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Abstract

Meta-analysis combines individual studies or trials to achieve one overall treat-

ment effect estimate and has come a long way since first appearing within medical

literature 30 years ago.

Most articles examine how best to combine the individual trials and measure

the combined estimate. A lot of articles also examine the different sources of

variation, between study variation and within study variation, which occur when

performing a meta-analysis, and how ’best’ to account for the between study

variation, the heterogeneity.

Very little information however, has been published on the relationship which

occurs between the treatment effect estimate and the heterogeneity. Most publi-

cations examine these two measures individually, assuming they are independent,

however further examination of this relationship brings this assumption of inde-

pendence into question.

We have examined the relationship of the treatment effect estimates and their

corresponding heterogeneities for 125 independent meta-analyses using the fre-

quentist approach and note that the results indicate a relationship is present.

i



This relationship will have a resulting effect on how one measures the treat-

ment effect estimates and their corresponding heterogeneity and is something that

is considered here, using a Bayesian approach, along with a few other Bayesian

modeling approaches.

Building on these Bayesian approaches, we consider whether a hierarchical

model which would allow a meta-analysis of meta-analyses can be produced.

ii



Acknowledgements

I would like to say a huge thank you to my supervisor, Professor Stephen

Senn for his time, patience, comments and suggestions throughout the past two

years which are very much appreciated.

I would also like to thank the pharmaceutical company GlaxoSmithKline for

their funding which allowed me to do the research for this masters.

Thank you also to Christopher Schmid, one of the authors of the journal

article “Heterogeneity and statistical significance in meta-analysis: an empirical

study of 125 meta-analyses” who kindly supplied me with the data for this thesis.

Many thanks to the girls in the office for their advice, helpful tips and the

odd distraction at the end of a long day.

Last, but not least, I would also like to thank my family, especially my mum,

dad and sister who were great at listening confusedly and nodding along anyway,

as well as all of my friends, Elaine, Lesley, Laura, Adele and Cat, for their valuable

support (and ears) they allowed me to take advantage of during my Masters. If

ever you need to let off steam you know I’m here for you!

iii



Contents

Abstract i

Acknowledgements iii

Contents Page iii

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Meta-Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Bayesian Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Meta-Analyses 9

2.1 Summary Estimates . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

iv



2.3 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Measures of Heterogeneity . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Background on the Data . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.2 Inclusion Criteria . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.3 Calculating the Summary Statistics . . . . . . . . . . . . . 25

2.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Examining the Relationship 30

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Checking the Data . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Exploratory Analysis of a Relationship . . . . . . . . . . . . . . . 36

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Fitting a Bayesian Model 40

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Creating a Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Published Data Check . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.2 The Model Used . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.3 Looking at the Results . . . . . . . . . . . . . . . . . . . . 49

4.4 Comparing Variances . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Bayesian and Frequentist Heterogeneity . . . . . . . . . . . . . . . 53

4.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 53

v



4.5.2 The Binomial-Normal Model . . . . . . . . . . . . . . . . . 53

4.5.3 The Normal-Normal Model . . . . . . . . . . . . . . . . . 57

4.5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Comparing the Models . . . . . . . . . . . . . . . . . . . . . . . . 66

4.7 Fitting an Informative Prior . . . . . . . . . . . . . . . . . . . . . 68

4.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.7.2 Creating a New Model . . . . . . . . . . . . . . . . . . . . 69

4.7.3 Examining the Results . . . . . . . . . . . . . . . . . . . . 71

4.7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.8 A Meta-Analysis of Meta-Analyses . . . . . . . . . . . . . . . . . 75

4.8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.8.2 Creating the Model . . . . . . . . . . . . . . . . . . . . . . 75

4.8.3 Examining the Results . . . . . . . . . . . . . . . . . . . . 76

4.8.4 A More Complex Model . . . . . . . . . . . . . . . . . . . 77

4.8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Conclusions and Discussions 84

A Individual Meta-Analysis Results 92

References 97

vi



List of Tables

2.1 Journals from which the selected Meta-Analyses originated . . . . 21

2.2 The Fields in which each of the Meta-Analyses primary focus oc-

curred . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Summary statistics for the numbers of clinical trials included in

the 125 MA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Summary statistics for the average numbers of patients in one

treatment group for the 125 MA, assuming the numbers of pa-

tients in the treatment and the control group are equal . . . . . . 24

2.5 Summary statistics for the average numbers of events in both the

control arm and the treatment arm for all 125 MA . . . . . . . . . 25

3.1 Correlations for the treatment effect estimates and their respective

heterogeneity for each metric . . . . . . . . . . . . . . . . . . . . . 38

4.1 Respiratory tract infections of 22 studies in the control and treat-

ment groups with individual and pooled estimates of odds ratios

using the Mantel-Haenszel method (Mantel and Haenszel, 1959) . 45

4.2 Results for the published Bayesian analysis for model 4.6 . . . . . 50

vii



4.3 Results for the published Bayesian analysis for model 4.6 using

equation 4.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Comparing the frequentist and Bayesian methods for the hetero-

geneity (using model 4.1), with groupings to emphasise both the

number of trials in each Meta-analysis and the average number of

patients within each trial . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Comparing the DerSimonian and Laird frequentist method, the

Hardy and Thompson method, and the Bayesian method for the

heterogeneity (using model 4.8), with emphasis on the number of

trials in each Meta-analysis and the average number of patients

within each trial . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Results for the data used by Abrams and Sansó (1998) using the
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Chapter 1

Introduction

1.1 Introduction

Many clinical trials, both past and present, aim to compare a new treatment

with either a placebo, or an existing treatment which is already on the market,

however they can often have results which are inconclusive. This may be because

too small a sample size has been used, which is perhaps due to a poor intake of

patients to the trial.

Even when a trial does appear to show a significant result which favours the

new treatment, it is not necessarily considered for licensing, especially in the

United States of America, unless there is at least one other independent clinical

trial which also displays significant results in favour of the new treatment. For

example, there is more convincing evidence if a trial in a different country obtains

the same result.

This reasoning strengthens the argument in favour of this new treatment over

1
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a placebo or any existing previous treatment by studying the same question on

more than one occasion. It is less than ideal however, to continue repeating un-

necessary clinical trials with the same new treatment until a significant difference

is notable. This is partially for ethical reasons to prevent either the trials contin-

uing indefinitely, or failure to notice the new treatment producing a significantly

negative effect on the patients’ health, but mainly to prevent accepting a false

positive result in favour of the new treatment, which will occur in 5% of all trials.

1.2 Meta-Analysis

A meta-analysis is a statistical method which can be used to overcome these

problems by systematically combining the results from several individual trials

concerning the same treatment and similar constraints and formally summarising

the results. The concept of meta-analysis is first known to have been used in the

early 1900’s (Pearson, 1904) for the combination of studies of typhoid vaccine

effectiveness, before first appearing in medical literature during the 1980’s. It is

a technique which is becoming more frequently and widely used, as well as being

recognised as an important step within the medical world.

Combinations of various independent trials allows an average treatment effect

to be produced which will consequently have a greater precision than any of the

individual estimates. Using the combined average treatment effect, a single over-

all null hypothesis which assumes no difference between the placebo/previously
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existing treatment and the new treatment can then be tested against an alterna-

tive hypothesis which declares a difference.

This can prove useful for preventing any further unnecessary trials in view of

a significant result which can determine early on (using the pre-existing clinical

trials) whether or not there is evidence of a significant treatment difference, be

this in favour of the new treatment or against it.

An area of great debate surrounds how best to model the overall treatment

effect estimate. Some statisticians believe the use of the fixed effects model which

assumes the size of the treatment effect is equal for each trial is best, whereas

many believe the random effects model which allows the size of the treatment

effect to differ between trials should be implemented. This random effects model

will allow for two sources of variation, the within study variation which is also

incorporated in a fixed effects model, and a different source of variation, that

which occurs between the trials, also known as the heterogeneity. If a random

effects model is produced and there is in fact no heterogeneity present, the results

obtained would be similar to the results obtained if using a fixed effects model.

A common problem which one should be aware of when computing a meta-

analysis is a possibility of bias occurring and subsequently care must be taken

when computing a meta-analysis to avoid this bias as much as possible. Publica-

tion bias can occur if the researcher considers solely trial results which have been

published, since many trial results (most commonly those which indicate a null

result) fail to become published. The danger in publication bias is the majority

of trials which are published are generally large trials, which can demonstrate
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either a significant treatment effect or a non-significant treatment effect, since it

is the large trials which are usually of most interest. Very few, if any, are small

trials, and of the small trials which are published they are usually only published

because they are significant. To overcome this form of bias, the researcher should

ensure all studies are included in the meta-analysis as far as possible which may

involve searching for studies which are unpublished. Registering a trial with a

central register enables the trial to be tracked and allows the public to have ac-

cess to it. At present it is recommended that every trial is registered, for both

ethical reason and to attempt to prevent publication bias, however it is still not

yet compulsory.

1.3 Bayesian Methods

There is a lot of debate about the ‘best’ way in which to model meta-analyses,

which can roughly be categorised into either the frequentist approach or the

Bayesian approach.

The frequentist approach uses solely the data that are provided, which can

be in any form, e.g. individual patient level data, and calculates an overall single

fixed estimate for the treatment effect. This can then be tested against a null

hypothesis of there being no treatment difference for a trial which is being used

to determine whether the new treatment is superior to the current treatment.

The treatment effect estimate in this case, which is an unknown parameter, is

treated as an unknown constant.
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The Bayesian approach however, allows the parameters, in this instance the

treatment effect and its variation, to be treated as random variables. Each of the

random variables in the model are given prior distributions “a reasonable opinion

concerning the plausibility of different values of the treatment effect excluding the

evidence from the trial” (Spiegelhalter et al., 2004) which can be informative, if

one has a subjective opinion of the prior information for a random variable, or

non-informative if one has no subjective prior belief concerning the parameter

in question. Generally if one has no prior belief concerning the behaviour of a

specified prior, one would model that specific variable as a non-informative prior.

The priors are combined with the likelihood “the support for different values

of the treatment effect based solely on data from the trial” (Spiegelhalter et al.,

2004), calculated from the data itself and this resulting combination produces the

posterior distribution “a final opinion about the treatment effect” (Spiegelhalter

et al., 2004), the result. Use of non-informative priors therefore allows the data

to ‘speak for itself’ and the resulting posterior will have no subjective opinion

attached to it.

The frequentist approach allows calculations of 95% confidence intervals, whilst

the Bayesian ‘equivalent’ produces a 95% credibility interval. Any percent can

be used for these intervals, however the 95% is one of the most commonly used

and corresponds to the 5% significance level. Whilst a 95% confidence interval

will 95% of the time contain the true value of the parameter, the 95% credibility

interval has a 95% probability of the true estimate being contained within it. The

Bayesian credibility intervals are generally narrower due to the additional prior
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information, although this will probably depend upon the model being used.

In this thesis the parameters for the treatment effect and its variation have

both been given non-informative prior distributions to start with, before alterna-

tives to these non-informative priors are then considered. The recent development

of software for implementing the Bayesian approach allows these methods to be

used relatively easily. The package used for the Bayesian analysis in this thesis

is WinBUGS version 1.4.3 (2007), which uses Markov Chain Monte Carlo meth-

ods (MCMC), and packages in R version 2.6.1 (2007) have been used to allow

WinBUGS to run from within R.

The results obtained via Bayesian methods can be similar in a numerical sense

to those obtained using the frequentist methods, however there is the advantage

that the Bayesian method can account for prior subjective opinion and the result

is updated in light of the data.

1.4 Aims

The main aim of interest in this project is to determine appropriate models for

meta-analyses. In doing this, the initial question of whether there is a relationship

between the absolute treatment effect and the heterogeneity of a meta-analysis,

all other things being equal will be examined. If there is no treatment effect,

one would expect no variation between the studies; however no variation between

the studies does not necessarily imply no treatment effect. A large treatment

effect indicates there may be a lot of variation between studies, but there does
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not have to be. If a relationship is seen to exist, the question of how this can be

incorporated into the meta-analysis will then be considered

Another area of interest for this thesis is to determine which variables can

feasibly be transferred between clinical trials. A meta-analysis is performed as

mentioned previously on clinical trials which are similar in the sense that they

look at the same new treatment, at the same concentration, and compare the

results of this new treatment to the results from a single current treatment or

placebo to determine whether or not this new treatment has a significant effect.

This seems to be a reasonable comparison of results since each clinical trial which

will be included in the meta-analysis hopes to come to the same conclusion as

the remaining clinical trials. It does not appear reasonable to construct a meta-

analysis which allows the inclusion of various clinical trials which have considered

the difference between different treatments, since the main aim of a meta-analysis

is to look at the treatment effect which can be transferred between the clinical

trials. One might be interested however, in determining whether or not it would

be reasonable to allow meta-analyses of clinical trials which consider different

treatments if the treatment effect was not transferable between clinical trials. In

this case, the meta-analyses could allow for the transfer of the variance.
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1.5 Thesis Overview

To allow the reader to obtain some background knowledge of where the data

for this thesis originated, Chapter 2 goes into some detail of what data are avail-

able and what it has already been used for, as well as a small literature review

regarding publications concerning both meta-analyses and Bayesian approaches

to meta-analyses.

Chapter 3 then looks more specifically at the relationship between the treat-

ment effect and its variation, to determine whether these parameters should ide-

ally be modelled as individual parameters, or whether this is not feasible.

More indepth analysis of the meta-analyses will be computed using a Bayesian

analysis in Chapter 4, as well as the results from these analyses, before looking

at ideas for possible future work which will be in Chapter 5.



Chapter 2

Meta-Analyses

2.1 Summary Estimates

As previously mentioned in Chapter 1, a meta-analysis produces one single

overall treatment effect estimate for a group of clinical trials. This estimate can

be measured using different metrics: the metric used depends on the type of data

available and the format.

Normally distributed data makes use of the continuous data: the absolute

difference between the means,

θ̂ = ȳT − ȳC

9
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where ȳT represents the mean for the treatment group, likewise for the control

group; the standardised difference between the means,

θ̂ =
ȳT − ȳC

s

where s =
√
s2, s2 representing the unbiased estimate of σ2 based on the usual

pooled sample variance, which will allow data from different scales to be com-

bined.

Survival data uses the log-hazard ratio as an estimate for the treatment dif-

ference,

θ = log

(
hT (t)

hC(t)

)
,

where hT t and hCt represent the hazard functions for the treatment group and the

control group respectively, whilst the ordinal data makes use of two types of the

log-odds ratio as discussed in Whitehead (2002), one based on the proportional

odds model,

θ = log

(
QkT (1−QkC)

QkC(1−QkT )

)

where θ is the log-odds of the treatment group having a greater success than the

control group (QkT and QkC represent the cumulative probabilities of falling into

category k(k = 1, ...,m) or better for the treated and control groups respectively
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(Whitehead, 2002)), and the other based on the continuation ratio model,

θ = log

(
hkT (1− hkC)

hkC(1− hkT )

)

with hkT =
pkT

1−Q(k−1)T

and hkC =
pkC

1−Q(k−1)C

. θ produces a positive result

when the treatment group is better than the control group.

Binary data, which is the form of data used in this thesis, uses three main

metrics: the risk difference,

θ = pT − pC

the logarithm of the odds ratio,

θ = log

(
pT (1− pC)

pC(1− pT )

)

and the logarithm of the relative risk,

θ = log

(
pT

pC

)

The notation used here is the proportion of patients who had the event of interest

in the treatment group, pT , and the proportion of patients who had the event of

interest in the control group, pC , and the estimates can be obtained using the

Maximum Likelihood formulas.

The two metrics most commonly used for binary data are the risk difference,
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and the natural logarithm of the odds ratio. The risk difference values are re-

stricted to the interval [-1, 1], although “confidence intervals based on asymptotic

theory can include points outside these limits” (Whitehead, 2002), whereas the

log-odds-ratios can take values anywhere between −∞ and +∞, resulting in the

log-odds-ratio generally being preferred. The log-odds-ratio is also known for its

stability across a range of studies. The log-odds-ratio is usually used instead

of the odds-ratio to allow the assumption of normality to be more reasonable

(Spiegelhalter et al., 2004).

The metric chosen depends greatly on the format of the data available. For

example, if the data provided is Binary and is given in the summary form of the

risk difference, then one is restricted to using the risk difference. If the data is

provided in summary statistic form, with the number of events and non-events,

there is more choice available, one could use any of the three mentioned met-

rics. The preference is to be able to produce a meta-analysis using the raw data,

allowing analysis at the individual patient level so questions on other factors,

for example, demographic issues may also be considered. This information is

not generally available however, with most researchers using data provided in

published papers of the trial results.

2.2 The Models

Once the data has been obtained and the decision upon which metric to use

has been considered, one will then consider whether to use a fixed effects approach
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or a random effects approach. Assuming a fixed effects model on a meta-analysis

which consists of k independent studies with an overall treatment estimate θ,

and individual study treatment estimates Yi, i = 1, 2, . . . , k, E(Yi) = θ and the

variance of the individual treatment estimates for each study i, Var(Yi) = σ2
i ,

allowing the fixed effects model to be expressed as below.

Yi = θ + εi where εi ∼ N(0, σ2
i )

Yi ∼ N(θ, σ2
i ).

It is assumed here that σ2
i are known and equal to σ̂2

i . Then let the weights, ωi,

be the inverse variance of the summary statistic for each study i, ωi = 1/(σ2
i ).

The fixed effects model may then be expressed as

Yi ∼ N(θ, 1/ωi).

The overall treatment effect, θ is estimated via an averaged treatment effect across

the k trials,

θ̂ =

∑k
i=i θ̂iωi∑k
i=1 ωi

. (2.1)

Consider now the random effects model which allows the incorporation of

heterogeneity into the previously stated fixed effects model. The random effects
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model unlike the fixed effects model does not assume a common underlying treat-

ment effect, denoted θ in the fixed effects model. Instead, it allows the treatment

effect to differ between the studies.

Assuming once again a meta-analysis consists of k independent studies, with

Yi the individual study treatment estimates and σ̂2
i the variance of Yi, i =

1, 2, . . . , k. Letting θi represent the true treatment effect for study i,

Yi = θi + εi where εi ∼ N(0, σ̂2
i )

θi = µ+ εi where εi ∼ N(0, τ 2)

for i = 1, 2, . . . , k and the εi and εi are assumed independent, allowing the random

effects model to be rewritten as

Yi = θi + εi + εi where Yi ∼ N(µ, σ̂2
i + τ 2)

where the extra variance component here, τ 2 is a measure of the heterogeneity,

and µ is the overall treatment effect. The weights, ωi are again the inverse

variance of the summary statistic for each study i and incorporates the extra

variance component for the random effects variance, ωi = 1/(σ2
i + τ 2). It is

noticeable from this notation, that should there be no heterogeneity present, τ 2

= 0, one will obtain the fixed effects model.

An important aspect of producing a meta-analysis is to ensure the check for
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statistical heterogeneity between any trials is produced and accounted for, if nec-

essary, before using the results obtained. Some statisticians believe that should

heterogeneity be present in a meta-analysis a random effects model should be

used rather than a fixed effects model to allow the combination of the individual

trials whilst accounting for the heterogeneity within the model. Not everyone is

of this opinion however, and some believe a fixed effects model (which corrects

in some form for the heterogeneity) is still reasonable. Since heterogeneity can

(and often does) occur, regardless of which model has been used to produce the

meta-analysis, the heterogeneity has to be checked (and accounted for if present)

to prevent invalid results. Assuming one has checked for heterogeneity and it is

reasonable to discount this then a meta-analysis using a fixed effects approach

seems feasible. If on the other hand, one performs a check for heterogeneity and

discovers that there is significant heterogeneity in the meta-analysis, then this

must be either included in the model, perhaps by means of a random effects

model, or used to stratify the trials before producing overall treatment effect

estimates for each strata.

The results throughout this thesis have used the random effects model which

can take into account any heterogeneity that may be present, yet still return the

results that would be obtained from a fixed effects model should there be no

heterogeneity.
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2.3 Bias

Publication bias, mentioned briefly in Chapter 1, is one of the main sources

of bias which can occur when constructing a meta-analysis, but can be checked

for without too much difficulty. Graphically, a funnel plot can be used to detect

publication bias, however there are also statistical methods which can be used

which are less subjective.

Figure 2.1. Funnel Plots for one of the Meta-Analyses with 34 trials

A funnel plot involves plotting the sample size of each of the individual trials

against the trials’ estimated treatment effect size and analysing the shape of the

plot, however Whitehead (2002) makes note that instead of using the sample

size one can use the precision of the treatment effect (the inverse of the standard

error). Some examples of these funnel plots are displayed in figures 2.1 and 2.2. In

these figures, the circles represent each of the individual trials within each meta-

analysis, with the vertical black dashed line representing the overall fixed effects
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Figure 2.2. Funnel Plots for one of the Meta-Analyses with 6 trials

treatment estimate for the meta-analyses (using the Mantel-Haenszel method,

Mantel and Haenszel (1959)) and the vertical black solid line representing no

treatment effect. If there is no evidence of any publication bias, the plot should

resemble an upside down symmetric funnel, with a large variation in the observed

effect size being reasonable for trials with small sample sizes, and a gradually

reducing variation about the true effect size as the sample sizes of the trials

increases until the top of the plot displays very little variation about the true

effect size for trials with a large sample size. Figure 2.1 is a good example of a

funnel plot which indicates no evidence of any publication bias. In the event of

publication bias occurring, one would tend to notice very few studies within the

bottom right-hand corner, of the funnel plot, those which correspond to small

numbers of trials and high values for the log-odds ratios (those trials which show

a poor treatment effect). Figure 2.2 is the best example of this from the 125

meta-analyses considered in this thesis, however the assumption of no publication
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bias for this specific meta-analysis based solely on the graph would be deemed

reasonable since there are only six trials within this meta-analysis.

2.4 Measures of Heterogeneity

Using a random effects model allows the incorporation of heterogeneity, the

between study variation, into the model. There are several ways in which to

measure the heterogeneity and some of these are described here.

One of the most widely used measures of heterogeneity in practice today uses

DerSimonian and Laird’s method of moments (DerSimonian and Laird, 1986)

which can be found by equating the sample statistic for the heterogeneity, Qω,

with its expectation,

τ 2
DL = max

{
0,

{
Qω − (k − 1)[∑
i ωi −

(
∑

i ω
2
i )∑

i ωi

]}} (2.2)

The k represents the number of trials in the meta-analysis and the ωi’s are the

weight assigned to triali. The test statistic for the heterogeneity, Qω, is calculated

using the formula

Qω =
∑

i ωi(yi − ȳω)2

Biggerstaff and Tweedie (1997) proposed a method of measuring the hetero-

geneity which is similar to the method of moments proposed by DerSimonian and

Laird (1986), yet allows the incorporation of the uncertainty when estimating the
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heterogeneity into the estimates for the treatment effect, it’s standard error and

the confidence intervals. Brockwell and Gordon (2007) compare these measures

of heterogeneity, along with the method using maximum likelihood estimators

outlined below, and note the similarities between DerSimonian and Laird (1986)

and Biggerstaff and Tweedie (1997)

“there is very little difference between estimated coverages for the BT [Bigger-

staff and Tweedie (1997)] method and those of the DL [DerSimonian and Laird

(1986)] method. . . [and] the BT [Biggerstaff and Tweedie (1997)] method also re-

quires numeric routines to obtain confidence intervals for µ”.

Brockwell and Gordon (2007) note also that both the methods based on the

method of moments (DerSimonian and Laird (1986) and Biggerstaff and Tweedie

(1997)) “estimated coverage probabilities are frequently well below the nominal

level of 0.95. . . particularly so when k is small”, resulting in the confidence inter-

vals being insufficiently small.

Hardy and Thompson use a method based on the use of Maximum Likelihood

estimators (Hardy and Thompson, 1996), which uses an iterative procedure to

obtain the overall treatment effect µ̂ and the heterogeneity τ 2
HT ,

τ 2
HT = max

{
0,

{∑k
i=1 ω

2
i {(θ̂i − µ̂)2 − σ2

i }∑k
i=1 ω

2
i

}}
(2.3)

where ωi =
1

σ2
i + τ 2

HT

and µ̂ =

∑k
i=1 ωiθ̂i∑k
i=1 ωi

. Equation 2.3 is solved iteratively until

it converges.

The maximum likelihood methods are noted to “underestimate variances”
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(Thompson and Sharp, 1999) however, and so the method of restricted maxi-

mum likelihood (REML) estimates (Thompson and Sharp, 1999) are also used.

The REML estimator, like the maximum likelihood estimators, uses an iterative

procedure to obtain the same estimators µ̂ and τ 2
REML upon convergence using,

τ 2
REML = max

{
0,
sumk

i=1ω
2
i {(k/(k − 1))(θi − µ̂)2 − σ2

i }∑k
i=1 ω

2
i

} (2.4)

again with ωi =
1

σ2
i + τ 2

REML

and µ̂ =

∑k
i=1 ωiθ̂i∑k
i=1 ωi

.

2.5 Background on the Data

2.5.1 Introduction

The data which has been used as the basis of this thesis is from a journal

article in the Statistics in Medicine journal, Engels et al. (2000), titled “Hetero-

geneity and statistical significance in meta-analysis: an empirical study of 125

meta-analyses” and has been kindly provided by Christopher Schmid, one of the

authors.

This journal article studies the results of 125 individual meta-analyses, and

examines specifically the heterogeneity in each of these meta-analyses and which

metric, or metrics, should be used to measure the treatment effect, focusing on

studies with binary outcomes. Engels et al. (2000) stated that it was “the largest

systematic examination of meta-analyses. . . to our knowledge”, although other

similar studies on a smaller scale have been published (DerSimonian and Laird,
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1986; Berlin et al., 1989).

Engels et al. (2000) declare “there may be no metric that is ‘best’ for all cir-

cumstances” and that the “conclusions drawn from a meta-analysis may depend

on which metric is used, especially when. . . heterogeneity is present”.

The aim of the article was to answer three specific questions:

1. “How often are the collections of trials used in meta-analysis heteroge-

neous?”

2. “When do fixed effects and random effects methods give different estimates

of treatment effect?”

3. “When does summarising risk differences give a different impression of

treatment effect than summarising odds ratios?”

Journal Number of Meta-Analyses

Ann Intern Med 7

Arch Intern Med 2

BMJ 28

Circulation 6

CCPC 45

Drugs 1

JAMA 8

Lancet 14

New Engl J Med 12

Journal Not Specified 2

Table 2.1. Journals from which the selected Meta-Analyses originated

The meta-analyses which have been included were selected from two sources,

major medical journals which publish large numbers of meta-analyses and the
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1994 Cochrane Pregnancy and Childbirth database (CCPC). The medical jour-

nals which were used are Annals of Internal Medicine, Archives of Internal Medicine,

British Medical Journal, Circulation, Journal of the American Medical Associ-

ation, Lancet, and New England Journal of Medicine, all of which were limited

to the issues from years between 1990 and 1996. From the meta-analyses within

this search criteria, the ones which were chosen were randomized controlled trial

data with binary outcomes in the form of 2 x 2 tables.

Field Number of Meta-Analyses which

Focus on the specified Field

Cancer 17

Cardiovascular Disease 43

Diabetes 1

GI 6

Infectious Diseases 5

Neurology 1

Pediatrics 3

Perinatal 45

Psychiatry 4

Table 2.2. The Fields in which each of the Meta-Analyses primary focus oc-

curred

The CCPC is the single source which accounts for most of the meta-analyses,

45 of the 125 available as displayed in table 2.1, all of which contain meta-analysis

results for the same field, perinatal. However, not all of these meta-analyses focus

on a single outcome, there are more than 20 different outcomes included across

the 125 meta-analyses, from low birth weight to respiratory distress syndrome to

mortality at various ages. The meta-analyses which come from the major medical
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journals cover various different fields of medical interest, some of which include

cancer, myocardial infarction, cardiovascular disease and infectious diseases, as

well as varying outcomes and/or treatments within each of the fields of interest.

Table 2.2 highlights the main field groups occurring in the 125 meta-analyses and

a count of how many meta-analyses focused on each field.

2.5.2 Inclusion Criteria

The inclusion criteria used to obtain the meta-analyses required each of the

meta-analyses to have at least six clinical trials to ensure each contained suffi-

cient data which would result in a valid effect estimate. Table 2.3 displays some

information about the summary statistics of the clinical trials which are used

to obtain the 125 meta-analyses, which confirms that all of the meta-analyses

included at least 6 clinical trials, although the numbers of clinical trials does

differ greatly between meta-analyses, with the average meta-analysis containing

13 clinical trials.

It was also a requirement that each meta-analysis had at least one event in

the control arm, and that the average number of events in the trial control arms

be at least five. Table 2.5 summarises the number of events in both treatment

arms, the treatment arm and the control arm. These summaries also confirm the

inclusion criteria specified by Engels et al. (2000) concerning the average num-

ber of events in the trial control arms is indeed five. Assuming nT = nC , the

average number of patients in one treatment group for the 125 meta-analyses is

summarised in table 2.4. The mean number of patients in a treatment group is
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462, with the smallest average number of patients in a single treatment group

being 22.

If any trial had no events in either arm, a continuity correction, as used by

various authors, Yates (1934), Anscombe (1956), and Cox and Snell (1989), was

implemented: one half was added to each cell of the corresponding 2 x 2 table

before calculating the summary effect statistics. The same continuity correction

was also used when the number of events in any treatment arm in any given trial

equaled the total number of patients corresponding to that treatment in that

particular trial. Anscombe (1956) notes that by implementing this correction,

the “bias can be very nearly removed”, whilst improving the distributional as-

sumption of Normality, Cox and Snell (1989). Very few trials contained zero, or

n, events in either arm due to the strict criteria pre-determined for the inclusion

of meta-analyses and so the authors were confident that this correction had very

little effect on the overall results.

Summary Statistics

Minimum 6

Median 10

Mean 13.06

Maximum 62

Table 2.3. Summary statistics for the

numbers of clinical trials included in

the 125 MA

Summary Statistics

Minimum 22.29

Median 129.77

Mean 461.82

Maximum 13744.12

Table 2.4. Summary statistics for

the average numbers of patients in one

treatment group for the 125 MA, as-

suming the numbers of patients in the

treatment and the control group are

equal

There is one inclusion criterion which has been stated by Engels et al. (2000)
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which does not appear to have been implemented: the exclusion of any trial with

fewer than ten subjects in either arm. Engels et al. (2000) stated in their inclu-

sion criteria “To avoid very small trials, we excluded from the meta-analysis any

trial with fewer than ten subjects in either arm”. Of the 125 meta-analyses, 21

of them included at least one trial with less than ten subjects in either treatment

arm. These trials were removed and the summary statistics were then calculated.

However, upon checking the data with the summary statistics which were pro-

vided by the authors, the results calculated differed slightly from the summary

statistics which had been provided. It was then noticed that by not excluding

the very small trials (those with less than ten subjects in either arm), the results

appeared to match in almost all of the data (see Chapter 3 section 3.2).

Control Group Treatment Group

summary statistics summary statistics

Minimum 5.29 2.8

Median 22.91 19.33

Mean 43.89 39.42

Maximum 578.33 536

Table 2.5. Summary statistics for the average numbers of events in both the

control arm and the treatment arm for all 125 MA

2.5.3 Calculating the Summary Statistics

Since the data provided were in binary form, the metrics available are auto-

matically limited to the three main metrics previously specified for binary data:

the risk difference, the relative risk or the log-odds ratio. The two most common
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methods used of these three are the risk difference and the log-odds-ratio, and as

mentioned previously, the log-odds ratio is generally accepted as a fair measure

of treatment effect due to its ease of transferability to the real line, therefore the

log-odds-ratio has been the main focus of the analysis throughout this thesis.

Using the previously specified general formula for the calculation of the treat-

ment effect estimates, 2.1, the summary estimates can be calculated for each met-

ric, with the weights corresponding to the formula for the random effects weight,

ω∗i = 1/(σ2
i + τ 2

i ), which can be rewritten as ω∗i = 1/((1/ωi) + τ 2), where ωi =

1/σ2
i , with the fixed effects estimates using the same formulae when τ 2 = 0.

The fixed effects weights are calculated as follows,

ωLORi =
1

1

nT ipT i(1− pT i)
+

1

nCipCi(1− pCi)

for the logarithm of the odds ratios

ωLRRi =
1

(1− pT i)

nT ipT i
+

(1− pCi)

nCipCi

for the logarithm of the relative risks

ωRDi =
1

pT i(1− pT i)

nT i
+
pCi(1− pCi)

nCi

for the risk differences

2.5.4 Results

Engels et al. (2000) examine both the odds ratio and the risk difference met-

rics, for both the fixed effects model and the random effects model to attempt to

provide a possible preference, and to determine whether the two metrics produce

the same results as one would hope. The value used for the heterogeneity is the
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one-tailed p-value for the calculated Q-statistic. The risk difference would be

classed as being more heterogeneous than the odds ratio if “if the p-value for the

risk difference Q-statistic is less than the p-value for the odds ratio Q-statistic”

and a meta-analysis would be termed “‘heterogeneous’ when the corresponding

Q-statistic p-value is below a nominal cut-off, usually 0.05 or 0.10”.

The heterogeneity among the two metrics were compared and it was noted

that “the risk differences usually displayed more heterogeneity than the odds ra-

tios”, with the risk differences either “more heterogeneous than the odds ratios”

or “the risk differences were judged heterogeneous when the odds ratios were not”.

There were a small number of cases (three) which noted “the odds ratios hetero-

geneous when the risk differences were not”. Engels et al. (2000) noted however,

that these results appeared to contradict results from two previous studies which

reported “similar heterogeneity measures for risk differences and odds ratios”,

yet Engels et al. (2000) indicated the conflicting results could be due to a lack

of “sufficient power to detect differences in heterogeneity between risk differences

and odds ratios” since the number of meta-analyses used in each of the other

studies were smaller, nine (DerSimonian and Laird, 1986) and 22 (Berlin et al.,

1989). Engels et al. (2000) also note another couple of reasons, including the

sample may not be a good “representative of meta-analyses found in clinical re-

search” and the small number of studies within the meta-analyses “(Berlin et al.,

1989) included nine meta-analyses with fewer than six trials, meta-analyses that

(Engels et al., 2000) would have excluded”.

Engels et al. (2000) were interested in determining whether the results of a
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meta-analysis were dependant on the metric chosen to produce the summary es-

timates. The summary estimates for each meta-analysis using the two different

metrics were compared and there were no cases reported of the metrics being sig-

nificant in opposite directions, allowing one to conclude the results “from meta-

analyses are robust to changes of metric”. Engels et al. (2000) then go on to

examine different levels of significance for the different summary estimates (both

fixed effects and random effects) for two-sided p-values, noting “that random ef-

fects estimates were often less significant than fixed effects estimates”.

The meta-analyses were then split into four subgroups;

• “‘Homogeneous’. . . in which neither the odds ratios nor the risk differences

were heterogeneous”

• “Meta-analyses in which both risk differences and odds ratios were hetero-

geneous”

• “Meta-analyses in which only the risk differences were heterogeneous”

• “Meta-analyses in which only the odds ratios were heterogeneous”

with the definition of heterogeneous being “a Q-statistic p-value less than 0.10”.

The majority of the meta-analyses fell into the ‘homogeneous’ subgroup (50.4

percent), with 32.8 percent of the meta-analyses having both metrics heteroge-

neous, 14.4 percent heterogeneous for just the risk differences and the remaining

2.4 percent heterogeneous for just the odds ratios.

The random effects summary estimates and standard errors allow for the extra

heterogeneity parameter which the fixed effects estimates do not and so will lead
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to different values when heterogeneity is present. Engels et al. (2000) noted the

calculated estimates did not differ greatly between the fixed effect approach and

the random effect approach, however the standard errors of the random effects

estimates were greater than those of the fixed effects estimates and “the overall

effect of heterogeneity was to make most random effects estimates less significant

than the corresponding fixed effects estimates, for both the odds ratio and risk

difference metrics”.

The fixed effects estimates for the odds ratios and the risk differences “pro-

vided similar levels of significance” for the meta-analyses which were classed as

‘homogeneous’. The same conclusion was declared for the random effects esti-

mates for the meta-analyses in which both the risk differences and the odds ratios

were heterogeneous, indicating “the choice of metric used to measure and sum-

marize the treatment effect is not crucial”, however Engels et al. (2000) state “the

risk difference may not be the most appropriate metric to use in meta-analysis,

because risk differences may be substantially heterogeneous among trials [and]

the risk difference metric tends to give greatest weight to trials with low event

rates. . . [although] trials with low event rates would seem to offer little infor-

mation about treatment effects”. Engels et al. (2000) also state their results

“suggest that the odds ratio is more likely than the risk difference to remain

constant across populations” and so this should be incorporated if an absolute

measure of treatment effect is required.



Chapter 3

Examining the Relationship

3.1 Introduction

One of the main aims of this thesis is to determine whether the treatment

effect estimates and their corresponding heterogeneity values are independent,

or if some sort of relationship exists (Senn, 2007b). These two measures are

often modelled as independent, however it is of interest to determine whether

this is actually the case, or whether the heterogeneity varies with the absolute

size of the treatment effect estimate. One might presume a meta-analysis with no

treatment effect should indicate no heterogeneity, whilst a meta-analysis with a

large absolute treatment effect could indicate anywhere between no heterogeneity

and lots of heterogeneity.

30
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3.2 Checking the Data

The first focus of interest is to produce a quality control study which ensures

the statistics provided by Engels et al. (2000) coincide with those reproduced. As

previously mentioned, the data provided were in binary form, and although the

metric focused on is the log-odds-ratio, the checking of the values provided for

the random effect mean estimate and its standard error were computed for each

of the three metric choices available. This is to ensure the results obtained are

consistent with those provided by the authors. After implementing the continu-

ity correction, the random effect mean estimates and their standard deviations

for each metric were calculated for each of the 125 meta-analyses in turn using

scripts within R version 2.6.1. These computed values were then compared to

the values in the data set which were provided.

As previously noted in Chapter 2 section 2 (Background on the Data), im-

plementing one of the stated exclusions, removing any trials with fewer than ten

subjects in either arm, caused deviations from the values for all the meta-analyses

which this criteria affected. By ignoring this exclusion criteria, the values calcu-

lated matched almost exactly those provided, indicating that this specific criteria

had not been implemented, although the differences are minimal and should not

affect any results Engels et al. (2000) produced. Since the original values pro-

vided were calculated with this criteria not being implemented, the criteria has

not been implemented for this thesis either.

The random effects summary estimates for the log-odds-ratio were calculated
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using a modification of the method used by DerSimonian and Laird (1986), as

used by Fleiss and Gross (1991). The results provided by Engels et al. (2000)

are actually provided for the odds ratios and so the exponential of the calculated

log-odds-ratios are compared with the odds ratio estimates provided.

Figure 3.1. Plots comparing the calculated and given values for the odds-ratio

summary estimates and the corresponding standard deviations of the odds-ratio

summary estimates.

Of the 125 meta-analyses, there were only two discrepancies which occurred

between the results from the quality control study and the data which was pro-

vided: one for the odds-ratio estimate, the data provided had an estimate for the

odds-ratio of 0.177645, whilst the quality control estimate provided an odds-ratio
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estimate of 5.6292; and the other discrepancy occurred for the standard deviation

of the odds-ratio estimate, the data provided had an estimate for the standard

deviation of 0.542, whilst the quality control estimate provided a standard devia-

tion value of 0.0542. The exponential of the calculated log-odds ratios (and their

corresponding standard deviations) are also compared graphically against those

provided by Engels et al. (2000), Figure 3.1.

In the standard deviation instance, it appears the discrepancy is the result

of an input error for that particular result, however at first glance, it remains

unclear whether this is also the case for the different estimate values for the

odds-ratio. Taking the natural logarithm of the value provided by Engels et al.

(2000) (0.177645) produces a log-odds ratio value of -1.727968, whilst the com-

puted log-odds ratio in the quality control study is 1.727975, indicating an input

error in the results provided by Engels et al. (2000).

Examining the computed statistics for the risk difference metric, there are

several more discrepancies (52 of the 125 meta-analyses contained discrepancies).

The majority of these discrepancies occurred for both the risk difference value

and it’s standard error (40 of the 52 meta-analyses), however there are some cases

in which only one of the calculated values, either the risk difference (10 of the

52 meta-analyses) or the standard error disagrees (2 of the 52 meta-analyses).

Most of these appear on first inspection to be the result of either rounding error

or input error since the values provided do not differ greatly from the values

calculated. However, after a closer look at the results, it appears that some of the

risk difference treatment estimates and their corresponding standard deviations,
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which were provided, have been calculated without implementing the continuity

correction to adjust for cases in which the number of events is equal to either

zero or the number of patients in the corresponding treatment group. In fact, in

all except two of the meta-analyses which included trials containing either zero

or n events, the continuity correction had not been used.

Figure 3.2. Plots comparing the calculated and given values for the risk differ-

ence summary estimates and the corresponding standard deviations of the risk

difference summary estimates.

Ignoring the continuity correction, the majority of the results which did not

previously match the values provided, now match exactly (60% of the 52 meta-

analyses). The majority of the remaining meta-analyses which do not match the



CHAPTER 3. EXAMINING THE RELATIONSHIP 35

results exactly after ignoring the continuity correction are similar in magnitude,

implying the discrepancies may be due to a rounding error somewhere in the

calculations.

The two meta-analyses for which the continuity correction had been applied

produce results which disagree from those provided if the continuity correction is

ignored. The results for the meta-analyses which had no trials with either zero or

n events remain unchanged since the data for these meta-analyses has not been

altered.

Plots comparing the calculated risk difference estimates (and their standard

deviations) with those provided by Engels et al. (2000) are also produced here

after the continuity correction has been implemented, Figure 3.2.

Lastly, checking the relative risk (rather than the log-relative risk) values pro-

vided by Engels et al. (2000), all 125 relative risk values and their corresponding

standard error (s.e.i =
√

1/ω∗i for i = 1, . . . 125) match to four decimal places

after implementing the continuity correction.

The inclusion criteria stated appeared reasonable. To ensure the possibility of

invalid effect estimates has been reduced, all meta-analyses with very few trials

(less than six) were excluded, and only meta-analyses with an average of five

events in the trial control arms were included.
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3.3 Exploratory Analysis of a Relationship

An immediate reaction to examining the results of a meta-analysis is to auto-

matically focus solely on the effect of the treatment. Perhaps one should not be

interested in this alone, but interested in whether or not there is a relationship

between the effect of the treatment and the heterogeneity. It might be of interest,

for example, to attempt to determine whether meta-analyses which have a larger

treatment effect coincide with larger between study variation.

Figure 3.3 shows the relationship between the treatment effect estimates and

the heterogeneity for each of the three metrics considered. The heterogeneity in

these graphs is estimated using the ratio Q/degrees of freedom, the same ratio as

used by Hardy and Thompson (1998) in one of their practical examples, with Q

corresponding to the Q-statistic calculated for each random effects metric respec-

tively, and the treatment effect is taken as the absolute value of the treatment

effect estimates, thus ignoring the direction of the treatment effect estimates.

These graphs clearly indicate there is some positive relationship between the

treatment effect and the heterogeneity for all three metrics, with the correspond-

ing correlation values provided in Table 3.1. Each of the correlations provided

in Table 3.1 are highly significant with p-values produced for each correlation of

<0.0001.

Significant positive correlations for each metric confirm that regardless of the

metric chosen, and all other things equal, there does appear to be a significant
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Figure 3.3. Plots showing the between study variation against the treatment

effect for all three metrics: the relative risk; the risk difference; and the log-odds-

ratio.
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Treatment Effect

Relative Risk Risk Difference Log-Odds-Ratio

Random Effects Relative Risk 0.4238 - -

Between-study Risk Difference - 0.3524 -

Variation Odds Ratio - - 0.4194

Table 3.1. Correlations for the treatment effect estimates and their respective

heterogeneity for each metric

relationship between the absolute treatment effect and the heterogeneity. As an-

ticipated, the meta-analyses for which the estimated treatment effect was not

significant also indicate very little, if any, variation between studies. The high

between study variation (indicated by increasing values on the y-axis) arises in

meta-analyses with a significant treatment effect (indicated by increasing values

on the x-axis).

Existing articles on meta-analysis assume the treatment effect and the het-

erogeneity are independent, but the apparent relationship occurring between the

two measures now causes some doubt about whether these previous analyses are

correct, and indeed if they are not how best it would be to tackle this possible

problem.

One author has already questioned the relationship between the treatment

effect estimates and their heterogeneity (Senn (2007b), Senn (2008)) and offered

a possible way to incorporate this relationship into the model. This will be con-

sidered later on in this thesis.
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3.4 Summary

Upon examination of whether or not there is a relationship present between

the absolute treatment effect estimates in a meta-analysis and their correspond-

ing heterogeneity values, scatterplots indicated a possible positive relationship

between these two measurements for each of the three metrics available for mea-

suring binary data. Correlations produced for the relative risk, log-odds ratio and

risk difference were 0.4238, 0.4194 and 0.3524 respectively and all were highly sig-

nificant at the 5% significance level, with p-values of less than 0.001 produced for

each of the correlations.



Chapter 4

Fitting a Bayesian Model

4.1 Introduction

Up to this point, a frequentist model which uses a Normal Normal model

based on summary statistics has been used. It is of interest now to consider a

Bayesian approach, which commonly uses one of two types of model, a Binomial

Normal model, or less frequently a Normal Normal model. Both of these Bayesian

models will be considered in this thesis.

As stated earlier, a Bayesian model treats the treatment estimate and the

heterogeneity, the two main areas of interest here, as random variables rather

than as fixed single estimates. All of the unknown random variables are modeled

using priors.

For the moment, we will assume that there is no apparent prior information

on any of the unknown random variables and so it is desirable to model these

40
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priors as non-informative, allowing the data to speak for itself rather than at-

tempting to influence the behaviour of the variables using informative priors.

Various non-informative priors are available, yet whether they are actually

non-informative or not is still debatable. Lambert et al. (2005) wrote a paper on

13 non-informative priors and the results produced by them in a simulation study

to determine how ‘non-informative’ these so called priors actually were. Lambert

et al. (2005) noted the results produced by the priors which were believed to be

non-informative were not necessarily so, with some priors performing “particu-

larly poorly”and recommended a “sensitivity analysis”, be performed to ensure

feasible results are produced.

4.2 Creating a Model

Starting with the more commonly used Binomial Normal model and focusing

on the log-odds-ratio, the following model, model 4.1, is constructed for the data

available.

The notation used in model 4.1 demonstrates the number of events ri for each

triali for the control group (c) and the treatment group (t) follow independent

binomial distributions with parameters pi, the proportion of events for triali and

ni, the number of patients in triali, for each treatment group respectively.

Using the linear logistic model, the proportion of events in the control group

for each triali is equal to ψi, the overall effect for the control group for each triali,

whilst the proportion of events in the treatment group for each triali is set equal to
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ψi plus δi, δi here representing the treatment effect for triali. Implementing the

logit scale improves the normal approximation of the likelihood (Spiegelhalter

et al., 2004). Note that model 4.1 can be written with an intercept instead,

however this would require also implementing a constraint on the ψi’s, to ensure

the coefficient matrix is of full rank, for example setting ψ1 = 0.

rci
∼ Bin(nci

, pci
)

rti ∼ Bin(nti , pti)

logit(pci
) = ψi

logit(pti) = ψi + δi (4.1)

δi ∼ N(µ, τ 2)

ψi ∼ N(0, 1000000)

µ ∼ N(0, 1000000)

τ 2 ∼ Inv −Gamma(0.1, 0.1)

The treatment effect, δi for each triali is the main focus of interest and is

given a normal prior with parameters µ, the overall treatment effect, and τ 2, the

variance of the treatment effect (the heterogeneity). The overall effect for each

triali, ψi, and the hyperparameters, µ and τ 2, are all given non-informative flat

priors over a range large enough to include all possible values, which allows the

data to speak for itself since there is no prior knowledge for these parameters.

Non-informative priors on the ψi’s are implemented since the main interest here
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lies on the treatment effect, δi, however hyperparameters can be used to define

the ψi’s.

Figure 4.1. Graphical model for random effects meta-analysis using the Bino-

mial model, model 4.1

One can construct a graphical model for model 4.1 as used by Whittaker

(1990), Figure 4.1.

The nodes in Figure 4.1 represent the parameters of the model and the data.

Single rectangles represent the observed variables (rCi, rT i), double rectangles

represent constants fixed by the design of the study (nCi, nT i) and circles repre-

sent the unobserved parameters (pCi, pT i, ψi, δi, µ, τ 2). The arrows are drawn

from the parental nodes to descendant nodes and indicate the models conditional

independence assumptions, with the black line indicating stochastic dependence

and the red line indicating a logical function (Smith et al., 1995). In Figure 4.1,

the treatment effect (δi) is conditionally independent of the trial effect (ψi), given

µ and τ 2.
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4.3 Published Data Check

4.3.1 Introduction

After having constructed the Bayesian model within WinBUGS, the first step

was to check the model was working adequately, by using model 4.1 with data

that has previously been published, allowing the comparison of the results from

model 4.1 with the published results. Assuming the constructed model is working

properly, the results produced should match the published results.

For this check, the published data used were obtained from an example on

the selective decontamination of the digestive tract for patients in intensive care

units (Abrams and Sansó, 1998), which have been used previously for a couple

of meta-analyses (Digestive Tract Trialists’ Collaborative Group (1993), Smith

et al. (1995)).

Abrams and Sansó (1998) examine the data which consist of 22 randomised

trials in binary form. Each trial has one treatment group and one control group,

with the number of patients with a respiratory tract infection and the total num-

ber of patients in each group recorded. Initially, the data have been analysed using

a fixed effects model (Digestive Tract Trialists’ Collaborative Group, 1993), how-

ever previous authors (Smith et al., 1995) noted a degree of heterogeneity in the

data, implying the random effects model should perhaps appear more reasonably

justified. Abrams and Sansó (1998) agreed with the random effects approach to

modeling this data and produced a significant χ2 statistic of 58.0 on 21 degrees

of freedom (p < 0.0001) for testing the null hypothesis of no heterogeneity, and
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so examined the data using a random effects model and focusing on the Bayesian

analysis.

Study Treated Control Odds Ratio

Infections Total Infections Total

1 7 47 25 54 0.20

2 4 38 24 41 0.08

3 20 96 37 95 0.41

4 1 14 11 17 0.04

5 10 48 26 49 0.23

6 2 101 13 84 0.11

7 12 161 39 170 0.28

8 1 28 29 60 0.04

9 1 19 9 20 0.07

10 22 49 44 47 0.06

11 25 162 30 160 0.79

12 31 200 40 185 0.66

13 9 39 10 41 0.93

14 22 193 40 185 0.47

15 0 45 4 46 0.10

16 31 131 60 140 0.41

17 4 75 12 75 0.30

18 31 220 42 225 0.71

19 7 55 26 57 0.17

20 3 91 17 92 0.15

21 14 25 23 23 0.03

22 3 65 6 68 0.50

Pooled 0.36

Table 4.1. Respiratory tract infections of 22 studies in the control and treatment

groups with individual and pooled estimates of odds ratios using the Mantel-

Haenszel method (Mantel and Haenszel, 1959)

Abrams and Sansó (1998) include a Table displaying the original data in

Binary format, also provided here in Table 4.1. Abrams and Sansó (1998) also

included in their table the summarised individual odds ratio estimates, and so
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the calculated odds ratio estimates are also contained in Table 4.1. Smith et al.

(1995) produced a similar table also, however it is interesting to note that despite

both Abrams and Sansó (1998) and Smith et al. (1995) using the same data in the

same format, their calculations for the odds ratio estimates differ for 15 of the 22

studies. Smith et al. (1995) make a note of which method was used to calculate

the odds ratios (the Mantel-Haenszel-Peto method), which one can reproduce

(the calculations for this method are provided in Yusuf et al. (1985) and compare

the observed number of deaths among the treated patients with the expected

number of deaths), whilst Abrams and Sansó (1998) have “Odds Ratios T/C” as

the title above the column containing the individual odds ratio values, which one

would presume indicates their calculated odds ratios are obtained by dividing the

treatment group by the control group. Further on in their paper, Abrams and

Sansó (1998) note the use of the value ni, where ni is the number of patients in

the treatment or the control group which are assumed to be equal, and in the

case of nT i 6= nCi an alternative is chosen, for example the average, the minimum,

or the maximum of nT i and nCi.

yi = log
pT i(1− pCi)

pCi(1− pT i)
with pT i =

rT i

nT i

, pCi =
rCi

nCi

(4.2)

yi = log
pT i(1− pCi)

pCi(1− pT i)
with pT i =

rT i

ni

, pCi =
rCi

ni

, ni = nT i + nCi (4.3)

yi = log
pT i

pCi

with pT i =
rT i

nT i

, pCi =
rCi

nCi

(4.4)

yi = log
pT i

pCi

with pT i =
rT i

ni

, pCi =
rCi

ni

, ni = nT i + nCi (4.5)

Unfortunately, however, I could not reproduce the values obtained by Abrams
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and Sansó (1998) for the individual odds ratios of the 22 studies. The values for

the individual odds ratios do not correspond to those obtained by Smith et al.

(1995), indicating the Mantel-Haenszel-Peto method has not been used. Different

formulas to calculate the individual log-odds-ratios were implemented (equations

4.2, 4.3, 4.4 and 4.5) with none of them reproducing the results obtained by

Abrams and Sansó (1998) exactly.

4.3.2 The Model Used

The model Abrams and Sansó (1998) used is slightly different to model 4.1.

Abrams and Sansó (1998) use a random effects model, as displayed in model

4.6 with yi corresponding to the summarised logarithm of the odds ratios, which

are assumed to have normal distributions, rather than allowing the raw data to

come from Binomial distributions. This is the Normal Normal model mentioned

previously rather than the Binomial Normal model already stated.

yi ∼ N(θi, σ
2
i /ni) (4.6)

θi ∼ N(µ, τ 2) i = 1, ..., k

In model 4.6, ni is the number of patients in either group, assuming the

number in each group is equal, and

σ2
i =

1

pCi(1− pCi)
+

1

pT i(1− pT i)
(4.7)
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where pCi and pT i correspond to the proportion of events in the control group

and the treatment group in triali (pCi and pT i are calculated using a common ni).

If the number of patients in each group is not equal, several choices for ni can

be made instead: an average, the minimum, or the maximum number of patients

in the treatment group and the control group, from i = 1, 2, . . ., k. For this

specific meta-analysis, the numbers of patients were not equal across the groups

and therefore the average number of patients were used.

Using this Normal-Normal model within WinBUGS to obtain the Bayesian

results should produce very similar results to the frequentist calculations which

also assume a Normal-Normal model.

Model 4.6 can be rewritten as

yi ∼ N(θi, σ
2
i )

θi ∼ N(µ, τ 2) i = 1, ..., k

with σ2
i =

1

rti
+

1

ni − rti
+

1

rci
+

1

ni − rci
(4.8)

after some simple rearrangement, where ni is the average number of patients in

trial i, i = 1, 2, . . ., k.

The priors used by Abrams and Sansó (1998) for µ and τ 2 were non-informative

Uniform(-10, 10) and Inverse-Gamma(3, 1) priors respectively. An Inverse-Gamma(0,

2) prior for τ 2 was also implemented, presumably to demonstrate some of the re-

sults of the sensitivity analysis produced.

This Normal Normal model can be written in the Bayesian format with the
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priors, as has previously been done for the Binomial Normal model (model 4.1)

and is displayed in model 4.9.

yi ∼ N(θi, σ
2
i )

θi ∼ N(µ, τ 2) i = 1, ..., k (4.9)

µ ∼ Unif(−10, 10)

τ 2 ∼ Inv −Gamma(3, 1)

where σ2
i =

1

rti
+

1

ni − rti
+

1

rci
+

1

ni − rci

4.3.3 Looking at the Results

The results displayed in Table 4.2 include: the results obtained by Abrams

and Sansó (1998) for the priors previously stated; the results one obtains by

reproducing the published results using the same model, data and priors (with

a burn in of 5000 and a further 25,000 iterations); the results one obtains using

just a different vague prior for µ (µ ∼ N(0.0, 1,000,000)); the results one obtains

using just a different prior for τ 2 (τ ∼ Unif(0, 10)); and the results one obtains

using the different priors for µ and τ 2 together. Further vague priors were also

used to ensure the sensitivity analysis results are suitable, however these are not

displayed here.

The reproduced results in Table 4.2 for the expected values of the treatment

effect estimate (µ) and the heterogeneity (τ 2) are notably different to the results
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Parameter Result in Reproduced Result using Result using Result using

published result a different a different different vague

data vague prior vague prior priors for µ

for µ for τ 2 and τ 2 together

E(µ) -1.488 -1.254 -1.256 -1.281 -1.281

SD(µ) 0.230 0.1908 0.1915 0.2148 0.2143

E(τ 2) 1.090 0.4346 0.4381 0.5801 0.5738

SD(τ 2) 0.375 0.1937 0.1966 0.3347 0.3418

Table 4.2. Results for the published Bayesian analysis for model 4.6

published in Abrams and Sansó (1998). The expected value for the treatment

effect estimate in Abrams and Sansó (1998) is -1.488, with an expected value

of 1.090 for the heterogeneity, whereas the reproduced results using the same

priors and data are -1.254 for the treatment effect estimate and 0.4346 for the

heterogeneity. The sensitivity results for the model to reproduce the treatment

effect estimate and the heterogeneity are quite consistent with the reproduced

values, indicating the priors are non-informative and the results come from the

data itself, however the underlying reason for the results not matching those

published still has to be determined.

Upon further examination into the discrepancies, it appears similar results

can be obtained (again using the same priors and the same data) if a slightly

different formula for σ2
i (equation 4.10) is used.

σ2
i = 1/pCi(1− pCi) + 1/pT i(1− pT i), (4.10)

Equation 4.10 looks similar to the equation used previously (equation 4.7),
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however typing equation 4.10 into R exactly as it is written fails to give the

expected result, that obtained via equation 4.7. This is due to the lack of brackets

in equation 4.10 which determine the correct ordering of the elements of the

equation.

Parameter Result in Reproduced Result using Result using Result using

published result a different a different different vague

data vague prior vague prior priors for µ

for µ for τ 2 and τ 2 together

E(µ) -1.488 -1.428 -1.453 -1.446 -1.439

SD(µ) 0.230 0.2118 0.215 0.245 0.2364

E(τ 2) 1.090 07612 0.7528 1.018 1.021

SD(τ 2) 0.375 0.2697 0.248 0.4105 0.415

Table 4.3. Results for the published Bayesian analysis for model 4.6 using

equation 4.10

The expected treatment effect estimate and heterogeneity are again calculated

as before with the only difference being the change of equation, from equation

4.7 to equation 4.10. The results are displayed in Table 4.3. One can clearly

see from these results that the estimates produced for the treatment effect and

the heterogeneity match the results published by Abrams and Sansó (1998) more

than the previous results obtained using equation 4.7 for the calculation of the

σ2
i ’s.

4.4 Comparing Variances

As previously mentioned, upon attempting to reproduce the results obtained

by Abrams and Sansó (1998) for their Bayesian Normal-Normal model, there were
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some conflicting results. The reproduced overall treatment effect estimate was

quite a bit smaller than the one obtained by Abrams and Sansó (1998) (Table

4.2), as was the heterogeneity estimate. It was then discovered that altering

the formula for the σ2
i ’s slightly by using equation 4.10 instead of equation 4.7,

resulted in values for the treatment effect estimate and the heterogeneity which

were closer to those produced by Abrams and Sansó (1998). This formula for the

σ2
i ’s however, cannot be rearranged into the usual variance formula,

σ2
i =

1

rti
+

1

nti − rti
+

1

rci
+

1

nci − rci

Figure 4.2. Comparing the variances calculated using Abrams and Sansó (1998)

formula for the variances and the common formula for the variances.

*The variances calculated using the formula in Abrams and Sansó (1998)
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Plotting the variances which have been calculated using the equation in Abrams

and Sansó (1998) against the variances calculated using the usual formula for the

variances (equation 4.7) and inserting a line of equality, one can see from the

graph (Figure 4.2) that there is a notable difference between the two equations,

with the variance estimates calculated using the usual equation being larger in

magnitude.

Some of the estimates calculated using the equation in Abrams and Sansó

(1998) correspond fairly well with those obtained using equation 4.7, however

some estimates differ quite noticeably.

4.5 Bayesian and Frequentist Heterogeneity

4.5.1 Introduction

Having fitted two Bayesian models to the data, a Binomial-Normal model,

model 4.1 and a Normal-Normal model, model 4.9, it will be of interest to examine

the results produced via the frequentist methods and the results produced via

the Bayesian methods to determine which differences occur, if any. It seems

reasonable to compare the Bayesian and the frequentist methods individually

using both the Normal-Normal model and the Binomial-Normal model.

4.5.2 The Binomial-Normal Model

All of the Bayesian results, a sample of which are displayed in Table 4.4,

used a burn in of 5,000 and then a further 25,000 iterations for each of the two
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Markov chains. Two Markov chains were used to check visually that convergence

of each parameter did not produce any unexpected problems. The frequentist

values for the random effects between study variation, also displayed in Table 4.4

are calculated using a nlmixed macro in SAS which incorporates the Binomial

Normal design used for the Bayesian model. The Bayesian results are obtained

using 4.1.

Data No. of Average no. Bayesian Bayesian Frequentist 95% C. I.

No. Clinical of patients Mean of S.D. of value for the for Bayesian

Trials in each Variation Variation between-study Estimate

trial variation of variation

23 51 311 0.01192 0.01782 0 (0.00052, 0.06346)

116 34 610 0.02528 0.03107 0 (0.00082, 0.1109)

123 42 356 0.00746 0.007848 0 (0.00057, 0.02859 )

79 23 87 0.2243 0.1463 0.0843 (0.02736, 0.588)

86 41 22 2.452 0.8812 1.4639 (1.178, 4.541)

115 62 49 0.121 0.06577 0 (0.03534, 0.2876)

26 6 1093 0.01317 0.02799 0 (0.00053, 0.07176)

70 6 616 0.6199 1.228 0.1750 (0.04376, 3.059)

74 6 6082 0.0374 0.0704 0.0072 (0.00133, 0.184)

41 6 68 1.157 1.566 0.4896 (0.159, 4.569)

107 6 61 0.04834 0.1635 0 (0.00066, 0.3164)

113 6 64 3.996 5.363 1.4226 (0.4144, 16.59)

Table 4.4. Comparing the frequentist and Bayesian methods for the heterogene-

ity (using model 4.1), with groupings to emphasise both the number of trials in

each Meta-analysis and the average number of patients within each trial

The results produced in table 4.4 for meta-analyses which have a large number

of trials as well as a large number of patients within each trial on average (the
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first three rows of results) indicate the method used to calculate the frequentist

heterogeneity values seems to provide a fairly accurate estimate for the hetero-

geneity, with the results corresponding fairly well to the Bayesian heterogene-

ity results produced for the meta-analyses using WinBUGS. Both the Bayesian

method and the frequentist method produce a value close to zero for these three

meta-analyses.

There are however some differences in the estimates for the frequentist ap-

proach and the Bayesian approach when the number of trials is fairly large and

the number of patients in each trial is quite small on average which one would

not expect. For example, data number 86 which has 41 clinical trials with an

average of 22 patients in each trial has a produced frequentist estimate for the

heterogeneity of 1.4639 whilst the Bayesian estimate is quite a bit higher (2.452),

although the frequentist estimate is still contained within the 95% Confidence

Interval for the Bayesian heterogeneity (1.178, 4.541). For meta-analyses with

large numbers of trials, one would generally expect the frequentist value for the

heterogeneity to produce similar results to those obtained computing the hetero-

geneity via Bayesian methods. There are also differences between the Bayesian

and the frequentist heterogeneity estimates when the number of trials is small,

although all of the frequentist estimates, apart from those which are calculated as

zero exactly, are included in the corresponding Bayesian heterogeneity confidence

intervals.

One can note however, that all of the Bayesian results are slightly higher than

the frequentist results and the greater the frequentist heterogeneity result, the
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greater the difference between the heterogeneity estimates.

The Bayesian results for the treatment effect estimates and the heterogeneity

using the Binomial-Normal model (model 4.1) can now be examined graphically

against the corresponding values obtained via the frequentist method, Figure 4.3,

providing some indication as to whether the results do coincide as one believes

they should. Assuming the results agree exactly, one would anticipate the points

to lie on the line of equality, the dashed line on both of the plots. Both plots use

the number of studies as the grouping variable, with the legend for the labelling

of the groups beside Figure 4.3.

Examining Figure 4.3, it appears the Bayesian method and the frequentist

method correspond well using the Binomial-Normal model to calculate the treat-

ment effect estimates with all of the estimates lying nearly perfectly along the

line of equality. Producing a linear regression results in a slope parameter of 1.01

with an intercept close to zero, -0.0112.

The Bayesian heterogeneity estimates for the Binomial Normal model how-

ever do not correspond as well to the frequentist heterogeneity estimates using

the nlmixed macro in SAS for the Bayesian Normal model, with hardly any of the

estimates lying on the line of equality. In all of the cases where the Bayesian and

frequentist heterogeneity estimates differ, the Bayesian estimates produced are

always greater than those obtained via the frequentist method. In fact, fitting a

linear regression to the estimates, the Bayesian heterogeneity estimates are equal

to 0.107 plus 2.04 times the frequentist heterogeneity estimates.
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Figure 4.3. Comparing the Bayesian estimates with the frequentist estimates

(calculated using a macro in SAS) for the Binomial-Normal model

4.5.3 The Normal-Normal Model

Previously, the results from the Bayesian Binomial-Normal model (model 4.1)

were compared to the frequentist values. Here, we compare the values produced

for the heterogeneity from the Bayesian Normal-Normal model (model 4.9) and

the frequentist results. Non-informative priors were used for the overall treatment

effect (µ ∼ N(0.0, 1,000,000)) and the heterogeneity (τ 2 ∼ IG(0.001, 0.001)).
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Note model 4.9 uses the common ni’s to calculate the σ2
i ’s, however the results

produced in Table 4.5 use the given nCi’s and nT i’s, so the σ2
i here are calculated

using

σ2
i =

1

rti
+

1

nti − rti
+

1

rci
+

1

nci − rci

All of the Bayesian results, displayed in Table 4.5 used a burn in of 5, 000

and then a further 25, 000 iterations for each of the two Markov chains. Once

again, two Markov chains were used to check visually that convergence of each

parameter did not produce any unexpected problems. The frequentist values

for the random effects between study variation, also displayed in Table 4.5 are

calculated using the moment estimate as used by DerSimonian and Laird (1986),

equation 2.2.

The results produced in table 4.5 indicate the Bayesian results using a Normal-

Normal model correspond quite well across the selected meta-analyses with the

two different frequentist results obtained via the methods used by DerSimonian

and Laird (1986) (equation 2.2) and Hardy and Thompson (1996) (equation

2.3). All of the frequentist heterogeneity estimates (excluding those estimated

as zero) are contained within the 95% C.I. for the Bayesian heterogeneity esti-

mate. The confidence intervals for the Bayesian heterogeneity estimates for the

meta-analyses for which the frequentist heterogeneity estimates are zero all have

a lower estimate very close to zero (zero to two decimal places).

For meta-analyses with large numbers of trials and a large number of patients
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in each trial on average, one would generally expect the frequentist values for the

heterogeneity to produce similar results to those obtained computing the hetero-

geneity via Bayesian methods, as seen here. It is interesting to note however that

when the heterogeneity is zero, or is close to zero, the Bayesian and frequentist

values appear to agree fairly well, although more so if the number of clinical

trials is large. If the heterogeneity is not close to zero however, it appears the

Bayesian method produces a much larger estimate for the heterogeneity than the

frequentist method does.

The method used to calculate the frequentist heterogeneity values, equation

2.2, as used by DerSimonian and Laird (1986) seems to provide an accurate esti-

mate for the heterogeneity from a frequentist view with the results corresponding

well to the frequentist heterogeneity results produced for the meta-analyses us-

ing the maximum likelihood approach as used by Hardy and Thompson (1996),

equation 2.3.

Plotting the Bayesian results for the treatment effect estimates and the hetero-

geneity using the Normal-Normal model (model 4.9, with σ2
i =

1

rti
+

1

nti − rti
+

1

rci
+

1

nci − rci
) against the corresponding values obtained via the two frequentist

methods, Figures 4.4, 4.5, and 4.6, will indicate whether the results do coincide

as one believes they should. Assuming the results agree exactly, one would an-

ticipate the points to lie on the line of equality, the dashed line in each of the six

plots. All of the plots use the number of studies as the grouping variable, with

the legend for the labelling of the groups beside each figure.

The first figure, Figure 4.4 beolw, indicates the estimates for the treatment
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Figure 4.4. Comparing the Bayesian estimates with the frequentist estimates

calculated using DerSimonian and Laird’s method (equation 2.2)

effect using the Bayesian model (model 4.9 without using an averaged ni) coincide

almost exactly with the treatment effect estimates obtained using the method

used by DerSimonian and Laird (1986), with the estimates barely deviating from

the line of equality. Examining now the scatterplot for the heterogeneity values

calculated, it appears the Bayesian estimates are in general slightly greater than

those obtained using the frequentist method. Fitting a regression line to the
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heterogeneity estimates, the Bayesian heterogeneity values are equal to 0.0193

plus 1.43 times the frequentist heterogeneity values. The slope parameter, 1.43,

confirms the initial impression that the Bayesian estimates for the heterogeneity

are greater than those obtained via the frequentist method.

Figure 4.5. Comparing the Bayesian estimates with the frequentist estimates

calculated using Hardy and Thompson’s method (equation 2.3)

Figure 4.5, which compares the Bayesian estimates with the frequentist esti-

mates calculated using the method used by Hardy and Thompson (1996) produces
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similar results to those noted from Figure 4.4. Like Figure 4.4, the treatment ef-

fect estimates computed using the Bayesian method, model 4.9, match almost

identically those computed using the method as used by Hardy and Thompson

(1996). The heterogeneity values however appear to differ between the two meth-

ods with the Bayesian values again being slightly greater than the corresponding

heterogeneity values. The fitted regression for these two methods, Bayesian =

0.0431 + 1.61*frequentist, again confirms this, with a slightly larger slope pa-

rameter, 1.61.

Comparing now the two frequentist methods (DerSimonian and Laird (1986)

and Hardy and Thompson (1996)) displayed in Figure 4.6, the treatment effect

estimates appear to agree in almost every meta-analysis with just a small dif-

ference occurring in the meta-analyses which do not agree. The estimates for

the heterogeneity do not agree as well as noted in the treatment effect estimates,

however fitting a regression line for the estimates computed using the method

used by DerSimonian and Laird (1986) against the method used by Hardy and

Thompson (1996), the intercept produced is 0.0249, with a slope parameter of

1.06, which is fairly close to one.

Figures 4.4, 4.5 and 4.6 indicate that no two methods of the three considered

agree exactly with any other 100% of the time, however of the three methods,

the two which match the closest appear to be the two frequentist methods, espe-

cially for the heterogeneity estimates, with the Bayesian heterogeneity estimates

appearing to have slightly larger estimates than either of the two frequentist

methods.
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It is apparent that the results via both the frequentist methods and the

Bayesian method for the treatment effect estimates correspond fairly well in

the majority of the meta-analyses. In the event of a difference occurring, the

magnitude of the difference is minimal.

Figure 4.6. Comparing the two frequentist approaches using estimates cal-

culated using DerSimonian and Laird’s method (equation 2.2) and Hardy and

Thompson’s method (equation 2.3)

On examination of the results for the heterogeneity, there is more evidence of

disagreements occurring between the different methods. The Bayesian method
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appears to produce slightly larger measures for the heterogeneity than either the

DerSimonian and Laird method for calculating the heterogeneity or the method

of maximised likelihood as used by Hardy and Thompson.

4.5.4 Summary

Two different Bayesian models, a Binomial-Normal model and a Normal-

Normal model were fitted to the data for all 125 meta-analyses, along with the

corresponding frequentist models using a macro within SAS (nlmixed) for the

Binomial-Normal model and two different methods for calculating the hetero-

geneity in a Normal-Normal model (DerSimonian and Laird (1986) and Hardy

and Thompson (1996)). The results produced were then examined using different

methods and models. Since each model used the same data, one would expect the

results to be very similar, irrespective of which method was used to obtain them.

The results produced for both the overall treatment effect and the heterogeneity

for each meta-analysis were plotted in separate scatter plots allowing the results

from the different methods used to be compared.

The scatter plots indicated the overall treatment effect estimates for each

meta-analysis were very similar regardless of the method used to calculate them.

The estimates of the heterogeneity however differed slightly depending on which

method was used to estimate them, with the two frequentist methods used for the

Normal-Normal model (DerSimonian and Laird (1986) and Hardy and Thompson

(1996)) producing the most similar results. These results indicate when estimat-

ing the heterogeneity for a meta-analysis the results can differ slightly depending
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on which method one has used. The estimates produced using a Bayesian method

tend to be slightly larger than the corresponding estimates produced using a fre-

quentist method.

4.6 Comparing the Models

It is of interest now to compare all of the results produced for the data in Table

4.1 for the different models, the Binomial-Normal and the Normal-Normal model,

as well as comparing the results that have been produced from the two different

methods, the Bayesian method and the frequentist methods. For simplicity here,

and since the previous results (Figure 4.6) indicated the two frequentist meth-

ods produced similar results, the results from only one frequentist method are

produced here, that of DerSimonian and Laird (1986).

Model

Binomial-Normal Model Normal-Normal Model

E(δ) = -1.3944 E(δ) = -1.3387

Frequentist SD(δ) = 0.1929 SD(δ) = 0.1863

E(τ 2) = 0.4275 E(τ 2) = 0.4428

E(δ) = -1.419 E(δ) = -1.346

Bayesian SD(δ) = 0.2065 SD(δ) = 0.202

E(τ 2) = 0.555 E(τ 2) = 0.5037

SD(τ 2) = 0.24 SD(τ 2) = 0.2234

Table 4.6. Results for the data used by Abrams and Sansó (1998) using the

two models 4.1 and 4.9 for the two different methods, the frequentist and the

Bayesian.

A summary of the overall treatment effect estimate and the heterogeneity for
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the two different models and the two different methods are produced in Table 4.6.

The Bayesian model used for the Normal-Normal model is model 4.9, with the σ2
i ’s

calculated as in equation 4.8, whilst the Bayesian Binomial-Normal model results

are produced using model 4.1, with the non-informative priors which Abrams and

Sansó (1998) used for µ (Uniform(-10, 10))and σ2
i (Inverse-Gamma(3, 1)).

Examining the results produced in Table 4.6, the estimates for the overall

treatment effect are most similar within the columns, i.e. there is a larger dif-

ference in the size of the overall treatment effect estimate when comparing the

different types of models, the Binomial-Normal with the Normal-Normal, than if

one compares the different methods (the frequentist and the Bayesian) for each

model.

The estimate for the heterogeneity however, indicates the estimates are most

similar within the rows, i.e. there is a larger difference in the size of the hetero-

geneity when comparing the different methods (the frequentist and the Bayesian)

than if one compares the different models, the opposite of what was indicated

from the estimate of the overall treatment effect.

The results for the different estimates of the heterogeneity are not what one

would expect. One would believe any differences which occur in the calculation

of these estimates would be due to the decision of which type of model used to

calculate the estimates and expect the results to be very similar if not the same

regardless of which method was used. In actual fact, it appears that the results

for the treatment effect estimate agree with this reasoning, yet the results for

the heterogeneity indicate that regardless of which model is used, the Bayesian
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results for the heterogeneity will always be greater than those corresponding to

the frequentist methods.

4.7 Fitting an Informative Prior

4.7.1 Introduction

So far in this thesis, only non-informative priors which assume no prior knowl-

edge of how a variable will behave have been implemented into the Bayesian

models, however informative priors are also commonly used.

In a meta-analysis context, if one is creating a model to produce estimates

for the overall treatment effect and the heterogeneity, as is the case here, some

believe an informative prior should be used for the heterogeneity since there is in

fact some prior knowledge about it.

For example, since the heterogeneity is a measure of variance, it would seem

reasonable to expect it to take values in the interval [0,∞) and so a prior which re-

stricts the values produced to within this interval could be appropriate. (Spiegel-

halter et al., 2004)

Senn (2007b) wrote a response to Lambert et al. (2005) which claimed “no

applied statistician believes that [the treatment effect and the heterogeneity] are

independent”, in which case non-informative priors on both the treatment effect

and the heterogeneity would not be of use either. Upon examination of the rela-

tionship between the treatment effect and the heterogeneity earlier in this thesis

(Chapter 3), there did appear to be a relationship between the two, with a larger
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range of heterogeneity values occurring for larger treatment effects.

4.7.2 Creating a New Model

f(τ |µ; β, α) =
1

α + β|µ|
exp

{
− τ

α + β|µ|

}
(4.11)

If now we consider creating a new informative prior which takes into account

the prior information that the heterogeneity should in fact be restricted to the

interval [0,∞) as well as the treatment effect and the heterogeneity have some

sort of relationship, we might consider a prior which Senn (2007b) proposed, as

mentioned earlier.

rci
∼ Bin(nci

, pci
)

rti ∼ Bin(nti , pti)

logit(pci
) = ψi

logit(pti) = ψi + δi

δi ∼ N(µ, τ 2) (4.12)

ψi ∼ N(0, 1000000)

µ ∼ N(0, 1000000)

τ ∼ Exp(λ)

λ =
1

α + β|µ|
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In his paper, Senn (2007b) proposed an exponential prior for τ using the

“conditional prior distribution”, noted here in equation 4.11.

This is an exponential prior which “allows dependence of τ on µ [the pooled

log odds ratio] (Senn, 2007b)” and the resulting new model is displayed in model

4.12 for using this prior with the Binomial Normal model and displayed in model

4.13 for using this prior with the Normal Normal model.

In models 4.12 and 4.13, α and β are both given constants, with Senn (2007b)

suggesting values of β < 1 and small values of α. Here, a value for α of 0.05 and

a value for β of 0.1 is used.

yi ∼ N(θi, σ
2
i )

θi ∼ N(µ, τ 2) i = 1, ..., k

µ ∼ Unif(−10, 10) (4.13)

τ ∼ Exp(λ)

λ =
1

α + β|µ|

Using the data from Abrams and Sansó (1998) which has previously been

used for the Binomial Normal model (model 4.1) and the Normal Normal model

(model 4.9) with non-informative priors, one can implement these models again,

this time with the informative exponential prior (models 4.12 and 4.13).
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4.7.3 Examining the Results

The results produced using this new informative exponential prior, for both

the Binomial Normal Bayesian model (model 4.12) and the Normal Normal

Bayesian model (model 4.13) are displayed here in Table 4.7.

Model

Binomial-Normal Model Normal-Normal Model

E(µ) = -1.461 E(µ) = -1.37

Bayesian SD(µ) = 0.2099 SD(µ) = 0.2075

E(τ 2) = 0.5278 E(τ 2) = 0.4508

SD(τ 2) = 0.2655 SD(τ 2) = 0.2419

Table 4.7. Results for the data used by Abrams and Sansó (1998) using the

two models with the informative exponential prior (models 4.12 and 4.13) for the

Bayesian method.

One can see from Table 4.7 that although the Binomial Normal results are

not hugely different to the results obtained using the Normal Normal model, the

Binomial Normal results are larger for both the overall treatment effect estimate

and the heterogeneity. This is consistent with the results found for the two

Bayesian models using the non-informative prior for the heterogeneity.

It is interesting to note that on using the informative exponential prior, the

mean value for µ is slightly larger than the equivalent results using the non-

informative priors, however the mean value for τ 2 is slightly smaller than the

equivalent results using the non-informative priors.

A sensitivity analysis for different values of α and β (α small and β <1)

in models 4.12 and 4.13 were also computed to ensure the prior used was not
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sensitive to the choices of α and β.

Ideally, one would like to be able to produce results using models 4.12 and

4.13 with the values for α and β coming from a distribution rather than using

set constants.

Altering model 4.12 slightly to illustrate how this would be achieved, the α

and the β have been replaced with β[1] and β[2] respectively to allow them to

come from a bivariate log-Normal distribution, as displayed in model 4.14.

rci
∼ Bin(nci

, pci
)

rti ∼ Bin(nti , pti)

logit(pci
) = ψi

logit(pti) = ψi + δi

δi ∼ N(µ, τ 2)

ψi ∼ N(0, 1000000)

µ ∼ N(0, 1000000)

τ ∼ Exp(λ) (4.14)

λ =
1

expbeta[1] + expbeta[2]|µ|

β[1 : 2] ∼ MN(µ2,Σ)

µ2 ∼ MN(µ3,Σ2)

expbeta[i] = exp(β[i])

Σ ∼Wishart2(Ω)
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To allow β[1] and β[2] to come from a bivariate log-normal distribution, the

exponentials of the βi’s need to be used in the calculation of λ, the parameter

for the exponential prior on τ . The Bivariate Normal distribution for the β’s has

parameters µ2, a vector of length 2 which comes from a Bivariate Normal, and

Σ, a 2 x 2 matrix which has a Wishart distribution here.

The priors placed on µ3, Σ2 and Ω for model 4.17 above are restricted so

that the values obtained for expbeta[1] and expbeta[2] are restricted to follow

the suggested values of expbeta[1] small and expbeta[2] < 1 as discussed in Senn

(2007b).

Implementing model 4.14 using again the data from Abrams and Sansó (1998),

the matrix parameter for the Wishart distribution Ω is diag(1), µ3 is a zero vector

of length 2 and Σ2 is a diag(100) matrix. The results are displayed in Table 4.8.

One can see on comparison with the previous results which used given values

for the hyperparameters, α and β (0.05 and 0.1 respectively), the computed values

for the treatment effect, µ, and the heterogeneity, τ 2 are again quite similar.

Model

Binomial-Normal Model

E(µ) = -1.446

Bayesian SD(µ) = 0.2332

E(τ 2) = 0.7626

SD(τ 2) = 0.4099

Table 4.8. Results for the data used by Abrams and Sansó (1998) using the

informative exponential prior for τ with non-informative hyperparameters (model

4.14).



CHAPTER 4. FITTING A BAYESIAN MODEL 74

The value for the treatment effect, -1.446, remains close to the estimates re-

ported in Table 4.7, whilst the value for the heterogeneity, 0.7626, is just slightly

greater than both of the previous results for the heterogeneity in Table 4.7. Al-

though the size of the heterogeneity estimate is fairly similar to the previous

estimates, it could be slightly bigger due to the model being more complex and

only the same amount of information being available.

4.7.4 Summary

As previously discussed in Chapter 3, there appears to be a relationship be-

tween the overall treatment effect of a meta-analysis and its corresponding het-

erogeneity. Senn (2007b) had also previously considered this and suggested the

use of an exponential prior on τ (the square root of the heterogeneity) which was

also conditional on the overall treatment effect for that meta-analysis (equation

4.11). Senn (2007b) suggested the values for α to be small and β < 1. This new

prior for τ was implemented using both a Binomial-Normal model (model 4.12)

and a Normal-Normal model (model 4.13). The results were fairly consistent

with the results previously calculated in Section 4.3, with the Binomial-Normal

model having a slightly larger value for both the overall treatment effect estimate

and the heterogeneity.

Hyperparameters were then added to allow the estimates for α and β to be

obtained from their own parameters. A Bivariate log-Normal distribution for

α and β was implemented with similar results to the previous results from the

model with the exponential prior on τ but with given values for α and β. The
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obtained value for the heterogeneity was slightly larger, although that could be

due to a more complex model being fitted with no more additional data.

4.8 A Meta-Analysis of Meta-Analyses

4.8.1 Introduction

So far, meta-analyses of various clinical trials concerning the same treatment

have been examined using two approaches, the frequentist and the Bayesian. It

is of interest now however to consider whether or not a meta-analysis of meta-

analyses can be computed using a Bayesian hierarchical model.

4.8.2 Creating the Model

To produce a meta-analysis of meta-analyses, the model will follow a hi-

erarchical format with k clinical trials (j = 1, . . . , k ) and m meta-analyses

(i = 1, . . . ,m), which is displayed in model 4.15.

This model allows the treatment effect, δi,j in model 4.15, to differ by both

meta-analysis and clinical trial. The µi’s correspond to the overall treatment

effect for meta-analysis i, whilst the τ 2
i ’s correspond to the heterogeneity for

meta-analysis i. The non-informative priors on each µi and each τ 2
i allow these

estimates to vary independently between each meta-analysis assuming there is no

prior knowledge on how these parameters should behave.
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rci,j
∼ Bin(nci,j

, pci,j
)

rti,j ∼ Bin(nti,j , pti,j )

logit(pci,j
) = ψi,j

logit(pti,j ) = ψi,j + δi,j

ψi,j ∼ N(0, ηi) (4.15)

ηi ∼ IG(0.001, 0.001)

δi,j ∼ N(µi, τ
2
i )

µi ∼ N(0, 1000000)

τ 2
i ∼ IG(0.001, 0.001)

4.8.3 Examining the Results

Using the data which has been provided for 125 independent meta-analyses,

some, or even all of the data available, can be used with this new model, model

4.15 displayed above.

Selecting a subset of the meta-analyses available, for example all 11 of the

meta-analyses which have the field myocardial infarction, these can be used with

the latest model, model 4.15, the results of which are displayed in Table 4.9.

Examining the results from the meta-analysis of the 11 myocardial infarction

meta-analyses, the meta-analyses with a large absolute treatment effect (µi) also

have a corresponding large variance (τ 2
i ) as one would expect. In table 4.9,
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Number

of trials µi τ 2
i

in MA i

51 E(µ1) = -0.1411 SD(µ1) = 0.0635 E(τ 2
1 ) = 0.0105 SD(τ 2

1 ) = 0.0163

17 E(µ2) = -0.2201 SD(µ2) = 0.0622 E(τ 2
2 ) = 0.0179 SD(τ 2

2 ) = 0.0213

16 E(µ3) = 0.0877 SD(µ3) = 0.1358 E(τ 2
3 ) = 0.0290 SD(τ 2

3 ) = 0.0636

6 E(µ4) = 0.00096 SD(µ4) = 0.0716 E(τ 2
4 ) = 0.0126 SD(τ 2

4 ) = 0.0326

7 E(µ5) = -0.2798 SD(µ5) = 0.1147 E(τ 2
5 ) = 0.0250 SD(τ 2

5 ) = 0.0676

13 E(µ6) = -0.178 SD(µ6) = 0.0801 E(τ 2
6 ) = 0.0192 SD(τ 2

6 ) = 0.0377

11 E(µ7) = -0.7692 SD(µ7) = 0.319 E(τ 2
7 ) = 0.5516 SD(τ 2

7 ) = 0.5249

13 E(µ8) = -0.5274 SD(µ8) = 0.2567 E(τ 2
8 ) = 0.4658 SD(τ 2

8 ) = 0.3883

7 E(µ9) = -0.6276 SD(µ9) = 0.3551 E(τ 2
9 ) = 0.2446 SD(τ 2

9 ) = 0.6125

12 E(µ10) = -0.2517 SD(µ10) = 0.1052 E(τ 2
10) = 0.0203 SD(τ 2

10) = 0.0396

34 E(µ11) = -0.2856 SD(µ11) = 0.0683 E(τ 2
11) = 0.0297 SD(τ 2

11) = 0.0371

Table 4.9. Results for the Meta-Analysis of the 11 Meta-Analyses which all have

the same field, myocardial infarction, using non-informative priors.

meta-analyses 7, 8 and 9 all have quite a large absolute treatment effect and

corresponding variance which is also quite large compared to the variances of the

meta-analyses with smaller absolute treatment effects.

4.8.4 A More Complex Model

The previous model (model 4.15) has been created using non-informative pri-

ors, however these can be changed to informative priors if one believes there is

some prior information, as has been demonstrated previously in Chapter 4 sec-

tion 7 (model 4.12).

The informative prior used previously for τ (the square root of the heterogene-

ity) in model 4.12 was an exponential prior and this may be used here instead of
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the non-informative Inverse-Gamma prior for the heterogeneity.

Computing this more complex model to now include an informative exponen-

tial prior, as noted in model 4.16 below, the same subset of meta-analyses which

was used for the previous model, model 4.15, can be used to compute results for

implementing a more informative prior.

rci,j
∼ Bin(nci,j

, pci,j
)

rti,j ∼ Bin(nti,j , pti,j )

logit(pci,j
) = ψi,j

logit(pti,j ) = ψi,j + δi,j

ψi,j ∼ N(0, ηi) (4.16)

ηi ∼ IG(0.001, 0.001)

δi,j ∼ N(µi, τ
2
i )

µi ∼ N(0, 1000000)

τi ∼ Exp(λi)

λi =
1

α + β|µi|

Model 4.16 uses the same restrictions for the values of α and β that model

4.12 used, with α and β taking the same values here, 0.05 and 0.1 respectively.

Looking at the results produced using model 4.16, displayed in Table 4.10
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Number

of trials µi τ 2
i

in MA i

51 E(µ1) = -0.1384 SD(µ1) = 0.0609 E(τ 2
1 ) = 0.0035 SD(τ 2

1 ) = 0.0070

17 E(µ2) = -0.2212 SD(µ2) = 0.0557 E(τ 2
2 ) = 0.0081 SD(τ 2

2 ) = 0.0116

16 E(µ3) = 0.0925 SD(µ3) = 0.1105 E(τ 2
3 ) = 0.0054 SD(τ 2

3 ) = 0.0123

6 E(µ4) = 0.0026 SD(µ4) = 0.0595 E(τ 2
4 ) = 0.0034 SD(τ 2

4 ) = 0.0071

7 E(µ5) = -0.2714 SD(µ5) = 0.0991 E(τ 2
5 ) = 0.0075 SD(τ 2

5 ) = 0.0149

13 E(µ6) = -0.1767 SD(µ6) = 0.0694 E(τ 2
6 ) = 0.0054 SD(τ 2

6 ) = 0.0106

11 E(µ7) = -0.7742 SD(µ7) = 0.2877 E(τ 2
7 ) = 0.2594 SD(τ 2

7 ) = 0.2153

13 E(µ8) = -0.5458 SD(µ8) = 0.2562 E(τ 2
8 ) = 0.2098 SD(τ 2

8 ) = 0.1772

7 E(µ9) = -0.6516 SD(µ9) = 0.3023 E(τ 2
9 ) = 0.0288 SD(τ 2

9 ) = 0.0764

12 E(µ10) = -0.2427 SD(µ10) = 0.0929 E(τ 2
10) = 0.0061 SD(τ 2

10) = 0.0120

34 E(µ11) = -0.2668 SD(µ11) = 0.0588 E(τ 2
11) = 0.0133 SD(τ 2

11) = 0.0195

Table 4.10. Results for the Meta-Analysis of the 11 Meta-Analyses which all

have the same field, myocardial infarction, using an informative exponential prior

for τ .

below, one can see the results for the absolute treatment effects for the same meta-

analyses are quite similar to the previous results for the same meta-analyses using

a non-informative prior on the heterogeneity (Table 4.9), as one would expect.

One can also note the apparent reduction (by at least a half) for the expected

heterogeneity values using the informative exponential prior compared to using

the non-informative Inverse-Gamma prior.

Ideally, as mentioned before, a model which allows the parameters of the

exponential prior, α and β, to come from a bivariate log-normal distribution

rather than using given values would be preferable, as displayed in model 4.17.

Using the same 11 meta-analyses that have previously been used for model
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4.16, but this time instead of specifying constant values for α and β in model

4.16, which correspond to expbeta[1] and expbeta[2] here respectively, model

4.17 below allows these parameters to come from a non-informative Bivariate

Log-Normal model.

rci,j
∼ Bin(nci,j

, pci,j
)

rti,j ∼ Bin(nti,j , pti,j )

logit(pci,j
) = ψi,j

logit(pti,j ) = ψi,j + δi,j

ψi,j ∼ N(0, ηi)

ηi ∼ IG(0.001, 0.001)

δi,j ∼ N(µi, τ
2
i ) (4.17)

µi ∼ N(0, 1000000)

τi ∼ Exp(λi)

λi =

{
1

expbeta[1] + (expbeta[2]|µi|)

}
β[1 : 2] ∼ MN(µ2,Σ)

µ2 ∼ MN(µ3,Σ2)

expbeta[i] = exp(β[i])

Σ ∼Wishart2(Ω)

Implementing the same priors on µ3, Σ2 and Ω as previously done for model
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4.14 to ensure the obtained values for expbeta[1] and expbeta[2] follow the values

as previously suggested (Senn, 2007b), the results using model 4.17 below are

displayed in Table 4.11.

One can see from these results that the values produced for both µ and τ are

very similar to the earlier computed results when using given values for α and

β (displayed in Table 4.10). The computed values for the parameters expbeta[1]

and expbeta[2], which correspond to α and β respectively from model 4.16 are

0.0497 and 0.4538, which are quite similar to the values for α and β which were

used to produce the results displayed in Table 4.10.

Number

of trials µi τ 2
i

in MA i

51 E(µ1) = -0.1427 SD(µ1) = 0.0575 E(τ 2
1 ) = 0.0054 SD(τ 2

1 ) = 0.0105

17 E(µ2) = -0.2232 SD(µ2) = 0.0584 E(τ 2
2 ) = 0.0132 SD(τ 2

2 ) = 0.0180

16 E(µ3) = 0.0834 SD(µ3) = 0.1234 E(τ 2
3 ) = 0.0111 SD(τ 2

3 ) = 0.0275

6 E(µ4) = -0.0002 SD(µ4) = 0.0632 E(τ 2
4 ) = 0.0042 SD(τ 2

4 ) = 0.0118

7 E(µ5) = -0.2700 SD(µ5) = 0.1086 E(τ 2
5 ) = 0.0148 SD(τ 2

5 ) = 0.0334

13 E(µ6) = -0.1745 SD(µ6) = 0.0749 E(τ 2
6 ) = 0.0099 SD(τ 2

6 ) = 0.0232

11 E(µ7) = -0.8135 SD(µ7) = 0.3033 E(τ 2
7 ) = 0.4503 SD(τ 2

7 ) = 0.4061

13 E(µ8) = -0.5956 SD(µ8) = 0.2458 E(τ 2
8 ) = 0.3617 SD(τ 2

8 ) = 0.2977

7 E(µ9) = -0.666 SD(µ9) = 0.3073 E(τ 2
9 ) = 0.1135 SD(τ 2

9 ) = 0.2900

12 E(µ10) = -0.2335 SD(µ10) = 0.0955 E(τ 2
10) = 0.0123 SD(τ 2

10) = 0.0243

34 E(µ11) = -0.2771 SD(µ11) = 0.0650 E(τ 2
11) = 0.0230 SD(τ 2

11) = 0.0306

expbeta[1] = 0.0497 expbeta[2] = 0.4538

Table 4.11. Results for the Meta-Analysis of the 11 Meta-Analyses which all

have the same field, myocardial infarction, using an informative exponential prior

for τ with Bivariate Log-Normal hyperparameters.
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4.8.5 Summary

Having previously used several different models to obtain meta-analysis re-

sults, it was of interest to determine whether a meta-analysis of several meta-

analyses could be obtained. A simple Bayesian model was produced to model this

which first used non-informative priors for the estimates of interest, the overall

treatment effects and the heterogeneities for each meta-analysis. Using 11 of the

available 125 meta-analyses which all had the same field, myocardial infarction,

the model was implemented and results were obtained. The results for each of

the individual meta-analyses indicated the parameters of interest using the meta-

analysis of meta-analyses resulted in very similar estimates as those produced via

individual meta-analyses, the results of which have been attached in Appendix

A. The estimates which did differ the most between a simple meta-analysis model

and a meta-analysis of meta-analyses model occurred for the meta-analyses which

had larger corresponding standard deviations unsurprisingly. This did not seem

to occur for only the meta-analyses which had a small number of clinical trials

included.

A more complex model was then fitted which included an exponential prior

on τ as previously examined in Section 4.7, firstly with given values for α and β

and secondly allowing α and β to come from a Bivariate log-Normal model with

hyperparameters.

Implementing the exponential prior on τ resulted in a reduction in the size

of the heterogeneity for each meta-analysis, with the model using given values
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for the hyperparameters α and β reducing the heterogeneities slightly more than

the Bivariate-Log-Normal distribution on the hyperparameters. The estimates

for the treatment effect estimates were all similar regardless of the model used.

This was expected since the parameter for the treatment effect estimates did not

change from a non-informative prior.



Chapter 5

Conclusions and Discussions

Meta-analysis is a technique which can be used to combine the individual

treatment effects for several individual studies to obtain a single overall treatment

effect estimate. They are used for various different fields of interest - medical,

agricultural and educational research to name a few - and suit data of any form,

normally distributed data, ordinal data, survival data and binary data.

The methodology for combining the individual trial estimates, regardless of

the format in which the data arises, includes using a fixed effects model, or a

random effects model, with the random effects model incorporating the hetero-

geneity into the fixed effects model. The choice of which model should be used

is still debateable, with some statisticians believing the fixed effects approach

suits their work better, whereas another might prefer to use the random effects

approach. Regardless of the approach used, the heterogeneity should be checked

for, and if need be, incorporated into the model to prevent an invalid result.

84
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The treatment effect estimates may be calculated numerically using a fre-

quentist approach such as the Mantel-Haenszel odds ratio for binary data, with

an additional random effects weight should the random effect model be used, or

using a more complex Bayesian approach which calculates estimates using the

data provided and specified priors.

The Mantel-Haenszel odds ratio calculates the odds ratio using a Normal ap-

proximation of the binary data, effectively losing the Binary format of the data,

however the Bayesian model would account for the Binary format from which the

data initially arose.

There are several measures of heterogeneity. Perhaps two of the better known

frequentist methods are DerSimonian and Laird’s method of moments (DerSimo-

nian and Laird, 1986) and Hardy and Thompson’s method based on the Max-

imum Likelihood estimators (Hardy and Thompson, 1996). The data used for

this thesis used both of these methods when obtaining frequentist heterogeneity

estimates and found the methods coincided extremely well.

The priors for a Bayesian model can be non-informative if no prior knowledge

is held or informative if there is some prior knowledge which the priors should ac-

count for. There are several choices of non-informative priors available, however

just how non-informative these priors actually are has been questioned (Lambert

et al., 2005). The general agreement is regardless of the prior chosen, a sensitivity

analysis should be performed to check the robustness of the results across various

non-informative priors.

Previously when meta-analyses have been performed, the two main areas of
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interest, the overall treatment effect estimate and the heterogeneity, if a random

effects model has been used, are considered to be independent estimates and have

generally been modelled as such (Smith et al. (1995), Abrams and Sansó (1998)),

although this assumption has in fact been questioned (Senn, 2007b).

These estimates were calculated for 125 independent meta-analyses and upon

examination of these estimates, it appears a relationship between them does oc-

cur.

The data used for the purpose of this thesis was binary and estimates for all

three main metrics for binary data, the log-odds-ratio, the log-relative risk and

the risk difference, were calculated using the frequentist approach. The results

when graphed indicated a positive correlation could occur between the treatment

effect estimate and the heterogeneity, regardless of which metric was chosen,

with increasing heterogeneity occurring for an increasing treatment effect esti-

mate. Correlations between the treatment effect estimates and the heterogeneity

for each metric separately were also computed and the results indicated a signifi-

cant positive correlation of approximately 0.4 occurred irrespective of the metric

chosen.

A Bayesian model was then considered with separate non-informative priors

initially for the treatment effect estimate and the heterogeneity as have pre-

viously been used (Lambert et al. (2005), (Gelman, 2006), Abrams and Sansó

(1998), Smith et al. (1995)) before going on to fit an informative exponential

prior on the square root of the heterogeneity which would allow the variance to

depend upon the overall treatment effect estimate.
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The first Bayesian model which made use of non-informative priors for the pa-

rameters of interest and allowed the data to retain its binary format indicated the

treatment effect estimates using the Bayesian model with non-informative priors

corresponded very well to the estimates obtained using a frequentist Binomial-

Normal model. The estimates for the heterogeneity however indicated a slight

discrepancy between the Bayesian method and the frequentist method, with the

Bayesian method resulting in slightly larger estimates which increased with in-

creasing heterogeneity.

A Bayesian model using a Normal approximation for the log-odds ratios was

then implemented and compared to the results obtained using two frequentist

methods for the heterogeneity. Again the results for the treatment effect estimates

corresponded very well whether the Bayesian method or the frequentist method

was used. The estimates of the heterogeneity for the Bayesian method were again

slightly larger than those obtained using a frequentist method, although these es-

timates did not increase quite as much with the increasing heterogeneity values

compared to the models which kept the data in its Binary format.

Data for a meta-analysis using 22 studies which had been previously published

(Abrams and Sansó, 1998) was then used with all four combinations of model: a

Bayesian model using the Binary format, a Binomial-Normal model; a frequen-

tist model using the Binary format, a Binomial-Normal model; a Bayesian model

using a Normal approximation, a Normal-Normal model; a frequentist model

using a Normal approximation, a Normal-Normal model. The results for the

overall treatment effect estimate appeared to differ the most between the models
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used - the Binomial-Normal and the Normal-Normal, regardless of whether the

Bayesian approach or the frequentist approach was used, whereas the heterogene-

ity estimate differed the most between the approaches used - the Bayesian or the

frequentist.

Having examined the results for the different methods and models, it would

appear reasonable for one to conclude that if the person constructing the meta-

analysis is doing so under the assumption that the treatment effect estimate and

the heterogeneity are independent, then the advantage of the Bayesian model

is minimal and is perhaps not worth the extra effort since the treatment effect

estimates reported for the frequentist method and the Bayesian method are very

similar.

However, the estimates of interest appear to be related, and so the exponen-

tial prior for the square root of the heterogeneity which is dependant upon the

overall treatment effect estimate was implemented. Using given suggested values

for the two hyperparameters α and β (Senn, 2007b), the results obtained were

similar to those which were produced using the non-informative priors for both

the treatment effect estimate and the heterogeneity, with the Binomial-Normal

model having slightly larger estimates than the Normal-Normal model.

Despite the results after implementing the informative exponential prior re-

maining similar to those obtained using non-informative independent priors for

the treatment effect estimate and the heterogeneity, I would recommend if per-

forming a meta-analysis that one should use the Bayesian method, which allows

the user to include a subjective opinion, with the informative exponential prior
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rather than the non-informative independent priors since a relationship between

the treatment effect estimate and the heterogeneity has been indicated and there-

fore should not be ignored.

After then introducing a Bivariate-Log-Normal prior for the hyperparameters

α and β, the results were again similar, with the heterogeneity value remaining

slightly larger. This may however be the result of a more complex model being

fitted with no more additional data becoming available. The priors for the hy-

perparameters for the Bivariate-Log-Normal distribution were carefully selected

so that the parameters corresponding to the previous α and β parameters were

restricted so as not to deviate from the suggested given values (Senn, 2007b),

however more work focusing on the values which α and β take, whether they are

specified as given in the model or if they are the result of fitting priors to these

values, should perhaps be done in an attempt to determine how sensitive a model

as complex as this one is.

An appropriate model for meta-analyses, I believe, should take into consid-

eration that the treatment effect estimate and the heterogeneity appear to be

related. Using Bayesian methods will allow this prior knowledge to be incorpo-

rated into the model as has been done in this thesis whilst using an informative

exponential prior.

As previously mentioned in the aims of this thesis, a meta-analysis involves

combining several independent clinical trials which are all alike allowing the treat-

ment effect to be transferred between the clinical trials. It may also be reasonable

to consider trials which have the same field but different treatments, so long as
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care is taken when stating the hypotheses, looking at the modelling and the inter-

pretation of the results as discussed in Senn (2007a). By carefully considering the

modelling of the meta-analysis, one allows the treatment effect to be transferred

only between the trials which consider the same treatment effect.

11 Meta-analyses which all had the same field, myocardial infarction, were

then used in a meta-analysis of meta-analyses. Although the clinical trials which

make up the 11 meta-analyses here all have the same field, they do not necessarily

all examine the same treatments or the same concentrations. The results for the

same models as were previously used (one which uses non-informative priors for

the overall treatment effect estimates and the heterogeneity’s, another which uses

the exponential prior for the square root of the heterogeneity and given values for

the hyperparameters α and β, and another which allows α and β to come from

a Bivariate-Log-Normal model) were obtained.

All three models produced results for the treatment effect estimates and the

heterogeneity’s which were similar to the results obtained via individual meta-

analyses. Some estimates differed a bit more between the models than others and

these appeared to be the meta-analyses which had larger corresponding standard

deviations for their estimates and not necessarily due to the number of clinical

trials which were included in the meta-analyses. As mentioned previously, the

final most complex model which had a Bivariate-Log-Normal for the α and β

parameters were restricted so that the α and β did not differ too much from

suggested values (Senn, 2007b), although more work on these suggested values

could be done to check this restriction does not limit the results. It might also be
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worthwhile considering whether a different distribution would better suit these

priors and what effect, if any, the change in prior alters the parameters and if

this alters the results found here.

An idea for future work would be to further examine constructing meta-

analyses which consider clinical trials with different treatments. This could be

done by examining the variance of a clinical trial when it is included in a meta-

analysis which looks at trials with the same treatment and comparing the results

to a meta-analysis which looks at trials with different treatments.



Appendix A

Individual Meta-Analysis Results

The results from the 11 individual meta-analyses, which all have the same

field myocardial infarction, which were subsequently used in the meta-analysis of

meta-analyses are displayed here in table A.1. Model 4.1∗ was used to produce

the results and a burn-in of 5000 was used for each meta-analysis followed by

another 25,000 iterations using two chains.

∗The prior for τ2 is slightly different to that in model 4.1, using an IG(0.001, 0.001)

92
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Number

of trials µi τ 2
i

in MA i

51 E(µ1) = -0.1125 SD(µ1) = 0.0658 E(τ 2
1 ) = 0.0119 SD(τ 2

1 ) = 0.0178

17 E(µ2) = -0.2100 SD(µ2) = 0.0634 E(τ 2
2 ) = 0.0179 SD(τ 2

2 ) = 0.0212

16 E(µ3) = 0.1344 SD(µ3) = 0.1388 E(τ 2
3 ) = 0.0314 SD(τ 2

3 ) = 0.0722

6 E(µ4) = 0.0062 SD(µ4) = 0.0726 E(τ 2
4 ) = 0.0132 SD(τ 2

4 ) = 0.0280

7 E(µ5) = -0.2589 SD(µ5) = 0.1165 E(τ 2
5 ) = 0.0247 SD(τ 2

5 ) = 0.0679

13 E(µ6) = -0.1591 SD(µ6) = 0.0805 E(τ 2
6 ) = 0.0211 SD(τ 2

6 ) = 0.0444

11 E(µ7) = -0.7069 SD(µ7) = 0.3066 E(τ 2
7 ) = 0.5387 SD(τ 2

7 ) = 0.5596

13 E(µ8) = -0.4691 SD(µ8) = 0.2593 E(τ 2
8 ) = 0.4568 SD(τ 2

8 ) = 0.3970

7 E(µ9) = -0.5465 SD(µ9) = 0.3752 E(τ 2
9 ) = 0.2867 SD(τ 2

9 ) = 0.7324

12 E(µ10) = -0.2246 SD(µ10) = 0.1016 E(τ 2
10) = 0.0196 SD(τ 2

10) = 0.0358

34 E(µ11) = -0.2610 SD(µ11) = 0.0614 E(τ 2
11) = 0.0253 SD(τ 2

11) = 0.0311

Table A.1. Results for the 11 individual Meta-Analyses which all have the same

field, myocardial infarction, using a slightly altered model 4.1 (see footnote)
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