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On random walks in random scenery
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Delft University of Technology and Université de Provence

Abstract: This paper considers 1-dimensional generalized random walks in
random scenery. That is, the steps of the walk are generated by an arbitrary
stationary process, and also the scenery is a priori arbitrary stationary. Under
an ergodicity condition—which is satisfied in the classical case—a simple proof
of the distinguishability of periodic sceneries is given.

1. Introduction

Random walks in random scenery have been studied by Mike Keane for quite some
time (see [2] for his most recent work). In fact, he and Frank den Hollander were
pioneers in this exciting area. Around 1985 they formulated a conjecture about
“recovery of the scene” by a simple random walker. A weaker form of this: “distin-
guishability of two scenes”, was proven by Benjamini and Kesten ([1]). Since then
there has been a lot of action in this field, especially by Matzinger and co-workers.
We just mention the recent paper [5].

In the following we will introduce generalized random walks in random scenery,
and analyse them from a dynamical point of view. This gives us in Section 2 a
general scenery recovery result on the level of measures, from which we deduce in
a simple way in Section 3 a proof for the distinguishability of periodic sceneries.

We consider a random walker on the integers. The integers are coloured by
colours from an alphabet C. This is the scenery. At time n the walker records the
scenery at his position, this yields rn from C. To formalize somewhat more, let the
random walk be described by a measure µ on the Borel sets of Ω, where

Ω = {ω = (ωn)n∈Z : ωn ∈ J for all n}.

Here the set J of the possible steps of the walk will simply be {−1, +1}, or somewhat
more general {−1, 0, +1}. Although often a single scenery x = (xk)k∈Z is considered,
it is useful to consider x as an element of the shift space X = CZ with shift map
T : X → X, equipped with some ergodic T -invariant measure λ, which we will call
the scenery measure. We then consider x picked according to the measure λ. The
colour record ϕx of x can be written as a map ϕx : Ω → X:

ϕx(ω) = (rn(ω, x))n∈Z,

where in line with the description above, one has for n ≥ 1

rn(ω, x) = (Tω0+···+ωn−1x)0.
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This definition is completed by putting r0(ω, x) = x0, and for n < 0:

rn(ω, x) = (T−ω−1−ω−2···−ωnx)0.

The dynamics of the whole process is well described by a skew product transfor-
mation TΩ×X on the product space Ω × X defined by

TΩ×X(ω, x) = (σω, Tω0x),

where σ denotes the shift map on Ω.
Let us now look at the colour records of all x; we define the global recording map

Φ : Ω × X → X by
Φ(ω, x) = (rn(ω, x))n∈Z.

Lemma 1. The map Φ is equivariant, that is, Φ ◦ TΩ×X = T ◦ Φ.

Proof. One way:

Φ ◦ TΩ×X(ω, x) = Φ((σω, Tω0x)) = (rn(σω, Tω0x))n∈Z

= ((Tω1+···+ωnTω0x)0) = (rn+1(ω, x))n∈Z.

The other way:

T ◦ Φ(ω, x) = T ((rn(ω, x))n∈Z) = (rn+1(ω, x))n∈Z.

Clearly product measure µ×λ is preserved by TΩ×X . We will be particularly
interested in the image of µ×λ under the global recording map Φ, which we denote
ρ:

ρ = (µ×λ) ◦ Φ−1.

We call ρ the global record measure. It follows from Lemma 1 that ρ is invariant
for T . Moreover, ρ will be ergodic when TΩ×X is ergodic for µ×λ. In the classical
case were µ is product measure this is guaranteed by Kakutani’s random ergodic
theorem. In this case, when λ and λ′ are two scenery measures, and ρ = (µ×λ)◦Φ−1

and ρ′ = (µ×λ′) ◦ Φ−1 are the corresponding global record measures, then either
ρ = ρ′ or ρ ⊥ ρ′.

The colour record ϕx of a scenery x induces the record measure ρx defined by

ρx = µ ◦ ϕ−1
x .

Following [4] we call the two sceneries x and y distinguishable if ρx⊥ρy. The follow-
ing lemma shows that global distinguishability carries over to local distinguishabil-
ity.

Lemma 2. Let λ and λ′ be two scenery measures with corresponding global record
measures ρ and ρ′. Then ρ⊥ρ′ implies that ρx⊥ρy for λ×λ′ almost all (x,y).

Proof. By Fubini’s theorem, and recalling that Φ(ω, x) = ϕx(ω),

ρ(E) =
∫

X

∫
Ω

1E ◦ Φ(ω, x) dµ(ω) dλ(x)

=
∫

X

µ(ϕ−1
x E) dλ(x).

So ρ =
∫

ρx dλ(x). Hence if E is a Borel set with the property that ρ(E) = 1 and
ρ′(Ec) = 1, then ρx(E) = 1 for λ-almost x, and ρy(Ec) = 1 for λ′-almost y.
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2. Reconstructing the scenery measure

Here we consider the case of a generalized random walk with steps J = {−1, 0, +1}
given by an ergodic stationary measure µ on Ω = JZ. For ease of notation we
rename J to {l,h,r}. To simplify the exposition we will assume that there is no
holding (µ([h]) = 0), and show at the appropriate moment that this restriction can
trivially be removed.

There is a basic difference between symmetric walks and asymmetric walks in
the reconstruction of the scenery. We call µ symmetric if for each word w

µ[w] = µ[w].

Here w denote the mirror image of w, that is, the word obtained from w by replacing
r by l and l by r. Since he does not know left from right, a symmetric walker can
only reconstruct a scenery x up to a reflection. This will result in two theorems,
one for the asymmetric, and one for the symmetric case.

Let λ be a scenery measure. We give a few examples of calculation of the ρ-
probabilities of cylinder sets. Let Wn be the set of all words w = w1 . . . wn of
length n over the (colour) alphabet {0, 1}. For w ∈ Wn we let [w] denote the
cylinder

[w] = {x ∈ X : x0 . . . xn−1 = w},
and we will abbreviate ρ([w]) to ρ[w]. We will use the same type of notations and
conventions for λ and µ. It is clear, using the stationarity of λ, that for instance

ρ[001] = µ[rr]λ[001] + µ[ll]λ[100],

and slightly more involved

ρ[000] = (µ[rl] + µ[lr])λ[00] + (µ[rr] + µ[ll])λ[000],

and

ρ[0001] = µ[rll]λ[100] + µ[lrr]λ[001] + µ[rrr]λ[0001] + µ[lll]λ[1000].

In the sequel we shall denote the word r . . .r, N times repeated, as r
N . Note

how with each appearance of a word w on the right side also the reversed word
←
w

appears, defined by
←
w = wn . . . w1 if w = w1 . . . wn. Words w that satisfy w =

←
w are

called palindromes. Now let us put all the words w from ∪1≤k≤nWk in some fixed
order, taking care that their lengths are non-decreasing and that for a fixed k we
first take all palindromes, and then all non-palindromes in pairs (w,

←
w). Let Vn(ρ)

and Vn(λ) denote the vectors of length (2n+1− 2) containing the real numbers ρ[w]
respectively λ[w] in the chosen order. For example,

V T
2 (ρ) = (ρ[0], ρ[1], ρ[00], ρ[11], ρ[01], ρ[10]).

In general, if w is a word of length N + 1, then ρ[w] is obtained as a sum of
products µ[u]λ[v], where the length of v is at most N + 1, and length N + 1 only
occurs when the walker makes no turns, i.e., when u = r

N or u = l
N . Moreover,

if w is a palindrome, then there is one maximal length term (µ[rN ] + µ[lN ])λ[w],
and if w is not a palindrome, then there are two maximal length terms µ[rN ]λ[w],
and µ[lN ]λ[

←
w]. This observation shows that there exists an almost lower triangular

(2n+1− 2) × (2n+1− 2) matrix An such that

Vn(ρ) = AnVn(λ).



50 F. M. Dekking and P. Liardet

Here ‘almost lower triangular’ means that An has the form



� 0 0 0 0 0
∗ � 0 0 0 0
∗ ∗ � 0 0 0
∗ ∗ ∗ ... 0 0
∗ ∗ ∗ ∗ � 0
∗ ∗ ∗ ∗ ∗ �




,

where (at palindrome entries) � is a 1 × 1 matrix µ[rN ] + µ[lN ], and (at non-
palindrome pairs) � is a 2 × 2 matrix of the form

(
µ[rN ] µ[lN ]
µ[lN ] µ[rN ]

)
.

With simple linear algebra we find that An is non-singular if and only if

µ[r] �= µ[l], . . . , µ[rN ] �= µ[lN ], . . .

Let us call a generalized random walk given by µ strongly asymmetric if all these
inequalities hold. For instance, if µ is a stationary Markov chain given by a 2 × 2
transition matrix (ps,s), then µ is strongly asymmetric if and only if pr,r �= pl,l.

Note that when µ[h] > 0, then only some sub-diagonal elements of An will change
from 0 to a positive value. We therefore obtained the following result.

Theorem 1. For strongly asymmetric generalized random walk with holding the
scenery measure λ can be reconstructed from ρ.

What remains is the symmetric walker case. Then in general λ can not be re-
constructed from ρ. However, often we can reconstruct the reversal symmetrized
measure λ̌ defined for each word w by

λ̌[w] =
1
2

(
λ[w] + λ[

←
w]

)
.

For symmetric µ the equation for, e.g., ρ[0001] becomes

ρ[0001] = 2µ[lrr]λ̌[001] + 2µ[rrr]λ̌[0001].

In general, if w is a word of length N +1, then ρ[w] is obtained as a sum of products
µ[u]λ̌[v], where the length of v is at most N +1, and length N +1 only occurs when
u = r

N or u = l
N . Moreover, now there is for all words w one term 2µ[rN ]λ̌[w]

for the v = w with maximal length. So this time we obtain the existence of a
(2n+1− 2) × (2n+1− 2) lower triangular matrix An such that

Vn(ρ) = AnVn(λ̌).

Let us call µ straightforward if arbitrary long words of r’s have positive proba-
bility to appear. Then the diagonal elements of An are positive for each n, and we
obtain the following.

Theorem 2. For straightforward symmetric generalized random walk with holding
the reversal symmetrized scenery measure λ̌ can be reconstructed from ρ.
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3. Distinguishing periodic sceneries

In this section we shall derive more general results with more simple proofs than
in [3]. It is shown there that for asymmetric simple random walk with holding
any two periodic sceneries x and y which are not translates of each other can be
distinguished by their scenery records, i.e., ρx⊥ρy. Our result is

Theorem 3. Any strongly asymmetric generalized random walk with holding can
distinguish two periodic sceneries that are not translates of each other, provided that
their global record measures are ergodic.

Proof. Let us write x
t∼ y if x and y are translates of each other, i.e., for some

k one has y = T kx. Let Per(x) be the period of x, i.e. p =Per(x) is the smallest
natural number such that T px = x. Let λ be the scenery measure generated by x,
i.e., denoting point measure in z by δz,

λ =
1

Per(x)

Per(x)−1∑
k=0

δT kx.

The scenery measure generated by y is denoted as λ′. Now suppose that ρx is
not orthogonal to ρy. Then, since λ and λ′ are discrete, it follows from Lemma 2
that also ρ and ρ′ are not orthogonal. But since these measures are ergodic, they
must be equal. From Theorem 1 it then follows that also λ = λ′. This implies that
x

t∼ y, by the discreteness of λ and λ′. Indeed, equality of these measures yields
that δT kx = δT jy for some k and j, and hence that x

t∼ y.

For a symmetric (generalized) random walk it is impossible to distinguish a
sequence x from its reflection

←
x , defined by

←
xk= x−k. So let us call x and y

equivalent, and we denote x ∼ y, if y can be obtained from x by translation and/or
reflection.

Theorem 4. Any straightforward symmetric generalized random walk with holding
can distinguish two periodic sceneries that are not equivalent, provided that their
global record measures are ergodic.

Proof. The proof follows the same path as the proof of Theorem 3, using Theorem
2 instead of Theorem 1. The only other difference now is that the measure λ̌ is a
mixture of point measures in T kx and in T j ←

x . But then equality of λ̌ and λ̌′ implies
that y must be a translate, or the reflection of a translate of x, i.e., x ∼ y.
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