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We report on the computation of the integral homology of the mapping class group
Γm

g,1 of genus g surfaces with one boundary curve and m punctures, when 2g+m≤5,
in particular Γ0

2,1 .
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1 Introduction

Let Mod = Modm
g,n denote the moduli space of conformal equivalence classes of

Riemann surfaces F = Fm
g,n of genus g ≥ 0 with n ≥ 1 boundary curves and m ≥ 0

permutable punctures. One obtains an (m!)–fold covering space M̃od = M̃odm
g,n of

Mod = Modm
g,n if the punctures are declared not permutable.

Likewise, let Γ = Γm
g,n be the corresponding mapping class group of isotopy classes

of orientation-preserving diffeomorphisms fixing the boundary pointwise and possibly
permuting the punctures. The mapping class group where the punctures are to be fixed
is a subgroup of index m! in Γ and is denoted by Γ̃ = Γ̃m

g,n .

The main result of this article is the computation of the integral homology H∗(Γ0
2,1; Z)

and H∗(Γ1
2,1; Z) of the mapping mapping class group for surfaces of genus 2 with one

boundary curve and with no (respectively, one) puncture. These computations were
done some years ago by the third author in [13] and redone by the first author in [1],
both based on work by the second author in [6] and [5]. We give this belated report,
because very few homology groups of mapping class groups are known; prior to our
computations the integral homology was known only for the easy case g = 1. See
Section 2 for more remarks on previously known results.
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Γ and Γ̃ are torsion-free, since the diffeomorphisms are fixing at least one boundary
curve. They act therefore freely on the contractible Teichmüller spaces Teich = Teichm

g,n
(respectively, T̃eich = T̃eichm

g,n ). It follows, that the space Mod is a non-compact,
connected (topological) manifold of dimension d = 6g− 6 + 3n + 2m; the manifold
M̃od is always orientable, but Mod is orientable only in the cases m = 0 or m = 1.
Furthermore, they have the homotopy type of the classifying space of the corresponding
mapping class group,

(1–1) M̃od

��

T̃eich/Γ̃

��

' // BΓ̃

��
Mod Teich/Γ ' // BΓ

The key point of our method is to use a new description of the moduli space Mod

(respectively, M̃od); this is the space of parallel slit domains, the space of configurations
of h pairs of parallel, semi-infinite slits in n complex planes; here h = 2g + m + 2n− 2.

More precisely, there is a vector bundle Harm→Mod (respectively, H̃arm→ M̃od)
of dimension d∗ = m + 2n, and its one-point-compactification will be described by
parallel slit domains.

To describe these bundles we first replace the moduli spaces above by the moduli
space of closed Riemann surfaces F of genus g, on which n so-called dipole points
Q1, . . . ,Qn with non-zero tangent vectors X1, . . . ,Xn , and m permutable (respectively,
non-permutable) punctures P1, . . . ,Pm are specified. A conformal equivalence class
is given by [F,Q,P,X ], with Q = (Q1, . . . ,Qn), P = (P1, . . . ,Pm), and X =
(X1, . . . ,Xn). These new moduli spaces have the same homotopy type as Mod

(respectively, M̃od) or, in other words, the mapping class groups are isomorphic. Note
that their dimension is d = 6g − 6 + 4n + 2m, since for the sake of simplicity we
specified tangent vectors and not merely tangent directions.

In the vector bundle Harm → Mod (respectively, H̃arm → M̃od) the fibre over a
point [F,Q,P,X ] in Mod (respectively, in M̃od) consists of all harmonic functions
u : F → R̄ = R ∪ ∞ with a simple pole at each Qi having direction Xi plus a
logarithmic singularity, and with a logarithmic singularity at each Pj . The bundle Harm

is flat, more precisely Harm ∼= (M̃od×Sm Rm)× R3n , and the bundle H̃arm is trivial,
being the pullback of Harm along the covering M̃od→ M̃od/Sm = Mod, where Sm

is the mth symmetric group.

In [5] we have (following an earlier version in [6]) introduced a finite cell complex
Par = Par(h,m, n) of dimension d + d∗ = 3h as a compactification of Harm. The
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complement of Harm is a subcomplex Par′ ⊂ Par of codimension 1 and its points
represent degenerate surfaces. A similar statement holds for H̃arm. The main result in
[5] and Ebert [11] is

Par− Par′ ∼= Harm ' Mod,(1–2)

P̃ar− P̃ar′ ∼= H̃arm ' M̃od.(1–3)

We later give some details when we exhibit the cellular chain complexes.

The pairs (Par,Par′) (respectively, (P̃ar, P̃ar′)) are relative manifolds, and via Poincaré
duality we obtain the isomorphisms:

H∗(Par,Par′;O) ∼= H3h−∗(Mod; Z),(1–4)

H∗(P̃ar, P̃ar′; Z) ∼= H3h−∗(M̃od; Z)(1–5)

These isomorphisms are the cap-product with a (relative) fundamental or orientation
class [µ] in H3d(Par,Par′;O) (respectively, in H3d(P̃ar, P̃ar′; Z)) where O is the local
coefficient system induced by the orientation covering.

In the following sections we concentrate for the sake of simplicity on the case of a single
boundary curve (n = 1), although the computations can be done in the general case. To
compute the homology of Mod and M̃od we actually computed the cellular homology
of the pairs (Par,Par′) with integral, with mod 2 and with rational coefficients, and
with coefficients in the orientation system O . The actual calculations were done using a
computer program; the program is not tracking the generators of the homology groups,
but some generators can easily be determined.

In Section 2 we will list our results. We will give comments on previous and similar
homology computations. We give a description of the spaces Harm and H̃arm in
Section 3, including figures of configurations, that is, parallel slit domains; in particular
we give a complete list of cells for the case g = 1 and m = 0, which we will use in
Section 6 for a demonstration. In Section 4 we describe the cellular chain complexes.
Some properties of these chain complexes are described in Section 5. The calculation
for the case g = 1 and m = 0 is done by hand in Section 6 to demonstrate the method,
in particular the spectral sequence used. For the fundamental class µ and for some
other homology classes we can give formulas (for their Poincaré) duals in Section 7.
The orientation system is described in Section 8. And we comment on the computer
program in Section 9.

Acknowledgements

The authors are grateful to Jens Franke and Birgit Richter for valuable discussions;
thanks are also due to Marc Alexander Schweitzer and Michael Griebel for access to
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computing capacities. The referee made several valuable suggestions and pointed out
that some figures (see Section 3) will be helpful.

2 Results

2.1 The permutable case

We present our results in the form of a table. It shows all non-trivial integral homology
groups of the moduli space Mod for h ≤ 5 and g > 0 and n = 1.

∗ = 0 1 2 3 4 5 6

H∗(Mod0
1,1; Z) = Z Z

H∗(Mod1
1,1; Z) = Z Z Z/2

H∗(Mod2
1,1,Z) = Z Z⊕Z/2 Z/2⊕Z/2 Z/2

H∗(Mod3
1,1; Z) = Z Z⊕Z/2 Z/2⊕Z/2 Z⊕Z/2⊕Z/2 Z Z

H∗(Mod0
2,1; Z) = Z Z/10 Z/2 Z⊕Z/2 Z/6

H∗(Mod1
2,1; Z) = Z Z/10 Z⊕Z/2 Z⊕Z⊕Z/2⊕Z/2 Z/6⊕Z/6 Z Z

2.2 Remarks

(1) For g = 0, the moduli spaces Modm
0,1 are the unordered configuration spaces of m

points in a disk or in the plane. The mapping class group Γm
0,1 is the (Artin) braid group

Br(m) on m strings. Their homology is well-known and therefore we did not include
the five cases g = 0, h = 0, . . . , 5 in the table above. See Arnol’d [2, 3], Fuks [14],
Vaı̆nšteı̆n [37] and Cohen [9, 10].

(2) The moduli space Mod0
1,1 of the torus with one boundary curve is homotopy

equivalent to the complement of the trefoil knot in S3 . The mapping class group Γ0
1,1 is

a central extension

(2–1) 1→ Z→ Γ0
1,1 → SL2(Z)→ 1

of SL2(Z) by the integers and isomorphic to the third braid group Br(3). This central
extension is a special case of the central extension

(2–2) 1→ Zn → Γ̃m
g,n → Γ̃n+m

g,0 → 1.
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Here the boundary curve is turned into a puncture by gluing-in a disc. The connection
to the sequence before is disguised by the fact Γ̃0

1,0 = Γ0
1,0 = Γ1

1,0 , because a torus is an
abelian variety; in this special case we have Γ0

1,0 = Γ1
1,0 = SL2(Z).

(3) The computations of H∗(Mod0
2,1) were done by the third author [13] some years

ago, and redone by the first author in [1]. Very recently, Godin [17] has obtained these
results independently, using a different method of computation.

(4) Note that very little is known about the (integral) homology of a single mapping
class group.

(a) Known are the first homology groups H1(Γm
g,n) for all values of g, n,m. Apart from

the classical case g = 1, this was proved by Mumford in [31] (g = 2, n = m = 0)
and by Powell in [33] (g ≥ 3, n = m = 0), which both use representations of the
mapping class groups. For the other values of n and m one can use the extensions

1→ Zn → Γm
g,n → Γn+m

g,0 → 1(2–3)

1→ Brk(Fm
g,n)→ Γm

g,n → Γm+k
g,n → 1(2–4)

1→ Γ̃m
g,n → Γm

g,n → Sm → 1(2–5)

or argue again via representations. In the second extension Brk(F) = π1(Ck(F)) is
the k th braid group of the surface F , the fundamental group of the k th unordered
configuration space Ck(F). See Korkmaz [25] for a survey.

(b) Also known are the second homology groups H2(Γm
g,n) by work of Harer [18];

see also the corrections by Harer [19] and Morita [29]. These computations are
based on the curve complex. For a proof using presentations see Pitsch [32] and
Korkmaz–Stipsicz [26].

(c) For the third homology group H3(Γm
g,n; Q) the reference is Harer [22].

(5) The stable mapping class groups Γm
∞,n , that is, the limit of the mapping class

groups for the genus tending to infinity, can be defined for surfaces with boundary
curves: gluing on a torus with two boundary curves embeds Γm

g,n into Γm
g+1,n . This

embedding induces a homology isomorphism in degrees ≤ (g− 1)/3. This is Harer’s
stability theorem, see [19], and [23]. Likewise, gluing a disc onto a boundary curve
and recording its center as a new puncture gives a surjection of mapping class groups
Γm

g,n+1 → Γg,n ; see the extension (2–3) above. This surjection induces also a homology
isomorphism in degrees ≤ g/3; see [21].

The proof of the Mumford conjecture by Madsen and Weiss [28] determines the
homology of the stable mapping class group with rational coefficients. Using this,
Galatius [15] has computed the mod–p homology of the stable mapping class group.
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Note that none of our computations belong to the stable range.

(6) The mapping class groups for surfaces with (respectively, without) boundary
are quite different. The former are torsion-free groups, and have finite-dimensional
classifying spaces, which can be chosen to be manifolds. Thus there homology is of
finite type. In contrast, the mapping class groups of surfaces without boundary contain
elements of finite order. Thus their classifying spaces can not be finite-dimensional.
Nevertheless, they have finite virtual homological dimension by a theorem of Harer
[20]. In the homology of mapping class groups without boundary Glover–Mislin [16]
have found torsion elements by considering finite subgroups.

(7) For homology computations with field coefficients see for example the work of
Benson and Cohen [4], and the second author, Cohen and Peim [8], for Γ0

2,0 with
coefficients in the field Fp and p = 2, 3, 5; or see the work of Looijenga [27] for
Γ0

3,0 and Γ1
3,0 , and the work of Tommasi [35, 36] for Γ2

3,0 and Γ0
4,0 , all with rational

coefficients.

(8) The Hilbert uniformization method can also be used to parametrize the moduli
spaces of surfaces with incoming and outgoing boundary curves, see [7].

(9) This uniformization method can also be used for moduli spaces of non-orientable
surfaces (Kleinian surfaces); see the work of Ebert [12] and Zaw [38]. One needs
besides the oriented slit pairs (or handles) we use here a second kind, namely the
unoriented slit pairs (or cross-caps). In [38] the resulting cell decomposition of the
moduli space was used to calculate the homology of non-orientable mapping class
groups; see also Korkmaz [24].

2.3 The non-permutable case

Obviously, M̃odm
g,n = Modm

g,n for m = 0 and m = 1.

For g = 0 the moduli space M̃odm
0,1 is the mth ordered configuration space of a disk or

a plane. And the mapping class group Γ̃m
0,1 is the pure (Artin) braid group Br(m) on m

strings. As before, their homology is well-known (see for example Arnol’d [2]) and
therefore we did not include the cases g = 0 and m = 0, . . . , 5 in this table.

Thus there are for h ≤ 5 only the cases g = 1, m = 2 and g = 1, m = 3. With the
available capacities we could only finish the computations for the first case, which is
listed below. See Section 9 for comments.

∗ = 0 1 2 3 4

H∗(M̃od2
1,1; Z) = Z Z Z/2⊕ Z/2⊕ Z/2 Z Z

Geometry & TopologyMonographs 14 (2008)
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3 Parallel slit domains

3.1 Dissecting a surface

We shall give here a brief description of the Hilbert uniformization, thereby concentrating
on the case n = 1 and on the permutable case.

The Hilbert uniformization associates to a point in Harm a so-called parallel slit domain.
Consider on the surface F = [F,Q,X ,P] a harmonic function u : F → R̄ = R ∪∞
with exactly one dipole singularity at the point Q1 and logarithmic singularities at
the punctures P1, . . . ,Pm . More precisely, for a local chart z with z(Q1) = 0 and
dz(X1) = 1 we require that for some positive real number A1 and B1 the function
u(z)− A1Re(1/z)− B1Re(log(z)) is harmonic, and further that for a local chart z with
z(Pi) = 0 we require that the function u(z)− CiRe(log(z)) is harmonic. Obviously, the
residues of these singularities must satisfy the equation −B1 + C1 + · · ·+ Cm = 0. The
set of these auxiliary parameters is the fibre of the vector bundle Harm→Mod over
the point F . Note that the function u is – up to a constant – uniquely determined by F
and the auxiliary parameters.

This function u will have up to h critical points S1, S2, . . ., where u(z) = Re(zlk ), for
lk ≥ 2, in some local chart. The sum of the indices ind(Sk) plus the index −2 at the
dipole Q1 must be the Euler characteristic χ = 2− 2g + m.

The stable critical graph K consists of the vertices Q1 and S1, S2, . . ., and all gradient
curves of u leaving critical points (to either go to Q1 or to another critical point) as
edges. Its complement F0 = F − K is simply-connected. Thus u is on F0 the real
part of a holomorphic map w = u +

√
−1v : F0 → C. Note that w is unique up to a

constant.

3.2 Parallel slit domains

The image of w is the complex plane cut along horizontal slits starting at some point and
running towards infinity on the left. This is called a parallel slit domain in geometric
function theory. These slits come - generically - in pairs, suitably interlocked.

To see this, let us assume that u is generic, that is (1) that u is locally a Morse function
(ind(S1) = ind(S2) = · · · = 1), (2) that the critical values are all distinct, and (3) that a
gradient curve leaving a critical point does not enter another critical point, but runs to
the dipole Q1 .

Geometry & TopologyMonographs 14 (2008)
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For g = 1, n = 1,m = 0 there are two generic configurations; see the following figures.
For g = 2, n = 1,m = 0 there are 504 generic configurations; Figure 1 shows such an
example. The letters A, . . . ,H indicate the boundary identifications: the right bank of a
slit is glued to the left bank of the paired slit. The function u corresponds to the real
part. The dipole point corresponds to infinity.

E
F C

D

G
H A

B

H
GF

E D
C B

A

Figure 1: An example of a generic parallel slit domain with g = 2, m = 0 and n = 1

Figure 2 shows two generic configurations with two pairs of slits; but since the
interlocking pattern is different, for the left configuration g = 1, m = 0, whereas for
the right one g = 0, m = 2.

C
D

A
B

D
C

B
A

C
D

D
C

A
B

B
A

Figure 2: Two examples of generic parallel slit domains with two pairs of slits: the different
interlocking patterns give g = 1,m = 0 for the configuration on the left, and g = 0,m = 2 for
the configuration on the right
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3.3 Configurations and cells

If we identify the real line with an interval, the vertical and horizontal distances between
the slits are two systems of (barycentric) coordinates. In other words, a top-dimensional
cell is a product ∆2h ×∆h of two simplices, where h = 2g + m is the number of pairs
of slits.

In the non-generic case, the slits may have equal length, and may touch each other; in
the latter case a shorter slit can jump to the other side of the partner of the longer slit
pair. See the rows in Figure 6 for examples of such jumps. This leads to identifications
among faces of top-dimensional cells. Furthermore, not all configurations are allowed,
since they may lead to surfaces with singularities or to surfaces with too small a genus
or too few punctures. Both types of cells are called degenerate and will be excluded
from the space Harm.

We refer the reader to [5] for details.

Figure 3 shows how the combinatorial type of these two configurations are codified.
The horizontals of the slits and the verticals at the slit ends give a grid; we number the
columns 0, 1, . . . , q ≤ 2 from right to left, and the rows 0, 1, . . . , p ≤ 4 from bottom
to top. Note that in general q ≤ h and p ≤ 2h. Let Ri,j denote the jth rectangle in the
ith column.

For the ith column let σi denote the permutation describing the re-gluing of the slit
plane: the upper edge of the rectangle Ri,j is glued to the lower edge of Ri,σi(j) (for
i = 0, 1, . . . , q; j = 0, 1, . . . , p− 1). And the left edge of Ri,j is glued to the right edge
of Ri+1,j (for i = 0, 1, . . . , q− 1; j = 0, 1, . . . , p).

We write a permutation σ as a product of its cycles, and a cycle sending i0 to i1 , and
i1 to i2 , and so on, and il to i0 , is written from right to left, namely 〈il, . . . , i2, i1, i0〉.
For better readability we drop the commas between the one-digit numbers and write
〈il . . . i2 i1, i0〉.

In our examples in Figure 3 these permutations are

σ0 = 〈4 3 2 1 0〉, σ1 = 〈4 1 0〉〈3 2〉, σ2 = 〈4 1 2 3 0〉
and σ0 = 〈4 3 2 1 0〉, σ1 = 〈4 2 1 0〉〈3〉, σ2 = 〈4 2 0〉〈1〉〈3〉,

respectively.

Figures 4 and 5 show the gluing process in two steps. The example is the left hand side
of Figure 3, a generic configuration with g = 1, n = 1 and m = 0, or Σ1 from the list
in Section 3.4. In Figure 4 the first slit pair is glued, producing a tube growing out of the
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B
A

A
B

20

21

22

23

24

σ2

D

D

C

C

10

11

12

13

14

σ1

00

01

02

03

04

σ0

B

B
A

A

20

21

22

23

24

σ2

D

D
C

C

14

10

11

12

13

σ1

00

01

02

03

04

σ0

Figure 3: The same two examples as in Figure 2, now shown with the grid pattern and the
numbering of the rectangles; the example on the left is the cell Σ1

D

A
B S2

A
B

S2

C
S1

D

β

α

δ

γ

Figure 4: This shows the gluing in process: the surface is half-way finished

complex plane; the second slit pair is still seen as two slits, one on the tube, one outside
the tube. The gradient field of u is shown, with with two critical points S1 and S2 .

Figure 5 shows the finished surface. The tube is with its later part re-glued into the
plane, creating a plane with a handle. The point at infinity needs to be added.

3.4 The example g = 1, n = 1 and m = 0 geometrically

Here we want to give a complete list of all non-degenerate cells for the case g = 1,
m = 0 and n = 1; this illustrates the explanations above and will be used later.
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A

B

C

D

S2

B

C
S1 D

β

α

δ

γ

Figure 5: The finished surface

Figure 4 shows all eight non-degenerate cells Σ1, . . . ,Σ8 . Recall that a cell is an
equivalence class of configurations; thus in each row we have drawn all configurations
representing a cell.

Next we give the permutations of these eight cells. They will be used in Section 6 when
we study this example algebraically.

For (p, q) = (4, 2) there are two non-degenerate cells

Σ1 = (〈41230〉, 〈32〉〈410〉, 〈43210〉) and Σ2 = (〈41230〉, 〈21〉〈430〉, 〈43210〉).

For (p, q) = (4, 1) there is one non-degenerate cell

Σ3 = (〈41230〉, 〈43210〉).

For (p, q) = (3, 2) there are three non-degenerate cells

Σ4 = (〈3120〉, 〈2〉〈310〉, 〈3210〉),
Σ5 = (〈3120〉, 〈320〉〈1〉, 〈3210〉),

and Σ6 = (〈3120〉, 〈21〉〈30〉, 〈3210〉).

For (p, q) = (3, 1) there is one non-degenerate cell

Σ7 = (〈3120〉, 〈3210〉).

For (p, q) = (2, 2) there is one non-degenerate cell

Σ8 = (〈210〉, 〈20〉〈1〉, 〈210〉).

Note that the number of cells grows fast with g. In the next case g = 2, n = 1,m = 0
we have 17136 non-degenerate cells in dimensions 5 to 12.

Geometry & TopologyMonographs 14 (2008)
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1

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

2

3

4

5

6

7

8

Figure 6: All eight cells for g = 1, m = 0 and n = 1: in each row the configurations
representing this cell are shown

4 The chain complexes P•• and P̃••

Let h and m be fixed and set n = 1.

4.1 The cells

The cellular chain complex of the space Par = P̃ar(h,m, n) is the total complex of a
bi-graded complex P•• =

⊕
Pp,q , where 0 ≤ p ≤ 2h and 0 ≤ q ≤ h. Here Pp,q is the

free abelian group generated by all (q+1)–tuples Σ = (σq, . . . , σ0) of permutations

Geometry & TopologyMonographs 14 (2008)
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σi in the symmetric group Sp+1 , acting on [p] = {0, 1, . . . , p}, and satisfying the
following conditions:

norm(Σ) ≤ h(4–1)

ncyc(σq) ≤ m + 1(4–2)

Here the norm(Σ) is the sum of the word lengths,

norm(Σ) = `(σqσ
−1
q−1) + · · ·+ `(σ1 σ

−1
0 ),

where the word length `(α) is measured with respect to the generating set of all
transpositions in Sp+1 . And ncyc(α) is the number of cycles of a permutation α .

The cellular chain complex of the space P̃ar is the total complex of the bi-graded
complex P̃•• , where P̃p,q is generated by elements (ν; Σ) = (ν; (σq, . . . , σ0)) where Σ
is as before a (q+1)–tuple of permutations in Sp+1 satisfying the condition (4–1) and
(4–2) above; and ν : [p]→ [m] is a function decoding a numbering of the punctures,
which therefore must satisfy the following conditions:

ν is invariant under σq(4–3)

ν induces a bijection [p]/σq → [m](4–4)

ν(0) = ν(p) = 0(4–5)

Here [p]/σq denotes the set of σq –orbits in [p].

4.2 The surface associated to a configuration

We repeat here the general construction we described for a generic configuration in
Section 3.3

Given a cell Σ of bi-degree (p, q) and a point a = (a0, . . . , ap) in a p–dimensional
simplex ∆p and a point b = (b0, . . . , bq) in a q–dimensional simplex ∆q we associate
a surface F = F(Σ; a, b) as follows. To begin, we identify the open unit interval with
the real line, and thus interpret the ai as real and the bj as imaginary numbers.

Subdivide the complex plane by p horizontal lines at the ai (respectively, by q vertical
lines at the bj ) and number the (p + 1)(q + 1) rectangles Ri,j from bottom to top
(respectively, from right to left). See the examples in Section 3.3.

If the rectangles Ri,j along a column i are glued in cycles according to the permutation
σi , and along a row according to their numbering, one obtains an “open” 2–complex
which we compactify by adding a point Q1 “at infinity” and at most m points P1, . . . ,Pm

Geometry & TopologyMonographs 14 (2008)
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at ends of the tubes created by the cycles of rectangles Rq,j ; we denote this 2–complex
by F = F(Σ; a, b). Note that the (p − 1)(q − 1) rectangles Ri,j with 0 < i < q and
0 < j < p are now quadrilaterals on F , those with i = 0, 0 < j < p, i = q, 0 < j < p,
0 < i < q, j = 0 or 0 < i < q, j = p are triangles (with one corner being Q1 ) and the
remaining four are two-gones with one corner being Q1 .

The definition of a degenerate configuration in Section 4.3 is made such F is a surface
of genus exactly g with exactly m punctures if and only if Σ is non-degenerate. (Note
that we use the term “degenerate” also for smooth F with genus or number of punctures
smaller than expected.) Then we take F with the obvious complex structure and at the
point Q1 we take the direction X1 corresponding to the horizontal direction. Note that
there is a harmonic function u given by projection to the real axis.

If F is a surface, but the genus is less than g or there are less than m punctures, then Σ
will also be called degenerate.

4.3 Degenerate cells

The subcomplex P′ , which corresponds to the subspace Par′ of Par, consists of all Σ
with norm less than h, or with a σq having less than m + 1 cycles, or with any of the
following conditions violated:

σi(p) = 0 for i = 0, . . . , q(4–6)

σ0 is the rotation ωp = 〈p, . . . , 1, 0〉(4–7)

σi+1 6= σi for i = 0, . . . , q(4–8)

There is no 0 ≤ k ≤ p− 1 such that σi(k) = k + 1 for all i = 0, . . . , q(4–9)

The subcomplex P̃′ , which corresponds to the subspace P̃ar′ , consists of all cells (ν; Σ)
with norm less than h, or with σq having less than m+1 cycles, or with ν not surjective,
or with any of the conditions (4–3)–(4–5) or (4–6)–(4–9) violated.

Note that the first and the last faces of any cell under ∂′ and ∂′′ are degenerate.

The cells in P̃ar′ (respectively, in Par′ ) are called degenerate although the surfaces
represented by their points might be smooth surfaces – but if so they have the wrong
genus or the wrong number of punctures. Note that the map P̃ar → Par, given by
(ν; Σ) 7→ Σ, is only outside of P̃ar′ (respectively, Par′ ) a covering.
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4.4 Vertical and horizontal boundary operator

The boundary operator ∂ = ∂′ + (−1)q∂′′ on the complex P•• is a sum of a vertical
and a horizontal boundary operator, which are given by

∂′ =
q∑

i=0

(−1)i∂′i with ∂′i (Σ) = (σq, . . . , σ̂i, . . . , σ0)(4–10)

∂′′ =
p∑

j=0

(−1)j∂′′j with ∂′′j (Σ) = (Dj(σq), . . . ,Dj(σ0)).(4–11)

Here Dj : Sp+1 → Sp deletes the letter j from the cycle it occurs in and renormalizes
the indices; more precisely, Dj(α) = sj ◦ 〈α(j), j〉 ◦ α ◦ dj , where dj : [p− 1]→ [p] is
the simplicial degeneracy function which avoids the value j, and si : [p]→ [p− 1] is
the simplicial face function which repeats the value i.

The boundary operator ∂̃ = ∂̃′ + (−1)q∂̃′′ on the complex P̃•• has the following terms.
The vertical face operators do not act on the new data ν , thus

(4–12) ∂̃′i (ν; Σ) = (ν;σq, . . . , σ̂i, . . . , σ0).

For the horizontal face operators we need a deletion operator ∆j(ν) = ν ◦ dj defined by
composing ν with the simplicial degeneracy function dj : [p− 1]→ [p] which avoids
the value j. Then we define

(4–13) ∂̃′′j (ν; Σ) = (∆j(ν); Dj(σq), . . . ,Dj(σ0)).

4.5 Homogeneous and inhomogeneous notation

It is convenient to have – apart from the homogeneous notation above – the inhomoge-
neous (or “bar”) notation at hand: T = [τq| . . . |τ1] where τk := σk ·σ−1

k−1 is an element
in Sp+1 . Vice versa, σk := τk · · · τ1 ·ω . The norm norm(T ) = `(τq) + · · ·+ `(τ1) ≤ h,
and the number of cycles ncyc(T ) = ncyc(σq) = ncyc(τq · · · τ1 · ω) ≤ m + 1. The
conditions translate now into τk(0) = 0 for k = 1, . . . , q, τk 6= 1 for k = 1, . . . , q, and
that there is now common fixed point of all τk , except 0.

The vertical face operators are now ∂′i (T ) = [τq| . . . |τi+1τi| . . .], for i = 1, . . . , q− 1,
and are set equal to 0 for i = 0, q. The horizontal face operators translate into
corresponding operators ∂′′j (T ).

In the non-permutable case, all conditions on the puncture enumeration ν must be
expressed as before.
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5 Some properties of the chain complexes P•• and P̃••

Let h, m ≥ 0 be fixed, and set n = 1.

5.1 The complexes P••

The spaces Par (respectively, P̃ar) are the geometric realizations of the bi-semi-simplicial
complexes consisting of all the cells, degenerate or not.

The degenerate cells form a subcomplex Par′ resp P̃ar′ . Thus they are finite cell
complexes whose cells are products ∆p ×∆q of simplices, where p = 0, 1, . . . , 2h and
q = 0, 1, . . . , h. All cells of dimension less then h + 2, in particular all 0–cells, are
contained in Par′ (respectively, in P̃ar′ ).

We remark here that a subcomplex of Par is contractible. Namely, if we change
the definition of the norm by adding the term norm(σ0ω

−1), we have the same non-
degenerate cells, but fewer degenerate cells. The complement of these degenerate
cells is still homeomorphic to the space Harm. After this modification we would have
H∗−1(Par′) ∼= H3h−∗(Mod). We will investigate this in a forthcoming article exhibiting
Mod as the interior of a compact manifold with boundary.

5.2 The quotient complex

Since the subcomplex P′
••

is generated by basis elements, the quotient complex
Q•• := P••/P′••

is generated by all Σ not in the subcomplex; and the face operators
∂′i (respectively, ∂′′j ) are set to be zero if they land in the subcomplex. In particular
∂′0 = ∂′q = 0 and ∂′′0 = ∂′′p = 0, since they always reduce the norm or the number of
punctures or violate any of the condition stated.

Similar statements hold for the chain complex Q̃•• := P̃••/P̃′••
.

5.3 The spectral sequence of the double complex

The double complex Q•• gives rise to a spectral sequence starting with the E0 –term
E0

p,q = Qp,q . It is concentrated in the first quadrant in the rectangle 0 ≤ p ≤ 2h and
0 ≤ q ≤ h; moreover, E0

p,q = 0 for p = 0, 1 and for pq ≤ h.

It turns out that (for fixed p) the vertical homology E1
p,q = Hq(Qp,•, ∂

′) is concentrated
in the maximal degree q = h. Thus the E1 –term is a chain complex with differential
induced by ∂′′ . And the spectral sequence collapses with E2 = E∞ .
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5.4 The bar resolution

For fixed p the chain complex Pp,• is similar to the homogeneous bar resolution of
the group Sp . First, since we require σi(p) = 0 for the permutations σi ∈ Sp+1 ,
they are actually in one-to-one correspondence with Sp . Secondly, to normalize
σ0 = ωp = 〈0, 1, . . . , p〉 amounts to taking the coefficient module Z with trivial Sp

action. If one filters the bar resolution by the norm, then Pp,•(h,m, 1) is a summand in
the hth filtration quotient, namely the summand determined by σq having m + 1 cycles.

Note that each cell Σ intersects the subspace Par′ of degenerate surfaces; more precisely,
in the quotient chain complex Q•• we have ∂′0(Σ) = ∂′q(Σ) = 0 and ∂′′0 (Σ) = ∂′′p (Σ) = 0
for a cell Σ of bi-degree (p, q).

Similar statements hold for the chain complex Q̃p,• .

6 The example g = 1, n = 1 and m = 0 algebraically

In this section we discuss the example g = 1, m = 0 and n = 1, the moduli space of
tori with one boundary curve and no punctures. Thus d + c = 6. The possible values
for p are p = 0, 1, 2, 3, 4, and for q they are q = 0, 1, 2. We write the cells in the
homogeneous notation.

6.1 The cells

Recall the eight non-degenerate cells Σ1, . . . ,Σ8 as given above in Section 3.4. With
bi-degrees

(p, q) = (4, 2) : Σ1 and Σ2 in dimension 6

(p, q) = (4, 1) : Σ3 in dimension 5

(p, q) = (3, 2) : Σ4,Σ5 and Σ6 in dimension 5

(p, q) = (3, 1) : Σ7 in dimension 4

(p, q) = (2, 2) : Σ8 in dimension 4
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6.2 The E0 –term

The E0 –term is shown in the following table:

(6–1)

q = 2 Σ8 Σ4,Σ5,Σ6 Σ1,Σ2

q = 1 Σ7 Σ3

q = 0
p = 0 p = 1 p = 2 p = 3 p = 4

The vertical boundary operator ∂′ is

∂′(Σ1) = ∂′(Σ2) = −Σ3, ∂′(Σ4) = ∂′(Σ5) = ∂′(Σ6) = −Σ7.

6.3 The E1 –term

We set A := Σ1 − Σ2 , B := Σ4 − Σ5 , and C := Σ4 − Σ6 . Note that in this example
the fundamental class (see Section 7) is µ = −A.

Then the E1 –term is as follows:

(6–2)

q = 2 Σ8 B,C A
q = 1 0 0
q = 0

p = 0 p = 1 p = 2 p = 3 p = 4

The horizontal boundary operator ∂′′ is

∂′′(A) = 0, ∂′′(B) = −2Σ8, ∂′′(C) = −Σ8.

6.4 The E2 –term and final result

If we set D := B− 2C we have a cycle in degree (3, 2), and therefore an E2 –term as
follows:

(6–3)

q = 2 0 D A
q = 1 0 0
q = 0

p = 0 p = 1 p = 2 p = 3 p = 4

The moduli space of tori with one boundary curve is orientable and homotopy-equivalent
to the complement of the trefoil knot in R3 , or in other words the mapping class group
Γ is isomorphic to the third braid group; its cohomology is infinite cyclic in degrees 0
and 1.
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7 The fundamental class

Here we set n = 1. Then h = 2g + m. The (relative) cycle µ representing
the fundamental class [µ] ∈ H3h(P,P′; Z) is given as follows. First, its degree is
(p, q) = (2h, h). Thus we need 2h permutations τh, . . . , τ1 for the inhomogeneous
notation. We set τ1 = 〈3, 1〉 and τ2 = 〈4, 2〉, an interlocking pair of disjoint
transpositions. We continue in this way until we have g blocks of two pairs of
interlocking transpositions. Then we continue with τ2g+1 = 〈4g + 2, 4g + 1〉, till
τ2g+m = 〈4g + 2m, 4g + 2m− 1〉; these are m neighbour transpositions.

Altogether we have 2h disjoint (and therefore commuting) transpositions. The g
symplectic pairs of interlocking transpositions create each a handle of the surface; and
the m non-interlocking transpositions create each a puncture. The cycle number of
τh · · · τ1 · ω2h is m + 1.

Let Λ(h,m) denote the subset of all permutations α ∈ S2h such that the horizontally
conjugated cell

(7–1) κα(T) = [ατhα
−1| . . . |ατ1α

−1]

has the same cycle number ncyc(α.T) = m + 1. Furthermore, for π ∈ Sh let

(7–2) π.T = [τπ(h)| . . . |τπ(1)]

denote the vertically permuted cell. These operations were studied by Schardt [34].
The chain

(7–3) µ =
∑
π∈Sh

∑
α∈Λ(h,m)

sign(π) sign(α) π . κα(T)

is a cycle and represents the fundamental class. For example, when g = 2,m = 0, this
cycle has 504 terms.

8 The orientation system

The local coefficient system is the orientation system of the relative manifold Par,Par′ .
For m ≥ 2 it is not trivial, see Müller [30]. In order to determine the change of
sign along a path, we can restrict to edge paths from barycenters to barycenters in a
subdivision.

We will associate to each cell T a top-dimensional cell top(T ). Denote then by ε(T )
the sign with which top(T ) occurs in the fundamental class µ. The sign change for
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the path from the barycenter of T to the barycenter of T ′ , where T ′ ⊂ T , is then the
product ε(T )ε(T ′) of these two signs.

To define the cell top(T ) we associate to T = [τq| . . . |τ1] we start by writing each τi

in a certain normal form NF(τi). First, if α = 〈il, . . . , i0〉 is a permutation consisting
of just one cycle, we write it as α = NF(α) = 〈il, il−1〉 · · · · · 〈i1, i0〉. If α consists
of several (non-trivial) cycles, we order them by their minima, the absolute minimum
being first (or in our notation rightmost). This gives a normal form

(8–1) α = NF(α) = · · · · 〈i′l′ , i′l′−1〉 · · · · · 〈i′1, i′0〉 · 〈il, il−1〉 · · · · · 〈i1, i0〉.
Assume we have the normal forms NF(τq), . . . ,NF(τ1). The next step is to “separate”
the factors in each normal form NF(τi) by replacing all product signs by a bar symbol.
We obtain a new cell:

(8–2) T ′ = [θh | θh−1 | . . . | θ1].

Note that it has exactly h transpositions θh, . . . , θ1 . Thus T has bi-degree (p, h) (and
is not yet the top-dimensional cell we seek).

The next step is to “spread out” these transpositions, that is to replicate indices if they
occur in several of the transpositions. Denote for j = 0, . . . , p by Sj : Sp → Sp+1 the
function which sends the permutation α to the new permutation Sj(α) by increasing the
indices k ≥ j in a cycle notation to k + 1 and leaving the others. Note that j becomes a
fixed point. In other words, Sj(α) = dj ◦ 〈α(j), j〉 ◦ α ◦ sj expressed with the simplicial
face and degeneracy maps. (See the definition of Dj in Section 4.2; note that neither the
Dj nor the Sj are group homomorphisms; they turn the family of symmetric groups into
a crossed simplicial group.) Since Sj(〈k, l〉) = 〈dj(k), dj(l)〉, a transposition is mapped
to a transposition.

Assume k is the lowest index in T ′ occurring more than ones in one of transpositions
θi , say in θi1 the first time and in θi2 the second time, for i2 > i1 . Then we replace T ′
by

(8–3) T ′′ = [Sk(θh)|Sk(θh−1)|. . .|Sk(θi2)|. . .|Sk(θi1+1)|Sk+1(θi1)|. . .|Sk+1(θ1)],

a cell of bi-degree (p + 1, h). We repeat this last step until no index occurs more than
ones in these transpositions, each time raising the first degree by one. The final result is
a sequence of h disjoint transpositions, thus a cell top(T ) of degree (2h, h).

9 Comments on the computation

The C++ program with documentation is contained in the first author’s thesis [1]. It is
about 3000 lines long and consists of 187 subroutines. Here we give some comments.
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9.1 Listing the cells

The computer program uses the C++ Standard Template Library extensively. A
permutation in Sp+1 is implemented as a vector of integers (list of values) and also as
a single integer using an easy computable bijection Sp+1 → {1, . . . , (p + 1)!}. Thus
manipulations can be performed easily and an efficient storage handling is possible up
to h = 6.

We obtain the non-degenerate cells or generators of Q•• by first generating the set Λ of
all cells in bi-degree (2h, h), namely all h–tuples of disjoint transpositions in S2h –
there are Lh = (2h − 1)!! = (2h)!

2hh! such tuples – then we sort them according to their
cycle number m into sets Λ(h,m). Note that for h odd (respectively, even) the cycle
number m is again odd (respectively, even).

Applying the vertical boundary operator ∂′ successively gives all generators of the
chain complex Q2h,• . Next we generate the cells of bi-degree (2h− 1, h) as images of
the cells of bi-degree (2h, h) under the horizontal boundary operator ∂′′ . Inductively,
we obtain all cells of Q•• .

The same procedure gives the cells of the complex Q̃•• , where we store all possible
puncture enumerations ν : [p]→ [m] additionally.

9.2 The matrices of the boundary operator

While generating the cells, the matrices D′ resp D′′ of the two boundary operators ∂′

(respectively, ∂′′ ) are produced simultaneously. We store the matrices in the following
sparse format: for the matrix entries, a compressed row format is used; moreover, a
compressed column matrix of boolean variables gives the positions of the nonzero
entries. This seems to be a reasonable trade-off between memory space and running
time, because both row and column operations are performed frequently on the matrix.

For the homology of the complex Q•• (respectively, Q̃•• ) we first compute the Smith
normal forms of the matrices of the vertical boundary operators. As noted earlier,
for each p, the homology of the vertical chain complexes Qp,• is just the kernel of
∂′ : Qp,h → Qp,h−1 . This gives the E1 –term of the spectral sequence.

In order to compute its E2 –term and thus the desired homology of the total complex, we
add a lattice reduction routine, the LLL-algorithm (named after Lenstra-Lenstra-Lovász)
while computing the Smith normal form (or elementary divisors) of the horizontal
boundary operator ∂′′ . This is important to avoid a coefficient explosion in the case
h = 5. All the computations were also done modulo 2.
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9.3 Size of the matrices

Both running time and memory space grow exponentially with h. More precisely,
let Np,q = Np,q(h,m) be the number of cells of bi-degree (p, q). Table 1 shows these
numbers for some cases.

Ranks of the E0 –term for h = 5 and q = 5, 4

p= 0 1 2 3 4 5 6 7 8 9 10
h=5
m=1

q=5 0 0 1 240 6170 51115 195264 394240 435680 249480 57960
q=4 0 0 0 216 7840 76140 320880 694148 808192 482328 115920

h=5
m=3

q=5 0 0 0 0 640 12425 74610 202825 278600 189000 50400
q=4 0 0 0 0 800 18500 122700 357280 516880 365400 100800

h=5
m=5

q=5 0 0 0 0 0 0 1296 7735 16520 15120 5040
q=4 0 0 0 0 0 0 2160 13692 30688 29232 10080

Table 1: Ranks of the E0 –term for h = 5 and q = 5, 4

Observe that both boundary operators leave the puncture number m invariant, so we
can compute the homology for each m ≡ h mod 2 separately.

To generate the matrix D′p,q or D′′p,q of a boundary operator ∂′ : Qp,q → Qp,q−1

(respectively, ∂′′ : Qp,q → Qp−1,q ) we need to take q − 1 (respectively, p − 1)
boundary faces from Np,q cells and search these face cells in a (sorted) list of Np,q−1

resp Np−1,q cells. This leads to a running time of O(hN2 log N), where N = max{Np,q}.
We only need to compute the matrices D′2,h, . . . ,D

′
2h,h and D′′3,h, . . . ,D

′′
2h,h . See Table 1

for the size of the matrices D′p,5 for h = 5.

The most time-consuming procedure when determining the Smith normal form is
the LLL-algorithm. This algorithm, applied to r columns of an integer matrix takes
O(r6 log3 B) steps, where B is the maximal norm of a column. But note that we apply
the LLL-algorithm only when the coefficients exceed a prescribed barrier, and also only
to portions of the columns, so r is much smaller than N .
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Ranks of the E1 –term for h = 5

The most memory-consuming part in the computation procedure is the storage of the
matrices D′′p,h for the horizontal boundary operator ∂′′ . in terms of the transformed
basis. Numerical values for the number of generators of the E1 –term can again be taken
from Table 2 giving estimates for the matrix sizes D′′p,5 .

p = 0 1 2 3 4 5 6 7 8 9 10
h = 5
m = 1

q = 5 0 0 1 60 650 2860 6588 8708 6678 2772 483
h = 5
m = 3

q = 5 0 0 0 0 70 700 2520 4480 4270 2100 420
h = 5
m = 5

q = 5 0 0 0 0 0 0 1 14 56 84 42

Table 2: Ranks of the E1 –term for h = 5

We were able to compute the homology of the complexes Q•• up to h = 5 on a machine
with 4 GB of RAM and a 3 GHz processor taking approximately 4 days for the case
h = 5, m = 1. The computational problems for h > 5 are both running time and
memory space.
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