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Abstract

We calculate the contributions of the axial current to top quark pair production

in e
+
e
− annihilation at threshold. The QCD dynamics is taken into account

by solving the Lippmann-Schwinger equation for the P wave production using

the QCD potential up to two loops. We demonstrate that the dependence of

the total and differential cross section on the polarization of the e
+ and e

−

beams allows for an independent extraction of the axial current induced cross

section.

Top quark production at an electron-positron collider [1] has been demonstrated

to be ideally suited for a precise determination of the top quark mass and for the

study of its couplings in production and decay. Due to its rapid decay large distance

nonperturbative QCD effects are irrelevant for the description of the top quark [2],

and the tt̄ system is well described by perturbative QCD [3]. It allows to explore the

interquark potential at small distances, which is closely related to the strong coupling

constant. One might eventually even become sensitive to the t-t̄-Higgs coupling through

virtual corrections. In order to constrain this multitude of parameters in an optimal
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way and to reduce inevitable theoretical uncertainties, it is desirable to measure a

large variety of different observables. Originally the main emphasis had been put on

the total cross section [3, 4]. The excitation curve with its steep rise (the remnant of

the 1S toponium resonance) is ideally suited for the measurement of the top quark

mass mt. The correlation between mt and the strength of the potential (αs) can be

reduced by comparing data and predictions for the momentum distribution of the top

quarks [5, 6, 7, 8], which reflects essentially their Fermi motion in the bound state and

the smearing of the momentum due to the large decay rate Γt, a consequence of the

uncertainty principle. All these quantities were calculated for the S wave amplitude,

which is induced by both the electromagnetic current and the vector part of the neutral

current close to threshold. Expanding in the limit of small velocities β =
√

1− 4m2
t/s

(
√
s being the total centre of mass energy), the next term is due to S − P wave

interference. The subleading P wave amplitude originates from the production through

the axial vector current. The interference term is responsible for the anisotropic angular

dependence, specifically the term linear in cos θ, and the resulting forward-backward

asymmetry [9]. Similarly, an angular dependent polarization of top quarks is induced

by the S−P wave interference which adds to the dominant polarization parallel to the

e+e− beams [10]. Rescattering corrections [11, 12], although important for the detailed

quantitative analysis, do not alter this qualitative picture.

Clearly, the next step in this sequence of improvements are corrections of order β2

which, for interacting quarks close to threshold, translate into corrections of order α2
s

and βαs. For the vector current this has been recently persued by different groups,

which have demonstrated the importance of these next-to-next-to leading order cor-

rections [13, 14, 15]. However, in the same order β2 (or α2
s) also axial vector induced

contributions must be incorporated. They affect both the excitation curve and the

momentum distribution. Close to threshold these axial contributions are suppressed

relative to the dominant S waves by two powers of β whence a treatment of the leading

terms is sufficient for the present purpose. These axial contributions are mediated by

the virtual Z boson only. Therefore their dependence on the beam polarization differs

from the one of the vector current induced rate. This, in turn, allows for the separation

of the two independent contributions to the total and differential cross section. With

the axial contribution representing an independent observable, this separation is pos-

sible independent of potential uncertainties in the NNLO calculation of the dominant

piece. However, in view of the β2 suppression of the axial rate and the relatively small

couplings of the neutral current, large luminosities and a high degree of polarization

are required to make a clean extraction of the axial part possible. These features are

unique for linear colliders, as proposed e.g. in [1, 16]. However, even without this pos-

sibility, it will be important to control the impact of this contribution on the extraction

of the top quark mass and the interquark potential. Let us also stress that the axial
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rate, although closely related to the S − P wave interference piece, is an independent

observable. Rescattering corrections, which are present in the angular distribution and

in the top polarization, are calculated to O(αs) [11, 12] but shown to be unimpor-

tant as long as the total cross section is concerned [17, 18]. In addition, rescattering

corrections do not affect the separation between axial and vector contributions.

P wave threshold production of massive quarks in γγ collisions has been analysed for

the case of a pure Coulomb potential in Ref. [19] and much of the general considerations

can be taken over to the present case.1 This refers in particular to the treatment of the

linearly divergent integrals over the momentum distribution and the order of magnitude

estimates. However, for definite predictions the QCD potential with its logarithmically

varying coupling strength has to be employed. The relative size of the electromagnetic

and weak couplings is important for the phenomenological analysis, as well as the

dependence on the beam polarization.

The momentum distribution of the top quark including the influence of beam po-

larization can be written in the form

dσ

dp
=

3α2Γt

m4
t

(1− P+P−)
[

(a1 + χa2)
(

1− 16

3

αs

π

)

DS−S(p, E)

+ (a5 + χa6)
(

1− 8

3

αs

π

)

DP−P (p, E)
]

, (1)

where the correction factors from hard gluon exchange, (1− 16αs/3π) and (1− 8αs/3π),

are taken from [22, 23]. P+ and P− denote the polarization of the positron and electron

beams, respectively, and χ is defined as

χ =
P+ − P−

1− P+P−

. (2)

The coefficients ai read

a1 = (qeqt + vevtd)
2 + (aevtd)

2 , a2 = 2aevtd (qeqt + vevtd) ,

a5 = (atd)
2
(

v2e + a2e
)

, a6 = 2veae (atd)
2 , (3)

with

d =
1

16 sin2 θW cos2 θW

s

s−M2
Z

(4)

and the electromagnetic and weak charges

qe = −1 , ve = −1 + 4 sin2 θW , ae = −1 ,

qt = 2/3 , vt = 1− 8/3 sin2 θW , at = 1 . (5)

1See also Refs. [20] and [21] for related discussions of P wave production of quarks and squarks in

e
+
e
− collisions near threshold.
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The dynamics of the strong interaction is contained in the functions

DS−S(p, E) = p2 |G(p, E)|2 and DP−P (p, E) = p2
∣

∣

∣

∣

p

mt

F (p, E)

∣

∣

∣

∣

2

, (6)

where E =
√
s − 2mt is the energy relative to the nominal threshold. The S and P

wave Green functions G(p, E) and F (p, E) fulfill the Lippmann-Schwinger equations

G(p, E) = G0(p, E) +G0(p, E)
∫

d3q

(2π)3
Ṽ ( | ~p− ~q | )G(q, E) , (7)

F (p, E) = G0(p, E) +G0(p, E)
∫ d3q

(2π)3
~p · ~q
p2

Ṽ ( | ~p− ~q | )F (q, E) (8)

where p = | ~p | is the momentum of the top quark in tt̄ rest frame, G0(p, E) =

(E − p2/mt + iΓt )
−1

is the free Green function, and Γt denotes the top quark width.

For the QCD potential in momentum space, Ṽ , we adopt the two loop result [24] with

the long distance regularization as described in [25]. Eqs. (7, 8) are then solved numer-

ically as described in [6, 26]. For all the results discussed below we use the parameters

mt = 175 GeV, Γt = 1.43 GeV and αs(M
2
Z) = 0.118.

For large momenta both G(p, E) and F (p, E) approach the free Green function G0.

It is thus evident that the integral over the momentum distribution diverges linearly

for the P wave. This is, however, an artefact of the nonrelativistic approximation.

The problem could be cured, for example, by introducing in this region the relativistic

(free) Green function and phase space and by treating the interaction as a (small)

perturbation. However, in practice, a cutoff will be provided by the experimental

analysis. The invariant mass of the W plus b jet in events with large p (Wb) and small

E =
√
s−2mt will necessarily be strongly shifted away from mt towards smaller values.

Such events will either not be included in the tt̄ sample or, in any case, will require

special treatment. Hence, wherever total cross sections are presented, a cutoff pmax of

order mt will be introduced which is easily included also in the experimental analysis.

The relative magnitude of the P wave result is best visualized by considering the ba-

sic elements DS−S and DP−P which enter Eq. (1). In Fig. 1 we show these distributions

for three energies, E = −3, 0 and 3 GeV. These energies roughly correspond to the

location of the 1S peak, the nominal threshold and the onset of the continuum. For the

S wave (Fig. 1a) we observe a fairly wide distribution at E = −3 GeV, a consequence

of the momentum spread of the constituents in the 1S bound state. With increasing

energy the interaction becomes less important, the width of the distribution decreases

and approaches the free result Γt

√

mt/E. For the P wave (Fig. 1b) the contribution is

tiny at E = −3 GeV and develops a peak only gradually with increasing energy. The

ratio DS−S/DP−P is shown in Fig. 1c. For energies well above threshold its behaviour

is essentially given by the factor p2/m2
t , since both F and G are approximated by the
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free Green function G0. However, for energies relatively close to threshold the strong

interaction distorts the free wave functions which leads to a deviation from the pure

p2/m2
t behaviour. The ratio of the integrated S and P wave distributions as functions

of E is shown in Fig. 2a. The different curves give the results for different values of

the momentum cutoff pmax which is applied both in numerator and denominator. For

a realistic analysis pmax = mt/3 or mt/2 should be used at most. For free and stable

quarks the ratio is given by p2(E)/m2
t ≈ E/mt. Fig. 2a shows that close to threshold

the momentum spread from the QCD bound state dynamics leads to a significant mod-

ification of the E/mt behaviour and increases the P wave contribution. The minimum

of the ratio
∫ pmax

0 dpDP−P /
∫ pmax

0 dpDS−S is observed roughly at the location of the

remnant of the 1S peak of the Rtt̄ ratio (Fig. 2b)

Rtt̄ ≡
σ(e+e− → γ∗ → tt̄ )

σ(e+e− → γ∗ → µ+µ−)
=

4Γt

πm2
t

∫ pmax

0

dpDS−S . (9)

With these ingredients it is now straightforward to predict the differential distribution

for the three characteristic polarizations P− = −1, 0, +1 and P+ = 0. The cross

sections are drastically different for the three choices, see Fig. 3, reflecting the large

left–right asymmetry ALR = a2/a1 ≈ 0.4 of the S wave contribution [2, 27]. Including

the small P wave term (dotted curves) leads to marginal changes only, which are barely

visible in Fig. 3 even for the highest energies. The relative size of the axial contribution

is better visible in Fig. 4 where the ratio between the axial and the vector contribution

is plotted as a function of the momentum p. The shapes and the magnitude are

fairly similar for the different energies. This is a consequence of the fact, that the

ratio DP−P (p, E)/DS−S(p, E) is relatively insensitive to the energy. In fact, in the

absence of interaction this ratio is just given by p2/m2
t , independent of E. In contrast,

the location of the maximun of the distribution itself varies with E, and this is mainly

responsible for the increase of the integrated P wave cross section. The integrated cross

section with and without the P wave contribution is shown in Fig. 5a, where for the

cutoff pmax = mt/2 is adopted. The ratio between axial and vector contributions, both

integrated up to mt/2 is shown in Fig. 5b. The shape of these curves reflects the shape

of the ratio
∫

dpDP−P /
∫

dpDS−S displayed already in Fig. 2a. The normalization

depends on the polarization. This demonstrates that experiments with polarized beams

are able to extract σAA
tot separately, provided that a statistical and systematic precision

at the percent level can be reached. In any case, if a theoretical prediction of shape

and normalization of dσ/dp at a precision of one or two percent is needed the P wave

contribution to the cross section should be included.
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[10] R. Harlander, M. Jeżabek, J.H. Kühn, and T. Teubner, Phys. Lett. B 346 (1995)

137.
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[25] M. Jeżabek, J.H. Kühn, M. Peter, Y. Sumino, and T. Teubner, Phys. Rev. D 58

(1998) 14006.

[26] R. Harlander, Diploma thesis (in German), University of Karlsruhe, 1995, unpub-

lished.

[27] B. Grazadkowski, P. Krawczyk, J.H. Kühn, and R.G. Stuart, Nucl. Phys. B 281
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Figure 1: Results for the basic elements in Eq. (1): a) DS−S(p, E), b) DP−P (p, E) and

c) the ratio DP−P/DS−S for the three energies E = −3 GeV (continuous curves), E = 0

(dashed lines) and E = 3 GeV (dotted) as a function of the top quark momentum p.
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Figure 2:

a) Ratio of the integrated distributions:
∫ pmax

0 dpDP−P (p, E) /
∫ pmax

0 dpDS−S(p, E) as a

function of the energy E =
√
s−2mt for four different values of the cutoff: continuous,

dashed, dotted, and dash-dotted lines correspond to pmax = mt ·
[

1

3
, 1

2
, 2

3
, 1

]

, respec-

tively. b) The normalized total cross section Rtt̄ as defined in Eq. (9) as a function of

E.
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Figure 3: Differential cross section dσ(e+e− → tt̄ )/dp as defined in Eq. (1) as a

function of p for six different energies, E = −3, 0, 3, 5, 10, 20 GeV, as indicated in

the plots a). . . f). The continuous, dashed and dash-dotted lines show the pure S

wave result for the three different choices of the e− polarization P− = −1, 0 and 1,

respectively. (P+ = 0.) The dotted lines show the full result including the P wave

contributions.
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Figure 4: Relative size of the axial contribution dσAA/dp compared to the vector

contribution dσVV/dp to the differential cross section as a function of p for six different

values of the energy E [plots a). . . f)]. The continuous, dashed and dash-dotted lines

correspond to P− = −1, 0 and 1, respectively. (P+ = 0.)

11



0

0.25

0.5

0.75

1

-7.5 -5 -2.5 0 2.5 5 7.5 10 12.5
E [GeV]

σ to
t  

[p
b]

 pmax = mt/2

 dotted: including P wave contributions

continuous, dashed, dash-dotted: P-= -1, 0, +1  (P+= 0)

a)

0

0.02

0.04

0.06

-7.5 -5 -2.5 0 2.5 5 7.5 10 12.5
E [GeV]

σ to
tA

A
 / 

σ to
tV

V

 pmax = mt/2

b)

Figure 5: a) The total cross section σ(e+e− → tt̄ ) as a function of E for three

different choices of the e− polarization: the continuous, dashed and dash-dotted lines

correspond to P− = −1, 0 and 1, respectively, where only S wave production is taken

into account. The dotted lines show the corresponding total cross sections including

the P wave contributions. b) Ratio of the P to the S wave contribution σAA
tot /σ

VV
tot for

the three different e− polarizations.
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