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Spreading maps (polymorphisms), symmetriesof Poisson proesses, and mathing summationYurii A.NeretinAbstrat. The matrix of a permutationis a partial ase of Markov transitionmatries.In the sameway, a measure preservingbijetion of a spae (A;�) with �nitemeasure is a partialase of Markov transition operators. A Markov transition operator also an be onsidered as amap (polymorphism) (A;�)! (A;�), whih spreads points of (A;�) into measures on (A;�).Denote by R� the multipliative group of positive real numbers and byM the semigroupof measures on R�. In this paper, we disuss R�-polymorphisms and g-polymorphisms, whoare analogues of the Markov transition operators (or polymorphisms) for the groups of bije-tions (A;�) ! (A;�) leaving the measure � quasiinvariant; two types of the polymorphismsorrespond to the ases, when A has �nite and in�nite measure respetively. For the ase,when the spae A itself is �nite, the R�-polymorphisms are someM-valued matries.We onstrut a funtor from g-polymorphisms to R�-polymorphisms, it is desribed interms of summations ofM-onvolution produts over mathings of Poisson on�gurations.0.0. Notation and terminology. The subjet of this paper is pure mea-sure theory without any additional strutures.The term "measure" in this paper means a positive Borel measure. The term"subset" of a spae with measure means a Borel measurable subset.The term spae with measure means a Lebesgue measure spae, i.e., a spae,whih is equivalent to the union of some interval of R (the interval an be�nite, in�nite or empty) and some olletion of points having nonzero measures(this olletion an be �nite, ountable or empty). We say that the measure isontinuous, if all points have zero measure.We denote spaes with measure by (A;�), (B; �), (M;�) et., the Latinapital letter denotes the spae, the Greek letter denotes the measure.All our measures are de�ned on Borel �-algebras.The symbol R� denotes the multipliative group of positive real numbers.By M we denote the spae of �nite positive measures on R�. We equip thisspae with the weak onvergene; a sequene uj 2 M weakly onverges tou 2 M, if for any bounded ontinuous funtion  on R�we have the onvergeneR  (x) duj(x) ! R  (x) du(x) (this de�nition forbid departure of the measureto +1 and 0). The expression ��� denotes the onvolution of measures on themultipliative group R�.0.1. Groups. We onsider 4 groups. For a spae (A;�) with a �niteontinuous measure, we de�ne the following groups.| Ams(A) is the group of all measure preserving bijetions A! A(Ams is the abbreviation of "automorphisms of the measure spae"),| Gms(A) is the group of all maps A ! A leaving the measure � quasiin-variant.For a spae (M;�) with an in�nite ontinuous measure, we de�ne two groups:| Ams1(M ) is the group of all measure preserving bijetions M !M ,1



| Gms1(M ) is the group of all maps A! A leaving the measure � quasi-invariant and satisfying the onditionZM jq0(m) � 1j d�(m) <1:Remark. The group Gms1(M ) has a homomorphism to the additive groupof R given by q 7! ZM (q0(m)� 1) d�(m):It turn out to be that all these groups admit natural embeddings to semi-groups of spreading maps (or polymorphisms). The semigroup of polymor-phisms related to the group Ams(A) is a well-known objet (see [31℄, see also[14℄, [20℄). Reall its de�nition.0.2. The usual polymorphisms. Let (A;�), (B; �) be spaes with prob-ability measures. Consider a probability measure P on A � B. We say that Pis a polymorphism or bistohasti kernel P : A! B if| the image of P under the projetion1 A� B ! A is the measure �;| the image of P under the projetion A �B ! B is the measure �.By the Rohlin theorem on onditional measures (see [28℄), for almost alla 2 A there exists a probability measure Pa on a �B suh thatP(Q) = ZAPa(Q \ fa�Bg) d�(a):Remarks. 1) Let U , V be sets. Let R be a subset in U � V . We anonsider R as a relation or a multivalued map U ! V . For a point u 2 U , itsimage onsists of all the points v 2 V suh that (u; v) 2 R. For two relationsR � U � V , S � V � W , we de�ne their produt T = SR � U � W . Itonsists of all (u;w) 2 U � W suh that there exists v 2 V satisfying theonditions (u; v) 2 R, (v; w) 2 S. Multivalued maps appear in a natural way invarious branhes of mathematis. The most lassial example is the de�nitionof algebrai funtions C ! C . Reall that an algebrai funtion is a subset inC � C satisfying a polynomial equation p(x; y) = 0.2) Nonformally, a polymorphism P is some kind of a multivalued map thatspreads eah point a 2 A into the measure Pa, i.e. we know not only the imageof a point, but also a probability distribution on its image.3) Also polymorphisms are ontinuous analogues of Markov transition ma-tries (see [31℄ for detailed explanations, see also [9℄).Example. Let q : A ! A be a measure preserving bijetion. Consider itsgraph graph(q), i.e., the subset of A � A onsisting of all the points (a; q(a)).Consider the map A ! A � A given by a 7! (a; q(a)). The image Pq ofthe measure � with respet to this map is a measure supported by graph(A).Obviously, Pq is a polymorphism.1it is also alled the marginal. 2



Example. The measure � � � is a polymorphism (A;�) ! (B; �). Non-formally, this polymorphism is the total "uniform spreading" of the set A alongthe set B.Let P : (A;�) ! (B; �) and Q : (B; �) ! (C; ) be two polymorphisms.Let Pa(b) and Qb() be the orresponding systems of onditional measures. Wede�ne the produt R = QP : (A;�)! (C; ) in the terms of these onditionalmeasures Ra() = ZB Qb() dPa(b): (1)Denote by Pol(A;B) the set of all polymorphisms A! B.The set Pol(A;A) is a semigroup with respet to the multipliation. Thissemigroup ontains the group Ams(A).Let Pj ;P : (A;�) ! (B; �) be polymorphisms. We say that the sequenePj onverges to P if for eah measurable subsets U � A, V � B the sequeneof real numbers Pj(U � V ) onverges to P(U � V ).It is readily seen that the spae Pol(A;B) is ompat.It is easy to show (see [31℄, [20℄) that the group Ams(A) is dense in thesemigroup Pol(A;A).Example. Let q 2 Ams(A) be a mixing (i.e., for any subsets U , V 2 A themeasure �(U \ qn(V )) tends to �(U )� �(V ) as n! +1). Then qn onvergesto the "uniform spreading" � � � in Pol(A;A). There is a wide literature onpolymorphisms in the ergodi theory, see [7℄, [14℄, [31℄.Remark. In fat, we have the ategory of polymorphisms. The objetsare Lebesgue spaes with probability measure, and morphisms A ! B arepolymorphisms. For groups Gms, Ams1, Gms1, we also desribe below someategories, whose objets are Lebesgue spaes with measure.0.3. Closure of an invariant ation and the extension problem.Consider a group G ating by measure preserving maps on a spae A with a�nite ontinuous measure �.Extension problem. For a given ation of a group G, to �nd the losure� of G � Ams(A) in the semigroup of polymorphisms of A.It seems that nothing interesting an happen for onneted non-AbelianLie groups G (the ase of Abelian groups is another story). Nevertheless, theproblem beomes very nontrivial for in�nite-dimensional ("large") groups 2.Indeed, the semigroup PolR�(A;A) is ompat, and hene the semigroup � alsois ompat. Obviously, any ompati�ation of a large groupG essentially di�ersfrom the group G itself.0.4. Another variant of extension problem. In many ases, the semi-group � is known by a priory reasons. Assume that G has some olletion ofunitary representations. Then usually there exists a anonial semigroup � � G2It seems that the term "large" group introdued by Vershik is better than "in�nite di-mensional" group. For instane, our groups Ams, Ams1, Gms, Gms1 have no struture ofa manifold, but they are "very large". 3



suh that any unitary representation of the group G admits a anonial exten-sion to a representation of the semigroup �. This statement was laimed byG.I.Olshanski in the end of 70-ies (see [25℄{[26℄, [18℄), for more details see [20℄).This is not a general theorem but an experimental fat. Nevertheless, in themost ases, there exists a onstrutive desription of the semigroup � and itsrepresentations, see [20℄.For many groups G, there exist also a priory theorems about the extensionof representations to �.Examples. 1) ForG = Ams(A), the semigroup � is the semigroup Pol(A;A).The a priory theorem on extension of representations is obtained in [19℄, seealso [20℄, Setion 8.4.2) For G = Ams1, Gms, Gms1, the semigroups � are the semigroups ofpolymorphisms de�ned below (Setions 1{2), see [19℄.3) If G is the omplete orthogonal group of a Hilbert spae, then the semi-group � is the semigroup Contr of all operators in the real Hilbert spae withthe norm 6 1, [25℄.4) More interesting examples with inordinate � are ontained in [26℄, [18℄,[20℄.In many ases (see [22℄), it an be easily shown, that any homomorphismG! Ams(A) an be extended to a homomorphism �! Pol(A;A).Thus we obtain the following variant of the extension problem (this variantis not exatly equivalent to previous one).Consider any ase, then � is known. For a given measure preserving ationof a "large" group G, to �nd an expliit desription of the homomorphism �!Pol.0.5. The purpose of the paper. I know only one work that an beattributed to this extension problem. Consider the well-known ation of theomplete in�nite dimensional orthogonal group O(1) on the spae with Gaussmeasure (see [29℄, [30℄, see also [20℄). The orresponding homomorphism of thesemigroup of ontrations Contr to Pol was expliitly desribed by Nelson [17℄.A few interesting measure preserving ations of large groups are known, andhene the polymorphism extension problem has a restrited interest. But thezoo of quasiinvariant ations is very rih (see survey [22℄ and reent papers onvirtual permutations and Pikrell' type inverse limits of symmetri spaes [27℄,[11℄{[12℄, [3℄{[4℄, [24℄).It turn out to be that there are polymorphism-like semigroups related to allthe groups Ams1, Gms, Gms1. We desribe them expliitly below in Setions1-2.It seems that the most important of these objets is the semigroup PolR�(A;A)related to the group Gms(A), its elements are measures onA� A�R�satisfying some additional onditions. These R�-polymorphisms an be onsid-ered as "spreading maps", but they spread not only points; also Radon{Nykodimderivatives at points are spreaded. 4



For eah quasiinvariant ation of a large group G on a measure spae (A;�),we obtain a problem about extension of the homomorphism G ! Gms(A) tothe homomorphism from � to PolR�(A).The purpose of this paper is to understand the degree of the interest of thisproblem. We onsider the simplest (for my test) nontrivial quasiinvariant ationof a large group on a measure spae (see the next subsetion).0.6. Poisson on�gurations. LetM be a spae with a ontinuous in�nitemeasure �. Denote by 
(M ) the spae of all ountable subsetsm = (m1;m2 : : : )in M . We de�ne the Poisson measure � on 
(M ) by the following onditions.1�. Let A � M have �nite measure. Denote by Sk(A) the set of all m 2
(M ) suh that the set A \m onsists of k points. Then�(Sk(A)) = �(A)kk! e��(A):2�. Let sets A1, . . . , An be mutually disjoint. Then the events Sk1(A1),. . . ,Skn (An) are independent, i.e.,�� n\j=1Skj (Aj)� = nYj=1 ��Skj (Aj)�:It is easily shown that these onditions de�ne a unique probability measureon 
(M ).Theorem. The measure � on 
(M ) is quasiinvariant with respet to thegroup Gms1(M ), the Radon{Nykodim derivative of the transformationm = (m1;m2; : : : ) 7! qm = (qm1; qm2; : : : ); q 2 Gms1(M ); (2)is given by the formulaexpn� ZM (q0(m) � 1) d�(m)o Ymj2m q0(mj): (3)This quasiinvariane was obtained by Vershik, Gelfand, Graev [33℄ (in theirpaper, q was a �nitely supported di�eomorphismof a manifold), the in�nitesimalversion of Theorem 0.1 was obtained earlier by Goldin, Grodnik, Powers, Sharp,Meniko� [8℄, [16℄ (see also [1℄); the variant of Theorem given above was obtainedin [19℄, for details see [20℄, Setion X.4. Spherial funtions on the group Gms1with respet to the group Ams1 are disussed in [10℄.0.7. The result of the paper. Thus we have the anonial homomorphismGms1(M )! Gms�
(M )�: (4)In this paper, we desribe expliitly the homomorphism of the semigroupsof polymorphisms extending (4).In fat, we onstrut some anonial family of measures (R�-polymorphisms)on 
(M ) �
(M )�R�:5



They an be interpreted as 'spreading maps' of the spae 
(M ). Any suh'map' an be obtained as a limit of the transformations (2); thus our R�-polymorphisms themself are some kind of symmetries of Poisson proesses. Wede�ne our R�-polymorphisms of 
(M ) in the terms of the mathing summationformula (18). In fat, this formula is similar to the expressions for the TayloroeÆients ofX�klzkul = expnXk;l aklzkul +Xk bkzk +Xl lul + do:In these expressions, the salars akl, bk, l, d are replaed by measures on R�and the produts of salars are replaed by onvolutions of the measures. Theanalogue of exp(d) in the formula (18) is a sophistiated expression.Mathing summation itself appears in mathematis in various situations (see[15℄, [21℄), but suh ombinatorial expressions with measures seem unusual.This work is a ontinuation of [21℄, but logially these two papers are inde-pendent.0.8. Struture of the paper. Setion 1 ontains preliminaries on R�-polymorphisms, i.e., polymorphisms related to the group Gms. In Setion 2, wede�ne g-polymorphisms related to the group Gms1.In Setion 3, for any g-polymorphism, we onstrut an R�-polymorphism ofthe orresponding spaes of Poisson on�gurations.The result of this paper is the formula (18) and Theorems A-B.Aknowledgments. I thank A.M.Vershik for explanations of Pol(�) anddisussions of polymorphisms. I thank the administrators of Erwin Shr�odingerInstitute (Vienna) for hospitality.1. R�-polymorphismsIn Setions 1{2, we apply the double oset multipliation mahinery forproduing the semigroups of polymorphisms. In fat, we also give motivationindependent de�nitions of R�-polymorphisms and g-polymorphisms in 1.5-1.8and 2.7-2.8. But it seems that the double oset motivation is really neessaryin Setion 2.On double oset multipliation and similar operations, see [6℄, [31℄, [25℄{[26℄,a relatively omplete list of suh onstrutions is ontained in the book [20℄, itsRussian edition is more omplete.Consider a group G and subgroups H, K. The double oset spae H nG=Kis a quotient spae of G with respet to the equivalene relationg � kgh; where g 2 G; h 2 H; k 2 K:The equivalene lasses are alled double osets.1.1. Double oset multipliation on Ams n Gms=Ams. Fix a spae(A;�) with a ontinuous probability measure. Let g 2 Gms(A). Consider themap A! R� given by a 7! g0(a):6



Denote by ug the image of this map. Obviously, ug is a probability measure onR�, this measure also satis�es the onditionZR� x du(x) = 1: (5)The last property is equivalent toZA g0(a) d�(a) = 1:Denote by L the set of all probability measures on R� satisfying the ondition(5).Obviously, for any h1; h2 2 Ams(A), we haveuh1gh2 = ug ;i.e., the map g 7! ug is onstant on double osets. It is readily seen that themap Ams(A) nGms(A)=Ams(A)! Lde�ned by by g 7! ug is a bijetion.We laim that there exists a natural multipliation on the double oset spaeAms nGms=Ams.Consider v;w 2 L. Consider the representatives p; q of the orrespondingdouble osets, i.e., up = v, uq = w. Of ourse, the element upq depends on thehoie of p and q (and it is not determined by u, w).Nevertheless, there exists the following nonformal reasoning. Let h 2 Ams(A)be "as general as possible". It is lear that h "very strongly mix" the spae A,this imply that uphg is very lose to the onvolution up � uq. For an 'absolutelygeneri' h, we will obtain the onvolution up � uq itself. Thus the multipliationof double osets is the onvolution of the orresponding measures uq .One of ways to say the same reasoning arefully is the following.We say that a sequene hn 2 Ams(A) is generi if it onverges to the uniformspreading (see 0.3) in Pol(A;A). The following is a rephrasing of the de�nition:a sequene hj is generi if:8B;C � A limn!1��hn(B) \C� = �(B)�(C):Remark. If A is a spae with �nite nonprobability measure, then the de�-nition of a generi sequene hn has the form8B;C � A limn!1��hn(B) \C� = �(B)�(C)�(A)2 : (5:a)The following statement is obvious.Lemma. For a generi sequene hn and any p; q 2 Gms(A), the sequeneuphnq weakly onverges to up � uq . 7



Thus we de�ne the multipliation of the double osets as the onvolution ofthe orresponding measures.1.2. Partitions. Let A be a spae with a probability measure. Considerits �nite or ountable partitionT : A = A1 [A2 [ : : :By A=T we denote the quotient-spae, i.e., the ountable spae, where themeasures of the points are �(A1), �(A2),. . . . Denote by Ams(A��T ) the groupAms(A��T ) = Ams(A1)�Ams(A2) � � � � � Ams(A):1.3. Double osets. Consider a spae (A;�) with a ontinuous measure.Consider two partitions of A (they an oinide)S : A = A1 [A2 [ : : : ; T : A = B1 [B2 [ : : :Consider the quotients A=S and A=T . Denote their points by a1, a2, . . . andb1, b2, . . . respetively. Denote the measures of the points by �1, �2, . . . and�1, �2, . . . .Consider the double osetsAms(A��S) nGms(A)=Ams(A��T ): (6)Fix p 2 Gms(A). For eah pair Ai, Bj , onsider the set Ai \ p�1(Bj). Denoteby pij the image of the measure � restrited to Ai \ p�1(Bj) under the mapAi \ p�1(Bj )! R�:Thus we obtain anM-valued matrixP = 0B�p11 p12 : : :p21 p22 : : :... ... . . .1CA ; (7)where eah pij is a measure on R�; these measures satisfy the onditionsXi ZR� xdpij(x) = �j ; (8)Xj ZR� dpij(x) = �i: (9)The origin of these onditions are the identities�(Ai) =Xj ��Ai \ p�1(Bj)�;�(Bj) =Xi ��p(Ai) \Bj� =Xi ZAi\p�1(Bj) p0(a) d�(a):8



It is readily seen that the map p 7! P indues a bijetion from the double osetspae (6) to the spae of all matries (7) satisfying the onditions (8){(9).1.4. The multipliation of double osets. For a spae (A;�) with aontinuous probability measure, onsider 3 partitions (they an oinide)S : A = A1 [A2 [ : : : ; T : A = B1 [B2 [ : : : ; R : A = C1 [C2 [ : : :Denote by �1, �2,. . . the measures of the sets B1, B2, . . . .We intend to de�ne the multipliation of double osetsAms(A��S) nGms(A)=Ams(A��T ) � Ams(A��T ) nGms(A)=Ams(A��R) !! Ams(A��S) nGms(A)=Ams(A��R):We say that a sequenehn = (h(1)n ; h(2)n ; : : : ) 2 Ams(A��T ) =Yj Ams(Aj)is generi if for eah j the sequene h(j)n is generi in Ams(Aj).Consider a transformation p 2 Gms(A) and the orresponding double osetin Ams(A��S)nGms(A)=Ams(A��T ), i.e., onsider the matrixP = fpijg. Considera transformation q 2 Gms(A) and onsider the orresponding double osetin Ams(A��T ) n Gms(A)=Ams(A��R). Denote by Q = fqjkg the orrespondingmatrix.For the produt qhnp denote by Rn the orresponding double oset inAms(A��S) nGms(A)=Ams(A��R).Lemma. The sequene ofM-valued matries Rn onverges (elementwise) tothe matrixR = 0B�r11 r12 : : :r21 r22 : : :... ... . . .1CA = 0B�p11 p12 : : :p21 p22 : : :... ... . . .1CA0B���11 0 : : :0 ��12 : : :... ... . . .1CA0B�q11 q12 : : :q21 q22 : : :... ... . . .1CA ;(10)where the produt of matrix elements is the onvolution of measures on R�, i.e.,rik =Xj 1�j pij � pjk:Formula (10) de�nes the required produt of the double osets.Now we will make a de�nition from this Lemma. The de�nition is formaland motivation independent.1.5. R�-polymorphisms of ountable spaes. Consider a ountable (or�nite) spae A with a probability measure. We denote its points by a1, a2, . . . ,we denote their measures by �1, �2, . . . . Let A, B be two ountable spaes.9



Then an R�-polymorphism A ! B is an M-valued matrix (7) satisfying theonditions (8){(9).Let A, B, C be ountable (or �nite) spaes with probability measures. LetP : A ! B, Q : B ! C be R�-polymorphisms. Then their produt R = QP :A! C is de�ned by the formula (10).1.6. R�-polymorphisms in general ase, ([19℄, [20℄). Consider spaes(A;�), (B; �) with probability measures. An R�-polymorphismP : A! B is ameasure P on A� B �R� satisfying two onditions1. The image of the measure P under the projetion A�B �R�! A is �.2. Denote by x the oordinate on R�. Consider the measure x � P. Werequire the image of x �P under the projetion A �B �R�! B to be �.Denote by PolR�(A;B) the set of all R�-polymorphisms A! B.Example. Consider a spae A with a ontinuous probability measure. Con-sider q 2 Gms(A). Denote by q0(a) its Radon{Nykodim derivative. Considerthe map A! A� A�R� given bya 7! (a; q(a); q0(a)):Denote by P(q) the image of the measure � under this map. Then P(q) is anelement of PolR�(A;A).1.7. Convergene. Consider general spaes (A;�), (B; �) with probabilitymeasures. Consider an arbitrary R�-polymorphismP 2 PolR�(A;B). Fix Borelsubsets M � A, N � B and onsider the restrition of the measure P toM � N � R�. Denote by p[M;N ℄ the image of this restrition under the mapM � N �R�! R�.We say that the sequene Pj 2 PolR�(A;B) onverges to P 2 PolR�(A;B)if for eah M � A, N � B,1. the sequene pj[M;N ℄ weakly onverges to p[M;N ℄2. the sequene xpj[M;N ℄ weakly onverges to xp[M;N ℄See examples of the onvergene below in 1.11.Remark. Consider a spae A with a ontinuous probability measure �. Itis easy to prove that the group Gms(A) is dense in the semigroup PolR�(A;A)([19℄).1.8. De�nition of produt of R�-polymorphisms in general ase.Let A be a spae with a probability measure. Consider its �nite or ountablepartition T : A = A1 [A2 [ : : :By A=T we denote the quotient-spae, i.e., the ountable spae, where themeasures of points are �(A1), �(A2),. . . .Consider also a partition of a spae BS : B = B1 [B2 [ : : :For any P 2 PolR�(A;B), we de�neP#T;S 2 PolR�(A=T;B=S)10



as the matrix onsisting of the measures p[Ai; Bj℄ (see 1.7).Conversely, onsider R 2 PolR�(A=T;B=S):This is a matrix, whose matrix elements rij are measures on R�. For eah Ai,Bj , onsider the measure on Ai �Bj �R� given by��(Ai) � ��(Bj ) � rij :This de�nes some measure R"T;S onA�B �R� =[ij Ai � Bj �R�:Obviously, R"T;S 2 PolR�(A;B):Also, �P"T;S�# = P, and, obviously, �R#T;S�" is not R.We say that a sequene T (j) of partitions is approximative, if a partitionT (j+1) is a re�nement of T (j) and elements of the partitions generate the Borel�-algebra of A.Now we are ready to de�ne the produt of P 2 PolR�(A;B) and Q 2PolR�(B;C). Consider approximative sequenes of partitions T (j), S(j), U (j)of the spaes A, B, C. We de�ne the polymorphismR = QP 2 PolR�(A;C) aslimj!1�Q#S(j) ;U(j)P#T (j) ;S(j)�"T (j) ;U(j) :Remark. For any group G it is possible to de�ne G-polymorphisms in thesame way, see [19℄, [20℄. For some groups G, there exist nontrivial funtorsfrom ategory of polymorphisms to the ategory of Hilbert spaes and opera-tors ([19℄, [20℄) (G = SL2(R), O(1; n), U (1; n), these funtors extend the so-alled Araki multipliative integral onstrution, see [2℄, [32℄); for some groupsG there exist nontrivial entral extensions of ategories of G-polymorphisms (forG = Sp(2n;R), U (p; q), SO�(2n), [23℄). It seems that some polymorphism-likestrutures appears in the mathematial hydrodynamis, see [5℄.1.9. Remark. Ation of R�-polymorphisms on spaes Lp. Let w =u + iv be in C , let 0 6 u 6 1. Let A be a spae with a ontinuous probabilitymeasure. The group Gms(A) ats in the spae L1=u(A) by the isometriesTw(q)f(a) = f(q(a))q0(a)wLet us extend this ation to the ation of R�-polymorphisms.Let (A;�), (B; �) be spaes with probability measures.Proposition. Let P 2 PolR�(A;B). Then the expressionSw(Pjf; g) = ZZZA�B�R� f(a)g(b)xu+iv dP(a; b; x)11



is a bounded bilinear form on L1=(1�u)(A)� L1=u(B) and moreoverjSw(Pjf; g)j 6 kfkL1=(1�u) � kgkL1=u:Let us de�ne the linear operatorTw(P) : L1=u(B)! L1=u(A)by the duality onditionZA f(a)Tw(P)g(a) d�(a) = Sw(Pjf; g):Obviously, kTw(P)k 6 1:Proposition. For eah spaes A, B, C with probability measures and eahP 2 PolR�(A;B), Q 2 PolR�(B;C),Tw(Q)Tw(P) = Tw(QP):1.10. Remark. Ation of R�-polymorphisms on M-valued fun-tions. Let (A;�) be a spae with a probability measure. Denote by S(A) thespae of all funtions a 7! �a on A taking values inM satisfying the onditionZA ZR� x d�a(x) d�(a) = 1:Denote by � the single-point spae with a probability measure. The spaePolR�(A; �) is identi�ed in the obvious way with the spae S(A).Any element of PolR�(B;A) indues the map PolR�(A; �) to PolR�(B; �) givenby the formula U 7! UP; U 2 PolR�(A; �):Thus we obtain the anonial map�P : S(A)! S(B):Obviously, for any P 2 PolR�(B;A), Q 2 PolR�(C;B), we have�P�Q = �PQ:1.11. Remarks. Examples of onvergene. 1) Let A = B be theinterval [0; 1℄. Consider the sequene qn of monotoni maps [0; 1℄! [0; 1℄ givenby qn(a) = a+ 12�n sin(2�na):Then the limit P of qn is a measure on [0; 1℄� [0; 1℄�R� supported by the setonsisting of the points (a; a; x); 0 < x < 212



and the density of P on this set is given byda dx�p2x� x2 :2) Let A = B be the same. Then the sequene qn(a) = an has no limit inR�-polymorphisms.3) Let A;B be spaes with ontinuous measures. Let S; T be their partitions.Let gn 2 Ams(A��S), Bn 2 Ams(A��T ), be generi sequenes. Thenlimn!1n limm!1 hnPgmo = P#S;T4) Let A;B be spaes with ontinuous measures. Let S(n); T (n) be approxi-mative sequenes of their partitions. Then, for any P 2 PolR�(A;B),limn!1�P#S(n) ;T (n)�"S(n) ;T (n) = P:1.12. Remark. How to formulate problem of limit behavior ofpowers of a polymorphism? ForP 2 PolR�(A;A), denote byPn its powers.IfP 2 Ams(A) � Pol(A;A), then the problem of limit behavior of the powers isthe problem of the ergodi theory. If A = � is a single-point set, then the limitbehavior of Pn is desribed by the entral limit theorem. The following problemis an attempt to unite the both subjets of the lassial theories mentionedabove.We notie that the group R� admits an one-parametri family of automor-phisms x 7! x�, there � 2 Rn 0. These automorphisms indue the one para-metri family of automorphisms of the semigroupM, i.e.u(x) 7! u(x�); u 2M:The last automorphisms indue automorphisms of the semigroup of all M-valued n� n matries (7) equipped with the multipliation (10)3.For any P 2 PolR�(A;A), and any � 2 R n 0 we de�ne the measuresP(a; b; x�) on A�A�R� as the image of P under the map (a; b; x) 7! (a; b; x�).We obtain the following problem: Is it possible to �nd a sequene �n suhthat the sequene P(a; b; x�n)n onverges to some nontrivial limit?2. Polymorphisms of bordered spaes2.1. The lassesMO, MH of measures on R�. Let u be a measure onR�. We say that u belongs to the lassMO, ifZR� du(x) <1; ZR� x du(x) <1:3These automorphisms break the ondition (8). But the produt (10) itself exists withoutthe onditions (8){(9) 13



We say that u is an element of the lassMH, ifZ jx� 1j du(x) <1:For the lassMH, we admit in�nite atomi measures supported by x = 1.We also de�ne the onvergene in MO and MH. A sequene uj onvergesto u in MO if uj weakly onverges to u and xuj weakly onverges to xu. Asequene uj onverges to u inMH if jx� 1juj weakly onverges to jx� 1ju.2.2. Bordered spaes. Let M be a Lebesgue measure spae (we admitthe ase, when M is an empty set). We de�ne the orresponding bordered spaeMg =M [ �M1 ;where �M is a formal point.Remark. It is natural to think that �1 = �M1 is "the point ofM at in�nity".Also, it is natural to think, that the measure of the point �1 is 1.We also de�ne measurable subsets inMg. Let A �M be a Borel subset.a) The set A [ �1 is measurable inMg.b) If A has a �nite measure, then A is measurable inMg.All other subsets in Mg are not measurable.2.3. Partitions of bordered spaes. Consider a bordered spae Mg. Itsgood partition U (we will omit the word "good") is a partitionU :Mg =M1 [ � � � [Mk [M1into mutually disjoint subsets suh that M1; : : : ;Mk have �nite measure and�1 2 M1. We say that M1 is an in�nite element of the partition, all otherelements are �nite.For the partition U , we de�ne the quotient spae Mg=U . It onsists of thepoints with the measures �(M1), . . . , �(Mk) and the point �1.For the partition U , we de�ne the group of automorphisms of the partitionAms1(Mg��U) = Ams(M1) � � � � � Ams(Mk) �Ams1(M1):2.4. Multipliation of double osets Ams1 n Gms1=Ams1. For q 2Gms1(M ) we onsider the image uq of the measure � under the mapM ! R�given by m 7! q0(m). Obviously, uq 2 MH, and the map q 7! uq de�nes abijetion Ams1(M ) nGms1(M )=Ams1(M ) ! MH:We say that a sequene hn 2 Ams1(M ) is generi if for any subsets A;B �Mhaving �nite measures, we havelimn!1��hn(A) \B� = 0:Remark. See formula (5.a). 14



Example. Let M = R. We an give hn(x) = x+ n.Fix a generi sequene hn. Consider v;w 2 MH. Consider p; q 2 Gms1(M )lying in the orresponding double osets.Lemma. Denote by un the element ofMH orresponding qhnp. Thenlimn!1 un = v +w:Remark. Compare with Subsetion 1.1.2.5. Double osets. Let (M;�) be a spae with a ontinuous in�nitemeasure. Fix two partitionsU :M =M1 [ � � � [Ms [M1; V :M = N1 [ � � � [Nt [N1of M . Denote the measures of the sets Mi by �i and the measures of Nj by �j.For any p 2 Gms1(M ) and any � = 1; : : : ; s;1 and � = 1; : : : ; t;1, we de�nethe measure p�� on R� as the image of the measure � under the mapM� \ p�1(N�)! R�given by m 7! p0(m). Thus we obtain the matrixP = 0BBB� p11 : : : p1t p11... . . . ... ...ps1 : : : pst ps1p11 : : : p1t p111CCCA (11)onsisting of measures on the group R�. These measures satisfy the followingequalities tXj=1 ZR� dpij(x) + ZR� dpi1(x) = �i; i = 1; 2; : : : ; s; (12)sXi=1 ZR� x dpij(x) + ZR� x dp1j(x) = �j; j = 1; 2; : : : ; t; (13)and the onditions pij; pi1; p1j 2MO; p11 2 MH: (14)Obviously, the map p 7! P is onstant on eah double osetAms1(M ��U) nGms1=Ams1(M ��V)and moreover this de�nes a bijetion between the double oset spae and thespae of all the matries (11) satisfying (12){(14).15



We also will write the matrix (11) in the (s + 1) � (t+ 1)-blok formP = �P�n;�n P�n;1P1;�n p1;1 � :2.6. Produt of double osets. Now onsider 3 partions of the spae M(all these partitions an oinide)U :M =M1 [ � � � [Ms [M1; V :M = N1 [ � � � [Nt [N1;W : K = K1 [ � � � [Kr [K1:We intend to de�ne the multipliation of the double osetsAms1(M ��U)nGms1=Ams1(M ��V) � Ams1(M ��V)nGms1=Ams1(M ��W)!! Ams1(M ��U) nGms1=Ams1(M ��W);i.e., we want to de�ne a multipliation of matries (11).We say that a sequenehn = (h(1)n ; : : : ; h(t)n ; h(1)n ) 22 Ams1(M ��V) = Ams(N1)� � � � � Ams(Nt)� Ams1(N1)is generi if all the sequenes h(�)n are generi (� = 1; 2; : : : ; t;1).Now we repeat the double oset multipliation onstrution. Consider a ma-trixP, whih orresponds to some element of Ams1(M ��U)nGms1=Ams1(M ��V).Consider a matrix Q, whih orresponds to some element of Ams1(M ��V) nGms1(M )=Ams1(M ��W). Consider the representatives p; q 2 Gms1(M ) ofthese double osets. For a generi sequene hn 2 Ams1(M ��U), denote by Rnthe element of the double oset spaeAms1(M ��U) nGms1(M )=Ams1(M ��W);ontaining qhnp. Then the limit R of Rn is given byR = � Q�n;�n �D �P�n;�n Q�n;�n �D �P�n;1 +Q�n;1Q1;�n �D �P�n;�n +P1;�n Q1;�n �D �P�n;1 +P1;1 +Q1;1� ;(15)where D = 0B���11 0 : : :0 ��12 : : :... ... . . .1CA ;and �j are the measures of the elements N1,. . . , Nt of the partition V.The assoiativity of the produt an be easily heked by a diret alulation.2.7. g-Polymorphisms of �nite bordered spaes. Let Mg, Ng be�nite bordered spaes, let the measures of (�nite) points be �1, �2, . . . , �s16



and �1, �2, . . . , �t. An element P of Polg(Mg; Ng) (a g-polymorphism) is a(s + 1) � (t + 1)-matrix (11) satisfying the onditions (12){(14). The produtof the polymorphisms is given by (15).2.8. g-Polymorphisms of general bordered spaes. Let (Mg; �),(Ng; �) be bordered spaes. An element P of Polg(Mg; Ng) is a measure onMg�Ng�R� satisfying some onditions given below. It is natural to representthis measure as the blok matrixP = �P�n;�n P�n;1P1;�n P1;1� ;where P�n;�n is a measure onM�N�R�, P�n;1 is a measure on �M1�N�R� 'N �R�, P1;�n is a measure onM��N1�R� 'M�R�, and P1;1 is a measureon �M1 � �N1 �R� ' R�.The measureP satis�es the following onditions (whih repeat the onditions(12){(14)).1. P�n;�n, P�n;1, P1;�n 2MO, and P1;1 2MH.2. Let us restrit the measure P to the set M �Ng �R�. Then the imageof this restrition under the mapM �Ng �R�!M oinides with �.3. Let us restrit the measure x �P to the set Mg�N �R�. Then the imageof this restrition under the mapMg �N �R�! N oinides with �.Produt of g-polymorphisms is de�ned by the same formula (15). We onlymust de�ne the produts in eah blok. For instane, let us give an interpreta-tion of Q�n;�n �D �P�n;�n. It is suÆient to use the presription 1.8. To avoid adivergene, onsider ountable partions of M;N;K into piees with �nite mea-sures. Then we onsider approximative sequenes of partitions et.et.2.9. Embedding Gms1 ! Polg. For q 2 Gms1(M ), we de�ne the matrixQ by the onditionsQ�n;1 = 0; Q1;�n = 0; Q1;1 = 0;and Q�n;�n is the image of the measure � under the map M ! M �M �R�given by m 7! (m; q(m); q0(m)):Remark. The group Gms1(M ) is exatly the group of all invertible g-polymorphisms of Mg.Below we identify elements of Gms1(M ) and the orresponding elements ofPolg(Mg;Mg).2.10. A remark on the formula for produt. The exoti multipliation(15) of matries is a degeneration of the usual matrix multipliation. Indeed,let " be in�nitely small. Consider blok (n + 1) � (n + 1)-matries having theform �A+ o(1) "b+ o(")" + o(") 1 + "2d+ o("2)� :17



Then the produt of suh matries has the form�A+ o(1) "b+ o(")" + o(") 1 + "2d+ o("2)��A0 + o(1) "b0 + o(")"0 + o(") 1 + "2d0 + o("2)� == � AA0 + o(1) "(Ab0 + b) + o(")"(A0 + 0) + o(") 1 + "2(d+ d0 + b0) + o("2)� ; (16)and we obtain the formula similar to (15).2.11. Remarks on the onvergene in Polg. Let P 2 Polg(Mg, Ng).Let A �Mg, B � Ng be measurable subsets (see 2.1). We restrit the measureP to A � B �R�. Denote by p[A� B℄ the image of this restrition under theprojetion A� B �R�! R�.Let Pj ;P 2 Polg(Mg, Ng). The sequene Pj onverges to P if the follow-ing two onditions are satis�ed.a) For any measurable subsets A � Mg, B � Ng the sequene pj[A � B℄onverges to p[A�B℄ inMH.b) Moreover, if A or B does not ontain �1, then we have onvergene inMO.Examples. a) LetM = R. Let y = f(x) be a di�eomorphism ofR. Assumeqn(x) = f(x) + n:Let us desribe the limit P of the sequene qn in the sense of Polg(Rg;Rg).The measure P is supported by R� �1�R�. It oinides with the image of theLebesgue measure on R under the mapx 7! (x; �1; f 0(x)):b) Under the same onditions, the limit Q of the sequeneqn(x) = f(x � n) + nis supported by �1 � �1 � R�. It oinides with the image of the Lebesguemeasure under the map x 7! (�1; �1; f 0(x)):It is easy to understand that the group Gms1 is dense in the semigroupPolg(Mg;Mg). Thus this semigroup is some kind of a boundary of the groupGms1(M ).2.12. Remarks on the polymorphisms related to Ams1. We disussthis ase for ompleteness. Let Ag, Bg be bordered spaes. A polymorphismP is a measure on A �B satisfying the onditions1. The projetion of P onto A is majorized by �2. The projetion of P onto B is majorized by �.We de�ne the produt of polymorphisms by the same formula (1).18



Remark. We also an de�ne this type of polymorphisms Ag ! Bg asg-polymorphisms supported by the setAg � Bg � 1 � Ag �Bg �R�3. Constrution of funtor3.1. Con�gurations. We say that a on�guration on a bordered spaeMg is a ountable (or �nite) olletionm = �m1; m2; m3; : : :p1; p2; p3; : : :� (17)of distint points (m1;m2;m3; : : : ) ofMg having integer positive multipliitiesp1; p2; p3; : : : . We also assume that any on�guration ontains �1 with in�-nite multipliity. The olletion m is de�ned up to permutations of the pointstogether with their multipliities (i.e., up to the permutations of olumns of(17)).We also will give another de�nition. A on�guration is a map ' from aountable set Z to Mg suh that the preimage '�1(�1) of �1 ontains in�nitenumber of points. Two on�gurations ' : Z ! Mg, '0 : Z 0 ! Mg areequivalent if there exists a bijetion  : Z ! Z 0 suh that ' = '0 .Of ourse, these two de�nitions are equivalent. Indeed, onsider a map' : Z ! Mg. The set (m1;m2; : : : ) is the image of '; the multipliity pj of apoint mj is number of elements in '�1(mj).M : '?qqqqm2p2 = 4 ?qqm1p1 = 2 ?qm3p3 = 1 ?qm7p7 = 1 : : : u�1?qqqqqqqqqqqqqqPiture 1. A on�guration.Blak points are elements of Z, the map ' is the projetion down.Denote by 
(Mg) the spae of on�gurations on Mg de�ned up to equiva-lene.For a map � : Mg ! Ng (we assume �(�1) = �1), we have the naturalmap 
(Mg)! 
(Ng) given by ' 7! � Æ '. In partiular, for any partition U ,we obtain the map 
(M )! 
(M=U).3.2. Poisson measures: �nite ase. Consider a �nite bordered spaeMg, let the measures of the points m1, . . . , mk of M be �1, . . . , �k. Fora on�guration ' : Z ! Mg, we denote by pj the number of points in thepreimage '�1(mj) (the multipliity of mj , it an be 0). Thus the spae 
(Mg)is identi�ed with the spae Zk+. We de�ne the Poisson measure �M on 
(Mg)by the ondition: the measure of the point (p1; p2; : : : ; pk) 2Z+ isYk �pkk e��kpk! :19



3.3. Poisson measures: general ase. The Poisson measure �M on
(M ) is de�ned by the ondition: for any partition U of Mg, the image of �Munder the map 
(Mg)! 
(Mg=U)oinsides with the Poisson measure �Mg=U on 
(Mg=U), see [13℄, [33℄, [20℄, [21℄for more details.3.4. Normed exponent. Consider a measure  2 MH on R�. Thefuntion r(s) = ZR�(xis � 1) d (x)is a well-de�ned onditionally positive de�nite funtion on R. Hene er(s) is apositive de�nite funtion. Hene er(s) is a Fourier transform of some measure {er(s) = Z 10 xisd{(x):We de�ne the normed exponent expÆ[ ℄ byexpÆ[ ℄ = {:Remark. Assume  2 MO. ThenexpÆ[ ℄ = expn� ZR� d (x)o � nÆ1 +  1! +  �  2! +  �  �  3! + : : :o;where Æ1 denotes the atomi unit measure supported by the point 1 2 R�.3.5. Partial bijetions. Let S; T be �nite sets. A partial bijetion Q :S ! T is a bijetion of a subset A � S to a subset B � T . We say that A isthe domain of Q (the notation is A = Dom(Q)) and B is the image of Q (thenotation is B = Im(Q)). We denote by PB(S; T ) the set of all partial bijetionsS ! T .3.6. The onstrution. Consider �nite spaesMg, Ng and the assoiatedspaes 
(Mg), 
(Ng) equipped with the Poisson measures.For eah g-polymorphism P 2 Polg(Mg; Ng), we will onstrut an R�-polymorphism !(P) 2 PolR�(
(Mg);
(Ng)).Consider arbitrary on�gurations ' : Z ! Mg and  : Y ! Ng. Denoteby S � Z, T � Y the preimages of the sets M , N ; obviously, the on�guration' (resp.  ) is ompletely de�ned by the restrition to S (resp. T ). Denote bypi (resp qj) the multipliities of the points of the on�guration ' (resp.  ). Wede�ne the measure !' on R� by!' = C � Æh � expÆ[p11℄ � 1Q pi! Q qj! XQ2PB(S;T )n Ys2Dom(Q);t=Qs pst �� Ys62Dom(Q) ps1 � Yt62Im(Q) p1to; (18)20



where the summation is given over the set of all partial bijetions T ! S,M : ' N : r r r rr r r rr r r rr r r rr r r rr r r r�� �������������
r ��������� �� ���������6d
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m3 6d
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Piture 2. A partial bijetion (mathing) of on�gurationsexpÆ[�℄ denotes the normed exponent, symbols Q denote onvolutions of mea-sures on R�, the salar fator C is given byC = expn�Xi;j Z dpij �Xi Z dpi1 �Xj Z dp1jo;and Æh is the unit Æ-measure on R� supported by the pointh = expn� Z (x� 1) d�Xi;j pij +Xi pi1 +Xj p1j + p11�o:Theorem A. a) The matrix !(P) omposed from measures !' is an ele-ment of PolR�(
(Mg);
(Ng)).b) The map P 7! !(P) is a funtor, i.e. for eah �nite bordered spaes Mg,Ng, Kg and for eah g-polymorphismsP 2 Polg(Mg; Ng), Q 2 Polg(Ng;Kg),!(Q)!(P) = !(QP): (19)3.7. Constrution of the funtor (
; !) in general ase. Let (Mg; �),(Ng; �) be arbitrary bordered spaes, and letU :Mg =M1 [ � � � [Mk [M1; V : Ng = N1 [ � � � [Nl [N1be partitions of Mg, Ng respetively. Let P 2 Polg(Mg; Ng). For any � =1; : : : ; k;1 and � = 1; : : : ; l;1 we onsider the mapM� �N� �R�! R�21



and the image of the measure P under this map. Thus we obtain anM-valuedmatrix, it de�nes the element of Polg(Mg=U ; Ng=V). We denote it byP#[U;V℄:Let Mg be a bordered spae. Let U (j) be a sequene of partitions, and leteah U (j+1) be a re�nement of U (j). We say that the sequene U (j) of partitionsis approximative if �nite elements of all partitions U (j) generate the Borel �-algebra of M .Fix P 2 Polg(Mg; Ng). Let U (j), V(j) be approximative sequenes of par-titions of Mg, Ng respetively. Then we have the hain of the spaes� � �  Mg=U (j)�Ng=V(j) �R� Mg=U (j+1) �Ng=V(j+1) �R� : : : (20)The sequene P#[U(j) ;V(j) ℄ of bordered polymorphisms (de�ned in 3.1) is a pro-jetive sequene of measures with respet to the hain (20).Theorem B. a) Let P 2 Polg(Mg; Ng). Let U (j), V(j) be approximativesequenes of partitions of Mg, Ng. Then the system!(P#[U(j) ;V(j) ℄) 2 PolR��
(Mg=U (j));
(Mg=V(j))�is a projetive system of measures with respet to the maps� � �  
(Mg=U (j))� 
(Ng=V(j)) 
(Mg=U (j+1)) �
(Ng=V(j+1)) : : :The inverse limit !(P) 2 PolR�(
(M );
(N ))of this hain does not depend on the hoie of the approximative sequenes U (j)and V(j).b) The map P 7! !(P) is a funtor, i.e., for eah Mg, Mg, Kg and eahg-polymorphisms P 2 Polg(Mg; Ng), Q 2 PolR�(Ng;Kg),!(Q)!(P) = !(QP):) Let q 2 Gms1(M ). Then !(q) is the transformation of 
(Mg) givenby (m1;m2; : : : ) 7! (q(m1); q(m2); : : : ), i.e., our funtor (
; !) extends the map(4).3.9. Remarks on the proofs. There are two ways to prove Theorem A.The both ways require some alulations.The �rst way. Consider a spae Mg with a ontinuous in�nite measure.Consider a partition U of Mg. We have a map from 
(Mg) to the ountablespae 
(Mg=U), and thus we have a partition of the spae 
(Mg). Denotethis partition by 
(U). For any partition U , the mapGms1(M )! Gms(
(M ))22



indues the maps of the subgroupsAms1(M ��U)! Ams�
(Mg��
(U)�: (21)Thus we have the map of double osetsAms1(M ��U) nGms1(M )=Ams1(M ��V)!! Ams�
(Mg��
(U)� nGms(
(M ))=Ams�
(Mg��
(V)�:The map (21) transforms generi sequenes to generi sequenes, and thisimplies the produt formula (19). For obtaining (18), it remains to alulatethis map expliitly.Another way of proof of (19) is a diret alulation. The formula (19) isequivalent to a family of identities for some in�nite sums depending on elementsofMO. The same identities for series depending on omplex variables appearin the following situation.Consider the spae Fn of entire funtions on Cn . Let A : Cn ! Cn be alinear operator, let b;  2 Cn . Consider the linear operatorU (A; b; )f(z) = f(Az + b) exp(X jzj):Obviously,U (A; b; )U (A0; b0; 0) = exp(X bj0j)U (A0A;A0b+ b0; At0 + ): (22)Consider the matrix elements of this operator in the basis zp11 : : : zpnn . The ex-pliit expresions for these matrix elements an be easily written as polynomial onA; b; ; they almost oinide with the expresion (18). In this basis, the produtformula (22) is some olletion of identities for series of omplex numbers.The identities that are neessary for the proof of (19) are the same, but theomplex numbers are replaed by elements of the semigroupMO. It remains toobserve, that for any s 2 C , suh that 0 6 Re s 6 1, the mapu 7! Z 10 xsdu(x)is a homomorphism of ringsMO ! C and this family of homomorphisms sepa-rates elements ofMO.Theorem B is a orollary of Approximation Theorem for ategories [20℄,Theorem 8.1.10.Referenes[1℄ Albeverio, S., Kondratiev, Yu. G., Rokner, M. Di�erential geometry ofPoisson spaes. C. R. Aad. Si. Paris Ser. I Math. 323 (1996), no. 10,1129{1134. 23
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