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Abstract

The Cambridge structural database (CSD) is a vast resource for crystallo-
graphic information[1]. As of 1st January 2009 there are more than 469,611
crystal structures available in the CSD. This work is centred on a program
dSNAP which has been developed at the University of Glasgow [10]. dSNAP
is a program that uses statistical methods to group fragments of molecules
into groups that have a similar conformation. This work is aimed at applying
methods to reduce the number of variables required to describe the geometry
of the fragments mined from the CSD.

To this end, the geometric definition employed by dSNAP was investi-
gated. The default definition is total geometries which are made up of all
angles and all distances, including all non-bonded distances and angles. This
geometric definition was investigated in a comparative manner with four
other definitions. There were all angles, all distances, bonded angles and dis-
tances and bonded angles, distances and torsion angles. These comparisons
show that non-bonded information is critical to the formation of groups of
fragments with similar conformations.

The remainder of this work was focused in reducing the number of vari-
ables required to group fragments having similar conformations into distinct
groups. Initially a method was developed to calculate the area of triangles
between three atoms making up the fragment. This was employed system-
atically as a means of reducing the total number of variables required to
describe the geometry of the fragments.

Multivariate statistical methods were also applied with the aim of reduc-
ing the number of variables required to describe the geometry of the frag-
ment in a systematic manner. The methods employed were factor analysis
and sparse principal components analysis. Both of these methods were used
to extract important variables from the original default geometric definition,
total geometries. The extracted variables were then used as input for dSNAP
and were compared with the original output.

Biplots were used to visualise the variables describing the fragments
[28, 25]. Biplots are multivariate analogues to scatter plots and are used
to visualise how the fragments are related to the variables describing them.
Owing to the large number of variables that make up the definition factor
analysis was applied to extract the important variables before the biplot was
calculated. The biplots give an overview of the correlation matrix and using
these plots it is possible to select variables that are influencing the formation
of clusters in dSNAP .
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Chapter 1

Introduction

“An intelligent being cannot treat every object it sees as a unique

entity unlike anything else in the universe. It has to put objects

in categories so that it may apply its hard-won knowledge about

similar objects encountered in the past, to the object in hand”

Steven Pinker, How the Mind Works.1997

The ability to quickly and accurately interpret structural data mined

from the immense numbers of structures currently held within the Cambridge

Structural Database (CSD) [1] is a huge asset to structural chemists. As of

1st January 2009 there are more than 469,611 crystal structures available in

the CSD [22]. dSNAP is a program developed at the University of Glasgow

[10]. This program applies cluster analysis and other statistical analyses to

the information extracted from the CSD. This program sets out to group

specific parts of crystal structures mined from the CSD into groups that are

of similar in conformation. This aim of this research is to investigate methods

that could be applied to the geometric description of the fragment to reduce

the number of variables requited to achieve this.

13



CHAPTER 1. INTRODUCTION 14

1.1 Cluster Analysis

Classification of objects into groups according to their properties has been

ongoing in science for centuries. The work of Aristotle (384 BC – 322 BC),

Theophrastos (372 BC – 287 BC) and Linnaeus (1707–1788) underpinned for

centuries the classification of plants and animals. The work of Mendeleyev

creating the first version of the periodic table of the elements is an early

example of classification in chemistry. On a very basic level the classification

of large datasets into groups that share common features will allow quicker

more accurate evaluation of the data. Moreover it will remove some of the

human error from the process of the interpretation of large volumes of data

while simultaneously uncovering subtle difference or similarities that may

have been overlooked.

Given the relative complexity of the geometry of molecular fragments

mined from the CSD combined with the potential volume of data, it is nec-

essary to use statistical methods to group fragments into clusters of similar

conformations. For this process to progress manually, a method such as bin-

ning the fragments into groups according to the knowledge of the investigator

could be employed. This would be an extremely long and tedious process

that is frought with pitfalls, not least of which is that the binning could be

based on assumption not on observation. The basic premise of structural

prediction and crystallography is that conformations that are found in the

crystalline environment are assumed to be of a low energy conformation [5].

By examining a portion of the molecule that was originally crystallised, there

is a possibility that the conformation of this portion of a molecule will be

affected by the chemical context from the original molecule. These differ-

ences, if present, should give rise to populations of fragments with different

conformations. These are the differences that give rise to the formation of

clusters in dSNAP.

dSNAP is a program that is used in conjunction with the CSD. Ini-

tially the CSD is queried using the program ConQuest[11] created by the

Cambridge Crystallographic Data Centre (CCDC). Typically a portion of a

molecule will be drawn and searched for within conquest. This portion of a
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molecule will be known as the “fragment”. This search will produce a num-

ber of fragments which in this research will be termed “hits” and there may

be many hits within a single molecule of structure in the CSD. The input to

dSNAP is the coordinates of the atoms for each hit in the search. These co-

ordinates are then processed within dSNAP to produce the definition of the

geometry of the fragment. The default definition for the fragment is termed

‘total geometries’. This geometric is made up of all of the distances and all of

the angles between all of the atoms in a fragment including the non-bonded

interactions. A discussion of the merits of this particular geometric definition

takes place in the following chapter. The description of the geometry is now

represented as a list of positive scalar values. These values are then used to

carry out the calculations within dSNAP.

1.2 The dSNAP program and the clustering

methodology.

The geometric data is represented as a matrix with n hits (samples) repre-

sented by p variables. The geometric information mined from the CSD is

converted into a symmetric (n×n) Minkowski distance matrix, ds using the

following formula:

ds
ij =

(

m
∑

k=1

wk | xik − xjk |λ
) 1

λ

(1.1)

where xik and xjk are the kth variables of the ith and jth sample respectively

and wk is a weighting that can be applied to each of the variables. In dSNAP

this is set to one by deafult. λ is a user selectable parameter in dSNAP, the

default value is two which corresponds to a Euclidean distance matrix. A

value of one can be used if a city block distance matrix is desired. The

variables, x are distances and angles between the atoms of the fragment

mined from the CSD. The superscript ‘s’ for the matrix d indicates the

matrix is in subject or stimulus space in order to distinguish it from the

related variable space. The distance matrix, calculated in Equation 1.1,
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is then standardised by dividing each variable by its sample range to give

0 ≤ ds
ij ≤ 1.0 and ds

ij = 1.0. [10] This is done so that each of the variables

make equal contributions. If standardisation was not carried out, the atomic

distances would not be fairly measured as these variables will have much

lower variance than the atomic angles.

Metric multidimensional scaling (MMDS) [18] is used to generate a three-

dimensional Euclidean space in which each of the fragments is represented

as a single point within this space. A simple definition of multidimensional

scaling is a search for a lower dimensional space, usually Euclidean, where

each of the points in the space represents a single fragment. The points

are placed in such a way that the distances between points in the lower

dimentional space are placed to approximate the distances calculated using

Equation 1.1. Using the distance matrix ds, a matrix A(n×n) is constructed.

A = −1

2

(

In − 1

n
ini

′

n

)

Ds

(

In − 1

n
ini

′

n

)

(1.2)

Where In is an (n × n) identity matrix, in is an (n × 1) vector of unities

and Ds is a matrix of squared distances. The eigenvectors of A, ν1, ν2 . . . νn

form a vector V and the corresponding eigenvalues λ1, λ2 . . . λn give a matrix

Λ. A total of p eigenvalues are selected to be positive and the remaining

(n − p) eigenvalues are set to zero. A set of coordinates in p dimensions can

be defined via the matrix X(n×p)

X = V Λ
1

2 (1.3)

in dSNAP p is set to three to give three dimensions and the matrix X

can be used to plot each of the fragments mined from the CSD into the

three-dimensional Euclidian space [10, 18]. An example of the MMDS plot

generated by dSNAP can be seen in Figure 1.1.

For each of the clusters with three or more members, a most representative

sample (MRS) is highlighted in the MMDS plot. The MRS is defined as

the member of a cluster that has the minimum distance to all of the other

members of the cluster. For example, for cluster J containing m patterns,
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Figure 1.1: An example of a MMDS plot from dSNAP. The distance matrix
which is this case is a 51 × 51 matrix has been reduced to a 51 × 3 matrix
using MMDS above. The points that represent the 51 samples have been
plotted into the 3 dimensional space such that the distances in the lower di-
mensional space are fitted in such a manner as to approximate the distances
calculated using Equation 1.1. As a result of this, the proximity of the sam-
ples, or in this case, fragments are an indication of their similarity. The closer
the points are in space the more similar the fragments are in conformation.
The most representative samples are marked with a white cross.
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the most representative sample, i, is defined

min







m
∑

j=1

i,j∈J

d(i, j)/m






(1.4)

Checks in the MMDS calculation are carried out to ensure that the data

can be reduced to three dimensions without losing the essential features of the

data. The first of these is the generation of a distance matrix from the X(n×3)

and the element-by-element comparison with the original distance matrix ds

using a mean of the Pearson [49] and Spearman correlation coefficients [53].

Scree plots and silhouettes [51, 9] are employed to validate the clusters.

Silhouettes are calculated by firstly calculating the dissimilarity coefficient

δij.

δij = dij/d
max
ij (1.5)

If the fragment i belongs to cluster Cr which contains nr structures,

ai =
∑

j∈Cr
j 6=i

δij/(n − 1) (1.6)

and

bi = min
s 6=r

(

∑

j∈Cs

δij/ns

)

(1.7)

The silhouette, hi, for fragment i is then

hi =
bi − ai

max(ai, bi))
(1.8)

Silhouette values are assigned to all members of a cluster and give an es-

timate of the membership for each fragment to that cluster. hi lies between

-1.0 and 1.0 and the results are plotted on a histogram, this allow clear iden-

tification of outliers in a cluster. Each cluster should have a tight silhouette

with few or no outliers and all the values should be greater than 0. Ideal
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Figure 1.2: Example of silhouettes as output by dSNAP. In this example the
silhouettes are well defined and there are no outliers.

clusters have a hi ≥ 0.5.

The scree plot is also used to validate the clustering process. Using prin-

cipal component analysis of the matrix A a set of sorted eigenvalues are

produced and plotted in a scree plot. The scree plot should have a steep

decent with no dramatic changes in gradient. Both of these tools are used

to check the quality of the clusters and the input data.

dSNAP employs a clustering algorithm similar to that described in [26,

8, 7, 9]. The clustering portion of this algorithm is based on hierarchical

cluster analysis. Hierarchical cluster analysis begins with each of the frag-

ments mined from the CSD search as single cluster with a single member.

That is, initially there will be n clusters made up of one fragment. Upon

the completion of this process there will be a single cluster containing n

fragments.

At the beginning of the clustering process the fragments closest together

when defined by the distance matrix calculated using Equation 1.1 are joined
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Figure 1.3: Scree plot as output from dSNAP. This is a good example of
a scree plot, there are no dramatic changes in gradient and the gradient
falls quickly. The change in colour at X14 indicates the 14 components can
explain 95% of the data.

and are regarded are now regarded as a single cluster [44]. Now that two

fragments have been joined into a single cluster there is a problem of defining

how to define the distance between the new cluster and any of the other

fragments or clusters. When two classes or clusters (Ci and Cj) are joined

there is a problem of defining the distance between the newly formed class

Ci ∪ Cj and the other classes Ck. There are a number of different ways of

doing this but the methods employed in dSNAP are described in Table 1.1

and the α, β and γ terms are defined in Table 1.2. The distance between the

new class formed by merging Ci and Cj and any other class Ck is given by

Equation 1.9.

d(Ci∪Cj, Ck) = αid(Ci, Ck)+αid(Cj, Ck)+βd(Ci, Cj)+γ|d(Ci, Ck−d(Cj, Ck)|
(1.9)

where d is the distance between the new class and any other class.

On the completion of cluster analysis, a dendrogram is drawn. A dendro-
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Figure 1.4: An example of a dendrogram generated by dSNAP. The coloured
blocks at the bottom of the plot are the individual samples or fragments in
this case. The y axes is an arbitrary measure of similarity that is specific
to each analysis. In order to give an indication of the similarity between
the fragments the fragments or groups of fragments are joined together using
horizontal lines known a tie bars. The lower on the y axis the tie bar is the
greater the level of similarity between these fragments.

gram is a tree like diagram where each of the fragments are represented as

individual ‘leaves’ at the bottom of the diagram, in the case of the dendro-

gram drawn in dSNAP. The program gives the five options for the generation

of dendrograms. These are: single link, complete link, weighted average link,

centroid and group average link. The group average link method is the de-

fault option in dSNAP[10]. Table 1.1 shows the criteria by which the clusters

are joined along with remarks about the formation of clusters from Everitt

et al [23]. The fragments are then joined together in the dendrogram using

horizontal lines that indicate how similar these clusters are. In the case of

dSNAP the y axis illustrates at what level of similarity these clusters are

joined. This similarity is an indication of the distances between clusters cal-

culated using Equation 1.1and should not be regarded as an absolute measure

of similarity between fragments mined from the CDS.

The number of clusters is defined by the cut level, represented by a move-

able horizontal bar on the dendrogram. The initial position of this horizontal

bar is estimated using two methods, the first eigenanalysis carried out using

the A matrix from the MMDS calculation (Equation (1.2)) and the other is

eigenanalysis of the correlation matrix ρ, corresponding to d:



CHAPTER 1. INTRODUCTION 22

Method Distance between cluster defined

as:

Remarks

Single link method Minimum distance between pair of
objects, one in one cluster, one in
the other

Tends to produce unbalanced and
straggly clusters (’chaining’), espe-
cially in large data sets. Does not take
account of cluster structure.

Complete link method Maximum distance between pair of
objects, one in one cluster, one in
the other

Tends to find compact clusters with
equal diameters (maximum distance
between objects). Does not take ac-
count of cluster structure.

Weighted average link Squared Euclidean distance be-
tween weighted centroids

Assumes points can be represented in
Euclidean space for geometrical inter-
pretation. New group intermediate in
position between merged groups, Sub-
ject to reversal.

Centroid Squared Euclidean distance be-
tween mean vectors (centroids)

Assumes points can be represented in
Euclidean space (for geometrical in-
terpretation). The more numerous of
the two groups clustered dominates the
merged clusters, subject to reversals.

Group average link Average distance between pair of
objects, one in one cluster, one in
the other

Tends to join clusters with small vari-
ance. Intermediate between single and
complete linkage. Takes account of
cluster structure. Relatively robust.

Table 1.1: Description of the clustering methods available in dSNAP. [23]

ρ = 2ds − I (1.10)

where I is the identity matrix and ds is the distance matrix calculated using

Equation 1.1. In both cases the eigenvalues of the relevant matrix are sorted

in descending order. Once 95% of the variability is accounted for, the number

of eigenvalues is selected and this is used to define the number of clusters.

Since two methods are used, the results are averaged. There is no formally

correct mathematical method to calculate the position of the cut level in

cluster analysis; as a result the position of the cut level is only an estimate

but the user interface used by dSNAP allows the user to change the cut

level easily and accurately to best represent the underlying chemistry of the

fragment being investigated [10].

The tools used in dSNAP most frequently are the MMDS plot (Figure 1.1)

and the dendrogram (Figure 1.4). Both of these plots show a representation

of the distance matrix. In the MMDS plot, these differences are illustrated

as the difference in distance between the spheres in the plot. Spheres in close
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Method αi β γ
Single linkage 1

2
0 −1

2

Complete linkage 1
2

0 1
2

Average link ni(ni + nj) 0 0
Weighted average link 1

2
0 0

Centroid ni/(ni + nj) −ninj/(ni + nj)
2 0

Sum of squares (ni + nk/(ni + nj + nk) −nk/(ni + nj + nk) 0

Table 1.2: Parameters for Equation 1.9 taken from Everitt et al [23]

proximity represent fragments that are closely related in structure. Much

in the same way dendrograms illustrate the similarity between fragments or

indeed clusters by the height of the tie bar joining them together. A lower

tie bar indicates a greater degree of similarity. These tools are used in unison

to explore the relationship between the structures of the fragments. The 3D

plot generated by metric multidimensional scaling gives a representation of

the structure of the data, such as clusters that are merging or are actually

continuous. This information is also displayed in the dendrogram but can

be difficult to spot. The advantage that the dendrogram has is that a high

dimensional dataset is displayed in a two dimensional manner and as such is

more applicable to being used as illustrations. This is illustrated in Figure

1.5.

Once the relationship between fragments has been established, it is then

necessary to examine the fragments and the variables describing the frag-

ments that have formed the clusters, to understand what conformation the

fragments are in.

1.3 Fragment Viewer

There is also a viewer that are allows individual fragments to be overlaid. In

this context there are n fragments with precisely the same number of points.

This situation lends itself well to Procrustes analysis[18, 27, 34]. Procrustes

analysis is a process where the coordinates of, in this case a molecular frag-

ment, are rotated, translated, reflect and dilated in such a way that the

fragment’s coordinates are minimised in a least squared sense with another
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1

2

3

Figure 1.5: An illustration of how fragments are joined in the dendrogram
during cluster analysis with an accompanying 2 dimensional MMDS plot.
Initially all of the fragments are regarded as being unique and unrelated. As
cluster analysis progresses the fragments that are closest together according
to the distance matrix calculated using Equation 1.1 are joined. This is rep-
resented as point one in the above figure. At point two all of the fragments
have been joined together according to their distance and therefore their sim-
ilarity. In the dendrograms generated by dSNAP the lower the tie bar the
closer the fragments are in distance and therefor similarity. By examining
the MMDS plot to the right of the figure the relationship between the height
of the tie bars and the distance between points representing samples is il-
lustrated. Finally, at point three a cut level was applied to the dendrogram
where all of the cluster of fragments below this level are regarded as being a
single group and are coloured accordingly.
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fragment. Let X be a matrix represent the coordinates of the first fragment

and the matrix Y represent the coordinates of the second fragment. The

sum of squared distance between the points is given below

R2 =
r=1
∑

n

(yr − xr)
T (yr − xr) (1.11)

where X = [x1, ,xn]T and Y = [yr, ,yn]T and xr and yr are the coordinate

vectors of the rth point within each of the fragments.

The vector coordinates xr are modified using the equation below to pro-

duce the vector coordinates x′
r.

x′
r = ρATxr + b (1.12)

where matrix A is orthogonal giving a rotation and potentially a reflec-

tion, vector b is a rigid translation vector and ρ is the dilation. The appli-

cation of this formula seeks to minimise the new sum of squared distances

between points

R2 =
r=1
∑

n

(yr − ρATxr − b)T (yr − ρATxr − b) (1.13)

The fragment viewer implemented within dSNAP does not use the dila-

tion portion of Procrusties analysis as this may mask any systematic differ-

ences in bond length which could be of interest. These is also a method that

allows the user to select specific atoms such that Procrusties analysis is only

carried out on the selected atoms. This is especially useful when the user

would like to emphasise specific differences in conformation. An example if

the output from the fragment viewer can be seen in Figure 1.6.

1.4 Variable Space

dSNAP allows the variables describing the fragments to be examined. This

feature of dSNAP uses what is known as the variables space. The angles

and distances, of which there are m variables, are subjected to a Pearson
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Figure 1.6: Output from the fragment viewer. In this example fragments
have been selected from the dendrogram in Figure 1.4 and have been overlaid.
Procrustes had been applied to the left hand atoms in the fragments while
the remaining atoms are are not overlaid. This feature allows specific features
to be exaggerated.

correlation coefficient with every other variable in order to generate a (m ×
m) correlation matrix. From this correlation matrix, a distance matrix is

calculated using Equation 1.10. Using these matrices a dendrograms and

MMDS plot are generated in exactly the same manner as when the fragments

mined from the CSD are clustered.

In appearance these plots are similar to those generated when fragments

are being compared but these results are interpreted differently (Figures 1.4

and 1.1) [10]. The major difference is that instead of clustering the math-

ematical distances between fragments, the correlation between variables is

clustered. In these plots the variables that are closely related have a high

correlation coefficient. That is to say, the dendrogram variables which are

highly correlated will be joined by lower tie bars and in the MMDS plot the

spheres representing the variables will be closer together. Unfortunately, as

a rule, there is little relationship between high correlation between variables

and an explanation for clustering. This proves to be a problem because the

variables that are highly correlated are not necessarily the ones that distin-

guish what is causing clusters of fragments to form. With reference to Figure

1.7, it is obvious that no clear universal reason for the formation of all of the
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Figure 1.7: A scatterplot chosen to illustrate that a high correlation does not
necessary give a reason for the formation of clusters. In this plot the colour
of a point was taken from the dendrogram calculated within dSNAP. The
plot indicates that there is no clear distinction between the clusters indicated
by the different colours of the points within this plot.

clusters can be obtained using these variables alone. While it is unreason-

able to expect that a single pair of variables will explain the reasons behind

the formation of clusters, it is apparent that there is no direct relationship

between correlation and useful justification to formation of clusters. In part,

this research will aim to identify variables or groups of variables that can be

used to justify the formation of clusters.

In spite of this situation, there must be variables that are causing the

clusters to form in subjective space. Subjective space is where the fragments

mined from the CSD are being compared to one another opposed to variables

space where the variables are being compared. Finding variables that can

justify the formation of clusters would be useful to analyse the clustering

in dSNAP. One of the problems is that there are so many variables defined

by dSNAP. Using the standard definition of total geometries the number of

variables is defined as:
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N(bonds) =
n

2
(n − 1) (1.14)

N(angles) =
n

2
(n − 1)(n − 2) (1.15)

where n is the number of atoms. The number of variables increases to the

order n3 with 20 atoms being the technical limitation of dSNAP where the

geometry of the fragments are described by 3610 variables. The high number

of variables describing a fragment of 20 atoms results in approximately 13

million scatterplots, any number of which could yield information critical to

the justification of the formation of clusters. It is therefore necessary to have

tools that aid the detection of these key variables.

1.5 Wider applications of cluster analysis in

molecular sciences

Cluster analysis has many applications in the design of potential drug targets

and in molecular biology at large. As a consequence of industrial scale DNA

sequencing projects such as the Human Genome Project [17] there is now a

huge volume of genomic DNA sequence data across many species. This large

volume of data has resulted in the development of many different analytical

tools to aid the understanding of these data. One such example is the de-

velopment of CLUSTAL [33, 39] which is a tool to align sequences of amino

acids or nucleotides according to their similarities. Sequences of amino acids

or nucleotides are aligned in CLUSTAL using a substitution matrix such as

the BLOSUM62 [32] matrix where a score is given for a substitution of dif-

ferent amino acids such that there is a low score for similar amino acids and

higher scores for dissimilar amino acids. There are also penalties for intro-

ducing and extending gaps in sequences. When combined in the algorithm

produces a pair of aligned sequences. These sequences are then placed onto

guide trees that are calculated according to the evolutionary distances in the

dataset [57]. The ultimate aim is similar to the aims of this research. That
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is, to group objects together according to their similarity such that com-

mon features can be explored. In the context of sequence alignment common

domains in the amino acid sequence of proteins between species can be exam-

ined, for instance. The volume of data that can easily be mined from various

sources means that sequence alignment tools are essential for the exploration

of sequence data.

Cluster analysis also has a useful application in the identification of com-

pounds that may have therapeutic value. Many systematic searches for drug

target begin with structural information about the target molecule which will

typically be a protein. This information can be found using macromolecular

crystallography. Once a target binding site is established the search for a

molecule that can interact with this site begins. This process can be greatly

aided if there is already a compound of known activity interacting with the

target protein.

At this point knowledge of the interactions that characterise a pharma-

cophore is useful and where study of the interactions that make up a small

molecule crystal structure is extremely useful [48]. The use of the information

contained in the CSD means that information about molecular interactions

such as hydrogen bonds can be searched for and examined in detail. This

information can then be applied to designing molecules that may well bind

to the target site of a protein molecule.

Pascard [48] gives and overview of the analysis that has been carried out

examining interactions which are common in protein-substrate interaction.

This was carried out by examining the interactions and plotting histograms

of the polar coordinates. These histograms were then used to characterise

the interaction. In this group, dSNAP has been used to classify a number of

intermolecular interactions using total geometries to cluster fragments into

groups with common orientation of the interaction [13, 14, 47].

Once a target has been identified there are also other uses of cluster anal-

ysis in the context of drug design. One such example is the use of cluster

analysis to aid in the interpretation of quantitative structure-activity rela-

tionship between a sample population of drug targets. This method involves

combining a number of physical measurements of the compounds in question,
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such as molecular weight. Cluster analysis can then be used to organise the

compounds into groups from which compounds with desirable characteristics

can then be extracted [30].

1.5.1 Bayesian Methods

While cluster analysis and the other methods used in dSNAP no not require

any prior knowledge of the potential conformations of fragment, there are

model based statistical methods which can be applied to the problem of clas-

sifying molecular fragments. The work of Perez et al [50] utilised Bayesian

methods to group fragments into groups of similar conformation where the

fragment were ring structures and were defined using torsion angles. This

work was approached from two directions: Using a priori knowledge of the

fragment under investigation to classify the fragments and using the fre-

quency of occurrence as well as the standard deviation of the measurement

to classify the population of fragments. These approaches were known as

the ‘Classification method’ and ‘Full Bayesian analysis method’ respectively.

These methods were used to classify a sample of eight membered rings into

groups of similar conformation. Initially, a priori knowledge was used to

construct an ideal range of conformations and the probability of a fragment

being in a specific conformation was calculated and used to classify which

conformation the fragment belonged to. Interestingly, this method could

also be used to classify fragments that did not necessarily fall into a discrete

category. The full Bayesian method generates histograms of the number

of preferred conformations and then can calculate the probability of a spe-

cific fragment being in one or more conformations. This work was extended

by Kessler et al [38] to examine cyclic copper complexes where Bayesian

methods were applied to data mined from the CSD. This classification was

proceeded by the application of cluster analysis with the aim of easing the

task of deciding the number of clusters. This research also used molecular

mechanics calculations to understand the interconversion pathways between

conformations.
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1.6 Previous Work

The body of work that immediately preceded this thesis is the work of Allen

and Doyle [4, 2, 3, 6] where fragments that were mined from the CSD were

clustered using a variety of clustering algorithms such as single linked, com-

plete linkage and Jarvis-Partick. [23, 35] The geometry of the fragments in

this research was defined using torsion angles. The authors also used prin-

cipal components analysis to aid in the conformational justification for the

formation of clusters. The fragments used in this research were six member

carbon rings the symmetry of which required the fragment to be renumbered

in a consistent manner. The research of Murray-Rust and Raftery [45, 46]

used a least squares method where the difference is calculated by the sum of

the squared differences between the Cartesian coordinates of the molecules.

More recently Weng et al [59] used similar methodologies to Murray-Rust and

Raffery to cluster fragments into groups. In both of these papers distance

matrices were calculated and cluster analysis was applied with the aim of

forming groups of fragments with similar conformations. This was achieved

by utilising different clustering algorithms to much the same effect as in this

research. dSNAP primarily differs from these methods by the definition by

which the fragments are defined in the program. In previous research by

Allen et al [2, 3, 6, 4] the fragments were defined by torsion angles. Since

torsion angles are circular measures and are signed (+ or -) particular atten-

tion to this was required on the part of the researchers. The other method

used by Murray-Rust and Raftery [45, 46] and Weng et al [59] used the sum

of squared difference between atomic positions to describe the conformation

of the fragments. This definition gives a good overview of the difference be-

tween fragments but using this definition for the geometry of the fragments

does not allow investigation into the reasons behind the formation of clus-

ters using the variables. This research aims to use a geometric definition to

overcome these problems. This definition must be automatically applied to

any fragment without any prior knowledge of the fragment’s expected con-

formation while still allowing the possibility of examining the variables with

the intention of understanding the formation of clusters.
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In the following chapters there will be an investigation into the different

geometric descriptions that can be applied to the fragments mined from the

CSD. Following this there is an attempt to reducing the number of variables

by describing groups of variables as the area of a triangle described by these

variables. The remainder of this thesis will focus on reducing the number

of variables by the application of multivariate statistical methods which will

attempt to systematically reduce the number of variables necessary to accu-

rately describe the conformation of the fragments. These methods are factor

analysis [52] and sparse principal components analysis [21]. There is also

a chapter that will examine the application of biplots to dSNAP [28, 29].

Biplots are a means to examine the fragments and the variables describing

them in a single plot.



Chapter 2

Assessing Total Geometries

2.1 Introduction

dSNAP is a program which will organise a series of fragments into groups

of fragments which have similar conformations. These fragments are a motif

of atoms that are searched for in the Cambridge Structural Database (CSD)

[1]. When the motif is found within the database, the coordinates of these

motifs are then output and used as the input information for dSNAP. This

should then give a population of fragments that have been derived from their

original molecules such that the fragments will have different conformations

or geometries according to the chemical context from which the fragment

was derived.

It is therefore critical that the manner in which the geometries of the frag-

ments under investigation are defined must be robust, unbiased and compre-

hensive. In other words, this definition has to be universally applicable to all

fragments regardless of the chemical nature of the fragment. The definition

should be fully automatic and with no need for prior knowledge from the

user as this may introduce bias which will adversely affect the analysis. It is

also essential that the definition of the fragment will consistently allow the

clustering algorithm to run while still leaving the burden of interpretation on

the user. This is fundamental to the functioning of a program designed for a

user with little or no experience in statistics. Currently, the default definition

33
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for fragments is termed ‘total geometries’. This definition is defined as all

angles and all distances between the atoms of the fragment. This includes

non-bonded angles and distances as well as bonded angles and distances.

The most obvious downside of this definition is that the number of variables

will increase significantly as the number of atoms increases. The relationship

can be explained using the Equation 1.14. The purpose of this chapter is to

investigate different geometric definitions of the fragments of molecules with

the aim of uncovering the optimum method of describing the geometry of

fragments.

Within this section there will be a number of definitions examined and

illustrated with examples. The different definitions which are to be explored

are:

• All distances and angles (total geometries)

• All angles

• All distances

• Bonded angles and distances

• Bonded angles, distances and torsion angles

Where the object of this exercise is to find the optimum method of describing

the geometry of the fragment being investigated.

As described in the previous chapter, dSNAP uses cluster analysis and

multidimensional scaling to group or cluster fragments which have a similar

shape. The results are then displayed in a manner that allows a user to

quickly identify these groups and using visualisation tools, assign chemical

meaning to these groups. Initially the fragments will be examined using to-

tal geometries as a benchmark. The angle and distance components of total

geometries are then examined independently. Finally the bonded variables

and the bonded variables with backbone torsions are examined. The torsion

angles have been added to the bonded variables in order to distinguish be-

tween the rotational conformational changes of a fragment. For example, the

relative position of functional groups at either end of a single bond will not

be detected by bonded variables alone.
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2.1.1 Nature of the variables

The atomic nature of the input data combined with the manner in which the

geometry of the fragments is derived means that there can be high correla-

tions between variables. An illustration of this point can be seen in Figure

2.1 where two angles are represented in a schematic form in order to demon-

strate why the variables can have such a high correlation. There are only

two variables in this example but it is possible to predict that most of the

variables will take values to reflect this change in conformation. It must be

noted that there are also variables that will not be altered in any significant

way by the conformational change illustrated in Figure 2.1. This is the basis

of the redundancy of the data. It also illustrates why a single variable does

not uniquely describe a change in conformation. This is the result of the fact

that each atom’s position is described by multiple variables within the frag-

ment. Also, a single variable is describing the relative position of at least two

atoms. While this is a problem when trying to identify geometric changes

of the fragment from changes in variables, cluster analysis is well suited to

redundant datasets since the generation of the distance matrix is the result

of a comparison between all of the variables describing each fragment with

all of the other fragments (Equation 1.1). Since all fragments are compared

with all others, the redundancy does not compromise the integrity of the

calculation. This means that a robust definition that can accurately describe

the geometry of the fragments may be advantageous over one that uniquely

describes the geometry of a fragment in this particular context. It could be

an advantage to choose a robust definition to describe the geometry of the

fragments and accept the increased computational cost of using a redundant

definition of the fragments.

2.2 Model Examples

2.2.1 3-chlorobut-2-ene-thiolate

This fragment is a simple example that has discrete conformational changes

that can be easily detected. This change is a cis/trans change around the
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Fragment 3-chlorobut-2-ene-thiolate 3-aminobutan-2-ol Pentan-2-one

Figure
CSD version 5.27(November 2005) 5.27(November 2005) 5.29(November 2007)+Updates (Jan 08)
Restrict info No Refcode restriction No Refcode restriction No Refcode restriction
Filters None Organics only 3D coordinates determined, Not disordered,

Not polymorphic, No powder structures
R ≤ 0.05, No errors
No ions, Only Organics

Bond Restrictions None None Bonds 1-2,2-3,3-4,4-5 acyclic
Atom Restrictions None Nitrogen restricted to 3 bonded atoms None

Oxygen restricted to 2 bonded atoms
Number of fragments 41 58 113

Table 2.1: Model examples of fragments that will be used thought this thesis.
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t

t

t

Value

Figure 2.1: A figure demonstrating how two different variables can be cor-
related in a data set. In this illustration there is a hypothetical fragment
described by two related variables. Both of the variables are angles that are
measuring the relationship between the bond on the left hand side of the
fragment and the atom at the far right. This figure shows how the values
of these two variables will change during a continuous rotation around t and
that they are negatively correlated.

carbon-carbon double bond. This dataset will provide a straightforward case

which will allow different geometric definitions of this fragment to be ex-

plored and the results of the cluster analysis to be justified from a chemical

perspective. Since this fragment has a double bond at its centre it should

have a similar range of conformations to the fragment difluoroalkene. The

conformation of this fragment is described in previous work described by

this group[10]. In summary, there are two major conformational changes: A

cis/trans conformation about the double bond, where the carbon atoms are

either on the same side as one another or on opposite sides of the double

bond; and a restriction in the bonded angles as the chemical context of the

fragment changes. For example, if the fragment was derived from a five atom

ring, the bonded angles will be smaller where the atoms form part of this

ring. The inclusion of a sulfur atom in this fragment means that this atom

can bond to other atoms within the molecule which the fragments are derived

from. This gives greater conformational possibilities than the difluoroalkene

in [10].

Table 2.2 gives a list of occurrences and summary of possible conforma-
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Fragment Name cis/trans Constrained backbone Sulfur bonded
AFESIO cis No No
BELWOE trans No No
BELWUK trans No No
COQVIN cis Yes Yes
DATWIF cis Yes Yes
DATWIF 02 cis Yes Yes
EDEZAO trans Yes Yes
FAZVOS cis Yes No
FAZVOS 02 cis Yes No
FEBSIP trans Yes Yes
FUMBAQ trans Yes Yes
FUMBEQ10 trans Yes Yes
GEPVUS trans Yes Yes
GEPVUS 02 trans Yes Yes
GILVIH cis No Yes
HAWXUY trans Yes Yes
HAWYAF trans Yes Yes
HOQBEU cis Yes Yes
LAXZAM cis Yes Yes
LAXZEQ cis Yes Yes
LAXZIU cis Yes Yes
LAXZOA cis Yes Yes
LIJDEO cis No No
MAYTOW cis Yes Yes
MAYTOW 02 cis Yes Yes
MAYVAC cis Yes Yes
MOSTIX cis No Yes
MOSTIX01 cis No Yes
MOSTOD cis No Yes
MOSTUJ cis No Yes
NAWDEV trans Yes Yes
NAWDEV 02 trans Yes Yes
NECZIE cis No Yes
NECZUQ cis No Yes
PIQPOU trans Yes Yes
PIQPOU 02 trans Yes Yes
ROFHUP cis Yes Yes
SEYPIW trans Yes Yes
SEYPOC trans Yes Yes
SUNPOG trans No No
VAPNAB trans No Yes
VEJWOW trans Yes Yes
VUJCUY trans Yes Yes
VUJCUY10 trans Yes Yes
WIVFOW cis No Yes
WIVFOW 02 cis No Yes
XOTJAR cis Yes Yes
XOTJEV trans No Yes
YAPWIW cis No Yes
YAPWOC cis No Yes
ZIDWAC cis Yes No

Table 2.2: Table of occurrences of the fragment: 3-chlorobut-2-ene-thiolate.

The first column indicates the fragment reference in the CSD. The second

column indicates whether the fragment is in cis or trans conformation. The

third column indicates whether the atoms on the periphery of the fragment

are constrained in some manner, such as in a five atom ring structure. The

final column indicates if the sulfur atom is constrained within the original

molecule or bonded to a hydrogen.
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tions of the fragment 3-chlorobut-2-ene-thiolate based upon the assumptions

made above. Since there are broadly three different possible conformations

and there are two different options for each conformation, then it might be

expected that there would be nine different combinations of conformations

possible within these data. The fragments were analyzed by viewing frag-

ments in Mercury [40] and assigning cis/trans and yes/no to either of the

two other projected conformational changes predicted.

There are a number of problems with this approach. Principally, even

before any structural analysis has taken place the user has a preconceived

notion of what they would expect from the analysis. There is every possi-

bility that assumptions made at this point may result in a researcher seeing

what they want to see rather than what is actually there. Also, there is no

geometric information gathered from this approach. While this may not be a

serous problem with a simple example such as this, as the complexity of the

fragment increases with the resulting increase in degrees of freedom within

a large fragment these assumptions become more difficult to define. This

is where a robust and universal definition of the geometry of the fragment

becomes essential.

2.2.1.1 Total Geometries

The fragment 3-chlorobut-2-ene-thiolate was initially defined by total geome-

tries and the results of these analysis are displayed in the Figure 2.2. In this

figure the clusters are named A-G from left to right and the colours are

carried from the dendrogram to the MMDS plot in the right of the figure.

In Figure 2.2, the clusters A-C are in the trans conformation and the

fragments D-F are in the cis conformation. This is the biggest single confor-

mational difference in these data. This is shown by the early separation of

these fragments where the cut level joining these clusters has a low level of

similarity. Within the fragments that are in trans conformation (A-C), the

fragments that are in cluster C (green) are part of a five member ring system

where the sulfur is part of this system. The integration into a five membered

ring system results in the backbone of the fragment being constrained by the
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Figure 2.2: Figures indicating the differences in conformation in the fragment
3-chlorobut-2-ene-thiolate. The clusters are named A-G from left to right and
the colours in the dendrogram are carried to the MMDS plot (right). The
fragment was defined using total geometries.

chemical context that the fragment was derived from. The remaining trans

fragments are either in a six member ring or in the backbone of the molecule.

There is very little difference in conformation between clusters A and B. By

examining the fragments in the fragment viewer, it appears that there is

a minor twist around the double bond at the center of the fragment. The

relative difference in structure between the two groups of fragments is small

which is reflected in the close proximity of the fragments in the MMDS plot.

The fragments that are in cis conformation have a similar distribution of

conformations: The fragments that are in clusters D and E have the carbon

backbone of the fragment in a five member ring system with the resulting

restriction in bond angle. The difference in structure between clusters D and

E is that the sulfur atom in cluster D is bound to a carbon atom in the

molecule where the fragment was derived from. The fragments in cluster E

have the sulfur atom bound to either another sulfur or a nitrogen atom. The

chemical context of these fragments means that the bond angle around the

sulfur atom has been altered in response to the environment that the frag-

ment was derived from. The single fragment in cluster F is in an 8 member

ring system while the fragments of cluster G have the carbon backbone of

the fragment constrained in a 6 member ring system.

By viewing the fragments in Figure 2.3 it becomes clear what the different
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Figure 2.3: The overlay of the fragments 3-chlorobut-2-ene-thiolate. The
fragments on the left are in trans conformation while the fragments on the
right are in cis conformation. The fragments have been projected in such
a way that the difference in bonded angles can easily been viewed for both
conformations.

conformations of the fragments are. This combined with the dendrogram and

MMDS plot in Figure 2.2 which displays the relationship in geometry between

the fragments, makes it possible to very quickly determine what conformation

the fragments are in, as well as getting an overview of the demography of

the population. For instance it is possible to infer that approximately 50%

of the population is in trans conformation and in this example a fragment in

trans conformation is most likely to be found within a five membered ring

system.

2.2.1.2 Clustering with angles only

The same analysis was carried out where the geometry of the fragments were

defined by all angles only. These angles were all of the bonded and non-

bonded angles. The results showed the fragments have been grouped into

clusters that are similar to those formed when the fragments were defined

with total geometries. That is, the fragments that are populating the groups

when the geometry was defined with angles only are the same as those popu-

lating the groups when the fragments were defined by total geometries. The

formation of similar clusters indicates that the distance matrix calculated
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using Equation 1.1 was similar to the distance matrix that was calculated

with total geometries. There is a single fragment that is in a different clus-

ter. This fragment is SUNPOG which is found in the red cluster when the

fragment was defined with angles only and in the yellow cluster when the

fragment was defined by total geometries. When the fragments from both

clusters are examined there is very little difference between the conformations

of the fragment that populate these clusters. It could therefore be regarded

as a minor rearrangement in classification of the fragments within these clus-

ters. Within the remaining clusters there are only minor difference in the

relationship between fragments. For example, the green cluster when the

fragments are defined by both total geometries and angles only, contain the

same fragments in both cases. By examining the fragments in Figure 2.3 the

difference in conformation of the green fragments are minor. There was one

notable difference however; all of the fragments have a greater similarity and

this change was manifested by the dendrogram being ‘shorter’ than that of

the dendrogram calculated using the distance matrix calculated using total

geometries. The shorter dendrogram indicates that the fragments appear to

have similarity that the same fragments defined by total geometries. This

indicates that overall the fragments appear to have greater similarity than

when the fragments were defined by total geometries. Comparing the MMDS

plots in Figures 2.2 and 2.4. Both of the plots show that the fragments are

grouped into isolated groups. This shows that either of these definitions can

adequately describe the conformations of the fragments in this case.

2.2.1.3 Clustering with distances only

When cluster analysis was applied to distances only, the reverse was seen. In

the above example when the fragments were defined with angles only, these

fragments appeared to be have greater similarity. In the case of distances

only the fragments appear to be less similar. The dendrogram was ‘taller’

indicating that the fragments were less similar to each other than when total

geometries were clustered. Examining clusters A, B and C when the fragment

was defined by all distances only, contain the same fragments that make up
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Figure 2.4: Dendrogram and MMDS plot clustered using all angles only for
the fragment 3-chlorobut-2-ene-thiolate.

clusters A and B when the fragments were defined by total geometries. As

stated previously, these fragments are quite similar in conformation. This can

be seen in Figure 2.3. There has been a merging of the fragment LAXZOA

into the orange striped cluster and the fragment AFESIO has been formed

into a separate cluster. When these fragments are examined in the fragment

viewer there is very little difference between the fragments in these clusters.

This indicates that the distance matrix calculated when the fragment was

defined with distances only is similar to the distance matrix calculated when

the fragment was defined by total geometries. When the MMDS plots are

compared between Figures 2.2 and 2.5, it shows that the groups are still

isolated from one another indicating that the fragments in these groups share

similar conformations. It should be noted that the clusters in Figure 2.5 are

more diffuse than when the geometry of the fragment was defined by total

geometries. This could be symptomatic of the fragments appearing to be

more dissimilar when the fragments were defined using distances only.

2.2.1.4 Bonded distances and angles only

Cluster analysis was performed on the same fragment with just the bonded

distance and bonded angles defined. The dendrogram generated from the

distance matrix was radically different to that of the previous three analy-
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Figure 2.5: Dendrogram and MMDS plot clustered using all distances only
for the fragment 3-chlorobut-2-ene-thiolate.

ses. The dendrogram can be seen in Figure 2.6. There was no distinction

between cis and trans conformation and there is considerable reshuffling of

the fragments both within clusters and within the sample data itself. An

interesting observation is that using this definition there are actually clusters

of fragments that have an underlying structural basis. The fragments appear

to have been grouped into clusters according to the constraints placed around

the double bond, that is the fragments that are found in a five membered

ring system are found within the same cluster. While this is useful there

is still only limited conformational information retrieved by this analysis.

The major conformational changes have not been detected by this geomet-

ric definition. The MMDS plot in Figure 2.6 shows that the clusters are

quite diffuse. This suggests that using this definition the structural changes

detected using this definition has not been accurately described. Ideally a

single cluster of fragments in the MMDS plot should be grouped together in

close proximity. It would be expected that for a fragment with a discrete

conformations accurately described should form isolated continuous clusters

in the MMDS plot.
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Figure 2.6: Dendrogram and MMDS plot clustered using bonded angles and
bonded distances only for the fragment 3-chlorobut-2-ene-thiolate.

2.2.1.5 Bonded distances, angles and backbone torsion angle

The dendrogram in Figure 2.7 was generated when the fragment was defined

by bonded angles and distances and a single torsion angle defining the carbon

backbone. The addition of this torsion angle was intended to differentiate be-

tween the different conformations, particularly the cis/trans conformational

change. When the results were examined it appeared that the fragments

have formed clusters that contain fragments with the same conformation.

This is illustrated in Figure 2.8. This figure shows the fragments that have

been separated into cis and trans where the fragments have been coloured

according the colour of the fragments in Figure 2.7. By examining the frag-

ments it should be noted that where the backbone of the fragment had been

constrained these fragments have formed clusters. By examining the MMDS

plot it is possible to see that these clusters are isolated but are more dif-

fuse than when the fragment was defined by total geometries. Ideally the

fragments should be in isolated and continuous clusters.

2.2.2 3-aminobutan-2-ol

The next fragment that was studied was 3-aminobutan-2-ol and the search

criteria is described in Table 2.1. There are two different major conforma-
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Figure 2.7: Dendrogram and MMDS plot clustered using bonded angles,
bonded distances and carbon backbone torsion angle for the fragment 3-
chlorobut-2-ene-thiolate.

tional changes in this dataset. These are illustrated in Figure 2.10 and consist

of a rotational component and a restriction in the bonded angles as a result

of the chemical context that the fragment was derived from. In Figure 2.10,

the hydrogen atoms are not illustrated but are specified in the search and

as a result the fragments have two chiral centres. Since the central bond in

the fragment is a single (σ) bond there will be the typical steric hindrance

associated with two sp3 carbon systems interacting with each other. That

is that the staggered conformation is more energetically favourable than

the eclipsed conformation and the anti conformation is more energetically

favourable than the gauche conformation (Figure 2.9). While this may be

the case from a molecular perspective, from a fragment perspective, the con-

formations that each fragment can undertake will vary to a greater degree

owing to the context that the fragment finds itself in. That is, the fragment

could be in an energetically favourable conformation if that is energetically

favourable for the entire molecule.

2.2.2.1 Total Geometries

Initially the fragment was defined by total geometries. This definition com-

prises of all angles and distances including both the bonded and non bonded
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Figure 2.8: Fragment overlay of 3-chlorobut-2-ene-thiolate where the frag-
ment was defined by bonded angles, bonded distances and backbone torsion.
The fragments have been separated into cis on the right and trans on the
right. Below is the cluster H where the fragments are not in a typical con-
formation around a double bond.

Figure 2.9: An example of Newman projections. The left hand projection is
in the anti conformation, the center projection is in the gauche conformation.
Both of these conformations are staggered while the right hand projection is
in eclipsed position.
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Figure 2.10: Predicted conformations of the fragment 3-aminobutan-2-ol.
Top is an indication of the rotational change around the central bond. Bot-
tom is an illustration of the constraint that can be placed on the backbone
of the fragment by the origional molecule from where the fragment was de-
rived. Also there are two chiral centres which could be found in S* and R*
conformation.
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variables. These variables are all scalar values. This results in the analysis

being unable to distinguish between fragments of different absolute chiral-

ity. [10, 15] These fragments will fall into the same cluster. As discussed

in Collins et al [15] the absolute configuration may be disregarded in some

cases. It is also the case that the absolute configuration of the fragments may

not have been determined in the CSD [24]. Using the CSD, it is possible to

select a specific configuration but this can reduce the number of hits in the

database[15]. In this case the absolute configuration has been ignored. An

example of this are the fragments in cluster A (red) in Figure 2.11. Within

this cluster the relative chirality of the fragments appear to be S*-S* and R*-

R* respectively. It should be noted that it is possible to detect the relative

differences between chiral centres. When exact enantiomers, where 2 frag-

ments are identical mirror images of each other, are examined the distances

between atoms are equal. Thus, scalar variables will be unable to differenti-

ate between exact enantiomers. This means that the rotational conformation

about the central bond is the most important change in these data. The di-

agram in Figure 2.11 gives an illustration of the rotational conformational of

the fragments that are found in each of the clusters.

The fragments have been clearly clustered into groups that have different

conformations. The rotational conformation of these data is illustrated by

the Newman projections in Figure 2.11. The fragments in clusters B and C

have the same conformation but the fragments that have been grouped into

cluster B are constrained within a five atom ring structure. This indicates

that the conformations of these fragments are accurately defined by this

definition. That is, the clusters of fragments generated using this definition

are discrete in conformations. This is best illustrated using the MMDS plot

in Figure 2.12 where all of the fragments are in isolated clusters with the sole

exception being the fragment OJUYUN (Orange striped) which has a very

similar conformation to the fragments in the green cluster (C) but is distinct

since the all of the bond lengths appear to be shorter.
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Figure 2.11: Dendrogram and Newman projections of the fragment 3-
aminobutan-2-ol. The geometry of the fragments in this dendrogram have
been defined by total geometries. The Newman projections represent the
conformation of the fragment within that cluster.
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Figure 2.12: MMDS plot clustered using total geometries for the fragment
3-aminobutan-ol.

Figure 2.13: Dendrogram and MMDS plot clustered using all angles only for
the fragment 3aminobutan-2-ol. The cut level was set at 0.814
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Cluster name Cluster equivalents
(Total Geometries) (Angles)

A A
B B
C C*
D D*
E G
F F
G E
H H
I I

Table 2.3: Cluster equivalents; clusters are compared between those frag-
ments defined by angles only and those determined by total geometries.
*Denotes minor rearrangement within the cluster

2.2.2.2 Angles only

When the geometry of the fragments were defined by angles only, the den-

drogram and MMDS in Figure 2.13 was generated by dSNAP. This output

was examined and the population of the clusters was compared with the

clusters formed when the fragments were defined by total geometries. The

comparisons are tabulated in Table 2.3. This table indicates that when the

fragment was defined by angles only, the fragments were grouped into the

same clusters as when the fragment was defined by total geometries. The

fragments in these clusters differ only by the manner in which the fragments

are related. This shows that the definition of all angles only has described the

conformation extremely well. Even the fragment OJUYUN (Orange striped)

which is an unusual conformation where the bond lengths are shorter then

the fragments in a similar rotational conformation (Cluster C) is in an iso-

lated cluster. The differences in the tie bars between the dendrograms where

the fragments were defined by total geometries and all angles only can be ex-

plained by minor differences in the distance matrix. It should be noted that

the classification of the fragments was not effected by this minor difference

in distance matrix.
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Figure 2.14: Dendrogram and MMDS plot clustered using all distances only
for the fragment 3-aminobutan-2-ol.

2.2.2.3 Distances only

In this example, the geometry of the fragment was defined by all distances

only and the output is shown in Figure 2.14. There is a strong resemblance

between the dendrogram in this figure and the one in Figure 2.11. This

similarity indicates that when cluster analysis was carried out with these

data, the definition used in this example has accurately described the shape

of the fragment. Table 2.4 gives a comparison between the clusters that

have formed when the fragments were defined by total geometries and by

atomic distances only. As can be seen in Table 2.4 some of the clusters have

been split. An example of this is the green cluster (cluster C) where the

fragment is defined using total geometries has been split into two clusters

(cyan and blue, clusters D and E) when the fragment was defined using all

atomic distances. The difference between these clusters when defined by

all atomic distances only, is a difference between the rotation around the

central carbon bond. Other than this, the conformation of the fragments

are very similar. The fragments in both the cyan and blue clusters have

the same relative chirality and very similar bond lengths and bond angles.

The fragment OJUYUN (pink striped in Figure 2.14) differs from the other

fragments as the bonded distances are shorter. Using all atomic distances

only to describe the conformation of the fragments results in this fragment

appearing to very different to the rest of the dataset. There is a similar but

much less dramatic reason for the the split of cluster I (light green striped)
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Cluster name Cluster equivalents
(Total Geometries) (Distances)

A A
B F*
C D & E†*
D C*
E B
F G & H†
G L
H I
I J & K†

Table 2.4: Cluster Equivalents: Total geometries against distance
* denotes that there has been rearrangement within the cluster. † denotes
that the cluster has been split into 2 clusters.

when the fragments was defined by total geometries has split into two clusters

J and K (blue striped and purple striped). The reason for this split is a small

difference in bond length in the fragment DPGXHY which is found in cluster

K when the fragment was defined by all atomic distances only. Inspire of

these differences in the clusters when using all atomic distances compared to

total geometries, the definition has organised the fragments into groups that

have rational structural reasons underpinning their formation. It is noted

that some of the differences are the result of differences in bond lengths of

some of the fragments which is exaggerated when defining the geometry of

the fragments with distances only.

2.2.2.4 Bonded distances and angles

When the geometry of the fragment was defined using only the bonded vari-

ables, the resulting dendrogram is shown in Figure 2.15. The output has very

little in common in appearance with the dendrogram in Figure 2.11 where

the fragment was defined by total geometries. By examining the fragments

in the red cluster in Figure 2.15 it is apparent the this cluster is made up

of many fragments of different conformations when viewed in the fragment

viewer. When these fragments are located when the fragment was defined

by total geometries is it clear that the red cluster is made up of a mixture of
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Figure 2.15: Dendrogram and MMDS plot clustered using bonded angles and
distances only for the fragment 3-aminobutan-2-ol. This is a good example
of the output from dSNAP where the clusters have been poorly defined.

Figure 2.16: Dendrogram and MMDS plot clustered using bonded angles,
bonded distances and backbone torsion for the fragment 3-aminobutan-2-ol.

clusters A, C, D, E, H and I. Since the fragment that make up these clusters

are of made up of fragments in discrete conformations when described by

total geometries, it is clear that using only the bonded distances and bonded

angles fails to accurately describe the geometry of the fragments.

2.2.2.5 Bonded distances, angles and backbone torsion

In this section a single torsion angle between atoms C1, C2, C3 and C4 as

seen in Table 2.1, is added to the analysis where the fragment was defied

by bonded distances and angles only. This is an attempt to resolve the

deficiencies that were found in the above section. It was hoped that the

addition of the torsional information will aid in the distinction between the
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Figure 2.17: An overlay of the fragment 3-aminibutan-2-ol where the frag-
ment was defined by bonded variables and backbone torsion. The fragments
in this figure have been coloured to correspond with the colours in the den-
drogram. As can be seen, the fragments have not formed clusters that have
a consistent conformation.

different rotational conformations in these data. Unfortunately, when the

output from this definition is compared with the output from total geometries

there does not appear to be any similarity between the outputs. In Figure

2.16 the red cluster is made up of a collection of fragments that were in

discrete clusters when the fragment was defined by total geometries. This

can be illustrated when the fragments are examined in the fragment viewer.

With reference to Figure 2.17 it is apparent that there is no conformational

reason for the formation clusters.

2.2.3 Pentan-2-one

The final example is pentan-2-one and is illustrated in Figure 2.18 and essen-

tially there are two independent torsional rotations that are indicated by the

blue arrows in Figure 2.18. The carbon backbone of this fragment was re-

stricted to acyclic bonds when the search in the CSD was carried out in order

to keep the bonded angles as consistent as possible throughout the data set.

This restriction aims to ensure that the rotational conformational changes

will dominate these data and reduce the number of hits in the database to a
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Figure 2.18: Diagram of the fragment pentan-2-one with the free torsions
indicated by the blue arrows.

more manageable level. The search criteria and number of fragments can be

seen in Table 2.1.

2.2.3.1 Total Geometries

As can be seen in Figure 2.19, each of the clusters that have formed in the

analysis can be attributed to a specific conformation of the fragments. Fig-

ure 2.21 illustrates the different conformations that the fragments have taken.

Each of the fragments has formed a distinct conformation that correspond

to the Newman projections in Figure 2.19. When the fragments are over-

layed using the fragment viewer it is clear that the fragments have broadly

classified into discrete conformations. This can be seen in Figure 2.21. In

this figure the fragments have been aligned in such a way that the three

atoms in the background of the figure have been superimposed. These atoms

are the atoms of the ketone group and as a result the rotational nature of

the backbone are exaggerated. As illustrated by the Newman projections in

Figure 2.19 the differences between the red and yellow clusters in this figure

and the cyan and blue clusters is a difference in the torsion angle closest to

the ketone group. The green cluster is distinct from the other clusters but in

terms of the torsion angle but is closest in conformation to the yellow clus-

ter. This similarity is illustrated by the dendrogram in Figure 2.19 and the

MMDS plot in Figure 2.20. The second torsion angle in this fragment differ-

entiates between the red and yellow clusters and the cyan and blue clusters.

Again, by examining the fragments in the fragment viewer in Figure 2.21
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Figure 2.19: Dendrogram clustered using total geometries for the fragment
pentan-2-one. The Newman projections on the lower part of the diagram
reflect the torsional rotation of the two torsion angles.
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Figure 2.20: MMDS plot clustered using total geometries for the fragment
pentan-2-one. The colours of the spheres representing the fragments have
been taken from the dendrogram in Figure 2.19.
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Figure 2.21: Overlay of the fragment pentan-2-one where the geometry was
defined by total geometries. The overlay provided by the fragment viewer
shows that the fragments are grouped into clusters with similar conforma-
tions.

and the Newman projections in Figure 2.19 it is clear that the difference in

the value of the second torsion angle is causing these clusters to form. This

indicates that when the fragments are defined using total geometries cluster

analysis has successfully grouped the fragments according to the conforma-

tion of the fragments. It should be noted that because of the scaler nature

of total geometries it is impossible to differentiate between mirror images of

fragments.

2.2.3.2 Angles only

The dendrogram in Figure 2.22 was generated when the fragment was defined

by all angles only. The dendrogram was compared with the dendrogram

generated when the fragment was defined by total geometries (Figure 2.22).

There are a few differences in relationship between the each of the clusters.

For example, when the fragment was defined by total geometries the yellow

cluster (B) has become the cyan cluster (D) when the fragment was defined
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Figure 2.22: Dendrogram and MMDS plot clustered using all angles only for
the fragment pentan-2-one.

Figure 2.23: Overlay of the fragment viewer 3-aminobutan-2-ol when the
fragment was defined by angles only.
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by total geometries. These differences are tabulated in Table A.1 on page

138. This table shows which cluster each fragment falls into for each of

the geometric definitions. This table shows that when the fragments had

their geometry defined by angles they form almost identical clusters when

compared to the clusters formed when the fragments were defined by total

geometries. The only difference is the fragment FIVGOG which is in a cluster

of its own. Examining the green fragment in the dendrogram in Figure

2.22 and in Figure 2.23 it is clear that this fragment is closely related in

conformation to the yellow clusters.

It should be noted that the biggest difference between these two defini-

tions is the different relationship between clusters not by the members of

those clusters. By examining the dendrogram in Figure 2.22 it is clear the

cyan cluster less closely related to the red cluster which is indicated by the

higher tie bar between these clusters. When geometry of the fragments were

defined using total geometries (Figure 2.19), the yellow cluster is the same as

the cyan clusters. As can be seen in Figure 2.19 the red and yellow clusters are

more similar when the fragments are defined by total geometries than when

the same fragments are defined by angles only. The reason for this difference

in relationship is because the fragments have been grouped according to sim-

ilarities in the second torsion bond which is furthest from the keto group in

this fragment. When the fragments have been clustered using angles only,

the fragments that have similar conformations for the second torsion angles

are more closely related than when the fragments have been defined by total

geometries. This difference in relationship does not mean that the fragments

have been misclassified from the perspective of their conformations. All of

the fragments, with the exception on FIVGOG, are found in isolated clusters

of distinct conformations. This shows that the definition of angles only can,

in this case, accurately classify the geometries of fragments into clusters.

2.2.3.3 Distances Only

The dendrogram in Figure 2.19 where the fragment was defined by total ge-

ometries is compared with the dendrogram in Figure 2.24 where the fragment
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Figure 2.24: Dendrogram and MMDS plot clustered using all distances only
of the fragment pentan-2-one.

Figure 2.25: Fragment view of fragment pentan-2-one when the geometry of
the fragment was defined by atomic distances only
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was defined with atomic distances only. There appears to be good agreement

between the output from dSNAP when the fragments were defined by total

geometries (Figure 2.19) and atomic distances only. Most of the fragments

have been grouped together with fragments of similar geometries. This has

been tabulated in Table A.1 on page 138.

This table shows that the fragments have been grouped into clusters with

good agreement with the clusters formed when the fragment was defined

with total geometries. The whole of the red and yellow clusters have been

preserved when the fragments was defined by distances only and total ge-

ometries. Also, the fragments that are in both of these clusters are made

up of fragments of discrete conformation in both definitions. The green and

cyan clusters when the fragments were defined by distances only, contain

the fragments from the cyan clusters when the fragment was defined by to-

tal geometries. The apparent anomaly is only the result of the cut level of

the dendrogram. If the cut level was set higher then this anomaly would

disappear. Unfortunately, it the cut level was set higher then the rest of

the clusters would not make sense. The remaining three fragments are the

blue and green fragments when the fragments was defined by total geome-

tries. The green fragment (MERWIQ) when the fragment was defined with

total geometries is the purple fragment when the fragment was defined us-

ing distances only. This fragment is now regarded as very different when

defined by all distance only. This is a result of some of the bond lengths

being different that the rest of this dataset. Bonds C1-C2, C2-C3 are shorter

and C2-O6 is longer. The C3-C4 and C4-C5 bond length very similar to

the rest of the dataset. The blue fragments when the fragment is defined

distances only is the same blue cluster when the fragment was defined with

total geometries. Overall, defining the fragment with all distances only has

successfully classified the fragments into groups that have a clear structural

rational underpinning the clustering. The only exception is the fragment

MERWIQ whose differences can be explained by unusual bond lengths in

this particular fragment.
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Figure 2.26: Dendrogram and MMDS plot clustered using bonded variables
only for the fragment pentan-2-one.

2.2.3.4 Bonded Variables

Looking at the dendrogram in Figure 2.26, it is apparent that visually the

dendrogram shows little resemblance to the dendrogram in Figure 2.19 where

the fragments were defined using total geometries. By examining the red

cluster in the fragment viewer (Figure 2.27) it is apparent that this cluster is

made up of fragments of many different conformations. This indicates that

the fragments have not been accurately grouped into fragments according to

their conformation. Nevertheless there appears to be two distinct groups of

fragments (red and blue) along with a number of isolated fragments. This

difference is a result of subtle differences in bonded angles between the keto

group and the carbon backbone that is not entirely obvious in the initial

analysis where the fragments were defined using total geometries. The re-

maining fragments that are not in the red and blue clusters are different

from these clusters as the result of different bond lengths. Overall, when the

fragment was described using all bonded variables has failed to accurately

differentiate between the different conformation of fragments present in these

data. This would indicate that using all bonded variables as a description of

the geometry of fragments is inappropriate for this fragment.
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Figure 2.27: Fragment view of cluster A where the fragment was defined by
all bonded variables only.

2.2.3.5 Bonded variables and torsion

An attempt to add two backbone torsion angles to the bonded variables

failed. This was due to an inability to correct for the handedness of the

torsion. That is, by convention a torsion is described as an angle between

−180o to +180o but dSNAP can only accept positive scalar values as input.

If the torsion is corrected such that the angle varies between 0o and 360o

there is still a problem when comparing a torsion with an angle of 1o with

one of 359o. Using the clustering algorithm in dSNAP the difference between

these two variables will be 358o. This is incorrect from a chemical perspective

as the difference should be a 2o difference in torsion angle.

2.3 Conclusions

There appears to be a significant difference between the different types of def-

inition: definitions that include non-bonded information and those without.

When the fragments were defined by bonded distances and angles only, there
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is not enough structural information described by these variables to generate

clusters of fragments into groups with similar geometry. This definition did

not contain any non-bonded information and this appears to be the reason

why there is no correlation between the clusters and the conformation of the

fragments grouped into those clusters.

When torsion angles were added to the analysis it was hoped that this de-

ficiency would be remedied and the fragments would be grouped into cluster

that could be justified from a chemical perspective. Unfortunately this is not

the case. In the example of 3-aminobutan-2-ol when the carbon backbone

was defined with a torsion angle there was no distinction between the differ-

ent rotational conformations of the fragments and the formation of clusters.

This is illustrated when the dendrogram in Figure 2.16, where the fragment

was defined with bonded variables and a backbone torsion angle, is compared

to the dendrogram in Figure 2.11, where the fragment was defined with total

geometries. When the contents of the clusters in Figure 2.16 are examined,

there does not appear to be any relationship between the clusters and the

geometry of the fragments within those clusters.

It would appear that it is necessary for the variables describing the geom-

etry of the fragments to have non-bonded information. When the fragments

had their geometry defined by total geometries it is possible to justify the

formation of clusters from a conformational perspective. When the frag-

ments are described with all distances or all angles there is remarkably good

agreement between the clusters when the fragments were defined by these

definitions and total geometries.

There are differences between distances only and angle only and on bal-

ance it appears that total geometries represent the best geometric definition

of the fragments despite the high levels of redundancy generated by the def-

inition. The use of distances only should not be discounted as there may be

specific application, such as very large fragments, where the computational

cost of clustering would be excessive. Using distances only in this context

could allow a quicker but potentially less accurate clusters to be calculated.



Chapter 3

Triangles

3.1 Introduction

In this chapter there is an attempt to reduce the variables describing the

conformation of the fragments. The common themes in this research is re-

ducing the number of variables required to robustly and accurately describe

the conformation of a fragment under investigation. As seen in the previous

chapter, when a fragment has its geometry defined using total geometries

there is a large degree of redundancy present. In essence, it is hoped that the

redundancy of the geometric definition will be removed or at least reduced

by combining the different variables together to form shapes. It is postulated

that by measuring the area of these shapes it should be possible to summarise

the variables that describes the shape. This section examines the nature of

the variables that describe the fragments, and proposes a method of reducing

the number of variables in a logical manner.

3.1.1 Different types of variables

During the examination of the variables in Chapter 2, it became apparent

that not every variable was contributing an equal amount to the formation of

clusters. The fragment 3-aminobutan-2-ol that was examined in the previous

chapter will be used to illustrate this property. This fragment has two major

conformational changes that give rise to the distribution of fragments in these

68
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data. The dendrogram in Figure 2.11 gives an overview of the conformation of

this fragment. There is also a minor conformational change where the carbon

backbone is constrained by the chemical context from which the fragment

was derived. When this fragment was clustered, the analysis yielded discrete

clusters of fragments with similar conformations. The range of conformations

within these data should allow the variables describing these fragments to

be characterised. Table B.1 on page 141 shows descriptive statistics of each

of the variables along with a figure indicating what part of the fragment the

variables are describing. A smaller subset of this table is shown in Table

3.1. These tables show some basic statistics of these data describing the

fragment. These include the range of the variable along with the maximum

and minimum value of that particular variable. This gives an indication of

the spread of each variable. There is also the standard deviation and the

mean of the variable. The standard deviation gives an indication of the

spread of that variable. This measure should only be trusted if the variable

has a normal distribution. Examining the distribution of variables within

these and other data it is apparent that normally distributed variables are

an exception to what can typically be expected from these data. Typically

a variable will have a bimodal or multi-modal distribution because the data

are made up of fragments in discrete conformations. This is expected as the

conformation of a fragment will typically fall into a global or local minimum

on the energy hypersurface [5].

Using the sub sample in Table 3.1 as a representative sample of the vari-

ables describing this fragment, it appears that there are three different types

of variable. Distance between atoms 1 and 2 (d 1 2) and the angle between

atoms 2, 3 and 4 (a 2 3 4) are both bonded variables. As can be seen both

the standard deviation (σ) and the range of the variables d 1 2 and a 2 3 4

are extremely small. It should be noted that these variables are not nor-

malised and as a result angles will show more variability than distances. In

contrast to the bonded variables, the remaining variables are measuring the

relative distance between atoms which are not directly bonded or the angle

between three atoms that are not joined directly by bonds.

The non bonded variables tend to vary more than the bonded variables.
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Variable σ Range Minimum Maximum Mean Figure

d 1 2 0.019 0.116 1.447 1.563 1.524

d 1 3 0.055 0.252 2.371 2.623 2.508

d 1 4 0.417 1.566 2.340 3.906 3.056

d 1 5 0.039 0.181 2.382 2.563 2.467

a 1 3 4 22.223 79.401 69.454 148.855 98.090

a 1 4 3 14.986974 54.308 19.368 73.676 53.536

a 2 3 4 3.873 18.098 100.139 118.237 110.781

a 1 4 6 15.1716 55.011 44.547 99.558 72.534

Table 3.1: A selection of variables that describe the conformation of the
fragment 3-aminobutan-2-ol. These variables were chosen to illustrate the
how the distribution of each variable is effected by the chemical context from
which the variables were derived.

Of course this is a rule of thumb and there are exceptions to this. An example

of this is the distance between atoms 1 and 3 (d 1 3). When the distances

are examined there is only a single distance that varies in a marked way

within these data. The remaining three variables describing distances have

an extremely small standard deviation. This is a consequence of the fragment

from which these data were derived having a single conformational change.

Examining the angles in Table 3.1 it appears that there are three different

types of angles within these data. There are the bonded angles that vary

little (a 2 3 4). The variable with the highest degree of variability is the

angle between atom 1, 3 and 4 (a 1 3 4) while the remaining variables lie

somewhere in the middle. These 4 different types of variable are reproduced

throughout these data. This can be seen in Table B.1 on page 141.
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3.1.2 Semibonded angles

The variables which have a high variability have something in common. An

example of a variable that has a high variability is the angle between atoms

1,3 and 4 and the statistics describing this variables can be found in Table

3.1. What this angle and the other angles that have a highest degree of

variability have in common is that one of the rays of the angle is a bonded

distance. A ray of an angle being one of the sides if the angle between the

central atom and one of the outer atoms thus defining one half of an angle

between three atoms. This is true for angle a 1 3 4 but is also true for angle

a 1 4 3. Both of these variables have a common ray that is the bond between

atoms 3 and 4. What is of interest is that both of these angles describe the

same part of the fragment. Also it should be noted that when combined,

these two angles from a triangle between the three points.

3.2 Triangles as a means of reducing variables

It was hoped that by applying this feature the number of variables necessary

to describe the shape of fragment under investigation will be lowered. It is

hoped that by calculating the area of a triangle between three atoms it will

be possible to reduce the six variables describing the relative orientation of

those atoms down to a single variable. In order to understand how the area

of a triangle will vary in a molecular context, a simulation was carried out.

Initially there was an attempt to simulate the rotation of four atoms

around a single bond. A schematic of the hypothetical molecule can be

found in Figure 3.1.

3.2.1 Calculating the area of triangles

The calculation of the area of triangles was carried out using Heron’s formula

(Formula 3.2)[19, 58]. This formula calculates the area of a triangle using the

lengths of the sides of the triangle. These lengths are taken from Figure 3.1.

In this simulation, the bond lengths were fixed and the simulated molecule

was rotated around the second bond to simulate a torsion.
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s =
1

2
(a + b + c) (3.1)

∆ =
√

s(s − a)(s − x)(s − y) (3.2)

where ∆ is the area of the triangle being calculated.

In this case the lengths of x and y were calculated for various rotations

around the bond b. These values are calculated in order to measure the area

of the green triangle in Figure 3.1 x was calculated using Equation 3.3.

Figure 3.1: Sketch of the geometry of a hypothetical molecule. The triangle
illustrated can be modified by altering any of the variables illustrated.

x =
√

(c2 + b2) − 2bc(cos α) (3.3)

The calculation of y proved to be more troublesome. In order to simulate

the rotation of a dihedral angle around b in Figure 3.1 it is necessary to

treat the problem in an abstract manner. When there is a full 360◦ rotation

around the central bond of a four atom system, the ‘shape’ of this system is

shown in Figure 3.2. The shape is a conical frustum. To calculate the value

of y for any value of α, β or τ the method in 3.4 - 3.12 were used.
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Figure 3.2: Diagram of simulated dihedral angle. From a geometric perspec-
tive the shape created by a rotation around a dihedral angle is a conical
frustum. As the variables are changed the shape of the conical frustum will
change. Using the method in Equations 3.4 - 3.12 the variables necessary for
the calculation of an area of a triangle at any torsion angles can be calculated.
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R1 = sin(β − 180)c (3.4)

R2 = sin(α − 180)a (3.5)

h = b + (cos(α − 180)a) + (cos(β − 180)c) (3.6)

S =
√

(R1 − R2)2 + h2 (3.7)

C1 = 2R1 sin

(

1

2
τ

)

(3.8)

C2 = 2R2 sin

(

1

2
τ

)

(3.9)

y =

√

C1C2
2 − C2

1C2 − C1S2 + C2S2

C2 − C1

(3.10)

y =

√

C1C2(C2 − C1) + S2(C2 − C1)

(C2 − C1)
(3.11)

y =
√

C1C2 + S2 (3.12)

3.2.2 Area of triangles

This section shows the results of a simulation of a full 360◦ rotation around

the central torsion with a range of α of between 100◦ and 120◦. The β

angle was constrained at 109◦ and the bond lengths were held at a length of

two. The area of the triangle shown in Figure 3.1 was calculated for each of

the increments and the results are displayed in Figure 3.3. As can be seen

from the figure, the area of the triangle varies with the rotation around the

central bond and for any given value of torsion, as the value of α increases

the area of the triangle increases. This is no surprise given that the only

distance that should vary with a rotational change is the distance y in this

simulation. This distance is equivalent to d 1 4 in Table 3.1 and is the only

variable describing a distance that significantly varies within this subset of

the variables describing the conformation of the fragment 3-aminobutan-2-ol.
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Figure 3.3: Graph of triangle area calculated for a range of torsion angles
and a single bonded angle. The area of the triangle is plotted against the
change of torsion angle and bonded angle α as illustrated in Figure 3.1 on
page 72. The figure shows the area of a triangle changing over a range of
100o − 120o and a range of torsion of 0o − 360o(−180o − 180o)

3.2.3 Two dihedral angles with five atoms

The next simulation is aimed to simulate the area of a triangle affected by two

independent torsion angles. In order to achieve this, a five atom fragment

will have to be simulated. The triangle that will have its area measured

has its apices at the atoms 1, 4 and 5. Once the coordinates describing the

simulated fragment have been modified to simulate the position of the two

torsion angles the distances between these coordinates are calculated using

Pythagoras and the area of the triangle is calculated using Heron’s formula

[3.2]. The method by which the coordinates are modified can be found below.
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3.2.4 Modifying coordinates to simulate a torsion

Initially the origin of the coordinate system is moved to the atom at the

beginning of the of the torsion bond, i.e. the second atom of the four atoms

in a torsion angle. This is illustrated in Figure 3.4 where the blue atoms

indicated are placed at the origin of the coordinates.

1 4

2

5

3

Figure 3.4: An illustration of the two torsion angles that are calculated
with the triangle indicated. During the calculation the two torsion angles
are calculated independently. This process involves aligning the simulated
fragment on the blue atom and then modifying the coordinates of the atoms
to the right of the blue atom. Once the appropriate coordinates have been
modified the area of the triangle indicated in the figure is calculated.
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(3.13)

Where p, q & r are the x, y & z coordinates of the atom that is to be

moved to the origin.

The next phase is to rotate the axis of the system so that the central bond
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lies on the x-axis. This involves rotating all of the coordinates around the

y-axis [Equations 3.14]until the third atom of the torsion angle is in the yz

plane of the coordinate system. At this point all the coordinates are rotated

around the z-axis [Equations 3.16] until the third atom is on the x-axis.

Once the bond lies on the x-axis, all that is necessary to simulate the

rotation around a torsion is to rotate the coordinates of the atoms that are

further along the chain of atoms than the bond. In Figure 3.4, the atoms

that have their coordinates modified are to the right of the blue atom. This

is achieved using Equation 3.20 and simulates the increase in torsion angle

for a single torsion.

Using this method it should be possible to recreate a system with 2 tor-

sions by altering the atom at the beginning of the torsion angle. A schematic

of the program is shown in Figure 3.5 and the output of this program is

shown in Figure 3.6.
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x′ = x cos α − z sin α

y′ = y

z′ = x sin α + z cos α (3.15)

Where α is the angle of rotation around the y axis.
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x′ = x cos β + y sin β (3.17)

y′ = −x sin β + y cos β (3.18)

z′ = z (3.19)

Where β is the angle of rotation around the z axis.
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(3.20)

x′ = x

y′ = y cos γ + z cos γ

z′ = −y sin γ + z cos γ (3.21)

Where γ is the angle of rotation around the x axis.

When the results of the simulation are examined in Figure 3.6 it appears

that there is a large range of possible areas of triangles. This result is not

entirely unexpected. It should also be noted that the smallest area of a

triangle is close to zero. More pertinently, it should be noted that for every

given area of triangle there could be a number of possible values for the

two torsion angles. This poses a problem for using triangles as a measure

of the conformation of two torsion angles. A given area of a triangle does

not uniquely describe the conformation of the two torsions. This may prove

to be problematic when fragments are described in dSNAP using triangles.

While this is unfortunate it is not entirely unexpected and the use of the area

of triangles as an input for dSNAP may still lead to a situation where the

number of variables necessary to describe the conformation of a fragment is

greatly reduced.
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Input coordinates

Translation coordinates so 
atom 2 is on origin

Rotation of coordinates until 2-3 
bond aligned on axis

Rotate coordinates of atoms>2 by 1 degree

Translation of coordinates so atom 3 is on origin

Rotation of coordinates until 3-4 bond aligned on axis 

Rotation of coordinates of atoms>3 by 1 degree

Calculate Area of triangle between atome 1,4 and 5

if (number of rotations < 360)if (number of rotations < 360) True True

FalseFalse Stop

Figure 3.5: Description of the program that simulates a five atom fragment
being rotated around two torsion angles. The area of the triangle being
calculated is illustrated above.

3.2.5 Use as input to dSNAP

As an illustration of how triangles can be used to describe the geometry of

a fragment the geometry of the fragment propan-2-one was described using

triangles. This fragment has been previously analysed in Section 2.2.3. The

dendrogram in Figure 2.19 and accompanying Newman projections give an

illustration of the conformations that the fragment pentan-2-one takes in this

example dataset.

Figure 3.8 shows the dendrogram, MMDS plot and cell display generated

by dSNAP where the fragment propan-2-one was defined using the triangles

illustrated in Figure 3.7. The area of these triangles was calculated using

the orthogonal coordinates of the atoms as an input, Pythagoras to calculate

the distances between the atoms and Heron’s formula to calculate the area

of these triangles. A list of the orthogonal coordinates was extracted from

the CSD search and using a simple FORTRAN program the three atoms at
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Figure 3.6: A surface plot representing the area of a triangle between atoms
1 4 and 5. An illustration of the fragment and the triangle being calculated
can be found at the top of Figure 3.5. Torsion one (τ1) is plotted against
torsion two (τ2) both of which range between 0o and 360o

the apexes of the triangle to be calculated were selected. The program then

calculated the area of that triangle for all of the fragments in the search.

This process was repeated for all of the triangles in Figure 3.7. The area of

all of the triangles for each of the fragments were then tabulated and used

as input for dSNAP.

When the fragments are examined in the fragment viewer, it appears

that most of the fragments are in clusters with similar conformations. This

is shown in Figure 3.9. While most of the fragments have been grouped into

clusters with similar conformations, there are a number of fragments which

have been grouped into a cluster where the conformation of these particular

fragments vary a great deal from the average conformation within this cluster.

This indicates that using triangles as a measure of geometry has not faith-

fully reproduced the clusters illustrated in Figure 2.19 where the fragment

was defined by total geometries. By examining the MMDS plots in Figure
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3.8, it is apparent that the discrete nature of the clustering achieved when

the fragment was described using total geometries has been lost. In the right

hand MMDS plot where that fragment was defined using triangles the frag-

ments are more diffuse in appearance then when the fragment were defined

with total geometries. This is an indication that this definition has failed to

accurately separate fragments of clusters with similar geometry. Neverthe-

less, the number of variables required to make this approximation is vastly

less that the number of variables that were used when the fragment were

defined by total geometries. The results of clustering using this definition

are discussed in Section 2.2.3. This section shows that non-bonded interac-

tions are the most significant with regard to forming clusters of fragments

with similar conformation. Using triangles as a measure of conformation has

reduced the number of variables to a lower level than any of the definition

of described in Section 2.2.3 but has unfortunately has not been successful

in replicating the clusters formed in the on the left of Figure 3.8 where the

fragment was defined with total geometries.

3.3 Conclusions

Triangles are an interesting method to summarise the shape of the fragments

under investigation. This section has shown that it is possible to represent the

rotation of a chain of atoms using the area of triangles as an indication of the

conformation of the fragments. When a single torsion angle is simulated the

resulting triangle is fairly simple to understand. The torsion angle simulated

in Figure 3.3 shows as the torsion approaches 180◦ the area of the triangle

being simulated reaches its minimum area. While this pattern is very easy

to understand it could be regarded as somewhat overcomplicated. As noted

previously there is only a single distance that changes in an idealised torsion

angle. It should be noted that, excluding variation in bonded variables, there

is little extra information gathered from calculating the area of a triangle

across a torsion angle.

When two torsions are simulated the area of a simulated triangle across

these torsions varies in a much less obvious manner. With reference to the
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Figure 3.7: An illustration of the triangles used to describe the geometry of
the fragment pentan-2-one. These 10 triangles were selected to describe all
of the possible conformations of the fragment.

diagram in Figure 3.5, it appears that an area of a triangle is not unique to

a given conformation of torsion angles. That is, for a given area of triangle

there are a number of possible conformations for the two torsion angles.

This poses a problem when using this definition to describe the geometry of

a fragment. This could be one of the reasons why the fragment pentan-2-one

was not grouped into clusters with similar conformations as was the case

when the fragment was defined with total geometries.

It is possible that triangles could be used as extra variables during analysis

with dSNAP. That is to say that triangles could be used in combination with

other variables that combined will accurately describe the conformation of

the fragment. This is an interesting proposal but there are a number of issues

that should be addressed first. The fragment chosen was selected as it was

close to a long chain of atoms which lends itself well to be described using

triangles. This is because the major conformational changes are rotational
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Figure 3.8: Combined MMDS plot, cell display and dendrogram of the frag-
ment pentan-2-one where the fragment was defined with total geometries on
the left and triangles on the right.

in nature. Detecting differences in rotation could be measured using torsion

angles but as discussed in Section 2.2.3.5 there currently is a problem using

torsion angles in dSNAP. This is the result of the rotational nature of the

torsion angles where in absolute terms the difference between torsion angles

can be large. For example, the difference between −179◦ and 170◦ is 358◦ if

the rotational nature of torsion angles are ignored. In practice, the difference

between the two torsion angles above will be 2◦. There are also a number

of situations where triangles may not be ideally suited to describing the

conformation of fragments. In the stated example the choice of triangle is

relatively obvious. If, for instance, a fragment that was centred on a metal

atom, triangles would not be ideally suited to describing the conformation of

this fragment. There is also the problem that the description of the fragment
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Figure 3.9: Fragment view of pentan-2-one where the fragment was defined
with triangles. In this figure the fragments have been aligned in such a way
that it is obvious that some of the fragments have been grouped into clusters
that are not of broadly single conformation.

by triangles is more abstract than with total geometries. As a result it is

more difficult to justify changes in conformation of the fragment based on

the variables. One of the key advantages of using total geometries to describe

the geometry of the fragments is that variables can be referred to justify the

formation of clusters.



Chapter 4

Factor Analysis

4.1 Introduction

Factor analysis (FA) is a statistical method that attempts to find underly-

ing trends in data sets. It has its origins in psychology and in essence has

the aim of describing and examining the internal structure of a correlation

or a covariance matrix. Generally, statistical tests are applied to study the

relationship between independent and dependent variables. Factor analysis

differs from these statistical tests. Factor analysis aims to discover underly-

ing features or patterns of dependent variables with the goal of uncovering

independent effects or influences on the datasets that are not directly mea-

sured. As a result, these factors are necessarily more hypothetical because

these variables are not actually measured even if they could be. A typical use

of factor analysis aims to uncover how many factors are required to explain

the pattern and relationship between the variables in the data. The analysis

also aims to give some meaning to the nature of these factors along with

measures of how well these factors explain the data. It is hypothesised that

given the context under which the data are generated, then a factor could

be attributed to a specific conformational change within the fragment under

investigation.

The most prominent pioneers of factor analysis were Spearman[52],

Thomson[55], Thurstone[56] and Burt[12]. Spearman set out to try and

85
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find an underlying trait for general intelligence that he termed g. It was

hoped that g could be characterised using easily measured variables, such as

mathematical skill and verbal reasoning. The measurement of these variables

can then be used to extrapolate the latent variable g. As the name suggests

these latent variables are hypothetical variables that measure hidden features

in the dataset. Spearman’s research in this area was a continuation from

previous research looking at the correlation between different traits with the

aim of finding an underlying relationship between them. Spearman aimed to

expand the scope of this research to find the more general characteristic of

general intelligence [52]. Unfortunately this study came to no real conclusion

in terms of uncovering a measure of general intelligence.

One method of performing factor analysis is to begin with principal com-

ponent analysis and use the first few principal components as unrotated

factors. This is a simple method and is a good starting point for factor anal-

ysis. With p variables there will be p principal components that are linear

combinations of the original variables [42].

Z1 = b11X1 + b12X2 + . . . + b1pXp

Z2 = b21X1 + b22X2 + . . . + b1pXp

...

Zp = bp1X1 + bp2X2 + . . . + bppXp

Where bij values are given by the eigenvectors of the correlation matrix

calculated from the original data and X are the p variables. The transforma-

tion from X values to Z values is orthogonal, so that the inverse relationship

is
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X1 = b11Z1 + b21Z2 + . . . + bp1Zp

X2 = b12Z1 + b22Z2 + . . . + bp2Zp

...

Xp = b1pZ1 + b2pZ2 + . . . + bppZp

For factor analysis, only m of the principal components are retained. The

numbers of factors are chosen by the user. The value ei is a linear combination

of the Zm+1 to Zp. All that remains to do is scale the principal components

such that they have unit variance which is a requirement for factors. This is

achieved by dividing Zi by its standard deviation. In this case it is the square

root of the ith eigenvalue of the correlation matrix (
√

λ1). The equations now

become

X1 =
√

λ1b11F1 +
√

λ2b21F2 + . . . +
√

λmbm1Fm + e1

X2 =
√

λ1b12F1 +
√

λ2b22F2 + . . . +
√

λmbm2Fm + e2

...

Xp =
√

λ1b1pF1 +
√

λ2b2pF2 + . . . +
√

λmbmpFm + ep

where Fi = Zi/
√

λ1.

The unrotated factor model is then

X1 = a11F1 + a12F2 + . . . + a1mFm + e1

X2 = a21F2 + a22F2 + . . . + a2mFm + e2

...

Xp = ap1F2 + ap2F2 + . . . + apmFm + ep

Where aij =
√

λibij [42].
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After rotation, which in this case was Varimax [37], the new solution is

X1 = g11F
∗
1 + g12F

∗
2 + . . . + g1mF ∗

m + e1

X2 = g21F
∗
1 + g22F

∗
2 + . . . + g2mF ∗

m + e2

...

Xp = gp1F
∗
1 + gp2F

∗
2 + . . . + gpmF ∗

m + ep

where F ∗
i is the new ith factor after rotation. The rotation takes place

to make the interpretation of the factors easer.

Varimax rotation is based on the assumption that the interpretability of a

factor j can be measured by the variance of the square of its factor loadings.

That is the variance of a2
1j, a

2
2j, . . . , a

2
mj. If this variance is large, the value of

aij tend to be either large or close to zero. Varimax rotation therefore aims

to maximise the sum of these variances for all of the factors.

The value of the ith unrotated factor is just the ith principal component

that has been scaled to have unit variance. The values of the rotated factors

are more difficult to obtain. These rotated factors can be calculated using

the following formula:

F∗ = XG(G′G)−1 (4.1)

Where F∗ is an (n × m) matrix of the values for the m rotated factors

and n original rows of data. X is the (n× p) matrix of the original data of p

variables and n observation that have been standardised to have a mean of

zero and unit variance. G is the (p × m) matrix of rotated factor loadings

[42].

The most important outputs of factor analysis are a matrix of factor

loadings and a column of communalities. Factor loadings represent the ex-

tent to which each of the variables is related to the hypothetical factor. In

some methodologies of factor analysis the factor loadings can be regarded

as correlations of these variables to the hypothetical factors. Communalities

represent the sum of squares of the factor loadings. These communalities

represent the extent of the overlap between variables. If the communalities
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are 1.0 then the variance of that variable can be explained with the weighted

combination of the factor loadings. If the communality is 0.0 then the vari-

ance of the variable does not share anything in common with the factors

calculated.

Being able to understand what these factors are indicating is far more

important. It is obvious that a variable with a high factor loading is a

good indicator of what this factor is describing. It is equally informative if

a variable has an extremely low loading. This of course leaves the middle

ground and the difficult question of what is an important factor and what

is not. Unfortunately there is no statistical test to give a clear indication of

what is a significant factor loading when the loading matrix has been rotated.

This is because the rotation can be regarded as arbitrary, or at least a means

to an end. The rotation is carried out in order to simplify the interpretation

of the analysis. As a result of this, the selection of a level of significance could

be regarded as somewhat subjective. Comrey [16] notes that a common cut-

off of significance for a factor loading is 0.3 where the factor loadings are

orthogonal. This is because a factor loading of 0.30 when squared gives a

value of 0.09. This means that a variable with a factor loading of less than 0.3

shares less than 10% of its variance with the hypothetical factor. Comrey and

this author believe that this arbitrary cut-off is rather low, especially when

the variables are highly correlated which is the case here. A factor loading

of greater than 0.71 in this context seems more appropriate. This factor

loading indicates that a variable with this loading shares 50% of its variance

with the hypothetical factor. Of course, if a large number of the variables

have an extremely high factor loading, then the threshold can be set much

higher. This means that the number of variables that can be discarded can

be increased while still maintaining the structure within the data matrix.

The purpose of factor analysis is to discover simple patterns in the rela-

tionships among a set of variables. In particular, it seeks to discover if the

observed variables can be explained largely or entirely in terms of a much

smaller number of variables called factors. Unlike many statistical methods

which study the relation between independent and dependent variables factor

analysis is used to study the patterns of relationships found among many de-
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pendent variables. The goal of factor analysis is to discover something about

the nature of the independent variables that affect the pattern of relation-

ships despite the independent variables not being measured directly. As a

result, answers derived using factor analyses are more hypothetical and ten-

tative than if the independent variables are observed directly. These inferred

independent variables are called factors. A typical factor analysis proposes

answers to four major questions [41, 31]:

1. How many factors are needed to explain the pattern of relationship

among these variables?

2. What is the nature of those factors?

3. How well do the hypothetical factors explain the observed data?

4. How much purely random or unique variance does each of the observed

variables include?

4.2 Example: Finding Common Factors Af-

fecting Exam Grades

This Example was adapted from [43].120 students have each taken five ex-

ams, the first two covering mathematics, the next two on literature, and a

comprehensive fifth exam. It seems reasonable that the five grades for a given

student ought to be related. Some students are good at both subjects, some

are good at only one, etc. The goal of this analysis is to determine if there

is quantitative evidence that the students’ grades on the five different exams

are largely determined by only two types of ability.

Factor analysis was applied to these variables and factor loadings for

two factors were extracted. These were not rotated. From the table of factor

loadings (4.1), you can see that the first unrotated factor puts approximately

equal weight on all five variables, while the second factor contrasts the first

two variables with the second two. You might interpret these factors as

“overall ability” and “quantitative vs. qualitative ability” This also shows
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Test Factor 1 Factor 2
Math 1 0.6289 0.3485
Math 2 0.6992 0.3287
Literature 1 0.7785 -0.2069
Literature 2 0.7246 -0.2070
Comprehensive 0.8963 -0.0473

Table 4.1: Table of factor loadings for the model example

that the comprehensive test is the test that best represents the first factor

and therefore “overall ability”

4.3 Application to dSNAP

It was hoped that by applying factor analysis to the data used in dSNAP it

will be possible to reduce the number of variables required to describe the

formation of each cluster and will allow easer interpretation of the reasons

why clusters have formed. By applying factor analysis to total geometries,

it should be possible to remove variables that have little or no contribution

to the formation of clusters. It was also hoped that the latent underlying

factors are actually conformational changes within these data and will aid

the understanding of the formation of clusters. Factor analysis was carried

out using the SPSS software package [54]. The factors were extracted using

principal components analysis and varimax rotation was applied to simplify

the process of analysing the factors. In this analysis six factors were initially

extracted and using the cumulative variance of the rotated sum of squared

loadings along with the table of factor loadings a threshold was chosen. The

variables that had a loading greater than or equal to the threshold were

extracted from the origional data matrix and tabulated. The tabulated data

was then used in dSNAP.

4.4 3-chlorobut-2-ene-thiolate

A description of the clustering of this fragment can be found in Section 2.2.1.
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Factor analysis was applied to the variables describing the fragment 3-

chlorobut-2-ene-thiolate and the number of variables was reduced from 75

variables to 46 variables. The variables extracted by this process were d23,

d34,d36, d45, d56, a213, a314, a315, a316, a415, a416, a516, a123, a125, a324,

a326, a425, a426, a526,a134,a135, a136, a234,a236, a435, a536, a143, a145,

a243, a245, a246, a346, a546, a154, a156, a253, a254, a256, a354, a356, a163,

a165, a263, a265, a364, a465. The variables were chosen by selecting those

variables with a factor loading of greater than |0.9|. This level as chosen was

a lower threshold would include many more variables which would render

the application of factor analysis useless. When the factor loading for a

given variable was greater than the threshold, this variable was deemed to

be significant and the raw data for this particular variable was extracted.

The collated significant variables were then used as the input for dSNAP.

Examining the factor loadings in Table C.1 on page 147, all of the 46 variables

were extracted from the first 3 factors.By examining Table C.3 on page 151

the cumulative percentage of variance explained was 83.3%. When these

variables have been extracted and tabulated these data were used as input

for dSNAP and the results are shown in Figures 4.1 and 4.2.

Figure 4.1 shows a cell display where the cluster that each fragment be-

longs to is represented by the colour of a circle. These colours are taken

from the dendrograms in Figure 4.2. By examining the colours and therefore

the cluster that each of the fragments are in, it is apparent that by reducing

the number of variables with the application of factor analysis, the clusters

have been preserved. When the dendrograms are examined in Figure 4.2, it

shows that the clustering is close to identical between total geometries and

when the number of variables has been reduced by the application of factor

analysis. There are a few rearrangements within each cluster but this re-

flects minor perturbations in the distance matrix, not a major difference in

the classification of the fragments. A problem with the application of factor

analysis in this example is that the conformational change in this example is

so simple and the geometric definition so highly correlated that the variables

have extremely high loadings in the factor loadings. Table C.1 shows the

tabulated rotated factor loadings. This could be the reason why there are so
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many ‘important’ variables selected by the application of factor analysis. It

may be possible to constrain the criterion that was used to select the vari-

ables further and as a result lower the number of variables selected while still

preserving the clustering. Of course the application of a threshold to select

variables is arbitrary and as a result there is no correct answer to where to

draw the line where variables are ‘important’ or not.

4.5 3-aminobutan-2-ol

The analysis of the cluster of these data is described previously in Section

2.2.2.

When factor analysis was applied to these data, 19 variables were ex-

tracted from the 75 origional variables as having a factor loading greater

than |0.9|. Variables were extracted from the first 4 factors that describe

62.3% of the variance in these data (Table C.6). The variables extracted

were: d16, d46, d56, a216, a316, a415, a126, a136, a436, a536, a346, a154,

a254, a356, a162, a163, a265, a365. The procedure to select these important

variables was exactly the same as the above section. The reduced data set

was then run through dSNAP the results of clustering can be see in figures

4.3 and 4.4. As can be seen in the Figure 4.3 there is good agreement between

the 2 different definitions of the geometry of the fragments. Since 62.3% of

the variance of these data is explained, it should not be expected that there

will be exact agreement between the two different geometric definitions. Nev-

ertheless the reduced data represents 20% of the original variables. In this

case it should make the process of understanding what variables are causing

the formation of clusters easier. In further chapters, visualisation of these

variables will be shown in a biplot.

4.6 Pentan-2-one

The analysis of the cluster of these data is described previously in Section

2.2.3.
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Figure 4.1: Cell displays of 3-chlorobut-2-ene-thiolate with the fragments
defined with total geometries on the top and with the variables reduced by
the application of factor analysis on the bottom.
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Figure 4.2: Dendrogram of 3-chlorobut-2-ene-thiolate with the fragments
defined with total geometries on the top and with the variables reduced by
the application of factor analysis on the bottom.
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Figure 4.3: Cell display of the 3-aminobutan-2-ol with the geometry of the
fragments defined by total geometries on the top and with the variables
reduced by the application of factor analysis on the bottom.
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Figure 4.4: Dendrograms of the 3-aminobutan-2-ol with the geometry of
the fragments defined by total geometries on the top and with the variables
reduced by the application of factor analysis on the bottom.
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When factor analysis was applied to these data, 40 variables were ex-

tracted as having a factor loading greater than |0.9| from the original 75

variables. These were d14, d25, d46, d56, a214, a216, a316, a415, a416,

a123, a124, a325, a425, a426, a132, a234, a235, a236, a435, a436, a536, a142,

a145, a146, a245, a246, a345, a346, a546, a154, a253, a254, a256, a354, a356,

a456, a164, a264, a365, a456. Variables were extracted from the first 5 fac-

tors that describe 84.46% of the variance in these data. These variables were

then collated and analysed in dSNAP. The results from the clustering can

be seen in Figures 4.5 and 4.6 It can be seen from the cell displays in Fig-

ure 4.5 that when the fragment was defined using the variables selected by

factor analysis, the clustering was almost identical to the fragments defined

by total geometries. There were only differences between how the fragments

were related, not how they were grouped together. Since 85% of these data

were explained by 5 factors it should be expected that there would have been

good agreement between results of the analysis in dSNAP.

4.7 Conclusions

Factor analysis successfully reduced the number of variables required to de-

scribe the geometry of the fragments significantly. When these variables

were extracted from the original data and analysed in dSNAP it appeared

that these reduced data have, for the most part, generated clusters that are in

good agreement with the clusters formed when the fragments were defined by

total geometries. This indicates that these reduced data are approximating

to a high degree of accuracy distance matrix generated by total geometries.

Nevertheless it would be unwise to use this method as an initial treatment

to datasets that are becoming unwieldy. The application of factor analysis

should be reserved for the post cluster analysis interpretation of the results

from dSNAP.

It is traditional that factors should be given names that describe the

properties of the data that this factor describes. Typically, these factors are

named after the variables that contribute towards the factor. For example, if

2 variables measuring the height and weight of a population are related to a
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Figure 4.5: Cell display of the pentan-2-one with the geometry of the frag-
ments defined by total geometries on the top and with the variables reduced
by the application of factor analysis (bottom).
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Figure 4.6: Dendrograms of the pentan-2-one with the geometry of the frag-
ments defined by total geometries on the left and with the variables reduced
by the application of factor analysis (bottom).
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factor this factor could be named ‘height and weight’. In this analysis all of

the variables are highly interrelated. As described previously each variable

does not describe a single change in conformation. Equally, a variable may

describe more than 1 conformational change. In light of this, all attempts to

assign names to factors extracted in this chapter have proven to be futile.

Using the reduced variables it is easer to detect trends in the data. It

would appear from the clustering that the variables selected by the appli-

cation of factor analysis represents variables that can describe the geometry

of the fragments. It is hoped that these factors should represent the under-

lying latent variables that correspond to different conformational changes.

The understanding of these factors in the context of conformational changes

is difficult just from tabulated data. The next chapter explores a plotting

method that may be used to visualise the factors with the aim of understand-

ing which factor is representing what conformational change.
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Biplots

Biplots [28] [29] [25] are regarded as a multivariate analogue of scatter plots

and were developed by K.R. Gabriel[25]. Biplots aim to create a plot that

shows both the samples and the variables describing these samples in the

same plot. In order to reduce the dimensions of the data set, principle com-

ponents are used. The variables are represented by axes, where the cosine of

the angle between axes approximates the correlation between these variables

and the length of these axes approximates the standard deviation of that

variable. These features are illustrated in Figure 5.1. Within this figure,

the diagram on the left shows a biplot drawn for the purpose of illustration.

The lengths of each coloured line represent the standard deviation of that

variable. In Figure 5.2, the blue line in the diagram on the left is of higher

standard deviation than the red and yellow lines. The angle between axes

representing the variables is given by the cosine of the correlation between

these variables. Thus, the biplot can give an easy to understand overview of

a correlation matrix in both 2 and 3 dimensions as well as an indication of

how variable the variables are.

This is only part of the story. The reason why a biplot is called a biplot

is that all the samples and all the variables are plotted on a single plot. The

process where the samples are plotted onto the biplot is called interpolation.

This process is illustrated in Figure 5.1 where the samples are placed or-

thogonally to the approximate value of all the variables that describe this

102



CHAPTER 5. BIPLOTS 103

Correlation
Blue
Green
Red

Variable
Blue
Green
Red

Standard
Deviation
High
Medium
Low

Blue
1
0
-0.9

Green
0
1
0.1

Red
-0.9
0.1
1

Figure 5.1: An illustrative biplot with the corresponding correlation matrix
and an indication of the standard deviation. This biplot aims to illustrate
the relationship between the variables in a biplot. The cosine of the angle
between the variables represents the correlation between variables while the
length of the axis represents the standard deviation of the variables.

fragment. These two features of biplots make them an extremely useful tool

for examining the reasons for the formation of clusters in dSNAP.

In order to illustrate the properties of a biplot an imaginary dataset is

displayed in Figure 5.3. This figure shows a data set of 15 people where

their height, weight and hair length were measured for each individual. The

plot on Figure 5.3 shows that there is a high correlation between height and

weight while there is a low correlation between hair length and both height

and weight. With regards to the samples, these were coloured according to

sex and there are clear trends between the two populations. It is clear that

the males tend to be taller, heaver with shorter hair while the females tend

to be shorter, lighter with longer hair.

What is the value of biplots? A biplot allows a user to choose variables

which may be significant to the formation of clusters. Once the nature of

the plot is understood, is becomes apparent that a biplot is a useful tool to

uncover the reasons behind the formation of clusters. This is illustrated in

the following examples.
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Figure 5.2: A figure illustrating the properties of the process of interpolation
in the context of biplots. The interpolation of the samples in a biplot gives
an indication of what value that sample, or fragment in this context, has
for each of the variables describing the sample. The interpolation process
aims to place a sample orthogonally from the values that the fragment has
for that variable. The result of this process means that by examining the
position of the sample relative to the variables, it is possible to understand
what changes in variables have resulted in the fragment being placed where
it is on the plot.

5.1 Calculating biplots

In this work, biplots were derived from principal components analysis result-

ing in a n × p matrix X that gives the coordinates of n samples described

by p variables. The objective of principal components analysis is to take the

p variables X1, X2, , Xp and find combinations of these variables to produce

indices Z1, Z2, , Zp that are uncorrelated in order of their importance. These

indices describe the variation in the data. Principal components analysis

involves finding the eigenvalues of the sample covariance matrix. If the n× p

data matrix has been standardised such that each variable has zero mean

and unit variance, the matrix is a correlation matrix. The variances of the

principal components are the eigenvalues of the covariance matrix. Assuming

that the eigenvalues are ordered λ1 ≥ λ2 ≥ ... ≥ λp ≥ 0, then λi corresponds

to the ith principal component

Zi = ai1X1 + ai2X2 + ... + aipXp (5.1)
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Figure 5.3: An example of a data set to illustrate the properties of a biplot.
These data are entirely hypothetical and have been created solely to illustrate
these properties. Interpreting this plot, is it possible to see that height and
weight are correlated while hair length is not correlated with weight or height.
The samples which have been plotted are classified into males and females.
It is clear to see that females tend to be shorter and lighter with longer hair.
Males show the opposite.
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the variance of Zi = λi and the constants ai1, ai2, ..., aip are the elements

of the corresponding eigenvector that have been scaled such that

a2
i1 + a2

i2 + ... + a2
ip = 1 (5.2)

An important property of the eigenvalues is that they sum to the sum

of the diagonal elements of the covariance matrix, since Zi = λi and the

variance of Xi is equal to the ith element of the diagonal of the covariance

matrix. Thus, the p principal components will describe the variance of the

data.

The eigenvectors of X form the column of an orthogonal matrix V. These

eigenvectors form an alternative basis for the ρ dimensional space within

which the samples or fragments are described. Relative to the p dimensional

space, the position of these fragments are given by Z = XVp. That is, the

best display of the n points is given by the n of the matrix Z.

The biplot axis represents the variables describing the fragments. These

axes are calculates as follows: ek is a unit vector along the kth coordinate

axis in the p dimensional space. The point x with coordinates (x1, x2, , xp)

may be written

x =

p
∑

k=1

xkek (5.3)

which will be interpolated to

xVρ =

p
∑

k=1

xk(ekVρ) (5.4)

where ekVρ is the interpolant of the unit point on the kth axis.

Using both of these features, a biplot is calculated in ρ dimensions.
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Figure 5.4: Search information for the fragment difluoroalkene. From this
search 33 fragments were extracted.
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5.2 Model Examples

5.2.1 Difluoroalkene

Clustering of this fragment is described in [10]. The dendrogram in Figure

5.5 shows the fragments in each cluster. As can be seen in this diagram, the

conformation of each of the fragments can easily be distinguished using the

fragment viewer. It is hoped that using a biplot, the variables that describe

these changes will be easily distinguished. The biplot in Figure 5.5 was cre-

ated in Matlab where the first two principal components were plotted. As

can be seen, it is difficult to distinguish how each of the variables is named.

This is a result of a number of problems: 1. there are too many variables

(75 variables describing a 6 atom fragment) and 2. these variables are too

highly correlated. These two factors produce a plot that is hard to interpret.

Nevertheless, it is possible to see that the variables are highly correlated with

many variables measuring the same conformational change. When the plot

is examined in detail, it is clear that there are variables that are describing

specific conformational changes. When the conformations of the fragments

in the red, green and blue clusters in Figure 5.5 are examined, it is apparent

that the major conformational change is a restriction of the carbon backbone

bonded angles. This is reflected in the plot where the axes describing the

variables representing the bonded angles are parallel to a trend between these

clusters (Figure 5.6). Using the interpolation process, it is possible to assign

this conformational change solely to changes in these variables. The major-

ity of the remaining variables are describing the rotational conformational

changes. This is where it becomes particularly difficult to uncover which

of the variables are representing the conformational change. This is partly

the result of the highly redundant data set and partly because of the highly

correlated data. It would appears that in order to make biplots a useful tool

in dSNAP it will be necessary to reduce the number of variables that are

required to describe the fragments.



CHAPTER 5. BIPLOTS 109

Figure 5.5: Dendrogram of difluoroalkene with the fragments illustrated be-
low. The fragments are arranged such that the content of each cluster is
represented from left to right, i.e. the left most fragments are from the red
cluster.

5.3 Reducing Variables

In this section the number of variables has been reduced by the application

of factor analysis. The number of variables had been selected in an identical

manner to that described in Chapter 4. It is hoped that the application of

factor analysis will remove some of the complication that has resulted in the

problems with interpretation of biplots.

5.4 Model examples with reduced variables

5.4.1 3-chlorobut-2-ene-thiolate

These data were first examined in Section 2.2.1. In this section it is demon-

strated that there are two major conformational changes within these data.

There is a conformational change and a restriction of the bonded angle

around the carbon backbone. With reference to Figure 2.3 the conforma-

tional changes within these data are clear in most cases. The variables have

been treated with factor analysis as described in Section 4.4 and a biplot was

drawn from the 46 variables extracted. This biplot is shown in Figure 5.7.

The biplot shown in this figure shows that there are two distinct clusters on
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Figure 5.6: Biplot of difluoroalkene with default data matrix where the frag-
ment was defined by total geometries. Colours have been added according
to the colours in the dendrogram in Figure 5.5.
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either side of the x axis. This change corresponds to the cis/trans change

in conformation. This is illustrated in Figure 2.3 on page 41. There is also

a spread of fragments along the y axis. The fragments with a higher y value

have lower value for bonded angle. From the axes representing the variables

it is hard to make sense of which of the variables are responsible for the con-

formational changes. This is not a rare problem with biplots. The analysis

has been simplified by the application of factor analysis but there is still the

fundamental problem of a large number of highly correlated variables. This

plot tells the user as little as the plot in Figure 5.6. It could be possible that

the inherent simplicity of these data does not lend itself to this particular

type of analysis.

5.4.2 3-aminobutan-2-ol

This fragment was first examined in Section 2.2.2. In summary there are two

different types of conformational change in these data. There is a rotational

component where the atoms are in different orientation as the result of a

rotation around the central bond and there is a constraint on the bonded

angle as a result of the chemical context of the fragment. Factor analysis

is then applied to these data in a manner described in Section 4.5 and the

number of variables have been reduced to 15. With reference to Figure 5.9

it is apparent that there are three different groups of variables.

Approximately following the x axis in Figure 5.9, there are two groups of

variables that are highly negatively correlated. The variables that lie along

this axis are: a163, a216, a316, a162, a136 and a126 as well as a lesser

contribution from a436 and a346. The remaining group of variables are

projected orthogonally for the first two groups of variables. This indicates

that these variables are uncorrelated with the initial two groups of variables.

The variables that lie along this axis are: a415, a365, a256, a265, a356 with

a minor contribution from d56 and d46. An illustration of this fragment

can be found in Figure 5.8. Uncovering what conformation underlies the

pattern in these variables is quite difficult. There should be two different

conformational changes as illustrated in Figure 2.10. There does not appear
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Figure 5.7: Biplot of the fragment 3-chlorobut-2-ene-thiolate where factor
analysis was applied to reduce the number of variables required to describe
the fragment. The fragments have been coloured such that they match the
colours in the dendrogram when the fragment was defined by total geome-
tries.
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Figure 5.8: Diagram of the fragment 3-aminobutan-2-ol

to a clear distinction between these two different conformational changes

based upon the biplot. There is a separation between the fragments that

have a very different conformation of carbon atoms. On the right on the plot

in Figure 5.9 there are the fragments from the cluster where the carbon atoms

are gauche, while the fragments to the right of the plot are those where the

carbon atoms are in anti position. The rotational components are illustrated

in Figure 2.11 on page 50 and it is apparent, based upon this biplot, that

the rotational component is far more important than the restriction in the

carbon backbone of the fragments.

5.4.3 Pentan-2-one

This fragment was described in Section 2.2.3. The major conformational

changes within these data are a rotation around the two torsion bonds. The

dendrogram coupled with the diagrams in Figure 2.19 shows that five clus-

ters have formed when the dendrogram was cut at this level. When factor

analysis was applied to these data 31 variables were extracted with a factor

loading of greater that |0.95|. When these variables were analysed in dSNAP,

the analysis yielded clusters with good agreement with the clusters originally

calculated when the fragments were defined by total geometries. These vari-

ables were then displayed as a biplot. This biplot is shown in Figure 5.10.

As can be seen in this figure, the fragments form clear clusters and there are

a number of variables with varying degrees of correlation. In terms of the
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Figure 5.9: Biplot of the fragment 3-aminobutan-2-ol where the number
of variables has been reduced by the application of factor analysis. The
fragments have been coloured to match the clusters that were found in when
the fragment was defined by total geometries.
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fragments plotted onto the biplot, there are three clear clusters formed. The

colouring of the clusters correspond to the colours displayed in the dendro-

gram 2.19. The fragments in the biplot therefore represent the conformation

displayed in the Newman projections in Figure 2.19. The two largest clus-

ters are the red and yellow clusters. The major difference is a difference in

the conformation of the second torsion bond of the fragment. As a result of

the initial definition of the geometry of the fragments, a large number of the

variables within these reduced data are measuring this change. The variables

which have the largest contribution, with reference to the biplot in Figure

5.10, are a456 and a546. Both of these angles are measuring a change across

both of the torsion angles that are present in this fragment. This make the

plot difficult to understand but it appears that most of the variables that are

plotted along the x axis represent variables that are representing a change

in the second torsion angle. The variables which are approximately along

the y axis are representing variables that are measuring a change in the first

torsion angle.

5.5 Conclusions

To say that there is clear assignment of features in the biplot to conforma-

tional changes for the fragments is unwise. As discussed in Chapter 2 each

variable does not distinctly describe a single change in conformation. The

nature of these data results in biplots that are inherently difficult to analyse.

All of the biplots above show some structure and it is certainly possible to

attribute this structure to the underlying conformational changes in these

data. The difficulty arises when the biplot is used to aid the interpretation

of the clustering. Using the biplot alone, is it difficult to assign structural

meaning to the fragments that make up these data. It is possible to under-

stand how variables are affecting the clustering but this is only possible once

the clusters are understood from a structural point of view.

Nevertheless, the application of biplots to the data produces interesting

results. Certainly the biplot is much easer to understand than the correlation

matrix and gives a user of dSNAP a useful tool to understand what variables
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Figure 5.10: Biplot of the fragment pentan-2-one where factor analysis has
been used to reduce the number of variables before analysis. The colours
that have been applied to the fragments such that they match the colours of
the clusters that the fragments are in when the clusters was defined by total
geometries.
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are affecting the formation of clusters even though as a tool for understanding

the structural reason for the formation of cluster it is of limited use.



Chapter 6

Sparse principal components

analysis

DSPCA[21] or sparse principal components analysis was investigated to see

if this method will aid in the identification of important variables that give

rise to the formation of clusters. Principal components analysis [36] is an

orthogonal linear transform that transforms a set of data to a new coordinate

system such that the greatest variance of the data in projection lies on the

first coordinate (the first principal component), the second greatest variance

on the second coordinate etc. For a data matrix M, with zero empirical

mean (i.e. the mean of the distribution has been subtracted from the data

set), the PCA transformation is given by:

Yt = MtW = VΣ (6.1)

where VΣMt is the SVD of Mt.

The procedure involves calculating the eigenvalues and associated eigen-

vectors

Given a set of points in Euclidean space, the first principal component is

the eigenvector with the largest eigenvalue. This corresponds to a line that

passes through the mean and minimizes the sum squared error with those

points. The second principal component corresponds to the same concept

after all correlation with the first principal component has been subtracted
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out from the points. Each eigenvalue indicates the portion of the variance

that is correlated with each eigenvector. Thus, the sum of all the eigenvalues

is equal to the sum squared distance of the points with their mean divided by

the number of dimensions. PCA essentially rotates the set of points around

their mean in order to align with the first few principal components. This

moves as much of the variance as possible into the first few dimensions. The

values in the remaining dimensions, therefore, tend to be highly correlated

and may be dropped with minimal loss of information. PCA is often used

in this manner for reducing data dimensionality. It is the optimal linear

transform for keeping the subspace that has largest variance.

The disadvantage of PCA is that the principal components are usually a

linear combination of all the variables i.e. all the weights in the linear com-

binations (called loadings) are non zero. In many applications, however, the

coordinates axes have a physical interpretation e.g. they could be a specific

geometric parameter. In these cases the interpretation of the principal com-

ponents could be facilitated if these components involved very few non-zero

loadings. In sparse principal components analysis [21] we sacrifice some of

the explained variance and orthogonality in exchange for a situation in which

most of the weights are either zero or very small.

Let A(n×n) be a symmetric covariance matrix from which we want the

sparse principal components. Let k be an integer such that 1 ≤ k ≤ n. We

want to maximize the variance of a vector x while constraining its cardinality:

Maximize xTAx

Subject to ‖x‖2

and Card(x) ≤ k
This is a NP Hard problem which means that there is no easy solution in

a finite time. This problem gets relaxed by by d’Apremont et al.[20, 21] and

it is now formulated as follows:

Given a matrix A we wish to decompose it into factors with a target

sparsity k. To do this we:
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Maximise Tr(AX)

Subject to Tr(X) = 1

1t |X| ≤ k

X � 0

where

X = xxT

A matrix X(n×n) is positive define if for any non-zero vector z(n) with real

entries (We write this z ∈ Rn)

ztMz > 0

If

M =

(

1 0

0 1

)

and if we take any vector

z =

(

z1

z2

)

then

ztMz = (z1z2)

(

1 0

0 1

)(

z1

z2

)

= z2
1 + z2

2

Since the vector z is non-zero, either z1 > 0 or z2 > 0 so z2
1 + z2

2 > 0 so

ztMz > 0

A matrix is Hermitian if it is a square matrix with complex entries which

is equal to its own conjugate transpose i.e. the element in the ith row and jth

column is equal to the complex conjugate (denoted with a *) of the element

in the jth row and ith column, for all indices i and j:
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aij = a∗
j i

e.g. the matrix

(

3 2 + i

2 − i 1

)

is Hermitian.

A Hermitian matrix M is positive semidefinite if

ztMz ≥ 0

For any matrix M, the matrix M∗M is positive semidefinite

Notation: The constraint that a matrix M is positive semidefinite is written

X �

The trace of a matrix is the sum of its diagonals and is written Tr(M)e.g.

Tr

(

1 2

3 4

)

= 5

The cardinality of the vector is the number of non-zero components. It is

written Card(z). e.g. for the vector

Card(z) =







0.5

0

1.5






= 2

For a matrix rather than a vector the cardinality is the number of nonzero
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coefficients.

The column rank of a matrix M is the maximal number of linearly inde-

pendent columns of M; the row rank is the maximal number of linearly

independent rows of M. Since the column rank and the row rank are always

equal, they are simply called the rank of M. We write this as Rank(M).

A vector of 1s is written 1

6.1 Method

Analysis was carried using the implementation of DSPCA created by A.

d’Aspremont et al [21, 20]. The following settings were applied:

Input Value
algo 1(full eigenvalue decomposition)
gapchange 0.05
rho 0.5
info 1
maxiter 1000

Table 6.1: Settings for sparse PCA. algo controls the method for comput-
ing the matrix exponential. Gapchange is the target reduction in duality
gap. Maxiter in the maximum number of iterations and ρ is a parameter
controlling sparsity. Info controls the verbosity of the reporting.

The program DSPCA was run in MATLAB using following the user guide

provided from [20]. The dominant eigenvector from this analysis was used

to select important variables for each of the examples and are tabulated in

Appendix D.

6.2 Model examples

6.2.1 Difluoroalkene

This fragment bears a close resemblance to the fragment 3-chlorobut-2-ene-

thiolate described in Section 2.2.1. The clustering is also described in [10].
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Figure 6.1: Dendrogram of difluoroalkene with diagram of the fragment. For
this dendrogram the fragment was defined by total geometries.

Within these data there are two major conformational changes: A cis/trans

conformational change and a restriction of the bonded angles dictated by

the molecular context from where the fragment was derived from. The red,

yellow, green and blue clusters are in trans conformation. The difference

between these fragments is the chemical context that the fragment finds itself

in. The red cluster is in either the backbone of a molecule or in a greater

than six member ring. The yellow cluster is in an eight member ring but the

twisted double bond conformation is the result of a mis-classification of the

single and double bonds when the structure was solved. The green and blue

fragments have their backbones constrained in either a five member ring or

a four member ring. The remaining cyan cluster is in cis conformation and

the backbone is in the backbone of the original fragment.

The fragment had its geometry described using total geometries. Sparse

principal components analysis was applied to these variables with the inten-

tion of identifying the key variables that are causing the formation of these

clusters. By applying sparse principal components analysis the number of

variables has been reduced from 75 describing the fragment with total geome-

tries to eight variables. These variables were chosen from the first eigenvector

calculated during sparse principal components analysis. This can be seen in

Table D.1 on page 162. The variables deemed important were selected by

thresholding those variables that had an absolute value of greater than 0.2.
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These variables were then extracted from the original data matrix, tabulated

and used as the input for dSNAP. The variables extracted are a314, a316,

a415, a516, a324, a326, a425, a526. In Figures 6.2 and 6.3 it is clear that

when the number of variables has been reduced by the application of sparse

principal components analysis, the clusters generated in dSNAP using these

variables matches the clusters generated when the fragments were described

by total geometries. This shows that applying sparse principal components

analysis to these data has selected variables that accurately describe the

geometries of the fragments.

6.2.2 3-aminobutan-2-ol

This fragment was described in Section 2.2.2. There are essentially 2 major

conformational changes; there is a rotational component involving a rotation

around the central bond along with the relative chrirality of the fragments

and there is also a restriction in the bonded angles owing to the molecular

context from where the fragments were derived from. These conformational

changes are illustrated in Figure 2.10. Figure 6.4 shows the different confor-

mations of the fragments within these data.

When sparse principal components analysis was applied to the 75 vari-

ables that describe the fragment in total geometries, 11 variables were deemed

to be significant and were extracted. That is, the absolute value for the first

eigenvector was greater that 0.2. This can be seen on Table D.2 on page 164.

These variables were then tabulated and was used as an input for dSNAP.

The variables selected were a415, a126, a425, a134, a136, a435, a143, a146,

a154, a164. The output from dSNAP was then analysed to compare the clus-

tering from the original analysis described in Section 2.2.2 with the output

from sparse principal components analysis. As can be seen in Figure 6.6, the

dendrograms are quite different in general appearance. However, it can be

seen from Figure 6.5, the clusters of fragments derived from total geometries

are partially preserved even when the number of variables has been reduced

by applying sparse principal components analysis. When analysis was carried

out on the fragments described using key variables identified using DSPCA,
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Figure 6.2: Cell displays of the fragment difluoroalkene with the fragment
described by total geometries on the top and with the variables reduced by
the application of sparse principal components analysis on the bottom.
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Figure 6.3: Dendrograms of the fragment difluoroalkene with the fragment
described by total geometries on the top and with the variables reduced by
the application of sparse principal components analysis on the bottom.
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Figure 6.4: Expected geometric changes in the fragment 3-aminobutan-2-ol.
Also there are 2 chiral centres which should also be found in S* and R* con
formation.

it was found that cluster formation was fairly rational with respect to the

broad conformations of the fragments. It was found that there was a loss of

fine detail that separates some of the minor conformational changes. This

minor loss of information could account for the different clustering. A con-

clusion to this initial exercise is that in order to maintain the precision of the

clustering it may be necessary to analyse more eigenvectors from the output

of sparse principal components analysis.

6.2.3 Pentan-2-one

The geometry of this fragment was described in Section 2.2.3 where the frag-

ment was described using total geometries. A summary of the conformations

can be found in Figure 2.19. In summary the major conformational changes

within these data are a rotation around both of the backbone torsion angles

as illustrated in Figure2.19.

Sparse principal components analysis was applied to the 75 variables de-
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Figure 6.5: Cell display of 3-aminobutan-2-ol with the fragment defined by
total geometries on top and the cell display with the variables describing the
fragment reduced by the application of sparse PCA on the bottom.
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Figure 6.6: Dendrogram of comparing the fragment 3-aminobutan-2-ol when
the fragment was described by total geometries on the top and with the
variables reduced by the application of sparse PCA on the bottom.
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Figure 6.7: Cell display comparing the fragment pentan-2-one where the
fragment was defined by total geomtries (top) and when the number of vari-
ables are reduced by the application of sparse principal components analysis
(bottom)
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Figure 6.8: Dendrogram comparing the fragment pentan-2-one where the
fragment was defined by total geomtries (top) and when the number of vari-
ables are reduced by the application of sparse principal components analysis
(bottom)
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scribing the total geometries of the fragment pentan-2-one and 7 variables

were extracted. An important variable was deemed to have an absolute value

for the first eigenvector greater that 0.2. The initial eigenvector can be seen

in Table D.3 on page 166. These variables were then tabulated and used as

the input for dSNAP. The variables extracted are a135, a235, a536, a145,

a245, a546, a456When this outputs of dSNAP was compared with the orig-

inal output when the fragment was defined with total geometries there is

good agreement between the 2 cell displays in Figure 6.7. The dendrograms

in Figure 6.8 also shows that there is good agreement between the 2 different

definitions of the fragment. This shows that the 7 variables extracted from

by the application of sparse principal components analysis have accurately

clustered the fragments into groups with similar conformation.

6.3 Conclusions

This section looks into the application of sparse principal components analy-

sis with the aim of reducing the number of variables required to describe the

conformation of the fragments. The 3 examples above indicate that the ap-

plication of sparse principal components analysis to the variables describing

the fragments in question has significantly reduced the number of variables.

In the case of pentan-2-one the number of variable has been reduced by an

order of magnitude. This indicates that sparse principal components analysis

in the form of DSPCA [21] has successfully reduced the number of variables

required to describe the geometry of the fragment in these examples. While

there is not exact agreement between the out put from dSNAP when the

fragments were defined with total geometries and variables extracted by ap-

plying sparse principal components analysis there is enough to show that

this method is expreamly promising. It would be of interest to see if DSPCA

could be extended to extract more than a single eigenvector. If this were to

be true then sparse principal components analysis may well be of use as an

aid for understanding the formations of clusters in dSNAP.



Chapter 7

Conclusions

This thesis has concentrated on understanding the nature of the geometric

definition of substructural chemical fragmetns and their application to the

program dSNAP and with investigating methods of reducing the number of

variables required to describe the conformation of fragments.

Broadly speaking the program groups the fragments which have been

mined from the Cambridge structural database into groups that have a sim-

ilar conformation or shape. The definition that describes this conformation

is vital to the accurate function of the program. In Chapter 2 there is an

examination into various geometric definitions that can be applied to frag-

ments. Each of these definitions has their merits but they can be broadly

grouped into bonded and non-bonded definitions. The bonded definitions are

those that only involve variables that directly measure the bond distances,

the bond angles and torsions angles. With reference to the model examples

in Chapter 2: When the fragments were defined by bonded variables the

fragments were not grouped into clusters made up of fragments with distinct

conformations. There were a few interesting characteristics that were exposed

when clustering using bonded definitions. One such example is the fragment

pentan-2-one where there were some fragments that had shorter bond lengths

that were masked when using total geometries. When the fragments were

defined using non-bonded variables most of the fragments formed clusters

that were made up of fragments with similar conformations. This indicates
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that these definitions have done an adequate job of classifying the fragments

into sensible clusters containing fragments with similar conformations that

are discrete in conformation from the other clusters. When the different

non-bonded definitions are examined there is not much difference between

them. The non-bonded definitions are total geometries, all angles and all

distances. In theory either of these definitions could be used in dSNAP to

define the conformation of the fragments. The advantage of total geome-

tries is that both the distances and angles can be examined, particularly in

variable space where individual variables can be compared with each other.

One of the major drawbacks to this definition is that the variables are

highly redundant. For example to describe the position of three points in

space it requires six variables. This proves to be a problem when attempt-

ing to detect specific changes in conformation by observing changes in the

variables with these data. Triangles (Chapter 3) discuss the possibility of

summarising a number of variables by describing collections of variables as

triangles. In the example above the three points could be described using

the area of a triangle. Initially simulations of the area of triangles were car-

ried out. These show that the area of a triangle will change with different

rotations around a torsion angle. When a single torsion angle was simu-

lated is was relatively easy to see the relationship between the torsion angle

and triangle area. When two torsion angles were simulated the relationship

between torsion angle and triangle area is much more complicated. With

reference to Figure 3.6 it is apparent that for a given area of triangle there

are many possible torsion angles that could give rise to that area. This could

well be one of the reasons why when the fragment pentan-2-one was defined

by triangles in Section 3.2.5 there was little agreement between the output

from dSNAP when the fragment was defined with this definition and when

the fragment was defined with total geometries. There are also issues with

the suitability of triangles to describe the geometries of certain fragments.

Also, in this implementation the triangles have to be calculated manually

which is against the principal where the geometry of the fragments should

be calculated automatically.

In an attempt to reduce the number of variables required to accurately
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describe the geometry of the fragments factor analysis was applied. Factor

analysis attempts to extract latent variables that describe hidden features

of the dataset. These hidden variables could represent different changes in

conformation but it is not clear which factor is measuring which change in

conformation. Nevertheless by selecting variables that are strongly related to

these factors it was possible in some cases to reduce the number of variables

required to describe the geometry of the fragment. However there are some

situations where a relatively low percentage of the variance within a given

dataset can be explained by applying factor analysis. There is also an issue

where the variables are all interrelated. This could be one of the reasons

why it is difficult to assign a name to a given factor. It was hoped that each

factor could be named after a different conformational change. While this is

unfortunate, the application of factor analysis had significantly reduced the

number of variables required to describe the fragments.

Biplots are a method to display both the variables and the samples, or

in this case fragments, to be displayed in a single plot. With some basic

explanation it is easy to interpret the plot. One of the problems that became

apparent is that as the number of variables increases the biplot becomes in-

creasingly difficult to understand. This is a particular problem in this context

as the number of atoms increases the number of variables increases of the

order n3 where n is the number of atoms. To this end factor analysis was

applied to reduce the number of variables required to describe the confor-

mation of the fragments. With these reduced data the biplots became much

easer to understand. Using a biplot it is possible in effect to view the en-

tire correlation matrix combined with an indication of the variability of each

variable. Utilising the properties of biplots it is possible to select groups of

variable which are differentiating between conformations of fragments. This

ultimately is the reason why biplots were utilised in this research. By ex-

amining the biplots in Chapter 5 it is possible to see the groups of variables

that are differentiating between the different conformations of fragments.

Sparse principal components analysis was applied to the input data for

dSNAP where the fragments were described by total geometries. Variables

that were deemed to be significant were extracted by thresholding. That
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is, variables that were above a certain threshold value were extracted and

used as an input for dSNAP. By comparing the output from the fragments

described by total geometries and when variables were extracted using sparse

principal components analysis there is good agreement between the 2 outputs.

It should also be noted that the number of variables extracted using this

method is much lower when compared with the other methods of reducing

the number of variables above. If the implementation of the method could

be extended to produce more than 1 eigenvector then this could lead to a

useful method for identifying the key variables describing the formation of

clusters in dSNAP

7.0.1 Future Work

The implementation of multivariate statistics to dSNAP for the purpose of

systematically reducing the variables would be a useful aid for a user of

dSNAP. If the fragment is described using total geometries, the number of

variables required to describe a medium to large fragment are vast and highly

redundant. When examining thousands of variables with the aim of under-

standing why the clusters of fragments have formed, statistical methods that

ease this burden are essential if the program is to remain user friendly. The

implementation of factor analysis and sparse principal components analysis

in dSNAP would be a huge advantage. However, if would not be prudent

to apply factor analysis and sparse principal components analysis to total

geometries before performing the standard analysis that dSNAP carries out.

As shown in the chapters above, there are occasions where the datasets re-

duced by applying these methods have not faithfully reproduced the clusters

generated when the fragments were defined using total geometries. Neverthe-

less, as post cluster analysis processing, the above methods could drastically

reduce the time taken to understand the clustering.

These statistical methods would become much more accessible if they

were combined with biplots. Biplots are relatively easy to understand and

give a much more informative overview of a correlation matrix than would

be possible by viewing a large correlation matrix. If multivariate statistical
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analysis was employed before constructing the biplot, it may be possible to

reduce a large, highly correlated dataset to a few key variables. These vari-

ables might not necessarily be the sole variables that are causing clusters of

fragments to form but could be regarded as the most representative variable

of a number of highly correlated variables. For example, if after factor anal-

ysis a variable with the highest loading was chosen to represent the factor, it

could be possible to generate a clear and easy to interpret biplot that could

significantly ease the burden of interpretation on the user.

It may also be possible in the case of very large fragments to use the def-

inition of all distances opposed to total geometries. This would reduce the

number of variables describing the fragment and as demonstrated in Chapter

2 there is good agreement between this definition and total geometries. Un-

fortunately, the use of the area of triangles to describe the shape of fragments

is too subjective and does not perform adequately well to be implemented in

dSNAP.



Appendix A

Geometric analysis

Table A.1: Table that describes whither the fragment pentan-2-one has fallen

into the same cluster as when the fragment was described by total geometries.

refcode TG Angles Distances Bonded Torsion

AVAGIN A A A A A

YAXGAG A A A A A

BEWHUG A A A A A

JATXIL A A A A A

JUJJUT A A A A A

YEQBUR A A A A A

CITDOY A A A A A

HABZUF A A A A A

JEYJED 02 A A A A A

TIVKUE A A A A A

GIZRIQ A A A A C

PAPDUG A A A A C

NACJIK A A A A A

HERBAS A A A A A

HEDMOT A A A A A

RIBVUU 01 A A A A A

DEZVOT A A A A A

DICREM A A A A C

EABZEM A A A A C

XOCXUI 02 A A A A C

XOCXUI 01 A A A A A

JEYJED 01 A A A A C

XOCXUI01 01 A A A A C

XOCXUI03 01 A A A A C

XOCXUI01 02 A A A A A

XOCXUI03 02 A A A A A

XIDNOO A A A A C

Continued on next page
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Table A.1 – continued from previous page

refcode TG Angles Distances Bonded Torsion

XOCXUI02 A A A A A

PILHAU A A A A A

QELMOJ A A A A A

GEKDAC A A A A A

JEKPIY A A A A A

RIBVUU 02 A A A A A

ROLNIP A A A A C

UBUNIO A A A A A

EFAXAK A A A A C

EFAXEO A A A A A

VAPQEJ A A A A A

ZIXTAB A A A A A

JAKGEH A A A A A

JEYJED 03 A A A A A

BEZWEI A A A A C

GALCAX 01 A A A A A

GALCAX 02 A A A A A

GALCAX02 A A A A A

ZIKTUI A A A A C

FOFKUH A A A A A

REFREZ A A A A A

GALCAX01 A A A A A

LIDJOY 01 A A A A A

LIDJOY 03 A A A A A

HOTSIS A A A A A

PIWJIO A A A A A

FAKZEX A A A A C

YASVEU A A A A C

KUFNII A A A A C

LELGUE A A A A C

LUCGAR A A A A A

NEMPUR 01 A A A A A

NEMPUR 02 A A A A A

EZOMEL A A A A C

LUNNIR 01 A A A A A

LUNNIR 02 A A A A A

SOHTEO A A A A C

HEYMAA A A A A A

JIDHUZ A A A A A

WINNEM A A A A C

QAHJUF A A A A A

YIDMED A A A A C

BANVAO A A A A C

SOCJEZ A A A E C

VUCSOB A A A E A

LELDIP A A A E A

TOZHOF A A A F F

Continued on next page
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Table A.1 – continued from previous page

refcode TG Angles Distances Bonded Torsion

YOLMUH A A A A C

CEWWAC01 A A A E A

PEZNAK 01 A A A E A

PEZNAK 02 A A A E A

ECETUB A A A A C

TEJSEH A A A E A

WEFMEA A A A E C

RUVSIK A A A A A

ZUWPAI A A A B A

BULCEQ B D B A B

TEKWEL B D B A B

RAKFEP B D B A C

RIZWUS B D B A C

FEXFEU 02 B D B A C

LIDJOY 02 B D B A C

LIDJOY 04 B D B A C

CEGDOH B D B A C

YEHRIM B D B A C

KANDUY B D B A C

HALDOL01 B D B A B

LOZDIN B D B A B

MAJUSB B D B A C

WOMREV B D B A C

FEXFEU 01 B D B A C

FERYOR B D B E B

FERYUX B D B E B

GOKBOX B D B E E

SEBQIA B D B E B

WOYQEG B D B A B

CAWVOL B D B C C

MERWIQ C E F G G

EXUCIJ 01 D B C E D

EXUCIJ 02 D B C E D

HALLOV D B C E D

YASVAQ D B C E D

SIHHAS D B D D A

FIVGOG D C C A C

JIKDEM E F E E B

QEVPUD E F E A B



Appendix B

Triangles

Table B.1: Table describing the variables of 3-aminobutan-2-ol.

Variable σ Range Minimum Maximum Mean Figure

d 1 2 0.019 0.116 1.447 1.563 1.524

d 1 3 0.055 0.252 2.371 2.623 2.508

d 1 4 0.417 1.566 2.340 3.906 3.056

d 1 5 0.039 0.181 2.382 2.563 2.467

d 1 6 0.395 1.114 2.668 3.782 3.248

d 2 3 0.038 0.343 1.277 1.620 1.528

d 2 4 0.074 0.432 2.184 2.616 2.503

d 2 5 0.017 0.125 1.404 1.529 1.470

d 2 6 0.049 0.366 2.136 2.502 2.415

d 3 4 0.036 0.257 1.293 1.550 1.515

Continued on next page
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Table B.1 – continued from previous page

Variable σ Range Minimum Maximum Mean Figure

d 3 5 0.049 0.314 2.240 2.554 2.475

d 3 6 0.022 0.143 1.302 1.445 1.421

d 4 5 0.323 1.086 2.793 3.879 3.607

d 4 6 0.079 0.636 1.863 2.499 2.402

d 5 6 0.275 1.135 2.631 3.766 2.951

a 2 1 3 1.976 12.864 26.221 39.085 34.760

a 2 1 4 14.301 50.435 21.919 72.354 53.534

a 2 1 5 1.176 5.136 30.928 36.064 33.816

a 2 1 6 15.790 45.457 18.536 63.993 42.729

a 3 1 4 7.269 26.116 11.777 37.893 28.374

a 3 1 5 1.328 7.148 55.815 62.963 59.640

a 3 1 6 7.612 21.482 10.112 31.594 22.770

a 4 1 5 14.752 53.918 46.542 100.460 81.700

a 4 1 6 4.383 15.605 37.632 53.237 43.361

a 5 1 6 11.172 44.983 45.143 90.126 60.522

a 1 2 3 3.687 21.603 102.136 123.739 110.589

Continued on next page
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Table B.1 – continued from previous page

Variable σ Range Minimum Maximum Mean Figure

a 1 2 4 21.265 74.552 70.481 145.033 97.764

a 1 2 5 2.186 9.759 106.933 116.692 110.951

a 1 2 6 24.090 67.641 81.923 149.564 112.592

a 3 2 4 1.983 8.791 30.796 39.587 34.435

a 3 2 5 2.366 9.134 107.954 117.088 111.242

a 3 2 6 1.053 5.730 30.578 36.308 33.581

a 4 2 5 20.853 66.801 84.540 151.341 132.324

a 4 2 6 1.635 11.100 51.079 62.179 58.409

a 5 2 6 15.851 67.537 82.681 150.218 97.049

a 1 3 2 1.795 8.905 30.040 38.945 34.651

a 1 3 4 22.223 79.401 69.454 148.855 98.090

a 1 3 5 1.390 6.611 56.336 62.947 59.348

a 1 3 6 24.943 71.891 80.489 152.380 112.034

a 2 3 4 3.874 18.098 100.139 118.237 110.781

a 2 3 5 1.388 7.009 30.734 37.743 33.630

a 2 3 6 2.042 12.017 104.096 116.113 109.913

Continued on next page
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Table B.1 – continued from previous page

Variable σ Range Minimum Maximum Mean Figure

a 4 3 5 20.993 68.279 85.804 154.083 131.657

a 4 3 6 3.250 26.180 91.755 117.935 109.772

a 5 3 6 16.141 66.421 79.323 145.744 95.906

a 1 4 2 6.991 25.258 13.048 38.306 28.702

a 1 4 3 14.987 54.308 19.368 73.676 53.536

a 1 4 5 2.650 13.742 38.471 52.213 41.080

a 1 4 6 15.172 55.011 44.547 99.558 72.534

a 2 4 3 1.988 9.307 30.967 40.274 34.784

a 2 4 5 6.664 20.767 10.885 31.652 16.933

a 2 4 6 1.419 7.679 55.457 63.136 58.953

a 3 4 5 13.981 44.962 16.489 61.451 30.661

a 3 4 6 1.801 15.207 29.117 44.324 33.837

a 5 4 6 11.622 47.421 43.496 90.917 54.657

a 1 5 2 1.078 4.624 32.379 37.003 35.233

a 1 5 3 1.809 8.269 56.349 64.618 61.012

a 1 5 4 14.950 54.699 38.366 93.065 57.220

Continued on next page
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Table B.1 – continued from previous page

Variable σ Range Minimum Maximum Mean Figure

a 1 5 6 13.202 44.592 48.331 92.923 73.639

a 2 5 3 1.249 4.765 32.138 36.903 35.129

a 2 5 4 14.204 46.035 17.773 63.808 30.743

a 2 5 6 10.608 44.127 18.681 62.808 53.829

a 3 5 4 7.026 23.317 9.428 32.745 17.682

a 3 5 6 5.009 20.178 12.474 32.652 28.050

a 4 5 6 3.113 16.770 32.608 49.378 40.562

a 1 6 2 8.319 23.114 11.899 35.013 24.679

a 1 6 3 17.367 50.543 17.508 68.051 45.196

a 1 6 4 15.527 57.119 39.093 96.212 64.105

a 1 6 5 4.492 12.307 39.595 51.902 45.840

a 2 6 3 1.167 6.404 33.309 39.713 36.506

a 2 6 4 1.952 9.750 56.221 65.971 62.639

a 2 6 5 5.293 23.646 11.102 34.748 29.122

a 3 6 4 1.521 10.974 32.948 43.922 36.391

a 3 6 5 11.173 46.243 21.782 68.025 56.045

Continued on next page
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Table B.1 – continued from previous page

Variable σ Range Minimum Maximum Mean Figure

a 4 6 5 12.867 48.596 48.981 97.577 84.780



Appendix C

Factor Analysis

C.1 3-chlorobut-2-ene-thiolate

Table C.1: Table of rotated factor loadings of the fragment 3-chlorobut-2-ene-

thiolate

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

d 1 2 -0.098 -0.180 -0.126 -0.855 -0.008 0.103

d 1 3 0.191 0.150 -0.022 0.841 0.289 -0.033

d 1 4 0.759 0.305 -0.074 -0.176 -0.524 0.041

d 1 5 0.017 0.638 -0.097 -0.014 0.258 0.163

d 1 6 -0.745 -0.042 -0.386 0.166 0.496 0.048

d 2 3 0.140 0.937 -0.073 0.210 0.028 -0.053

d 2 4 0.422 0.073 0.117 0.759 0.046 0.111

d 2 5 0.017 -0.777 0.055 -0.248 0.144 0.516

d 2 6 0.352 0.644 0.045 0.416 -0.155 0.268

d 3 4 0.902 0.354 0.023 0.001 -0.240 -0.027

d 3 5 -0.065 -0.696 -0.081 0.430 0.383 -0.279

d 3 6 -0.952 0.131 -0.152 0.050 0.212 -0.017

d 4 5 -0.955 -0.167 -0.097 -0.173 -0.103 0.070

d 4 6 0.375 0.083 0.836 0.340 -0.00696 0.119

d 5 6 0.952 -0.110 -0.017 0.212 0.141 0.106

a 2 1 3 0.076 0.990 -0.043 0.034 -0.081 -0.044

a 2 1 4 -0.691 -0.288 0.097 0.313 0.569 -0.012

a 2 1 5 0.047 -0.890 0.145 0.158 0.045 0.382

a 2 1 6 0.737 0.225 0.357 -0.150 -0.500 0.020

a 3 1 4 0.924 0.352 0.049 0.046 -0.123 -0.019

a 3 1 5 -0.189 -0.910 -0.028 -0.214 0.077 -0.261

a 3 1 6 -0.971 0.1919 -0.088 -0.070 0.059 -0.047

a 4 1 5 -0.954 -0.261 -0.045 -0.024 0.117 0.052

a 4 1 6 0.3451 -0.030 0.908 0.221 -0.062 0.017

a 5 1 6 0.981 -0.093 0.093 0.091 -0.070 0.073

Continued on next page
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Table C.1 – continued from previous page [3-chlorobut-2-ene-thiolate]

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

a 1 2 3 -0.054 -0.972 0.054 0.171 0.118 0.032

a 1 2 4 0.728 0.301 -0.080 -0.211 -0.569 0.012

a 1 2 5 -0.027 0.907 -0.126 -0.043 -0.016 -0.358

a 1 2 6 -0.728 -0.196 -0.356 0.211 0.505 -0.011

a 3 2 4 0.953 0.147 0.051 -0.033 -0.257 -0.008

a 3 2 5 -0.157 -0.827 -0.026 0.284 0.200 -0.381

a 3 2 6 -0.948 -0.122 -0.153 0.034 0.248 0.008

a 4 2 5 -0.956 0.012 -0.129 -0.215 -0.144 -0.020

a 4 2 6 0.137 -0.186 0.969 -0.051 0.037 -0.009

a 5 2 6 0.962 0.012 -0.038 0.226 0.142 0.014

a 1 3 2 -0.094 -0.962 0.029 -0.241 0.040 0.054

a 1 3 4 -0.925 -0.346 -0.062 -0.069 0.118 0.018

a 1 3 5 0.138 0.930 0.028 0.004 -0.131 0.287

a 1 3 6 0.969 -0.2037 0.089 0.050 -0.069 0.050

a 2 3 4 -0.949 -0.153 -0.060 0.040 0.260 0.008

a 2 3 5 -0.025 -0.732 0.112 -0.467 -0.099 0.460

a 2 3 6 0.943 0.117 0.160 -0.042 -0.262 -0.006

a 4 3 5 -0.951 -0.268 -0.060 -0.074 0.107 0.047

a 4 3 6 0.767 -0.049 0.588 -0.067 -0.226 -0.003

a 5 3 6 0.979 -0.121 0.092 0.049 -0.082 0.074

a 1 4 2 -0.758 -0.310 0.059 0.092 0.558 -0.011

a 1 4 3 -0.920 -0.364 -0.022 0.006 0.134 0.019

a 1 4 5 0.950 0.281 0.046 0.019 -0.107 -0.06

a 1 4 6 -0.751 -0.152 -0.435 0.071 0.462 -0.002

a 2 4 3 -0.954 -0.144 -0.047 0.030 0.255 0.008

a 2 4 5 0.960 -0.015 0.128 0.197 0.142 0.021

a 2 4 6 -0.160 0.242 -0.950 -0.015 -0.063 0.021

a 3 4 5 0.634 -0.584 0.242 0.157 0.153 -0.323

a 3 4 6 -0.952 -0.119 -0.134 0.027 0.245 0.010

a 5 4 6 0.969 0.017 -0.008 0.199 0.139 0.021

a 1 5 2 -0.074 0.823 -0.166 -0.326 -0.086 -0.401

a 1 5 3 0.230 0.812 0.026 0.435 -0.008 0.210

a 1 5 4 0.957 0.250 0.044 0.028 -0.123 -0.050

a 1 5 6 -0.981 0.086 -0.097 -0.093 0.070 -0.070

a 2 5 3 0.112 0.970 -0.055 0.123 -0.059 -0.059

a 2 5 4 0.945 -0.008 0.131 0.252 0.147 0.017

a 2 5 6 -0.961 -0.002 0.039 -0.214 -0.161 -0.008

a 3 5 4 0.937 0.314 0.046 0.066 -0.120 -0.028

a 3 5 6 -0.977 0.152 -0.094 -0.059 0.067 -0.056

a 4 5 6 -0.426 -0.093 0.876 0.097 -0.124 0.006

a 1 6 2 0.708 0.152 0.352 -0.297 -0.507 -0.004

a 1 6 3 0.972 -0.166 0.086 0.120 -0.034 0.042

a 1 6 4 0.735 0.225 -0.116 -0.263 -0.566 -0.010

a 1 6 5 -0.980 0.107 -0.085 -0.088 0.072 -0.077

a 2 6 3 0.950 0.125 0.148 -0.029 -0.239 -0.009

a 2 6 4 -0.103 0.108 -0.967 0.136 -0.004 -0.007

a 2 6 5 -0.961 -0.016 0.038 -0.233 -0.132 -0.017

Continued on next page
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Table C.1 – continued from previous page [3-chlorobut-2-ene-thiolate]

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

a 3 6 4 0.956 0.137 0.075 -0.022 -0.243 -0.010

a 3 6 5 -0.879 -0.245 -0.058 0.078 0.239 -0.270

a 4 6 5 -0.963 -0.009 -0.078 -0.216 -0.132 -0.023

Table C.2: Table of commonalities of the fragment 3-chlorobut-2-ene-thiolate

Variable Initial Extraction

Communalities

Initial Extraction

d 1 2 1 0.799

d 1 3 1 0.857

d 1 4 1 0.981

d 1 5 1 0.510

d 1 6 1 0.981

d 2 3 1 0.951

d 2 4 1 0.788

d 2 5 1 0.956

d 2 6 1 0.810

d 3 4 1 0.997

d 3 5 1 0.904

d 3 6 1 0.995

d 4 5 1 0.994

d 4 6 1 0.976

d 5 6 1 0.996

a 2 1 3 1 0.998

a 2 1 4 1 0.991

a 2 1 5 1 0.987

a 2 1 6 1 0.994

a 3 1 4 1 0.998

a 3 1 5 1 0.985

a 3 1 6 1 0.998

a 4 1 5 1 0.998

a 4 1 6 1 0.997

a 5 1 6 1 0.998

a 1 2 3 1 0.996

a 1 2 4 1 0.995

a 1 2 5 1 0.969

a 1 2 6 1 0.995

a 3 2 4 1 0.999

a 3 2 5 1 0.974

a 3 2 6 1 0.999

a 4 2 5 1 0.998

a 4 2 6 1 0.996

a 5 2 6 1 0.998

Continued on next page
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Table C.2 – continued from previous page [pentanone-2-one]

Variable Initial Extraction

a 1 3 2 1 0.997

a 1 3 4 1 0.999

a 1 3 5 1 0.984

a 1 3 6 1 0.9988

a 2 3 4 1 0.998

a 2 3 5 1 0.988

a 2 3 6 1 0.999

a 4 3 5 1 0.998

a 4 3 6 1 0.992

a 5 3 6 1 0.997

a 1 4 2 1 0.994

a 1 4 3 1 0.996

a 1 4 5 1 0.998

a 1 4 6 1 0.995

a 2 4 3 1 0.999

a 2 4 5 1 0.998

a 2 4 6 1 0.991

a 3 4 5 1 0.954

a 3 4 6 1 0.999

a 5 4 6 1 0.998

a 1 5 2 1 0.985

a 1 5 3 1 0.946

a 1 5 4 1 0.998

a 1 5 6 1 0.998

a 2 5 3 1 0.979

a 2 5 4 1 0.995

a 2 5 6 1 0.997

a 3 5 4 1 0.998

a 3 5 6 1 0.997

a 4 5 6 1 0.982

a 1 6 2 1 0.994

a 1 6 3 1 0.996

a 1 6 4 1 0.994

a 1 6 5 1 0.998

a 2 6 3 1 0.999

a 2 6 4 1 0.977

a 2 6 5 1 0.998

a 3 6 4 1 0.999

a 3 6 5 1 0.972

a 4 6 5 1 0.997
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Component Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings
Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %

1 43.971 58.628 58.628 43.971 58.628 58.628 41.010 54.681 54.681
2 14.492 19.322 77.951 14.492 19.322 77.951 14.830 19.774 74.454
3 6.097 8.129 86.080 6.097 8.129 86.080 6.655 8.874 83.328
4 5.592 7.457 93.536 5.592 7.457 93.536 4.460 5.947 89.275
5 1.668 2.223 95.760 1.668 2.223 95.760 4.334 5.779 95.054
6 1.195 1.593 97.353 1.195 1.593 97.353 1.725 2.300 97.352

Table C.3: Table of variances of factor analysis of the fragment 3-chlorobut-2-ene-thiolate
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C.2 3-aminobutan-2-ol

Table C.4: Table of rotated factor loadings of the fragment 3-aminobutan-2-ol

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

d 1 2 -0.114 0.206 -0.127 0.638 0.024 0.200

d 1 3 -0.102 0.116 -0.155 0.290 0.746 -0.177

d 1 4 -0.830 0.233 -0.145 0.050 0.303 -0.262

d 1 5 -0.002 0.107 -0.033 0.305 -0.235 0.812

d 1 6 0.144 -0.972 0.120 0.106 0.007 0.006

d 2 3 -0.176 0.047 -0.140 0.813 0.043 0.081

d 2 4 -0.217 -0.010 0.023 0.520 0.765 -0.050

d 2 5 0.059 -0.189 0.179 0.188 0.023 -0.023

d 2 6 -0.095 -0.025 -0.188 0.709 -0.038 0.243

d 3 4 0.028 -0.116 0.114 0.757 0.038 0.175

d 3 5 -0.113 0.034 -0.082 0.554 -0.140 0.064

d 3 6 0.205 -0.159 0.051 0.572 0.128 0.147

d 4 5 0.869 -0.029 0.298 0.077 0.099 -0.206

d 4 6 0.040 -0.122 0.051 0.957 -0.075 0.019

d 5 6 -0.302 0.146 -0.925 0.088 0.007 0.011

a 2 1 3 -0.064 -0.050 0.013 0.497 -0.635 0.252

a 2 1 4 0.879 -0.261 0.175 0.053 -0.105 0.243

a 2 1 5 0.011 -0.184 0.103 -0.080 0.278 -0.859

a 2 1 6 -0.142 0.972 -0.145 -0.001 -0.012 0.053

a 3 1 4 0.888 -0.271 0.171 0.039 -0.137 0.210

a 3 1 5 -0.055 -0.074 0.017 0.269 -0.460 -0.149

a 3 1 6 -0.107 0.975 -0.117 -0.067 0.055 0.035

a 4 1 5 0.945 -0.135 0.250 0.007 -0.143 -0.007

a 4 1 6 0.688 0.600 0.111 0.167 -0.134 0.219

a 5 1 6 -0.295 0.672 -0.671 -0.016 0.000 -0.017

a 1 2 3 0.038 0.041 -0.033 -0.422 0.688 -0.279

a 1 2 4 -0.882 0.255 -0.174 -0.036 0.118 -0.235

a 1 2 5 0.030 0.115 -0.047 -0.025 -0.308 0.898

a 1 2 6 0.137 -0.975 0.140 0.012 0.010 -0.055

a 3 2 4 0.226 -0.070 0.014 0.170 -0.870 0.210

a 3 2 5 -0.025 0.079 -0.057 -0.020 -0.247 0.031

a 3 2 6 0.223 -0.061 0.247 -0.221 0.184 -0.209

a 4 2 5 0.890 -0.004 0.289 -0.046 -0.109 -0.199

a 4 2 6 0.216 -0.149 0.121 0.706 -0.549 -0.024

a 5 2 6 -0.317 0.148 -0.933 -0.021 -0.005 -0.006

a 1 3 2 -0.008 -0.029 0.054 0.318 -0.714 0.295

a 1 3 4 -0.891 0.253 -0.152 -0.006 0.137 -0.219

a 1 3 5 0.101 0.001 0.093 -0.183 -0.502 0.665

a 1 3 6 0.130 -0.972 0.131 0.065 -0.090 0.001

a 2 3 4 -0.177 0.032 0.053 -0.198 0.896 -0.192

a 2 3 5 0.092 -0.112 0.122 -0.271 0.191 -0.064

a 2 3 6 -0.088 -0.008 -0.187 -0.024 -0.182 0.231

a 4 3 5 0.822 -0.011 0.289 -0.111 0.148 -0.248

Continued on next page
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Table C.4 – continued from previous page [3-aminobutan-2-ol]

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

a 4 3 6 -0.038 -0.071 -0.002 0.926 -0.200 -0.131

a 5 3 6 -0.313 0.137 -0.932 -0.021 0.010 0.018

a 1 4 2 0.886 -0.242 0.171 0.002 -0.145 0.218

a 1 4 3 0.891 -0.243 0.142 -0.010 -0.136 0.222

a 1 4 5 0.020 -0.296 -0.126 -0.061 -0.013 0.621

a 1 4 6 0.507 -0.810 0.146 0.009 -0.154 0.132

a 2 4 3 0.120 0.008 -0.118 0.217 -0.877 0.164

a 2 4 5 -0.884 -0.005 -0.290 0.029 0.092 0.205

a 2 4 6 0.038 0.077 -0.230 -0.420 -0.537 0.238

a 3 4 5 -0.825 0.015 -0.295 0.103 -0.148 0.239

a 3 4 6 0.058 0.070 -0.018 -0.942 0.183 0.083

a 5 4 6 -0.628 0.104 -0.734 0.004 -0.051 0.115

a 1 5 2 -0.073 -0.032 -0.018 0.138 0.320 -0.884

a 1 5 3 -0.038 0.053 -0.084 -0.057 0.723 -0.401

a 1 5 4 -0.936 0.185 -0.224 0.004 0.144 -0.103

a 1 5 6 0.218 -0.869 0.432 0.041 0.013 -0.043

a 2 5 3 -0.054 -0.026 -0.028 0.339 0.256 0.013

a 2 5 4 -0.892 0.009 -0.288 0.054 0.117 0.196

a 2 5 6 0.314 -0.149 0.934 0.050 0.002 0.025

a 3 5 4 -0.815 0.003 -0.278 0.125 -0.149 0.265

a 3 5 6 0.339 -0.139 0.921 0.007 0.022 -0.029

a 4 5 6 -0.695 -0.099 0.327 0.387 -0.105 0.212

a 1 6 2 -0.127 0.977 -0.129 -0.033 -0.007 0.058

a 1 6 3 -0.140 0.968 -0.137 -0.064 0.105 -0.017

a 1 6 4 -0.689 0.622 -0.174 -0.056 0.188 -0.191

a 1 6 5 0.094 0.882 0.400 -0.080 -0.040 0.168

a 2 6 3 -0.047 0.070 0.104 0.241 0.151 -0.214

a 2 6 4 -0.208 0.069 0.066 -0.286 0.850 -0.153

a 2 6 5 0.321 -0.146 0.923 -0.039 0.011 -0.032

a 3 6 4 0.011 0.069 0.024 -0.863 0.212 0.181

a 3 6 5 0.300 -0.135 0.934 0.027 -0.024 -0.014

a 4 6 5 0.735 -0.070 0.584 -0.097 0.071 -0.155

Table C.5: Table of commonalities of the fragment 3-aminobutan-2-ol

Variable Initial Extraction

Communalities

Initial Extraction

d 1 2 1 0.554

d 1 3 1 0.752

d 1 4 1 0.964

d 1 5 1 0.786

d 1 6 1 0.987

d 2 3 1 0.793

Continued on next page
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Table C.5 – continued from previous page [3-aminobutan-2-ol]

Variable Initial Extraction

d 2 4 1 0.770

d 2 5 1 0.202

d 2 6 1 0.734

d 3 4 1 0.700

d 3 5 1 0.750

d 3 6 1 0.521

d 4 5 1 0.972

d 4 6 1 0.969

d 5 6 1 0.972

a 2 1 3 1 0.820

a 2 1 4 1 0.929

a 2 1 5 1 0.814

a 2 1 6 1 0.988

a 3 1 4 1 0.953

a 3 1 5 1 0.915

a 3 1 6 1 0.991

a 4 1 5 1 0.995

a 4 1 6 1 0.930

a 5 1 6 1 0.982

a 1 2 3 1 0.844

a 1 2 4 1 0.935

a 1 2 5 1 0.817

a 1 2 6 1 0.988

a 3 2 4 1 0.816

a 3 2 5 1 0.633

a 3 2 6 1 0.592

a 4 2 5 1 0.967

a 4 2 6 1 0.772

a 5 2 6 1 0.959

a 1 3 2 1 0.826

a 1 3 4 1 0.949

a 1 3 5 1 0.788

a 1 3 6 1 0.994

a 2 3 4 1 0.809

a 2 3 5 1 0.663

a 2 3 6 1 0.575

a 4 3 5 1 0.969

a 4 3 6 1 0.795

a 5 3 6 1 0.965

a 1 4 2 1 0.943

a 1 4 3 1 0.945

a 1 4 5 1 0.677

a 1 4 6 1 0.992

a 2 4 3 1 0.751

a 2 4 5 1 0.963

a 2 4 6 1 0.782

a 3 4 5 1 0.969

Continued on next page
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Table C.5 – continued from previous page [3-aminobutan-2-ol]

Variable Initial Extraction

a 3 4 6 1 0.841

a 5 4 6 1 0.989

a 1 5 2 1 0.772

a 1 5 3 1 0.897

a 1 5 4 1 0.987

a 1 5 6 1 0.987

a 2 5 3 1 0.580

a 2 5 4 1 0.968

a 2 5 6 1 0.948

a 3 5 4 1 0.965

a 3 5 6 1 0.963

a 4 5 6 1 0.879

a 1 6 2 1 0.985

a 1 6 3 1 0.994

a 1 6 4 1 0.981

a 1 6 5 1 0.973

a 2 6 3 1 0.547

a 2 6 4 1 0.784

a 2 6 5 1 0.973

a 3 6 4 1 0.680

a 3 6 5 1 0.962

a 4 6 5 1 0.986
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Component Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings
Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %

1 23.178 30.904 30.904 23.178 30.904 30.904 16.680 22.240 22.240
2 14.625 19.500 50.404 14.625 19.500 50.404 11.134 14.846 37.085
3 9.563 12.750 63.154 9.563 12.750 63.154 9.654 12.872 49.958
4 7.986 10.647 73.802 7.986 10.647 73.802 9.238 12.317 62.275
5 4.932 6.576 80.378 4.932 6.576 80.378 8.972 11.964 74.239
6 3.775139 5.034 85.411 3.775 5.034 85.411 8.379 11.172 85.411

Table C.6: Table of variances of factor analysis of the fragment 3-aminobutan-2-ol
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C.3 Pentanone-2-one

Table C.7: Table of rotated factor loadings of the fragment pentanone-2-one

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

d 1 2 -0.008 -0.182 0.804 -0.007 0.064 0.444

d 1 3 0.127 -0.116 -0.373 0.343 0.122 0.717

d 1 4 -0.028 -0.948 0.232 -0.163 0.056 0.047

d 1 5 -0.875 -0.436 0.112 -0.001 -0.070 0.039

d 1 6 -0.025 -0.070 0.757 0.042 0.055 0.384

d 2 3 0.165 -0.177 0.234 0.682 0.116 0.103

d 2 4 0.135 -0.322 0.358 -0.506 0.352 -0.028

d 2 5 -0.991 -0.072 0.056 -0.014 -0.044 -0.002

d 2 6 0.094 0.202 -0.837 0.060 0.083 -0.124

d 3 4 0.148 0.127 -0.058 0.495 0.434 -0.039

d 3 5 -0.035 0.035 0.099 0.151 -0.804 -0.030

d 3 6 0.161 -0.093 0.526 0.288 0.199 -0.511

d 4 5 -0.125 0.141 0.193 -0.030 -0.180 -0.039

d 4 6 0.077 0.981 -0.020 -0.023 0.086 -0.042

d 5 6 -0.981 0.154 0.0419 -0.040 0.017 -0.012

a 2 1 3 -0.059 -0.072 0.864 -0.026 -0.033 -0.340

a 2 1 4 0.0430 0.989 -0.051 0.090 0.008 -0.014

a 2 1 5 -0.410 0.815 0.011 -0.069 0.088 -0.052

a 2 1 6 0.108 0.125 -0.917 0.004 0.072 -0.165

a 3 1 4 0.063 0.890 -0.336 0.290 -0.013 0.051

a 3 1 5 0.880 0.410 -0.155 0.074 -0.012 0.030

a 3 1 6 0.036 0.037 0.309 -0.040 0.037 -0.936

a 4 1 5 0.956 0.006 0.063 -0.092 0.115 -0.032

a 4 1 6 0.054 0.984 -0.118 0.069 0.018 -0.046

a 5 1 6 -0.740 0.612 -0.026 -0.062 0.088 -0.052

a 1 2 3 0.068 0.088 -0.941 0.090 0.026 0.259

a 1 2 4 -0.041 -0.991 0.034 -0.091 -0.005 0.005

a 1 2 5 0.316 -0.834 -0.028 0.077 -0.095 0.041

a 1 2 6 -0.125 -0.011 0.672 0.011 -0.114 -0.035

a 3 2 4 -0.004 0.304 -0.280 0.869 -0.039 0.031

a 3 2 5 0.992 0.069 -0.044 0.056 -0.053 0.002

a 3 2 6 -0.019 -0.123 0.878 -0.135 0.039 -0.358

a 4 2 5 0.993 0.053 -0.012 -0.028 0.090 -0.003

a 4 2 6 0.057 0.990 -0.022 0.049 0.024 -0.021

a 5 2 6 -0.845 0.476 0.042 -0.069 0.098 -0.024

a 1 3 2 -0.074 -0.098 0.969 -0.130 -0.019 -0.140

a 1 3 4 -0.062 -0.891 0.335 -0.281 0.019 -0.073

a 1 3 5 -0.880 -0.408 0.158 -0.076 0.009 -0.034

a 1 3 6 -0.146 0.036 0.777 -0.257 -0.082 0.0367

a 2 3 4 -0.001 -0.257 0.237 -0.912 0.091 -0.054

a 2 3 5 -0.993 -0.065 0.043 -0.061 0.047 -0.005

a 2 3 6 0.019 0.169 -0.923 0.039 -0.023 0.232

a 4 3 5 -0.035 0.111 0.044 -0.104 0.906 -0.011

Continued on next page
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Table C.7 – continued from previous page [pentanone-2-one]

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

a 4 3 6 0.057 0.987 -0.074 -0.057 0.040 0.016

a 5 3 6 -0.973 0.202 0.0104 -0.047 0.068 -0.002

a 1 4 2 0.038 0.991 -0.001 0.093 -0.003 0.012

a 1 4 3 0.062 0.892 -0.332 0.277 -0.022 0.084

a 1 4 5 -0.959 0.099 -0.054 0.106 -0.122 0.023

a 1 4 6 0.008 0.948 -0.024 0.149 -0.056 -0.010

a 2 4 3 0.006 0.202 -0.184 0.927 -0.140 0.075

a 2 4 5 -0.993 -0.049 0.0142 0.030 -0.090 0.002

a 2 4 6 -0.053 -0.970 -0.130 -0.012 -0.039 -0.015

a 3 4 5 -0.020 -0.091 0.0160 0.021 -0.981 0.004

a 3 4 6 -0.055 -0.985 0.092 0.056 -0.050 -0.033

a 5 4 6 -0.975 -0.172 0.035 -0.021 -0.029 -0.004

a 1 5 2 -0.025 0.826 0.076 -0.094 0.105 -0.007

a 1 5 3 0.880 0.406 -0.160 0.077 -0.006 0.038

a 1 5 4 0.956 -0.129 0.051 -0.109 0.124 -0.021

a 1 5 6 0.652 0.542 0.024 -0.079 0.098 -0.007

a 2 5 3 0.992 0.059 -0.042 0.071 -0.035 0.009

a 2 5 4 0.993 0.047 -0.016 -0.031 0.090 -0.001

a 2 5 6 0.963 -0.216 -0.120 0.029 -0.023 -0.006

a 3 5 4 0.066 0.067 -0.066 0.052 0.972 0.003

a 3 5 6 0.974 -0.206 -0.004 0.048 -0.048 -0.003

a 4 5 6 0.973 0.190 -0.037 0.025 0.027 0.005

a 1 6 2 0.088 -0.144 -0.034 -0.027 0.116 0.281

a 1 6 3 0.069 -0.046 -0.686 0.187 0.028 0.578

a 1 6 4 -0.046 -0.986 0.102 -0.085 -0.004 0.040

a 1 6 5 0.558 -0.731 0.019 0.080 -0.110 0.053

a 2 6 3 0.018 0.061 -0.774 0.238 -0.055 0.461

a 2 6 4 -0.057 -0.989 0.066 -0.059 -0.019 0.032

a 2 6 5 0.785 -0.547 -0.016 0.079 -0.119 0.032

a 3 6 4 -0.060 -0.985 0.036 0.057 -0.016 0.022

a 3 6 5 0.972 -0.199 -0.016 0.047 -0.088 0.006

a 4 6 5 0.973 0.131 -0.031 0.015 0.034 0.004

Table C.8: Table of commonalities of the fragment pentanone-2-one

Variable Initial Extraction

d 1 2 1 0.978

d 1 3 1 0.961

d 1 4 1 0.993

d 1 5 1 0.994

d 1 6 1 0.859

d 2 3 1 0.781

d 2 4 1 0.848

d 2 5 1 0.999

Continued on next page
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Table C.8 – continued from previous page [pentanone-2-one]

Variable Initial Extraction

d 2 6 1 0.831

d 3 4 1 0.626

d 3 5 1 0.976

d 3 6 1 0.835

d 4 5 1 0.778

d 4 6 1 0.983

d 5 6 1 0.999

a 2 1 3 1 0.988

a 2 1 4 1 0.996

a 2 1 5 1 0.986

a 2 1 6 1 0.981

a 3 1 4 1 0.996

a 3 1 5 1 0.974

a 3 1 6 1 0.993

a 4 1 5 1 0.969

a 4 1 6 1 0.993

a 5 1 6 1 0.994

a 1 2 3 1 0.998

a 1 2 4 1 0.997

a 1 2 5 1 0.985

a 1 2 6 1 0.986

a 3 2 4 1 0.942

a 3 2 5 1 0.998

a 3 2 6 1 0.999

a 4 2 5 1 0.998

a 4 2 6 1 0.991

a 5 2 6 1 0.993

a 1 3 2 1 0.997

a 1 3 4 1 0.996

a 1 3 5 1 0.974

a 1 3 6 1 0.930

a 2 3 4 1 0.977

a 2 3 5 1 0.998

a 2 3 6 1 0.987

a 4 3 5 1 0.878

a 4 3 6 1 0.989

a 5 3 6 1 0.996

a 1 4 2 1 0.997

a 1 4 3 1 0.995

a 1 4 5 1 0.987

a 1 4 6 1 0.962

a 2 4 3 1 0.970

a 2 4 5 1 0.999

a 2 4 6 1 0.967

a 3 4 5 1 0.975

a 3 4 6 1 0.989

a 5 4 6 1 0.990

Continued on next page
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Table C.8 – continued from previous page [pentanone-2-one]

Variable Initial Extraction

a 1 5 2 1 0.977

a 1 5 3 1 0.974

a 1 5 4 1 0.989

a 1 5 6 1 0.962

a 2 5 3 1 0.998

a 2 5 4 1 0.999

a 2 5 6 1 0.992

a 3 5 4 1 0.994

a 3 5 6 1 0.996

a 4 5 6 1 0.994

a 1 6 2 1 0.996

a 1 6 3 1 0.983

a 1 6 4 1 0.997

a 1 6 5 1 0.992

a 2 6 3 1 0.970

a 2 6 4 1 0.994

a 2 6 5 1 0.992

a 3 6 4 1 0.982

a 3 6 5 1 0.996

a 4 6 5 1 0.976
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Component Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings
Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %

1 23.911 31.881 31.881 23.911 31.881 31.881 23.448 31.264 31.264
2 22.244 29.659 61.540 22.244 29.659 61.540 21.231 28.307 59.571
3 10.931 14.575 76.115 10.931 14.575 76.115 10.587 14.116 73.687
4 4.588 6.117 82.232 4.588 6.117 82.232 4.326 5.768 79.455
5 3.495 4.659 86.891 3.495 4.660 86.891 4.080 5.440 84.895
6 2.703 3.603 90.494 2.703 3.603 90.494 3.156 4.208 89.103
7 2.119 2.826 93.320 2.119 2.826 93.320 2.657 3.542 92.645
8 1.474 1.965 95.286 1.474 1.965 95.286 1.531 2.041 94.686
9 1.035 1.380 96.666 1.036 1.380 96.666 1.485 1.980 96.663

Table C.9: Table of variances of factor analysis of the fragment pentanone



Appendix D

Sparse principal components

analysis

D.1 Difluoroalkene

Table D.1: First Eigenvalue of DSPCA of the fragment difluoroalkene.

Variable Value

d12 0.000

d13 0.000

d14 0.000

d15 0.000

d16 0.000

d23 0.000

d24 0.000

d25 0.000

d26 0.000

d34 -0.002

d35 0.000

d36 0.001

d45 0.002

d46 0.000

d56 -0.002

a213 -0.021

a214 0.009

a215 0.010

a216 -0.004

a314 -0.294

a315 0.007

a316 0.222

Continued ..

162



APPENDIX D. SPARSE PRINCIPAL COMPONENTS ANALYSIS 163

Variable Value

a415 0.274

a416 0.005

a516 -0.238

a123 0.010

a124 -0.019

a125 -0.005

a126 0.007

a324 -0.285

a325 0.004

a326 0.261

a425 0.232

a426 0.009

a526 -0.252

a132 0.008

a134 0.183

a135 -0.004

a136 -0.132

a234 0.076

a235 0.004

a236 -0.058

a435 0.173

a436 0.007

a536 -0.141

a142 0.007

a143 0.080

a145 -0.061

a146 0.002

a243 0.179

a245 -0.138

a246 -0.005

a345 0.007

a346 0.167

a546 -0.149

a152 -0.005

a153 -0.003

a154 -0.183

a156 0.153

a253 -0.008

a254 -0.064

a256 0.060

a354 -0.192

a356 0.146

a456 -0.002

a162 -0.003

a163 -0.061

a164 -0.007

a165 0.055

a263 -0.174

Continued ..
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Variable Value

a264 -0.004

a265 0.162

a364 -0.185

a365 -0.002

a465 0.153

D.2 3-aminobutan-2-ol

Table D.2: First Eigenvector of DSPCA of the fragment 3aminobutan-2-ol.

Variable Value

d12 0.000

d13 0.000

d14 -0.003

d15 0.000

d16 0.002

d23 0.000

d24 0.000

d25 0.000

d26 0.000

d34 0.000

d35 0.000

d36 0.000

d45 0.002

d46 0.000

d56 -0.001

a213 0.001

a214 0.194

a215 0.001

a216 -0.153

a314 0.082

a315 0.000

a316 -0.054

a415 0.204

a416 0.009

a516 -0.129

a123 -0.002

a124 -0.309

a125 0.000

a126 0.253

a324 0.004

a325 -0.001

a326 0.002

Continued ..
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Variable Value

a425 0.267

a426 0.004

a526 -0.154

a132 0.001

a134 -0.324

a135 0.002

a136 0.263

a234 -0.006

a235 0.002

a236 -0.002

a435 0.243

a436 0.001

a536 -0.155

a142 0.077

a143 0.202

a145 0.003

a146 0.205

a243 0.002

a245 -0.061

a246 -0.001

a345 -0.150

a346 0.000

a546 -0.132

a152 -0.001

a153 -0.002

a154 -0.211

a156 0.148

a253 0.000

a254 -0.170

a256 0.091

a354 -0.057

a356 0.032

a456 -0.009

a162 -0.063

a163 -0.174

a164 -0.227

a165 -0.008

a263 0.000

a264 -0.004

a265 0.034

a364 0.000

a365 0.094

a465 0.152
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D.3 Pentan-2-one

Table D.3: First Eigenvector of DSPCA of the fragment pentan-2-one.

Variable Value

d12 0.000

d13 0.000

d14 0.000

d15 -0.002

d16 0.000

d23 0.000

d24 0.000

d25 -0.002

d26 0.000

d34 0.000

d35 0.000

d36 0.000

d45 0.000

d46 0.000

d56 -0.002

a213 0.000

a214 0.008

a215 -0.011

a216 0.000

a314 0.004

a315 0.154

a316 0.000

a415 0.027

a416 0.006

a516 -0.049

a123 0.000

a124 -0.015

a125 0.009

a126 -0.001

a324 0.001

a325 0.185

a326 0.000

a425 0.075

a426 0.009

a526 -0.097

a132 0.000

a134 -0.016

a135 -0.346

a136 -0.001

a234 -0.001

a235 -0.297

a236 0.000

a435 0.000

Continued ..
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Variable Value

a436 0.007

a536 -0.241

a142 0.003

a143 0.008

a145 -0.203

a146 0.001

a243 0.000

a245 -0.289

a246 -0.002

a345 -0.001

a346 -0.004

a546 -0.523

a152 0.001

a153 0.158

a154 0.151

a156 0.008

a253 0.079

a254 0.182

a256 0.016

a354 0.001

a356 0.098

a456 0.354

a162 0.000

a163 0.000

a164 -0.008

a165 0.030

a263 0.000

a264 -0.006

a265 0.061

a364 -0.002

a365 0.111

a465 0.134
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