 Ams(A��S), Bn 2 Ams(A��T ), be generi
 sequen
es. Thenlimn!1n limm!1 hnPgmo = P#S;T4) Let A;B be spa
es with 
ontinuous measures. Let S(n); T (n) be approxi-mative sequen
es of their partitions. Then, for any P 2 PolR�(A;B),limn!1�P#S(n) ;T (n)�"S(n) ;T (n) = P:1.12. Remark. How to formulate problem of limit behavior ofpowers of a polymorphism? ForP 2 PolR�(A;A), denote byPn its powers.IfP 2 Ams(A) � Pol(A;A), then the problem of limit behavior of the powers isthe problem of the ergodi
 theory. If A = � is a single-point set, then the limitbehavior of Pn is des
ribed by the 
entral limit theorem. The following problemis an attempt to unite the both subje
ts of the 
lassi
al theories mentionedabove.We noti
e that the group R� admits an one-parametri
 family of automor-phisms x 7! x�, there � 2 Rn 0. These automorphisms indu
e the one para-metri
 family of automorphisms of the semigroupM, i.e.u(x) 7! u(x�); u 2M:The last automorphisms indu
e automorphisms of the semigroup of all M-valued n� n matri
es (7) equipped with the multipli
ation (10)3.For any P 2 PolR�(A;A), and any � 2 R n 0 we de�ne the measuresP(a; b; x�) on A�A�R� as the image of P under the map (a; b; x) 7! (a; b; x�).We obtain the following problem: Is it possible to �nd a sequen
e �n su
hthat the sequen
e P(a; b; x�n)n 
onverges to some nontrivial limit?2. Polymorphisms of bordered spa
es2.1. The 
lassesMO, MH of measures on R�. Let u be a measure onR�. We say that u belongs to the 
lassMO, ifZR� du(x) <1; ZR� x du(x) <1:3These automorphisms break the 
ondition (8). But the produ
t (10) itself exists withoutthe 
onditions (8){(9) 13



We say that u is an element of the 
lassMH, ifZ jx� 1j du(x) <1:For the 
lassMH, we admit in�nite atomi
 measures supported by x = 1.We also de�ne the 
onvergen
e in MO and MH. A sequen
e uj 
onvergesto u in MO if uj weakly 
onverges to u and xuj weakly 
onverges to xu. Asequen
e uj 
onverges to u inMH if jx� 1juj weakly 
onverges to jx� 1ju.2.2. Bordered spa
es. Let M be a Lebesgue measure spa
e (we admitthe 
ase, when M is an empty set). We de�ne the 
orresponding bordered spa
eMg =M [ �M1 ;where �M is a formal point.Remark. It is natural to think that �1 = �M1 is "the point ofM at in�nity".Also, it is natural to think, that the measure of the point �1 is 1.We also de�ne measurable subsets inMg. Let A �M be a Borel subset.a) The set A [ �1 is measurable inMg.b) If A has a �nite measure, then A is measurable inMg.All other subsets in Mg are not measurable.2.3. Partitions of bordered spa
es. Consider a bordered spa
e Mg. Itsgood partition U (we will omit the word "good") is a partitionU :Mg =M1 [ � � � [Mk [M1into mutually disjoint subsets su
h that M1; : : : ;Mk have �nite measure and�1 2 M1. We say that M1 is an in�nite element of the partition, all otherelements are �nite.For the partition U , we de�ne the quotient spa
e Mg=U . It 
onsists of thepoints with the measures �(M1), . . . , �(Mk) and the point �1.For the partition U , we de�ne the group of automorphisms of the partitionAms1(Mg��U) = Ams(M1) � � � � � Ams(Mk) �Ams1(M1):2.4. Multipli
ation of double 
osets Ams1 n Gms1=Ams1. For q 2Gms1(M ) we 
onsider the image uq of the measure � under the mapM ! R�given by m 7! q0(m). Obviously, uq 2 MH, and the map q 7! uq de�nes abije
tion Ams1(M ) nGms1(M )=Ams1(M ) ! MH:We say that a sequen
e hn 2 Ams1(M ) is generi
 if for any subsets A;B �Mhaving �nite measures, we havelimn!1��hn(A) \B� = 0:Remark. See formula (5.a). 14



Example. Let M = R. We 
an give hn(x) = x+ n.Fix a generi
 sequen
e hn. Consider v;w 2 MH. Consider p; q 2 Gms1(M )lying in the 
orresponding double 
osets.Lemma. Denote by un the element ofMH 
orresponding qhnp. Thenlimn!1 un = v +w:Remark. Compare with Subse
tion 1.1.2.5. Double 
osets. Let (M;�) be a spa
e with a 
ontinuous in�nitemeasure. Fix two partitionsU :M =M1 [ � � � [Ms [M1; V :M = N1 [ � � � [Nt [N1of M . Denote the measures of the sets Mi by �i and the measures of Nj by �j.For any p 2 Gms1(M ) and any � = 1; : : : ; s;1 and � = 1; : : : ; t;1, we de�nethe measure p�� on R� as the image of the measure � under the mapM� \ p�1(N�)! R�given by m 7! p0(m). Thus we obtain the matrixP = 0BBB� p11 : : : p1t p11... . . . ... ...ps1 : : : pst ps1p11 : : : p1t p111CCCA (11)
onsisting of measures on the group R�. These measures satisfy the followingequalities tXj=1 ZR� dpij(x) + ZR� dpi1(x) = �i; i = 1; 2; : : : ; s; (12)sXi=1 ZR� x dpij(x) + ZR� x dp1j(x) = �j; j = 1; 2; : : : ; t; (13)and the 
onditions pij; pi1; p1j 2MO; p11 2 MH: (14)Obviously, the map p 7! P is 
onstant on ea
h double 
osetAms1(M ��U) nGms1=Ams1(M ��V)and moreover this de�nes a bije
tion between the double 
oset spa
e and thespa
e of all the matri
es (11) satisfying (12){(14).15



We also will write the matrix (11) in the (s + 1) � (t+ 1)-blo
k formP = �P�n;�n P�n;1P1;�n p1;1 � :2.6. Produ
t of double 
osets. Now 
onsider 3 partions of the spa
e M(all these partitions 
an 
oin
ide)U :M =M1 [ � � � [Ms [M1; V :M = N1 [ � � � [Nt [N1;W : K = K1 [ � � � [Kr [K1:We intend to de�ne the multipli
ation of the double 
osetsAms1(M ��U)nGms1=Ams1(M ��V) � Ams1(M ��V)nGms1=Ams1(M ��W)!! Ams1(M ��U) nGms1=Ams1(M ��W);i.e., we want to de�ne a multipli
ation of matri
es (11).We say that a sequen
ehn = (h(1)n ; : : : ; h(t)n ; h(1)n ) 22 Ams1(M ��V) = Ams(N1)� � � � � Ams(Nt)� Ams1(N1)is generi
 if all the sequen
es h(�)n are generi
 (� = 1; 2; : : : ; t;1).Now we repeat the double 
oset multipli
ation 
onstru
tion. Consider a ma-trixP, whi
h 
orresponds to some element of Ams1(M ��U)nGms1=Ams1(M ��V).Consider a matrix Q, whi
h 
orresponds to some element of Ams1(M ��V) nGms1(M )=Ams1(M ��W). Consider the representatives p; q 2 Gms1(M ) ofthese double 
osets. For a generi
 sequen
e hn 2 Ams1(M ��U), denote by Rnthe element of the double 
oset spa
eAms1(M ��U) nGms1(M )=Ams1(M ��W);
ontaining qhnp. Then the limit R of Rn is given byR = � Q�n;�n �D �P�n;�n Q�n;�n �D �P�n;1 +Q�n;1Q1;�n �D �P�n;�n +P1;�n Q1;�n �D �P�n;1 +P1;1 +Q1;1� ;(15)where D = 0B���11 0 : : :0 ��12 : : :... ... . . .1CA ;and �j are the measures of the elements N1,. . . , Nt of the partition V.The asso
iativity of the produ
t 
an be easily 
he
ked by a dire
t 
al
ulation.2.7. g-Polymorphisms of �nite bordered spa
es. Let Mg, Ng be�nite bordered spa
es, let the measures of (�nite) points be �1, �2, . . . , �s16



and �1, �2, . . . , �t. An element P of Polg(Mg; Ng) (a g-polymorphism) is a(s + 1) � (t + 1)-matrix (11) satisfying the 
onditions (12){(14). The produ
tof the polymorphisms is given by (15).2.8. g-Polymorphisms of general bordered spa
es. Let (Mg; �),(Ng; �) be bordered spa
es. An element P of Polg(Mg; Ng) is a measure onMg�Ng�R� satisfying some 
onditions given below. It is natural to representthis measure as the blo
k matrixP = �P�n;�n P�n;1P1;�n P1;1� ;where P�n;�n is a measure onM�N�R�, P�n;1 is a measure on �M1�N�R� 'N �R�, P1;�n is a measure onM��N1�R� 'M�R�, and P1;1 is a measureon �M1 � �N1 �R� ' R�.The measureP satis�es the following 
onditions (whi
h repeat the 
onditions(12){(14)).1. P�n;�n, P�n;1, P1;�n 2MO, and P1;1 2MH.2. Let us restri
t the measure P to the set M �Ng �R�. Then the imageof this restri
tion under the mapM �Ng �R�!M 
oin
ides with �.3. Let us restri
t the measure x �P to the set Mg�N �R�. Then the imageof this restri
tion under the mapMg �N �R�! N 
oin
ides with �.Produ
t of g-polymorphisms is de�ned by the same formula (15). We onlymust de�ne the produ
ts in ea
h blo
k. For instan
e, let us give an interpreta-tion of Q�n;�n �D �P�n;�n. It is suÆ
ient to use the pres
ription 1.8. To avoid adivergen
e, 
onsider 
ountable partions of M;N;K into pie
es with �nite mea-sures. Then we 
onsider approximative sequen
es of partitions et
.et
.2.9. Embedding Gms1 ! Polg. For q 2 Gms1(M ), we de�ne the matrixQ by the 
onditionsQ�n;1 = 0; Q1;�n = 0; Q1;1 = 0;and Q�n;�n is the image of the measure � under the map M ! M �M �R�given by m 7! (m; q(m); q0(m)):Remark. The group Gms1(M ) is exa
tly the group of all invertible g-polymorphisms of Mg.Below we identify elements of Gms1(M ) and the 
orresponding elements ofPolg(Mg;Mg).2.10. A remark on the formula for produ
t. The exoti
 multipli
ation(15) of matri
es is a degeneration of the usual matrix multipli
ation. Indeed,let " be in�nitely small. Consider blo
k (n + 1) � (n + 1)-matri
es having theform �A+ o(1) "b+ o(")"
 + o(") 1 + "2d+ o("2)� :17



Then the produ
t of su
h matri
es has the form�A+ o(1) "b+ o(")"
 + o(") 1 + "2d+ o("2)��A0 + o(1) "b0 + o(")"
0 + o(") 1 + "2d0 + o("2)� == � AA0 + o(1) "(Ab0 + b) + o(")"(
A0 + 
0) + o(") 1 + "2(d+ d0 + 
b0) + o("2)� ; (16)and we obtain the formula similar to (15).2.11. Remarks on the 
onvergen
e in Polg. Let P 2 Polg(Mg, Ng).Let A �Mg, B � Ng be measurable subsets (see 2.1). We restri
t the measureP to A � B �R�. Denote by p[A� B℄ the image of this restri
tion under theproje
tion A� B �R�! R�.Let Pj ;P 2 Polg(Mg, Ng). The sequen
e Pj 
onverges to P if the follow-ing two 
onditions are satis�ed.a) For any measurable subsets A � Mg, B � Ng the sequen
e pj[A � B℄
onverges to p[A�B℄ inMH.b) Moreover, if A or B does not 
ontain �1, then we have 
onvergen
e inMO.Examples. a) LetM = R. Let y = f(x) be a di�eomorphism ofR. Assumeqn(x) = f(x) + n:Let us des
ribe the limit P of the sequen
e qn in the sense of Polg(Rg;Rg).The measure P is supported by R� �1�R�. It 
oin
ides with the image of theLebesgue measure on R under the mapx 7! (x; �1; f 0(x)):b) Under the same 
onditions, the limit Q of the sequen
eqn(x) = f(x � n) + nis supported by �1 � �1 � R�. It 
oin
ides with the image of the Lebesguemeasure under the map x 7! (�1; �1; f 0(x)):It is easy to understand that the group Gms1 is dense in the semigroupPolg(Mg;Mg). Thus this semigroup is some kind of a boundary of the groupGms1(M ).2.12. Remarks on the polymorphisms related to Ams1. We dis
ussthis 
ase for 
ompleteness. Let Ag, Bg be bordered spa
es. A polymorphismP is a measure on A �B satisfying the 
onditions1. The proje
tion of P onto A is majorized by �2. The proje
tion of P onto B is majorized by �.We de�ne the produ
t of polymorphisms by the same formula (1).18



Remark. We also 
an de�ne this type of polymorphisms Ag ! Bg asg-polymorphisms supported by the setAg � Bg � 1 � Ag �Bg �R�3. Constru
tion of fun
tor3.1. Con�gurations. We say that a 
on�guration on a bordered spa
eMg is a 
ountable (or �nite) 
olle
tionm = �m1; m2; m3; : : :p1; p2; p3; : : :� (17)of distin
t points (m1;m2;m3; : : : ) ofMg having integer positive multipli
itiesp1; p2; p3; : : : . We also assume that any 
on�guration 
ontains �1 with in�-nite multipli
ity. The 
olle
tion m is de�ned up to permutations of the pointstogether with their multipli
ities (i.e., up to the permutations of 
olumns of(17)).We also will give another de�nition. A 
on�guration is a map ' from a
ountable set Z to Mg su
h that the preimage '�1(�1) of �1 
ontains in�nitenumber of points. Two 
on�gurations ' : Z ! Mg, '0 : Z 0 ! Mg areequivalent if there exists a bije
tion  : Z ! Z 0 su
h that ' = '0 .Of 
ourse, these two de�nitions are equivalent. Indeed, 
onsider a map' : Z ! Mg. The set (m1;m2; : : : ) is the image of '; the multipli
ity pj of apoint mj is number of elements in '�1(mj).M : '
?qqqqm2p2 = 4 
?qqm1p1 = 2 
?qm3p3 = 1 
?qm7p7 = 1 : : : u�1?qqqqqqqqqqqqqqPi
ture 1. A 
on�guration.Bla
k points are elements of Z, the map ' is the proje
tion down.Denote by 
(Mg) the spa
e of 
on�gurations on Mg de�ned up to equiva-len
e.For a map � : Mg ! Ng (we assume �(�1) = �1), we have the naturalmap 
(Mg)! 
(Ng) given by ' 7! � Æ '. In parti
ular, for any partition U ,we obtain the map 
(M )! 
(M=U).3.2. Poisson measures: �nite 
ase. Consider a �nite bordered spa
eMg, let the measures of the points m1, . . . , mk of M be �1, . . . , �k. Fora 
on�guration ' : Z ! Mg, we denote by pj the number of points in thepreimage '�1(mj) (the multipli
ity of mj , it 
an be 0). Thus the spa
e 
(Mg)is identi�ed with the spa
e Zk+. We de�ne the Poisson measure �M on 
(Mg)by the 
ondition: the measure of the point (p1; p2; : : : ; pk) 2Z+ isYk �pkk e��kpk! :19



3.3. Poisson measures: general 
ase. The Poisson measure �M on
(M ) is de�ned by the 
ondition: for any partition U of Mg, the image of �Munder the map 
(Mg)! 
(Mg=U)
oinsides with the Poisson measure �Mg=U on 
(Mg=U), see [13℄, [33℄, [20℄, [21℄for more details.3.4. Normed exponent. Consider a measure  2 MH on R�. Thefun
tion r(s) = ZR�(xis � 1) d (x)is a well-de�ned 
onditionally positive de�nite fun
tion on R. Hen
e er(s) is apositive de�nite fun
tion. Hen
e er(s) is a Fourier transform of some measure {er(s) = Z 10 xisd{(x):We de�ne the normed exponent expÆ[ ℄ byexpÆ[ ℄ = {:Remark. Assume  2 MO. ThenexpÆ[ ℄ = expn� ZR� d (x)o � nÆ1 +  1! +  �  2! +  �  �  3! + : : :o;where Æ1 denotes the atomi
 unit measure supported by the point 1 2 R�.3.5. Partial bije
tions. Let S; T be �nite sets. A partial bije
tion Q :S ! T is a bije
tion of a subset A � S to a subset B � T . We say that A isthe domain of Q (the notation is A = Dom(Q)) and B is the image of Q (thenotation is B = Im(Q)). We denote by PB(S; T ) the set of all partial bije
tionsS ! T .3.6. The 
onstru
tion. Consider �nite spa
esMg, Ng and the asso
iatedspa
es 
(Mg), 
(Ng) equipped with the Poisson measures.For ea
h g-polymorphism P 2 Polg(Mg; Ng), we will 
onstru
t an R�-polymorphism !(P) 2 PolR�(
(Mg);
(Ng)).Consider arbitrary 
on�gurations ' : Z ! Mg and  : Y ! Ng. Denoteby S � Z, T � Y the preimages of the sets M , N ; obviously, the 
on�guration' (resp.  ) is 
ompletely de�ned by the restri
tion to S (resp. T ). Denote bypi (resp qj) the multipli
ities of the points of the 
on�guration ' (resp.  ). Wede�ne the measure !' on R� by!' = C � Æh � expÆ[p11℄ � 1Q pi! Q qj! XQ2PB(S;T )n Ys2Dom(Q);t=Qs pst �� Ys62Dom(Q) ps1 � Yt62Im(Q) p1to; (18)20



where the summation is given over the set of all partial bije
tions T ! S,M : ' N : r r r rr r r rr r r rr r r rr r r rr r r r�� �������������
r ��������� �� ���������6d

d?n1
m1 6d

d?n2
m2 6d

d?n3
m3 6d

d?n4
m4

Pi
ture 2. A partial bije
tion (mat
hing) of 
on�gurationsexpÆ[�℄ denotes the normed exponent, symbols Q denote 
onvolutions of mea-sures on R�, the s
alar fa
tor C is given byC = expn�Xi;j Z dpij �Xi Z dpi1 �Xj Z dp1jo;and Æh is the unit Æ-measure on R� supported by the pointh = expn� Z (x� 1) d�Xi;j pij +Xi pi1 +Xj p1j + p11�o:Theorem A. a) The matrix !(P) 
omposed from measures !' is an ele-ment of PolR�(
(Mg);
(Ng)).b) The map P 7! !(P) is a fun
tor, i.e. for ea
h �nite bordered spa
es Mg,Ng, Kg and for ea
h g-polymorphismsP 2 Polg(Mg; Ng), Q 2 Polg(Ng;Kg),!(Q)!(P) = !(QP): (19)3.7. Constru
tion of the fun
tor (
; !) in general 
ase. Let (Mg; �),(Ng; �) be arbitrary bordered spa
es, and letU :Mg =M1 [ � � � [Mk [M1; V : Ng = N1 [ � � � [Nl [N1be partitions of Mg, Ng respe
tively. Let P 2 Polg(Mg; Ng). For any � =1; : : : ; k;1 and � = 1; : : : ; l;1 we 
onsider the mapM� �N� �R�! R�21



and the image of the measure P under this map. Thus we obtain anM-valuedmatrix, it de�nes the element of Polg(Mg=U ; Ng=V). We denote it byP#[U;V℄:Let Mg be a bordered spa
e. Let U (j) be a sequen
e of partitions, and letea
h U (j+1) be a re�nement of U (j). We say that the sequen
e U (j) of partitionsis approximative if �nite elements of all partitions U (j) generate the Borel �-algebra of M .Fix P 2 Polg(Mg; Ng). Let U (j), V(j) be approximative sequen
es of par-titions of Mg, Ng respe
tively. Then we have the 
hain of the spa
es� � �  Mg=U (j)�Ng=V(j) �R� Mg=U (j+1) �Ng=V(j+1) �R� : : : (20)The sequen
e P#[U(j) ;V(j) ℄ of bordered polymorphisms (de�ned in 3.1) is a pro-je
tive sequen
e of measures with respe
t to the 
hain (20).Theorem B. a) Let P 2 Polg(Mg; Ng). Let U (j), V(j) be approximativesequen
es of partitions of Mg, Ng. Then the system!(P#[U(j) ;V(j) ℄) 2 PolR��
(Mg=U (j));
(Mg=V(j))�is a proje
tive system of measures with respe
t to the maps� � �  
(Mg=U (j))� 
(Ng=V(j)) 
(Mg=U (j+1)) �
(Ng=V(j+1)) : : :The inverse limit !(P) 2 PolR�(
(M );
(N ))of this 
hain does not depend on the 
hoi
e of the approximative sequen
es U (j)and V(j).b) The map P 7! !(P) is a fun
tor, i.e., for ea
h Mg, Mg, Kg and ea
hg-polymorphisms P 2 Polg(Mg; Ng), Q 2 PolR�(Ng;Kg),!(Q)!(P) = !(QP):
) Let q 2 Gms1(M ). Then !(q) is the transformation of 
(Mg) givenby (m1;m2; : : : ) 7! (q(m1); q(m2); : : : ), i.e., our fun
tor (
; !) extends the map(4).3.9. Remarks on the proofs. There are two ways to prove Theorem A.The both ways require some 
al
ulations.The �rst way. Consider a spa
e Mg with a 
ontinuous in�nite measure.Consider a partition U of Mg. We have a map from 
(Mg) to the 
ountablespa
e 
(Mg=U), and thus we have a partition of the spa
e 
(Mg). Denotethis partition by 
(U). For any partition U , the mapGms1(M )! Gms(
(M ))22



indu
es the maps of the subgroupsAms1(M ��U)! Ams�
(Mg��
(U)�: (21)Thus we have the map of double 
osetsAms1(M ��U) nGms1(M )=Ams1(M ��V)!! Ams�
(Mg��
(U)� nGms(
(M ))=Ams�
(Mg��
(V)�:The map (21) transforms generi
 sequen
es to generi
 sequen
es, and thisimplies the produ
t formula (19). For obtaining (18), it remains to 
al
ulatethis map expli
itly.Another way of proof of (19) is a dire
t 
al
ulation. The formula (19) isequivalent to a family of identities for some in�nite sums depending on elementsofMO. The same identities for series depending on 
omplex variables appearin the following situation.Consider the spa
e Fn of entire fun
tions on Cn . Let A : Cn ! Cn be alinear operator, let b; 
 2 Cn . Consider the linear operatorU (A; b; 
)f(z) = f(Az + b) exp(X 
jzj):Obviously,U (A; b; 
)U (A0; b0; 
0) = exp(X bj
0j)U (A0A;A0b+ b0; At
0 + 
): (22)Consider the matrix elements of this operator in the basis zp11 : : : zpnn . The ex-pli
it expresions for these matrix elements 
an be easily written as polynomial onA; b; 
; they almost 
oin
ide with the expresion (18). In this basis, the produ
tformula (22) is some 
olle
tion of identities for series of 
omplex numbers.The identities that are ne
essary for the proof of (19) are the same, but the
omplex numbers are repla
ed by elements of the semigroupMO. It remains toobserve, that for any s 2 C , su
h that 0 6 Re s 6 1, the mapu 7! Z 10 xsdu(x)is a homomorphism of ringsMO ! C and this family of homomorphisms sepa-rates elements ofMO.Theorem B is a 
orollary of Approximation Theorem for 
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