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Abstract—Many Internet protocols and operational pro- tion, rather than an existing term like “stationarity,” in an
cedures use measurements to guide future actions. This isattempt to convey our goal of examining a broad, general
an effective strategy if the quantities being measured ex- view of the property “holds steady and does not change,”
hibit a degree of constancy: that is, in some fundamental ayor than a specific mathematical or modeling view. We

sense, they are not changing. In this paper we explore three . .
different notions of constancy: mathematical, operationg will also use the ternsteadyfor the Same hotion, when use
would prove grammatically awkward.

and predictive. Using a large measurement dataset gathered ©f “constancy”
from the NIMI infrastructure, we then apply these notions In this paper we investigate three notions of constancy:

to three In'ter'net path proper.ties: loss, delay, and through  mathematical, operational, and predictive. We do so in
put. Our aim is to provide guidance as to when assumptions the context of measurements of three quantities describing
of various forms of constancy are sound, versus when they |n+arnet paths: packet loss, packet delays, and throughput.

might prove misleading.
gntp g We say that a dataset of network measurememtai$-
ematically steadyf it can be described with a single time-
|. INTRODUCTION invariant mathematical model. The simplest such example

There has been a recent surge of interest in netwdgkdescribing the dataset using a single independent and
measurements. These measurements have deepeneddgpfically distributed (IID) random variable. More com-
understanding of network behavior and led to more aelicated forms of constancy would involve correlations be-
curate and qualitatively different mathematical models §¥een the data points. More generally, if one posits that
network traffic. Network measurements are also usedtfif dataset is well-described by some model with a cer-
an operational sense by various protocols to monitor thé#n set of parameters, then mathematical constancy is the
current level of performance and take action when maquatement that the dataset is consistent with that set of pa-
changes are detected. For instance, RLM [MJV96] mofmeters throughout the dataset.
itors the packet loss rate and, if it crosses some threshOne example of mathematical constancy is the finding
old, decreases its transmission rate. In addition, sevepsIFloyd and Paxson [PF95] that session arrivals are well
network protocols and algorithms use network measu@escribed by a fixed-rate Poisson process over time scales
ments to predict future behavior; TCP uses delay measupétens of minutes to an hour. However, they also found
ments to estimate when it should time-out missing packelisat session arrivals on longer time scales can only be
and measurement-based admission control algorithms wgdl-modeled using Poisson processes if the rate param-
measures of past load to predict future loads. eter is adjusted to reflect diurnal load patterns, an example

Measurements are inherently bound to the presen@fmathematicahon-constancy
they can merely report the state of the network at the timeWhen analyzing mathematical constancy, the key is to
of the measurement. However, measurements are nfoul the appropriate model. Inappropriate models can lead
valuable when they are a useful guide to the future; this misleading claims of non-constancy because the model
occurs when the relevant network properties exhibit whabesn't truly capture the process at hand. For instance, if
we will term constancy We use a new term for this no-one tried to fit a highly correlated but stationary arrival pro-

cess to a Poisson model, it would appear that the Poisson
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has changed; yet one would be hard-pressed to find an sgrles more coarse than individual packets. One approach
plication that would care about such a change. Thus, dedo aggregate individual measurements into larger quan-
must adopt a different notion of constancy when addresgies, such as packets lost per second. This approach is
ing operational issues. The key criterion in operationauite useful, and we use it repeatedly in our study, but it
rather than mathematical, constancy is whether an apjdinot ideal, since by aggregating we can lose insight into
cation (or other operational entity) would care about tlitee underlying phenomena. An alternative approach is to
changes in the dataset. We will call a datagmdrationally attempt tomodelthe fine-grained processes using a model
steadyif the quantities of interest remain within boundshat provides a form of aggregation. With this approach, if
considered operationally equivalent. Note that while it the model is sound, we can preserve the insight into the un-
obvious that operational constancy does not imply mattherlying phenomena because it is captured by the model.
ematical constancy, it is also true that mathematical con-For example, instead of analyzing packet loss per sec-
stancy does not imply operational constancy. For instanead, we show that individual loss events comejisodes
if the loss process is a highly bimodal process with a higlt back-to-back losses (11-B). We can then separately
degree of correlation, but the loss rate in each mode degmlyze the characteristics of individual loss episodes ver-
not change, nor does the transition probability from orgis the constancy of the process of loss episode arrivals,
mode to the other, then the process would be mathemagitaining the insight that loss events often come back-to-
cally steady; but an application will see sharp transitiofgck, which would be diminished or lost if we instead went
from low-loss to high-loss regimes and back which, fromirectly to analyzing packets lost per second.
the application’s perspective, is highly non-steady behav-QOur basic model for various time series is of piece-
ior. wise steady regions delineated tlyange-points With a
Operational constancy involves changes (or the lapkrameterized family of models (e.g. Poisson processes
thereof) in perceived application performance. Howevetith some rate), the time series in each change-free re-
protocols and other network algorithms often make usegibn (CFR) is modeled through a particular value of the
measurements on a finer level of granularity to predict fparameter (e.g., the Poisson arrival rate). In fitting the
ture behavior. We will call a datasetedictively steady time series to this model, we first identify the change-
if past measurements allow one to reasonably predict fsbints. Within each CFR we determine whether the pro-
ture characteristics. As mentioned above, one can consigess can be modeled by 1ID processes. When occurring,
TCP’s time-out calculation as using past delays to prediatiependence can be viewed as a vindication of the ap-
future delays, and measurement-based admission congi@lach to refocus to coarser time scales, showing the sim-
algorithms do the same with loss and utilization. So unliksticity in modeling that can be achieved after removing
operational constancy, which concerns the degree to whighall time scale correlations. Furthermore, we can test
the network remains in a particular operating regime, préenformance of inter-event times with a Poisson model
dictive constancy reflects the degree to whitlangesn  within each CFR. Given independence, this entails testing
path properties can be tracked. whether inter-event times follow an exponential distribu-
Just as we can have operational constancy but not maton.
ematical, or vice versa, we also can have predictive con-To focus on the network issues, we defer discussion of
stancy and none or only one of the others, and vice vergge statistical methodology for these tests—the presence of
Indeed, as we will illustrate, processes exhibiting the sirshange-points, 11D processes, and exponential inter-event
plest form of mathematical constancy, namely IID praimes—to Appendix A. However, one important point to
cesses, are generally impossible to predict well, since theege is that the two tests we found in the literature for
are no correlations in the process to leverage. detecting change-points are not perfect. The first test—
Another important point to consider is that for network P/ RankOrder—is biasedtowards sometimes finding
behavior, we anticipate that constancy is a more useéxtraneous change-points. The effect of the bias is to un-
concept for coarser time scales than for fine time scalégrestimate the duration of steady regions in our datasets.
This is because the effects of numerous deterministic n€te second test€+/ Boot strap—does not have the bias.
work mechanisms (media access, FIFO buffer drops, tintgowever, it isless sensitiveand therefore misses actual
granularities, propagation delays) manifest themselves eltange-points more often. The effect of the insensitivity
fine time scales, often leading to abrupt shifts in behavids,to overestimate the duration of steady regions and to un-
rather than stochastic variations. derestimate the number of CFRs within which the underly-
An important issue to then consider concerns differeimty process can be modeled by IID processes. (See [Zh01]
ways of how to look at our fine-grained measurements @or a detailed assessment of the accuracy of both tests.) To



accommodate the imperfection, we apply both tests whenDataset|| # pkt traces| # pairs | # pkis [| # thruput | # xfers |
ever appropriate and then compare the results. Our hope is1 2375| 244 | 160M 58 | 16,900
to give some bound on the duration of steady regions. We 1602] 670| 113M 111 | 31,700
This paper is organized as follows. We first describe
the sources of data in Section Il. We discuss the loss
data and its constancy analysis in Section IIl, and the de-
lay and throughput data in Sections IV and V. Of these
three sections, the first one is much more detailed, as we
develop a number of our analysis and presentation tet¥f used user-level timestamps.
niques therein. We then conclude in Section VI with a By using Poisson intervals for sending the packets, time

TABLE |
SUMMARY OF DATASETS USED IN THE STUDY

brief summary of our results. averages computed from the measurements are unbiased
[Wo82]. Packets were sent for an hour between random
[I. MEASUREMENT METHODOLOGY pairs of NIMI hosts, and were recorded at both sender and

We aathered two basic tvpes of measurements: I:)O_Sreceiver, with some streams being unidirectional and some
9 W Ictyp u - POISyMlrectional. We used the former to assess patterns of

|tgacket Ztr_?grgs{, use}d totassess Iostﬁ andlf e(!;\y CharaCtgﬁlg-'way packet loss based on the unique sequence number
ICS, an ransters 1o assess throughptlur mea- Present in eacki ng packet, and the latter to assess both

surements were all made using the NIMI measurement She-way loss and round-trip delay. We did not undertake

frastructure [PMAM98]. NIMI is a follow-on to Paxson Sany one-way delay analysis since the NIMI infrastructure

NPD measurement framework, in which a number of me 6€S not provide synchronized clocks.

surement platforms are deployed across the Internet an
P ploy or throughput measurements we used TCP transfers

used to perform end-to-end measurements, and it atte tfc, ; .
o . efween random pairs of NIMI hosts, making a 1 MB
to address the limitations and resulting measurement pi

ases present in NPD [Pa99].
We took two main sets of data, one during Winter 199
2000 (W), and one during Winter 2000-2001\%). For

ransfer between the same pair of hosts every minute for
a 5-hour period. We took as the total elapsed time of the
E{Fansfer the interval observed at the receiver between ac-
. . ) cepting the TCP connection and completing the close of

0
thﬁ. flhrSt’ thellnfr?s;rgcttl;re So_r;sgtg? ff sl hg?ts’tﬁ()/" { ?e connection. Transfers were made specifying 200 KB
which were located In the Lnite ates, and for tn€ Secep, windows, though some of the systems clamped the

ond, 49 hosts, 73% in the USA. About half are univer- :
L . - Buffers at 64 KB because the systems were configured to
sity sites, and most of the remainder research |nst|tutesn% activate the TCP window scaling option [JBB92]. The
different kinds. Thus, the connectivity between the Slt‘f\ﬁMl hosts all ran versions of either FreeBSD or NetBSD
is strongly biased towards conditions in the USA, and is Table | summarizes the datasets. The second column
likely not representative of the commercial Internet in the ) '
. . ives the number of hour-longi ng packet traces, the
large. That said, the paths between the sites do traverse - ;
: : ) third the number of distinct pairs of NIMI hosts we mea-
the commercial Internet fairly often, and we might plausi- . :
. ; sured (lower inWW; because we paired some of the hosts
bly argue that our observations could apply fairly well td ; )
. In W, for an entire day, while all of théV, measure-
the better connected commercial Internet of the not-too- )
. . ments were made between hosts paired for one hour), and
distant future, if not today.

. _ ., .. the total number of measured packets. The fifth column
For Poisson packet streams we used thierfg” util-

. : . . ives the number of throughput pairs we measured, each
ity, provided with the NIMI infrastructure, to source UDPfg .

or 5 hours, and the corresponding humber of 1 MB trans-
packets at a mean rate of 10 HA/) or 20 Hz (V). P g

fers we recorded.
For the first of these, we used 256 byte payloads, an o . .

: n our preliminary analysis ofV;, we discovered a de-
for the second, 64 byte payloadzi ng sends packets .. . . . .
. . ficiency ofzi ng that biases our results somewhat: if the
in selectable patterns (payload size, number of packets In

back-to-back “flights,” distribution of flight interarrivals), 2 9. Uity received a *No route to host" error condi-
oo o . ) tion, then it terminated. This means that if there was a
recording time of transmission and reception. Whilang

is capable of using a packet filter to gather kernel—levSIIgmﬁcam connectivity outage that resulted in ttieng

) ) - : . ﬁost receiving an ICMP unreachable message, #herg
timestamps, for a variety of logistical problems this option . . .
. stopped running at that point, and we missed a chance

does not work well on the current NIMI infrastructure, SO . "
o further measure the problematic conditions. 47 of the

1See [zZPS00] for related analysis of end-to-end routing based ¥1 measurement hours (4%) suffered fr(_)m this problem.
t racer out e measurements. We were able to salvage 6 as containing enough data



to still warrant analysis; the others we rejected, thouglurs—in particular, [YMKT99] explicitly discarded non-
some would have been rejected anyway due to NIMI csteady samples—some of our results bear directly upon
ordination problems. This omission means that We this previous work. In particular, in this section we ver-
data is, regrettably, biased towards underestimating sigrfi§ the finding of correlations in the loss process, but also
icant network problems, and how they correlate with nofind that much of the correlation comes only from back-
constancies. This problem was fixed prior to #hg data to-back loss episodes, and not from “nearby” losses. This
collection. in turn suggests that congestion epochs (times when router
One other anomaly in the measurements is thatVin buffers are running nearly completely full) are quite short-
some of the senders and receivers were missynchronideed, at least for paths that are not heavily congested.
such that they were not running together for the entire hour.As discussed in the previous section, we measured a
This mismatch could lead to series of packets at the begiarge volume (270M) of Poisson packets sent between
ning or ending of traces being reported as lost when in fagtveral hundred pairs of NIMI hosts, yielding binary-
the problem was that the receiver was not running. We r&lued time series indexed by sending time and indicating
moved the anomaly by trimming the traces to begin witlthether each packet arrived at the receiver or failed to do
the first successfully received packet and end with the last. For this analysis, we considered packets that arrived
such. This trimming potentially could bias our data tdsut with bad checksums as lost.
wards underestimating loss outages; however, inspectioThere were two artifacts in the data that we had to ex-
of the traces and the loss statistics with and without tipdicitly adjust for. First, as detailed in [ZPSO00], one of the
trimming convinced us that the bias is quite minor. sites exhibited strong 60-second periodicities in its losses.
Finally, our focus in this paper is on constancy, but tAs we did not find such periodicities for any of the other
soundly assess constancy first requires substantial worlsites, we removed these traces from our analysis as anoma-
detect pathologies and modal behavior in the data and, tets. Second, if a packet wasplicatedby the network
pending on their impact, factor these out. We then canch that multiple copies arrived at the receiver, we treated
identify quantities that are most appropriate to test for cothis as a single arrival, discarding the late arrivals. In gen-
stancy. Due to space restrictions and in the interest exfil, we found packet replication very rare, but in one trace
brevity, we refer the reader to [ZPSO00] for many of th&6% of the packets arrived twice.

particulars of this assessment of the data. Packet loss in the datasets was in general low. Over all
of Wi, 0.87% of the packets were lost, and %, 0.60%.
lll. L 0SS CONSTANCY However, as is common with Internet behavior, we find a

We begin our ana|ysis of types of constancy with a logkide range: 11-15% of the traces experienced no loss; 47—
at packet loss. We devote significantly more discussi®g% had some loss, but at a rate of 0.1% or less; 21-24%
to this section than to the subsequent sections analyzit@fl loss rates of 0.1-1.0%; 12-15% had loss rates of 1.0—
delay and throughput because herein we develop a numb@%o; and 0.5-1% had loss rates exceeding 10%.
of our analysis and presentation techniques. Because we sourced traffic in both directions during our

Correlation in packet loss was previously studied ifeasurement runs, the data affords us with an opportunity
[Bo93], [Pa99], [YMKT99]. The first two of these fo-t0 assess symmetries in loss rates. We find\farthat,
cus on conditional loss probabilities of UDP packets argimilar to as reported in [Pa99], loss rates in a path’s two
TCP data/ACK packets. [B093] found that for packegirections are only weakly correlated, with a coefficient of
sent with a spacing of 200ms, a packet was much morecorrelation of 0.10 for the 70% of traces that suffered some
likely to be lost if the previous packet was lost, too. [Pa9$9ss in both directions. However, the logarithms of the loss
found that for consecutive TCP packets, the second paciaies are strongly correlated (0.53), indicating that the or-
was likewise much more likely to be lost if the first onéler of magnitude of the loss rate is indeed fairly symmet-
was. The studies did not investigate correlations on lardét. While time-of-day and geographic (trans-continental
time scales than consecutive packets, however. [YMKT9@grsus intra-USA) effects contribute to the correlation, it
looked at the autocorrelation of a binary time series repf@mains present to a degree even with those effects re-
sentation of the loss process observed in 128 hours of utioved. FolV,, the effect is weaker: the coefficient of cor-
cast and multicast packet traces. They found correlatitgiation is -0.01, and for the logarithm of the loss rate, 0.23.
time scales of 1000 ms or less. However, they also note
that their approach tends to underestimate the correlaﬁ%n
time scale. Previously we discussed how an investigation of math-

While the focus of these studies was different frolamatical constancy should incorporate looking for a good

Individual loss vs. loss episodes
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Fig. 1. Example log-complementary distribution functidotp Fig. 2. Distribution of loss run durations.

of duration of loss-free runs.

loss episode processes. In contrast, only 1% of the traces
model. In this section, we apply this principle to undegiassified as 11D for the loss process are classified as non-
standing the constancy of packet loss processes. IID for the loss episode process.

The traditional approach for studying packet loss is Figure 1 illustrates the Poisson nature of the loss episode
to examine the behavior of individual losses [Bo93process for eight different datasets measured for the same
[Mu94], [Pa99], [YMKT99]. These studies found correhost pair. The X-axis gives the length of the loss-free pe-
lation at time scales below 200-1000 ms, and left op@ads in each trace, which is essentially the loss episode
the question of independence at larger time scales. Weiitterarrival time, since nearly all loss episodes consist of
troduce a simple refinement to such characterizations thaty one lost packet. The Y-axis gives the probability of
allows us to identify these correlations as due to backbserving a loss-free period of a given length or more, i.e.,
to-back loss rather than “nearby” loss, and we relate th& complementary distribution function. Since the Y-axis
result to the extended Gilbert loss model family [Gi60ls log-scaled, a straight line on this plot corresponds to
[SCKO0], [JS00]. We do so by considering not the losgn exponential distribution. Clearly, the loss episode in-
process itself, but the loszpisodeprocess, i.e., the timeterarrivals for each trace are consistent with exponential
series indicating when a series of consecutive packets (p@istributions, even though the mean loss episode rate in
sibly only of length one) were lost. the traces varies from 0.8%—2.7%, and this in turn argues

For loss processes, we expect congestion-inducstebngly for Poisson loss episode arrivals.
events to be clustered in time, so to assess independendewe increase the maximum lag in the Box-Ljung test
among events, we use the autocorrelation-based Bex-100, the proportion of traces with 11D loss processes
Ljung test developed i§ A-B, as it is sensitive to near-drops slightly to 25%, while those with 11D loss episodes
term correlations. We chose the maximum kap be 10, falls to 55%. The decline illustrates that there is some non-
sufficient for us to study the correlation at fine time scalesegligible correlation over times scales of a few seconds,
Moreover, to simplify the analysis, we use lag in packeksut even in its presence, the data becomes significantly bet-
instead of time when computing autocorrelations. ter modeled as independent if we consider loss episodes

We first revisit the question of loss correlations as alather than losses themselves.
ready addressed in the literature. W, for example, we  If we continue out to still larger time scales, above
examined a total of 2,168 traces, 265 of which has no laggighly 10 sec, then we find exponential distributions be-
at all. In the remaining 1,903 traces, only 27% are consiceme a considerably poorer fit for loss episode interar-
ered 11D at 5% significance using the Box-Ljunlstatis- rivals; this effect is widespread across the traces. It does
tic. The remaining traces show significant correlations abt, however, indicate correlations on time scales of 10's
lags under 10, corresponding to time scales of 500-1080seconds (which in fact we generally find are absent),
ms, consistent with the findings in the literature. but rather mixtures of exponentials arising from differing

These correlations imply that the loss process is not II[@ss rates present at different parts of a trace, as discussed
We now consider an alternative possibility, that the logelow. Note that, were we not open to considering a loss
episodeprocess is IID, and, furthermore, is well modeledf constancy on these time scales, we might instead wind
as a Poisson process. We again use Box-Ljung to test theemisattributing the failure to fit to an exponential dis-
hypothesis. Among the 1,903 traces with at least one Idgbution as evidence of the need for a more complex, but
episode, 64% are considered IID, significantly larger thateady, process.
the 27% for the loss process. Moreover, of the 1,380 traced\ll in all, these findings argue that in many cases the
classified as non-1ID for the loss process, half have Ilfine time scale correlation reported in the previous studies
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resolve. Similarly, we find that loss run sizes are uncorre- < | - SR/BSSta W3
lated according to Box-Ljung. We also confirm the find- ooz S0 ons O 00 200 800

ing in [YMKT99] that loss run lengths in packets ofterkijg 3. CDF of largest change-free region (CFR) for loss
are well approximated by geometric distributions, in ac- episodes in/; and W, datasets, and number of CFRs
cordance with the Gilbert model, though the larger loss present. “Lossy traces” is the same analysis restricted to
runs do not fit this description, nor do traces with higher traces for which the overall loss rate exceeded 1%.
loss ratest 1%); see below.
_ _ found for each trace iV, (solid) andW, (dashed). We

B. Mathematical constancy of the loss episode processyqq, niot CDFs restricted to just those traces for which the

While in the previous section we homed in on ureverall loss rate exceeded 1% (“Lossy traces”). We see
derstanding loss from the perspective of looking at lofisat more than half the traces are steady over the full hour.
episodes rather than individual loss, we also had the fir@df the remainder, the largest period of constancy runs the
ing that on longer time scales, the loss episode rates appelaole gamut from just a few minutes long to nearly the
to changing, i.e.non-constancy full hour. However, the situation changes significantly for

To assess the constancy of the loss episode procdsssy traces, with half of the traces having no CFR longer
we apply change-point analysis to the binary time serittgan 20 minutes fo€ P/ RankOrder (or 30 minutes for
(T;, E;), whereT; is the time of theth observation an&; CP/Bootstrap). The behavior is clearly the same for
is an indicator variable taking the value 1 if a loss episod®th datasets. Meanwhile, the difference between the re-
began at that time, 0 otherwise. In constructing this tinsellts forCP/RankOrder and those folC P/Bootstrap
series, note that we collapse loss episoded the non- is also relatively small—about 10-20% more traces are
lost packet that follows them into a single point in the timehange-free over the entire hour wit/ Bootstrap than
series. (For example, if the original binary loss series igith CP/RankOrder. This suggests the effect of the
0,0,1,0,1,1,1,0,0,1,0,0, 0, then the corresponding losias/insensitivity is not major.
episode series is0,0,1,1,0,1,0,0.) lLe., (Ti+1, Eit1) We also analyzed the CDFs of the CFR sizes weighted
reflects the observation of the second packet aftertthe to reflect the proportion of the trace they occupied. For ex-
loss episode ended. We do this collapsing because if Hraple, a trace with one 10-minute CFR and one 50-minute
series included the observation of tinst packet after the CFR would be weighted a§10 + %50 = 43.3 minutes,
loss episode, theh; 1 would always be 0, since episodesneaning that if we pick a random point in a trace, we will
are always ended by a non-lost packet, and we would thars average land in a CFR of 43.3 minutes total duration.
introduce a negative correlational bias into the time seri@he CDFs for the weighted CFRs have shapes quite similar

Using the methodology developed §nA-A, we then to those shown above, but shifted to the left about 7 min-
divide each trace up into 1 or more change-free regiontes, except for the 60-minute spike on the righthand side,
(CFRs), during which the loss episode rate appears wellhich of course does not change because its weight is 1.
modeled as steady. Figure 3 shows the cumulative dis-The bottom half of the figure shows the distribution of
tribution function (CDF) for the size of the largest CFRhe number of CFRs per trace. Again, the two datasets
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agree closely. Over all the traces there are usually just gAccordingly, we can assess whethiestates suffice to
handful of CFRs, but for lossy traces the figure is mudtescribe a given loss process by seeing whethek the
larger, with the average rising from around 5 over all tracégss after the initial loss occurs (conditioned on #ta
to around 20 over the lossy traces. Clearly, once we d@ss) with the same probability as tkéh loss does (con-
in a high-loss regime, we also are in a regime of changitioned on thek — 1 loss). We made these tests using
ing conditions. In addition, sometimes we observe a hugsher's Exact Test [Ri95], and found that, for bath
number of CFRs. Figure 4 shows an example of the lattand V., 40% of the traces are consistent with Bernoulli
a trace whose loss episode process divides into more thess; 89% with the Gilbert two-state model; 98% with
400 CFRs. 3 states (extended Gilbert); and 99% with 4 states. How-
Once we have divided traces into one or more CFRever, the models work less well for lossy traces: only 6%
we can then analyze each region separate from the othaf§, well-modeled as Bernoulli, 68% with 2 states, 85%
having confidence that within the region the overall lo&%ith 3 states, and 96% with 4 states.
episode rate does not change. Upon applying the Box- .
Ljung test, we find that 88-92% of the regions are cof: OPerational constancy of loss rate
sistent with an absence of lag 1 correlation, and 77-86%We now turn to analyzing a different notion of loss rate
are consistent with no correlation up to lag 100. Clearlyonstancy, namely from amperationalviewpoint. To do
within a CFR the loss episode process is well modeled $is, we partition loss rates into the following categories:
IID better than over the entire trace (previous section). 03-0.5%, 0.5-2%, 2—5%, 5-10%, 10—-20%, and 20+%. The
addition, applying the Anderson-Darling te§tA-C) to role of these categories is to capture qualitative notions
the interarrivals between loss episodes in a region, we fisgch as “no loss,” “minor loss,” “tolerable loss,” “serious
that 77-85% of the regions are consistent with exponentiegs,” “very serious loss,” and “unacceptable loss.”
interarrivals. For each trace we then analyze how long the loss rate re-
Together, these findings solidly support modelingrained in the same category. Figure 5 plots the weighted
loss episodes as homogeneous Poisson processes W@mF for four different loss series associated with each
change-free regions. In particular, correlations in loss prowace inW: the loss episode rate computed over 1-minute
cesses are due to the presence of consecutive losses, ritit@wvals, the raw packet loss rate over 1-minute intervals,
than nearby losses. and the same but computed over 10-second intervals. (Re-
It remains to describe the structure of loss episodes. Bidts for)V, are virtually identical.) The CDF is weighted
do so in the context of the aforementioned Gilbert and elay the size of the constancy interval, as mentioned above;
tended Gilbert models. For the two-state Gilbert model tbus, we interpret the plot as showing the unconditional
hold, we should find that within a loss episode the probprobability that at any given moment we would find our-
bility of observing each additional loss remains the samgelves in a constancy interval of durati@hor less. For
In particular, the probability that we observe a 2nd logxample, about 50% of the time we will find ourselvesin a
in an episode, given that we've seen the initial loss of aenstancy interval of 10 min or less, if what we care about
episode, should be the same as the probability of observiaghe constancy of loss episodes computed over minute-
a 3rd loss given that we've seen the 2nd loss. Similarly, thang intervals (solid line).
extended Gilbert model allows férdifferent loss rates for ~ An important point is that we truncated the plot to only
the firstk losses after the initial loss, each correspondirgiiow the distribution of intervals 50 minutes or less. We
to a different state in the model. characterize longer intervals separately, as these reflect



entire datasets that were operationally steady. Since U = 2-5%, andM O = 74-83%. (The minor varia-
datasets spanned at most one hour, constancy overtibe in the figures depends on whether for operational con-
whole dataset provides a lower bound on the duration sthncy we look at loss rate or loss episode rate, and whether
constancy, rather than an exact value, and hence diffess use the first or the second set of loss categories as dis-
from the distributions in Figure 5. cussed at the end §fllI-C.) Clearly, the notions of math-
For the four loss series, the corresponding probabi@ématical and operational constancy mostly coincide.
ties of observing a constancy interval of 50 or more min- However, if we instead evaluate operational constancy
utes are 71%, 57%, 25%, and 22%. Thus, if we onlysing loss rates computed over 10 sec intervals, the figures
care about constancy of loss viewed over 1-minute peare significantly differentA O = 11%, MO = 37-45%,
ods, then about two-thirds (57-71%) of the time, we willfO = 0.1%, andM O = 44-52%. We can summarize
find we are in a constancy period of at least an hour ihe difference asOperational constancy of packet loss co-
duration—it could be quite a bit longer, as our measuricides with mathematical constancy on large time scales
ments limited us to observing at most an hour of constaneuch as viewing how loss changes from one minute to the
We also see that the key difference between the 10 smxxt; but not nearly so well on medium time scales such as
and 1 min results is the likelihood of being in a period dboking at 10-second intervals.
long constancy: it takes only a single 10-second change
in loss rate to interrupt the hour-long interval, much motfe. Predictive constancy of loss rate

likely than a single 1-minute change. If we condition on The last notion of packet loss constancy we explore is

being in a shorter period of constancy, then we find Vel¥at of predictive constancy, i.e., to what degree can an
similar curves. In particular, if we are not in a period Oéstimator predict future loss events?

long-lived constancy, then, per the plot, we find that about

half the time we are in a 10-minute interyal or shortgr, aNDuld be interested in predicting. Here, we confine our-
there is not a great deal of difference in t_he duratlor_l Lves to predicting the length of the next loss-free run. We
constancy, regardiess of whether we consider _one—mm%%se this event for two reasons: first, we do not have to
or 1_0-second constancy, or loss runs or IOS_S episodes. bin the time series (which predicting loss rate over the next
Flnally, we repeated th'?’ assessme_nt usmg_a set of Cf'téeconds would require); and second, there are known ap-
points for the loss categories that fell in the middle of ”ﬁications for such prediction, such as TFRC [FHPWOO].

above cutpoints (e.g., 3.5—-7.5%), to test for possible bin-.l_he next question is what type of estimator to use. We
ning effects in which some t_races ?”"?‘dd'e a particular Iog sess three different types popular in the literature: mov-
boundary. The results are highly similar. ing average (MA), exponentially-weighted moving aver-
yAge (EWMA) such as used by TCP [Ja88], and the
_ ] “shaped moving average estimator (SMA) used by TFRC.
We now briefly assess the degree to which we finghig a5t is a class of weighted moving average estimators
that the notion of mathematical constancy of loss coig4¢ give higher weights to more recent samples; we use a
cides with the notion of operational constancy of 10S§pclass that gives equal weight to the most recent half of
While there are many dimensions in which we could Uie window, and linearly decayed weights for the earlier
dertake such an assessment, we aim here to only explﬁxéﬁ; see [FHPWOO] for discussion.

the coarse-grained relationship. For each of these estimators there is a parameter that

We begin by categorizing gach trace as either “steadéfaverns the amount of memory of past events used by the
or “not steady,” where the distinction between the two CORxtimator. For MA and SMA. we used window sizes of
cerns whether the trace has a 20-minute region of cony ¢ 16 39: and for EWMA. o = 0.5.0.25.0.125. and

stancy; i.e., for mathematical constancy, a 20-minute le)l%l’ wherea — 0.5 corresponds to weighting each new
for the rate of the loss episode process, and for operatioggllnple equally to the cumulative memory of previous sam-

constancy, a 20-minute period during which the loss raﬁ?es, andy = 0.01 weights the previous samples 99 times
did not stray outside one of the particular regions. We theg 1,,ch as each new sample.

assess what proportion of the traces were neither matheonCe we've defined what estimator to use. we next have

matically nor operationally steady{0), mathematically 1 yocige how to assess how well it performed. To do so,
but not operationally X/ O), vice versa {/0O), and both

(MO).
For operational constancy evaluated using loss com- dicti 5
puted over 1 min, we find/0 = 6-9%,MO = 6-15%, prediction error= {

There are a number of different loss-related events we

D. Comparing mathematical and operational constanc

we compute:

(predicted vaIu?’ ]
log | —————
actual value
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Fig. 7. CDFs of the mean error for EWMAx(= 0.25) estima-
tor computed over sets of lossy traces with different tydes o
constancy.

will remember the behavior in the older CFR for much

longer than the other estimators. We see that in the lower
: : : ‘ ‘ ‘ plot, it fares better, because that plot does not include tran-
° D e Predicon Error o sitions between CFRs.

Fig. 6. CDFs of the mean error for a large number of loss pre-AlS0, in the second plot we have added an “oracular” es-
dictors, computed over entire traces (top) or change-free fimator (dotted). This estimator knows the mean loss-free
gions (bottom). length during the CFR, and always predicts that value. We

can see that it does noticeably better than the other estima-

tors about half the time, and comparable the other half. A
where the expectation, which is computed over each of thgnificant element of its improved performance is that the
events (loss-free runs) in a trace, reflects the ratio by whigfiver plot is heavily skewed to favoring estimators that do
the estimator typically misses the target. We then compw{@|| over traces that are highly non-steady (many CFRs),

CDFs that show the range of how well a given estimatgecause each of the CFRs will contribute a point to the

performs over all of the traces. CDF. The success of the oracle also suggests that it might

Figure 6 shows the resulting CDFs, computed for dle a good general strategy to construct estimators that in-
traces (top plot) and for all CFRs within the traces (bottoniude an explicit decision whether to restart the estimator,
plot). The vertical line in each plot reflects a predictiono they can adapt to level shifts in a nimble fashion.

error of 1, corresponding to overestimating or underesti-Finally, we repeated the analysis after applying a ran-

mating by a factor of. (It turns out that the best onedom shuffle to the traces to remove their correlational

can achieve, on average, for predicting 1ID exponentigiructure. Doing so makes only a slight difference in
random variables is a prediction error of 1.02.) We havke estimators’ performance, reducing the discrepancy be-
plotted CDFs for all of the different estimators and setseen then = 0.01 estimator and the others, and we find
of parameters, and the plot does not distinguish betwegat the various estimators do only slightly worse than an
them because the main point to consider is that virtuallyacular estimator applied to the now-IID time series.

all of the estimators perform about the samée-param- e finish with a look at the relationship between how

eters don't matter, nor does the averaging scheme well we can predict loss versus the presence or absence of

We interpret this as reflecting that the process does moathematical and/or operational constancy. A§ in-D,

have significant structure to its short-range correlatiome aim only to understand the coarse-grained relationship,

that can be exploited better by particular types of predignd again we consider a trace mathematically steady if it

tors or window sizes; all that the estimators are doing ligs a maximum CFR of at least 20 minutes, and opera-
tracking the mean of the process, which varies more slowiignally steady if it stays within a particular loss region for
than do the windows. There are two exceptions, howevat.least 20 minutes.

First, in the top plot, the CDF markedly below all the oth- Partitioning the lossy¥ 1% loss) traces on that criteria,

ers corresponds to EWMA with = 0.01. That estimator using EWMA witha = 0.25 we attain the predictor error

has a lengthy memory (on the order of 100 packets), aB®DFs shown in Figure 7. We see that the quality of the
accordingly cannot adapt to rapid fluctuations in the logsedictor is virtually unchanged if we have neither math-
process. In addition, that estimator will do particularlgmatical nor operational constancy, or just one of them.
poorly during a transition between two CFRs, becauseBtt if we have both, then the predictor’s performance is

00 02 04 06 08 10




phenomenon we had to deal with is the presence of de-
lay spikes These are intervals (often quite short) of highly
elevated RTTs. They are rare, but if unaddressed can seri-
1 RTT in every 1,000 ously skew our analysis due to their magnitude. Figure 8
conveys the size and prevalence of spikes. For each trace,
we computed the median of all of the RTT measurements,
] and then normalized each RTT measurement by dividing it

0 50 100 150 200 by the median. This allows us to then plot all of the mea-

Ratio of RTT to Median . .
surements together to assess, in high level terms, the mag-

nitude of RTT variation present in the data. The plot shows
the complementary distribution of the RTT-to-median ra-
tio; this style of plot emphasizes the upper tail. For refer-
worse This is because in this regime the loss episode pignce we have drawn lines reflecting a ratio of 10:1 (verti-
cess resembles an IID process without significant shagkl) and a probability o10~3 (horizontal). Clearly, there
term variations, and the recent samples seen by the estk a significant number of very large RTTs, though not so
mator provide no help in predicting the next event. In agnany that we would consider them anything other than an
dition, note that if we look at all traces rather than just thextreme upper-tail phenomenon.
lossy traces, the estimators again do worse, because for thgy proceed with separating spikes from regular RTT be-
type of event we are predicting (interval until the next losgavior, we need to devise a definition for categorizing an
episode), traces with low loss levels provide very few sarRTT measurement as one or the other. We were unable
ples to the estimator. However, low loss is also a conditi¢g find a crisp modality to exploit—the only one present
under which we generally won't care about the precisgr the plot is for ratios above or below 100:1, but that cut-
ness of the estimator, since loss events will be quite ragg point omits many spikes that we found visually—so we
In summarypredictors do equally well whether or not wesettled on the following imperfect procedure: for each new
have other forms of constancy, unless we have constapayr measuremer’, we compared it to the previous non-
resembling an IID process with little short-term variationspike measuremenR. If R’ > max(k - R, 250ms), then
we consider the new measurement a spike; otherwise, we
setR «— R’ and continue to the next measuremeni/e

We next turn to exploring the types of constancy assthen applied this classification fér= 2 andk = 4. Doing
ciated with packet delays. Mukherjee found that packeb revealed two anomalies: a high latency path plagued by
delay along several Internet paths was well-modeled wapid RTT fluctuations ranging from 200 ms to 1 sec, and
ing a shifted gamma distribution, but the parameters of thgair of hosts that periodically jumped their clocks. With
distribution varied from path to path and on time scales tife anomalies removed, we find that= 2 categorized
hours [Mu94]. Similarly, Claffy and colleagues found that.1 - 10~2 of the W; RTTs as spikes, ankl = 4 catego-
one-way delays measured along four Internet paths exhitzed3.4 - 1074,
ited clear level shifts and non-constancies over the cours@nce we had the definition in place, we could check
of a day [CPB93]. it in terms of “yes, these are really outliers,” as follows:

For our analysis, we again use thieng Poisson packet for each trace we computesiand o, the mean and stan-
streams measured on the NIMI hosts. Because the NINHrd deviation of the RTT measurememtith the spikes
hosts lack synchronized clocks, we confine our analysisiimoved We then for each spike assessed how many
those datasets with bidirectional packet streams. Thesejafgas abover. For Wi, the k = 2 definition leads to
generated byi ng on hostA sending “request” packetsspikes that are typically (median) 16.@bove the mean,
hostB, and thezi ng on hostB immediately responding with 80% being more than 56 For k = 4, these figures
to each of these by sending back matching “reply” packetie to 2& and 6.6.
facilitating round-trip measurement at host The delay

in zi ng’s response is short, usually taking 100-28&c, B. Constancy of body of RTT distribution
occasionally rising to a few ms.

1070

10:1 Ratio

1072

104

10M-6

Fig. 8. Complementary distribution of the ratio of RTT saawpl
to the median of their traces, computed ¥oy.

IV. DELAY CONSTANCY

The degree to which RTT spikes are indeed outliers
A. Delay “spikes” points up a need to assess the constancy of the body of

The data totaled 130M RTT measurements made beyye found the 250 ms lower bound necessary for applying the clas-
tween 613 distinct pairs of hosts. In analyzing it, the firsffier to traces with quite low RTTs.
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Upon applying change-point detection to the spike
episode process, we find spike episodes even more steady

04

S i e than loss episodes: the process is steady across the entire
o] hour 75% of the time fok = 2 spikes, and 90% of the
o 0 2o s a0 % e time for k = 4 spikes. In addition, we find the interarrivals

Fig. 9. CDF of largest CFR for median and IQR of packet RTIq;etween spikes are well-modeled as IID exponential, i.e.,

delays. “Lossy” is the same analysis restricted to traces fg0iSson.

which the overall loss rate exceeded 1%. ]
D. Operational constancy of RTT

the RTT distribution separate from that of the RTT spikes. Similar to our analysis for losg; (1I-C), we assess the
We do so by applying change-point analysis to the medi@nerational constancy of RTTs by partitioning the delays
and inter-quartile range (IQR) of the distributidn. into a set of categories and then assessing the duration of
Figure 9 shows CDFs of the size of the largest correggions over which the measured RTT stays within a single
sponding CFRs. We see that, overall, the median is l&gegory.
steady than the IQR (indeed, we find that IQR change-Different applications can have quite different views as
points appear to often be a subset of median chang@what constitutes good, fair, poor, etc., delay. To have
points), and both distributions shift about 5 minutes to tik@ncrete categories, we used ITU Recommendation G.114
left for lossy traces. The striking difference with Figure 3/ TU96], which defines three regions: 0-150 ms (*Accept-
though, is the absence of entire hours with no changile for most user applications”), 150-400 ms (“Accept-
points. Thus we find thaoverall, delay is less steadyable provided that Administrations are aware of the trans-
than lossand that, while there’s a wide range in the lengtfission time impact on the transmission quality of user ap-
of steady delay regions, in general delay appears well gdications”), 400+ ms (“Unacceptable for general network
scribed as steady on time scales of 10-30 minutes. We @nning purposes”). Because these recommendations are
also test the median and IQR (computed over 10-secdftl one-way delays and we are analyzing RTTs, we dou-
intervals) for independence within each CFR. Using tfided them to form RTT categories, and then sub-divided
Box-Ljung test for up to 6 lags, we find very good agre@—300 ms into 0-100 ms, 100-200 ms, and 200-300 ms,

ment (90-92%) with independence. to allow a somewhat finer-grained assessment.
We find that more than half of the traces have maxi-
C. Constancy of RTT spikes mum CFRs under 10 min, and 80% are under 20 min. We

Having characterized the constancy of the packet def®ynd virtually no difference whether or not we left RTT
distribution’s body, we now turn to the constancy of thepikes in the traces (since they are rare), or when we tested
RTT spike process. Analogous to our approach for pac|gbi[‘shifted” version of the categories similar to the shifted
loss, we group consecutive spikes into spike episodes, nsion of loss rates discussedill-C. Thus, not only
ing that in general the episodes are quite short lived: f8f€ Packet delays not mathematically steady, they also are
example, the median duration of a spike episode (usifigt oPerationally steady.

k = 2) in Wy was 150 ms, and the mean 275 ms. E. Predictive constancy of delay

3The IQR of a distribution is the di he 25th 75th . :
€ IQR of a distribution s the distance between the 25th and 75th\ /1 finish our assessment of different types of delay con-
percentiles. It serves as a robust counterpart to standard devigton.

IQR change-points, we compute the IQR over ten-second intervals &#@NCy with a brief |00_k atthe eﬁicac_)_’ of predic_ting fUth?
look for a change in the median of that time series. RTT values. We again use the families of estimators dis-
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cussed irg llI-E. The events they process are RTT mea- : :
surements, and our assessment concerns how well they _ | | S Cosbleap TO00) e
predict the next measurement. Figure 10 shows that the ~ T T
estimators again all perform virtually identically, and that
their performance is very good: the vertical line on the plot
marks a mean prediction error of 0.2, which corresponds ., |
to estimating the next value within a factordf? ~ 22%, Ny
and the horizontal line marks 95% of the distribution. We = '5— T 2 ] : :
attain virtually identical results whether or not we include. o ,
RTT spikes in the measurements. Thus, we find that, iff- 11 CDF of maximum and weighted average CFRs for
. ) L throughput achieved transferring 1 MB using TCP.
contrast with loss (Figure 6)n general, delay is highly
predictable Of course, for some applications, the conse-
guence of mispredicting delay can be significant (e.g., a
bad TCP retransmission timeout); we are not blithely as-
serting that applications will find highly predictable those
facets of delay that they particularly care about, only that
delay in general is highly predictable.
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V. THROUGHPUT CONSTANCY

Hours

The last facet of Internet path constancy we study is end-
to-end throughput. Compared to loss and delay, throud‘_ﬂg- 12. Distribution of maximum operatiqnal constancy re-
put is a higher-level path property, a product of the first 9/0ns forp = 1.2 (leftmost)......, p = 10 (rightmost).
two plus the dynamics of the transport protocol used. In
addition, applications have a wide range of throughput rend for 60-70%, the largest CFR is 2.5 hours long or less.
quirements. To keep our analysis tractable, we confine olihe weighted averages are shifted over about 45 minutes;
selves to a simple notion of throughput constancy, naméiglf of the time we find ourselves in a change-free region
the minute-to-minute variations observed in 1 MB TCBf under 1.5 hours duration.
transfers. The data we analyzed consisted of 169 run€n the other hand, throughput does not wildly fluctuate
of 5 hours each, comprising a total of 49,000 connectionsnute-by-minute: only 10% of the time do we find our-
measured along 145 distinct Internet paths. selves in a CFR of under 20 minutes duration. Similarly,

Based on a very large packet-level trace collected the median number of change-points in a trace is 8. Fi-
a single busy Web server, [BPSSK98] found that thwally, within CFRs, we find that the individual throughput
throughput of Web transfers exhibited significant temporaleasurements are well modeled as IID, 92% passing the
(several minutes) and spatial stability despite wide variBox-Ljung test for autocorrelation up to 6 lags; over entire
tions in terms of end-host location and time of day. Thetraces, however, this figure falls to 24%.
study differs from ours in that the server was a single site,
there were many more clients, and the analysis focused®nOperational constancy of throughput
the throughput of Web transfers, which are usually muchwe adopt a simple notion of operational throughput con-
shorter than our transfers. In other previous work, Paxsegancy, namely whether the observed bandwidth stays in a
found that for a measure of available bandwidth derivedgion for which the ratio between the maximum and min-
from timing patterns in TCP connections, the predictiietnum observed values is less than a factop.oFigure 12
power of the estimator was fairly good for time periods ughows the distribution of the size of the maximum steady
to several hours [Pa99]. regions, forp = 1.2 throughp = 10. We see that if our op-
erational requirement is for bandwidth not to vary by more
than 20% peak-to-peak, then we will only have a few min-

We applied change-point analysis to the mean of the sges of constancy, but asincreases, so too does the max-
ries of per-minute throughput measurements in each traiceal constancy, fairly steadily; for peak-to-peak variation
Figure 11 shows the cumulative distribution of the maxéf a factor of 3, it is often several hours.
mum CFR and the weighted average of the duration of theWe also find that, due to the wide range in operational
CFRs (per the discussion of Figure 3 previously). We seenstancy as we vary, there is no simple relationship
that few traces are steady over the entire 5-hour peritibtween the mathematical and operational constancy of

A. Mathematical constancy of throughput



For each of these developments, one of the key issues is
short the degree to which the relevant Internet properties hold
1 Meme, Long o steady; yet each also involves a quite different notion of
constancy. We have discussed how mathematical, oper-
1 ational, and predictive constancy sometimes overlap, and
. sometimes differ substantially. That they can differ signifi-
i cantly highlights how it remains essential to be clear which
oo o2 oa gﬁzdictiogizrmr 10 12 notion of constancy is relevant to the task at hand.
This paper can be read on two levels. On one level, we

Héve attempted to shed light on the current degree of con-
stancy found in three key Internet path properties: loss,
delay, and throughput. One surprise in our findings is
throughput. For example, if we classify a trace as opefigat many of the processes are well-modeled as 11D, once
tionally steady if it has a maximum CFR of at least 2 hourge identify change-points in the process’s median (loss,
then forp = 1.2, we find MO = 53%, MO = 39%, throughput) and aggregate fine-grained phenomena into
MO =2.4%, andM O = 5.9%. But forp = 10, we have episodes (loss runs, delay spikes). However, IID models
MO = 3.6%,MO = 1.2%,MO = 51.5%, and\/O = are a mixed blessing; they are very tractable, but IID pro-
43.8%, completely different. cesses are very hard to predict.

The need to refine the analysis by looking for change-
points and identifying episodes illustrates how important it

We finish our look at different types of throughput conis to find the right model. For example, while the loss pro-
stancy with a look at how well an estimator can predict thess itself is both correlated and non-steady, when reduced
next observed throughput measurement. Figure 13 shawshe loss episode process, the IID nature of the data be-
how the families of estimators discussedsinll-E per- comes evident. This illustrates the importance of consider-
formed in estimating the next throughput value over eagty the constancy of a path property not as a fundamental
5-hour trace in its entirety. Almost all of the estimatorproperty in its own right, but only as having meaning in
perform equally well, with 95% of their estimates (horithe context of a model, or an operational or protocol need.
zontal line) yielding an error of 0.4 (vertical line) or lower, Another general finding is that almost all of the different
corresponding to estimating the next value within a fagtasses of predictors frequently used in networking (mov-
tor of %4 ~ 50%. However, three estimators do poorlying average, EWMAS-shaped moving average) produce
EWMA with a = 0.01, and MA and SMA with windows very similar error levels. Sometimes the predictors per-
of 128. These reflect estimators with long memory, as indorm well, such as when predicting RTTs, and sometimes
cated on the plot (the other estimators had windows of p6orly, because of the 11D nature of the data (loss, through-
or less, ora > 0.125), indicating that when predicting put).
throughput, remembering observations from a number offinally, the answer to the question “how steady is the
minutes in the past is fine, but remembering for more thaternet?” depends greatly on the particular aspect of con-
an hour can mislead the estimator. Finally, we note thetancy and the dataset under consideration. However, it
for traces that are mathematically steady (maximum CFlgpears that for all three aspects of constancy, and all three
> 1 hour), the short-memory estimators do nearly twicguantities we investigated, one can generally count on con-
as well (half the mean error) as they do on all the tracggancy on at least the time scale of minutes.
(We do not attempt a comparison between prediction andon another level, our paper tries to carefully distinguish
operational constancy, since for throughput there is sugdtween the three different notions of constancy: mathe-
a wide range of operational constancy depending on th@tical, operational, and predictive. One of the goals of
parametep.) our study was to gather the appropriate set of concepts and
tools needed to understand each of these different aspects
of constancy. While the detailed results from our measure-

Applications and protocols are becoming madaptive ments may soon prove ephemeral (due to changing traf-
andnetwork-consciousNetwork operators and algorithmdfic conditions), or rendered obsolete (by subsequent and
are increasingly relying on measurements to assess dgtter measurement efforts), we hope that the fundamen-
rent conditions. Mathematical models are playing a larged concepts and tools developed here might prove longer-
role in the discussions of Internet traffic characteristiclived.
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Fig. 13. CDFs of the mean error for a large number of throug
put predictors.

C. Predictive constancy of throughput

VI. CONCLUSIONS
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APPENDIX has, asymptotically as — oo, a standard normal distribution.
Thus we can associate a significance level with the candidate
|. STATISTICAL METHODOLOGY change poini, in the usual manner. By choosing a significance

In this appendix we discuss the three main statistical tedgvel ¢ (we use5% throughout this thesis) we specify our ac-
niques we use in our analysis, tests for: change-pointepei- ceptable probability of incorrectly rejecting the null hypothe-

dence, and exponential interarrivals. sis. The test accepts the null hypothesis (in a two-sidejl ifes
. _ F(|z]) < 1 —¢/2 whereF is the cumulative distribution func-
A. Testing for change-points tion of the standard normal distribution. (However, notatth

We apply two different tests,CP/RankOrder and the largen asymptotic is not sufficiently accurate wheépand
CP/Bootstrap, to detect changes in the median. Both tests dé=io < 12;inthis case Table K in Appendix | of [SC88] should
tect change-points in a two step approach: first identifiagngPe .used.) Iq some cases we shall use th|s_test on bmayy data, i
candidate change-point, then applying a statistical tedeter- Which case it reduces to a test of the equality of the expeotat
mine whether it is significant. The combined approach [Lagéjorresponding to binary states on either side of the catelida

[Ta00] uses an analysis of ranks in order to detect changes-ftange-point. S .
the median [SC88]. Being based on ranks, the method is re-1he above can be extended to the identification of multiple

sistant, i.e., tolerant to the presence of outliers. Funtioge, change points, as follows [La96], [Ta00]. First, chooseg si

the hypotheses underlying these test are quite weak; égoéli Nificance level. Second, apply the above method recursively
variances is not required. to the two segment$l,... io} and{io + 1,...,n} until no

Consider first a set of values(z;);—; ..., comprising a seg- more change points are _fognd. at the qhosen significancg level
ment of a given time series. Construct the ranlof eachz; 1 hird, apply backward elimination to reinspect the set ofdia
within the set, i.e.] for the smallest and for the largest. Com- date change points in order to eliminate false detectizila
pute the cumulative rank sums = >\_, r;. The basis of |0Ws. Let there ben change-point candidatgs < --- < ji.
the test is that if no change point is present, the cumulagige L€tJjo andji.1 be 0 ands respectively. Starting with the first
sumss; should increase roughly linearly withIndeed, suppose identified candidate, call ifx, (1 < ko < m), reinspect for

we form the adjusted sum: change-points on the s€fx, 1 +1,..., jk,+1}, and adjust or
delete non-significant change-points. Repeat for all chatds
sh = |s; — 3 in order of identification. Repeat backward eliminationilunt

the number of change-points is stable. By reestimating each
as the difference between, and its presumed meap=i(n +  change-point using only the data between the two surrogndin
1)/2 assuming no change-point to be present. Theshould change-points, backward elimination avoids the contatitina
stay close to zero. If, however, a change-point is preségfieh  caused by the presence of multiple change-points at thedime

ranks should predominate in either the earlier or latergfthte  ecursion and consequently helps to reduce the rate ofdaise
set, and hence/ will climb to a maximum before decreasing toiections.

zero ati = n. We identify the maximizing index, for s, ands

running over{1, ..., n} as a candidate change-point. B. Testing for independence
In the second stag+e, to test equality of two s&ts = e assess independence using the Box-Ljung test [LB78].
{21, @i—1) @ndXT = {&ig11,..., 2n}, CP/Boolslrap  por g time series with elements, the Box-Ljung statistig, is

uses the bootstrap analysis procedure outlined in [TaOGijew a weighted sum of squares of measured autocorrelatidnsm
CP/RankOrder uses the Fligner-Policello Robust Rank-Ordqlégsl up tok:

Test [SC88].

« Bootstrap analysigused inCP/Bootstrap). The bootstrap ko2
analysis procedure outlined in [Ta00] usEgj, defined as Qr = n("+2)zn—ii-
(max s; — min s;), to estimate the magnitude of the change at i=1

the candidate change-point. It determines the confideve? leynder the null hypothesis that the process comprises imdepe
of change by testing how often the bootstrap differef§a: dent Gaussian random variables, the distributionQgf con-

of a bootstrap sampler? }—a random permutation dfr; }—is  verges, for larges, to ax? distribution withk degrees of free-
less than the original differencg;ss - dom. Thus by comparing the test statisfi¢ with the1 — ¢



quantile of the appropriatg? distribution, we can test whether[Gi60]
the autocorrelations of the time series differ at signifezaievel

¢ from those of independent Gaussian random variables. tn fac

as remarked in [LB78], the test is relatively insensitivelépar- [[TU96]
tures from the Gaussian hypothesis in the underlying peoces

This is because the measured autocorrelatipase asymptoti- [Ja88]
cally Gaussian provided the marginal distribution of thelem
lying process has finite variance. (While infinite varianceafry
tails) abound in networking behavior, the time series we-cofygogj
sider here are generally well bounded, and certainly haie fin
variance.)

[JBB92]

[La96]
C. Testing for exponential distributions

An exploratory test for an exponential distribution of inte
event times is to plot the log-complementary distributiand-
tion; for an exponential distribution this is linear withopke
equal to the negative of the reciprocal of the mean. A stedilst [MJIV96]
test is that of Anderson-Darling. This test has been fourtzkto
more powerful than either the Kolmogorov-Smirnov or tite
tests, i.e., its probability of correctly rejecting the Inuypoth-
esis (that the distribution is exponential) is greater;[Ex286].
This is, in part, due to the fact that the Anderson-Darlingf te
employs the full empirical distribution (rather than bingj as [PF95]
in a x? test), allowing it to give more weight to larger sample
values whose presence can lead to a violation of the null hy-
pothesis.

For a set ofr rank-ordered inter-event times < --- < t,,,
the appropriate Anderson-Darling statistic is:

[LB78]

[Mu94]

[Pagg]

2 1, { .y }
A n—— ;(27, 1) 3log(1 — e b/t —t, 13 /T Rios
wheret = n=! 3" | ¢; is the empirical mean inter-event time!
We reject the null hypothesis at significance letél the test
statistic exceeds the tabulated values appropriate fodehel;
see, e.g., Table 4.11 in [DS86]. We note the importance ogjsi[scggl
the table appropriate to the present case in which the mesm is
timated from the sample, rather than being specified in amb/anTa00]
Moreover, the table explicitly takes into account the effafca
finite sample size.

[Wo82]
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