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Abstract

The thesis ‘The dynamics of tethers and space-webs’ investigates the motion of the

Motorized Momentum Exchange Tether (MMET) on an inclined orbit, and while

deploying and retracting symmetric payloads. The MMET system is used as a basis

for examining the stability of space-webs using a triangular structure of tethers while

rotating. The motion of small robots is introduced as they move on the space-web,

and their motions are found to influence the behaviour of the structure. Several

methods of limiting the destabilising influences of the robots are considered, and are

found to stabilise the web in most circumstances.

A structured method for describing the rotations of a tether system is outlined, and

different rotational systems are compared. This lays the foundation for the further

chapters examining MMET dynamics on an inclined orbit and while deploying and

recovering the payloads. Lagrange’s equations are generated for the three cases,

and are solved using standard numerical integration techniques. To emphasise the

practical uses of the MMET system, several missions are analysed by using the

system as a re-usable launcher for micro-satellite payloads.
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Chapter 1

Introduction

The field of space research is perhaps unique, in that many novel, different and

interesting concepts are commonly developed from a seed of an idea to a satellite

in a relatively short space of time. Additionally, mankind has been active in space

for a very short time, but has made astounding progresses in understanding in both

technical and social fields as a direct result of this.

The cost of these endeavours has been equally astounding, with many nations

contributing significant fractions of their GDP towards developing and maintaining

a space presence. Equally, all nations with a space presence continually re-assess

their capability – politicians want developments faster, accountants want everything

done cheaper, scientists want to do better – as a direct result, novel ideas can flourish.

The Motorized Momentum Exchange Tether (MMET) is one of these ideas, with

the potential to provide cheaper on-orbit launch costs and a lighter mass when

compared to conventional rocket technologies.

A diagram of the MMET is shown in Figure 1.1. A payload mass is connected

to a large central facility mass with a high strength tether. A symmetrical mass

is attached to the opposite side of the facility and these two tethers and payloads

19



form the payload arm. A further two tethers are joined to the facility to increase

the inertia of facility, these are called the stator arm, and are similar in design to

the payload arm.

payload 2

facility

stator 1

stator 2

payload 1

Figure 1.1: Diagram of the MMET.

As with all alternative ideas, the MMET is best suited to a particular mission

profile. With the MMET, its strongest advantage is that it is reusable, and may be

employed to launch satellites and payloads as long as the tether is intact.

Unfortunately, the MMET does have drawbacks, the four tethers are susceptible

to severing from orbital debris, a symmetrical release strategy is required for each

payload release and the risk of interference between the payload and stator arms is

high. Additionally, the maximum orbital velocity the payload can achieve is limited

by the strength of the tethers.

With these in mind, a large body of research into the performance of the MMET,

momentum exchange tethers, dumbbell tethers, and tethers in general has revealed
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that there are definite advantages in employing these as a tool to enhance or en-

able many satellite missions. As with all tools, space- or Earth-based alike, it is

imperative to use the right tool for the right job.

The research into momentum exchange tethers has been focussed on constructing

mathematical models and analysing these models to determine the performance

and stability, to avoid any potential weaknesses and to gain a better insight into

the fundamental properties of the tether systems. Hardware testing is employed

wherever practical (and funds allow!) to validate these models.

Several techniques are available to build these mathematical models. These in-

clude Newtonian based techniques, using forces and accelerations, and energy based

techniques using Lagrangian formulations.

This thesis will develop a mathematical model of the MMET using a Lagrangian

based approach to further analyse the performance of the system in two key areas:

on an inclined orbit, and while deploying and recovering the tether.

A new structure – the space-web – is proposed and analysed, composed of a net

overlaid on a backbone of a rotating tether system. This can be employed as a base

on which to build large space structures such as solar sails and interferometers.

1.1 Overview of thesis

Chapter 2 critically reviews the current literature and gives an overview of the wide

range of tether systems.

Chapter 3 introduces the rotational methods that underpin the rotational tether

system and rotational systems are examined and compared. A method of construct-

ing Lagrange’s equations for a rotating tether is outlined and the tether system is

mathematically constructed from its individual components.

Chapter 4 contains an analysis of the MMET dynamics on an inclined orbit, with
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in-plane and out-of-plane motions. A demonstration of the tether’s capabilities is

shown with an exemplar mission using a Weak Stability Boundary (WSB) trajectory

from Medium Earth Orbit (MEO) to the Moon.

Chapter 5 studies the MMET while deploying and recovering the payload and

tethers. A mathematical model of the MMET system undergoing deployment is

derived, and the stability of the system is assessed using the movement of the centre

of mass.

Chapter 6 uses the fundamental tether models to construct a space-web – a struc-

ture in space that may be used as a platform to assemble and deploy large space

structures.
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Chapter 2

Literature review

The field of tether research is broad, and spans many branches of engineering,

physics and mathematics. Tethers may be broadly split into three categories: mo-

mentum exchange tethers, electrodynamic tethers and structures built using tethers.

The notable events in tether history will be critically evaluated.

While this is not an exhaustive review of tethers, as provided in [Cartmell and

McKenzie, 2008] or [Cosmo and Lorenzini, 1997], it is intended to cover critically

the pertinent topics relevant to this thesis.

2.1 Early pioneers

In 1895, the father of astronautics, Konstantin Eduardovich Tsiolkovsky visited the

World’s Fair in Paris. Seeing the Eiffel Tower, he imagined a vast structure stretching

from the tower to a celestial castle in geostationary orbit above the Earth. From

this idea of a tower, fundamentally a compressive structure described in [Tsiolkovski,

1959], the idea of a space elevator was born. Yuri Artsutanov, Tsiolkovsky’s student,

discussed lowering a structure from orbit to the ground in [Artsutanov, 1960].
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Unfortunately, the good work in the USSR was not immediately available in the

West, and it was a number of years before the idea of large-scale tethers and space

elevators was published in English. A brief, but informative, article published by

[Isaacs et al., 1966] appeared in Science, and provided the impetus for academics in

the UK and the Americas to study this new idea.

In one of the first articles in Acta Astronautica, [Pearson, 1975] identifies the main

problems (materials limits, vibrational modes and stability), and solves a great many

of them from first principles1, introducing tapered tethers and taper ratios. Much

of the terminology still used derives from that source, for example, characteristic

height of materials2.

Hans Moravec metaphorically severs the link between the space elevator and the

Earth, postulating the tether as a momentum exchange device in [Moravec, 1977],

calling it the Skyhook3. This giant spoke rotates, touching down once and inter-

facing with the surface periodically. He identifies Mars as an ideal candidate for

the Skyhook, and provides a good grounding for the specific materials and optimal

layouts that are expanded in further research.

Several works of fiction have been inspired by these early pioneers, including

Clarke’s ‘The Fountains of Paradise’. [Clarke, 1979] brings a social aspect to the

space elevator research that is often overlooked, and is worth mentioning as the

source in which many young researchers first discover the field. Indeed, Clarke re-

marked in his final interview, see [Das, 2008], that the space elevator will be built

‘about 10 years after everyone stops laughing’ !

1On the state-of-the-art analogue computer in 1975, out-powered by several orders of magnitude
by today’s mobile phones!

2Pearson defines the characteristic height as ‘the height to which a constant-diameter tower
of the material could be built in a uniform one-g field without exceeding the stress limit of the
material at the base’.

3Moravec acknowledges in that paper that the Skyhook idea originated with John McCarthy
of Stanford.
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2.2 Tether fundamentals

The foundation textbook, ‘Dynamics of Space Tether Systems’ by Beletsky and

Levin [Beletsky and Levin, 1993], rigorously introduces the dynamics of tethers, in

a progressive and pragmatic manner.

The book discusses the fundamental topics in tether research, such as material

density, strength, and orbital location, at a level accessible for a newcomer to teth-

ers. The book then develops equations of motion for a massless and massive flexible

tether with variations, covering perturbations and other environmental effects. The

dynamics are examined in terms of stability and oscillatory behaviour, based on a

Newtonian derivation. ElectroDynamic (ED) tethers, libration and rotation, deploy-

ment and retrieval, and Lunar anchored and satellite ring systems serve to complete

the coverage of the book. A very useful set of references is also provided, up to the

publication year of 1993.

A chapter of the textbook by McInnes and Cartmell [McInnes and Cartmell, 2006]

on the dynamics of propellantless propulsion systems covers both solar sails and

tethers, each sharing the common goal of overcoming the constraints of using a

reaction mass. This reviews missions involving tethers to date, then moves on to

summarise the performance expectations of hanging, librating, and spinning tethers,

setting them in the context of results extant in the literature.

Carroll’s paper (see [Carroll, 1986]) gives an excellent background to the many

different types of tether mission proposed and flown, including the Gemini 12 mission

that pioneered the technique of gravity gradient stabilisation with the Agena vehicle.

This paper outlines the various roles of tethers, from the space elevator, librating

tethers, rotating tethers and momentum exchange tethers.
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2.2.1 Fundamental tether concepts

There are a few fundamental concepts that limit the tether, its performance and the

missions it may usefully provide.

Rotating tethers (when compared to gravity gradient stabilised tethers) are a lo-

gical progression, and extend the usefulness of the tether system. Tether oscilla-

tions and other nonlinear dynamics cause concern, and the ever-present possibility

of severing the tether due to space debris is only going to worsen with better access

to space. Spinning the tether up to rotational speed is a notable problem; in the

vacuum of space, there is nothing to provide a base to rotate against.

A tether differs from a rocket engine, a mass-based propulsion technique, in that

mass is not ejected. This enables tethers to sever the link between payload and fuel.

However tethers suffer from a few notable drawbacks: the tether line is vulnerable

to debris damage, tethers are limited by their fundamental material properties, and

rotating tethers must maximise their velocity increment.

Tethers can broadly be split into two categories: the rotating and non-rotating

tether. The rotating tether (see Section 2.2.3) is primarily concerned with imparting

a large velocity increment. The non-rotating tether has a variety of uses, with large

sections of the literature devoted to control and stabilisation of the tether, as is

covered in the next section.

2.2.2 Non-rotating tethers

Tethers may provide stabilisation, control or damping to a structure or constellation

in space. Active stabilisation of the tether is usefully demonstrated by ED tethers

in a highly readable report, [Hoyt, 2002]. Pendulum librations, transverse wave

oscillations, and skip-rope modes are all investigated and control laws proposed in

the form of feedback algorithms.
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As Figure 2.1 (taken from [Cosmo and Lorenzini, 1997, p175]) illustrates, the

rotating tether provides a large advantage over the non-rotating tether in terms of

the velocity increment to the payload. A frequently cited result is that the apogee

gains 7L in height from a hanging tether of length L, less than 14L from a swinging

tether and more than 14L from a rotating tether.

Figure 2.1: Tether length increment ∆L, from [Cosmo and Lorenzini, 1997, p175]

2.2.3 Momentum exchange

Momentum exchange is, in general, the main method in which a tether can impart

a useful velocity increment to the payload.

Dumbbell tethers are essentially a coupled pendulum system, and have been well

covered in the literature in the past, (e.g. with Hugen’s clocks, see [Bennett et al.,

2002]). More recently, [Xu et al., 2005] finds that the harmonically excited para-

metric pendulum can be simplified to the Mathieu equation, opening up this area

to a new branch of analysis.

Cartmell investigates parametric excitation of the MMET system, finding that

the motor torque may be minimised while guaranteeing a monotonic spin-up of the

system. This is achieved by a harmonic modulation of a portion of the payload

masses, and by manipulation of the radius of gyration of the additional lumped
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masses. Alternatively, given a constant motor torque, the response of the tether

may be actively chosen by selecting a bifurcation path.

Misra and Modi, in [Misra and Modi, 1992], provide an excellent Lagrangian formu-

lation for the three-dimensional motion of n-body tethered systems using a multiple-

pendulum model as the basis for the equations. The equations of motion are valid for

large motion and variable lengths, however, the tethers are massless and straight.

This links the n-body pendulum equations and tethered bodies, and provides an

excellent template for rigid body motion with many linked tethers.

Moravec published the idea of the momentum exchange device in [Moravec, 1977],

defining the Lunavator4 as a momentum exchange device that touches the surface

of the moon and picks up, or drops, a payload.

The deployment characteristics of a tether system are investigated in [Modi and

Misra, 1979], with a thorough and in-depth discussion on the derivation of Lag-

range’s equations of motion for a rotating tether with vibrations. The equations of

motion for a three-mass system (two end masses and a massive5 tether) are identi-

fied as coupled and nonlinear. They study the tether close to the atmosphere, and

conclude that the out-of-plane motion decays provided the tether is outside Earth’s

atmosphere.

Modi and Misra continue their academic partnership, and report on controlling the

tether in [Modi et al., 1982], control of tethers used in Space Shuttle-based tethers

in [Modi et al., 1992] and tethered elevators in [Modi et al., 1993].

Perhaps with the Shuttle retiring in 2010, the Shuttle will be proposed less fre-

quently as an end-mass for the tether, as in [Kyroudis and Conway, 1988] and [Pascal

et al., 1999], instead replaced by the upper stage of an Ares rocket. It is interest-

ing to note that Pascal mentions ‘crawlers’ – moving payloads along the tether as

4The Lunavator works best on planetary bodies with no atmosphere, where there is no atmo-
sphere to drag against the tether, and on Mars, where the combination of favourable rotation and
relatively weak gravity suits the system. However, the name Martivator is clumsy, and has not
caught on.

5Massive in the sense of a body with a non-zero mass, not massive as in very large.
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an alternative to full deployment. A variation of this moving mass system used to

control tethers may also be used to control space-webs, as will be discussed later in

this thesis.

2.2.4 Motorized momentum exchange tethers

To rotate the tether to launch velocity, it is necessary to provide a means of rotation.

On Earth, this is provided by the Earth, however on orbit, one must bring the

counter-rotation device along with the launch device – in a similar manner to a

helicopter’s tail boom.

[Eiden and Cartmell, 2003] briefly summarises the possible role of a European

roadmap for non-conductive tethers, nominally based on momentum exchange, and

also for conductive tethers in which electrodynamics, alongside momentum ex-

change, provide propulsion. In the case of the former class small and large payload

de-orbit are seen as near term goals, with free flying tethered platforms and artificial

gravity systems in the mid-term, followed eventually by spinning tethers providing

interplanetary propulsion. Gravity gradient stabilisation is an important underpin-

ning phenomenon when considering spacecraft stability, and this is particularly the

case for long momentum exchange tethers. In [Cartmell et al., 2003], dumbbell mod-

els are considered for momentum exchange tethers, and offshoots and developments

of this work have shown conclusively that hanging, librating, and spinning tether

motions are intimately connected to this fundamental phenomenon, as reported in

[Ziegler and Cartmell, 2001]. Ziegler shows in [Ziegler and Cartmell, 2001] that

the rotating MMET outperforms a librating tether by two orders of magnitude in

boosting the apogee of a payload.

An in-depth treatment of the rigid body dynamics of tethers in space is given

by [Ziegler, 2003]. In this work the dumbbell tether is modelled at various levels of

accuracy, and approximate analytical solutions are obtained by means of the method
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of multiple scales6 for periodic solutions. Comprehensive dynamical systems analyses

are summarised for different configurations and models, and global stability criteria

for a rigid body dumbbell tether, in both passive and motorised forms, are defined

and investigated.

The method of multiple scales is described further in [Cartmell et al., 2003] in

a review article with several examples. With respect to tethers, the method of

derivation is covered in great depth. An analytical solution to the MMET system

is derived using the multiple scales method in [Cartmell et al., 2006], where the

equations describe a forced and parametrically excited Duffing oscillator.

Sorensen has authored two interesting papers ([Sorensen, 2003] and [Sorensen,

2001]) detailing a method of using Momentum eXchange/Electrodynamic Reboost

(MXER) tethers powered by ED tethers to provide interplanetary travel through

hyperbolic escape from Earth’s gravity. The second details a boost station that

sequentially raises the payload’s orbit through repeated rendezvous and momentum

exchanges. Of additional note are the appendices detailing analysis techniques and

mathematical derivations that can be used in tether facility design.

With any rotating system, the possibility of rotational instability arises. [Valverde

and van der Heijden, 2008] find that a magnetic buckling of a welded rod is found to

be described by a surprisingly degenerate bifurcation. This has serious implications

for using ED tethers as well as static (conducting and non-conducting) deployed

tethers for rotational launch systems.

[van der Heijden, 1995] covers the effects of bearing clearance driving a nonlin-

early coupled driven oscillator in rotordynamics, with close parallels to the MMET

system. Partial mode-locking then leads to quasi-periodic motion of the rotors, and

perturbations of the system lead to more complicated motions.

6The multiple scales method was popularised in [Nayfeh and Mook, 1979].
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2.2.5 Staging with momentum exchange

As the fundamental material limits of tethers limit the useful ∆V that may be

imparted, novel techniques such as staging tethers are explored.

A short and digestible article by Forward and Hoyt in Scientific American (see

[Forward and Hoyt, 1999]) first showed the ingenious concept behind the use of

multiple, staged tethers to increase velocity without the necessity of extreme design,

for Earth-Moon payload transfer. [Forward, 1991] continues this work by pairing

the Lunavator with a Low Earth Orbit (LEO) tether.

The concept of staging is expanded further in [McInnes and Cartmell, 2006] and

[Cartmell et al., 2004].

Following up from the ground-tests of a momentum exchange tether performed on

ice, [Cartmell et al., 2003] takes this a stage further, and rigorously examines the

release and de-spin of payloads.

Large-scale electrodynamic and momentum transfer between planets was studied in

the NASA MXER program, by Forward, Hoyt, Sorensen and others. Initial concept

design work in [Sorensen, 2001] outlined a massive tether system to send 20 − 80

tonnes to Lunar or Mars orbit, with a tether length of up to 100 km. Sorensen

finds that hyperbolic injection is possible in [Sorensen, 2003], and this opens up

the MXER system to send payloads to Mars. It must be stated that the necessary

velocity to launch a payload to Mars is not attainable with current materials7, to

do so would require a significant increase in the specific strength of the tether.

2.2.6 Deploying and recovery of tethers

Further work on using tether based transfers was reported by [Lorenzini et al., 2000]

in their landmark paper in which staged tethers in resonant orbits are proposed

7The ∆V for LEO to LMO (LowMars Orbit) is approximately 6.1 km/s and the maximum char-
acteristic velocity of a single strand tether is approximately 2.7 km/s. See Appendix D, Table D.1
for current material properties.
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as being more mass efficient than single tether systems8. Lorenzini et al. briefly

refer to tether orbit raising results cited by [Carroll, 1986] for radial separation as a

function of tether length, and conclude that spinning staged tethers could provide

an ideal transfer rate of five transfers per year. The transfer rate of a staged system

is determined by the periodic realignment of the apsidal lines of the two stages,

whereas in the case of a single tether it is dependent on the time required for re-

boosting the stage.

Continuing with the theme of propulsion of a small payload tethered to a large

mass in the form of a space station or large Shuttle, [Pascal et al., 1999] investigated

the laws of deployment and retrieval by means of a three dimensional rigid body

model of a dumbbell tether in both circular and elliptical orbits, expanded in [Pascal

et al., 2001]. Several laws are proposed and analytical solutions for small planar

and non-planar motions of the tether are given, showing that equilibrium tension

can be stated as a function of instantaneous tether length and corresponding axial

acceleration, for which control laws can be stipulated. It is shown that deployment is

generally stable whereas retrieval is not. Various laws are examined for deployments

and retrievals, and also for crawler configurations in which the end payload moves

out along a pre-deployed tether and how this can mitigate the inherent instability

of retrieval.

The next conceptual step to take when considering deployment is to include some

form of flexibility within the tether, and an interesting study of this was published

by [Danilin et al., 1999], in which the elastic tether model of [No and Cochran Jr.,

1995] is used but with different variables and derivation. The objective of this paper

was to consider deployment of a completely flexible tether from a rigid rotating

space vehicle under the influence of a central gravitational field. The tether is

modelled using a Newtonian derivation as a series of discrete masses interconnected

by massless elements and with internal viscous damping. The authors make the very

8They propose using a facility to payload mass ratio of 1 : 3 using current materials.
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important point that tether element forces cannot be compressive, so conditions

within the numerical solution algorithm have to be set up to accommodate the

consequential folding effects. Two numerical examples are summarised; one for a

swinging terrestrial cable with an end mass, which starts from a horizontal initial

condition, mainly as a verification of the model in those conditions; and the other

for plane motion of a space vehicle deploying a relatively short 3 km tether, with

elemental spacing of 100m. The deployment is linear and conditions are set up to

apply smooth braking of the tether to a halt at the end of the deployment.

2.2.7 Capture and rendezvous of tethers

An implicit assumption with tether staging is that the payload will, at some point,

have to rendezvous with a second system. [Lorenzini, 2004] provides an in-depth

treatment of a spinning tether loop with an extended time opportunity for error-

tolerant payload capture within high ∆V propulsion to GTO and Earth escape orbit.

The configuration is such that the ends of the loop are furthest away from the centre

of mass, where the loop is at its narrowest. The concept is simple in principle. The

satellite contains a harpoon which shoots through the loop and hooks onto the loop

to capture the satellite. This makes it tolerant of large longitudinal position errors

and reasonable lateral errors as well as some out-of-plane error. The capture is soft,

and so caters for some velocity mismatch.

[Williams et al., 2003] outlines a ‘momentum-enhanced gravity-assist’ technique

to capture a payload on a previously hyperbolic orbit into planetary orbit. This is

feasible in theory, however requires accurate control and a large tether deployment

rate, which may limit the practical usefulness of the technique.

A subsequent paper, [Williams et al., 2005], systematically describes the problems

in payload capture (spatial and temporal matching, post-capture dynamics and

failure concerns), and designs a suitable rendezvous and control system involving a
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crawler to successfully capture a payload.

2.2.8 WSB trajectories

Perhaps one of the most interesting concepts in trajectory analysis, at least as far as

the tether is concerned, is the Weak Stability Boundary (WSB) trajectory proposed

by [Belbruno, 1987]. This technique allows the majority of the ∆V for an Earth-

Moon mission to be concentrated in the first burn, with a relatively minor capture

burn at the end of trajectory.

If this is compared to the ∆V requirement of the Hohmann two-burn technique9,

it becomes clear that a tether-based launcher system could provide a more efficient

route to the Moon. A thoroughly good overview of the WSB method is given in

[Ross, 2004, p112], where it is stated that the fuel required is lowered by about 20%.

As is common with large research groups, there are many valuable papers on WSB

transfers and the Interplanetary Transport Network from the CalTech researchers

that are listed in Ross’ thesis.

A practical example of the WSB method is explained clearly in [Koon et al., 1999],

giving an example of a trajectory similar to the Hiten Lunar probe. The WSB

trajectory10 has since been used to successfully launch NASA’s Genesis mission to

study the solar wind (see [Lo and Ross, 2001]).

The WSB trajectories are an umbrella for a multitude of possible routes, in contrast

to the simplicity of the Hohmann or bi-elliptic trajectories. A useful geometric

method of finding such a WSB trajectory is outlined in [Gómez et al., 1993], taking

the destination as the Earth-Sun L1 point. Once this point is reached, the pathways

are open to a great many places in the Solar system.

9Hohmann’s seminal book on ‘The Attainability of Heavenly Bodies’ may be found in its original
form [Hohmann, 1925] (in German) or translated to English in [Hohmann, 1960]

10 The WSB trajectory is hard to visualise and perhaps 2D plots of the spacecraft’s path in
inertial and rotating space are difficult to extrapolate mentally to 3D space. Thankfully Lo
has made videos of the spacecraft path on his website: http://www.gg.caltech.edu/~mwl/

communications/communications2.htm
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A method of using a MMET with a WSB trajectory is outlined in [McKenzie and

Cartmell, 2004]. A small satellite MMET system, under 1000 kg, is able to launch

a 10 kg micro-satellite from MEO to Lunar capture orbit in around 100 days. This

system may be recovered and re-launched every month until the useful life of the

satellite is reached. This relies on a very small safety factor of 1.3 in the main

tethers, and does not account for the additional stator arm in the MMET, however

this shows that the current state of technology is almost ready to sustain an orbital

tether launch system.

2.3 Tether derived structures

In the same way that orbital tethers have evolved from the space elevator, space

structures may be constructed from tethers.

2.3.1 Deployed space structures

In 1968, Peter Glaser suggested that a solar collector11 could be placed in geostation-

ary orbit [Glaser, 1968]. Operating in high Earth orbit, this would use microwave

power transmission to beam solar power to a very large antenna on Earth where it

can be used in place of conventional power sources. The advantages to placing the

solar collectors in space are the unobstructed view of the Sun, the fact that it is

then unaffected by the day/night cycle, weather, or seasons. For efficient operation,

the satellite antenna must be between 1 and 1.5 km in diameter and the ground

rectenna around 14 km by 10 km, generating between 5 and 10GW of power. One

option of constructing this huge collector is manufacturing the cells on Earth, and

constructing them in space with the aid of robots.

An alternative approach to the on-orbit assembly of such a massive structure would

be the use of webs, as in [Kaya et al., 2004a] and [Kaya et al., 2004b]. A large generic

11That is, a satellite for collecting solar power.
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net-like structure could firstly be deployed in orbit. Once the net is stabilised, robots

could be used to crawl over the net towards specified locations and move solar cells

into the desired positions. This enables the construction of such a satellite using

robot assistance to be faster and cheaper12.

Other large space structures have been proposed that would make use of a generic

reconfigurable platform. In the case of the orbiting stellar interferometer, [DeCou,

1989] showed that planar deformation of a spinning system comprising three col-

limating telescopes at the corners of an equilateral triangle made up from three in-

terconnecting tethers would be inevitable due to the inertia of the tethers. Clearly

inertia-less tethers will not deform centripetally and will, instead, merely stretch

into straight lines due to the tension created along their length by the corner masses

as the whole system rotates. Perhaps the addition of a control system would make

this particular structure a more realisable option.

This directly led to the successful deployment of the Inflatable Antenna Experi-

ment (IAE), and led a tranche of successfully deployed structures in space, including

the ESA Cluster mission as detailed in [Andión and Pascual, 2001].

Studies have previously shown that robots may be deployed in this way to recon-

figure the net structure [Kaya et al., 2004a], [Nakano et al., 2005]. A international

collaboration from the University of Glasgow, KTH Royal Institute of Technology

in Sweden and the ESA plans to test the concept on a sounding rocket in 2010, as

reported in a [University of Glasgow Press Release, 2009].

2.3.2 Space-webs

If the generic satellite is to be used as an element of infrastructure, it is desirable

to start studying the dynamics and deployment of such a structure. A type of

12To a degree, the question of whether a method of power generation is ‘better’ is largely a
political decision.
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satellite, called ‘Furoshiki’13 is outlined in [Nakasuka et al., 2001], with an overview

of the concept, a simulation of a membrane satellite and an evaluation of the control

strategy needed to stabilise such a satellite.

Further work on the deployment of a square membrane is examined in [Tibert

and Gärdsback, 2006], where a membrane is attached to four daughter satellites

and deployed while the satellite is both free and rotating. It is shown that the free

deployment without damping is not possible, however a torque can be applied to

the central hub to stabilise the deployment.

Once the membrane is deployed, robots such as reported in [Kaya et al., 2004a]

may be tasked to assemble or reconfigure the structure.

A multi-tethered structure containing n masses is investigated in [Pizarro-Chong

and Misra, 2008], for an open hub, closed hub (wheel) and double pyramid forma-

tions. A system of Lagrange’s equations of motion is constructed and the stability

of the three configurations were tested in a variety of configurations – parallel and

perpendicular to the orbital plane and with and without an initial spin-rate. The

dual-pyramid formation was found to be the stable in most tests, with all configur-

ations benefiting from a rotating platform.

A similar analysis in [Wong and Misra, 2008], involving a multi-tethered structure

near the Sun-Earth L2 point, examines the planar dynamics of the satellite. Lag-

range’s equations are used to model the system, with a linear feedback controller to

control the tether lengths and angular displacements of the system. The end masses

were successfully controlled, wielding a spiral pattern which allows the satellite to

be used as an optical interferometer.

13After the traditional Japanese wrapping cloth.
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Chapter 3

Tether modelling

The steps to construct a mathematical model of a tether orbiting a planet are

outlined in this chapter. Starting with a simple model of a point mass orbiting a

massive body, each stage builds on the last and progressively a detailed (and more

importantly, validated) model will be outlined.

3.1 Constructing the equations of motion of a sys-

tem

A method to describe a system in terms of Ordinary Differential Equations (ODE)

is outlined below. For each mass point of the system:� the position of each mass point is described in local coordinate space� the Centre of Mass (CoM) of the system is found� the position is translated and rotated1 into inertial coordinate space, using

matrix and vector operations

1The centre of mass effectively links the two coordinate systems by providing a common point
of reference between the two.
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then, for the system as a unit:� the Lagrangian is found by expressing the total energy of the system� generalised coordinates are chosen to suit the system.� velocities of each mass point are derived� Lagrange’s equations are constructed� Lagrange’s equations may be numerically integrated using suitable initial con-

ditions

The remainder of this chapter will fully outline the steps needed to construct and

validate a general system of equations, focussing specifically on constructing a planar

dumbbell tether on a circular equatorial Earth-centred orbit.

3.1.1 Validating code modules

It is essential as part of the scientific method to set up an experiment, or in this case a

numerically solved mathematical model, that is both repeatable and verifiable. To

this end, a method of setting up equations describing each component’s position

using repeatable and testable modules is introduced here.

It is of fundamental importance, when building a mathematical model, to ensure

that the model is verified and validated insofar as practically possible. As such,

a method of constructing a system of validated modules is introduced to verify

that, for example, a module to rotate a vector about an axis does this accurately

and repeatably. Therefore, for each component of the system, a testable module is

produced and the system as a whole is much easier to validate as the sum of its

parts.

In Mathematica�, modules of code may be configured and tested such that a
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one-line testable routine may be evaluated. Assigning:

XRotation [θ] =













1 0 0

0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)













(3.1)

it is then possible to separate and logically evaluate the right and left hand sides of

Equation 3.1 to see if they are identically equal. If the right hand side is identically

equal to the left hand side, the code is validated, if not, the code fails validation.

In this way, it is possible to establish a repeatable and valid technique for con-

structing the equations of motion of the system.

3.2 Centre of mass modelling

3.2.1 Mass points & body selection

It is essential when using the Lagrangian method that the movement of the bodies

concerned are described accurately. The modelling tasks can be broadly separated

into expressions concerning:� bodies containing mass which contribute to the kinetic and potential energies� external or internal conservative forces that may contribute to the energy sum

(e.g. spring energies)� external or internal forces that may contribute to the non-conservative right-

hand-side terms in Lagrange’s equations

As such, the principles of system modelling will be demonstrated using a simple

example of the coplanar dumbbell tether in circular Earth orbit, shown in Figure 3.1.
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Figure 3.1: Symmetrical dumbbell tether

Central to the system, the facility mass houses the entire structure of the system;

the power generation, communications equipment, etc.. This is expected to form

the majority of the mass of the system.

The two payloads are the raison d’être of the momentum exchange tether system.

They are assumed to have mass and are rigidly connected to the facility by the

tethers and are usually a significantly smaller fraction of the system mass.

The two tethers are assumed to be massless. This is usually a significant assump-

tion to make because the fractional mass of a 100 km tether is non-trivial. In this

case, it is a reasonable assumption to demonstrate the principles of tether modelling

without making the mathematics overly arduous.

The tethers hold the payloads rigidly and symmetrically in plane about the facility

mass, ensuring that the tethers are colinear about one common axis through the

centre.

The other body of note is, of course, the Earth which acts indirectly on this system

providing the gravitational potential energy.

3.2.2 Centre of mass calculations

The centre of mass can have a considerable effect on the motion of this system.

Consider an asymmetrical payload release, for example, when only one payload is

released instead of both, as normally occurs. The centre of mass would undergo an

instantaneous step-change and, consequently, the orbit of the system would change.

Assuming the dumbbell is in a circular orbit aligned along the vertical (gravity

gradient) direction, if the uppermost payload is released the excess kinetic energy
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of the orbit will cause the payload to describe an ellipse with the separation point

as the perigee. The remainder of the system2 will tend to de-orbit as the potential

energy of the system is lower than needed to sustain a circular orbit. This separation

point becomes the apogee of the new system’s orbit, as shown in Figure 3.2.

��������������
��������������
��������������
��������������

������������������������������Earth

Figure 3.2: Symmetrical dumbbell tether on a circular orbit (solid). After payload
release, the facility system path at apogee (dash) and payload at perigee (dots)

In a symmetrical system, the centre of mass is located coincident on the facility. If

the system is asymmetrical, then the centre of mass will need to be calculated. This

is highly important to the accuracy of the model and in most cases necessary to

integrate the equations of motion of the system. Most of the problems encountered

when numerically integrating the equations of motion in Mathematica were solved by

inserting a mathematical expression that accurately describes the (variable) position

of the centre of mass in the positional equations which then feed into Lagrange’s

equations.

The Centre of Mass (CoM) calculations give the location of the CoM from an

arbitrarily chosen point. In this case it is convenient to chose the facility mass as

the origin point (and the centre of a local coordinate system) and refer to all other

2That is, the lower section of the system comprising the facility, two tethers and one payload.
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points in the tether system relative to the facility location.

This may be alternatively expressed as constructing a local coordinate system

{Xlocal, Ylocal, Zlocal} centred on the facility mass, in this case, aligning the X-axis

with the radius vector.

The position of the centre of mass about the facility for n masses each with posi-

tions {Xi, Yi, Zi}, in terms of the local {X, Y, Z} coordinate system centred on the

facility mass is:

Pfacility→CoM =















n
∑

i=1

MiXi

n
∑

i=1

Mi

,

n
∑

i=1

MiYi

n
∑

i=1

Mi

,

n
∑

i=1

MiZi

n
∑

i=1

Mi















(3.2)

Once the CoM relative to the facility mass has been found, a vector describing the

position of any mass point in the inertial frame of reference3 may be constructed.

This is used in later equations by taking the position from the centre of mass to

the facility mass:

PCoM→facility = −Pfacility→CoM (3.3)

3.2.3 Positions of mass points

A technique to obtain the location of each mass point relative to the facility is

outlined below, using a 2D dumbbell system as an illustrative example.

To assemble the equations of motion, a series of rotations and translations are

performed on the initial vectors to transform the local space coordinates into iner-

tial space coordinates. The initial vectors are chosen in synchronisation with the

generalised coordinates and the rotation angles.

Figure 3.3 shows the orbital motion, constrained to the inertial X-Y plane and the

local X-Y plane, of an asymmetric dumbbell tether. Note that the local X-axis is

3In the Earth centred system.
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Figure 3.3: Asymmetrical dumbbell in inertial axes

parallel to the radius vector.

The inertial position vector Pinertial of each mass point, j, is assembled from the vec-

tor sum of the component vectors, taking into account the translation and rotation

of each component.

Pjinertial = Rθ,Z ·
(

P0→CoM − Pfacility→CoM +
(

Rψj ,Z · Lj
)

)

(3.4)

Where P0→CoM = {R, 0, 0}, and represents the vector of the centre of mass from

Earth4. The rotation matrices and matrix notation Rψj ,X are explained in Sec-

tion 3.5.

The five stages in constructing the position of the mass point Pj are shown in

Figures 3.4, 3.5, 3.6, 3.7 and 3.8, and the position vectors for an arbitrary mass

point are given in Equations 3.5, 3.6, 3.7, 3.8, 3.9 and 3.10.

Figure 3.4 shows the mass point aligned along the X-axis of the local coordinate

system, in this case using a payload mass with length L as an illustrative example.

4i.e. the Radius vector.
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Figure 3.4: Local coordinate construction
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Figure 3.5: Local coordinate construction after rotation through angle ψ about the
facility mass
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Figure 3.6: Local coordinate construction after translation from the facility to the
CoM
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Figure 3.7: Local coordinate construction after translation from the CoM to the
inertial coordinate system
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Figure 3.8: Local coordinate construction after rotation through θ about the inertial
coordinate system

Rotating this through an angle of ψ about the facility as shown in Figure 3.5. This

is translated to align the origin with the centre of mass as shown in Figure 3.6.

A further translation is performed through the inertial X-axis about a distance R,

giving the origin as the inertial coordinate system, as shown in Figure 3.7. Finally,

the inertial coordinate system is rotated about the origin around an angle θ as shown

in Figure 3.8.
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The vectors of each are shown below:

P1 =













L

0

0













(3.5)

P2 = Rψ,Z · P1 =













L cos(ψ)

L sin(ψ)

0













(3.6)

P3 = P2 − PCoM→facility =













L cos(ψ) −CoMX

L sin(ψ) −CoMY

−CoMZ













(3.7)

P4 = P3 +R =













L cos(ψ) −CoMX +R

L sin(ψ) −CoMY

−CoMZ













(3.8)

P5 = Rθ,Z · P4 =












cos θ (L cos(ψ)− CoMX +R)− sin θ (L sin(ψ)− CoMY)

sin θ (L cos(ψ)− CoMX +R) + cos θ (L sin(ψ)− CoMY)

−CoMZ













(3.9)

P5 = Rθ,Z ·
(

P0→CoM − Pfacility→CoM + (Rψ,Z · P1)
)

(3.10)

The process is repeated for each mass point under consideration.

3.3 Constructing Lagrange’s equations

Lagrangian mechanics is primarily concerned with the trajectory of an object, de-

rived by finding the path which minimises the action, a quantity which is the integral
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of the Lagrangian over time. As this is an energy based approach, the process of

evaluating the kinetic and potential energy of the system will be outlined and the

choice of generalised coordinates will be explained.

3.3.1 Energy modelling

For every mass point in the system with position in the inertial frame, Pj, the

following steps are undertaken in order to find the Lagrangian energy expression L:

1. the respective velocities, Vj are found:

Vj =
∂

∂t

(

Pj

)

(3.11)

2. the kinetic energies (linear Tlin = 1
2
mv2 and rotational Trot = 1

2
Iω2) are ob-

tained and summed:

Tlin =

n
∑

j=1

1

2
mjVj · Vj (3.12)

Trot =

n
∑

j=1

1

2
mjPilocal · Pjlocal ωj · ωj (3.13)

where the vector of angular velocity, ωj is the first derivative of the angular

position of each point, {φj, αj, ψj}

3. the potential energies, U , are obtained and summed:

U =

n
∑

j=1

µmj
∣

∣Pj
∣

∣

=

n
∑

j=1

µmj
√

Pj · Pj
(3.14)

where µ is the standard gravitational parameter. For the Earth, the value is

µ = 3.986 ∗ 1014m3/s2.

4. and the Lagrangian is found:

L = Trot + Tlin − U (3.15)
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For each mass point, the Lagrangian energy expression is constructed by consid-

ering the total kinetic and potential energies of the system.

d

dt

(

∂T

∂q̇j

)

− ∂T

∂qj
+
∂U

∂qj
= Qj (3.16)

Lagrange’s equations are generated for all the generalised coordinates as specified

in Equation 3.16.

The forces are then used to calculate the right hand side of Lagrange’s equations,

Qj , through consideration of the virtual work.

Primarily, the main non-conservative force acting on the tether system will be the

motor torque. This concept is covered further in Ziegler’s Ph.D. thesis [Ziegler, 2003,

p43-45].

3.3.2 Choosing generalised coordinate systems

The generalised coordinates used in deriving Lagrange’s equations in Section 3.3 are

chosen to be independent coordinates. These coordinates need not be orthogonal

nor Cartesian, in fact it is limiting to assume they are either, however they must

describe an independent degree of freedom of the system.

In the case of the orbital variables R and θ, these are chosen in preference to

the inertial variables Xinertial and Yinertial to enable periodic analysis over the orbital

cycle.

In the local coordinate system, the choice of a generalised coordinate is less straight-

forward. In a two generalised coordinate system with an in-plane and out-of-plane

motion, there are many angles that could be chosen as the generalised coordinate,

and this poses a problem over choice of variables. The equations of motion (and

therefore the corresponding set of Lagrange’s equations) that describe one system

of rotations would be different from the others, but the motion would have to be
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identical when comparing the many possible rotations systems. This implies that

for the motion to be identical5 there could be many possible systems of equations

that could, when integrated, provide the motion of the system, and that there may

be one or more systems of equations that provide a more elegant solution than the

rest. Two systems of rotations are investigated in Section 3.5.

The goal in selecting a “good” choice of generalised coordinates is that they are

easily interpreted in graphical form, and the equations generated are compact and

meaningful to interpret.

3.4 Non-conservative forces

Any non-conservative forces that appear in the system need to be included in the

equations of motion in terms of virtual work. These are contained within Ziegler’s

Ph.D. Thesis [Ziegler, 2003, p43-45], and will be contextualised here.

The non-conservative force is represented by Qj and can be evaluated by consid-

ering the virtual work done by the motor torque summed over each mass:

Qj =
∑

mass

F · ∂Pmass

∂qj
(3.17)

with j representing each of the n chosen generalised co-ordinates and Pmass as the

position vector of the mass under consideration. F is the non-conservative force.

The 3×3 rotation matrix for a generalised rotation in the tether body axes6 (as will

be explained in Section 3.5) is multiplied by the length vector to give the position

5If the systems were non-identical then, generally speaking, there would either be flaw when
choosing the generalised coordinates or a mistake in the equations. The process of simulating the
motion of a system should be entirely independent of the means used to arrive at the end result!

6Rotations are only provided here for the Y- and Z-axis.
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of each mass in the tether body axes :

Pmass = Rα,Y · Rψ,Z ·













Lmass

0

0













(3.18)

The resultant 3 × 1 vector is differentiated with respect to each of the n chosen

generalised co-ordinates to give an n×3 matrix. The force vector expressed in tether

body axes is then found by multiplying the generalised rotation matrix by the force

vector:

Force = Rγ,X ·Rα,Y ·Rψ,Z ·













0

0

τ/Lmass













(3.19)

where τ is the non-conservative force converted into the rotating frame.

The dot product of the 3× 1 force vector and the n× 3 matrix then gives an n× 1

vector containing the Qj terms for the n chosen generalised co-ordinates to be used

in the right hand side of the equations of motion.

3.5 Rotation systems

A comparison will now be made between two rotation systems that specify the

position of an arbitrary mass point in the local axes system.

As discussed earlier7 there are multiple ways to specify the position of the mass.

No one system may be termed the definite solution, however, one may be preferable

to choose if it generates a more easily interpreted system of equations.

7See section 3.3.2.
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3.5.1 Rotation summary

Three rotation matrices are set up to describe the direction of a single 3D vector

about its origin using a series of rotations about the local X-, Y- and Z-axes.

As the three rotations can rotate an arbitrary vector around the origin, the initial

vector must be defined. For the rotation systems that follow, a vector aligned with

the X-axis in the positive direction starting at the origin has been chosen. The

series of rotations are then performed sequentially to give 3 new coordinate axes

(two intermediate and one final) for 3 rotations.

The Rotation Rκ,B is defined here as a rotation matrix acting about the B-axis

and rotating about an angle κ.

The new vector is found by rotating the starting vector coordinates by means of

three rotation matrices about the local origin. The rotation system will be one of

the six permutations from the list of three possible rotations: Rδ,X, Rα,Y and Rψ,Z

given in Equations 3.20, 3.21 and 3.22.

The rotation system that rotates the point first around the X-axis, then the Y-axis,

then the Z-axis is termed the XYZ rotation system.

Rδ,X =













1 0 0

0 cos(δ) − sin(δ)

0 sin(δ) cos(δ)













(3.20)

Rα,Y =













cos(α) 0 sin(α)

0 1 0

− sin(α) 0 cos(α)













(3.21)

Rψ,Z =













cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1













(3.22)
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The order of matrix multiplication is important; for the XYZ rotation sequence,

the vector multiplication is evaluated sequentially from the right hand side:

Rψ,Z · Rα,Y · Rδ,X · Porig.

= Rψ,Z ·
(

Rα,Y ·
(

Rδ,X · Porig.

)

)

Note well, this differs from the ZYX rotation system in the order of rotations. The

ZYX rotation system first rotates the vector by the Z-axis, then the Y-axis, then

the X-axis.

Rδ,X · Rα,Y · Rψ,Z · Porig.

= Rδ,X ·
(

Rα,Y ·
(

Rψ,Z · Porig.

)

)

When looking at the matrix rotation equation, this may seem counter-intuitive to

label the rotational sequence from right to left8. However, it reflects the sequence

of rotations, even if it is backwards from a point of view of reading the matrix

multiplication subscripts.

Using the three rotations given here in the three axes, there are 6 possible combin-

ations of defining a rotational sequence, as shown in Table 3.1. These describe the

sequence of rotations when rotating a point around the origin in 3D and the three

possible rotations in 2D that may be derived from the 3D rotation.

The 2D rotations are not unique to a single 3D rotation. For example there are

three XY rotations that may be made in 2D that correspond to XYZ, XZY or

ZXY rotations in 3D space.

Two of these sequences will be investigated using a simple 2D rotation with the

8Indeed, this is a rather arbitrary decision, but it could be argued that this follows the arbitrary
direction of text in-keeping with the custom of languages of the Western hemisphere. In choosing
the nomenclature, it makes sense to make XYZ define the rotational sequence rather than the
order in which the matrices are multiplied purely because most non-specialists would grasp the
concept of order of rotations before learning three-dimensional matrix algebra!
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Order of rotation in . . .
3D 2D

Rδ, Rα, Rψ, 1 2 3

X Y Z XY XZ YZ
X Z Y XZ XY ZY
Y X Z YX YZ XZ
Y Z X YZ YX ZX
Z X Y ZX ZY XY
Z Y X ZY ZX YX

Table 3.1: Order of rotations in 3D and 2D

sequence of rotations about the YZ- and ZY- axes, in Section 3.5.2 and Section 3.5.3

respectively.

3.5.2 YZ Rotations

The YZ series of rotations9 rotates a point lying on the X-axis around first the Y-

axis, then the Z-axis. The X-axis rotation is not included in this system for ease of

visualisation.

Rotating the original vector Porig. = {L, 0, 0}T , shown in Figure 3.9a about the

Y-axis through an angle of α gives the following, as shown in Figure 3.9b:

Pinter-YZ = Rα,Y · Porig. =













L cos(α)

0

−L sin(α)













(3.23)

Rotating this intermediate stage around the Z-axis through an angle of ψ gives the

9Or to be specific the XYZ series of rotations in 3D space when the X rotation is zero.
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following, as shown in Figures 3.9c and 3.9d:

Pfinal-YZ = Rψ,Z · Pinter-YZ =













L cos(α) cos(ψ)

L cos(α) sin(ψ)

−L sin(α)













(3.24)

A diagram of the complete rotation sequence is are shown in Figure 3.9e.

The out-of-plane angle given by the YZ series of rotations is the angle α. However,

the in-plane angle is not the angle ψ. The in-plane angle lies in the plane normal

to the ZYZ plane, and intersects the XZ plane.

The in-plane angle (given by the XY−XYZ plane) is projected onto the XY-inertial

plane to give the angle ψ.

3.5.3 ZY Rotations

The ZY system of rotations is generated by rotating the starting vector aligned with

the X-axis around first the Z-axis, then the Y-axis. This can be thought of as the

ZYX series of rotations with a zero X-axis rotation – therefore giving only a ZY

rotation.

Rotating the original vector Porig. = {L, 0, 0}T , shown in Figure 3.10a about the

Z-axis through an angle of ψ gives the following, as shown in Figure 3.10b:

Pinter-ZY = Rψ,Z · Porig. =













L cos(ψ)

L sin(ψ)

0













(3.25)

Rotating this intermediate stage around the Y-axis through an angle of α gives
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ψ
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α
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(b) Rotations YZ – α
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X

Y

Z

ψ
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α
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ZY

(c) Rotations YZ – ψ

ψ

α
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Y

Z

ψ
α

α
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XZ

XY Z

XY

ZY

(d) Rotations YZ – α then ψ

α

X

Z

Y

ψ

ψ

α

α

ZY Z

YZ

XY Z

ZY

XY

(e) Rotations YZ – full rotation shown

Figure 3.9: Rotation sequence for YZ rotation: Rotating α about Y-axis then ψ
about Z-axis. α is shown as a negative rotation here for ease of visualisation.
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η

ψ
XZ

(b) Rotations ZY – ψ

α

Z

Y

X

η

ψ
XZ

XZY

ZY

(c) Rotations ZY – α

α

X

Y

Z

η

ψ
α XZ

ZY

XZY

XY

(d) Rotations ZY – ψ then α

Figure 3.10: Rotation sequence for ZY rotation.. Rotating ψ about Z-axis then α
about Y-axis. α is shown as a negative rotation here for ease of visualisation.

the following, as shown in Figures 3.10c and 3.10d:

Pfinal-ZY = Rα,Y · Pinter-ZY =













L cos(ψ) cos(α)

L sin(ψ)

−L cos(ψ) sin(α)













(3.26)

A diagram of the complete rotation sequence is shown in Figure 3.10d.

Conversely to the YZ series of rotations, the out-of-plane angle given by the ZY

series of rotations is not the angle α. However, the in-plane angle is now the angle

ψ. The out-of-plane angle is given by the angle in the XZY −XZ plane between the

fully rotated vector and the X0 − Y0 inertial plane.

The out-of-plane angle (given by the XZY −XZ plane) is projected onto the XY-

inertial plane to give the angle α.
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The out-of-plane angle, η, may be found by simple trigonometry as follows:

sin η =
ZPfinal-ZY

L
(3.27)

η = sin−1 (− cos(ψ) sin(α)) (3.28)

3.5.4 Comparing the equations – position equations

In each of the rotation sets, the x-coordinate is identical. The sets differ in the y-

and z-coordinate sets as follows:

YZ y-coord: L cos(α) sin(ψ) from Equation 3.24

ZY y-coord: L sin(ψ) from Equation 3.26

The y-coordinates differ by a factor of cos(α) between the YZ and ZY systems.

YZ z-coord: - L sin(α) from Equation 3.24

ZY z-coord: - L cos(ψ) sin(α) from Equation 3.26

The z-coordinates differ by a factor of cos(ψ) between the YZ and ZY systems.

The two sets of 3D rotations are different because of the commutative rules of

matrix multiplication, in general when multiplying two rotation matrices A and B

the matrix product AB will be different from BA.

3.5.5 Comparing the equations – kinetic energies

Comparing the differences in the kinetic energies of the spinning systems in a local

coordinate system:

YZ Ek =
m
2
L2
(

α̇2 + cos(α)2 ψ̇2
)

ZY Ek =
m
2
L2
(

ψ̇2 + cos(ψ)2 α̇2
)

Clearly, the two are similar – the difference essentially being the substitution of

one angle for the other between the two sets of equations.
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3.5.6 Comparing the equations – potential energies

Comparing the differences in the potential energies of the spinning systems in an

inertial coordinate system is a stage more complicated, as the local coordinate system

must be translated from the local centre to the inertial centre to incorporate the full

inertial terms.

The potential energy term for each mass point j

Ep =
µmj√
pj · pj

depends strongly on the magnitude of distance, given by
√
pj · pj. This evaluates to

the following for YZ and ZY rotations10

YZ: pj = {R + L cos(α) cos(ψ), L cos(α) sin(ψ),−L sin(α)}

ZY: pj = {R + L cos(α) cos(ψ), L sin(ψ),−L cos(ψ) sin(α)}

Therefore

YZ:
√
pj · pj = L2 +R2 + 2LR cos(α) cos(ψ)

ZY:
√
pj · pj = L2 +R2 + 2LR cos(α) cos(ψ)

For the potential energy term:

YZ Ep =
µmj√

L2+R2+2LR cos(α) cos(ψ)

ZY Ep =
µmj√

L2+R2+2LR cos(α) cos(ψ)

That is, the potential energy expression of the two sets of equations YZ and ZY

are identical for an inertially planar system.

When the orbital rotation θ is introduced to the potential energy equations, the

result will be identical to the expression above, as the inertial rotation through Rθ,Z

is a rotation about one axes only, unlike the dual system of rotations outlined above.

The expression for potential energy will change significantly when rotated through

10With a simple offset from the origin by R, representing the orbital radius.
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around the orbit in 3D when the orbital parameter ι is included.

3.5.7 YZ rotation in inertial axes

The full rotation sequence in inertial axes, for a rotation of an initial vector through

a Y-axis rotation, then a Z-axis rotation, translations in CoM and radius vector,

then a final rotation about the Z-axis is as follows:

Pfinal = Rθ,Z · (P0→CoM − Pfacility→CoM + (Rψ,Z · Rα,Y · P1)) (3.29)

3.5.8 Singularities in the rotational systems

The main disadvantage in using the method of rotational matrices is they have

singularities or ‘gimbal lock’ points where there is a lack of a unique output when a

rotation is performed that aligns it with the rotational axis.

In the case of YZ rotation, an initial rotation of 90◦ about the Y-axis would align

the original vector with the Z-axis. A second rotation about the Z-axis would be

redundant as the vector would not change value.

In the case of ZY rotation, an initial rotation of 90◦ about the Z-axis would align

the original vector with the Y-axis. A second rotation about the Y-axis would be

redundant as the vector would not change value.

In general, any rotation through 90◦, 270◦ (or any multiples thereof) so that the

original vector aligns itself with the new axes of rotation will produce a singularity.

The equations of motion usually can not be numerically integrated with the initial

condition as a singularity; the lack of uniqueness of the solution violates the method

of using the Lagrangian to solve the equations of motion.
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3.5.9 Practical uses of the different equations

The two sets of equations above may find different applications, depending on the

desired investigative outcome required.

If a system of equations is needed to solve a solution space near an axis, then

naturally, the system of equations should be chosen to avoid a singularity. As the

choice of system of equations is entirely arbitrary, the problem of singularities has

been avoided here.

Quaternions were considered as an alternative to the three-angle rotation system

above - they confer several advantages such as the ability to multiply the rotations

in one polynomial and they are not prone to gimbal lock. However, one of the main

disadvantages of quaternions is that it is very difficult to extract physical meaning

from the individual components without a significant degree of post-processing. For

this reason, it was decided to remain with the three-angle rotation method.

The YZ system of equations is slightly more compact and easier to interpret than

the ZY equations, although both give identical results when integrated. The differ-

ence in time taken to solve the two sets of equations differs by approximately 5%

using a wide range of initial conditions.

3.6 Numerical integration techniques

The equations of motion, once assembled, are integrated with Mathematica11 using

the NDSolve subroutine. This is a Jack-of-all-trades solution that effectively deals

with the problems of choosing timesteps, any stiffness that may arise and a multitude

of other problems that plague the researcher. However, care must be taken to assure

that the output of the numerical integrator is representative of real life – validation

and sanity-checking at all stages will not ensure poor results are entirely eliminated,

11Specifically, using Mathematica version 5.1
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but they will reduce the risk of spurious results.

The generated equations are solved with Mathematica’s general purpose solver

NDSolve[. . . ] with the following parameters:

� AccuracyGoal −> Automatic, PrecisionGoal −> Automatic – controls

the number of digits of accuracy, effectively the absolute and relative errors

respectively.� With PrecisionGoal−>p and AccuracyGoal−>a, Mathematica attempts

to make the numerical error in a result of size x be less than 10−a + |x|10−p.� WorkingPrecision −> 20 – limits internal computations to 20-digit preci-

sion.

From the online Mathematica NDSolve FAQ webpage – [Wolfram, 2007]:

“For initial value problems, NDSolve uses an Adams Predictor-Corrector

method for non-stiff differential equations and backward difference for-

mulas (Gear method) for stiff differential equations. It switches between

the two methods using heuristics based on the adaptively selected step

size. It starts with the non-stiff method under essentially all conditions

and checks for the advisability of switching methods every 10 or 20 steps.

The algorithms and the heuristics for switching between algorithms

are described in the following references: [Hindmarsh, 1983], [Petzold,

1983] ”

More in-depth information about the NDsolve functions is also available from the

Mathematica Journal: [Keiper, 1992].
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Chapter 4

Dynamics of tethers with

inclination

The simple dumbbell tether model can be expanded to include an inclination

component to the orbit.

The process of adding the inclination term will be exemplified with a tether payload

delivery to the Moon under a time-varying inclination given by the Saros cycle, which

describes the inclination variation of the Moon’s orbit around the Earth.

The Saros cycle describes the Moon’s orbital inclination cycle, lasting 18 years 11

days and 8 hours, cutting the Sun’s ecliptic plane (used as the inertial coordinate

plane). This cycle determines, in the short term at least, the Lunar and Earth’s

eclipse frequencies and locations. This also allows the inclination of the Moon to

be accurately predicted from ephemeral data. Figure 4.1 shows the inclination as a

function of time over one Saros cycle with data taken from the JPL Horizons website

[JPL, 2008].

As shown in Figure 4.1, the Saros cycle varies from a maximum inclination with

respect to the geocentric plane of approximately 28.8◦ to a minimum of 18.0◦, which
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Figure 4.1: Ephemeris of Lunar orbital inclination [JPL, 2008]

poses a problem to the trajectory and mission specialists of a long-term reusable

launch system, like the MMET. The position of the Moon changes, which makes

it more difficult to launch a Lunar mission, and the cost of the mission will change

due to a potentially expensive1 plane change manoeuvre.

Comparing the Lunar inclination to Earth’s tilt of 23.5◦, the Moon’s inclination

with respect to Earth’s equatorial plane varies by approximately ±5◦. The ∆V

required to perform an inclination change will be small, but the dynamics of the

system will depend on the inclination with respect to the inertial plane. In 2008,

this is approximately 28◦.

4.1 Addition of inclination to tether model

The expansion of the tether model to include an inclination term is relatively

straightforward, at least in terms of the model outlined in Section 3.5.7. The inclin-

ation term is added with a rotation matrix2 Rι,Y before the final inertial rotation

1In terms of fuel and therefore cost.
2Rotating around the Y-axis through the inclination angle, ι.
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sequence Rθ,Z is performed.

The full rotation sequence in inertial axes, for a rotation of an initial vector through

a local Y-axis rotation, then a local Z-axis rotation, translations with the CoM and

radius vectors, then two rotations about the (recently created) inertial Y-axis, then

the inertial Z-axis is as follows:

Pfinal = Rθ,Z · Rι,Y · (P0→CoM − Pfacility→CoM + (Rψ,Z · Rα,Y · P1)) (4.1)

As in Section 3.3, Lagrange’s equations will now be derived for the system including

the orbital inclination.

4.1.1 5 degree of freedom model

Five variables of interest are chosen – {R, θ, ι, ψ, α} – that fulfil all the requirements

of generalised coordinates. An analysis will be performed to investigate the effect

the inclination variable has on the tether system orbit.

The mathematical model will be constructed to include a symmetrical dumbbell

tether with a facility mass at the centre of the system. The important mass points

included in the model are the two identical payload masses, Mpayload, the facility

mass, Mfacility, and the tether masses, Mtether, which are concentrated at the centre

of each tether.

The orbital system {R, θ, ι} is conceptually separated from the local rotation sys-

tem {ψ, α}. The equations of motion for the orbit are constructed as one concen-

trated point mass, and the local rotational system is superimposed on this orbit.

This allows a significantly simpler representation of the equations, however, this

does not allow the orbital motion to be influenced by the local rotations. Overall,

this assumption is valid and should give an insight into the broad motions of the

MMET on an inclined orbit.
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The stator is not included in this model because this would significantly increase

the complexity of the system.

4.2 Constructing the equations of motion

The sequence of rotations follows the YZ system of rotations as described earlier in

Section 3.5.2.

Manipulating the position vector from the original Equation 4.1, the rotation

matrices are collected through the commutative properties of matrices and terms

containing the Radius vector, P0→CoM, and the local vector3, P1, are separated:

Pfinal = Rθ,Z ·Rι,Y · (P0→CoM − Pfacility→CoM + (Rψ,Z ·Rα,Y · P1)) (4.2)

Pfinal = Rθ,Z ·Rι,Y · (P0→CoM − Pfacility→CoM) +Rθ,Z · Rι,Y · Rψ,Z · Rα,Y · P1 (4.3)

Taking the assumption that the dumbbell is symmetric about the facility mass:

Pfacility→CoM = 0 ⇒













CoMX

CoMY

CoMZ













=













0

0

0













gives the simplified positional equation Pfinal for a single mass point, P1 in the

inertial coordinate system:

Pfinal = Rθ,Z · Rι,Y · (P0→CoM) +Rθ,Z · Rι,Y · Rψ,Z · Rα,Y · P1 (4.4)

3The local vector is the position vector between the facility and payload 1.
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When evaluated, this becomes:

Pfinal = R













cos ι cos θ

cos ι sin θ

− sin ι













+ L













cosα(cos θ cos ι cosψ − sin θ sinψ)− cos θ sinα sin ι

cosα(cos ι cosψ sin θ + cos θ sinψ)− sinα sin θ sin ι

− cos ι sinα− cosα cosψ sin ι













(4.5)

The purpose of separating the inertial and local systems in Equation 4.5 is that

Lagrange’s equations are easier to derive and subsequently, the equations of motion

are computationally more efficient to solve.

4.2.1 Rotations in the local coordinate system

Figures 4.2a, 4.2b, 4.3a and 4.3b show the sequence of rotations needed to assemble

Equation 4.4: Rθ,Z · Rι,Y · Rψ,Z · Rα,Y · P1.

Figures 4.2a and 4.2b show the steps needed to assemble the local coordinate

system, with Figure 4.2a duplicating the steps followed to arrive at the YZ rota-

tion sequence followed in Section 3.5.2. This is followed by a translation through

P0→CoM = {R, 0, 0} to transfer the local coordinate system to the inertial coordin-

ate system. Figures 4.3a and 4.3b show the tether rotating around the inertial axes

system – first through a rotation of ι around the inertial Y-axis, then a rotation of

θ around the inertial Z-axis.

Figure Rotational sequence

Figure 4.2a Rψ,Z · Rα,Y · P1

Figure 4.2b R+ Rψ,Z · Rα,Y · P1

Figure 4.3a Rι,Y· (R+ Rψ,Z · Rα,Y · P1)
Figure 4.3b Rθ,Z· Rι,Y· (R+ Rψ,Z · Rα,Y · P1)

Table 4.1: Reference table with figure and corresponding rotation
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ψ
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ψ
α

α

ZY Z

YZ
XZ

XY Z

XY

ZY

(a) YZ local rotation – Rα,Y then Rψ,Z

ψ
ψ

θ

α

ι

ι

α
α

Y

X

Y

Z

Z

X

XY Z

YZ

ZY Z

XZ XY

ZY

(b) Translation through R along X-axis

Figure 4.2: Rotation sequence for YZ rotation with inclination. α is shown as a
negative rotation here for ease of visualisation.
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(a) Y inertial rotation through angle ι – Rι,Y
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ψ
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(b) Z inertial rotation through angle θ – Rθ,Z

Figure 4.3: Rotation sequence for YZ rotation with inclination. α and ι are shown
as negative rotations here for ease of visualisation.
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4.2.2 Lagrange’s equations

Once the position of the mass points have been defined, the process of constructing

the equations of motion will follow that outlined in Section 3.3.

As the equations form two separate groups, this will be examined separately: in

Section 4.2.3 for the local system and Section 4.2.4 for the orbital system. The

equations are combined and listed in Appendix A.

4.2.3 Lagrange’s equations – local system

The mass points, as indicated earlier, are:� the two payload masses, each a distance L from the facility mass and each

with mass Mpayload� the two tethers with mass points each a distance L/2, halfway along the tether,

each with mass Mtether� the facility mass, Mfacility.

The tether system is symmetrical; the in-plane angles will be defined as ψ and −ψ,

while the out-of-plane angles will be defined as α and −α respectively.

As previously, the tethers are assumed to be rigid and inextensible to simplify the

equations. The stator will not be included to simplify the equations. The masses of

the payloads are assumed to be equal and the masses of the tethers are assumed to

be equal such that:

Mpayload 1 =Mpayload 2 =Mpayload and Mtether 1 =Mtether 2 =Mtether
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The locations of each of the mass points in the inertial plane are therefore:

Ppayload 1 = R













cos ι cos θ

cos ι sin θ

− sin ι













+ L













cosα(cos θ cos ι cosψ − sin θ sinψ)− cos θ sinα sin ι

cosα(cos ι cosψ sin θ + cos θ sinψ)− sinα sin θ sin ι

− cos ι sinα− cosα cosψ sin ι













(4.6)

Ppayload 2 = R













cos ι cos θ

cos ι sin θ

− sin ι













− L













cosα(cos θ cos ι cosψ − sin θ sinψ)− cos θ sinα sin ι

cosα(cos ι cosψ sin θ + cos θ sinψ)− sinα sin θ sin ι

− cos ι sinα− cosα cosψ sin ι













(4.7)

Ptether 1 = R













cos ι cos θ

cos ι sin θ

− sin ι













+
L

2













cosα(cos θ cos ι cosψ − sin θ sinψ)− cos θ sinα sin ι

cosα(cos ι cosψ sin θ + cos θ sinψ)− sinα sin θ sin ι

− cos ι sinα− cosα cosψ sin ι













(4.8)

Ptether 2 = R













cos ι cos θ

cos ι sin θ

− sin ι













−L
2













cosα(cos θ cos ι cosψ − sin θ sinψ)− cos θ sinα sin ι

cosα(cos ι cosψ sin θ + cos θ sinψ)− sinα sin θ sin ι

− cos ι sinα− cosα cosψ sin ι













(4.9)

Pfacility = R













cos ι cos θ

cos ι sin θ

− sin ι













(4.10)

The velocities of each of the mass points are then calculated. These are not listed

here because of the length of the equations.

The five mass points are used to find the translational kinetic energy, Ttrans, of the

system:

Ttrans =
Mpayload 1

2
Vpayload 1 · Vpayload 1 +

Mpayload 2

2
Vpayload 2 · Vpayload 2

+
Mtether 1

2
Vtether 1 · Vtether 1 +

Mtether 2

2
Vtether 2 · Vtether 2

+
1

2
(Mpayload 1 +Mpayload 2 +Mtether 1 +Mtether 2 +Mfacility)VCoM · VCoM (4.11)
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which evaluates to:

Ttrans =
1

2

((

cos2(ι)θ̇2 + ι̇2
)

R2 + Ṙ2
)

(MFacility + 2 (Mpayload +Mtether)) +

1

64
L2
(

16α̇2 + 32θ̇ sin(ι) sin(ψ)α̇− 4
(

−2 cos(2ψ) cos2(α) + cos(2α)− 3
)

ι̇2+

16 cos2(α)ψ̇2 + 16θ̇ψ̇
(

2 cos2(α) cos(ι)− cos(ψ) sin(2α) sin(ι)
)

+

θ̇2
(

−8 cos2(α) cos(2ψ) sin2(ι) + 2 cos(2α)− 2 cos(2ι)+

3 cos(2(ι− α)) + 3 cos(2(α+ ι))− 8 cos(ψ) sin(2α) sin(2ι) + 10)+

16ι̇
(

θ̇ sin(ι) sin(2ψ) cos2(α) + 2 cos(ψ)α̇+
(

cos(ι)θ̇ + ψ̇
)

sin(2α) sin(ψ)
))

(4Mpayload +Mtether) (4.12)

The rotational kinetic energy, Trot, of the system is found in a similar way:

Trot = (Ipayload 1 + Ipayload 2 + Itether 1 + Itether 2) · (ωlocal · ωlocal) (4.13)

where:

ωlocal =













0

α̇

ψ̇













I3 =













1 0 0

0 1 0

0 0 1













Ipayload 1 =L
2Mpayload 1 · I3 Ipayload 2 =L

2Mpayload 2 · I3

Itether 1 =
1

3
L2Mtether 1 · I3 Itether 2 =

1

3
L2Mtether 2 · I3

The evaluated sum of the component rotational kinetic energies are:

Trot =
1

3
L2 (3Mpayload +Mtether)

(

α̇2 + ψ̇2
)

(4.14)
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The sum of the potential energies, U , are:

U =
n
∑

j=1

µmj
∣

∣Pj
∣

∣

=
n
∑

j=1

µmj
√

Pj · Pj
(4.15)

where Pj are the magnitude of the mass point locations, given in Equations 4.6 to

4.10.

The full rotational sequence is not needed here, merely the distance between the

two points, which leads to a simpler expression of the magnitude of the distance.

Taking Equation 4.2 as the start point, the distance (i.e., the magnitude) is:

∣

∣

∣
Ppayload 1

∣

∣

∣
=
∣

∣

∣
Rθ,Z · Rι,Y · (P0→CoM +Rψ,Z · Rα,Y · P1)

∣

∣

∣
(4.16)

∣

∣

∣
Ppayload 1

∣

∣

∣
=
∣

∣

∣
Rθ,Z

∣

∣

∣
·
∣

∣

∣
Rι,Y

∣

∣

∣
·
∣

∣

∣
P0→CoM +Rψ,Z · Rα,Y · P1

∣

∣

∣
(4.17)

The magnitude of a purely rotational matrix is, by definition, equal to one:

∣

∣

∣
Rθ,Z

∣

∣

∣
= 1 (4.18)

∣

∣

∣
Rι,Y

∣

∣

∣
= 1 (4.19)

This simplifies Equation 4.17 to:

∣

∣

∣
Ppayload 1

∣

∣

∣
=
∣

∣

∣
P0→CoM +Rψ,Z ·Rα,Y · P1

∣

∣

∣
(4.20)

∣

∣

∣
Ppayload 1

∣

∣

∣
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣













R

0

0













+













L cosα cosψ

L cosα sinψ

−L sinα













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(4.21)

Ppayload 1 =
√

L2 + 2LR cosα cosψ +R2 (4.22)
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The evaluated expression for the potential energy is therefore:

U = −
(

µMfacility

R

)

− µ

(

1√
L2 − Lmed +R2

+
1√

L2 + Lmed +R2

)

Mpayload

−2µ

(

1√
L2 − 2Lmed + 4R2

+
1√

L2 + 2Lmed + 4R2

)

Mtether

(4.23)

where:

Lmed = 2LR cosα cosψ

The Lagrangian is then given by L = T − U :

L = Ttrans +
L2 (3Mpayload +Mtether)

(

α̇2 + ψ̇2
)

3

+

(

µMfacility

R

)

+ µ

(

1√
L2 − Lmed +R2

+
1√

L2 + Lmed +R2

)

Mpayload

+ 2µ

(

1√
L2 − 2Lmed + 4R2

+
1√

L2 + 2Lmed + 4R2

)

Mtether (4.24)

where Ttrans is given by Equation 4.12.

Lagrange’s equations are then generated for two out of the five generalised co-

ordinates, {ψ, α} as follows:

d

dt

(

∂T

∂q̇j

)

− ∂T

∂qj
+
∂U

∂qj
= Qj (4.25)

and are provided in Appendix A along with the non-conservative forcing terms.

4.2.4 Lagrange’s equations – global system

The global equations used to construct the motion of the facility around the Earth

are now outlined. The mass for the system is summed and used as the total mass
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located at the CoM:

Mtotal = 2Mpayload + 2Mtether +Mfacility (4.26)

The locations of the single representative mass point in the inertial plane is there-

fore:

Porbit =













R cos ι cos θ

R cos ι sin θ

−R sin ι













(4.27)

The velocities of each of the mass points are then calculated4. Equation 4.28 shows

the velocity of the system CoM:

Vorbit =













Ṙ cos θ cos ι− R
(

θ̇ cos ι sin θ + ι̇ cos θ sin ι
)

Rθ̇ cos θ cos ι+ sin θ
(

Ṙ cos ι− Rι̇ sin ι
)

−Rι̇ cos ι− Ṙ sin ι













(4.28)

The single mass point is used to find the translational kinetic energy, Ttrans, of the

system:

Ttrans =
Mtotal

2
(Vorbit · Vorbit) (4.29)

Ttrans =
Mtotal

2

((

θ̇2 cos2(ι) + ι̇2
)

R2 + Ṙ2
)

(4.30)

The rotational kinetic energy is assumed to be zero:

Trot = 0 (4.31)

4Note: as the inclination term is given the symbol iota, ι, the first derivative of the inclination
term, ι, is ι̇, and not the ninth letter of the Latin alphabet, i.
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The expression for potential energy, U , is simply:

U =
µMtotal

|R.R| =
µMtotal

R
(4.32)

as the distance to the CoM is defined as R.

The Lagrangian is then given by L = T − U :

L =
Mtotal

2

((

θ̇2 cos2(ι) + ι̇2
)

R2 + Ṙ2
)

− µMtotal

R
(4.33)

Lagrange’s equations are then generated for three out of the the five generalised

coordinates, {R, θ, ι} as follows:

d

dt

(

∂T

∂q̇j

)

− ∂T

∂qj
+
∂U

∂qj
= Qj (4.34)

and are provided in Appendix A along with the non-conservative forcing terms.

4.2.5 Non-conservative forces

The MMET system requires that a force be transferred from the motor to the tether

arms to ‘spin-up’ the system. The mechanics of spin-up of such a system is non-

trivial, especially when flexural5 terms and inertial terms are taken into account.

The spin-up dynamics of length deployment is covered in Chapter 5.

The tether arms are assumed to be rigid and symmetrical at all times, limiting the

payload tethers to a planar disc. The motor torque is assumed to act in the same

plane as this disc. The stator arms are neglected.

The motor torque will exert a large power drain, therefore all the power for the

motor will be derived from the solar arrays harnessing a free, plentiful and renewable

source of energy. The Forcing term in Lagrange’s equations must reflect the binary

5Flexural terms are not included in the analysis due to the complexities they introduce.
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nature of the availability of the power supply. The Eclipse function modulates the

motor torque to take into account the eclipsing of the Sun by the Earth, reducing

the torque to τ = 0 when in darkness and taking the default τ = τmax when in

sunlight.

Eclipse is the binary function:

Eclipse =



















































1































R2
(

1− cos2(ι) cos2(θ)
)

≤ R2
Earth

(

1 +
R cos θ

RSun

)2

AND

cos ι cos θ > 0

0

{

otherwise

(4.35)

The radius of the Earth’s shadow is scaled from REarth by the factor RSun+R cos θ
RSun

as shown in Figure 4.4. The hypotenuse of the Y- and Z-component of the CoM at

a time, t, in the orbit path is calculated and checked. If it is less than the shadow

distance, then the CoM is in shadow.

RShadow = REarth

(

RSun +R cos θ

RSun

)

RShadow = REarth

(

1 +
R cos θ

RSun

) (4.36)

Y 2
CoM inertial + Z2

CoM inertial = (R cos ι sin θ)2 + (R sin ι)2

= R2 (1− cos2(ι) cos2(θ))
(4.37)

Hence, the eclipse checking function is calculated as:

R2
(

1− cos2(ι) cos2(θ)
)

≤ R2
Earth

(

1 +
R cos(θ)

RSun

)2

(4.38)

which gives two eclipses an orbit, therefore an additional constraint is added to
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Figure 4.4: Eclipse checking function (not to scale)

ensure that the CoM is eclipsed only once per orbit:

cos ι cos θ > 0 (4.39)

A diagram of the distances on-orbit is shown in Figure 4.4 and the Mathematica

output for a 29◦ orbit is shown in Figure 4.5. The Sun is assumed to be a point

source and the Earth is assumed to describe a circular orbit around the sun.
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Figure 4.5: Sample plot of the Eclipse function in Mathematica
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4.3 Analysis of tether on an inclined orbit

The generated equations are solved with Mathematica’s general purpose solver

NDSolve[. . . ] with the following parameters:

AccuracyGoal −> Automatic

PrecisionGoal −> Automatic

WorkingPrecision −> 20

To fully understand the interaction between the local and inertial systems, Lag-

range’s equations are solved with different initial conditions or ‘cases’. These are

given in Table 4.2.

case ι̇ ψ̇ α̇ ι ψ α eccent τ

I1 0 0 0 0 0 0 0 1000
I2 0 0 0 29π/180 0 0 0 1000
I3 0 1 0 29π/180 0 0 0 1000
I4 0 0 0 29π/180 0 −29π/180 0 1000
I5 0 1 0 29π/180 0 −29π/180 0 1000

Table 4.2: Initial conditions for the inclination numerical solutions.

Case I1 gives a baseline in the inertial plane: no inclination, no out-of-plane spin

and no initial in-plane spin. Case I2 introduces inclination, while case I3 has an

inclined orbit with a significant initial in-plane spin. Cases I4 and I5 are comparable

to cases I2 and I3, with the difference of an out-of-plane spin equal to the inclination

(i.e. so the spin-plane is coincidental with the inertial plane).

All five cases have an equal torque level to enable a fair comparison.

The initial conditions6 for the other parameters held constant are:

L = 1000m,Mpayload = 10 kg,Mtether = 100 kg,Mfacility = 500 kg, e = 0,

Ṙ[0] = 0, θ̇[0] = 0.00113905 rad/s, θ[0] = 0, R[0] = 7.378 ∗ 106m
6Note: the inclination term is represented by the Greek letter iota – ι – therefore the first

derivative with respect to time is iota dot – ι̇ – and the second derivative iota dot dot – ϊ. This
was defined in order to remove the confusion between i dot and iota dot – i̇, ι̇.
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Figures 4.11 to 4.18 show the solution to the equations of motion for 10 orbits over

63069.5 seconds where:� Figure 4.11 shows plots of α vs. time� Figure 4.12 shows plots of α̇ vs. time� Figure 4.13 shows plots of α vs. ι� Figure 4.14 shows 3D phase plots of ψ� Figure 4.15 shows 3D phase plots of α� Figure 4.16 shows plots of ∆V vs. time� Figure 4.17 shows plots of tension vs. time� Figure 4.18 shows plots of stress vs. time

4.3.0.1 Behaviour of R, θ and ι with time

The orbital parameters R, θ and ι are shown in Figure 4.10. They are deliberately

chosen so that the orbital parameters are independent from the local parameters, as

such the MMET does not influence any of these generalised coordinates.

Together, the three generalised coordinates R, θ and ι describe a circular orbit in

the inertial plane in case I1 and a circular inclined orbit in cases I2 to I5.

4.3.0.2 Behaviour of α with time

Figures 4.11a to 4.11e demonstrate the α vs. time behaviour of the system. Clearly,

the baseline case I1 shows there is no interaction between the inclination and out-

of-plane coordinates when both are initially zero.

Comparing Cases I2 and I3 in Figures 4.11b and 4.11c gives an idea of the relative

stabilising influence of the in-plane spin velocity, ψ̇. It is the gyroscopic action of

the in-plane spin that limits the out-of-plane coordinate, α.

The opposite appears to be true when Figures 4.11d and 4.11e – cases I4 and I5
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– are compared. The out-of-plane spin angle is set such that the local system is

aligned with the inertial plane. When this is accelerated from zero velocity initially,

the out-of-plane angle returns to be coplanar with the inclination orbit7, with a

small nutation of (0.1 rad ≈ 6◦). When started from a large initial in-plane velocity

in the inertial plane, the opposite is true – it remains spinning in the inertial plane

with a small adjustment towards the orbital plane.

4.3.0.3 Behaviour of α̇ with time

Figures 4.12a to 4.12e demonstrate the α̇ vs. time behaviour of the system. As

previously, the baseline case I1 shows there is no interaction between the inclination

and out-of-plane coordinates when both are initially zero.

Case I2 and I4 show the angular rate increasing from zero – this is larger than

desired for operating the MMET, especially in the early start-up regime. However,

case I3 shows that the greater the in-plane spin velocity, the lower the out-of-plane

nutation.

4.3.0.4 Behaviour of α with ι

Figures 4.13a to 4.13e show the α̇ vs. ι interaction of the system.

The graphs here are inconclusive. There is a large interplay between α and ι

in cases I3 and I5, where the in-plane velocity ψ̇ is large, and a correspondingly

smaller relationship between the two in cases I2 and I4 where the ψ̇ term is zero.

This, however, does not point to any concrete notions of interdependence.

Case I4 clearly shows the progression of α from a large out-of-plane motion (start-

ing in the bottom right of the graph) to a smaller angle as the in-plane velocity

increases.

7The inclination orbit is the orbital plane, offset 29π/180 rad from the inertial plane.
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4.3.0.5 Behaviour of ψ, ψ̇, ψ̈

The eclipse functionality is clearly shown in the ψ phase plots in Figires 4.14a to

4.14e and the plot of ∆V in Figure 4.16a to 4.16e.

The ψ phase plane plots illustrate the shadow periods of the graph where the in-

plane angular acceleration ψ̈, shown in the horizontal axis, is approximately zero

compared to the illuminated periods where the tether is accelerated by the motor.

The plots of ∆V highlight the end result of the work done by the motor – the ∆V

the system can impart to the payload. In this case, a ∆V of approximately 400m/s

is attained for a modest acceleration period of 17.5 hours.

In cases I1 and I3, the out-of-plane coordinate α is zero and the rate of increase

in ψ̇ is highest. The greater the out-of-plane spin angle, the less energy is available

to transfer into increasing the (useful) in-plane spin rate.

Cases I4 and I5 show the more disordered plots when the out-of-plane coordinate

is non-zero. Clearly, having an clean acceleration profile is advantageous from a

stress-minimisation point of view – these profiles have a spin-up phase that feature

a large α̇ term, which is difficult to aim when the payload must be released.

Similarly, case I2 does not have a clean spin-up phase when compared to case I1.

This is purely due to the large out-of-plane motion that interferes with the in-plane

spin.

4.3.0.6 Behaviour of α, α̇, α̈

The α phase plane behaviour of the system is shown in Figures 4.15a to 4.15e.

In case I3 – high ψ̇ and the out-of-plane initial angle, α, set to zero – the out of

plane velocity is minimised. Marginally larger out-of-plane angular velocities and

accelerations are shown by case I4: zero initial ψ̇ and the out-of-plane initial angle

set to coincide with the inertial plane.
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4.3.0.7 Behaviour of ∆V with time

The ∆V vs. time behaviour of the system is shown in Figures 4.16a to 4.16e.

The calculation of ∆V is straightforward, it is the product of the tether length and

the angular velocity. The maximum useful ∆V is obtained when the out-of-plane

angle is zero, and is analysed in Section 4.4. In this case, the maximum useful ∆V

is simply the product of length and angular speed:

∆V = L ψ̇ (4.40)

As the graphs of ∆V show the magnitude of the resultant velocity, cases I1 I2 and

I4 should be almost identical, and cases I3 and I5 should also be identical. Whereas

the former is true, case I5 has a useful velocity that is lower than expected. This

is caused by rapid changes in the out-of-plane velocity α̇, which detracts from the

in-plane spin velocity, ψ̇.

4.3.0.8 Behaviour of tension with time

The tension profile of the tether is shown in Figures 4.17a to 4.17e.

The cases with zero initial in-plane spin – cases I1, I2 and I4 – exhibit similar levels

of tension in the tether, approximately 10 kN . The tension appears to be slightly

lower in the baseline case I1, however, this may be due to the larger out-of-plane

movements in cases I2 and I4.

The remaining cases I3 and I5 start with a higher tension due to their large initial

in-plane spin rate. Similarly to the ∆V plot in Figure 4.16e, the tension in case I5

rapidly fluctuates due to the large out-of-plane angular motions.

4.3.0.9 Behaviour of stress with time

The stress profile of the tether is shown in Figures 4.18a to 4.18e.
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The graphs here are very similar to the tension graphs, as stress is equal to tension

divided by the cross-sectional area, 0.000064 m2 (equal to an 8 mm square section

of tether).

4.3.1 Analysis of tension and stress in tether

The tension in the tether ignores any out-of-plane motion of the tether, as it was

shown that the out-of-plane motion is not significant for small deviations from the

spin-plane.

The tension in the tether is calculated as:

Tpayload =Mpayloadψ̇
2Lpayload + ρAψ̇2Lpayload

2
(4.41)

with the first term as the tension due to the payload, the second term as the tension

due to mass of the tether itself. The second term dominates in this case, as the mass

of the tether is an order of magnitude higher than the mass of the payload.

The stress in the tether is calculated as:

σ =
Tpayload
A

(4.42)

The maximum allowable stress in the tether is calculated using the Ultimate Tensile

Stress (for Zylon, the UTS is 5.9 ∗ 109 N/m2) and a Safety Factor (SF=1.5) as:

σmax =
σ

SF
=

5.9 ∗ 109
1.5

= 3.933GPa (4.43)

The variables are defined as:

Mpayload = 10 kg, L = 1000m, ρ = 1570 kg/m3, A = 0.000064m2

using values of the tether8 composed of Zylon� fibres with properties from Table D.1,

8The area is equivalent to a rectangular extrusion of 0.008m.

85



Appendix D.

The maximum allowable stress gives an absolute ceiling to the stresses in the tether.

This maximum stress, working backwards through the tension, is dependant on the

in-plane velocity assuming the material and geometric properties of the system do

not change when it is in-orbit. This interplay between ψ̇ and Lpayload drives the

maximum ∆V and therefore the entire feasibility of the system.

4.4 Tether release aiming

The criteria to maximise the ∆V when using the motorised tether with a Hohmann

two-burn trajectory are as follows.

The tether will gain the most velocity from the release if the velocity vector is at

right-angles to the orbital plane9. This is generally satisfied when the tether arm is

aligned with the radius vector, a criteria of ψ ≅ 0 and α ≅ 0

An excellent treatment of the sensitivity to errors in transfer orbits for Hohmann

transfers is given in [Kamel and Soliman, 2006]. This may be directly applied to

tethers for the same type of manoeuvres. For example, a 0.1% error in ∆V may

give up to a 5% error in radius and semi-major axis. A thorough treatment of the

errors due to an early or late release is needed for the tether.

In terms of release strategy for an inclined orbit, this criteria for release is generally

only satisfied at one point in the cycle when the inclined orbital plane cuts the

inertial plane, the direction is determined from the classical Hohmann trajectory, as

in [McLaughlin, 2000].

An alternative to the Hohmann trajectory is the WSB method, which has been

described in the literature: [Belbruno, 1987], [Miller and Belbruno, 1991] and [Koon

9This assumes that the mission is to provide the maximum∆V ; many alternative tether missions
exist, including a inclination change using a tether releasing the payload at an angle to the orbital
plane.

86



et al., 2001]. To summarise, the WSB utilises the gravitational interaction of the

Earth-Sun-Moon system to lower the ∆V required to capture a satellite in Lunar

orbit. The WSB can be thought of as two Circular Restricted 3 Body Problems

(CR3BP) patched together with a small correction burn of less than 25m/s at the

boundary between the Sun-Earth system and the Earth-Moon system.

A patch point is located by integrating forward the dynamics of the spacecraft

in the Earth-Moon system from the patch point until the spacecraft is ballistically

captured in Lunar orbit, and simultaneously integrating backward the dynamics of

the spacecraft in the Sun-Earth system until the spacecraft links up with a LEO

orbit around the Earth. Thus a patch point is found along with two halves of the

trajectory from LEO to ballistic capture in Lunar orbit via the patch point.

Figure 4.6: Diagram showing an example of the WSB trajectory, from ESA Bulletin
103: [Biesbroek and Janin, 2000]

Timing the release of the tether payload to launch on a WSB transfer is a diffi-

cult computational puzzle, but one which may be solved by optimising a numerical

solution to the equations of motion. A trajectory is planned for a future time and

the tether mission must provide a ∆V precisely with a very small margin of error

in release angle.

The useful tip velocity (∆V ) will be approximately equal to the local body-centred
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velocity of the tip payload. The local velocity is given in Equation 4.44 below:

Vpayload 1 =













−L sin(α) cos(ψ) α̇ −L cos(α) sin(ψ) ψ̇

−L sin(α) sin(ψ) α̇ +L cos(α) cos(ψ) ψ̇

−L cos(α) α̇













(4.44)

This reduces to the simple one-dimensional angular velocity when considering the

optimal release case of a perfectly aligned tether of ψ → 0, α→ 0 and α̇ → 0:

Vpayload 1 →













0

L ψ̇

0













(4.45)

The major long-term perturbations such as J2, Lunar and Solar gravity etc. are

not covered here as they do not affect the short-term dynamics of tether spin-up.

[Parsons, 2006] covers some of these alongside the WSB trajectories.

4.4.1 Tether error analysis

Small changes in the tether variables could have a large effect on the performance

of the tether, therefore it is important to quantify these for the purposes of risk

mitigation. An analysis was performed to quantify the effects that a small change in

the system parameters have on the payload apogee and inclination, when calculated

at the orbital location directly opposite the separation point10.

The Figures 4.7 and 4.8 are calculated by solution of the equations of motion for

MMET tether system with two payloads, with the default initial conditions:

Lpay = 1000m, Mpay = 10 kg, Mtether = 100 kg, Mhub = 500 kg, e = 0,

ι̇[0] = 0 rad/s, ψ̇[0] = 0.1 rad/s, α̇[0] = 0 rad/s, Ṙ[0] = 0m/s,

10Calculated as π radians round the orbit from the system centre of mass point when the payload
is separated from the tether.
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θ̇[0] = 0.00113905 rad/s, ι[0] = 29π/180 rad, ψ[0] = 0 rad, α[0] = 0 rad,

R[0] = 0m, θ[0] = 0 rad, Torque = 1000Nm,

Nominal Orbital Period = 6306.95 s.

The initial conditions above equate to an equivalent ∆V of 100m/s.

The payload is released when the tether is aligned with the radius vector (ψ = 0

and α = 0) and follows a ballistic trajectory thereafter. No allowance is made here

for angular momentum effects between the payload and tether system on release.

Errors are simulated by the addition of small offsets in the initial conditions at

the release point. The effect that the errors have on that variable is analysed by

comparing the apogee and the inclination to the unperturbed values measured at the

apogee point. The starting radius11 is 7, 378, 000m. With the default initial condi-

tions above, the apogee is 7, 747, 377m, a difference of 369, 377m or approximately

5% of the radius vector. In terms of altitude, the starting altitude is 100, 000m and

the apogee when the payload is released is 469, 377m. The inclination of the apogee

point is equal to the magnitude of the perigee inclination of 29◦.

Figure 4.7a shows the effect that a small change in radius has on the tether apogee.

A change in radius of 1000m at the tether release point corresponds to a 7460m

increase in the apogee of the payload. The difference of the apogee is higher than the

expected first order approximation of 7∆L as suggested12 in [Ziegler and Cartmell,

2001] by 460m, the higher calculated number is a result of the ∆V supplied by the

rotating tether.

The change in apogee due to small changes in inclination is shown in Figure 4.7b.

It follows from orbital mechanics that a small change in the inclination to flatten

the orbit will increase the apogee.

A small change in the in-plane rotation angle, ψ, causes minor changes to the apo-

gee altitude, as shown in Figure 4.7c. The relationship is predominantly parabolic

11That is, the perigee point.
12For a hanging tether.
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based due to the increase in energy supplied to the orbit 1
2
m∆V 2, which is itself

dependent on ψ̇.

4.4.2 Lunar capture

Once the spacecraft is ballistically captured around the Moon, a small thrust is

required to ensure that the orbital energy is reduced below the threshold required

for the spacecraft to escape. A ∆V of less than 50m/s will fix the spacecraft in a

highly elliptical (e = 0.9) but stable Lunar orbit.

A midpoint burn of ∆V = 25m/s with a capture burn of ∆V = 50m/s corres-

ponds to a fuel mass fraction of 9.6% assuming an Isp rating of 75 s for a Nitrogen

cold gas thruster. A conservative estimate of 1 kg mass for the engine and associated

structure leaves the 10 kg original satellite mass with 8.04 kg of useful payload mass.

When this is compared to the Hohmann transfer ∆V cost, [Koon et al., 2001, p71]

calculates that the WSB transfer requires 20% less fuel to execute. This necessarily

transfers into a lower mass of the payload and subsequent cost savings.

Once the payload is captured, it is possible to use tethers for the descent to the

Lunar surface. Staged tethers as in [Cartmell et al., 2004] or Lunar elevators may be

used to transfer the payload to the surface, and Lunar minerals to LEO. [Williams

et al., 2005, p 784] claims that the payload can be delivered within 1 cm for a

controlled handover of a staged tether system, and can be held in a 10m window

for approximately 135 seconds, which is ideal for the multi-staged tether system

provided a control system can be devised that will enable an automatic remote

handover of payloads.

90



4.5 A demonstration Lunar mission with a tether

launch

A demonstration mission to the Moon is outlined below, involving a tether launch

from LEO to Lunar parking orbit. It is examined using hardware available in 2008,

as a low-cost micro-satellite mission that could be launched in the short term, with

today’s technology.

4.5.1 Spacecraft sizing

The MMET system is sized to launch a 10 kg payload to Lunar capture orbit. This

is intended as a demonstration level mission, although the MMET system may be

scaled to launch larger payloads, as discussed previously.

The facility is proposed to be entirely housed within a cylinder containing the

motor and gearbox. The solar arrays will consist of 35000 standard sized 2 cmx4 cm

solar cells, which provide the power required by the motor, recharge the batteries and

provide power to the spacecraft bus. The solar cells will be a InGaP/GaAs/Ge type

capable of 25% efficiency [Green et al., 2003], with a degradation rate of 1%/year

[Griffin and French, 1991]. The mission length of 5 years is based on the probability

of a tether cut due to orbital debris when using multiple redundant tether strands,

coupled with the useful life of the solar arrays.

The power to the motor will only be available during the time the facility is not in

eclipse and this is factored into the equations using the function Eclipse described

in Section 4.2.5.

The total useful power available for a 2mx3m cylinder augmented by a 1.5mx6m

fold out panel will be 4.3 kW when launched and 3.05 kW at the end of a 5 year

mission. The end of life power allows the motor characteristics to be defined, in

this case the motor used will be a 3 kW rated motor capable of driving 1000Nm
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of torque through a reducing gearbox. The gearbox will reduce the rotations from

the motor armature rotation of 430 rad/s to the required angular velocity of the

rotor arm of 20 rad/s. This motor is based around GE Industrial DC motor model

5BC49JB1115, rated at 4 hp and 4150RPM , which is designed to drive an electric

vehicle.

The rotor is comprised of two 1 km tether sections with each linking the facility

to the payloads. The stator is identical, with the payloads replaced by counter-

weights. The tether itself is Zylon� fibre with a tensile strength of 5.8GPa, density

of 1570 kg/m3 and cross sectional area of 64mm2. This leads to a tether mass of

100 kg for each of the four tether lines, totalling 400 kg. A safety factor of 1.3 is

applied to the calculation of the maximum breaking stress, however additional pre-

cautions must be taken by careful design of the tether structure to ensure the tether

will remain intact if impacted by micro-meteorites or debris [Forward and Hoyt,

July 1995].

The tether mass outweighs the payload mass in order to keep the breaking stress

to a manageable level. This is advantageous as the tethers may be adjusted to

compensate for any tether failure mode or asymmetric payload release.

The MMET is designed to be highly reusable. The 5 day spin up cycle must be

matched by an equal 5 day spin down cycle to return the rotor to a stationary

position aligned with the gravity vector. When this is achieved, the payload will be

much easier to dock than when in motion. For the WSB transfer, payloads can be

transferred to the Moon every Lunar month, leaving a window of 20 days to dock

the payloads to the tethers.
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4.5.2 Analysis

The square of the characteristic velocity, Uvel, of the tether is proportional to the

tensile strength, T, and inversely proportional to the density, ρ:

Uvel =

√

2T

ρ
(4.46)

The characteristic velocity determines the maximum velocity attainable for a tether

supporting its own mass while rotating. Adding a payload limits the velocity a

tether can impart by increasing the tension and stress in the tether, therefore by

keeping the mass of the payload to a fraction of the tether’s mass, the decrease in

characteristic velocity is minimised.

A tether manufactured from Zylon� with T = 5.9GPa, ρ = 1570 kg/m3 with a

safety factor of 1.3 gives a characteristic velocity of 2.238 km/s. With a payload

mass equivalent to 10% of the tether mass attatched to the end of the tether, the

characteristic velocity will drop by approximately 10% to 2.10 km/s. To achieve

Lunar orbit, the payload will need 3.187 km/s [Sweetster, 1991] from LEO at 167 km

altitude. Therefore, the tether will have to occupy a higher earth orbit of 1000 km

to successfully launch to the moon, or a staged system will be required [Cartmell

et al., 2004].

The necessary orbital altitude of 1000 km is unfortunate in terms of the orbital

debris that the tether will encounter. Figure 4.9 shows the debris environment from

LEO to Geostationary Earth Orbit (GEO) – the debris environment is relatively

dense until 3000 km altitude, meaning the risk of a severed tether is higher in this

region of space. This is compounded by the long time to clear the debris from the

higher orbits, meaning the orbital debris will continue to pose problems for decades

to come.
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4.6 Conclusions

A demonstration mission launching a micro-satellite from MEO to Lunar orbit is

achievable using current technology. The safety margins, however, are extremely

small and the MMET launcher would be located in an orbit with large amounts of

debris.

The inclination term does not significantly alter the dynamics of the MMET sys-

tem. However, any out-of-plane component in the local axes – whether on an inclined

orbit or not – interacts with the orbital parameters to create an unsteady oscillation

in the tether. This is unacceptable for payload aiming and release, therefore the

local out-of-plane angle should be minimised insofar as possible.
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Figure 4.7: Change in apogee of the payload after release from the tether system
after one half of an orbit compared to small changes of system parameters
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Figure 4.9: The orbital debris environment from LEO to GEO, from [Wikipedia,
2008]
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4.7 Inclination plots

Table 4.3 shows the varying cases with an explanation of their initial conditions.

This is an exact duplicate of Table 4.2, reprinted for reference.

case ι̇ ψ̇ α̇ ι ψ α eccent τ

I1 0 0 0 0 0 0 0 1000
I2 0 0 0 29π/180 0 0 0 1000
I3 0 1 0 29π/180 0 0 0 1000
I4 0 0 0 29π/180 0 −29π/180 0 1000
I5 0 1 0 29π/180 0 −29π/180 0 1000

Table 4.3: Initial conditions for the inclination numerical solutions.

The initial conditions for the other parameters held constant are:

L = 1000m,Mpayload = 10 kg,Mtether = 100 kg,Mfacility = 500 kg, e = 0,

Ṙ[0] = 0, θ̇[0] = 0.00113905 rad/s,

θ[0] = 0, R[0] = 7.378 ∗ 106m
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Figure 4.14: Phase plots of ψ for the five cases.
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Figure 4.15: Phase plots of α for the five cases.
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Figure 4.16: Plots of ∆V vs. time for the five cases.
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Figure 4.17: Plots of Tension vs. time for the five cases.
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Figure 4.18: Plots of Stress vs. time for the five cases.
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Chapter 5

Dynamics of tethers with length

deployment

As has been shown in Chapter 4, it is possible to describe the motion of the MMET

around complex orbital paths. Now the deployment characteristics of the MMET

will be explored.

5.1 Deployment and recovery with the MMET

The two payload arms of the MMET may both be gainfully employed to launch two

payloads, and this presents a set of unique challenges for the launcher. Both payload

tethers must be able to demonstrate all the necessary properties of a single system

tether, with the additional demands of a dual-launch system overlaid. The tethers

must be strengthened for a potential asymmetric release, and the oscillations that

this imposes on the system and tethers.

The generalised coordinates have been chosen in order to ascertain the impact that

the length deployment has on the MMET without over-complicating the dynamics
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of the system. The global coordinates R and θ have been included to model the

orbital dynamics. The primary rotational coordinate, ψ, has been expanded to

include both payload arms in the form of ψ1 and ψ2. Similarly, each payload arm

has been assigned a length coordinate, L1 and L2, to enable independent, rigid

motion of the extendable tether arm.

To limit the number of generalised coordinates, the inclination variable, ι, and the

out-of-plane coordinate, α, have not been included as generalised coordinates. A

six degree of freedom model will be adequate to examine the dynamics of length

deployment, however a nine degree of freedom model has the potential to introduce

orbital resonance to the deployment. At this early stage of research, nine degrees

of freedom are too many to successfully isolate and examine the effects of length

deployment on the system.

5.2 Addition of length as a generalised coordinate

The six variables of interest – {R, θ, ψ1, ψ2, L1, L2} – fulfil all the requirements of

generalised coordinates. An analysis will be performed to investigate the effect that

deployment and recovery have on the tether system orbit.

A system of equations will be constructed to include a symmetrical dumbbell

tether with a facility mass at the centre of the system. The important mass points

included in the model are the two identical payload masses, Mpayload, the facility

mass, Mfacility, and the n discretized tether masses, Mtether, which are evenly distrib-

uted along each tether.

As before, the stator is not included in this model because this would significantly

increase the complexity of the system.

As previously, Lagrange’s equations will now be derived for the system.
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5.3 Constructing the equations of motion

A system of Lagrange’s equations is constructed using the rotational method de-

scribed in Chapter 3, similarly employed for the inclination equations in Chapter 4.

The local position of the masses with respect to the facility mass are derived. This

allows the centre of mass with respect to the facility mass to be calculated. The

orbital positions are then assembled from these equations.

Simplifying assumptions have been made to lower the computational cost of as-

sembling and solving these equations.� The orbital length used in the calculation of potential energy is assumed to be

the orbital radius vector, R. This is acceptable as L
R
≪ 1.� The orbital rotations have been decoupled from the local rotations. This is

sufficient to analyse the fast rotations of the dual-payload system, but should

be treated with caution when analysing the stationary characteristics of the

MMET.� The tethers are assumed to be rigid and inelastic.� The cross-sectional area (CSA) of the tether is assumed to be constant along

the tether length. The CSA will almost certainly be a function of length when

the tether is built (i.e. tapered), however, this assumption builds in a level of

conservatism into the analysis which can be refined at a later stage.

These assumptions are designed to maximise the benefit of the solution to the equa-

tions, while minimising the computational cost and minimising the risk of losing

that information while studying a multi-parameter system.

As outlined in the above assumptions, the orbital and local rotations have been

decoupled. The positional equation of the first payload therefore is defined as:

Pfinal1 = Rθ,Z · (P0→CoM)− (Pfacility→CoM) + (Rψ1,Z · P1) (5.1)
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As can be seen in Equation 5.1, the rotations are purely based on a series of Z-axis

rotations.

Using the rotation matrices defined in Section 3.5, along with the following defin-

itions1 for the payload position:

P1 =













L1

0

0













(5.2)

leads to the expanded version of the positional equation for payload 1: When

evaluated, this becomes:

Pfinal1 =













R cos θ

R sin θ

0













−













CoMX

CoMY

CoMZ













+













L1 cos(ψ1)

L1 sin(ψ1)

0













(5.3)

The position of the centre of mass from the facility, P0→CoM, is calculated with the

system mass points including the payload, facility and tether mass points.

The tether is discretized with each tether comprising n equal mass points, as shown

in Equation 5.4 and Figure 5.1. The aim in discretizing the tether is to enhance

the potential and rotational energy expressions. The n discrete mass elements were

chosen so the centre of mass of the tether falls on the geometric centre of the tether,

necessitating n + 1 spaces between the elements.

P0→CoM =













(M1+
n
2
Mtether 1)L1 cos(ψ1)+(M2+

n
2
Mtether 2)L2 cos(ψ2)

M1+M2+Mfacility+nMtether 1+nMtether 2

(M1+
n
2
Mtether 1)L1 sin(ψ1)+(M2+

n
2
Mtether 2)L2 sin(ψ2)

M1+M2+Mfacility+nMtether 1+nMtether 2

0













(5.4)

To create Lagrange’s equations, the position, velocity and energy of each point

1Where L1 is the length in absolute terms between the facility and the payload.
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Figure 5.1: Discretised tether diagram with n = 5 mass points

must be determined.

The positions of all the mass points are given as:

Ppayload 1 =













R cos θ

R sin θ

0













−













CoMX

CoMY

CoMZ













+













L1 cos(ψ1)

L1 sin(ψ1)

0













(5.5)

Ppayload 2 =













R cos θ

R sin θ

0













−













CoMX

CoMY

CoMZ













+













L2 cos(ψ2)

L2 sin(ψ2)

0













(5.6)

Ptether 1, j =













R cos θ

R sin θ

0













−













CoMX

CoMY

CoMZ













+













L1 cos(ψ1)

L1 sin(ψ1)

0













(

j

n+ 1

)

(5.7)

Ptether 2, j =













R cos θ

R sin θ

0













−













CoMX

CoMY

CoMZ













+













L2 cos(ψ2)

L2 sin(ψ2)

0













(

j

n+ 1

)

(5.8)

Pfacility =













R cos θ

R sin θ

0













−













CoMX

CoMY

CoMZ













(5.9)

where each j is the number of the n tether mass points.

The velocity of each point is determined. The payload 1 is used as an illustrative
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example: in local axes in Equation 5.10 and in inertial axes in Equation 5.11

Vpayload 1, local =













L̇1 cos(ψ1)− L1 sin(ψ1) ψ̇1

L̇1 sin(ψ1) + L1 cos(ψ1) ψ̇1

0













(5.10)

Vpayload 1, inertial =












Ṙ cos(θ)− R θ̇ sin(θ)

Ṙ sin(θ) +R θ̇ cos(θ)

0













+













−L1 ψ̇1 sin(ψ1) + L̇1 cos(ψ1)

L1 ψ̇1 cos(ψ1) + L̇1 sin(ψ1)

0













+

(

1
M1+M2+Mfacility+2nMtether

)

·
























−
(

M1 +
n
2
Mtether

)

(

L1 ψ̇1 sin(ψ1)− L̇1 cos(ψ1)
)

−
(

M1 +
n
2
Mtether

)

(

L1 ψ̇1 cos(ψ1) + L̇1 sin(ψ1)
)

0













+













(

M2 +
n
2
Mtether

)

(

L2 ψ̇2 sin(ψ2)− L̇2 cos(ψ2)
)

(

M2 +
n
2
Mtether

)

(

L2 ψ̇2 cos(ψ2)− L̇2 sin(ψ2)
)

0

























(5.11)

The expressions for energy are then calculated from the velocity and position

information.

The translational kinetic energy, Ttrans, of the system is calculated for the MMET
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tether with n discrete masses per tether2:

Ttrans =
M1

2
Vpayload 1 · Vpayload 1 +

M2

2
Vpayload 2 · Vpayload 2

+

n
∑

j=1

Mtether

2
Vtether 1 j · Vtether 1 j

+
n
∑

j=1

Mtether

2
Vtether 2 j · Vtether 2 j

+
1

2
(M1 +M2 + nMtether + nMtether +Mfacility) (VCoM · VCoM) (5.12)

The rotational kinetic energy, Trot, of the system is found in a similar way:

Trot = (Ipayload 1 + Ipayload 2) · (ωlocal · ωlocal)

+

n
∑

j=1

Itether 1 j · (ωlocal j · ωlocal j) +

n
∑

j=1

Itether 2 j · (ωlocal j · ωlocal j)
(5.13)

where:

ωlocal =













0

0

ψ̇













I3 =













1 0 0

0 1 0

0 0 1













Ipayload 1 =L
2
1Mpayload 1 · I3 Ipayload 2 =L

2
2Mpayload 2 · I3

Itether 1 j =L
2
1jMtether 1 j · I3 Itether 2 j =L

2
2jMtether 2 j · I3

The evaluated sum of the component rotational kinetic energies for n = 10 tether

masses are:

Trot =
L1

2M1 ψ̇1
2

2
+
L2

2M2 ψ̇2
2

2
+

35Mtether

22

(

L1
2 ψ̇1

2
+ L2

2 ψ̇2
2
)

(5.14)

2Where Mtether is the discrete mass point, this sums to the total tether mass M = nMtether.
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The sum of the potential energies, U , are:

U =
n
∑

j=1

µmj
∣

∣Pj
∣

∣

(5.15)

where Pj are the mass point locations given in Equations 5.5 to 5.9.

The potential energy term is simplified by using the assumption that the mass

points are sufficiently close to the centre of mass of the system, that is
Pj

R
≪ 1, that

the potential energy of each mass point of the system may be represented as if it

were at a distance R from the major gravitational body. The evaluated form of one

tether arm is therefore:

U =

n
∑

j=1

µmj

R
=
nMtether

R
(5.16)

Summing over all the mass points3 gives the full form for the potential energy of

the MMET:

U = −µM1

R
− µM2

R
− 20µMtether

R
− µMfacility

R
(5.17)

The Lagrangian is then given by L = T − U .

Lagrange’s equations are then generated for the five generalised coordinates,

{R, θ, ψ1, ψ2, L1, L2} as follows:

d

dt

(

∂T

∂q̇j

)

− ∂T

∂qj
+
∂U

∂qj
= Qj (5.18)

5.4 Non-conservative forces

The motor on the MMET spins up the payload arms, while the counter-torque

rotates the stator in the opposite direction. This is a non-conservative force in

action, as the energy is transferred from the solar cells4 to the rotational motion of

3There are 10 discrete mass points on each tether.
4Or the equivalent driving power source.
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the payloads, via the motor. The non-conservative forces are derived according to

the principles of virtual work outlined in Section 3.4:

Q =

































0

0

τ cos(γ)

τ cos(γ)

−
(

Ldamp L̇1
2
)

−
(

Ldamp L̇2
2
)

































(5.19)

where τ is the torque magnitude, γ is the angle that the torque acts relative to

the in-plane spin and Ldamp is a braking term modelling the action of the spool-out

mechanism. The form of the tether friction braking was taken after the velocity

based barber-pole braking system analysed in [Lennert and Cartmell, 2006].

5.4.1 Tether braking

It is proposed to use a barber pole braking system for this tether analysis. This

is a passive system employed to minimise the need for an active control system

or complicated reel-out mechanism. The kinetic energy of the tether and payload

spools out the tether with friction forces providing resistance to ensure the tether is

deployed in a controlled manner.

The braking force on the tether will be proportional to the square of the speed of

deployment:

F = −
(

Ldamp L̇
2
)

(5.20)

where Ldamp is a proportional constant modelling the friction properties and physical

characteristics of the braking system. This allows a flexibility to either define the

damping coefficient to reflect a physical braking system or to specify a damping

coefficient and match a braking system to the numerical modelling.
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5.5 Analysis of length deployment of tether

The MMET is different to other tether systems by virtue of the dual-payload mo-

torized arrangement of its tethers. This confers several advantages through the

symmetric arrangement of the payloads, however the dynamics of the spin-up are

untested in an orbital environment5.

A goal is set to study the dynamics of the MMET system: it must be capable of

imparting a ∆V = 1000m/s to the payloads. This is a moderate velocity increment

that will demonstrate the usefulness of the MMET system, allowing inclusion on a

small launcher or as a secondary payload.

The system of equations is solved in Mathematica�, using NDSolve, for a time

of t = 208129 s (approx 33 orbits). Figures 5.2 and 5.3 show the results for the

following initial conditions:

M1 =M2 = 10 kg,Mtether =
100
10

= 10 kg,Mfacility = 500 kg,

Ṙ[0] = 0, θ̇[0] = 0.00113905 rad/s, ψ̇1[0] = 0.1 rad/s, ψ̇2[0] = 0.1 rad/s,

L̇1[0] = 0, L̇2[0] = 0, R[0] = 7.378 ∗ 106m, θ[0] = 0, ψ1[0] = 0.01◦, ψ2[0] = 180.1◦,

L1[0] = 100m,L2[0] = 100m,Ldamp = 5 ∗ 108 kg/m, τmax = 1000Nm

A further explanation of the starting conditions is below:� the starting radius R[0] is equivalent to 1000 km above the surface of the Earth.� the motor torque is proportional to time, and increases from τ = 0 at t = 0 s

to τ = 1000Nm at t = 208129 s ≈ 33 orbits.� the initial conditions for the tether positions, ψ1 and ψ2 are chosen to be

slightly asymmetrical.� the tether mass, Mtether, is the discretized mass of a section of the tether, the

total tether mass in this case is given by nMtether = 100 kg.

5For details of ground testing and analysis, see [Cartmell et al., 2003].
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An asymmetry in the initial tether angles was chosen to counter numerical integra-

tion problems – the numerical solver has great difficulties in integrating the equations

of motion when the tether arms are exactly 180◦ apart. The small asymmetry is

acceptable, as the tether arms will never be exactly opposite.

The solution to the equations of motion for the above initial conditions are given

in Figures 5.2 to 5.4.

5.5.1 Discussion of results for deployment

As can be seen in Figures 5.2a, the radius vector R is constant – this is due to the

assumption in the expression for potential energy that the masses act at distance R

from the inertial origin.

The motor torque shown in Figures 5.2b is increased linearly to a maximum torque

to avoid any large start-up transients. This is key to ensure a smooth deployment

phase. A slow increase in the torque results in a gradual increase in the tether

rotational velocity, and a gradual increase in the stress in the tether.

The length of the payload 1 tether smoothly reels out from the hub, as shown

in Figures 5.2c, first slowly, then speeds up to a moderate and predictable linear

increase due to the tether braking6.

If the torque was suddenly increased from zero to maximum, the initial few minutes

of deployment would be uncontrolled, and this is likely to cause significant problems

in several areas – including tether asymmetry and nonlinear flexing in the tethers.

This would invalidate the previous assumptions, perhaps leading to payload/stator

interaction, which is to be avoided at all costs.

The linear scaling in torque undoubtedly delays the overall time taken to deploy

the tether, compared to a flat maximum torque profile, and could be optimised

6Recall that the tether braking force is proportional to the square of the tether velocity:
F ∝ −LdampL̇2
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further. This is a conservative approach to ensure the safe deployment of the tether,

and inevitably leads to a longer deployment time than is absolutely necessary.

The torque drives the tether rotational speed, as shown in Figures 5.2d: it first

increases, then trends back to an asymptote at around 1.35 rad/s.

The profile of angular velocity varying with length is shown in Figure 5.3b. This

shows that the rate of increase of ψ̇1 is within acceptable limits and will not place

onerous demands on the strength of the tether.

The potential ∆V the payload may achieve is defined as the dependence between

the rotation and length, ∆V = ψ̇1L1, and is shown in Figure 5.3a. The ∆V increases

approximately linearly, in contrast to the nonlinear behaviour of the angular rotation

and length generalised coordinates. At the end of the numerical integration, ∆V ≈

1000m/s.

One issue with the MMET system is that there is a possibility of mutual inter-

ference with the tethers of the payload a stator arms. As Figures 5.3c and 5.3d

show, in this case, the difference between the angle of the tethers and the lengths

of the tethers are small. The angular difference is nominally zero after a start-up

transient, with an initial maximum of ≈ 0.5◦, which is acceptable for the spin-up

criteria7. The difference in lengths of the tethers are minimal – this is likely a result

of rounding errors encountered using a numerical solver.

Analysing the tension and stress in the tether shows that the tether is intact and

within material bounds. The tether tension, shown in Figure 5.4a, at around 100 kN

is high, but within acceptable limits. The stress, shown in Figure 5.4b, assumes a

CSA of 64mm2, equivalent to a single circular section8 of diameter 9mm.

The stress level in the tether is below failure point. The tensile strength of Zylon

7This may be unacceptable for the final ‘launch phase’ of the payloads where the required
accuracy of the tether angle is likely to be more stringent.

8This is a simplifying assumption – a tether launch satellite would be likely to employ a com-
bination of a tapered tether to reduce the mass along the span of the tether and a multi-strand
tether to mitigate against single-strand failure.
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fibre is 5.9GPa; with a safety factor of 1.5, the maximum acceptable tensile strength

is 3.9GPa. The maximum calculated stress in the tether is 1.6GPa, which provides

an additional level of redundancy in the tether. The total safety factor is approx-

imately 1.6
5.9

= 3.7.

The stress in the tether has been designed to be linear, avoiding step-increases in

the stress and allowing the load to distribute evenly along the fibre in a progressive

way.

The tether tension is calculated as the sum of the tension due to the tether mass

and the payload:

T =
1

2
AρL1

2 ψ̇1
2
+ L1M1 ψ̇1

2
(5.21)

where A is the cross-sectional area (CSA) of the tether, and ρ is the tether density.

The tether stress is defined conventionally as:

σ =
T

A
(5.22)

5.6 Refining the equations of motion

A refinement of the tether mathematical model is proposed. Whereas the previous

model describes a discretized tether of constant mass, Mtether, this can be more

accurately modelled as a mass proportional to the tether length:

Mtether =
ρAL

n
(5.23)

where ρ is the tether density, and L
n
is the effective distance between mass points.

As shown previously in Figure 5.1, the tether mass model allows the dynamics of

a varying tether mass to be investigated. This is more accurate, better reflecting

the realities of the mass distribution when the tether is deployed.
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The previous set of equations modelled the mass points as fixed fractions of the

tether which moved proportional to each other and did not vary in mass. This is

unsatisfactory because the entire tether mass would be distributed over the length

of the tether, whether the tether length is a few metres or at full deployment.

Obviously, this is not representative of the tether mass therefore a new model is

proposed to better describe the tether mass in Equation 5.23. This refines the

tether mass model to increase the tether mass in proportion to the length of the

tether, giving a more representative model of the tether mass.

As with the previous investigation into the deployment of the tether, the equations

of motion are solved for the following initial conditions for a time period9 of 69376 s:

M1 =M2 = 10 kg,Mtether = ρAL/n,Mfacility = 500 kg,

ρ = 1570 kg/m3, A = (0.008)2 = 0.000064m2, n = 10

Ṙ[0] = 0, θ̇[0] = 0.00113905 rad/s, ψ̇1[0] = 0.1 rad/s, ψ̇2[0] = 0.1 rad/s,

L̇1[0] = 0, L̇2[0] = 0, R[0] = 7.378 ∗ 106m, θ[0] = 0, ψ1[0] = 0.01◦, ψ2[0] = 180.1◦,

L1[0] = 100m,L2[0] = 100m, τmax = 1000Nm,Ldamp = 5 ∗ 108 kg/m

To avoid the problem of initially over-accelerating the payloads, a nonlinear torque

is applied by the tether motor, as shown in Figure 5.5b. This effectively limits

the initial spin-up torque, limiting the angular acceleration and providing a stable

basis for controlled deployment. The maximum value of angular acceleration is

0.025 rad/s2, and the maximum angular speed is 10.2 rad/s. Figure 5.5d shows a

time-history of ψ̇ with a moderate angular acceleration in the first few seconds of

spin-up, followed by a progressive and controlled deployment of the tether thereafter.

The torque is controlled in such a way to avoid an initial spike of acceleration, to

progress rapidly to a high-torque plateaux and furthermore, to provide a smooth

9This corresponds to exactly 11 orbits.
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transition between the two.

τ = τmax · exp
(−7500

t+ 1

)

+ 50 (5.24)

where the maximum torque provided by the motor, τmax ≈ 1000Nm and t is the

elapsed time in seconds.

A significant advantage of the motor torque control is that the tether is deployed

linearly, with the intention of limiting the jerk or acceleration to the tether, as shown

in Figure 5.5c. The linear deployment is very successful in limiting the tension and

stress in the tether, see Figure 5.7a and Figure 5.7b respectively.

The expression for the tether tension at the facility (i.e. the point of greatest

tension) has changed compared to the previous tether mass model described in

Equation 5.21. The tension is not calculated with respect to the centre of mass of

the tether in the centre of the tether, it is instead assumed that the tether mass acts

in its entirety at the root of the tether. The tether tension in the discretized tether

is calculated as:

T = AρL1
2 ψ̇1

2
+ L1M1 ψ̇1

2
(5.25)

where A is the cross-sectional area of the tether, and ρ is the tether density.

When examining stresses in the tether, the maximum stress levels for the expo-

nential torque case appears higher at 2.1GPa, compared to 1.3GPa for the linear

torque model. This is due to the differing tension (and therefore, stress) expressions

in the two cases, and can not be directly compared.

However, if the stress is qualitatively examined, it is interesting to compare the

stress profiles. The time at which the maximum stress is applied is very different;

with the linear torque case, the stress is maximum at the end of the spin-up just

before payload release; with the exponential torque case, the stress quickly rises to

maximum early in the spin-up, and is eased slightly before payload release achieving
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a stress before release of 1.75GPa. The maximum allowable stress, for comparison,

is 3.9GPa

The time taken to spin the payload to release velocity is significantly less in the

exponential torque case – the time taken to spin-up is one third of the linear torque

case. This is partly due to the difference in mass modelling, and partly due to the

torque profile used. This represents a marked improvement, and will undoubtedly

enhance the economic strengths of the MMET as a renewable launch platform.

In terms of tether synchronisation, Figures 5.6c reveals that the tethers are well

separated by approximately 180◦, and furthermore, they tend to settle at a point

diametrically opposed to each other. This is an important result, especially when

the tethers are initially separated by a few fractions of degrees as would occur in a

real spin-up scenario. The solution to the equations of motion were based on the

initial conditions ψ1 = 0.01◦ and ψ2 = 180.1◦.

Likewise, in Figure 5.6d, the difference in tether lengths are minimal. This may not

be true in the real world, as material properties and coefficients of friction are very

difficult to exactly match between the two tether arms. Clearly, the asymmetrical

spin-up scenario requires further study.

As it is clear that deploying the tethers with a MMET system is achievable for a

modest payload, the recovery of the tether model shall be examined.

5.7 Recovery of tethers

One of the strengths of the MMET is in its role as a reusable launcher of payloads. In

order to re-use the tethers, they must be de-spun and then recovered to the facility.

The hardware required to perform the de-spin is a large braking system – the disc

brake system on a car axle is similar in operation to what may be required. There

are important differences, however, as the disc brake must be cooled. On Earth’s
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roads, the cooling is provided by conductive heat transfer of air; on orbit, conduction

and radiation are necessary to channel the excess heat away from the brake to the

vacuum of space.

The required braking energy is significant – approximately equal to the energy

supplied to accelerate the tether to release velocity. The power supplied by the solar

cells to the motor will be comparable to the power required to brake the assembly,

assuming equal time spent accelerating and decelerating the payloads. Given that

the solar cells are currently in the kW range, the braking system and heat dissipation

systems should be sized accordingly and should not burdensome to source.

5.7.1 Recovery profile

Recovery requires a different approach to deployment – the two are conceptually

opposite, but can not be treated as mirror images when analysing the technicalities

as there are important differences between the two cases.

Deployment simply requires a spinning motor and a braking system, the tether

arms held rigid by the rotation.

When recovering the arms, there are requirements that must be fulfilled:� the tethers must be slowed gradually to avoid backlash and tether tangling� there must be a minimum spin rate to keep the tether rigid� the tethers must be fully recovered to enable a subsequent deployment

The initial slow-down phase is similar to the spin-up phase – energy is dissipated

during the slow-down to minimise tension in the tether, making recovery easier. The

motor required to reel the tether in for storage may require less power (doing less

work against the tether tension) and therefore will be lighter and cheaper.
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5.7.2 The equations of motion for recovery

The equations of motion are the same as the deployment equations of motion for the

orbital generalised coordinates, R and θ, and the spin generalised coordinates, ψ1

and ψ2. The length generalised coordinates, L1 and L2 shown in Equations 5.26 and

5.27, differ in the fact that they are not braked to stop fast deployment, but they are

retracted under motor power. Similarly, the initial conditions and non-conservative

forcing terms10 have been altered to reflect the differences between decelerating and

accelerating the tether arms.

The aim of the new length equations of motion is to provide a consistent length

recovery rate for the tethers: L̇ = −v. This models a constant speed motor reeling

in the tethers. A small acceleration term, L̈, is added to make both length equations

into two ODEs, such that the equations of motion may be solved numerically.

0.000001L̈1 + L̇1 = −Lrec (5.26)

0.000001L̈2 + L̇2 = −Lrec (5.27)

The non-conservative forces in the right hand side of Largange’s equations are:

Q =
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(5.28)

The non-conservative forces for the length equations of motion provide a constant

reel-in speed, modelled by the rate Lrec. Similarly, the spin generalised coordinates

10 The right hand side terms of Lagrange’s equations, shown in Equation 5.28.
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dictate a linear braking proportional to the rotational speed of the tethers.

5.7.3 Solving the equations of motion for recovery

The recovery stage necessitates a two-stage approach to recovering the tether. The

first stage recovers the tethers close in to the facility, at which point a slower recovery

stage is used to safely guide the remaining length of tether into the facility.

The tether arms must be kept rigid11, and this requires a minimum rotational

velocity of the tether system. The tether is decelerated to a small rotational velocity

in the first phase with a constant braking force. Once the tether arm is rotating

slowly, close to the facility, a much lower braking force and marginally lower tether

retraction speed are employed to ensure the safe recovery of the last section of tether.

The initial conditions for the first recovery phase, numerically solved for a time

period of 50000 s, are:

M1 =M2 = 10 kg,Mtether = ρAL/n,Mfacility = 500 kg,

ρ = 1570 kg/m3, A = (0.008)2 = 0.000064m2, n = 10,

Ṙ[0] = 0, θ̇[0] = 0.00113905 rad/s, ψ̇1[0] = 1.0 rad/s, ψ̇2[0] = 1.0 rad/s,

L̇1[0] = 0, L̇2[0] = 0, R[0] = 7.378 ∗ 106m, θ[0] = 0, ψ1[0] = 0.01◦, ψ2[0] = 180.1◦,

L1[0] = 1000m,L2[0] = 1000m,Torquemax = 0Nm,

Lrec = 0.015 kg/m, ψdamp = 1500Ns

Again, an asymmetry in the tether angles was chosen to reflect the unknowns that

affect the payload release dynamics. Additionally, the numerical solver has great

difficulties in integrating the equations of motion when the tether arms are exactly

180◦ apart.

The second phase of recovery has the initial conditions similar to the first phase,

and is numerically solved for a time period of 25000 s. Initial conditions that differ

11This is an explicit assumption made when assembling the equations of motion.
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are listed below:

ψ̇1[0] = 0.026707 rad/s, ψ̇2[0] = 0.026707 rad/s,

L̇1[0] = 0, L̇2[0] = 0,

L1[0] = 250m,L2[0] = 250m,

Lrec = 0.010 kg/m, ψdamp = 100Ns

The goal for recovery of the tethers are to provide a stable and controlled reel-in,

avoiding scenarios that would lead to a break of the tether such as tether asymmetry

or uncontrolled resonance in the tether.

For a circular orbit and a linear tether recovery profile, the payload tethers remain

separated by approximately 180◦. The maximum range of tether movement from

the symmetric centre line is approximately 0.43◦, as shown in Figures 5.9c and 5.12c.

Furthermore, there are no significant deviations or other areas of concern in either

the spin angle or the tension or stress profiles.

The tension and stress in the tether are gradually lowered, while keeping the tether

taut, as seen in Figures 5.10a, 5.13a, 5.10b and 5.13b. This will not guarantee a

successful recovery, but will reduce the risk of a transient phenomenon that may

cause the tether to momentarily rise above the ultimate strength of the material,

thus breaking the tether.

The rotational speed of the arms initially increase due to conservation of mo-

mentum, as the length (and therefore inertia) of the tethers are reduced. Angular

momentum is conserved, and as Figure 5.9b clearly shows, the tether payloads rotate

at a faster rate while reeled in. This does not lead to an increase in the tension or

∆V due to the careful choice of the rotational braking system (and braking constant

ψdamp) and the reel-in speed (Lrec).

The second phase of tether recovery is shown in Figures 5.11 to 5.13. This occurs

with 250m of tether still outside the facility, i.e. one quarter remaining to recover.

The tether arms are rotating slowly enough to reduce the tension in the tether to
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minimal levels, while keeping the tether rigid enough to ensure the equations of

motion remain valid in describing the motion.

The tether arms are decelerated at a lower rate than the previous recovery phase,

with ψdamp = 100Ns. The tether recovery rate is slowed slightly to L̇ = 0.1m/s.

Similar to the first recovery phase, the remaining tether is slowly retracted into the

facility with no adverse dynamic effects. The angle between the tethers remains at

approximately 180◦ ± 0.5◦. However, at such a low tension, it is unknown whether

the tether can remain rigid without coiling or exhibiting other nonlinear behaviour.

An in-depth analysis should be performed to ascertain the tether’s behaviour in such

an environment, as a study that involves non-rigid tether behaviour is beyond the

scope of this thesis.

The time taken to deploy then recover the tether is 69376 + (50000 + 25000) =

144376 s, ≈ 40 hours, or a little under 22 orbits12, not taking into account the time

taken to release the payloads and the time to stabilise the tethers between the two

recovery stages. This short timespan allows a small swarm of 18 nano-satellites to

be launched from the MMET within a month.

As one of the key strengths of the MMET is the re-usability of the platform, this

is an encouraging finding.

5.8 Deployment and recovery on an elliptical or-

bit

The MMET describing an elliptical orbit may interact with the tether while deploy-

ing or retracting the tethers. In order to study this, a sensitivity analysis is carried

out to ascertain if this hypothesis is correct.

The deployment and recovery of the tether are carried out under identical initial

12 One orbit takes approx. 6307 s at an altitude of 1000 km.
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conditions to the equations describing the discretized mass model with the expo-

nential tether tension model.

The non-dimensional ellipse eccentricity parameter, e = 0.25, is supplied to the

initial conditions of Lagrange’s equations of motion through the orbital angle initial

condition: θ̇ = 0.00111382 rad/s.

This is calculated using the semi-latus rectum and orbital parameters, as in [Sze-

behely and Mark, 1998], to calculate the orbital angular velocity thus:

The semi-latus rectum (SLR) is calculated:

SLR = R(1 + e cos(θ)) (5.29)

where e is the eccentricity.

This is used to calculate the orbital angular velocity as in [Ziegler, 2003]:

θ̇ =

√
µ (1 + e cos θ)2

SLR
3
2

(5.30)

While deploying the tether, the orbital parameter θ does not adversely affect the

dynamics of the tether deployment. As shown in Figure 5.14b, the key deployment

metrics – the smooth deployment of the entire tether length and a progressive in-

crease in stress over time – are realised. When the parameters for the circular and

elliptical are compared, the parameters share much in common. When comparing

the tether length with angular velocity, for example, Figures 5.14b and 5.6b are

almost identical.

Similarly, when the recovery of the tether undergoing a elliptical orbit is analysed,

the solutions to the equations of motion present a similar result. The length and

angular velocity are very similarly matched over the two cases, as is shown when

comparing Figures 5.15b and 5.9b.
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5.9 Centre of mass movement

Additional stresses may be exerted on the tether by centre of mass movement. This

movement causes the root of the tether to librate along the orbital path, subjecting

the tether to additional loading.

The movement of the centre of mass is shown in Figure 5.16 for the deployment

cases and Figure 5.17 for the recovery case. The movement of the centre of mass

with respect to the facility mass is given by Equation 5.4.

The maximum movement of the CoM, for the deployment cases, are 0.07m and

0.0017m – the latter is the discretized mass model using exponential torque. The

effort expended to model the tether mass in more detail has stripped back a layer

of conservatism, and shown that the centre of mass movement is minimal. This

reinforces the earlier findings of the rotation and length generalised coordinates; the

symmetrical angle of the tethers and the equal lengths of the tethers both contribute

to a very symmetrical system.

The maximum movement of the CoM for the recovery case is an order of magnitude

greater, at 0.7m for the first phase and 0.08m for the second phase. This is due to

the starting assumption of asymmetrical tether angles: ψ1[0] = 0.01◦ and ψ2[0] =

180.1◦.

Whereas the difference in the tether angle in Figure 5.6c at full deployment tends

to zero, the initial conditions to recover the tether are asymmetrical. This is an

allowance for the payload release, which is an unknown quantity in MMET dynamics.

Therefore, an initial asymmetry of 0.1◦ and 0.01◦ was chosen to investigate the

recovery dynamics. To remedy this unknown, a separation study is recommended,

to fully investigate the effects that a symmetrical (or asymmetrical) dual release

have on the tethers, however this is outside the scope of this document.

On further examination, the graphs of the magnitude of position and acceleration

were plotted against time, and are show in Figures 5.18a and 5.18b.
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The maximum acceleration, due to the moving CoM, encountered in the recovery

phase is approximately 0.8m/s2, therefore the force exerted by the moving centre

of mass, given a total system mass of 10 + 10 + 100 + 100 + 500 = 720 kg is:

F = ma = 0.8 ∗ 720 = 576N (5.31)

Given this is several orders of magnitude less than the tether tension of 110, 000N

in Figure 5.10a, it does not present a significant risk to the tether. Indeed, it explains

the slight high frequency tension superimposed on the overall smooth downward

trend shown in that figure.

On payload release, the likelihood of a small tether asymmetry may be significant.

Removing this asymmetry, insofar as possible, could be achieved by repeated cycling

of short recovery and deployment phases, or an active control system on the payload

release mechanism.

5.10 Conclusions

Deploying and recovering the tethers on the MMET system is not a trivial matter;

however, they can be achieved in a well controlled and structured way.

A method for deployment and recovery in the orbital plane have been outlined,

giving confidence that the MMET is capable and suitable for use as a reusable launch

platform.
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5.11 Figures
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Figure 5.2: Initial MMET Spin-up
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Figure 5.4: Initial MMET Spin-up
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Figure 5.5: Initial MMET Spin-up, discretized tether mass model
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Figure 5.7: Initial MMET Spin-up, discretized tether mass model

21600 43200
t

400

500

600

700

800

900

1000

L1

(a) Tether 1 length L1 (m) vs. time t (s)

21600 43200
t

0.2

0.4

0.6

0.8

1

D@Ψ1,tD

(b) Tether 1 rotational velocity ψ̇1 (rad/s) vs.
time t (s)

Figure 5.8: MMET reel in, first phase
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Figure 5.9: MMET reel in, first phase
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Figure 5.10: MMET reel in, first phase
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Figure 5.11: MMET reel in, second phase
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Figure 5.12: MMET reel in, second phase
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Figure 5.13: MMET reel in, second phase
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Figure 5.15: MMET recovery with elliptical orbit
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Figure 5.17: MMET recovery, centre of mass movements
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Figure 5.18: MMET recovery, position and acceleration of centre of mass
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5.11.1 Linear kinetic energy

The linear kinetic energy of the MMET with length deployment and ten discrete tether masses, expanded from the analytical version

in Equation 5.12, is as follows:

Ttrans =Mtether(11M1 (M2 +Mfacility) + 145M1Mtether + 5Mtether (7 (M2 +Mfacility) + 85Mtether)) L̇1
2
+ (11M2 (M1 +Mfacility)

+5 (7M1+29M2+7Mfacility)Mtether +425Mtether
2) L̇2

2
+11M1

2 Ṙ2+22M1M2 Ṙ
2+11M2

2 Ṙ2+22M1Mfacility Ṙ
2+22M2Mfacility Ṙ

2

+ 11Mfacility
2 Ṙ2 + 440M1Mtether Ṙ

2 + 440M2Mtether Ṙ
2 + 440MfacilityMtether Ṙ

2 + 4400Mtether
2 Ṙ2 + 11M1

2R2 θ̇2 + 22M1M2R
2 θ̇2

+ 11M2
2R2 θ̇2 + 22M1MfacilityR

2 θ̇2 + 22M2MfacilityR
2 θ̇2 + 11Mfacility

2R2 θ̇2 + 440M1Mtether R
2 θ̇2 + 440M2Mtether R

2 θ̇2

+ 440MfacilityMtether R
2 θ̇2 + 4400Mtether

2R2 θ̇2 + 22 (M1 + 5Mtether) (M2 + 5Mtether)L1 sin(ψ1 − ψ2) L̇2 ψ̇1

+11M1M2 L1
2 ψ̇1

2
+11M1MfacilityL1

2 ψ̇1
2
+145M1Mtether L1

2 ψ̇1
2
+35M2Mtether L1

2 ψ̇1
2
+35MfacilityMtether L1

2 ψ̇1
2
+425Mtether

2 L1
2 ψ̇1

2

− 22 (M1 + 5Mtether) (M2 + 5Mtether) cos(ψ1 − ψ2)L1 L2 ψ̇1 ψ̇2 + (11M2 (M1 +Mfacility) + 5 (7M1 + 29M2 + 7Mfacility)Mtether

+425Mtether
2)L2

2 ψ̇2
2−22 (M1+5Mtether) (M2+5Mtether) L̇1 (cos(ψ1−ψ2) L̇2+L2 sin(ψ1−ψ2) ψ̇2)22 (M1+M2+Mfacility+20Mtether)

(5.32)
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Chapter 6

Dynamics of space-webs

This chapter was funded as part of the ESA Ariadna study into space-webs; the

final report was presented as [McKenzie et al., 2006]. The author wishes to acknow-

ledge the hard work and contributions to this report from M.P Cartmell and M.

Vasile of the University of Glasgow and D. Izzo of the ESA ACT.

6.1 Introduction

As was outlined in Section 2.3, a generic satellite that may be constructed or re-

configured as needed is a useful concept. Studies have previously shown that robots

may be deployed in this way to reconfigure the net structure [Kaya et al., 2004a],

[Nakano et al., 2005].

This chapter will consider the fundamental conceptual design of an appropriate

and generic thin membrane, its orbital mechanics and control.

A model of a net in orbit is presented here, with robots moving along the surface

of the net, simulating reconfiguration of the system. Useful guidelines to the initial

conditions of the net and components are found and give a starting point for further
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studies into the field.

This new class of structures with robots moving over the surface will be defined

as ‘Space-webs’, with the robots correspondingly named ‘Spiderbots’. A concept

illustration of the idea is shown in Figure 6.1.

Figure 6.1: Concept rendering of the space-web with spiderbots on the surface.

Space-webs have one definite advantage over single use spacecraft: the ability to

reconfigure the web to suit the mission or environment. Due diligence must therefore

be observed to ensure that the act of reconfiguring the web does not endanger the

web or satellite. Investigating the movement of the robots while moving over the

web is essential: the movement of their mass and momentum may significantly affect
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the web dynamics.

The stability of the system is investigated while the robots crawl along the web

surface in two pre-defined motions:� Three robots simultaneously moving along the outer catenaries of the web� Three robots simultaneously moving from the centre to the outside of the web

6.2 Modelling methodology

This study will aim to develop an analytical model of the fully deployed space-web

system that may be numerically integrated.

When constructing a numerical simulation of an existent system, it is important to

consider that the simulation can only be said to represent a real life scenario when

the model has been validated and the initial conditions used in the calculation are

representative of the simulation scenario.

This may seem like an obvious statement, but these facts are often overlooked for

convenience or speed.

In modelling the space-web, it is important to make the modelling process trans-

parent and verifiable. In this spirit, the steps followed to assemble the space-web

model are outlined paying particular attention to the steps followed to produce a

model in Mathematica and the process of validating the model against previous

models and the real life case where possible.

146



6.3 Web meshing

6.3.1 Web structure

To gain an accurate estimate of the energy of the web, the mass distribution over the

web is discretized [Ziegler, 2003]. An algorithm has been designed in Mathematica

to take the triangle bounded by the ith sub-span, the (i + 1)th sub-span and the

facility mass and divide this into equally sized smaller triangles.

The space-web is modelled as s sub-spans, clustered around the central facility

mass. Each sub-span is considered to be rigid and massless, held rigid by the

centripetal force of rotation around the centre of mass. An idealized point mass mi

is placed at the end of the sub-span, at length li, with the position of each endpoint

mass given by Pilocal in Equations 6.5, 6.6. In this form, this is very similar to

the tethers previously modelled, the differences are multiple sub-spans and massless

tethers.

The web is stretched between the sub-spans i and i + 1 and replicated to give s

triangular webs. Each triangular web section is idealised as an elastic plane con-

taining the mass of that section, however the internal elastic forces within the web

are not modelled at this stage.

6.3.2 Dividing the web

Each web section is divided into n equal sections (referred to here as ‘divisions’), in

the direction given by the line joining the midpoint of the sub-span ends and the

facility, as represented in Figures 6.2 to 6.4.

For each of the n web sections;
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triangles = (n+ 1)2

triangles in top row = 2n+ 1

row configuration = {2n+ 1, 2(n− 1) + 1,

2(n− 2) + 1, . . . , 3, 1}

number of rows = n+ 1

nodes = 1
2
(n + 2)(n+ 3)

midpoints = (n+ 1)2

Figure 6.2: 0 divisions Figure 6.3: 1 division Figure 6.4: 2 divisions

6.3.3 Web divisions

A point mass is placed at each mid-point, therefore the total number of masses for

the webs are s(n + 1)2, where s is the number of sub-spans. That is to say, the

number of masses in the web increases as the square of the number of divisions.

This can lead to a very large number of mass points to consider for a fine-grain web.

Assembling the space-web with three sub-spans (n = 3) and 0 divisions gives the

layout shown in Figure 6.5, with Figure 6.6 showing the same layout with 1 division,

and finally Figure 6.7 shows the same layout with 2 divisions. Each red dot is a

mass-point on the web.

Figure 6.5: 3 sub-spans
– 0 divs

Figure 6.6: 3 sub-spans
– 1 div

Figure 6.7: 3 sub-spans
– 2 divs
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Figure 6.8: 4 sub-spans
– 1 div

Figure 6.9: 5 sub-spans
– 2 divs Figure 6.10: 6 sub-

spans – 3 divs

The space-web layout may be expanded to analyse different web configurations. A

square layout with 1 division per section is shown in Figure 6.8; a pentagonal layout

with 2 divisions per section is shown in Figure 6.9; and a hexagonal layout with 3

divisions per section is shown in Figure 6.10 with total of 103 masses1.

6.4 Equations of motion

6.4.1 Centre of mass modelling

The mass of the web is likely to be unevenly distributed. Modelling this requires

an expression for the centre of mass (CoM) position, in this case using the facility

mass as the origin.

For n masses with positions {Xi, Yi, Zi}, the position of the centre of mass about

the facility, in terms of the local {X, Y, Z} coordinate system centred on the facility

mass, is:

Pfacility→CoM















n
∑

i=1

MiXi

n
∑

i=1

Mi

,

n
∑

i=1

MiYi

n
∑

i=1

Mi

,

n
∑

i=1

MiZi

n
∑

i=1

Mi















(6.1)

This is used when taking the position from the centre of mass to the facility mass,

as PCoM→facility = −Pfacility→CoM

1103 masses = 96 web midpoints + 6 sub-span masses + 1 central facility mass.
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Figure 6.11: Simplified space-web layout with s sub-spans

6.4.2 Rotations

Rotational matrices are used to rotate the starting vectors to their positions on the

local and inertial planes. The local position vector in Equation 6.5 is the matrix

product of a series of rotations. A diagram of the space-web configuration is shown

in Figure 6.13 with the web removed for clarity.

Rψi,X =













1 0 0

0 cos(ψi) − sin(ψi)

0 sin(ψi) cos(ψi)













(6.2)

Rαi,Y =













cos(αi) 0 sin(αi)

0 1 0

− sin(αi) 0 cos(αi)













(6.3)
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Figure 6.12: Midpoint location

Rφi,Z =













cos(φi) − sin(φi) 0

sin(φi) cos(φi) 0

0 0 1













(6.4)

PiLocal
= Rψi,X · Rαi,Y · Rφi,Z · Li (6.5)

where Li = {0, 0, li}T , aligned along the local Z-axis

Piinertial = Rθ,Z (P0→CoM − Pfacility→CoM + (Rψi,X · Rαi,Y · Rφi,Z · Li)) (6.6)

Rotations may be performed using the rotation order Z then Y then X :

The sub-span is rotated around the facility by an angle ψ with the axis of rotation

in the X-axis only. This vector is then rotated around the facility by an angle α with

the axis of rotation in the Y-axis only. Finally, this vector is then rotated around

the facility by an angle φ with the axis of rotation in the Z-axis only.
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Figure 6.13: Space-web diagram with 3 sub-spans shown in inertial space. Note:
the local axes are in the Y-Z plane.

The angles are projected about their respective axes i.e., the Z-rotation, φ, is

contained in the X − Y plane. The angles themselves can be compared to the

standard aerospace rotations, with the sub-span direction from the facility to the

edge taken as the tail-nose direction. In this case: ψ is the yaw angle, in the plane

of the space-web; α is the pitch angle, out of the space-web plane; and φ is the roll

angle, the twist in the sub-span.

Considering rotations about the ψ direction only – that is constraining the motion

of the space-web to be in-plane – gives the following equation

Piinertial = Rθ,Z (P0→CoM − Pfacility→CoM + (Rψi,X · Li)) (6.7)

Where P0→CoM = {R, 0, 0}, and represents the position of the centre of mass from

Earth.
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6.4.3 Position equations

The positions of the masses in the local coordinate system must be translated and

rotated into the inertial (Earth centred) coordinate system. The local position

vectors are added to the position vector from the CoM to the facility and the position

vector from the Earth to the CoM. The resultant vector is then rotated into the Earth

centred Inertial axis system.

6.5 Energy modelling

For every mass point in the system with position in the inertial frame, Pi, the

following steps are undertaken in order to find the Lagrangian energy expression L:

the respective velocities, Vi are found:

Vi =
∂

∂t
Pi (6.8)

the kinetic energies (linear Tlin and rotational Trot) are obtained and summed:

Tlin =
n
∑

i=1

1

2
miVi · Vi (6.9)

Trot =
n
∑

i=1

mi
1

2
Pilocal · Pilocal

(

ψ̇1 + ψ̇2 + ψ̇3

3

)2

(6.10)

the potential energies, U , are obtained and summed:

U =

n
∑

i=1

µmi√
Pi · Pi

(6.11)

and the Lagrangian is found:

L = Trot + Tlin − U (6.12)

153



The moment of inertia of each mass point on the web is calculated using the parallel

axis theory about the central facility, then multiplied by the square of the average

angular velocities of the three sub-spans to give the rotational kinetic energy.

The average angular velocity of the three sub-spans, as shown in Equation 6.13, was

chosen in preference to the actual calculated angular velocities of each mass point

to simplify the Lagrangian energy expression and to lighten the computational load.

Instead of 27 individual angular velocities, every mass point on the web was assumed

to have one common angular velocity. There is an error in this assumption, but this

will be acceptably small because the actual velocity is approximately equal to the

average velocity.
(

∂ψ

∂t

)

ave

=
1

3

(

∂ψ1

∂t
+
∂ψ2

∂t
+
∂ψ3

∂t

)

(6.13)

For each mass point, the Lagrangian energy expression is constructed by consid-

ering the total kinetic and potential energies of the system.

d

dt

(

∂T

∂q̇j

)

− ∂T

∂qj
+
∂U

∂qj
= Qj (6.14)

Lagrange’s equations are generated for all the generalised coordinates as specified

in Equation 6.14.

6.5.1 Virtual work terms

The elastic force the web imparts on the sub-span ends are modelled as a simple

elastic tether [Miyazaki and Iwai, 2004], obeying Hooke’s Law: F = Kx:

F = K

(

H

[

(Pi − Pi+1)−
2π

s

])

(6.15)

where H[. . . ] is the Heaviside function.

The forces are then used to calculate the right hand side of Lagrange’s equations,
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Qi, through consideration of the virtual work.

Qi = −KscΥi
∂Υi

qi
; (6.16)

where Υi is the difference between the sub-spans defined by the in-plane (ψ) co-

ordinates as:

Υ1 = 0 (6.17)

Υ2 = 0 (6.18)

Υ3 =

(

ψ2 − ψ1 −
2π

s

)

H

[

ψ2 − ψ1 −
2π

s

]

−
(

ψ1 − ψ3 −
2π

s
+ 2π

)

H

[

ψ1 − ψ3 −
2π

s
+ 2π

]

(6.19)

Υ4 =

(

ψ3 − ψ2 −
2π

s

)

H

[

ψ3 − ψ2 −
2π

s

]

−
(

ψ2 − ψ1 −
2π

s

)

H

[

ψ2 − ψ1 −
2π

s

]

(6.20)

Υ5 =

(

ψ1 − ψ3 −
2π

s
+ 2π

)

H

[

ψ1 − ψ3 −
2π

s
+ 2π

]

−
(

ψ3 − ψ2 −
2π

s

)

H

[

ψ3 − ψ2 −
2π

s

]

(6.21)

Note: if the angle between sub-spans 1 and 3 (ψ1 − ψ3) is examined, this would

be usually be large and negative – e.g. for an equally spaced space-web. this angle

would be −240◦ instead of 120◦. Therefore to counteract this, an offset of 2π has

been added to Equation 6.19 to ensure that the angle is positive and similar in size

to the other sub-span angles (ψ2 − ψ1 and ψ3 − ψ2).
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6.5.2 Simplifying Assumptions

To solve the full set of Lagrange’s equations for this space-web system in a reasonable

time on a desktop PC requires some simplifying assumptions to be made.

Firstly, five generalised coordinates are chosen defining the space web rotating in

the plane normal to the radius vector: (R, θ, ψ1, ψ2, ψ3). The diagram in Figure 6.13

shows the layout of the space-web, where R is the orbital radius, θ is the true

anomaly, ψn is the angle between the nth sub-span and the Xlocal coordinate system.

If the out-of-plane motion of the space-web were to be included, this would increase

the number of generalised coordinates to eight, as each sub-span must have the out-

of-plane motion defined.

If the space-web orbits exclusively in-plane, a simplifying assumption may be per-

formed in terms of the potential energy expression:

U =

n
∑

i=1

µmi

R
(6.22)

6.5.3 Robot Position Modelling

Robots may move across the space-web in order to reconfigure the web or other tasks

as discussed previously. To model this as an kinetic energy based term while retain-

ing the flexibility of defining the path without hard-coding this into the equations,

the robot position vector needs to be kept in a very general form.

The robot position vector in Equation 6.23 is defined similarly to Equation 6.6: a

vector addition of the R vector, the CoM vector and the vector defining the local

position of the robot where

{PRobotX , PRobotY , PRobotZ}local are the local vector positions of the robot in the
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X, Y, Z axes with the origin coincident on the facility mass.

PRobotinertial = Rθ,Z(P0→CoM − Pfacility→CoM+

{PRobotX , PRobotY , PRobotZ}local)
(6.23)

The robot local position vector may be a function of time, position of the sub-span

masses (ψ1, ψ2, ψ3), an arbitrary path function or any other smooth generalised

function.

The kinetic energies of the robot (both linear and rotational) are derived from

the positions of the robot as before. Both the Lagrangian energy expression and

Lagrange’s equations contain terms for the local position, velocity, and acceleration

of the robots.

Keeping the robot position functions in the most general form allows for rapid

reconfiguration of the robot paths and may lead to, for example, robot control

studies in the future.

6.6 Space-web dynamics

6.6.1 Dynamical simulation

The space-web dynamics are heavily governed by the centre-of-mass movement of

the system. The space-web system is very rarely symmetrical (both in reality and

in simulations) and this asymmetry can lead to unstable and even chaotic motion

in certain configurations of the space-web.

Several different parameters were considered to be possible influences on the sta-

bility of the space-web system, including:� variation of the masses of the web� the masses of the robots, the sub-span and facility masses
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� the position and velocity of the robots� the general angular momentum of the robots� the angular velocity of the web� and the starting configuration of the web or ‘web symmetry’

Lagrange’s equations for the space-web system are solved using the Mathematica

numerical integrator NDSolve[. . . ]. The package LiveGraphics3D [Kraus, 2007] is

then used to display any animated graphics in a web-browser.

Additionally, the arrows used to indicate direction in the CoM plots were generated

with the CurvesGraphics6 package [Gorni, 2008] for Mathematica 5.1.

6.7 Investigating the stability of the space-web

To test the stability of the space-web with robot movement over the web, several

different numerical experiments have been considered, each investigating the impact

the following have on the centre of mass movement of the space-web:� web mass� robot mass� web asymmetry� robot crawl velocity

6.7.1 Mass of the web

The mass of the web was found to have a negative impact on the stability of the

system. The higher the mass of the web, the more likely the triangle is to deform

from the perfect equilateral shape, and the more likely the system is to exhibit
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chaotic motion. This is likely to have been due to the increase in the ratio of the

web mass to the other masses, causing the web mass to dominate the other mass

terms. Figures B.1, B.2, B.3, B.4, B.5, B.6, B.7 and B.8 demonstrate this effect,

which were simulated with Case 12 in which only the mass of the web is varied.

The initial conditions used to numerically integrate the equations are given in

Table C.1.

The mass of the web reaches a limit of around 40 kg, after which, the web is no

longer able to keep its shape in this configuration.

Runs E01–E04 show the space-web can be stabilised while the robots move across

the surface, the mass of the web increasing to a critical value of approximately 25%

of the total system mass. The maximum CoM displacement is 0.85m for these four

runs. In runs E05–E06, the mass of the web is increased to 44.82 kg and 48.25 kg

respectively. This causes significant instability in the web for the 48.25 kg web,

showing that for certain configurations of the space-web system, the mass of the

web is a critical parameter. The marginal increase in web mass gives a noticeable

degradation in the behaviour of the space-web past that critical point.

6.7.2 Robot mass

The momentum of the robot was thought to be a significant parameter in the sta-

bility of the space-web, therefore the robot mass was investigated as a possible

parameter. Runs 18-21 tested values of Mrobot3 from 1 kg to 100 kg and the CoM

positions are shown in Figures B.9, B.10, B.11, B.12, B.13 and B.14.

The initial conditions used to numerically integrate the equations are given in

Table C.4.

Counter-intuitively, increasing the mass of the robot caused the space-web to be-

2With symmetrical robot paths.
3From 3% to 17% of the system mass.
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come more stable! This is due to the centripetal effect of more mass on the outside of

the web causing the sub-spans to become more rigid and effectively act as a damper

to the system.

There is a sharp divide between the stable behaviour of the robot masses set

at 16 kg shown in Figure B.12, and the unstable behaviour with the masses at

15 kg shown in Figure B.11. This critical dividing line between the acceptable and

unacceptable system movement is clear as it is unexpected, and raises significant

issues for the construction of the space-web, especially with a lighter robot.

6.7.3 Web asymmetry

The single biggest driver of instability on the space-web system was found to be the

asymmetry in the web configuration and mass distribution.

Very small asymmetries in the initial conditions of the space-web (compared to

a perfectly symmetrical equilateral triangle) are amplified in certain configurations

of the space-web, and may create large instabilities in the system, especially for

energetic configurations such as high web mass and/or large angular velocities. A

small difference in orientation (on the order of 1◦) of the sub-spans may lead to large

asymmetries between the sub-spans in a relatively short time (≈ 100s).

The cases chosen to investigate the effect of asymmetry on the web are as follows:� Case 1: Robots 1,2,3 walk along the edges of the web from sub-span to next

sub-span – (symmetrical)� Case 2: Robots 2,3 walk along the edges of the web while Robot 1 is stationary

on sub-span 1 – (unsym.)� Case 3: Robot 3 walks along the edges of the web while Robots 1,2 are sta-

tionary on sub-spans 1,2 – (unsym.)� Case 4: Robots 1,2,3 walk along from the centre to their sub-spans – (sym.)
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� Case 5: Robot 1 spirals outwards from the centre to the edges, Robots 2,3 are

fixed on sub-spans – (unsym.)� Case 6: Robot 1 walks along from the centre to sub-span1, Robots 2,3 remain

in centre –(unsym.)

The initial conditions used to numerically integrate the equations are given in

Table C.2.

Cases 1 and 4 are symmetrical, shown in Figures B.15 and B.18. Case 1 has a

stable CoM position throughout the simulation, with a maximum CoM travel of

only 0.46m. Case 4 is symmetrical, however has a maximum CoM travel of 10.96m

and is on the limits of what is defined as acceptable movement for the CoM. In

contrast, Cases 2, 3, 5 and 6 are asymmetrical, shown in Figures B.16, B.17, B.19,

and B.20. The asymmetric cases show a large CoM movement of between 18m and

38m, and are unstable.

Compounding the problem of uneven mass, the initial conditions of the three sub-

spans were found to influence the stability of the system. The equations could not

be solved with ψ = {0◦, 120◦, 240◦} or spacing the web sub-spans by exactly 120◦,

for reasons not known at this time. Initial conditions for ψ were implemented as a

triplet; the three sub-span values of {0 + ψ, 120◦, 240◦ − ψ} offer a solution to this

problem.

More generally, it is expected that for most configurations of the triangular space-

web, holding the three sub-spans permanently rigid at exactly 120◦ separation will

be impossible as small perturbations to the web in the space environment will be

constantly experienced.

Adding the effect of many asymmetrical robot masses exacerbates the problem of

uneven mass distribution. To remedy this, the space-web must be configured to

occupy as low an energy state as the mission will allow: low web mass; light, slow

moving robots; low angular velocity of the web. In this state, the asymmetry of the
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web still exists, but it is kept to a manageable level.

6.7.4 Robot crawl velocity

The faster the robots travelled along the web, the greater the likelihood of unstable

behaviour of the web, as the CoM displacement plots show in Figures B.21 and B.25.

Both are simulated with Case 1 – symmetrical robot paths.

The initial conditions used to numerically integrate the equations are given in

Table C.3.

When robot crawl velocity was increased from 0.1m/s to 10m/s, by lowering the

time fixed from 1000 s to 10 s, the maximum CoM displacement increased marginally

– from 0.3m to 1.5m.

These two cases of mass dependant stability and velocity dependant stability are

clearly energy related. The higher the energy contained in the system, the more

likely the system is to exhibit unstable behaviour. This boundary has not yet been

clearly defined. Generally speaking, however, the slower the robot movement across

the web, the more likely the web is to remain stable given a perfectly symmetrical

web. Given the levels of CoM displacement, the robot velocity is not a significant

destabilising factor in this scenario.

6.8 Statistical investigation into stability

A series of solutions to the space-web equations of motion were examined to exam-

ine the effect of five parameters on the space-web stability. The mass of the web,

Mweb, the mass of the three daughter satellites, Msat, the robot mass, Mrobot,

the sub-span angular coordinate, ψ and the average sub-span angular velocity ∂ψ
∂t

were thought to have an effect on the maximum movement of the Centre of Mass

(CoM) of the space-web system. Therefore, the solutions to 36 different sets of ini-
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tial conditions were found, with 25 = 32 runs complemented by 4 centre point runs.

The 36 runs were performed in Mathematica, and the results of the maximum CoM

displacement were entered into a statistical package, Design Expert 7.03. Design

Expert then performs an analysis of variance (ANOVA) calculation on the factorial

data provided. ANOVA is a collection of statistical models and their associated

procedures which compare means by splitting the overall observed variance into dif-

ferent parts. A 5 degree of freedom model (or less, if requested) is then extrapolated

from the data and analysed for statistical significance.

The five most strongly correlated model parameters were:

Mweb− Msat+ Mweb ∗ ∂ψ
∂t
+ Msat ∗Mrobot ∗ ∂ψ

∂t
− Mrobot−

ψ+ and ∂ψ
∂t
− were statistically relevant in the model, but to a lesser degree than

the other parameters. As they have a stronger effect when combined with other

variables, the (un)stabilising influence they have may be overtaken by these other

factors.

Parameters are shown with a (+) indicating a stabilising effect or a (−) indicating

a destabilising effect, with the full table of values located in Appendix C.

As Mweb− has the strongest influence over the model, it would be most beneficial

to the stability to reduce the mass of the web.

The reverse is true of the daughter satellite mass,Msat+, increasing this parameter

will tend to stabilise the system.

For combinations of main parameters such as Mweb ∗ ∂ψ
∂t
+, it would be most

beneficial to increase the product to stabilise the system. In this case, the angular

momentum of the web will tend to rigidize the system and enhance the stability.

6.8.1 Masses of the web and satellite

The influence the masses of the web and the daughter satellites have on the CoM

position are shown in the contour graph, Figure 6.14. The contours are shaded from
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blue (stable) through green and yellow to red (unstable) and follow the maximum

CoM displacement from the central facility.
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Figure 6.14: Contours of CoM movement while varying web and satellite mass

For the small sample space of initial conditions, the most stable point would be a

high satellite mass (> 8 kg) and low web mass (< 50 kg). A CoM displacement of

above 10m is unstable, and would be very difficult for a robot to manoeuvre over

the surface.

In general terms, this clearly shows the stabilising effect of the mass of the satellites

and the destabilising effect of the mass of the web.

6.8.2 Masses of the web and robot

The influence the masses of the web and the robot have on the CoM position are

shown in the contour graph, Figure 6.15. The contours are shaded from blue (stable)
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through green and yellow to red (unstable) and follow the maximum CoM displace-

ment from the central facility.
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Figure 6.15: Contours of CoM movement while varying web and robot mass

The relative strengths of the robot and web masses are shown, with the mass of

the web exerting a much stronger influence over the behaviour of the web. The

stability boundary is shown in the bottom left hand corner of the graph. A stability

margin of 5m is preferable, here the web mass must be kept below 50 kg and the

mass of the robot, although less influential, would be best suited at below 5 kg. This

shows that if a low ∂ψ
∂t

is required, the web can be made more stable with careful

consideration of variables.

6.8.3 Mass of the web and angular velocity

The influence the masses of the web and the angular velocity, ∂ψ
∂t
, have on the CoM

position are shown in the contour graph, Figure 6.16. The contours are shaded from
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blue (stable) through green and yellow to red (unstable) and follow the maximum

CoM displacement from the central facility.
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Figure 6.16: Contours of CoM movement while varying web mass and ∂ψ
∂t

In a high-stability scenario, the options to configure the space-web are plentiful.

Carefully choosing the previous parameters that lead to a high probability of sta-

bility, namely a high satellite mass (10 kg) and a low robot mass (1 kg), affords a

larger range of possible values for the mass of the web and the angular velocity of

the web.

If the largest acceptable CoM movement is limited to 5m, then there are three

choices available, depending on the primary requirement of the space-web system. If

a low web mass is required, then a low ∂ψ
∂t

must match, and vice versa. Alternatively,

if a high mass is required, a high ∂ψ
∂t

must be specified, and vice versa. The final

option is for a low web mass and a high ∂ψ
∂t
, affording a large safety margin that

may be advantageous in, for example, a pilot study mission.
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6.8.4 Mass of the robot and angular velocity

The influence the mass of the robot and the angular velocity, ∂ψ
∂t
, have on the CoM

position are shown in the contour graph, Figure 6.17. The contours are shaded from

blue (stable) through green and yellow to red (unstable) and follow the maximum

CoM displacement from the central facility.
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Figure 6.17: Contours of CoM movement while varying robot mass and ∂ψ
∂t

The final comparison is for a high mass specification – a 270 kg web mass and

10 kg satellite mass. This combines the two strongest influences on the system, the

former destabilising and the later stabilising. For a stable system, it is essential to

ensure the robot mass is small and the angular rotation rate is large.
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6.9 Conclusions and recommendations

6.9.1 Conclusions

The achievement of a stable, re-configurable web orbiting in space with robots mov-

ing along its surface is a realistic goal. There must, however, be limits to the

behaviour of the robots and the configuration of the web. Both the robots and the

web must be as light as possible and the robots must be as slow moving as the

mission allows, given that this limits the destabilising effects of these parameters.

The daughter satellites must be as heavy as possible, and the angular rotation rate

must be as large as possible to maximise these stabilising effects. In all cases, the

web configuration must be as symmetrical as practicable.

6.9.2 Recommendations

To capitalise on the knowledge gained in this research, there are a few areas that

may be expanded on for potential future exploration.

Constructing the web while on orbit would mitigate the deployment phase of the

mission, eliminating one of the major failure modes of the system. Using the robots

to weave the web could be inspired by spiders on Earth, for example, just as the

space web has been inspired by the Furoshiki cloth.

Using the knowledge gained through moving masses over the web, there are many

applications that would benefit from simulating web-based constructions with mov-

ing masses. Solar-sails and antennae could be assembled or reconfigured by robots

moving across their surface.
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Chapter 7

Conclusions

7.1 Tether rotations� Rotations using a different system of equations are equally able to describe

the same system.� Therefore, the choice of rotational system can be tailored in such a way to suit

the analysis.

7.2 Tethers with inclination� A demonstration mission launching a micro-satellite from MEO to Lunar or-

bit is achievable using current technology. The safety margins, however, are

extremely small and the MMET launcher would be located in an orbit with

large amounts of debris.� The inclination term does not significantly alter the dynamics of the MMET

system. However, any out-of-plane component in the local axes – whether on
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an inclined orbit or not – interacts with the orbital parameters to create an

unsteady oscillation in the tether. This is unacceptable for payload aiming

and release, therefore the local out-of-plane angle should be minimised insofar

as possible.

7.3 Deployment and recovery of tethers� Deploying and recovering the tethers on the MMET system is not a trivial

matter; however, they can be achieved in a well controlled and structured

way.� A method for deployment and recovery in the orbital plane have been outlined,

giving confidence that the MMET is capable and suitable for use as a reusable

launch platform.

7.4 Space-webs� The achievement of a stable, re-configurable web orbiting in space with robots

moving along its surface is a realistic goal.� There are limits to the behaviour and configuration of the robots and web:

the robots must be light and as slow moving, the web must be as light, the

daughter satellites must be heavy and the angular rotation rate must be as

large as possible to maximise these stabilising effects. In all cases, the web

configuration must be as symmetrical as practicable.
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7.5 Further study

It is my belief that tethers, and in particular the MMET, have a significant role to

play in mankind’s future in space. By addressing the following issues uncovered in

this thesis, the case for using the MMET will be strengthened.

The stator arm will require to be modelled and analysed if the concept of the

MMET is ever to be successful. The possibility of interference between the tether

and stator arms will logically follow on from this analysis.

Likewise, the concept of a space-web is both novel and interesting, and doubtless

will be studied further. It is essential to perform further ground tests or even zero-

gravity studies of the MMET and space-webs to provide validation of the equations

of motion.
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G. Gómez, A. Jorba, J. Masdemont, and C. Simó. Study of the transfer from the
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Glossary

Notation Description

LEO Low Earth Orbit

MEO Medium Earth Orbit

MMET Motorized Momentum Exchange Tether

MXER Momentum eXchange/Electrodynamic Reboost

WSB Weak Stability Boundary
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Appendix A

Equations of motion with inclination

The equations of motion the MMET (stator arm not included) for the generalised co-ordinates R, θ, ι, ψ, α are:

R equation:

µMtotal

R2
+ R̈Mtotal − R

(

cos2(ι)θ̇2 + ι̇2
)

Mtotal = 0 (A.1)

θ equation:

R cos(ι)
(

2 cos(ι)Ṙθ̇ +R
(

cos(ι)θ̈ − 2θ̇ι̇ sin(ι)
))

MFacility = 0 (A.2)
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ι equation:

R2 cos(ι) sin(ι)MFacilityθ̇
2 +R

(

2Ṙι̇+Rϊ
)

MFacility = 0 (A.3)

ψ equation:

1

8

(

2 cos2(α) sin(2ψ)ι̇2 +
(

4α̇ sin(ψ)− 2
(

cos(ψ)ψ̇ sin(2α) + θ̇
(

2 cos(2ψ) sin(ι) cos2(α) + cos(ι) cos(ψ) sin(2α)
)

))

ι̇−

θ̇
(

4 cos(ψ)α̇ sin(ι) + 2ψ̇ sin(2α) sin(ψ) sin(ι) + θ̇
(

2 cos2(α) sin(2ψ) sin2(ι) + sin(2α) sin(2ι) sin(ψ)
)

))

(4Mpayload +Mtether)L
2 +

1

192

(

128ψ̈ (3Mpayload +Mtether)+

48
(

2 cos(ι)θ̈ cos2(α) + 2ψ̈ cos2(α)− cos(ψ)θ̈ sin(2α) sin(ι)− 2α̇
(

ψ̇ sin(2α) + θ̇(cos(ι) sin(2α) + cos(2α) cos(ψ) sin(ι))
)

+

ϊ sin(2α) sin(ψ) + θ̇ψ̇ sin(2α) sin(ι) sin(ψ) + ι̇
(

cos(ψ)ψ̇ sin(2α)− θ̇
(

2 sin(ι) cos2(α) + cos(ι) cos(ψ) sin(2α)
)

+ 2 cos(2α)α̇ sin(ψ)
))

(4Mpayload +Mtether))L
2 +Rµ cos(α) sin(ψ)

((

1

(L2 − 2R cos(α) cos(ψ)L+R2)3/2
− 1

(L2 + 2R cos(α) cos(ψ)L+R2)3/2

)

Mpayload+

4

(

1

(L2 − 4R cos(α) cos(ψ)L+ 4R2)3/2
− 1

(L2 + 4R cos(α) cos(ψ)L+ 4R2)3/2

)

Mtether

)

L

= cosα Forcepayload L(1− Eclipse) (A.4)
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α equation:

1

32

(

((6 cos(2ι) + cos(2(ι− ψ))− 2 cos(2ψ) + cos(2(ι+ ψ)) + 2) sin(2α) + 8 cos(2α) cos(ψ) sin(2ι))θ̇2+

16ψ̇(cos(ι) sin(2α) + cos(2α) cos(ψ) sin(ι))θ̇ − 8ι̇2 sin(2α) sin2(ψ) + 8ψ̇2 sin(2α)−

8ι̇
(

2 cos(2α)ψ̇ sin(ψ) + θ̇(2 cos(2α) cos(ι) sin(ψ)− sin(2α) sin(ι) sin(2ψ))
))

(4Mpayload +Mtether)L
2+

1

192

(

128α̈ (3Mpayload +Mtether) + 96
(

α̈ + cos(ψ)ϊ+ cos(ψ)θ̇ψ̇ sin(ι) + ι̇
(

cos(ι)θ̇ − ψ̇
)

sin(ψ) + θ̈ sin(ι) sin(ψ)
)

(4Mpayload +Mtether)
)

L2+

Rµ cos(ψ) sin(α)

((

1

(L2 − 2R cos(α) cos(ψ)L+R2)3/2
− 1

(L2 + 2R cos(α) cos(ψ)L+R2)3/2

)

Mpayload+

4

(

1

(L2 − 4R cos(α) cos(ψ)L+ 4R2)3/2
− 1

(L2 + 4R cos(α) cos(ψ)L+ 4R2)3/2

)

Mtether

)

L

= −Forcepayload L(1− Eclipse) (A.5)

The equations use the following substitutions:

Mtotal =MFacility + 2Mpayload + 2Mtether (A.6)
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and Eclipse is the binary function:

Eclipse =



















































1































R2
(

1− cos2(ι) cos2(θ)
)

≤ R2
Earth

(

1 +
R cos(θ)

RSun

)2

AND

cos(ι) cos(θ) > 0

0

{

otherwise

(A.7)

Note: the inclination generalised coordinate is ι the ninth letter of the Greek alphabet (iota). The first derivative is ∂ι
∂t

= ι̇ and the

second derivative is ∂2ι
∂t2

= ϊ.
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Appendix B

Space-webs – additional graphics

B.1 Case 1 – CoM plots of stability while increas-

ing web mass
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Figure B.1: mWeb = 27 kg
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Figure B.2: mWeb = 33.75 kg
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Figure B.3: mWeb = 37.8 kg
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Figure B.4: mWeb = 40.5 kg
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Figure B.5: mWeb = 44.82 kg
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Figure B.6: mWeb = 47.25 kg
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Figure B.7: mWeb = 54 kg
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Figure B.8: mWeb = 67.5 kg
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B.2 Case 1 – CoM plots of stability while increas-

ing robot mass
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Figure B.9: Mrobot = 1 kg

-40 -20 0 20 40

-40

-20

0

20

Y

ZCoM Position

Figure B.10: Mrobot = 10 kg
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Figure B.11: Mrobot = 15 kg
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Figure B.12: Mrobot = 16 kg
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Figure B.13: Mrobot = 20 kg
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Figure B.14: Mrobot = 100 kg
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B.3 CoM plots of stability while changing robot

paths
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Figure B.15: Case 1
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Figure B.16: Case 2
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Figure B.17: Case 3
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Figure B.18: Case 4
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Figure B.19: Case 5
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Figure B.20: Case 6
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B.4 Case 1 – CoM plots of stability while decreas-

ing robot velocity
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Figure B.21: Vrobot = 10.0m/s
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Figure B.22: Vrobot = 2.0m/s
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Figure B.23: Vrobot = 1.0m/s
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Figure B.24: Vrobot = 0.2m/s
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Figure B.25: Vrobot = 0.1m/s
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Figure B.26: Case 1 – 3 robots moving symmetrically round the web perimeter
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Figure B.27: Case 6 – 1 robot moving asymmetrically along first sub-span
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Appendix C

Space-webs – additional data

Data generated during the first run phase – initially examining the dynamics of

the space-web.

The units for the variables are as follows:

Mweb Msat MRobot psi psidot k CoM disp

kg kg kg degrees radians/s N/m m

The initial conditions of all other parameters are:

L = 100.0m ; Mfacility = 100.0 kg ; eccent = 0.0 ;

tend = 100.0 s ; R = 6.578 ∗ 106m ; K = 122.69

K is the spring stiffness, given in Equation 6.15. This is derived from the Young’s

Modulus, E = 3 ∗ 1010 and the CSA of each strand of 4 ∗ 10−6.

The webs are configured with 3 web sections (i.e. 2 divisions).

The angular displacements are given with one angle only: ψ. This may be conver-

ted to give the angles of the three sub-spans such that: {0 + ψ, 120◦, 240◦ − ψ}.

The three angular rates are equal, and are quoted once in the following tables..
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Data generated during the statistical investigation into stability (see Section 6.8).

run A:Mweb. B:Msat C:Mrobot D:psi E:psidot Max CoM

E01 27. 10 2 1 0.1 0.35
E02 33.75 10 2 1 0.1 0.41
E03 37.8 10 2 1 0.1 0.85
E04 40.5 10 2 1 0.1 0.39
E05 44.82 10 2 1 0.1 3.74
E06 47.25 10 2 1 0.1 20.44
E07 54. 10 2 1 0.1 34.82
E08 67.5 10 2 1 0.1 39.40
E09 135. 10 2 1 0.1 46.49
E10 270. 10 2 1 0.1 51.03

Table C.1: Influence of web mass on maximum CoM

run symmetrical A:Mweb B:Msat C:Mrobot D:psi E:psidot Max CoM

Case 1 yes 40.5 10 10 1 0.1 0.46
Case 2 no 40.5 10 10 1 0.1 22.61
Case 3 no 40.5 10 10 1 0.1 18.52
Case 4 yes 40.5 10 10 1 0.1 10.95
Case 5 no 40.5 10 10 1 0.1 38.24
Case 6 no 40.5 10 10 1 0.1 30.99

Table C.2: Influence of symmetrical robot movement on maximum CoM

run A:Mweb B:Msat C:Mrobot D:psi E:psidot time Robot speed Max CoM

FG1 40.5 10 2 1 0.1 10 10.0 0.36
FG2 40.5 10 2 1 0.1 50 2.0 0.36
FG3 40.5 10 2 1 0.1 100 1.0 0.40
FG4 40.5 10 2 1 0.1 500 0.2 1.40
FG5 40.5 10 2 1 0.1 1000 0.1 1.70

Table C.3: Influence of simulation time (effectively robot speed across web) on
maximum CoM
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run A:Mweb B:Msat C:Mrobot D:psi E:psidot Max CoM

Frobot01 135 10 0.1 1 0.1 45.09
Frobot02 135 10 1 1 0.1 45.89
Frobot03 135 10 5 1 0.1 46.66
Frobot04 135 10 10 1 0.1 46.08
Frobot05 135 10 12 1 0.1 50.53
Frobot06 135 10 15 1 0.1 48.44
Frobot07 135 10 16 1 0.1 1.75
Frobot08 135 10 17 1 0.1 1.08
Frobot09 135 10 18 1 0.1 0.86
Frobot10 135 10 19 1 0.1 0.82
Frobot11 135 10 20 1 0.1 0.77
Frobot12 135 10 21 1 0.1 0.66
Frobot13 135 10 50 1 0.1 0.67
Frobot14 135 10 100 1 0.1 0.75

Table C.4: Influence of robot mass on maximum CoM
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run A:Mweb B:Msat C:Mrobot D:psi E:psidot F: CoM posn predicted Diff %

1 27 2 1 0.01 0.1 11.49 12.29 107%
2 270 2 1 0.01 0.1 49.41 46.71 95%
3 27 10 1 0.01 0.1 0.00 -2.70 -83118%
4 270 10 1 0.01 0.1 52.76 53.56 102%
5 27 2 10 0.01 0.1 28.09 25.39 90%
6 270 2 10 0.01 0.1 53.20 54.00 102%
7 27 10 10 0.01 0.1 0.00 0.80 19141%
8 270 10 10 0.01 0.1 55.75 53.05 95%
9 27 2 1 0.1 0.1 11.28 10.16 90%

10 270 2 1 0.1 0.1 49.83 47.37 95%
11 27 10 1 0.1 0.1 0.03 0.12 369%
12 270 10 1 0.1 0.1 52.79 51.67 98%
13 27 2 10 0.1 0.1 27.49 26.72 97%
14 270 2 10 0.1 0.1 52.99 51.65 97%
15 27 10 10 0.1 0.1 0.04 -0.05 -111%
16 270 10 10 0.1 0.1 55.61 54.83 99%
17 148.5 6 5.5 0.055 0.55 47.15 31.10 66%
18 148.5 6 5.5 0.055 0.55 47.15 31.10 66%
19 148.5 6 5.5 0.055 0.55 47.15 31.10 66%
20 148.5 6 5.5 0.055 0.55 47.15 31.10 66%
21 27 2 1 0.01 1 49.41 46.71 95%
22 270 2 1 0.01 1 49.86 50.66 102%
23 27 10 1 0.01 1 0.00 0.80 24649%
24 270 10 1 0.01 1 0.00 -2.70 -64127%
25 27 2 10 0.01 1 33.10 33.90 102%
26 270 2 10 0.01 1 49.41 46.71 95%
27 27 10 10 0.01 1 49.83 47.13 95%
28 270 10 10 0.01 1 55.77 56.57 101%
29 27 2 1 0.1 1 49.41 48.63 98%
30 270 2 1 0.1 1 49.82 48.69 98%
31 27 10 1 0.1 1 0.03 -1.09 -3346%
32 270 10 1 0.1 1 0.03 -0.74 -2287%
33 27 2 10 0.1 1 33.11 31.98 97%
34 270 2 10 0.1 1 49.41 48.63 98%
35 27 10 10 0.1 1 0.00 -0.77 -18329%
36 270 10 10 0.1 1 55.76 54.63 98%

Table C.5: Statistical investigation into stability
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Term Effect Stdized Effect SumSqr % Contribtn

A-Mweb - 27.21 7182.9 37.72
B-Msat + -16.57 2447.8 12.85

AE + -15.32 1869.6 9.82
BCE - 14.34 1656.8 8.70

C-Mrobot - 10.90 872.3 4.58
BC - 9.93 666.4 3.50
BE + -8.69 686.3 3.60
AB - 7.21 435.0 2.28

ACE - 6.98 346.3 1.82
CE - 5.04 232.9 1.22
AC - 4.66 193.2 1.01

ABE + -3.76 118.3 0.62
ABC - 3.75 118.6 0.62
BDE + -3.37 93.4 0.49
ADE - 3.29 117.6 0.62

ABCDE - 3.19 85.1 0.45
ACD - 3.17 99.5 0.52
BCD + -3.15 102.7 0.54
CDE + -3.12 92.4 0.49

ABDE - 3.12 81.5 0.43
CD + -3.09 110.1 0.58

D-psi + -3.08 79.6 0.42
BCDE + -3.08 83.7 0.44
ACDE - 3.04 89.0 0.47
ABCD - 3.02 61.5 0.32

DE + -3.00 75.6 0.40
ABD - 2.97 74.0 0.39
AD - 2.93 98.7 0.52
BD + -2.84 34.2 0.18

E-psidot - 1.48 18.3 0.10

Lack of fit 9.6 0.05
Pure error 0.0 0.00

Table C.6: Results of the statistical investigation into stability

The ‘Effect’ term in column 2 is a reflection on the stabilising (+) or destabilising

(−) effect of the term.
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Appendix D

Material strengths

The information in Table D.1 is provided courtesy of the Island One Society at

http://www.islandone.org/LEOBiblio/SPBI1MA.HTM, and is compiled from data

from the following sources: [Brown, 1989, pp 14-18], [Rosato, 1993, p 638], [Weast,

1985, p E-43].

1aramid fiber
2gel-spun polyethylene
3gel-spun polyethylene
4plastic fiber, Zylon is brand name of PBO
5theoretical data
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Material Property

tensile
strength
(P)

Young’s
modulus
(Y)

density (ρ) characteristic
velocity
√

2P/ρ

speed of
sound in thin
rods

√

Y/ρ

[GPa] [GPa] [kg/m3] [m/s] [m/s]

steel 1-5 200 7900 503-1125 5032

aluminum alloys 0.1-0.7 72 2700 272-720 5270

titanium alloys 0.6-1.3 110 5000 490-721 4690

berylium fiber 3.3 310 1870 1879 12870

boron fiber 3.5 400 2450 1690 12778

fused silica 73 - - 2200 5760

pyrex glass 62 - - 2320 5170

E-glass fiber 2.4 72.4 2540 1375 5339

S-glass fiber 4.5 85.5 2490 1901 5860

Kevlar 491 3.6 130 1440 2236 9502

Spectra 1000 fiber2 3.0 170 970 2487 13239

Spectra 2000 fiber3 3.51 - 970 2690 -

PBO (Zylon)4 5.8 280-365 1560-1580 2710-2727 13397-15199

carbon fiber 1-6.5 250-830 1850 1040-2651 11600-21200

buckytube cable5 150 630 1300 15191 22014

Table D.1: Properties of selected materials
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Appendix E

Motor properties

Specification

List Price: $910
Horsepower 4 hp
RPM 4150
mass 23 kg
Armature Volts 48 V
Torque 6.86Nm
Full Load Current 72.0A

Table E.1: Properties of GE Motor 5BC49JB1115

The information in Table E.1 is provided courtesy of the GE industrial products

guide at:

www.geindustrial.com/cwc/marketing/Motors/catalog/CrossReference.pdf

and is compiled from data from the following additional source:

www.emotorstore.com/productdetail.asp_Q_brandID_E_1_A_catID_E_23_A_

subCatID_E_354_A_productID_E_583_A_skuID_E_30698

The motor is a GE Industrial Motor, Product Number D379, Model Number

5BC49JB1115. This is a DC motor, used to power electric vehicles (commonly golf-carts).

The specifications are used in Section 4.5.1 to gain an approximate mass, torque and

rotational speed for an equivalent space-based motor. The torque is quoted as 81.0 oz−ft,

and converted to Nm.
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