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This thesis is concerned with solutions of noncommutative integrable systems where

the noncommutativity arises through the dependent variables in either the hierarchy or

Lax pair generating the equation.

Both Chapters 1 and 2 are entirely made up of background material and contain no

new material. Furthermore, these chapters are concerned with commutative equations.

Chapter 1 outlines some of the basic concepts of integrable systems including historical

attempts at finding solutions of the KdV equation, the Lax method and Hirota’s direct

method for finding multi-soliton solutions of an integrable system. Chapter 2 extends the

ideas in Chapter 1 from equations of one spatial dimension to equations of two spatial

dimensions, namely the KP and mKP equations. Chapter 2 also covers the concepts of

hierarchies and Darboux transformations. The Darboux transformations are iterated to

give multi-soliton solutions of the KP and mKP equations. Furthermore, this chapter

shows that multi-soliton solutions can be expressed as two types of determinant: the

Wronskian and the Grammian. These determinantal solutions are then verified directly.

In Chapter 3, the ideas detailed in the preceding chapters are extended to the non-

commutative setting. We begin by outlining some known material on quasideterminants,

a noncommutative KP hierarchy containing a noncommutative KP equation, and also two

families of solutions. The two families of solutions are obtained from Darboux transfor-

mations and can be expressed as quasideterminants. One family of solutions is termed

“quasiwronskian” and the other “quasigrammian” as both reduce to Wronskian and Gram-

mian determinants when their entries commute. Both families of solutions are then verified

directly. The remainder of Chapter 3 is original material, based on joint work with Claire

Gilson and Jon Nimmo. Building on some known results, the solutions obtained from

the Darboux transformations are specified as matrices. These solutions have interesting

interaction properties not found in the commutative setting. We therefore show various

plots of the solutions illustrating these properties.

In Chapter 4, we repeat all of the work of Chapter 3 for a noncommutative mKP

equation. The material in this chapter is again based on joint work with Claire Gilson

and Jon Nimmo and is mainly original.

The original material in Chapters 3 and 4 appears in [20] and in [21].

Chapter 5 builds on the work of Chapters 3 and 4 and is concerned with exponentially

localised structures called dromions, which are obtained by taking the determinant of the

matrix solutions of the noncommutative KP and mKP equations. For both equations, we
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look at a three-dromion structure from which we then perform a detailed asymptotic anal-

ysis. This aymptotic forms show interesting interaction properties which are demonstrated

by various plots. This chapter is entirely the author’s own work.

Chapter 6 presents a summary and conclusions of the thesis.
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Chapter 1

Introduction

1.1 Sir John Scott Russell’s observation of a solitary wave

The solitary wave can be traced back to 1834 when Sir John Scott Russell observed what

he called the “great wave of translation” on the Union Canal in Scotland. Reporting his

observation in [47], he described the physical characteristics of a mass of water put in

motion by the sudden stoppage of a horse-drawn boat. According to Russell, the mass of

water

...rolled forward with great velocity, assuming the form of a large solitary elevation,

a rounded, smooth and well-defined heap of water, which continued its course along the

channel apparently without change of form or diminution of speed.

Russell then attempted to recreate this phenomenon in laboratory experiments where

he created solitary waves by dropping weights at one end of a water channel. He then

deduced that the speed of a solitary wave, c, is given by

c =
√
g(h+ a), (1.1)

where a denotes amplitude, h is the undisturbed depth of the water and g is the acceleration

of gravity. From equation (1.1) it is clear that taller waves travel faster. Continuing on a

mathematical theme, Boussinesq (1871) and Lord Rayleigh (1876), used (1.1) in order to

find an expression for the wave profile. They showed that the wave profile z = ζ(x, t) is

given by

ζ(x, t) = a sech2 (β(x− ct)) , (1.2)

7
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where

β =

√
3a

4h2(h+ a)

for a > 0 and a
h << 1. Equation (1.2) represents a right-travelling wave with amplitude

a, wavelength 1
β and speed c.

1.2 The Korteweg-de Vries equation

Despite being able to derive (1.2), neither Boussinesq or Lord Rayleigh managed to find an

equation governing this wave profile. However, in 1895, Korteweg and de Vries were suc-

cessful in finding a mathematical schematization to describe Russell’s observation. They

developed a nonlinear partial differential equation which governs one-dimensional waves.

The celebrated Korteweg-de Vries [6] (normally abbreviated to KdV) equation is

ut +
αβ

γ
uxxx +

β

γ3
uux = 0, (1.3)

where the subscripts denote partial differentiation and α, β and γ are constants. Equation

(1.3) is a general form of the KdV equation. In this thesis, we will use the following version

of the KdV equation:

ut + uxxx + 6uux = 0. (1.4)

To find a solitary-wave solution of equation (1.4), we let u = l(x− ct) = l(ξ) for some

constant c > 0 so that our solution is a right-travelling wave. Therefore l must satisfy

−cl′ + 6ll
′
+ l
′′′

= 0, (1.5)

where
′ ≡ d

dξ . Integrating equation (1.5) once gives

−cl + 3l2 + l
′′

= C1, (1.6)

where C1 is an arbitrary constant. Multiplying both sides of equation (1.7) by l
′

and

integrating again yields

− c
2
l2 + l3 +

1
2

(l
′
)2 = C1l + C2, (1.7)

where C2 is an arbitrary constant. By setting C1 = C2 = 0 so that we have a wave which

has l → 0, l
′ → 0 and l

′′ → 0 as ξ → ±∞, we have the first-order ordinary differential

equation

l
′

= ±l
√
c− 2l. (1.8)
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By making the substitution l = 1
2 sech2 θ, equation (1.8) leads to the solution

u(x, t) =
c

2
sech2

(√
c

2
(x− ct− x0)

)
, (1.9)

where the choice ± has been eliminated since the solution is an even function, and x0 is

an arbitrary constant. In fact, x0 plays an important role in the behaviour of the solution:

it is the phase constant – the position of the peak of the wave at t = 0.

Some time passed before the KdV equation was shown to possess multi-soliton solu-

tions. In 1965, Zabusky and Kruskal [33] considered the initial-value problem for a version

of the KdV equation

ut + uux + δ2uxxx = 0. (1.10)

They solved this equation with u(x, 0) = cos(πx), 0 ≤ x ≤ 2 and u, ux, uxxx periodic on

[0, 2]. Their results showed that the initial profile seperated into eight sech2-like functions

propagating around the system with different speeds. The sech2-like functions collided

but emerged from interaction with all of their characteristics preserved. This is as a result

of the balancing of the nonlinear and dispersive terms in the equation. Owing to these

particle-like properties, Zabusky and Kruskal termed the solitary-wave solution a soliton,

where the suffix -on indicates a particle. Whilst no precise mathematical definition of

the soliton exists, Drazin and Johnson define solitons in [9] as any solution of a nonlinear

equation (or system) which:

1. represents a wave of permanent form;

2. is localised, so that it decays or approaches a constant at infinity;

3. can interact strongly with other solitons and maintain its identity.

1.3 The Lax method

In 1968, Lax presented a method [35] which represents nonlinear evolution equations with

differential operators that are linear in x. The work of Lax requires two operators, L and

M , which operate on elements of L2(R), the space of integrable functions on the real line,

endowed with an inner product

〈φ, ψ〉 =
∫ +∞

−∞
φψ dx. (1.11)
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Both L and M are self-adjoint so that 〈L[φ], ψ〉 = 〈φ,L[ψ]〉 and 〈M [φ], ψ〉 = 〈φ,M [ψ]〉

∀φ, ψ ∈ L2(R). In the spirit of finding exact solutions via inverse scattering, one has the

spectral problem

L[ψ] = λψ, (1.12)

so that ψ is an eigenfunction for L with eigenvalue λ. In addition, the eigenfunction ψ

evolves in time according to

ψt = M [ψ]. (1.13)

Lax showed that if equations (1.12) and (1.13) both hold, then the operators L and M

satisfy the relation

Lt + [L,M ] = 0, (1.14)

where [L,M ] = LM −ML denotes the commutator of L and M . To see this, we differ-

entiate both sides of (1.12) with respect to t and then substitute equation (1.13) into the

resulting equation. Doing so gives

λtψ = Lt[ψ] + L[ψt]− λψt

= Lt[ψ] + LM [ψ]−M [λψ]

= Lt[ψ] + LM [ψ]−ML[ψ]

= (Lt + [L,M ])[ψ]. (1.15)

Solving equation (1.15) for nontrivial eigenfunction ψ and choosing λt = 0 gives equation

(1.14). Since λt vanishes, every eigenvalue of L is a constant. Throughout this thesis, we

use a more convenient but equivalent form of (1.14), by incorporating ∂t into the operator

M .

The KdV equation (1.3) provides us with a prototypical example of the Lax represen-

tation. If we choose the operators

LKdV = ∂2
x + u,

MKdV = 4∂3
x + 6u∂x + 3ux + ∂t, (1.16)

then

[LKdV,MKdV][ψ] = (ut + uxxx + 6uux)ψ. (1.17)

Therefore, we must have that [LKdV,MKdV] = 0 if and only if u is a solution of the KdV

equation. When a nonlinear evolution equation can be represented in this way, it is said

to have a Lax representation and the two operators used are referred to as a Lax pair.
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1.4 The modified KdV equation

By making a simple modification to the nonlinear term in (1.3), we obtain the modified

KdV (abbreviated to mKdV) equation

wt + wxxx − 6w2wx = 0, (1.18)

which will play an important role in what follows. In 1968, Miura [39] showed that if w

satisfies equation (1.18), then u, defined by

u = −(w2 + wx), (1.19)

satisfies the KdV equation (1.3). Substituting (1.19) into (1.3) gives

(2w + ∂x)(wt + wxxx − 6w2wx) = 0. (1.20)

Therefore, every solution of the KdV equation (1.3) can be obtained from a solution of

the mKdV equation (1.18). However, the converse of this statement is false.

Equation (1.18) also has a Lax representation: it can be thought of as the compatibility

condition of the operators

LmKdV = ∂2
x + 2w∂x,

MmKdV = 4∂3
x + 12w∂2

x + 6(wx + w2)∂x + ∂t. (1.21)

1.5 Hirota’s direct method

Hirota proposed the direct method [28] in 1971. Hirota’s method transforms an evolution

equation into a type of bilinear differential equation via a transformation of the dependent

variable. From this platform we can find exact solutions. In devising this method, Hirota

introduced a new differential operator, the D-operator:

Dl
xD

m
t (a · b) :=

(
∂

∂x
− ∂

∂x′

)l ( ∂

∂t
− ∂

∂t′

)m
a(x, t)b(x′, t′)

∣∣∣∣∣
x=x′, t=t′

, (1.22)
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for nonnegative integers l and m. For example

DxDt(a · b)

=
(
∂

∂x
− ∂

∂x′

)(
∂

∂t
− ∂

∂t′

)
a(x, t)b(x′, t′)

∣∣∣∣
x=x′, t=t′

=
(
∂

∂x
− ∂

∂x′

)
(atb− abt′)

∣∣∣∣
x=x′, t=t′

= axtb− axbt′ − atbx′ + abx′t′
∣∣
x=x′, t=t′

= axtb− axbt − atbx + abxt.

There are many properties of the D-operator that can be called upon to assist in solving

differential equations. In what follows, the following three properties will be utilised:

DxDt (a · 1) = axt = DxDt (1 · a) , (1.23)

D4
x (a · 1) = axxxx = D4

x (1 · a) , (1.24)

Dm
x D

n
t exp Λ1 · exp Λ2 = (λ1 − λ2)m

(
λ3

2 − λ3
1

)n exp (Λ1 + Λ2), (1.25)

where Λi = λi(x− λ2
i t) + λi0 , i = 1, 2 and λi0 is the phase-constant.

Exact solutions of the KdV equation can be found using Hirota’s direct method. The

first step is to make the dependent variable transformation

u = 2(log τ)xx. (1.26)

Substituting directly into the KdV equation (1.4) gives an equation involving τ :

τxtτ − τxτt + τxxxxτ − 4τxxxτx + 3τ2
xx = 0. (1.27)

Using the D-operator, we can express equation (1.27) as

(DxDt +D4
x)τ · τ = 0. (1.28)

To find the solution τ , we expand it as a power series in ε << 1:

τ = 1 + ετ1 + ε2τ2 + ε3τ3 + · · · (1.29)

Substituting the above equation into (1.28) and collecting terms in each order of ε gives

ε : Dx(Dt +D3
x)(τ1 · 1 + 1 · τ1) = 0, (1.30)

ε2 : Dx(Dt +D3
x)(τ2 · 1 + τ1 · τ1 + 1 · τ2) = 0, (1.31)

ε3 : Dx(Dt +D3
x)(τ3 · 1 + τ2 · τ1 + τ1 · τ2 + 1 · τ3) = 0, (1.32)

. . .
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Properties (1.23) and (1.24) of the D-operator imply that the coefficient of ε (1.30) is

equivalent to

∂

∂x

(
∂

∂t
+

∂3

∂x3

)
τ1 = 0. (1.33)

One solution of the above equation is

τ1 = eΛ1 . (1.34)

Using properties (1.23) and (1.24) of the D-operator, (1.31), the coefficient of ε2, can be

written as

2
∂

∂x

(
∂

∂t
+

∂3

∂x3

)
τ2 = −Dx(Dt +D3

x)τ1 · τ1. (1.35)

Upon substitution of (1.34) into (1.35), and using property (1.25) of the D-operator, we

obtain

2
∂

∂x

(
∂

∂t
+

∂3

∂x3

)
τ2 = 0. (1.36)

We may choose the solution of equation (1.36) to be τ2 = 0. Similar calculations apply for

τn and we may choose τn = 0, n = 2, 3, . . . , for all x,t. The expansion of τ can therefore

be truncated at τ = 1 + ετ1. Substituting this expression for τ into (1.26) gives

u = 2
(
log
(
1 + eΛ1

))
xx
,

=
1
2
λ2

1 sech2

(
1
2

Λ1

)
, (1.37)

in which ε has been absorbed into the phase-constant λ10 . Equation (1.37) represents a

travelling wave solution.

Hirota’s method can also be used to find the two-soliton solution of the KdV equa-

tion. Consider equation (1.33). Since this equation is linear in τ1, we may use the linear

superposition principle and choose the solution

τ1 = eΛ1 + eΛ2 .

Upon substitution of this choice of τ into the coefficient of ε2 and using property (1.25),

we obtain

2
∂

∂x

(
∂

∂t
+

∂3

∂x3

)
τ2 = −2(λ1 − λ2)4e(Λ1+Λ2), (1.38)
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which has solution τ2 =
(
λ1−λ2
λ1+λ2

)2
e(Λ1+Λ2). Using (1.23), (1.24) and substituting τ1 and

τ2 into the coefficient of ε3 gives

∂

∂x

(
∂

∂t
+

∂3

∂x3

)
τ3 = 0. (1.39)

We choose τ3 = 0 as a solution of (1.39) and may then choose τn = 0, n = 3, 4, . . . , for all

x, t. The expansion of τ can therefore be truncated at 1 + ετ1 + ε2τ2. So we have

τ = 1 + ε
(
eΛ1 + eΛ2

)
+ ε2

(
λ1 − λ2

λ1 + λ2

)2

e(Λ1+Λ2). (1.40)

By substituting (1.40) into (1.26) and absorbing ε into the phase-constants, the two-soliton

solution can be written as

u = 2
(

log
(

1 + eΛ1 + eΛ2 + a12e
(Λ1+Λ2)

))
xx
, (1.41)

in which

a12 =
(
λ1 − λ2

λ1 + λ2

)2

.

Hirota showed that if

aij =
(
λi − λj
λi + λj

)2

,

then by writing aij = eAij , the n-soliton solution can be expressed as

τ =
∑

exp


i∑

n=1

ωiΛi +
(n)∑
i<j

Aijωiωj

 ,

where
∑

is the summation over all possible combinations of ω1 = 0, 1, ω2 = 0, 1, . . .,

ωn = 0, 1 and
∑(n)

i<j is the summation over all possible pairs (i, j) where i, j ∈ {1, 2, . . . , n}

and i < j.

1.6 Summary

In this chapter, an historical account of the soliton and its association with the KdV equa-

tion was discussed, as well as some elementary ideas from integrable systems which help

lay the foundations for the material in this thesis. An outline of the construction of soliton

solutions obtained from Hirota’s method was given and will be referred to in the next chap-

ter for equations in two spatial dimensions. Later in this thesis, we shall see that Hirota’s

method cannot be used to find soliton solutions of noncommutative integrable systems. It
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was shown that the KdV equation has a Lax representation and possesses multi-soliton

solutions. The idea of a Lax representation is very important for future chapters as the Lax

pair used is an essential ingredient needed to generate noncommutative equations. Fur-

thermore, Lax pairs are heavily used in Darboux transformations, introduced in Chapter

2, which we later use as an alternative to Hirota’s method for obtaining soliton solutions

of noncommutative equations. We also introduced the mKdV equation and it was shown

that the Miura transformation mapped solutions of the mKdV equation to solutions of the

KdV equation. Most of the original work in this thesis centres around a noncommutative

mKP equation, which can be thought of as a generalisation to two spatial dimensions of

a noncommutative mKdV equation. In this work, in addition to finding soliton solutions,

we also replicate the Miura transformation to map solutions of a noncommutative mKP

equation to solutions of a noncommutative KP equation.



Chapter 2

The KP and mKP equations

In this chapter, we are concerned with generalisations to two spatial dimensions of the

KdV and mKdV equations, which are the Kadomstev Petviashvili (KP) and modified KP

(mKP) equations respectively. Both of these equations are known to have multi-soliton

solutions which can be obtained from Hirota’s direct method. Alternatively, they may

be found from Darboux transformations, which we shall visit later in this chapter. The

solutions can be expressed compactly as determinants and then verified directly. The

main purpose of this chapter is to demonstrate these methods for both the KP and mKP

equations, as the results that we will obtain can be related to noncommutative results in

later chapters. Let us begin with the KP equation, which serves as a prototypical example.

2.1 The Kadomtsev-Petviashvili equation

The KP equation is

(ut + uxxx + 6uux)x + 3uyy = 0, (2.1)

which can also be written in potential form

(vt + vxxx + 3v2
x)x + 3vyy = 0, (2.2)

where u = vx. Kadomtsev and Petviashvili [31] derived the equation in 1971 and it was

subsequently named after them. By neglecting the y-derivative term in (2.1), we recover

the KdV equation (1.4). The Lax pair for the KP equation is

LKP = ∂2
x + vx − ∂y, (2.3)

MKP = 4∂3
x + 6vx∂x + 3vxx + 3vy + ∂t, (2.4)

16
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whose compatibility condition [LKP,MKP] = 0 gives (2.2).

2.1.1 The KP hierarchy

The KP hierarchy is an infinite set of nonlinear evolution equations in infinitely many

functions u, u1, u2, . . . of the infinitely many variables x1, x2, x3, . . .. There are various

approaches to constructing this hierarchy. In this thesis, we use the method of Gelfand

and Dickii [15] and Sato [5, 48].

To construct the hierarchy, we need the following extended version of the Leibnitz rule:

∂ixu =
∑
j≥0

(
i

j

)
∂ju

∂xj
∂i−jx , (2.5)

for i ∈ Z. We define the binomial coefficients in (2.5) to be

(
i

j

)
=

 1 (j = 0)
i(i−1)···(i−j+1)

j(j−1)···1 (j 6= 0)
.

For example,

∂−1
x u =

(
−1

0

)
u∂−1

x +
(
−1

1

)
ux∂

−2
x +

(
−1

2

)
uxx∂

−3
x + . . .

= u∂−1
x − ux∂−2

x + uxx∂
−3
x − . . . ,

∂−2
x u = u∂−2

x − 2ux∂−3
x + 3uxx∂−4

x − . . . ,

∂−3
x u = u∂−3

x − 3ux∂−4
x + 6uxx∂−5

x − . . . ..

Construction of the KP hierarchy also requires the use of a pseudodifferential operator

L =
∑
i∈Z

ui∂
a−i
x ,

of order ≤ a. Associated with this pseudodifferential operator we consider natural projec-

tions P≥k, such that

P≥k(L) =
∑
i≥k

ui∂
i
x.

For the KP hierarchy, we use the pseudodifferential operator

LKP = ∂x +
1
2
u∂−1

x + u2∂
−2
x + u3∂

−3
x + . . . .. (2.6)

Let L = LKP. Then the KP hierarchy is defined to be

Lxq = [P≥0(Lq),L], q = 1, 2, 3, . . . . (2.7)
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In general, the operators P≥0(Lq) will be differential operators of order q associated

with the fields u, u2, . . . , uq−1. The first three natural projections P≥0(Lq) are

P≥0(L) = ∂x,

P≥0(L2) = ∂2
x + u,

P≥0(L3) = ∂3
x +

3
2
u∂x +

3
2
ux + 3u2.

Thus, the evolution equation (2.7) gives

Lx1 = [P≥0(L),L]⇔



ux1 = ux,

u2x1 = u2x,

u3x1 = u3x,

· · · ,

(2.8)

Lx2 = [P≥0(L2),L]⇔



uy = uxx + 4u2x,

u2y = u2xx + 2u3x + 1
2uux,

u3y = u3xx + 2u4x − 1
2uuxx + 2u2ux,

· · · ,

(2.9)

Lx3 = [P≥0(L3),L]⇔


ut = uxxx + 3uux + 6u2xx + 6u3x,

u2t = u2xxx + 3(uu2)x + 3u3xx + 3u4x,

· · · ,

(2.10)

where we have set x1 = x, x2 = y and x3 = t. These are the first three equations of the KP

hierarchy. Other equations for Lxq = [P≥0(Lq),L] may also be considered for q = 4, 5, . . ..

By integrating with respect to x, we can recursively express the fields u2, u3, . . . in

terms of u and its x- and y-derivatives. The fields u2, u3, . . . can then be eliminated

through (2.9) allowing us to rewrite the first component in (2.10) in terms of u and its

x- and y-derivatives. The equation we obtain is the KP equation (2.1), where the scaling

t→ −4t has been made.

2.1.2 Wronskian solutions obtained from Hirota’s method

When working in two spatial dimensions, the D-operator is defined by

Dl
xD

m
y D

n
t a · b (2.11)

=
(
∂

∂x
− ∂

∂x′

)l ( ∂

∂y
− ∂

∂y′

)m( ∂

∂t
− ∂

∂t′

)n
a(x, y, t)b(x′, y′, t′)

∣∣∣∣∣
x=x′, y=y′, t=t′

,
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for nonnegative integers l, m and n.

The dependent variable transformation for the KP equation is

u = 2(log τ)xx. (2.12)

Substituting this into the KP equation (2.1) gives the bilinear form of the KP equation:

ττxt − τxτt + ττxxxx + 3τ2
xx − 4τxτxxx + 3ττyy − 3τ2

y = 0, (2.13)

(D4
x +DxDt + 3D2

y)τ · τ = 0. (2.14)

Soliton solutions are obtained by using the same perturbation method outlined in Chapter

1. For the one-soliton solution, we truncate the series at τ = 1 + ετ1, so that

τ1 = 1 + eΛ1 ,

where Λ1 = η1 − γ1 + Λ10 , η1 = p1(x + p1y − 4p2
1)t + η10 , γ1 = q1(x + q1y − 4q2

1)t + γ10 ,

p1, q1, η10 , γ10 are constants and Λ10 is the phase-constant. Then we have the one-soliton

solution

u = 2(log(1 + eΛ1))xx,

=
1
2

(p1 − q1)2 sech2

(
1
2

Λ10

)
,

where ε has been absorbed into the phase-constant Λ10 .

For the two-soliton solution, we obtain

τ = 1 + eΛ1 + eΛ2 +
(p1 − p2)(q1 − q2)
(p1 − q2)(q1 − p2)

e(Λ1+Λ2). (2.15)

Let us now define the functions

θi = eηi + eγi ,

in which ηi = pi(x+ piy − 4p2
i t) + η10 , γi = qi(x+ qiy − 4q2

i t) + γ10 and pi, qi, η10 , γ10 are

constants, for i = 1, 2, . . . n.

We can then show that the two-soliton solution, as given by (2.12), is equivalent to the

Wronskian

W(θ1, θ2) =

∣∣∣∣∣∣ θ1 θ2

θ1,x θ2,x

∣∣∣∣∣∣ (2.16)

= (q2 − q1)eγ1+γ2

(
1 +

q2 − p1

q2 − q1
eΛ1 +

p2 − q1

q2 − q1
eΛ2 +

p2 − p1

q2 − q1
eΛ1+Λ2

)
, (2.17)
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in which Λi = ηi − γi + Λi0 , i = 1, 2 and Λi0 is the phase-constant. Since u = 2(log τ)xx is

invariant under the transformation τ → (q2 − q1)eγ1+γ2τ ,

W(θ1, θ2) ≡ 1 +
q2 − p1

q2 − q1
eΛ1 +

p2 − q1

q2 − q1
eΛ2 +

p2 − p1

q2 − q1
eΛ1+Λ2 .

By choosing Λ10 = log
(
q2−p1

q2−q1

)
and Λ20 = log

(
p2−q1
q2−q1

)
, the Wronskian W(θ1, θ2) may be

written as

1 + eΛ1 + eΛ2 +
(p1 − p2)(q1 − q2)
(p1 − q2)(q1 − p2)

e(Λ1+Λ2),

which is equal to (2.15). This result has been generalised [12, 45] to express the n-soliton

solution of the KP equation as the n× n Wronskian

τ =W(θ1, θ2, . . . , θn), (2.18)

where

W(θ1, θ2, . . . , θn) =

∣∣∣∣∣∣∣∣∣∣∣∣

θ1 · · · θn

θ
(1)
1 · · · θ

(1)
n

...
...

θ
(n−1)
1 · · · θ

(n−1)
n

∣∣∣∣∣∣∣∣∣∣∣∣
(2.19)

and θ(k) := ∂kθ
∂xk .

By choosing pn > qn > · · · > p1 > q1, the Wronskian (2.19) is positive-definite and the

n-soliton solution is regular.

Solutions of the KdV equation can be recovered by setting pi = −qi = λi. For example,

the one-soliton Wronskian solution of the KP equation reduces from

u =
1
2

(p1 − q1)2 sech2

(
1
2

Λ1

)
to

u = 2λ2
1 sech2

(
λ1(x− 4λ2

1t)
)
.

2.1.3 Wronskian solutions obtained from Darboux transformations

In this section, we introduce an alternative method to Hirota’s for finding multi-soliton

solutions of a nonlinear evolution equation.

As far back as 1882, the French mathematician Jean Gaston Darboux proved [13] that

the Sturm-Louville equation

d2y

dx2
+ (λ− υ(x)) y = 0, (2.20)
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with ψ as a fixed solution, is covariant with respect to the transformation

y → ỹ =
dy

dx
− ψxψ−1y and υ → υ̃ = υ − 2 (log(ψ))x .

Darboux’s result means that ỹ satisfies the Sturm-Louville equation (2.20) with potential

υ̃, so that

d2ỹ

dx2
+ (λ− υ̃(x)) ỹ = 0.

Almost a century later, in 1979, Matveev [37] realised that a similar covariance property

as Darboux’s for the Sturm-Louville equation holds for all equations of the form

ft =
n∑

m=0

υm
∂mf

∂xm
, (2.21)

where f = f(x, t) and υ = υ(x, t).

Returning to the KP equation, let θ = θ(x, y, t) be an eigenfunction for LKP and MKP

so that LKP[θ] = MKP[θ] = 0, which imply

θxx + vxθ − θy = 0, (2.22)

4θxxx + 6vxθx + 3vxxθ + 3vxxθ + 3vy + θt = 0. (2.23)

Equations (2.22) and (2.23) are of similar form to those proposed by Matveev and are

therefore Darboux covariant. To generate a new solution, we consider another pair of op-

erators L̃KP = GθLKPG
−1
θ and M̃KP = GθMKPG

−1
θ in which Gθ is an invertible differential

operator. By observing that

[L̃KP, M̃KP] = GLKPMKPG
−1 −GMKPLKPG

−1 = G[LKP,MKP]G−1 = 0,

we can see that L̃KP, M̃KP are compatible if and only if LKP,MKP are compatible.

Definition 1. A Darboux transformation from LKP,MKP to L̃KP, M̃KP is defined by Gθ =

θ∂xθ
−1 such that Gθ[0] = 0.

Let φ be another eigenfunction for LKP, MKP. Then

L̃KP[Gθ[φ]] = GθLKPG
−1
θ [Gθ[φ]] = Gθ[LKP[φ]] = Gθ[0] = 0

and similarly, M̃KP[Gθ[φ]] = 0. Therefore, φ̃ := Gθ[φ] is an eigenfunction for L̃KP, M̃KP.

Calculating L̃KP gives

L̃KP = ∂2
x + u+ 2(θxxθ−1 − θ2

xθ
−2)− ∂y

= ∂2
x + u+ 2(log θ)xx − ∂y

= ∂2
x + ũ− ∂y.
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So the effect of the Darboux transformation is that

u→ ũ = u+ 2(log θ)xx. (2.24)

We may conclude that if u is a solution of the KP equation and if L[θ] = 0 = M [θ], then

ũ satisfies the KP equation too, that is:

(ũt + 6ũũx + ũxxx)x + 3ũyy = 0.

Repeating the process of determining ũ using M̃KP gives entirely consistent results. If we

take the trivial vacuum solution u = 0, from L[θ] = 0 = M [θ] we obtain

θy = θxx and θt = −4θxxx. (2.25)

We choose the simplest solution of equations (2.25), which is

θ = eη1 + eγ1 .

Here, we are using the same notation γi, ηi and Λi as in the previous section. Upon

substitution of this choice of θ into (2.24), we have the one-soliton solution

ũ =
1
2

sech2

(
1
2

Λ1

)
.

In 1955, Crum [4] considered iterating Darboux’s result and showed that the iter-

ated solution could be formulated as the Wronskian determinant of eigenfunctions. He

also showed that the Darboux transformation adds an eigenvalue to the spectrum of the

Schrödinger operator: for nonlinear evolution equations such as the KP and mKP equa-

tions, this means that a soliton is added by each Darboux transformation. The key to this

iteration is the transformation of the eigenfunction φ. Let θi, i = 1, 2, . . . , n be a particular

set of invertible, distinct eigenfunctions. Furthermore, let φ = φ[1] be an eigenfunction for

LKP[1] = LKP and θ[1] = θ1. So

φ[2] = Gθ[1]
[φ[1]] = φx − θ1,xθ

−1
1 φ

=

∣∣∣∣∣∣ θ1 φ

θ1,x φx

∣∣∣∣∣∣
/

θ1,

is an eigenfunction for LKP[2]. For the second iteration

φ[3] = Gθ[2]
[φ[2]] =

∣∣∣∣∣∣∣∣∣
θ1 θ2 φ

θ1,x θ2,x φx

θ1,xx θ2,xx φxx

∣∣∣∣∣∣∣∣∣
/∣∣∣∣∣∣ θ1 θ2

θ1,x θ2,x

∣∣∣∣∣∣ ,
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in which θ[2] = φ[2]|φ→θ2 , is an eigenfunction for LKP[3]. Here, we have the linear equations

θi,y = θi,xx and θi,t = −4θi,xxx,

for i = 1, 2, . . . , n and we choose the solutions θi = eηi + eγi .

After n iterations, for n ≥ 1, we have

φ[n+1] =
W(θ1, θ2, . . . , θn, φ)
W(θ1, θ2, . . . , θn)

, (2.26)

where θ[k] = φ[k]|φ→θk . From each Gθ[k]
we obtain a new compatible Lax pair

LKP[n+1],MKP[n+1], from which we obtain a new solution u[n+1]. This class of solutions can

be written compactly using the Wronskian determinant. For n ≥ 1, we have:

u[n+1] = u+ 2 (logW(θ1, θ2, . . . , θn))xx . (2.27)

We can also obtain this family of solutions by transforming the pseudo-differential

operator LKP. In [43] the authors show how to obtain the one-soliton solution from the

Darboux transformation LKP = GθLKPG
−1
θ .

To see why the Darboux transformation LKP = GθLKPG
−1
θ works, we need the following

lemma [43]:

Lemma 1. Let L = LKP. If L̃ = GθLG−1
θ and φ̃ = Gθ[φ], then

L̃xq − [P≥0(L̃q), L̃] ≡ Gθ(Lxq − [P≥0(Lq),L])G−1
θ

− [θ(θ−1|[θxq − P≥0(Lq)θ]|)x∂−1θ−1, L̃],

|[φ̃xq − P≥0(L̃q)φ̃]| ≡ −φ(θ−1|[θxq − P≥0(Lq)θ]|)x + θ(θ−1|[φxq − P≥0(Lq)φ]|)x.

The notation |[b]| is used to denote multiplication with the function b.

The eigenfunction for the hierarchy Lxq = [P≥0(Lq),L], where L = LKP, is the function

θ = θ(x, xq) satisfying the linear equations

θxq = P≥0(Lq)θ, q = 1, 2, 3, . . . .

The above equations are compatible and may be considered simultaneously for different

q’s. With this definition of the eigenfunction θ, we may deduce from Lemma 1 that

L̃xq − [P≥0(L̃q), L̃] ≡ 0 and |[φ̃xq − P≥0(L̃q)φ̃]| ≡ 0.
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So if L satisfies the KP hierarchy with eigenfunctions θ and φ, then L̃xq = GθLG−1
θ

satisfies the hierarchy L̃xq = [P≥0(L̃q), L̃]. Furthermore, φ̃ = Gθ[φ] is an eigenfunction for

L̃xq = [P≥0(L̃q), L̃], so that φ̃ satisfies the linear equations

φ̃xq = P≥0(L̃q)φ̃, q = 1, 2, 3, . . . .

Let us now calculate L̃. We find that

L̃ = θ∂xθ
−1

(
∂x +

1
2
u∂−1

x + u2∂
−2
x + u3∂

−3
x + . . .

)
θ∂−1

x θ−1

= ∂x +
1
2

(u+ 2(ln(θ))xx) ∂−1
x +

(
u2 +

1
2
ux − uθ1,xθ

−1
x − θxθxxθ−2 + θ3

xθ
−3

)
∂−2
x

+ . . . .

So the effect of the Darboux transformation is that

u→ ũ = u+ 2(ln(θ))xx,

u2 → ũ2 = u2 +
1
2
ux − uθxθ−1 − θxθxxθ−2 + θ3

xθ
−3,

. . . .

The coefficients of L̃ will satisfy (2.9) and (2.10). In particular, ũ will satisfy the KP

equation (2.1).

By considering n distinct eigenfunctions θi, i = 1, 2, . . . n, the Darboux transformation

can be iterated so that, schematically,

LKP[1]

Gθ[1]→ LKP[2]

Gθ[2]→ · · ·
Gθ[n]→ LKP[n+1],

for n ≥ 1. By taking the vacuum solution u = 0, we again obtain (2.26) and (2.27).

2.1.4 Grammian solutions obtained from Hirota’s method

Grammians are determinants of matrices whose entries are in integral form. For the KP

equation (2.1), the solution τ can be written as the Grammian det(G) [29], where

G =


c1,1 +

∫ x
−∞ θ1 ρ1 dx · · · ci,n +

∫ x
−∞ θ1 ρn dx

...
. . .

...

cn,1 +
∫ x
−∞ θnρ1 dx · · · cn,n +

∫ x
−∞ θn ρn dx

 ,

and, for i, j = 1, 2, . . . , n, the ci,j are constants. Both θi and ρi, i = 1, 2, . . . , n are functions

of x, y and t satisfying the linear equations

θi,y = θi,xx, θi,t = −4θi,xxx,

ρi,xx = −ρi,y, ρi,t = −4ρi,xxx.
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By choosing the solutions of these equations to be θ = eηi and ρ = e−γi , with ηi =

pi(x+ piy − 4pit) and γi = qi(x+ qiy − 4qit), the one-soliton solution is

u = 2 (log(τ))xx =
1
2

(p− q)2 sech2

(
1
2

(Λ + ξ)
)
, (2.28)

in which τ = 1 + 1
p−qe

η−γ , Λ = η − γ and ξ = log
(

1
p−q

)
is the phase-constant.

For the n-soliton solution,

u = 2 (log(τ))xx , (2.29)

where τ = detG and the entries in G are of the form

Gi,j = δi,j +
1

pi − qj
eηi−γj .

By choosing pn > qn > · · · p1 > q1, det(G) will be positive-definite and the n-soliton

solution will be regular.

By setting pi = −qi = λi, we recover solutions of the KdV equation. For example, the

one-soliton solution

u =
1
2

(p− q)2 sech2

(
1
2

(Λ + ξ)
)

reduces to

u = 2λ2 sech2

(
λ

(
x− 4λ2t+

1
2λ

log
(

1
2λ

)))
.

2.1.5 Grammian solutions obtained from binary Darboux transforma-

tions

Grammian solutions of the KP equation can also be found using binary Darboux trans-

formations where there are two eigenfunctions transforming. The additional eigenfunction

comes from an adjoint system.

Let H be a Hilbert space with an inner product 〈 , 〉, and let A : H → H be

a differential operator. Then there exists a differential operator A† : H → H with the

property 〈A[a], b〉 = 〈a,A[b]〉 for all a, b ∈ H. This gives us the properties

1. (AB)† = B†A†,

2. A†† = A,

3. (A+ B)† = A† + B†,
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4. If A is invertible, so is A† and then (A†)−1 = (A−1)† = A−†.

For (matrix) differential operators acting on complex vectors,

〈a, b〉 =
∫ +∞

−∞
b†a dx.

Then integration by parts gives us (u∂ix)† = (−1)i∂ixu
†, which we can use for all partial

derivatives in differential operators.

Binary Darboux transformations for the KP hierarchy have been discussed in [44].

However, here we shall only give the construction in terms of the Lax pair.

We now calculate the adjoint of the Lax pair LKP,MKP, which is

L†KP = ∂2
x + v†x + ∂y, (2.30)

M †KP = −4∂3
x − 6v†x∂x − 3v†xx + 3v†y − ∂t. (2.31)

If [LKP,MKP] = 0, then [L†KP,M
†
KP] = 0 and the compatibility condition [L†KP,M

†
KP] = 0

gives

(u†t + u†xxx + 6u†u†x)x + 3u†yy = 0,

which is the adjoint of (2.1), the KP equation.

We have seen that L̃KP = GθLKPG
−1
θ with Gθ = θ∂xθ

−1. The adjoint of L̃KP is

L̃†KP = G†θL
†
KPG

−†
θ which can be rearranged to give L†KP = G−†θ L̃†KPG

†
θ. Similarly M †KP =

G−†θ M̃ †KPG
†
θ. So the Darboux transformation from LKP,MKP to L̃KP, M̃KP induces an ad-

joint Darboux transformation in the opposite direction from L̃†KP, M̃
†
KP to L†KP,M

†
KP.

To describe the general form of the binary Darboux transformation, we consider an-

other Lax pair L̂KP, M̂KP with eigenfunction θ̂ such that Gθ̂ : L̂KP, M̂KP → L̃KP, M̃KP. Then

we have the mapping

G−1

θ̂
Gθ : LKP,MKP → L̂KP, M̂KP.

However, this mapping can only be defined if we can determine θ̂. This can be achieved

by first noticing that, from kerG†θ we obtain some nontrivial solution of the equations

L†KP[θ] = M †KP[θ] = 0, which we denote by i(θ). The equation G†θ[i(θ)] = 0 is satisfied

by i(θ) = θ−†. Now, corresponding to θ̂ ∈ ker L̂KP ∩ ker M̂KP, there exists a solution

i(θ̂) ∈ ker L̃†KP ∩ ker M̃ †KP. We can then use the mapping G−†θ : L†KP,M
†
KP → L̃†KP, M̃

†
KP to

obtain θ̂ = i−1(G−†θ [ρ]) for any ρ ∈ kerL†KP∩kerM †KP. This enables us to define the binary

Darboux transformation for the KP equation.
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L,M
Gθ //

Gθ,ρ

%%

θ,φ

L̃, M̃ L̂, M̂
Gθ̂oo

θ̂
::

zzu u
u

u
u

L†,M †

ψ,ρ
L̃†, M̃ †

G†θoo

i(θ̂)

G†
θ̂ // L̂†, M̂ †

Figure 2.1: Construction of the binary Darboux transformation

Definition 2. For ρ ∈ kerL†KP ∩ kerM †KP, we define Gθ,ρ = G−1

θ̂
Gρ, where θ̂ = i−1(G−†θ [ρ]).

A binary Darboux transformation from LKP,MKP to L̂KP, M̂KP is defined by Gθ,ρ such that

Gθ,ρ[0] = 0.

Figure 2.1 illustrates the construction of the binary Darboux transformation.

To determine the binary Darboux transformation we must calculate θ̂. We have

θ̂ =
(
G−†θ [ρ]

)−†
= −

(
θ−†∂−1

x θ†ρ
)−†

= −θΩ−1,

where

Ω = ∂−1
x [ρ†θ]. (2.32)

So the binary Darboux transformation is

Gθ,ρ = G−1

θ̂
Gρ = θΩ−1∂−1

x Ω∂xθ−1

= θΩ−1∂−1
x (∂Ω− Ωx) θ−1

= 1− θΩ−1∂−1
x ρ†.

A similar calculation gives us

G−†θ,ρ = 1− ρΩ−†∂−1
x θ†.

Let ψ be another eigenfunction for L†KP,M
†
KP. Then

L̂†KP[G−†θ,ρ[ψ]] = G−†θ,ρL
†
KPG

†
θ,ρ[G

−†
θ,ρ[ψ]] = G−†θ,ρL

†
KP[ψ] = G−†θ,ρ[0] = 0,
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and similarly, M †KP[G−†θ,ρ[ψ]] = 0. Therefore, ψ̂ := G−†θ,ρ[ψ] is an eigenfunction for L̂†KP, M̂
−†
KP .

To calculate û, we use the fact that both LKP,MKP and L̂KP, M̂KP map to L̃KP, M̃KP. So

we have that

u+ 2 (log(θ))xx = û+ 2
(
log(θΩ−1(θ, ρ))

)
xx
.

Then isolating û gives

û = u+ 2 (log(Ω(θ, ρ)))xx .

As was the case with the Darboux transformations, the binary Darboux transformation

can be iterated to give an infinite family of solutions of the KP equation. Let θi be

a particular set of invertible, distinct eigenfunctions of LKP[i+1] and let ρi and ψi be a

particular set of invertible, distinct eigenfunctions for L†KP[i+1] for i = 1, 2, . . . , n. Then

the formulae for the nth binary Darboux transformations for the eigenfunction φ and the

binary eigenfunction ψ are:

φ[n+1] =

∣∣∣∣∣∣Ω(Θ,P) Ω(φ,P)

Θ φ

∣∣∣∣∣∣
/∣∣∣Ω(Θ,P)

∣∣∣ ,
ψ[n+1] =

∣∣∣∣∣∣Ω(Θ,P)† Ω(Θ, ψ)†

P ψ

∣∣∣∣∣∣
/∣∣∣Ω(Θ,P)†

∣∣∣
and

Ω(φ[n+1], ψ[n+1]) =

∣∣∣∣∣∣Ω(Θ,P) Ω(φ,P)

Ω(Θ, ψ) Ω(φ, ψ)

∣∣∣∣∣∣
/∣∣∣Ω(Θ,P)

∣∣∣ .
In the above formulae, Θ = (θ1, θ2, . . . , θn), P = (ρ1, ρ2, . . . , ρn) and Ω is defined by (2.32).

The class of solutions u[n+1] can be written compactly using the Grammian. For n ≥ 1,

u[n+1] = u+ 2
(

log
∣∣∣Ω(Θ,P)

∣∣∣)
xx
. (2.33)

For soliton solutions, we take the trivial vacuum solution u = 0. Then the eigenfunctions

θi and the binary eigenfunctions ρi satisfy

θi,y = θi,xx, θi,t = −4θi,xxx,

ρi,xx = −ρi,y, ρi,t = −4ρi,xxx.

Finally, we choose the solutions of the above to equations to be θ = eηi and ρ = e−γi , with

ηi = pi(x+ piy− 4pit) and γi = qi(x+ qiy− 4qit). We then obtain the one-soliton solution

(2.28).



CHAPTER 2. THE KP AND MKP EQUATIONS 29

2.2 The modified Kadomstsev-Petviashvili equation

The mKP equation is

wxt + (wxxx − 6w2wx)x + 3wyy + 6wxwy + 6wxx
∫
wy dx = 0, (2.34)

which can also be written in potential form

Vtx + Vxxxx − 6V2
xVxx + 3Vyy + 6VxxVy = 0, (2.35)

where w = Vx. It originated with Dubrovsky and Konopelchenko in [32]. By neglecting

the y-derivative term in (2.34), we recover the mKdV equation (1.18). The mKP equation

has the Lax pair

LmKP = ∂2
x + 2Vx∂x − ∂y,

MmKP = 4∂3
x + 12Vx∂2

x + 6(Vxx + V2
x − Vy)∂x + ∂t.

2.2.1 The mKP hierarchy

We now construct the mKP hierarchy using a similar analysis to that of the KP hierarchy.

Here, we use the pseudodifferential operator

LmKP = ∂x + w + w1∂
−1
x + w2∂

−2
x + . . . . (2.36)

Let L = LmKP. The mKP hierarchy is defined to be

Lxq = [P≥1(Lq),L], q = 1, 2, 3, . . . . (2.37)

The first four projections are the differential operators:

P≥1(L) = ∂x,

P≥1(L2) = ∂2
x + 2w∂x, (2.38)

P≥1(L3) = ∂3
x + 3w∂2

x + 3(wx + w2 + w1)∂x,

P≥1(L4) = ∂4
x + 4w∂3

x + (6wx + 4w1 + 6w2)∂2
x

+ (4w3 + 6w1x + 4wxx + 4w2 + 12wwx + 12ww1)∂x.

The evolution equation (2.37) gives

Lx1 = [P≥1(L),L]⇔



wx1 = wx,

w1x1 = w1x,

w2x1 = w2x,

· · · ,

(2.39)
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Lx2 = [P≥1(L2),L]⇔



wy = wxx + 2wwx + 2w1x,

w1y = w1xx + 2(ww1)x + 2w2x,

w2y = w2xx − 2w1wxx + 2ww2x + 4wxw2 + 2w3x,

· · · ,

(2.40)

Lx3 = [P≥1(L3),L]⇔


wt = wxxx + 3w1xx + 3w2x + 3(wwx)x + 3w2wx

+6(ww1)x,

· · · ,

(2.41)

Lx4 = [P≥1(L4),L]⇔



wx4 = wxxxx + 6w2xx + 4w1xxx + 4w3x + 4wwxxx

+10wxwxx + 6w2wxx + 12ww2
x + 4w3wx

+12ww1xx + 18wxw1x + 12w1w1x

+6w1wxx + 12w2w1x + 24wwxw1 + 12ww2x

+12wxw2,

· · · ,

(2.42)

where again we have set x1 = x, x2 = y, x3 = t. These are the first four equations of

the mKP hierarchy. We can eliminate the fields w1, w2, . . . by expressing them in terms

of the field w and its x- and y-derivatives. Eliminating w1 and w2 via (2.40) allows us to

rewrite the first component in (2.41) in terms of w and its x- and y-derivatives. From this

we obtain the mKP equation (2.34), where the scaling t→ −4t has been made.

2.2.2 Wronskian solutions obtained from Hirota’s method

The dependent variable transformation [30] for the mKP equation is

V = log
(
τ́

τ

)
.

Substituting this into the mKP equation (2.34) gives the bilinear form [29,30]

(Dx +Dy)τ́ · τ = 0, (2.43)

(D3
x +Dt − 3DxDy)τ́ · τ = 0. (2.44)

The n-soliton solution of the mKP equation [29] can be expressed as

w = (−1)n log
(τ
τ́

)
,

τ =W(θ1, θ2, . . . , θn),

τ́ =W(θ1,x, θ2,x, . . . , θn,x),
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in which θi = eηi +eγi , ηi = pi(x+piy−4p2
i t) and γi = qi(x+qiy−4q2

i t) for i = 1, 2, . . . , n.

Both u = 2(log τ)xx and ú = 2(log τ́)xx are solutions of the KP equation (2.1).

The one-soliton Wronskian solution of the mKP equation is

w =
(

log
(
θx
θ

))
x

(2.45)

=
1
4

(p1 − q1)2(p1q1)−
1
2 sech

(
1
2

(Λ1)
)

sech
(

1
2

(Λ1) + log
(
p1

q1

))
, (2.46)

where Λ1 = η1 − γ1.

2.2.3 Wronskian solutions obtained from Darboux transformations

Darboux transformations can also be used to find a family of Wronskian solutions of the

mKP equation. To obtain Wronskian solutions, we use a different differential operator

Gθ from the KP equation. For the mKP equation, each of LmKP, LmKP and MmKP, with

eigenfunction θ, is covariant under the Darboux transformation [41,43]

Gθ = ((θ−1)x)−1∂xθ
−1 = 1− θ(θx)−1∂x.

We focus on LmKP here, using the following lemma [43]:

Lemma 2. Let L = LmKP .

1. If L̃ = θ−1Lθ and φ̃ = θ−1φ then

L̃xq − [P≥1(L̃q), L̃] ≡ θ−1(Lxq − [P≥1(Lq),L])θ − [θ−1|[θxq − P≥1(Lq)θ]|, L̃],

|[φ̃xq − P≥1(L̃q)φ̃]| ≡ −θ−2φ|[θxq − P≥1(Lq)θ]|+ θ−1|[φxq − P≥1(Lq)ψ]|. (2.47)

2. If L̃ = θ−1
x ∂xL∂−1

x θx and φ̃ = θ−1
x φx then

L̃xq − [P≥1(L̃q), L̃] ≡ θ−1
x ∂(Lxq − [P≥1(Lq),L])∂−1

x θx − [θ−1
x |[θxq − P≥1(Lq)θ]|x, L̃],

|[φ̃xq − P≥1(L̃q)φ̃]| ≡ −θ2
xφx|[θxq − P≥1(Lq)θ]|x + θ−1

x |[φxq − P≥1(Lq)φ]|x. (2.48)

The eigenfunction for the hierarchy Lxq = [P≥1(Lq),L], where L = LmKP, is the func-

tion θ = θ(x, xq) satisfying the linear equations

θxq = P≥1(Lq)θ, q = 1, 2, 3, . . .

The above equations are compatible and may be considered simultaneously for different

q’s. With this definition of the eigenfunction θ, we may deduce from Lemma 2 that

L̃xq − [P≥1(L̃q), L̃] ≡ 0 and |[φ̃xq − P≥1(L̃q)φ̃]| ≡ 0.
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So if L satisfies the mKP hierarchy with eigenfunctions θ and φ, then L̃xq = θLθ−1

and L̃xq = θ−1
x ∂xL∂−1

x θx satisfy the hierarchy L̃xq = [P≥1(L̃q), L̃]. However, it is the

composition of the two aforementioned transformations that we are interested in here

since this will give us Wronskian solutions. In addition to θ and φ, the constant 1 is a

trivial eigenfunction. Then from part 1 of Lemma 2, L̃xq = θLθ−1 with eigenfunctions

φ̃ = θ−1φ and θ−1. Using the eigenfunction θ−1 in part 2 of Lemma 2 gives

L̃ → ˜̃L = ((θ−1)x)−1∂xL̃∂−1
x (θ−1)x = GθL̃G−1

θ ,

with eigenfunction ˜̃
φ = φ−θ(θx)−1φx. So if L satisfies the mKP hierarchy with eigenfunc-

tions θ and φ, then L̃xq = GθLG−1
θ satisfies the hierarchy L̃xq = [P≥1(L̃q), L̃]. Further-

more, φ̃ = Gθ[φ] is an eigenfunction for L̃xq = [P≥1(L̃q), L̃], so that φ̃ satisfies the linear

equations

φ̃xq = P≥1(L̃q)φ̃, q = 1, 2, 3, . . . .

Upon calculation of L̃mKP = GθLG−1
θ , we obtain [43]

L̃mKP = ∂x + (w + θ−1
x θxx − θ−1θx) + (w1 + wx + (θ−1θx)x)∂−1

x + . . .

So the effect of the Darboux transformation is that

w → w̃ = w +
(

log
(
θx
θ

))
x

,

w1 → w̃1 = w1 + wx + (θ−1θx)x,

· · ·

The coefficients of L̃ will satisfy (2.40), (2.41) and (2.42). In particular, w̃ will satisfy the

mKP equation (2.34).

Let θi, i = 1, 2, . . . , n be a particular set of invertible, distinct eigenfunctions. Further-

more, let φ = φ[1] be an eigenfunction for LmKP[1] = LmKP and θ[1] = θ1. Then

φ[2] = φ− θ−1
x φx = −

∣∣∣∣∣∣ θ1 φ

θ1,x φx

∣∣∣∣∣∣
/

θx
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is an eigenfunction for LmKP[2]. For the second transformation,

φ[3] =

φ
∣∣∣∣∣∣ θ1,x θ2,x

θ1,xx θ2,xx

∣∣∣∣∣∣− φx
∣∣∣∣∣∣ θ1 θ2

θ1,xx θ2,xx

∣∣∣∣∣∣+ φxx

∣∣∣∣∣∣θ1 θ1,x

θ2 θ2,x

∣∣∣∣∣∣
/∣∣∣∣∣∣ θ1,x θ2,x

θ1,xx θ2,xx

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
θ1 θ2 φ

θ1,x θ2,x φx

θ1,xx θ2,xx φxx

∣∣∣∣∣∣∣∣∣
/∣∣∣∣∣∣ θ1,x θ2,x

θ1,xx θ2,xx

∣∣∣∣∣∣
=
W(θ1, θ2, φ)
W(θ1,x, θ2,x)

,

in which θ[2] = φ[2]|φ→θ2 , is an eigenfunction for LmKP[3]. In general, for n ≥ 1

φ[n+1] = (−1)n
W(θ1, θ2, . . . , θn, φ)
W(θ1,x, θ2,x, . . . , θn,x)

,

where θ[k] = φ[k]|φ→θk . From each Gθ[k]
we obtain a new covariant LmKP[n+1] from which

we obtain a new solution w[n+1]. This class of solutions can be written compactly using

the Wronskian determinant. For n ≥ 1, we have

w[n+1] = w + (−1)n
(

log (W(θ1, θ2, . . . , θn))
log (W(θ1,x, θ2,x, . . . , θn,x))

)
x

. (2.49)

2.2.4 Grammian solutions obtained from Hirota’s method

For the mKP equation (2.35), both τn and τn+1 can be written as the Grammian deter-

minants det(G) and det(Ǵ) [29], where the entries of G are of the form

Gi,j = δi,j −
pj

qi(pi − qj)
eηi−γj

and the entries of Ǵ are of the form

Ǵi,j = δi,j +
(

1− 1
pi − qj

)
eηi−γj

for i, j = 1, 2, . . . , n.

For example, the one-soliton solution is

w =
1
4

(pq)−
1
2 (p− q)2 sech

(
Λ + ϕ

2

)
sech

(
Λ + χ

2

)
, (2.50)

where ϕ = log
(
−p

q(p−q)

)
and χ = log

(
−1
p−q

)
.

For the n-soliton solution,

w =
(

log
(
τ́

τ

))
xx

, (2.51)
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where τ = det(G) and τ́ = det(Ǵ). Both u = 2 (log(τ))xx and ú = 2 (log(τ́))xx are solutions

of the KP equation.

By choosing pn > qn > · · · p1 > q1 > 0 or 0 > pn > qn > · · · p1 > q1, both det(G) and

det(Ǵ) will be positive-definite and the n-soliton solution will be regular.

2.2.5 Grammian solutions obtained from Darboux transformations

Grammian solutions of the mKP equation can also be found from binary Darboux trans-

formations. We use the same construction as for the KP equation as illustrated in Figure

2.1. As a notational convenience, we denote an element of L†mKP ∩ M †mKP as ρx rather

than ρ. The equation G†θ[i(θ)] is satisfied by i(θ) = (θ−†)x. To determine θ̂, we need the

integrals

Ω = ∂−1
x [ρ†θx] and Ω

′
= ∂−1

x [ρ†xθ],

where

Ω + Ω
′

= ρ†θ.

We have that

i(θ̂) = (θ̂−†)x

= G−†θ [ρx]

= −(θ−†)x∂−1
x θ†ρx

and therefore

(θ̂−1)x = −∂−1
x (ρ†xθ)(θ

−1)x

= −Ω
′
(θ−1)x.

We can then isolate θ̂ by integrating by parts and then taking inverses. Doing so gives

θ̂ = (−Ω
′
θ + ∂−1

x (Ω
′
xθ
−1))−1

= (ρ† − Ω
′
θ−1)−1

= θΩ−1.

Now that we have determined θ̂, we may obtain

Gθ,ρx = θ̂∂−1
x (θ̂−1)x(θ−1)−1

x ∂xθ
−1

= −θΩ−1∂−1
x Ω

′
∂xθ
−1

= 1− θΩ−1∂−1
x ρ†∂x.
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A similar calculation gives

G−†θ,ρx = 1− ∂xρΩ
′−†
∂−1
x θ†.

Let ψ be another eigenfunction for L†mKP,M
†
mKP. Then

L̂†mKP[G−†θ,ρ[ψ]] = G−†θ,ρL
†
mKPG

†
θ,ρ[G

−†
θ,ρ[ψ]] = G−†θ,ρL

†
mKP[ψ] = G−†θ,ρ[0] = 0,

and similarly, M †mKP[G−†θ,ρ[ψ]] = 0. Therefore, ψ̂ := G−†θ,ρ[ψ] is an eigenfunction for L̂†mKP, M̂
†
mKP.

To calculate ŵ, we use the fact that both LmKP,MmKP and L̂mKP, M̂mKP map to L̃mKP, M̃mKP.

So we have that

w +
(

log
(
θx
θ

))
x

= ŵ +

(
log

(
θ̂x

θ̂

))
x

.

Then isolating ŵ gives the one-soliton solution

ŵ = w +
(

log(1− θρ†Ω−1(θ, ρ))
)
x

= w +

 log

∣∣∣∣∣∣Ω(θ, ρ) ρ†

θ 1

∣∣∣∣∣∣
/Ω(θ, ρ)


x

.

The binary Darboux transformation can be iterated to give an infinite family of solu-

tions of the mKP equation. Let θi be a particular set of invertible, distinct eigenfunctions

of LmKP[i+1] and let ρi and ψi be a particular set of invertible, distinct eigenfunctions for

LmKP[i+1] for i = 1, 2, . . . , n. Furthermore, let Θ = (θ1, θ2, . . . , θn) and P = (ρ1, ρ2, . . . , ρn).

Then the formulae for the nth binary Darboux transformations for the eigenfunction φ

and the binary eigenfunction ψ are:

φ[n+1] =

∣∣∣∣∣∣Ω(Θ,P) Ω(φ,P)

Θ φ

∣∣∣∣∣∣
/∣∣∣Ω(Θ,P)

∣∣∣ ,
ψ[n+1] =

∣∣∣∣∣∣Ω(Θ,P)† Ω(Θ, ψ)†

P ψ

∣∣∣∣∣∣
/∣∣∣Ω(Θ,P)†

∣∣∣
and

Ω(φ[n+1], ψ[n+1]) =

∣∣∣∣∣∣Ω(Θ,P) Ω(φ,P)

Ω(Θ, ψ) Ω(φ, ψ)

∣∣∣∣∣∣
/∣∣∣Ω(Θ,P)

∣∣∣ .
The class of solutions w[n+1] can be written compactly using the Grammian. For n ≥ 1,

w[n+1] = w +

 log

∣∣∣∣∣∣Ω(Θ,P) P†

Θ I

∣∣∣∣∣∣
/Ω(Θ,P)


x

. (2.52)
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For soliton solutions, we take the trivial vacuum solution w = 0. Then the eigenfunctions

θi and the binary eigenfunctions ρi satisfy

θi,y = θi,xx, θi,t = −4θi,xxx,

ρi,xx = −ρi,y, ρi,t = −4ρi,xxx.

Finally, we choose the solutions of the above equations to be θ = eηi and ρ = e−γi , with

ηi = pi(x+ piy− 4pit) and γi = qi(x+ qiy− 4qit). We then obtain the one-soliton solution

(2.50).

2.3 Direct verification of the solutions

2.3.1 Derivatives of Wronskian determinants

Consider the n-vector Θ = (θ1, θ2, . . . , θn)T depending on x1 = x and possibly other

variables x2, x3, . . .. Using the notation Θ(i) to denote the ith x-derivative of Θ with

respect to x, we can define the Wronskian determinant

τ = |Θ(0),Θ(1), . . . ,Θ(n−1)| = det
(
∂j−1θi
∂xj−1

)
, 1 ≤ i, j ≤ n.

The derivatives of τ with respect to xj can be calculated from the basic result

τxj =
n−1∑
i=0

|Θ(0), . . . ,Θ(i−1),Θ(i)
xj ,Θ

(i+1), . . . ,Θ(n−1)|.

For example, since a determinant with two equal rows or columns vanishes,

τx = |Θ(0),Θ(1), . . . ,Θ(n−2),Θ(n)|.

Differentiating with respect to x again gives

τxx = |Θ(0),Θ(1), . . . ,Θ(n−2),Θ(n+1)|+ |Θ(0),Θ(1), . . . ,Θ(n−3),Θ(n−1),Θ(n)|.

We can use a partition notation to denote derivatives of the Wronskian determinant

τ . If we take a partition λ = (λ1, λ2, . . . , λp), a sequence of positive integers, where

λ1 ≥ λ2 ≥ . . . ≥ λp, then we can write derivatives of τ as

τλ := τxλ1
xλ2

...xλp
. (2.53)

For example,

τx2x1 = τ(21) and τx1x1 = τ(12).



CHAPTER 2. THE KP AND MKP EQUATIONS 37

For the Wronskian determinant (2.19) this notation can be used to denote “shifts” in the

index of the columns. For example,

W(1) :=
∣∣∣ Θ(0) Θ(1) . . . Θ(n−2) Θ(n)

∣∣∣
W(2) :=

∣∣∣ Θ(0) Θ(1) . . . Θ(n−2) Θ(n+1)
∣∣∣ ,

and in general,

Wλ :=
∣∣∣ Θ(0) . . . Θ(n−p−1) Θ(n−p+λp) . . . Θ(n−1+λ1)

∣∣∣ . (2.54)

If Θ satisfies the linear equations

Θxj = Θ(j), j = 1, 2, 3, . . . .

then we can write down the relationship between the derivatives τλ and the determinants

Wλ;

τλ =
∑
µ

ζµλWµ, (2.55)

where the sum is over all partitions µ and the matrices ζµλ are the character tables for the

symmetric group Sn.

Some useful derivatives of τ are[
τ(1)

]
= [1]

[
W(1)

]
, τ(2)

τ(12)

 =

 1 −1

1 1

 W(2)

W(12)

 ,


τ(3)

τ(21)

τ(13)

 =


1 −1 1

1 0 −1

1 2 1



W(3)

W(21)

W(13)

 , (2.56)



τ(4)

τ(31)

τ(22)

τ(212)

τ(14)


=



1 −1 0 1 −1

1 0 −1 0 1

1 −1 2 −1 1

1 1 0 −1 −1

1 3 2 3 1





W(4)

W(31)

W(22)

W(212)

W(14)


.

The relations (2.56) can be inverted using the formula

W =
∑
λ

l−1
λ ζµλ τλ,
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where for a partition λ = (rmr , . . . , 2m2 , 1m1), lλ :=
∏r
i=1 i

mimi!. Thus[
W(1)

]
= [1]

[
τ(1)

]
, W(2)

W(12)

 =
1
2

 1 1

−1 1

 τ(2)

τ(12)

 ,

W(3)

W(21)

W(13)

 =
1
6


2 3 1

−2 0 2

2 −3 1




τ(3)

τ(21)

τ(13)

 , (2.57)



W(4)

W(31)

W(22)

W(212)

W(14)


=

1
24



6 8 3 6 1

−6 0 −3 6 3

0 −8 6 0 2

6 0 −3 −6 3

−6 8 3 −6 1





τ(4)

τ(31)

τ(22)

τ(212)

τ(14)


.

2.3.2 Laplace expansion of determinants

A Laplace expansion is an expression of an nth-order determinant as a sum of products

of rth- and (n− r)th-order determinants.

Consider an n × n matrix A with determinant det(A). We use Υj1,··· ,jm
1,··· ,m to denote

the m×m determinant taken from det(A), where 1, · · · ,m and j1, · · · , jm (m = n/2) are

the rows and columns respectively of det(A). Furthermore, Ξj1,··· ,jm1,··· ,m denotes the m ×m

determinant obtained by deleting the 1, · · · ,m rows and j1, · · · , jm columns of det(A). We

can now define Al, the Laplace expansion of det(A), as

Al =
∑

j1<j2<...<jm

(−1)(1+···+m)+(j1+···+jm)Υj1,··· ,jm
1,2,··· ,mΞj1,··· ,jm1,2,··· ,m. (2.58)

For example, if n = 4, then

det(A) =

∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

∣∣∣∣∣∣∣∣∣∣∣∣
,
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Υ1,2
1,2 =

∣∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣∣, Ξ1,2
1,2 =

∣∣∣∣∣∣ a33 a34

a43 a44

∣∣∣∣∣∣ etc., and

Al =

∣∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣∣
∣∣∣∣∣∣ a33 a34

a43 a44

∣∣∣∣∣∣−
∣∣∣∣∣∣ a11 a13

a21 a23

∣∣∣∣∣∣
∣∣∣∣∣∣ a32 a34

a42 a44

∣∣∣∣∣∣+

∣∣∣∣∣∣ a11 a14

a21 a24

∣∣∣∣∣∣
∣∣∣∣∣∣ a32 a33

a42 a43

∣∣∣∣∣∣
+

∣∣∣∣∣∣ a12 a13

a22 a23

∣∣∣∣∣∣
∣∣∣∣∣∣ a31 a34

a41 a44

∣∣∣∣∣∣−
∣∣∣∣∣∣ a12 a14

a22 a24

∣∣∣∣∣∣
∣∣∣∣∣∣ a31 a33

a41 a43

∣∣∣∣∣∣+

∣∣∣∣∣∣ a13 a14

a23 a24

∣∣∣∣∣∣
∣∣∣∣∣∣ a31 a32

a41 a42

∣∣∣∣∣∣ .
2.3.3 Plücker relations

The term Plücker relation will be used to describe a type of quadratic identity amongst

determinants Wµ. Consider the 2n× 2n determinant

∆ =
Θ(0) . . . Θ(n−3) 0 . . . 0 0 0 0 0

0 . . . 0 Θ(0) . . . Θ(n−3) Θ(n−2) Θ(n−1) Θ(n) Θ(n+1)
, (2.59)

where 0 denotes the zero n-vector.

Applying (2.58), the Laplace expansion of (2.59) results in ∆ = 0. This is the simplest

case of a Plücker relation. We can now rearrange the right-hand side of (2.59) by adding

the (n + k)th row to the kth row (k = 1, 2, . . . , n) and subtracting the kth column from

the (n− 2− k)th column (k = 1, 2, . . . , n− 2). This gives

∆ =
Θ(0) . . . Θ(n−3) 0 . . . 0 Θ(n−2) Θ(n−1) Θ(n) Θ(n+1)

0 . . . 0 Θ(0) . . . Θ(n−3) Θ(n−2) Θ(n−1) Θ(n) Θ(n+1)
. (2.60)

From the Laplace expansion of (2.60) we obtain the identity∣∣∣ Θ(0) . . . Θ(n−3) Θ(n) Θ(n+1)
∣∣∣ ∣∣∣ Θ(0) . . . Θ(n−1)

∣∣∣
−
∣∣∣ Θ(0) . . . Θ(n−3) Θ(n−1) Θ(n+1)

∣∣∣ ∣∣∣ Θ(0) . . . Θ(n−2) Θ(n)
∣∣∣

+
∣∣∣ Θ(0) . . . Θ(n−3) Θ(n−1) Θ(n)

∣∣∣ ∣∣∣ Θ(0) . . . Θ(n−2) Θ(n+1)
∣∣∣ = 0,

which in our partition notation is

W(22)W −W(21)W(1) +W(2)W(12) = 0. (2.61)

To verify the Wronksian solution of the KP equation, we need to show that the left

hand side of (2.13) with t→ −4t, that is

(τ(14) + 3τ(22) − τ(31))τ − 4(τ(13) − τ(3))τ(1) + 3(τ2
(12) − τ

2
(2)),
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vanishes when τ =W. Using the tables (2.56), this condition becomes

W(22)W −W(21)W(1) +W(2)W(12) = 0,

which is the Plücker relation (2.61). Hence the solution is verified.

For the mKP equation, the left hand sides of the coupled system (2.43)-(2.44) can be

written in partition notation as

(τ́(12) + τ́(2))τ − 2τ(1)τ́(1) + (τ(12) − τ(2))τ́ , (2.62)

(τ́(13) + τ́(3) − 3τ́(12))τ + (3τ(12) − τ(14) − τ(3))τ́ − 3τ́(12)τ(1) + 3τ́(1)τ(12) + 3τ́(2)τ(1)

+ 3τ́(1)τ(2), (2.63)

which are again Plücker relations (see for example [29]) and identically zero. Hence the

solution is verified.

2.3.4 Derivatives of Grammian determinants

In addition to the vector Θ previously introduced, consider another vector P = (ρ1, ρ2, . . . , ρn)T

also depending on x1, x2, x3, . . .. For any n× n matrix A whose entries aij satisfy ∂
∂xaij =

αiβj , the derivative of its determinant can be written as

∂

∂x
det(A) =

n∑
i,j=1

(−1)i+jαiβjAij

= −

∣∣∣∣∣∣∣∣∣∣∣∣

α1

A
...

αn

β1 . . . βn 0

∣∣∣∣∣∣∣∣∣∣∣∣
,

where Aij is the (i, j)th minor of A. So for the Grammian τ , its derivative with respect to

x is the bordered determinant

τx = −

∣∣∣∣∣∣ G Θ

PT 0

∣∣∣∣∣∣ .
Furthermore, if we assume that Θ and P satisfy

Θxj = Θ(j) and Pxk = (−1)kP(k), j, k = 1, 2, 3, . . . ,

then it follows that

∂Gij
∂xk

=
k−1∑
m=0

(−1)m
∂k−1−mθi
∂xk−1−m

∂mρj
∂xm

.
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For derivatives of Grammians, we must use a Frobenius notation for partitions. Con-

sider the Young diagram associated with a partition λ and let αi denote the number of

boxes to the right of the diagonal in the ith row and βi the number of boxes below the

diagonal in the ith column. The two sets of nonnegative integers, αi and βi, determine

the partition which in Frobenius notation we denote as λ = (α1, · · · , αp|β1, · · · , βp). For

example, the Young diagram for the partition λ = (310|420) would be

•
•
•

where we have used a • to mark the diagonal entries. So, in Frobenius notation, (43221)

is (310|420).

As with the Wronskian, we can use a notation to relate the derivatives of the Grammian

τ and its original form. For any partition λ = (α1 · · ·αp|β1 · · ·βp) we define

Gλ = G(α1···αp|β1···βp) = (−1)p

∣∣∣∣∣∣∣∣∣∣∣∣

G Θ(α1) · · · Θ(αp)

P(β1)† 0 · · · 0
...

...
. . .

...

P(βp)† 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.64)

Then, for example,

G(0|1) = −

∣∣∣∣∣∣ G Θ(0)

P(1)† 0

∣∣∣∣∣∣ and G(10|10) =

∣∣∣∣∣∣∣∣∣
G Θ(1) Θ(0)

P(1)† 0 0

P(0)† 0 0

∣∣∣∣∣∣∣∣∣ .
The relationship between the derivatives τλ and Gµ is the same as in (2.55) but with

W replaced by G, i.e.

τλ =
∑
µ

ζµλGµ

and the matrices ζµλ are as given in (2.56).

2.3.5 Jacobi identity for determinants

The Grammian equivalent of a Laplace expansion is Jacobi’s identity [1], which relates

different size determinants. Here we give the basic Jacobi identity. Let A be an m ×m
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matrix. We denote by Ai,...,jk,...,l, the minor obtained by omitting the ith, . . ., jth rows and

the kth, . . ., lth columns. With this notation, the formula

det(A)Ai,jk,l =

∣∣∣∣∣∣A
i
k Ajk

Ail Ajl

∣∣∣∣∣∣
= AikA

j
l −A

j
kA

i
l

is a general case of the Jacobi identity. In this identity, if det(A) is identified with, for

example, G(10|10), with i, j as the last two rows and k, l as the last two columns then

Aik = G(1|1), A
i
l = G(0|1), A

j
k = G(1|0), A

j
l = G(0|0),

and Ai,jk,l = G. Thus Jacobi’s identity gives

G(10|10)G − G(1|1)G(0|0) + G(1|0)G(0|1) = 0. (2.65)

Rewriting this in partition notation gives

G(22)G − G(21)G(1) + G(2)G(12) = 0, (2.66)

which is the same form as the simplest Plücker relation (2.61) for Wronskians.

To verify the Grammian solution, we need to show that the left hand side of (2.1)

vanishes when τ = G. Using equivalent tables to (2.56), we obtain

G(10|10)G − G(1|1)G(0|0) + G(1|0)G(0|1) = 0, (2.67)

which is the Plücker relation (2.65). Hence the solution is verified.

For the mKP equation, it can again be shown that (see for example [29]) equations

(2.62) and (2.63) with τ = G and τ = Ǵ are both Plücker relations and identically zero,

hence the solution is verified.

2.4 The Miura transformation

A Miura transformation between the KP and mKP heirarchies can be obtained from the

following theorem [43]:

Theorem 1. Let L satisfy the KP hierarchy (2.7). Then L̃ = θ−1Lθ satisfies the hierarchy

L̃xq = [P≥1(L̃q), L̃] with G[φ] = φ̃ = θ−1φ being an eigenfunction for L̃, that is φxq =

P≥1(Lq)[φ].
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We shall now demonstrate this by implementing the gauge transformation L̃ = θ−1Lθ.

This gives

L̃ = ∂ + θ−1θx +
1
2
u∂−1 + (u2 −

1
2
uθ−1θx)∂−2 + (· · · )∂−3 + . . . (2.68)

Comparing this with the operator

LmKP = ∂x + w + w1∂
−1
x + w2∂

−2
x + w3∂

−3
x + . . . (2.69)

and equating coefficients gives

w = θ−1θx, (2.70)

w1 =
1
2
u, (2.71)

w2 = u2 −
1
2
uθ−1θx. (2.72)

. . .

These coefficients will satisfy (2.40), (2.41) and (2.42) of the mKP hierarchy (2.37). Upon

substitution of (2.71) into the first term of (2.41), we obtain

u = Vy − Vxx − V2
x. (2.73)

Equation (2.73) is the Miura transformation between the KP and mKP equations. Direct

substitution of (2.73) into the KP equation (2.1) yields

(ut + uxxx + 6uux)x + 3uyy = (∂y − ∂2
x − 2Vx∂x)(Vtx + Vxxxx − 6V2

xVxx + 3Vyy + 6VxxVy).

Therefore, if Vx is a solution of the mKP equation (2.34), then the Miura transformation

(2.73) defines a new solution of the KP equation (2.1).



Chapter 3

A noncommutative KP equation

In this chapter, we look at an example of a noncommuative (nc) integrable system. Differ-

ent approaches to this noncommutativity exist. For example, the noncommutativity may

arise through an underlying nc space defined by the noncommutativity of the coordinates:

[xj , xk]? = iθjk,

where i =
√
−1 and θjk are real constants called the nc parameters. For Euclidean spaces,

the star-product is explicitly given by

f ? g(x) := exp
(

exp
i

2
θij

∂

∂x′i
∂

∂x′′j

)
f(x

′
)g(x

′′
)|x=x′=x′′ , (3.1)

= f(x)g(x) +
i

2
θij

∂

∂ix
f(x)

∂

∂jx
g(x) +O(θ2), (3.2)

which is known as the Groenewold-Moyal product [24,40]. The star-product is associative,

that is f ? (g ? h) = (f ? g) ? h, and returns the ordinary product in the commutative limit

θjk → 0. The star-product makes the ordinary spatial coordinate noncommutative, in that

[xj , xk]? = xj ? xk − xk ? xj = iθjk. In this case, an ncKdV equation would have space-

time noncommutativity, that is [t, x]? = iθ. An ncKP equation could have space-space

noncommutativity in that [x, y]? = iθ or space-time non-commutativity, in that either

[t, x] = iθ or [t, y] = iθ. Hamanaka and Toda [25–27] have extensively considered the cases

where the Lax method and the Gelfand-Dickii hierarchies give nc equations defined on the

nc space.

Lax [35], and later Goncharenko and Veselov [22,23], have considered a matrix version

of the KdV equation and Gelfand and Etingof [10] have considered a quaternionic version

of the KP equation.

44
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By dropping the assumption that the coefficients in the Lax pair or Gelfand-Dickii

hierarchy commute, the results should be valid for all cases. There are three levels of

noncommutativity that could arise in the variables in an nc integrable system; the variables

could be:

• Matrices with entries that commute,

• Matrices with entries that do not commute, for example a partitioned matrix,

• Noncommutative and not finite-dimensional matrices, for example, in [51], where the

commutation relations [xj , xk] = δjkiθ
jk are the Heisenberg algerba.

Where we have a noncommutative integrable system, we may still have associativity.

In the last chapter, we saw that multi-soliton solutions for the KP and mKP equations

could be written as a logarithmic transformation, such as u = 2(log τ)xx, where τ could be

the Wronskian or Grammian determinant. We cannot use Hirota’s bilinear method in the

nc case as it does not make sense, for example, to take the derivative of the logarithm of

a matrix. This can be seen more clearly when attempting to differentiate the power series

of log(a) for some function a = a(x):

log(a) = −(1− a)− (1− a)2

2
− (1− a)3

3
− (1− a)4

4
+ · · · . (3.3)

If we were to differentiate (3.3) with respect to x we would obtain terms such as

aax + axa 6= 2aax, so we have to discard making logarithmic transformations on dependent

variables. In addition, we cannot define the determinant of a matrix when its entries do

not commute. When this is the case, the natural replacement for a determinant is the

quasideterminant.

3.1 Quasideterminants

The concept of quasideterminants originated with Gelfand and Retakh in [16]. An n× n

matrix over a not necessarily commutative unital ring R has, in general, n2 quasideter-

minants. We denote each quasideterminant by |Z|ij , 1 ≤ i, j ≤ n. Let Zijdenote the

matrix obtained from Z by deleting the ith row and jth column. Let rjk be the row vector

obtained from the kth row of Z by deleting the jth entry and let sil be the column vector

obtained from the lth row of Z by deleting the ith entry. If Zij is invertible, then |Z|ij
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exists and

|Z|ij = zij − rji (Z
ij)−1sij . (3.4)

For example, if n = 2 and Z = (z)ij , then there are 4 quasideterminants, one of which is

|Z|22 =

∣∣∣∣∣∣ z11 z12

z21 z22

∣∣∣∣∣∣
22

= z22 − z21z
−1
11 z12.

We shall henceforth adopt an alternative notation for quasideterminants by boxing the

leading element. For example,

|Z|12 =

∣∣∣∣∣∣ z11 z12

z21 z22

∣∣∣∣∣∣ = z12 − z11z
−1
21 z22.

Quasideterminants of Z can also be defined via the inverse of Z. Suppose the matrix

Z is invertible with inverse B = (bij). If |Z|ij exists then

|Z|ij = b−1
ji .

The theory of quasideterminants has been greatly developed over the years following

their introduction, resulting in several properties and identities which were published by

Gelfand, Gelfand, Retakh and Wilson in [14]. Here, we recall some of the main results

which we shall use in what follows.

3.1.1 The 2× 2 matrix inverse

The 2× 2 matrix inverse is given by

 z11 z12

z21 z22

−1

=



∣∣∣∣∣∣ z11 z12

z21 z22

∣∣∣∣∣∣
−1 ∣∣∣∣∣∣ z11 z12

z21 z22

∣∣∣∣∣∣
−1

∣∣∣∣∣∣ z11 z12

z21 z22

∣∣∣∣∣∣
−1 ∣∣∣∣∣∣ z11 z12

z21 z22

∣∣∣∣∣∣
−1


=

 (z11 − z12z
−1
22 z21)−1 (z21 − z22z

−1
12 z11)−1

(z12 − z11z
−1
21 z22)−1 (z22 − z21z

−1
11 z12)−1

 ,
provided that all inverses above exist. We can see this in the quasideterminant when

n = 3. We have

Z =


z11 z12 z13

z21 z22 z23

z31 z32 z33


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and there are 9 quasideterminants. For example:

|Z|13 =

∣∣∣∣∣∣∣∣∣
z11 z12 z13

z21 z22 z23

z31 z32 z33

∣∣∣∣∣∣∣∣∣
= z13 −

(
z11 z12

)z21 z22

z31 z32

−1z23

z33


= z13 −

(
z11 z12

)(z21 − z22z
−1
32 z31)−1 (z31 − z32z

−1
22 z21)−1

(z22 − z21z
−1
31 z32)−1 (z32 − z31z

−1
21 z22)−1

z23

z33


= z13 − z11(z21 − z22z

−1
32 z31)−1z23 − z12(z22 − z21z

−1
31 z32)−1z23 − z11(z31 − z32z

−1
22 z21)−1z33

− z12(z32 − z31z
−1
21 z22)−1z33.

3.1.2 Noncommutative Jacobi identity

Quasideterminants can be used to construct a noncommutative version of the Jacobi iden-

tity for determinants (also called the noncommutative Sylvester’s theorem in [14]). One

such case of this is given by∣∣∣∣∣∣∣∣∣
A B C

D f g

E h i

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣ A C

E i

∣∣∣∣∣∣−
∣∣∣∣∣∣ A B

E h

∣∣∣∣∣∣
∣∣∣∣∣∣ A B

D f

∣∣∣∣∣∣
−1 ∣∣∣∣∣∣ A C

D g

∣∣∣∣∣∣ , (3.5)

where A is a square matrix, B,C are column vectors, D,E are row vectors and f, g, h, i

are single entries all of compatible length. From these identities, we obtain the following

row homology and column homology relations [14]:∣∣∣∣∣∣∣∣∣
A B C

D f g

E h i

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣ A C

D g

∣∣∣∣∣∣
−1

=

∣∣∣∣∣∣ A C

E i

∣∣∣∣∣∣
∣∣∣∣∣∣ A C

D g

∣∣∣∣∣∣
−1

−

∣∣∣∣∣∣ A B

E h

∣∣∣∣∣∣
∣∣∣∣∣∣ A B

D f

∣∣∣∣∣∣
−1

(3.6)

=

∣∣∣∣∣∣∣∣∣
A B C

D f g

E h i

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣ A B

D f

∣∣∣∣∣∣
−1

(3.7)



CHAPTER 3. A NONCOMMUTATIVE KP EQUATION 48

and

∣∣∣∣∣∣ A B

E h

∣∣∣∣∣∣
−1

∣∣∣∣∣∣∣∣∣
A B C

D f g

E h i

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣ A B

E h

∣∣∣∣∣∣
−1 ∣∣∣∣∣∣ A C

E i

∣∣∣∣∣∣−
∣∣∣∣∣∣ A B

D f

∣∣∣∣∣∣
−1 ∣∣∣∣∣∣ A C

D g

∣∣∣∣∣∣ (3.8)

=

∣∣∣∣∣∣ A B

D f

∣∣∣∣∣∣
−1

∣∣∣∣∣∣∣∣∣
A B C

D f g

E h i

∣∣∣∣∣∣∣∣∣ . (3.9)

3.1.3 Elementary row and column operations

Replacing the expansion row by a left multiple has the effect of left multiplying the quaside-

terminant by that factor. For example,∣∣∣∣∣∣
E 0

F g

A B

C d

∣∣∣∣∣∣
nn

=

∣∣∣∣∣∣ EA EB

FA+ gC FB + gd

∣∣∣∣∣∣
nn

= g
(
d− CA−1B

)
= g

∣∣∣∣∣∣A B

C d

∣∣∣∣∣∣
nn

. (3.10)

This is again true if we replace row with column operations and left- with right-multiplication.

All other row and column operations have no effect.

3.1.4 Comparison with commutative determinants

If Z is an n × n matrix over a commutative ring R, then |Z|ij is related to detZ. If

Z is invertible, then the (j, i)th entry of Z−1 = (−1)i+j detZi,j

detZ . Recall that in the

noncommutative case, if Z−1 = B, then |Z|ij = b−1
ji . So

|Z|ij
c= (−1)i+j

detZ
detZi,j

, (3.11)

where the notation c= has been introduced to denote that the right-hand side of the equa-

tion is commutative. For example, if n = 2 then

|Z|11
c= (−1)i+j

detZ
detZi,j

c=
z11z22 − z12z21

z22

c= z11 − z12z
−1
22 z21.
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3.1.5 Quasi-Plücker coordinates

Given an (n+ k)×n matrix A, denote the ith row of A by Ai, the submatrix of A having

rows with indices in a subset I of {1, 2, . . . , n + k} by AI . Given i, j ∈ {1, 2, . . . , n + k},

and I such that #I = n− 1 and j 6∈ I, the right quasi-Plücker coordinates are defined by

rIij = rIij(A) :=

∣∣∣∣∣∣ A
I

Ai

∣∣∣∣∣∣
ns

∣∣∣∣∣∣ A
I

Aj

∣∣∣∣∣∣
−1

ns

= −

∣∣∣∣∣∣∣∣∣
AI 0

Ai 0

Aj 1

∣∣∣∣∣∣∣∣∣ , (3.12)

for any s ∈ {1, . . . n}. The second equality comes from Jacobi’s identity and proves that

the definition is independent of s. Therefore we could also write the definition as

rIij(A) =

∣∣∣∣∣∣ A
I

Ai

∣∣∣∣∣∣
∣∣∣∣∣∣ A

I

Aj

∣∣∣∣∣∣
−1

.

The left quasi-Plücker coordinates are defined in an analogous way. For an n × (n + k)

matrix B,

lIij(B) =
∣∣∣ BI Bj

∣∣∣−1 ∣∣∣ BI Bi
∣∣∣ = −

∣∣∣∣∣∣ B
I Bi Bj

0 0 1

∣∣∣∣∣∣ ,
in which we here denote the ith column of B by Bi, and the submatrix of B having

columns with indices in a subset I of {1, 2, . . . , n+ k} by BI .

The row homology and column homology relations can now be written in terms of

quasi-Plücker coordinates giving the following identities:∣∣∣∣∣∣∣∣∣
A B C

D f g

E h i

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
A B C

D f g

E h i

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
A B C

D f g

0 0 1

∣∣∣∣∣∣∣∣∣ (3.13)

and ∣∣∣∣∣∣∣∣∣
A B C

D f g

E h i

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
A B 0

D f 0

E h 1

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
A B C

D f g

E h i

∣∣∣∣∣∣∣∣∣ . (3.14)

3.2 A noncommutative KP hierarchy

Gelfand-Dickii hierarchies in the nc setting have been considered in [7, 25,27,51].
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In the nc case, with L = LKP, we have the differential operators

P≥0(L) = ∂x,

P≥0(L2) = ∂2
x + u, (3.15)

P≥0(L3) = ∂3
x +

3
2
u∂x +

3
2
ux + 3u2,

which, via the evolution equation (2.7), give the ncKP hierarchy:

Lt1 = [P≥0(L),L]⇔



ut1 = ux,

u2t1 = u2x,

u3t1 = u3x,

· · · ,

(3.16)

Lt2 = [P≥0(L2),L]⇔



uy = uxx + 4u2x,

u2y = u2xx + 2u3x + 1
2uux + [u, u2],

u3y = u3xx + 2u4x − 1
2uuxx + 2u2ux + [u, u3],

· · · ,

(3.17)

Lt3 = [P≥0(L3),L]⇔



ut = uxxx + 6u2xx + 6u3x + 3
2uux + 3

2uxu,

u2t = u2xxx + 3u3xx + 3u4x + 3uu2

+3
2(uxu2 + u2ux) + 3[u, u3],

· · · .

(3.18)

Eliminating u2 and u3 via (3.17), and making the scaling t→ −4t allows us to rewrite the

first component in (3.18) as

(vt + 3vxvx + vxxx)x + 3vyy + 3[vx, vy] = 0, (3.19)

where again u = vx. Equation (3.19) is the ncKP equation (ncKP) [46] in potential form.

When the variables in (3.19) do commute, we recover (2.1).

Equation (3.19) could also be obtained from the Lax pair

LKP = ∂2
x + vx − ∂y,

MKP = 4∂3
x + 6vx∂x + 3vxx + 3vy + ∂t,

whose compatibility condition [LKP,MKP] = 0 gives (3.19).
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3.3 Quasiwronskian solutions obtained from Darboux trans-

formations

Given that we can attempt to derive a noncommutative integrable system through the

Lax method or the Gelfand-Dickii hierarchy, Darboux transformations appear to be the

natural choice for finding multi-soliton solutions.

Both LKP and MKP are covariant under the Darboux transformation

Gθ = θ∂xθ
−1 = ∂x − θxθ−1.

Let θi, i = 1, . . . , n, be a particular set of eigenfunctions. It is assumed that, like the

dependent variable u, the eigenfunction θ and its derivatives do not commute. Introduce

the notation Θ = (θ1, . . . , θn) and Θ̂ = (θ(i−1)
j )i,j=1,...,n, the n × n Wronskian matrix of

θ1, . . . , θn.

Let φ = φ[1] be an eigenfunction of LKP[1] = LKP and θ[1] = θ1. Then φ[2] := Gθ[1]
[φ[1]]

and θ[2] = φ[2]|φ→θ2 are eigenfunctions for LKP[2] = Gθ[1]
LG−1

θ[1]
. In general, for n ≥ 1 define

the nth Darboux transform of φ by

φ[n+1] = φ
(1)
[n] − θ

(1)
[n] θ

−1
[n]φ[n],

in which

θ[k] = φ[k]|φ→θk .

It has been shown in [14] and in [23] that φ[n+1] can be expressed as∣∣∣∣∣∣∣∣∣∣∣∣

Θ φ
...

...

Θ(n−1) φ(n−1)

Θ(n) φ(n)

∣∣∣∣∣∣∣∣∣∣∣∣
.

The effect of

L̃KP = GθLKPG
−1
θ , M̃KP = GθMKPG

−1
θ

is that

ṽ = v + 2θxθ−1.
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After n Darboux transformations we have

v[n+1] = v + 2
n∑
i=1

θ[i],xθ
−1
[i]

= v − 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ 0
...

...

Θ(n−2) 0

Θ(n−1) 1

Θ(n) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.20)

We call this type of quasideterminant in (3.20) a quasiwronskian.

3.4 Quasigrammian solutions obtained from binary Darboux

transformations

A new family of solutions of ncKP, obtained by binary Darboux transformations and

expressible as quasideterminants, was introduced by Gilson and Nimmo in [19]. The

adjoint Lax pair for ncKP is

L†KP = ∂2
x + v†x + ∂y,

M †KP = −4∂3
x − 6v†x∂x − 3v†xx + 3v†y − ∂t.

Here, the notion of the adjoint has been extended from the well-known matrix case to any

unital ring R, as considered by Matveev in [38]: suppose that for each a ∈ R, there exists

a† ∈ R, and for a derivative ∂ acting on R, ∂†x = −∂x and for a product AB of elements

of R, or operators on R, (AB)† = B†A†.

Analogous to the commutative case, a potential Ω(φ, ψ) is introduced, satisfying

Ω(φ, ψ)x = ψ†φ, Ω(φ, ψ)y = ψ†φx−ψ†xφ, Ω(φ, ψ)t = −4(ψ†φxx−ψ†xφx+ψ†xxφ)−6ψ†vxφ.

A binary Darboux transformation is defined by

φ[n+1] = φ[n] − θ[n]Ω(θ[n], ρ[n])
−1Ω(φ[n], ρ[n])

and

ψ[n+1] = ψ[n] − ρ[n]Ω(θ[n], ρ[n])
−†Ω(θ[n], ψ[n])

†,

in which

θ[n] = φ[n]|φ→θn , ρ[n] = ψ[n]|ψ→ρn .
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Using the notation Θ = (θ1, . . . θn) and P = (ρ1, . . . , ρn) we have, for n ≥ 1

φ[n+1] =

∣∣∣∣∣∣Ω(Θ,P) Ω(φ,P)

Θ φ

∣∣∣∣∣∣ ,
ψ[n+1] =

∣∣∣∣∣∣Ω(Θ,P)† Ω(Θ, ψ)†

P ψ

∣∣∣∣∣∣
and

Ω(φ[n+1], ψ[n+1]) =

∣∣∣∣∣∣Ω(Θ,P) Ω(φ,P)

Ω(Θ, ψ) Ω(φ, ψ)

∣∣∣∣∣∣ .
The effect of

L̂KP = Gθ,φLKPG
−1
θ,φ, M̂KP = Gθ,φMKPG

−1
θ,φ

is that

v̂ = v + 2θΩ(θ, ρ)−1ρ†.

After n binary Darboux transformations we have

v[n+1] = v + 2
n∑
k=1

θ[k]Ω(θ[k], ρ[k])
−1ρ†[k]

= v − 2

∣∣∣∣∣∣Ω(Θ,P) P†

Θ 0

∣∣∣∣∣∣ . (3.21)

We call this type of quasideterminant in (3.21) a quasigrammian.

3.5 Reduction to commutative Wronskian and Grammian

solutions

All of the quasideterminants expressing the Darboux-transformed eigenfunctions and po-

tentials v[n+1] of ncKP, should reduce to the corresponding commutative results in Chapter

2. Using (3.11), in the commutative case, we have:

• The transformed eigenfunction

φ[n+1] =

∣∣∣∣∣∣∣∣∣∣∣∣

Θ φ
...

...

Θ(n−1) φ(n−1)

Θ(n) φ(n)

∣∣∣∣∣∣∣∣∣∣∣∣
c=

∣∣∣∣∣∣∣∣∣∣∣∣

Θ φ
...

...

Θ(n−1) φ(n−1)

Θ(n) φ(n)

∣∣∣∣∣∣∣∣∣∣∣∣
/∣∣∣Θ̂∣∣∣ ,
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• The transformed potential

v[n+1] = v − 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ 0
...

...

Θ(n−2) 0

Θ(n−1) 1

Θ(n) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
c= v − 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ 0
...

...

Θ(n−2) 0

Θ(n−1) 1

Θ(n) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

/∣∣∣Θ̂∣∣∣ c= v + 2
(

log
∣∣∣Θ̂∣∣∣)

x
,

• The transformed binary eigenfunction

φ[n+1] =

∣∣∣∣∣∣Ω(Θ,P) Ω(φ,P)

Θ φ

∣∣∣∣∣∣ c=
∣∣∣∣∣∣Ω(Θ,P) Ω(φ,P)

Θ φ

∣∣∣∣∣∣
/∣∣∣Ω(Θ,P)

∣∣∣ ,
• The transformed adjoint eigenfunction

ψ[n+1] =

∣∣∣∣∣∣Ω(Θ,P)† Ω(Θ, ψ)†

P ψ

∣∣∣∣∣∣ c=
∣∣∣∣∣∣Ω(Θ,P)† Ω(Θ, ψ)†

P ψ

∣∣∣∣∣∣
/∣∣∣Ω(Θ,P)†

∣∣∣ ,
• The transformed binary potential

v[n+1] = v − 2

∣∣∣∣∣∣Ω(Θ,P) P†

Θ 0

∣∣∣∣∣∣ c= v − 2

∣∣∣∣∣∣Ω(Θ,P) P†

Θ 0

∣∣∣∣∣∣
/∣∣∣Ω(Θ,P)

∣∣∣
c= v + 2

(
log
∣∣∣Ω(Θ,P)

∣∣∣)
x
.

We therefore recover all of the commutative solutions given in Chapter 2.

3.6 Direct verification of the solutions

3.6.1 Derivatives of quasideterminants

Formulae for derivatives of quasideterminants were considered in [19]. The authors con-

sider differentiating the quasideterminant∣∣∣∣∣∣A B

C d

∣∣∣∣∣∣ . (3.22)

Here, A is an n× n matrix, d is a single entry, C is a row vector and B a column vector.

Differentiating both sides of (3.22) gives∣∣∣∣∣∣A B

C d

∣∣∣∣∣∣
′

= d
′ − C ′A−1B + CA−1A

′
A−1B − CA−1B

′
. (3.23)
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The third term on right-hand side of (3.23) can be split into two cases. Firstly, if A has

the grammian-like structure, such as Ω(Θ,P), then its derivative is the tensor product

A
′

=
k∑
i=1

EiFi,

where Ei is a column vector and Fi is a row vector, both of appropriate length. Therefore,

the third term on the right-hand side of (3.23) can be written as a product of quasideter-

minants, giving∣∣∣∣∣∣A B

C d

∣∣∣∣∣∣
′

= d
′ − C ′A−1B +

k∑
i=1

(CA−1Ei)(FiA−1B)− CA−1B
′

(3.24)

=

∣∣∣∣∣∣A B

C
′

d
′

∣∣∣∣∣∣+

∣∣∣∣∣∣A B

C
′

0

∣∣∣∣∣∣+
k∑
i=1

∣∣∣∣∣∣A Ei

C 0

∣∣∣∣∣∣
∣∣∣∣∣∣A B

Fi 0

∣∣∣∣∣∣ . (3.25)

If A
′

does not have the grammian-like structure, like the Wronskian, then it may be

factorised by inserting the identity matrix expressed in the form

I =
k∑
i=1

eke
T
k ,

where ek is the column vector (δij), which has a 1 in the kth row and a zero elsewhere. If

we let Ẑk be the kth row and Ẑk be the kth column of the matrix Ẑ, we have∣∣∣∣∣∣A B

C d

∣∣∣∣∣∣
′

= d
′ − C ′A−1B +

k∑
i=1

(CA−1ek)(eTkA
′
A−1B)−

k∑
i=1

(CA−1ek)(eTkB
′
).

This gives ∣∣∣∣∣∣A B

C d

∣∣∣∣∣∣
′

=

∣∣∣∣∣∣A B

C
′

d
′

∣∣∣∣∣∣+
k∑
i=1

∣∣∣∣∣∣A ek

C 0

∣∣∣∣∣∣
∣∣∣∣∣∣ A B

(Ak)
′

(Bk)
′

∣∣∣∣∣∣ , (3.26)

or equivalently ∣∣∣∣∣∣A B

C d

∣∣∣∣∣∣
′

=

∣∣∣∣∣∣A B

C d
′

∣∣∣∣∣∣+
k∑
i=1

∣∣∣∣∣∣A (Ak)
′

C (Ck)
′

∣∣∣∣∣∣
∣∣∣∣∣∣ A B

ek
T 0

∣∣∣∣∣∣ . (3.27)

The authors of [19] then go on to show how to differentiate quasiwronskians and quasi-

grammians.
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3.6.2 Derivatives of quasiwronskians

Let Θ̂ =
(
θ

(i−1)
j

)
i,j=1,...,n

be the n × n wronskian matrix of θ1, . . . , θn, where (k) denotes

the kth derivative, and let ek be the n-vector (δik) (i.e. a column vector with 1 in the kth

row and 0 elsewhere). We will calculate derivatives of the form

Q(i, j) =

∣∣∣∣∣∣ Θ̂ en−j

Θ(n+i) 0

∣∣∣∣∣∣ .
In this definition, i and j are allowed to take any integer values, subject to the convention

that if n− j lies outside the range 1, 2, . . . , n, then en−j = 0 and so Q(i, j) = 0. There is

an important special case: when n + i = n − j − 1 ∈ [0, n − 1], (i.e. i + j + 1 = 0 and

−n ≤ i < 0) we have

Q(i, j) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ 0
...

...

Θ(n+i) 1
...

...

Θ(n−1) 0

Θ(n+i) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ 0
...

...

Θ(n+i) 1
...

...

Θ(n−1) 0

0 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −1.

Using the same argument for n+ i ∈ [0, n−1] but n+ i 6= n−j−1, we see that Q(i, j) = 0.

Assuming n is arbitrarily large, we may summarise these properties of Q(i, j) as

Q(i, j) =

 −1 i+ j + 1 = 0

0 (i < 0 or j < 0) and i+ j + 1 6= 0
. (3.28)

If we relabel and rescale the variables so that x1 = x, x2 = y, x3 = −4t, Θ satisfies the

linear equations

Θx2 = Θxx,

Θx3 = Θxxx.

We may allow Θ to depend on higher variables xk and impose the natural dependence

Θxk = Θx · · ·x︸ ︷︷ ︸
k

.

Now, for any m, using the linear equations for Θ, we have

∂

∂xm
Q(i, j) =

∣∣∣∣∣∣ Θ̂ en−j

Θ(n+i+m) 0

∣∣∣∣∣∣+
n∑
k=1

∣∣∣∣∣∣ Θ̂ ek

Θ(n+i) 0

∣∣∣∣∣∣
∣∣∣∣∣∣ Θ̂ en−j

Θ(k−1+m) 0

∣∣∣∣∣∣
= Q(i+m, j) +

n−1∑
k=0

Q(i, k)Q(m− 1− k, j). (3.29)
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Using the conditions (3.28), the above simplifies considerably and we obtain

∂

∂xm
Q(i, j) = Q(i+m, j)−Q(i, j +m) +

m−1∑
k=0

Q(i, k)Q(m− k − 1, j). (3.30)

In particular

∂

∂x
Q(i, j) = Q(i+ 1, j)−Q(i, j + 1) +Q(i, 0)Q(0, j),

∂

∂x2
Q(i, j) = Q(i+ 2, j)−Q(i, j + 2) +Q(i, 1)Q(0, j) +Q(i, 0)Q(1, j),

∂

∂x3
Q(i, j) = Q(i+ 3, j)−Q(i, j + 3) +Q(i, 2)Q(0, j) +Q(i, 1)Q(1, j) +Q(i, 0)Q(2, j).

Note that these simplified formulae (3.30) are only valid for sufficiently large n. For smaller

n we should use (3.29) directly.

In addition to Q(i, j) we can define a shifted version, which we will call Q̂(i, j):

Q̂(i, j) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ(1) 0
...

...

Θ(n−j) 1
...

...

Θ(n) 0

Θ(n+i+1) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

This satisfies equations similar to (3.30).

3.6.3 Derivatives of quasigrammians

To express the derivatives of a quasigrammian, we define

R(i, j) = (−1)j

∣∣∣∣∣∣ Ω(Θ,P) P†(j)

Θ(i) 0

∣∣∣∣∣∣ .
As we have seen in (3.21), solutions obtained by binary Darboux transformations are of

the form v = v0 − 2R(0, 0). As we did in the case of the quasiwronskian type of solutions

we choose v0 = 0 for simplicity. Hence Θ satisfies the same linear equations as before and

P, the vector of adjoint eigenfunctions, satisfies

Px2 = −Pxx, Px3 = Pxxx.

Note that choice of the trivial vacuum is inessential and direct verification can be completed

for arbitrary vacuum.
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Using (3.24), derivatives with respect to the xm can be calculated:

∂xmR(i, j) = (−1)j

∣∣∣∣∣∣ Ω P†(j)

Θ(i+m) 0

∣∣∣∣∣∣+ (−1)m+j−1

∣∣∣∣∣∣ Ω P†(j+m)

Θ(i) 0

∣∣∣∣∣∣
+
m−1∑
k=0

∣∣∣∣∣∣ (−1)j+kΩ P†(k)

Θ(i) 0

∣∣∣∣∣∣
∣∣∣∣∣∣ Ω P†(j)

Θ(m−1−k) 0

∣∣∣∣∣∣
= R(i+m, j)−R(i, j +m) +

m−1∑
k=0

R(i, k)R(m− k − 1, j).

This final form for a derivative of a quasigrammian corresponds precisely with the for-

mula for the quasiwronskian (3.30). Thus subsequent calculations carried out for the

quasiwronskian solutions will be equally valid for the quasigrammian solutions.

To verify the quasigrammian and quasiwronskian solutions directly, we need to show

that both v = −2Q(0, 0) and v = −2R(0, 0) are solutions of ncKP. In [19], the authors list

some of the derivatives of v that can be substituted into ncKP directly. For example:

vx = −2Q(0, 0)x = −2 [Q(1, 0)−Q(0, 1) +Q(0, 0)Q(0, 0)] ,

vy = −2Q(0, 0)y = −2 [Q(2, 0)−Q(0, 2) +Q(0, 0)Q(1, 0) +Q(0, 1)Q(0, 0)] ,

vt = −2Q(0, 0)t = −2 [Q(3, 0)−Q(0, 3)−Q(0, 0)Q(2, 0) +Q(0, 1)Q(1, 0) +Q(0, 2)Q(0, 0)] .

From here, using (3.30),we could easily calculate higher order derivatives. For example

vxx = −2[Q(0, 2)− 2Q(1, 1) +Q(2, 0)− 2Q(0, 0)Q(0, 1) +Q(0, 0)Q(1, 0)−Q(0, 1)Q(0, 0)

+ 2Q(1, 0)Q(0, 0) + 2Q(0, 0)Q(0, 0)Q(0, 0)].

Upon substitution of v and its derivatives into (3.19), all the terms cancel and the solution

is therefore verified.

3.7 Matrix solutions

In this section, we derive matrix solutions of ncKP (3.19), which are new results. This

work, much of which is outlined in [21], builds on that given in [22,23].

In [22] it was shown that a matrix version of the KdV equation

Ut − 3UUx − 3UxU + Uxxx = 0, (3.31)

where U = U(x, t) is a d × d matrix, possessed multi-soliton solutions obtainable from

Darboux transformations. For example, the one-soliton solution is

U = −2λ2P sech2 (λ(ς − υ)) , (3.32)
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where ς = 1
2λ log

(
r

2λ

)
and υ = x− 4λ2t. The solution U , as given by (3.32), represents a

d× d one-soliton matrix solution. The matrix amplitude of the solution is −2λ2P , where

P = P 2 is a projection operator sometimes referred to as the polarization of the soliton.

Each soliton in the matrix has phase-constant φ = 1
2λ log

(
r

2λ

)
for some constant r. Multi-

soliton solutions of a matrix sine-Gordon equation were found in [36]. The authors showed

that this equation has quasigrammian solutions, into which they introduced projection

matrices.

Using the quasigrammian solutions of ncKP, we now follow this approach and investi-

gate the one-, two- and three-soliton matrix solutions. Taking the trivial vacuum solution

v = 0 gives

v[n+1] = −2

∣∣∣∣∣∣Ω(Θ,P) P†

Θ 0

∣∣∣∣∣∣ . (3.33)

The eigenfunctions θi and the binary eigenfunctions ρi satisfy

θi,xx = θi,y, θi,t = −4θi,xxx

and

ρi,xx = −ρi,y, ρi,t = −4ρi,xxx

respectively. The simplest nontrivial solutions of these equations are

θj = Aje
ηj , ρi = Bie

−γi ,

where ηj = pj(x + pjy − 4p2
j t), γi = qi(x + qiy − 4q2

i t) and Aj , Bi are d×m matrices. At

this stage the general structure of v[n+1] is

v[n+1] = −2

∣∣∣∣∣∣Ω(Θ,P)m×m P†d×m

Θd×m 0d×d

∣∣∣∣∣∣
= −2

(
0d×d −Θd×mΩ(Θ,P)−1

m×mPm×d
)
. (3.34)

With this choice of θj and ρi,

Ω(θj , ρi)x = BT
i Aje

ηj−γi .

Integrating with respect to x gives

Ω(θj , ρi) =
BT
i Aj

pj − qi
eηj−γi + δi,jI,
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where δi,jI is the constant of integration. We take Aj = rjPj , where rj is a scalar and Pj

is a projection operator. With Aj chosen in this way, we must have m = d and therefore

(3.34) becomes

v[n+1] = −2
(
0d×d −Θd×dΩ(Θ,P)−1

d×dPd×d
)
. (3.35)

We choose Bi = I and the solution u will be a d× d matrix.

In the case n = 1, we obtain a one-soliton matrix solution. Expanding (3.35) gives

v[2] = 2rPeΛ

(
I +

r

p− q
eΛP

)−1

,

where Λi = ηi − γi. When taking the inverse of Ω, we make use of the formula

(I − aP )−1 = I + aP + a2P 2 + a3P 3 + . . .

= I + aP + a2P + a3P + . . .

= I + aP (1 + a+ a2 + . . .)

= I + aP (1− a)−1,

where a 6= 1 is a scalar and P is any projection matrix. This useful identity is subsequently

used throughout. We now have

v[2] =
2rP

e−Λ + r
p−q

. (3.36)

Consequently, the one-soliton matrix solution is

u = v[2],x =
1
2

(p− q)2P sech2

(
1
2

(Λ + ξ)
)
, (3.37)

where ξ = log
(

r
p−q

)
. Each plane wave in the matrix u is travelling with speed 4

(
p3−q3

p−q

)
t

in the x-direction and 4
(
p3−q3

p2−q2

)
t in the y-direction. A regular solution requires that

det(Ω) 6= 0 for all x,y and t, and r
p−q > 0. We have

det(Ω) = 1 +
r

p− q
eΛ. (3.38)

If r > 0 and p > q or alternatively, if r < 0 and q > p, then r
p−q > 0 and det(Ω) is

positive-definite. In each case, we would obtain the same solution (3.37) since sech2 is an

even function.
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In the case n = d = 2, we obtain a two-soliton 2 × 2 matrix solution. By expanding

(3.35) we get

v[3] = 2
(
A1e

η1 A2e
η2

)(
Aj

eηj−γi
pj−qi + δi,jI

)−1

2×2

Ie−γ1

Ie−γ2


= 2

(
K1e

γ1 K2e
γ2

)Ie−γ1

Ie−γ2

 , say

= 2(K1 +K2),

where K1 and K2 satisfy

K1

(
I +

r1e
Λ1

p1 − q1
P1

)
= eΛ1A1 −

eΛ1

p1 − q2
K2A1,

K2

(
I +

r2e
Λ2

p2 − q2
P2

)
= eΛ2A2 −

eΛ2

p2 − q1
K1A2.

We assume that the Pj are the rank-1 projection matrices

Pj =
µj ⊗ νj
(µj , νj)

=
µjν

T
j

µTj νj
,

where the d-vectors µj , νj satisfy the condition (µj , νj) 6= 0. Solving for K1 and K2 gives

K1 =
p2 − q1

h
(h2(p1 − q2)I −A2)A1, (3.39)

K2 =
p1 − q2

h
(h1(p2 − q1)I −A1)A2, (3.40)

where

h = h1h2(p1 − q2)(p2 − q1)− αr1r2,

hi = e−Λi +
ri

pi − qi
, and α =

(µ1, ν2)(µ2, ν1)
(µ1, ν1)(µ2, ν2)

= Tr(P1P2).

For the solution to be regular, we need det(Ω) 6= 0 for all x, y and t. Upon expanding

det(Ω), the result simplifies greatly since the trace of a projection matrix is equal to its

rank and the determinant of any projection matrix is zero, and we obtain

det(Ω) = 1 + κ1e
Λ1 + κ2e

Λ2 + κ1κ2βe
Λ1+Λ2 ,

in which κi = ri
pi−qi , i = 1, 2 and β = 1 − α(p1−q1)(p2−q2)

(p1−q2)(p2−q1) . By ordering the spectral

parameters p2 > q2 > p1 > q1 and choosing ri > 0, for i = 1, 2, we ensure that κi > 0.

Furthermore, if we insist that α > 0, we have β > 0 and det(Ω) is therefore positive-

definite.
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We now investigate the behaviour of v[3] as t→ ±∞. This will demonstrate that each

soliton emerges from interaction undergoing a phase shift and that the amplitude of each

soliton may also change due to the interaction. For each soliton, we need to show that

the asymptotic form of v[3] is the same as (3.36). We first fix Λ1 by making the change of

variables (a similar change of variables involving y would also fix Λ1)

x = x̂+ 4
(
q3

1 − p3
1

q1 − p1

)
t.

This gives

Λ1 = (q1 − p1)x̂+ (q2
1 − p2

1)y,

Λ2 = (q2 − p2)x̂+ (q2
2 − p2

2)y − 4
(
q3

2 − p3
2 −

(q2 − p2)(q3
1 − p3

1)
q1 − p1

)
t.

Since Λ1 is now independent of t, soliton 1 is at rest. We may assume without loss of

generality that 0 > p2 > q2 > p1 > q1. Then as t→ −∞,

v[3] ∼ 2
r1P1

h1

and therefore

u ∼ 1
2

(p1 − q1)2P1 sech2

(
1
2
(
Λ1 + ξ−1

))
,

where ξ−1 = log
(

r1
p1−q1

)
.

Note that u = vx is invariant under the transformation v → v + C, where C is a

constant matrix. As t→ +∞ we get

v[3] ∼ 2
(r2(p1 − q2)− (p2 − q2)A2)(p2 − q1)A1 + (αr1(p2 − q2)− (p1 − q2)A1)(p2 − q2)A2

h1r2(p1 − q2)(p2 − q1)− αr1r2(p2 − q2)

+ 2
(p2 − q2)A2

r2

∼ 2
(r2(p1 − q2)− (p2 − q2)A2)(p2 − q1)A1 + (αr1(p2 − q2)− (p1 − q2)A1)(p2 − q2)A2

r2(p1 − q2)(p2 − q1)
(
h1 − αr1(p2−q2)

(p1−q2)(p2−q1)

)
∼ 2

r̂1P̂1

e−Λ1 + r̂1
p1−q1

,

where

r̂1 =
r1(µ̂1, ν̂1)
(µ1, ν1)

, P̂1 =
µ̂1 ⊗ ν̂1

(µ̂1, ν̂1)
,

µ̂1 = µ1 −
(p2 − q2)(µ1, ν2)µ2

(p1 − q2)(µ2, ν2)
, and ν̂1 = ν1 −

(p2 − q2)(µ2, ν1)ν2

(p2 − q1)(µ2, ν2)
.
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Therefore

u ∼ 1
2

(p1 − q1)2P̂1 sech2

(
1
2
(
Λ1 + ξ+

1

))
as t→ −∞,

where ξ+
1 = log

(
r̂1

p1−q1

)
.

Similarly, fixing Λ2 gives

u ∼ 1
2

(p2 − q2)2P̂2 sech2

(
1
2
(
Λ2 + ξ−2

))
as t→ −∞,

u ∼ 1
2

(p2 − q2)2P2 sech2

(
1
2
(
Λ2 + ξ+

2

))
as t→ +∞,

where

ξ−2 = log
(

r̂2

p2 − q2

)
, ξ+

2 = log
(

r2

p2 − q2

)
, r̂2 =

r2(µ̂2, ν̂2)
(µ2, ν2)

, P̂2 =
µ̂2 ⊗ ν̂2

(µ̂2, ν̂2)
,

µ̂2 = µ2 −
(p1 − q1)(µ2, ν1)µ1

(p2 − q1)(µ1, ν1)
, and ν̂2 = ν2 −

(p1 − q1)(µ1, ν2)ν1

(p1 − q2)(µ1, ν1)
.

Note that (µ̂1,ν̂1)
(µ1,ν1) = (µ̂2,ν̂2)

(µ2,ν2) = 1− α(p1−q1)(p2−q2)
(p1−q2)(p2−q1) = β. The soliton phase shifts ∆j = ξ+

j −ξ
−
j

are

∆1 = log
(
r̂1

r1

)
= log β, ∆2 = log

(
r2

r̂2

)
= − log β.

We may now summarise the characteristics of the two-soliton matrix solution as follows:

• The matrix amplitude of the first soliton changes from 1
2(p1 − q1)2P1 to 1

2(p1 − q1)2P̂1

and the matrix amplitude of the second soliton changes from 1
2(p2 − q2)2P̂2 to

1
2(p2 − q2)2P2 as t changes from −∞ to +∞.

• If (µ1, ν2) = 0 (P2P1 = 0) or (µ2, ν1) = 0 (P1P2 = 0) then α = 0 and therefore β = 1,

so there is no phase shift but the matrix amplitudes may still change.

• If (µ1, ν2) = 0 and (µ2, ν1) = 0 (giving P1P2 = P2P1 = 0) there is no phase shift or

change in amplitude and so the solitons have trivial interaction.
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In general, for n ≥ 1, expanding (3.35) gives

v[n+1] = 2
(
A1e

η1 A2e
η2 . . . Ane

ηn

)(
Aj

eηj−γi
pj−qi + δi,jI

)−1

n×n


Ie−γ1

Ie−γ2

...

Ie−γn

 (3.41)

= 2
(
K1e

η1 K2e
η2 . . . Kne

ηn

)

Ie−γ1

Ie−γ2

...

Ie−γn

 , say, (3.42)

=
n∑
i=1

Ki. (3.43)

However, for n > 3, it is very difficult to isolate each Ki. So we will now only investigate

the three-soliton solution. When n = 3, (3.43) gives

v[4] = 2
(
K1 +K2 +K3

)
. (3.44)

From (3.41 – 3.43) we must have that

K1 =
1
h1

(
A1 −

K2A1

p1 − q2
− K3A1

p1 − q3

)
, (3.45)

K2 =
1
h2

(
A2 −

K1A2

p2 − q1
− K3A2

p2 − q3

)
, (3.46)

K3 =
1
h3

(
A3 −

K1A3

p3 − q1
− K2A3

p3 − q2

)
, (3.47)

where hi = e−Λi + ri
pi−qi , for i = 1, 2, 3. Solving for K1,K2 and K3 gives

K1 =
h(2, 3)

h(1, 2, 3)(p2 − q3)(p3 − q2)

(
A1 −

K
′
2,3A1

p1 − q2
−
K
′
3,2A1

p1 − q3

)
, (3.48)

K2 =
h(1, 3)

h(1, 2, 3)(p1 − q3)(p3 − q1)

(
A2 −

K
′
1,3A2

p2 − q1
−
K
′
3,1A2

p2 − q3

)
, (3.49)

K3 =
h(1, 2)

h(1, 2, 3)(p1 − q2)(p2 − q1)

(
A3 −

K
′
1,2A3

p3 − q1
−
K
′
2,1A3

p3 − q2

)
, (3.50)

in which

h(i, j) = (pi − qj)(pj − qi)hihj − rirjαi,j ,

h(1, 2, 3) = h1h2h3 −
r2r3α2,3h1

(p2 − q3)(p3 − q2)
− r1r3α1,3h2

(p1 − q3)(p3 − q1)
− r1r2α1,2h3

(p1 − q2)(p2 − q1)

+ r1r2r3

(
α1,2,3

(p2 − q1)(p1 − q3)(p3 − q2)
+

α1,3,2

(p1 − q2)(p2 − q3)(p3 − q1)

)
,

K
′
i,j =

pj − qi
h(i, j)

(hj(pi − qj)I −Aj)Ai,
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for i, j ∈ {1, 2, 3} and i 6= j. Here, the notation from the two-soliton matrix solution has

been extended to include the trace of all permutations of products of Pj , j = 1, 2, 3, so

that

αi,j = Tr(PiPj) =
(µj , νi)(µi, νj)
(µi, νi)(µj , νj)

= Tr(PjPi),

α1,2,3 = Tr(P1P2P3) =
(µ1, ν3)(µ3, ν2)(µ2, ν1)
(µ1, ν1)(µ2, ν2)(µ3, ν3)

= Tr(P2P3P1) = Tr(P3P1P2),

α1,3,2 = Tr(P1P3P2) =
(µ3, ν1)(µ2, ν3)(µ1, ν2)
(µ1, ν1)(µ2, ν2)(µ3, ν3)

= Tr(P2P1P3) = Tr(P3P2P1).

Substituting (3.48 - 3.50) into (3.44) gives

v[4] =
2

h(1, 2, 3)
(b2,3A1 + b1,3A2 + b1,2A3 + b1,3,2A1A2 + b1,2,3A1A3

+b2,3,1A2A1 + b2,1,3A2A3 + b3,2,1A3A1 + b3,1,2A3A2) , (3.51)

in which

bi,j :=
h(i, j)

(pi − qj)(pj − qi)
and

bi,j,k :=
rjαi,j,k

(pk − qj)(pj − qi)αi,k
− hj
pk − qi

,

if αi,k 6= 0. For the solution to be regular, we need det(Ω) 6= 0 for all x, y and t. Here we

have

Ω =
(
Aj

eηj−γi
pj−qi + δi,jI

)
3×3

.

Using the fact that Tr(Aj) = rj and det(Aj) = 0, for j = 1, 2, 3, expanding det(Ω) gives

det(Ω) = 1 + κ1e
Λ1 + κ2e

Λ2 + κ3e
Λ3 + κ1κ2β1,2e

Λ1+Λ2 + κ2κ3β2,3e
Λ2+Λ3

+ κ1κ3β1,3e
Λ1+Λ3 + κ1κ2κ3β1,2,3e

Λ1+Λ2+Λ3 , (3.52)

where

β1,2,3 = 1− α1,2(p1 − q1)(p2 − q2)
(p1 − q2)(p2 − q1)

− α2,3(p2 − q2)(p3 − q3)
(p2 − q3)(p3 − q2)

− α1,3(p1 − q1)(p3 − q3)
(p1 − q3)(p3 − q1)

+(p1 − q1)(p2 − q2)(p3 − q3)
(

α1,2,3

(p2 − q1)(p3 − q2)(p1 − q3)
+

α1,3,2

(p1 − q2)(p2 − q3)(p3 − q1)

)
,

βi,j = 1− αi,j(pi − qi)(pj − qj)
(pi − qj)(pj − qi)

for i, j ∈ {1, 2, 3}, i 6= j,

κi =
ri

pi − qi
for i = 1, 2, 3.
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2

1

3

(a) t << 0

2

1

3

(b) t >> 0

Figure 3.1: The chosen configuration of the three-soliton solution

Ordering the spectral parameters p3 > q3 > p2 > q2 > p1 > q1 guarantees that βi,j > 0

and κi > 0. From (3.52), det(Ω) will be positive-definite if

α1,2,3

(p2 − q1)(p1 − q3)(p3 − q2)
+

α1,3,2

(p1 − q2)(p2 − q3)(p3 − q1)
> 0.

To determine the asymptotic forms of each matrix soliton, we fix each Λi, i = 1, 2, 3

and assume without loss of generality that 0 > p3 > q3 > p2 > q2 > p1 > q1. In doing

so, the solution has the configuration detailed in Figure 3.1. For soliton 1, as t → −∞,

hi → +∞ for i = 2, 3. Then we can see from (3.45–3.47) that Ki → 0 for i = 2, 3. This

may be compared with similar expressions in the two-soliton matrix solution, giving

v[4] ∼
2r−1 P

−
1

h1
,

where r−1 = r1, P−1 = µ−1 ⊗ν
−
1

(µ−1 ,ν
−
1 )

, µ−1 = µ1 and ν−1 = ν1. So as t→ −∞, we have

u ∼ 1
2

(p1 − q1)2P−1 sech2

(
1
2

(Λ1 + ξ−1 )
)
,

where ξ−1 = log
(

r−1
p1−q1

)
.

As t → +∞, hi → ri
pi−qi , for i = 2, 3. Using the fact that u is invariant under the

transformation v[4] → v[4] + C, where C is a constant matrix, we have that

v[4] ∼
2r+

1 P
+
1

e−Λ1 + r+
1

p1−q1

,
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where

r+
1 =

r1(µ+
1 , ν

+
1 )

(µ1, ν1)
=
r1β1,2,3

β2,3
, P+

1 =
µ+

1 ⊗ ν
+
1

(µ+
1 , ν

+
1 )
,

µ+
1 = µ1 +

(p2 − q2)(p3 − q3)
(µ2, ν2)β2,3

(
(µ1, ν3)(µ3, ν2)

(µ3, ν3)(p1 − q3)(p3 − q2)
− (µ1, ν2)

(p1 − q2)(p3 − q3)

)
µ2

+
(p2 − q3)(p3 − q2)

(µ3, ν3)β2,3

(
(µ1, ν2)(µ2, ν3)

(µ2, ν2)(p1 − q2)(p2 − q3)
− (µ1, ν3)

(p1 − q3)(p2 − q2)

)
µ3,

ν+
1 = ν1 +

(p2 − q2)(p3 − q3)
(µ2, ν2)β2,3

(
(µ3, ν1)(µ2, ν3)

(µ3, ν3)(p2 − q3)(p3 − q1)
− (µ2, ν1)

(p2 − q1)(p3 − q3)

)
ν2

+
(p2 − q3)(p3 − q2)

(µ3, ν3)β2,3

(
(µ2, ν1)(µ3, ν2)

(µ2, ν2)(p3 − q2)(p2 − q1)
− (µ3, ν1)

(p3 − q1)(p2 − q2)

)
ν3.

So we have

u ∼ 1
2

(p1 − q1)2P+
1 sech2

(
1
2

(Λ1 + ξ+
1 )
)

as t→ +∞,

where ξ+
1 = log

(
r+
1

p1−q1

)
.

Fixing Λ2 brings soliton 2 to rest. As t→ −∞, h1 → r1
p1−q1 and h3 → +∞. This gives

v[4] ∼ 2(K
′
1,2 +K

′
2,1) ∼ 2r−2 P

−
2

e−Λ2 + r−2
p2−q2

,

where

r−2 =
r2(µ−2 , ν

−
2 )

(µ2, ν2)
= r2β1,2, P−2 =

µ−2 ⊗ ν
−
2

(µ−2 , ν
−
2 )
,

µ−2 = µ2 −
(p1 − q1)(µ2, ν1)
(p2 − q1)(µ1, ν1)

µ1, and ν−2 = ν2 −
(p1 − q1)(µ1, ν2)
(p1 − q2)(µ1, ν1)

ν1.

As t→ +∞, h1 → +∞ and h3 → r3
(p3−q3) . This gives

v[4] ∼ 2(K
′
2,3 +K

′
3,2) ∼ 2r+

2 P
+
2

e−Λ2 + r+
2

p2−q2

,

where

r+
2 =

r2(µ+
2 , ν

+
2 )

(µ2, ν2)
= r2β2,3, P+

2 =
µ+

2 ⊗ ν
+
2

(µ+
2 , ν

+
2 )
,

µ+
2 = µ2 −

(p3 − q3)(µ2, ν3)
(p2 − q3)(µ3, ν3)

µ3, and ν+
2 = ν2 −

(p3 − q3)(µ3, ν2)
(p3 − q2)(µ3, ν3)

ν3.

So the asymptotic forms for soliton 2 are

u ∼ 1
2

(p2 − q2)2P−2 sech2

(
1
2

(Λ2 + ξ−2 )
)

as t→ −∞,

u ∼ 1
2

(p2 − q2)2P+
2 sech2

(
1
2

(Λ2 + ξ+
2 )
)

as t→ +∞,
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where ξ−2 = log
(

r−2
p2−q2

)
and ξ+

2 = log
(

r+
2

p2−q2

)
.

With Λ3 fixed, soliton 3 is a rest. As t→ −∞, hi → ri
pi−qi for i = 1, 2. This gives

v[4] ∼
2r−3 P

−
3

e−Λ3 + r−3
p3−q3

,

where

r−3 =
r3(µ−3 , ν

−
3 )

(µ3, ν3)
=
r3β1,2,3

β1,2
, P−3 =

µ−3 ⊗ ν
−
3

(µ−3 , ν
−
3 )
,

µ−3 = µ3 +
(p2 − q2)(p1 − q1)

(µ2, ν2)β1,2

(
(µ3, ν1)(µ1, ν2)

(µ1, ν1)(p3 − q1)(p1 − q2)
− (µ3, ν2)

(p3 − q2)(p1 − q1)

)
µ2

+
(p2 − q2)(p1 − q1)

(µ1, ν1)β1,2

(
(µ3, ν2)(µ2, ν1)

(µ2, ν2)(p3 − q2)(p2 − q1)
− (µ3, ν1)

(p3 − q1)(p2 − q2)

)
µ1,

ν−3 = ν3 +
(p2 − q2)(p1 − q1)

(µ2, ν2)β1,2

(
(µ1, ν3)(µ2, ν1)

(µ1, ν1)(p2 − q1)(p1 − q3)
− (µ2, ν3)

(p2 − q3)(p1 − q1)

)
ν2

+
(p2 − q2)(p1 − q1)

(µ1, ν1)β1,2

(
(µ2, ν3)(µ1, ν2)

(µ2, ν2)(p1 − q2)(p2 − q3)
− (µ1, ν3)

(p1 − q3)(p2 − q2)

)
ν1.

As t→ +∞, hi → +∞, for i = 1, 2. This gives

v[4] ∼
2r+

3 P
+
3

e−Λ3 + r+
3

p3−q3

,

where r+
3 = r3, P+

3 = µ+
3 ⊗ν

+
3

(µ+
3 ,ν

+
3 )

, µ+
3 = µ3 and ν+

3 = ν3.

So the asymptotic forms for soliton 3 are

u ∼ 1
2

(p3 − q3)2P−3 sech2

(
1
2

(Λ3 + ξ−3 )
)

as t→ −∞,

u ∼ 1
2

(p3 − q3)2P+
3 sech2

(
1
2

(Λ3 + ξ+
3 )
)

as t→ +∞,

where ξ−3 = log
(

r−3
p3−q3

)
and ξ+

3 = log
(

r+
3

p3−q3

)
.

The soliton phase shifts ∆j = ξ+
j − ξ

−
j are

∆1 = log
(

(µ+
1 , ν

+
1 )

(µ−1 , ν
−
1 )

)
= log

(
β1,2,3

β2,3

)
,

∆2 = log
(

(µ+
2 , ν

+
2 )

(µ−2 , ν
−
2 )

)
= log

(
β2,3

β1,2

)
,

∆3 = log
(

(µ+
3 , ν

+
3 )

(µ−3 , ν
−
3 )

)
= log

(
β1,2

β1,2,3

)
.

3.8 Plots of the matrix solutions

In this section, we demonstrate the interaction properties of the two-soliton matrix solution

of ncKP with various plots.
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Figure 3.2 shows a plot of the generic two-soliton matrix solution u = (uij), i, j = 1, 2,

where

r1 = 2 −→ r̂1 = 40.763,

r̂2 = 20.381 −→ r2 = 1,

µ1 =
(

1 0
)
−→ µ̂1 =

(
10.521 −14.876

)
,

µ2 =
(

0.8 −1.25
)
−→ µ̂2 =

(
−0.829 −1.25

)
,

ν̂1 =
(
−0.177 −0.582

)
−→ ν1 =

(
0.333 −0.667

)
,

ν̂2 =
(
−27.333 51

)
−→ ν2 =

(
−2 0.333

)
,

P1 =

1 −2

0 0

 −→ P̂1 =

−0.274 −0.901

0.387 1.274

,

P̂2 =

−0.551 1.028

−0.831 1.551

 −→ P2 =

0.793 −0.132

−1.3 0.207

,

as t changes from −∞ to +∞. This plot shows both a change in matrix amplitude and a

phase-shift upon interaction.

Figure 3.3 shows a plot of the two-soliton matrix solution u = (uij), i, j = 1, 2, where

r1 = 2 −→ r̂1 = r1,

r̂2 = 1 −→ r2 = r̂2,

µ1 =
(

1 3
)
−→ µ̂1 = µ1,

µ2 =
(

0.8 −1.25
)
−→ µ̂2 =

(
1.238 0.064

)
,

ν̂1 =
(
−0.177 −0.582

)
−→ ν1 =

(
0.333 −0.667

)
,

ν̂2 =
(

1 0.333
)
−→ ν2 = ν̂2,

P1 =

−0.2 0.4

−0.6 1.2

 −→ P̂1 =

−0.032 0.344

−0.095 1.032

,

P̂2 =

1.018 −0.339

0.053 −0.018

 −→ P2 =

 0.658 −0.219

−1.027 0.342

,

as t changes from −∞ to +∞. This plot shows a change in matrix amplitude but no

phase-shift because (µ1, ν2) = 0.

Figure 3.4 shows a plot of the two-soliton matrix solution u = (uij), i, j = 1, 2, where
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r1 = 2 −→ r̂1 = r1,

r̂2 = 1 −→ r2 = r̂2,

µ1 =
(

1 3
)
−→ µ̂1 = µ1,

µ2 =
(

4 1.5
)
−→ µ̂2 = µ2,

ν̂1 =
(

0.25 −0.667
)
−→ ν1 = ν̂1,

ν̂2 =
(
−1 0.333

)
−→ ν2 = ν̂2,

P1 =

−0.143 0.381

−0.429 1.143

 −→ P̂1 = P1,

P̂2 =

1.143 −0.381

0.429 −0.143

 −→ P2 = P2,

as t changes from −∞ to +∞. This plot shows no change in matrix amplitude and no

phase-shift because (µ1, ν2) = 0 = (µ1, ν2).
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(a)

(b)

Figure 3.2: (a) Plot of matrix KP two-soliton interaction at t = 0 with parameters given

by p1 = −1
4 , p2 = 19

2 , q1 = −39
2 and q2 = 1

2 . (b) Plot of the corresponding scalar KP

two-soliton interaction with Pj = rj = 1 for j = 1, 2.
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Figure 3.3: Plot of matrix KP two-soliton interaction at t = 0 with parameters given by

p1 = −1
4 , p2 = 19

2 , q1 = −39
2 and q2 = 1

2 .
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Figure 3.4: Plot of matrix KP two-soliton interaction at t = 0 with parameters given by

p1 = −1
4 , p2 = 19

2 , q1 = −39
2 and q2 = 1

2 .

3.9 Reduction to matrix KdV

To make the reduction from matrix KP solutions to matrix KdV solutions, we set pi =

−qi = λi. For the one-soliton solution, this gives

Λ = 2λ(x− 4λ2t).

So

v[2] =
2rP

e−2λ(x−4λ2t) + r
2λ

,



CHAPTER 3. A NONCOMMUTATIVE KP EQUATION 74

giving

u = 2λ2P sech2 (λ(υ + ς)) ,

where υ = x− 4λ2t and ς = 1
2λ log

(
r

2λ

)
.

For the two-soliton matrix solution, we have

hi = e
2λiυi+

ri
2λi

for i = 1, 2. The asymptotic forms for soliton 1 are

u ∼ 2λ2
1P1 sech2

(
λ1(υ1 + ς−1 )

)
as t→ −∞,

u ∼ 2λ2
1P̂1 sech2

(
λ1(υ1 + ς+

1 )
)

as t→ +∞,

in which

υ1 = x− 4λ2
1t, ς−1 = log

(
r1

2λ1

)
, ς+

1 = log
(
r̂1

2λ1

)
,

r̂1 =
r1(µ̂1, ν̂1)
(µ1, ν1)

, P1 =
µ1 ⊗ ν1

(µ1, ν1)
, P̂1 =

µ̂1 ⊗ ν̂1

(µ̂1, ν̂1)
,

µ̂1 = µ1 −
2λ2(µ1, ν2)µ2

(λ1 + λ2)(µ2, ν2)
, and ν̂1 = ν1 −

2λ2(µ2, ν1)ν2

(λ1 + λ2)(µ2, ν2)
.

The asymptotic forms for soliton 2 are

u ∼ 2λ2
2P̂2 sech2

(
λ2(υ2 + ς−2 )

)
as t→ −∞,

u ∼ 2λ2
2P2 sech2

(
λ2(υ2 + ς+

2 )
)

as t→ +∞,

in which

υ2 = x− 4λ2
2t, ς−2 = log

(
r̂2

2λ2

)
, ς+

2 = log
(
r2

2λ2

)
,

r̂2 =
r2(µ̂1, ν̂1)
(µ1, ν1)

, P1 =
µ2 ⊗ ν2

(µ2, ν2)
, P̂2 =

µ̂2 ⊗ ν̂2

(µ̂2, ν̂2)
,

µ̂2 = µ2 −
2λ2(µ2, ν1)µ1

(λ1 + λ2)(µ1, ν1)
, and ν̂2 = ν2 −

2λ1(µ1, ν2)ν1

(λ1 + λ2)(µ1, ν1)
.

These results from the reduction match up with those given in [22].



Chapter 4

A noncommutative mKP equation

Noncommutative mKP equations have been considered by Hamanaka and Toda [27], and

Wang and Wadati [51] in the case where the noncommutativity arises through the indepen-

dent variables. This suggests that we may be able to follow the methods of the previous

chapter and try to: derive an ncmKP equation, two families of solutions of ncmKP that

can be expressed as quasiwronskians and quasigrammians, directly verify the solutions

and investigate matrix solutions. We will also look at an nc Miura transformation which

maps solutions of ncmKP to solutions of ncKP.

4.1 A noncommutative mKP hierarchy

A noncommutative mKP hierarchy has been developed by Kupershmidt in [34], but in

a more algebraic setting. In [51], a ncmKP hierarchy is given that uses analytic Hirota

bilinear identities to give the hierarchy in a condensed form. Here, we construct the ncmKP

hierarchy in the spirit of Sato theory.

With L = LmKP as defined by (2.36), we obtain the differential operators

P≥1(L) = ∂x,

P≥1(L2) = ∂2
x + 2w∂x, (4.1)

P≥1(L3) = ∂3
x + 3w∂2

x + 3(wx + w2 + w1)∂x,

P≥1(L4) = ∂4
x + 4w∂3

x + (6wx + 4w1 + 6w2)∂2
x

+ (4w3 + 6w1x + 4wxx + 4w2 + 8wwx + 4wxw + 6ww1 + 6w1w)∂x,

75
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which, via the evolution equation (2.37), give the ncmKP hierarchy:

Lx1 = [P≥1(L),L]⇔



wx1 = wx,

w1x1 = w1x,

w2x1 = w2x,

· · · ,

(4.2)

Lx2 = [P≥1(L2),L]⇔



wy = wxx + 2w1x + 2wwx + 2[w,w1],

w1y = w1xx + 2w2x + 2w1wx + 2ww1x + 2[w,w2],

w2y = w2xx + 2w3x + 2ww2x + 4w2wx − 2w1wxx

+ 2[w,w3],

w3y = w3xx + 2w4x + 2ww3x + 6w3wx − 2w1wxxx

− 6w2wxx + 2[w,w4],

· · · ,

(4.3)

Lx3 = [P≥1(L3),L]⇔



wt = wxxx + 3w1xx + 3w2x + 6ww1x + 3w1wx

+ 3wxw1 + 3wwxx + 3w2
x + 3w2wx + 3[w2, w1]

+ 3[w,w2],

· · · ,

(4.4)

Lx4 = [P≥1(L4),L]⇔



wx4 = wxxxx + 6w2xx + 4w1xxx + 4w3x + 4wwxxx

+6wxwxx + 4wxxwx + 4wxwwx + 6w2wxx

+8ww2
x + 4w3wx + 12ww1xx + 12wxw1x

+6w1xwx + 6w1xw1 + 6w1w1x + 2w1wxx

+4wxxw1 + 12w2w1x + 8wwxw1 + 6ww1wx

+4wxww1 + 4w1wwx + 2w1wxw + 12ww2x

+6w2wx + 6wxw2 + 6[w,w2
1] + 6[w2, w2]

+4[w3, w1] + 4[w,w3],

· · ·

(4.5)

The term 2[w,w1] in the first component of (4.3) prevents us from recursively expressing

the fields w1, w2, . . . in terms of w and its x- and y-derivatives. However, using the second

component of (4.3) and the first component of (4.4), we obtain

0 = 2wt − 2wxxx − 3w1xx − 6ww1x − 3w1y − 6wxw1 − 6wwxx − 6w2
x − 6w2wx

− 6[w2, w1]. (4.6)



CHAPTER 4. A NONCOMMUTATIVE MKP EQUATION 77

To eliminate the field w1, we make the change of variables w1 = −1
2(wx +w2−W ). Thus,

from the first component of (4.3), and from (4.6), we obtain the following equations:

wt + wxxx − 6wwxw + 3Wy + 3[wx,W ]+ − 3[wxx, w]− 3[W,w2] = 0, (4.7)

Wx − wy + [w,W ] = 0, (4.8)

where the scaling t→ −4t has been made.

Equations (4.7) and (4.8) could also be obtained through the Lax pair

LmKP = ∂2
x + 2w∂x − ∂y,

MmKP = 4∂3
x + 12w∂2

x + 6(wx + w2 +W )∂x + ∂t.

The compatibility condition [LmKP,MmKP] = 0 gives (4.7) and (4.8), which represent the

ncmKP equation in a slightly different but equivalent form to that of Wang and Wadati in

[51]. Unlike the commutative mKP equation, equation (4.8) is not satisfied by introducing

a potential. Instead, we follow the approach in [51] by letting w = −fxf−1, and W =

−fyf−1, where f = f(x, xq) is a differentiable function with an inverse. It is assumed that

the function f and its x- and xq-derivatives do not, in general, commute. These choices

of w and W satisfy equation (4.8). It is important to reiterate here that

w 6= −(log f)x and W 6= −(log f)y.

Now that we have w = −fxf−1 and W = −fyf−1, we can attempt to eliminate

w1, w2, . . . from the hierarchy. When w,w1, w2, w3, . . . and their x- and xq-derivatives

commute, we have seen that

wy = (wx + w2 + 2w1)x,

wt = (wxx + 3w1x + 3w2 + 3wwx + w3 + 6ww1)x,

wx4 = (wxxx + 6w2x + 4w1xx + 4w3 + w4 + 12ww2 + 6w2wx + 12w2w1 + 6w2
1 + 6wxw1

+ 12ww1x + 3w2
x + 4wwxx)x.

Since w = Vx, for the first three fields, say, we can write

Vxy = (wx + w2 + 2w1)x,

Vxt = (wxx + 3w1x + 3w2 + 3wwx + w3 + 6ww1)x,

Vxx4 = (wxxx + 6w2x + 4w1xx + 4w3 + w4 + 12ww2 + 6w2wx + 12w2w1 + 6w2
1 + 6wxw1

+ 12ww1x + 3w2
x + 4wwxx)x.
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Integrating both sides of each of these equations with respect to x and isolating w1, w2, w3

gives

w1 =
1
2
Vy −

1
2
wx −

1
2
w2,

w2 =
1
3
Vt −

1
3
wxx − w1x − wwx −

1
3
w3 − 2ww1,

w3 =
1
4
Vx4 −

1
4
wxxx −

3
2
w2x − w1xx −

1
4
w4 − 3ww2 −

3
2
w2wx − 3w2w1

− 3
2
w2

1 −
3
2
wxw1 − 3ww1x −

3
4
w2
x − wwxx.

Furthermore, we have that

−fxf−1 → − (log f)x → Vx and− fyf−1 → − (log f)y → Vy.

However, in the noncommutative case we have w = −fxf−1. We may therefore take

w1, w2, w3, . . . to be of the form

w1 = a1wx + a2w
2 + a3fyf

−1,

w2 = b1wxx + b2w1x + b3wwx + b4wxw + b5w
3 + b6ww1 + b7w1w + b8ftf

−1,

w3 = c1wxxx + c2w2x + c3w1xx + c4w
4 + c5ww2 + c6w2w + c7w

2wx + c8wxw
2 + c9wwxw

+ c10w
2w1 + c11w1w

2 + c12ww1w + c13w
2
1 + c14wxw1 + c15w1wx + c16ww1x

+ c17w1xw + c18w
2
x + c19wwxx + c20wxxw + c21fx4f

−1,

· · · ,

where an, bn, cn, . . . , n = 1, 2, 3, . . . , are constants to be chosen such that the resulting

noncommutative fields w1, w2, w3 . . . will then satisfy the ncmKP hierarchy.

We know that, for n = 1, 2, 3, . . .

wxn = −(fxf−1)xn

= −fxxnf−1 + fxf
−1fxnf

−1

= −fxxnf−1 − wfxnf−1. (4.9)

Using the terms wy, w1y, w2y, . . . in (4.3), we can calculate w1, w2, w3, . . .. For example,

wy = (1 + 2a1)wxx + (2 + 2a1 + 2a2)wwx + (2a2 − 2a1)wxw + 2a3wfyf
−1 + 2a3fxyf

−1.

For (4.9) to be satisfied by w1 and with w = −fxf−1, we require that

a1 = −1
2
, a2 = −1

2
and a3 = −1

2
.
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Using the same approach for w2 and w3, we require that

b1 = −1
3
, b2 = −1, b3 = −2

3
, b4 = −1

3
, b5 = −1

3
, b6 = −1, b7 = −1,

b8 = −1
3
, c1 = −1

4
, c2 = −3

2
, c3 = −1, c4 = −1

4
, c5 = −3

2
, c6 = −3

2
,

c7 = −3
4
, c8 = −1

4
, c9 = −1

2
, c10 = −1, c11 = −1, c12 = −1, c13 = −3

2
,

c14 = −1, c15 = −1
2
, c16 = −2, c17 = −1, c18 = −3

4
, c19 = −3

4
, c20 = −1

4
,

c21 = −1
4
.

Therefore, the fields w1, w2, w3 are

w1 = −1
2
wx −

1
2
w2 − 1

2
fyf
−1,

w2 = −1
3
wxx − w1x −

2
3
wwx −

1
3
wxw −

1
3
w3 − ww1 − w1w −

1
3
ftf
−1,

w3 = −1
4
wxxx −

3
2
w2x − w1xx −

1
4
w4 − 3

2
ww2 −

3
2
w2w −

3
4
w2wx −

1
4
wxw

2 − 1
2
wwxw

− w2w1 − w1w
2 − ww1w −

3
2
w2

1 − wxw1 −
1
2
w1wx − 2ww1x − w1xw −

3
4
w2
x

− 3
4
wwxx −

1
4
wxxw −

1
4
fx4f

−1.

Although tedious, this procedure could easily be used to obtain w4, w5, . . .. Rewriting

these fields in terms of f gives

w1 =
1
2
fxxf

−1 − fxf−1fxf
−1 − 1

2
fyf
−1, (4.10)

w2 = −1
6
fxxxf

−1 − 2fxf−1fxf
−1fxf

−1 +
1
2
fxf

−1fxxf
−1 + fxxf

−1fxf
−1

+
1
2
fxyf

−1 − fyf−1fxf
−1 − 1

2
fxf

−1fyf
−1 − 1

3
ftf
−1, (4.11)

w3 = −1
4
fx4f

−1 +
1
2
fxtf

−1 − 1
4
fxxyf

−1 − ftf−1fxf
−1 − 1

2
fxf

−1ftf
−1 +

1
2
fxf

−1fxyf
−1

− 3
8
fyf
−1fyf

−1 +
9
8
fyf
−1fxxf

−1 +
5
8
fxxf

−1fyf
−1 − 7

8
fxxf

−1fxxf
−1

+
3
2
fxyf

−1fxf
−1 − 1

2
fxxxf

−1fxf
−1 − 5

4
fxf

−1fxf
−1fyf

−1 +
7
4
fxf

−1fxf
−1fxxf

−1

− 3
2
fxf

−1fyf
−1fxf

−1 +
3
2
fxf

−1fxxf
−1fxf

−1 − 3fyf−1fxf
−1fxf

−1

+ 3fxxf−1fxf
−1fxf

−1 − 6fxf−1fxf
−1fxf

−1fxf
−1. (4.12)

This hierarchy, in terms of f , was derived from a different perspective by Dimakis and

Müller-Hoissen in [8] in what they refer to as a functional representation of the hierarchy.
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4.2 Quasiwronskian solutions obtained from Darboux trans-

formations

In this section, we look at quasiwronskian solutions of ncmKP obtained from the Darboux

tranformation Gθ = ((θ−1)x)−1∂xθ
−1 = 1− θ(θx)−1∂x. We will use the pseudodifferential

operator LmKP. Let θi, i = 1, . . . , n be a particular set of eigenfunctions and introduce the

notation Θ = (θ1, . . . , θn). It is again assumed that the eigenfunction and its derivatives

do not commute.

Let φ = φ[1] be an eigenfunction of LmKP[1] = LmKP and θ[1] = θ1. Then φ[2] := Gθ[1]
[φ[1]]

and θ[2] = φ[2]|φ→θ2 are eigenfunctions for LmKP[2] = Gθ[1]
LmKPG

−1
θ[1]

. In general, for n ≥ 1

we define the nth Darboux transform of φ by

φ[n+1] = φ[n] − θ[n](θ[n]x)−1φ[n]x, (4.13)

in which

θ[k] = φ[k]|φ→θk .

It can be shown by induction that φ[n+1] as given by (4.13) can be expressed as

φ[n+1] =

∣∣∣∣∣∣∣∣∣∣∣∣

Θ φ
...

...

Θ(n−1) φ(n−1)

Θ(n) φ(n)

∣∣∣∣∣∣∣∣∣∣∣∣
. (4.14)

In the initial case n = 1, (4.13) gives

φ[2] = φ− θ1θ
−1
1,xφx =

∣∣∣∣∣∣ θ1 φ

θ1,x φx

∣∣∣∣∣∣ .
So the result is true for n = 1. Substituting n+ 1 for n in (4.13) gives

φ[n+2] = φ[n+1] − θ[n+1](θ[n+1]x)−1φ[n+1]x. (4.15)
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Using (3.26) and (3.10), we have

θ
(1)
[n+1] =

∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ(1) θ
(1)
n+1

Θ(1) θ
(1)
n+1

...
...

Θ(n) θ
(n)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
+

n∑
k=1

∣∣∣∣∣∣∣∣∣∣∣∣

Θ 0

Θ(1)

...

Θ(n)

ek

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ(k+1) θ
(k+1)
n+1

Θ(1) θ
(1)
n+1

...
...

Θ(n) θ
(n)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ 0

Θ(1) 0
...

...

Θ(n−1) 0

Θ(n) 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ(n+1) θ
(n+1)
n+1

Θ(1) θ
(1)
n+1

...
...

Θ(n) θ
(n)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (4.16)

Similarly

φ
(1)
[n+1] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ 0

Θ(1) 0
...

...

Θ(n−1) 0

Θ(n) 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

Θ(n+1) φ(n+1)

Θ(1) φ(1)

...
...

Θ(n) φ(n)

∣∣∣∣∣∣∣∣∣∣∣∣
. (4.17)

Substituting (4.16) and (4.17) into (4.15) and using the nc Jacobi identity (3.5) gives

φ[n+2] =

∣∣∣∣∣∣∣∣∣∣∣∣

Θ φ
...

...

Θ(n−1) φ(n−1)

Θ(n) φ(n)

∣∣∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣∣∣

Θ θn+1

...
...

Θ(n−1) θ
(n−1)
n+1

Θ(n) θ
(n)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ(1) θ
(1)
n+1

...
...

Θ(n) θ
(n)
n+1

Θ(n+1) θ
(n+1)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 ∣∣∣∣∣∣∣∣∣∣∣∣

Θ(1) φ(1)

...
...

Θ(n) φ(n)

Θ(n+1) φ(n+1)

∣∣∣∣∣∣∣∣∣∣∣∣
(4.18)

=

∣∣∣∣∣∣∣∣∣∣∣∣

Θ θn+1 φ
...

...
...

Θ(n) θ
(n)
n+1 φ(n)

Θ(n+1) θ
(n+1)
n+1 φ(n+1)

∣∣∣∣∣∣∣∣∣∣∣∣
. (4.19)

This proves the inductive step, completing the proof of (4.14).
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We can determine the Darboux-transformed fields w̃, w̃1, w̃2, . . . by calculating

L̃mKP = (θ−1)−1
x ∂xθ

−1Lθ∂−1
x (θ−1)x

= ∂x − (−θθ−1
x f)x(−θθ−1

x f)−1 +
(

1
2

(−θθ−1
x f)xx(−θθ−1

x f)−1

−(−θθ−1
x f)x(−θθ−1

x f)−1(−θθ−1
x f)x(−θθ−1

x f)−1− 1
2

((−θθ−1
x f)−1)y(−θθ−1

x f)−1

)
∂−1
x

+ . . . ,

which preserves the structure of the ncmKP hierarchy. The coefficients

w̃ = −(−θθ−1
x f)x(−θθ−1

x f)−1,

w̃1 =
1
2

(−θθ−1
x f)xx(−θθ−1

x f)−1 − (−θθ−1
x f)x(−θθ−1

x f)−1(−θθ−1
x f)x(−θθ−1

x f)−1

− 1
2

((−θθ−1
x f)−1)y(−θθ−1

x f)−1,

· · ·

will satisfy (4.3) and (4.4). In particular, w̃, which could also be obtained from L̃mKP =

GθLmKPG
−1
θ or M̃mKP = GθMmKPG

−1
θ , will satisfy the ncmKP equation. Using the fact

that w̃ is of the form −f̃xf̃−1, we obtain

f̃ = −θθ−1
x f =

∣∣∣∣∣∣ θ 0

θx 1

∣∣∣∣∣∣ f. (4.20)

It can be proved by induction that after n Darboux transformations, we have, for n ≥ 1

f[n+1] =

∣∣∣∣∣∣∣∣∣∣∣∣

Θ 0
...

...

Θ(n−1) 0

Θ(n) 1

∣∣∣∣∣∣∣∣∣∣∣∣
f. (4.21)

When n = 1, the result (4.21) follows directly from (4.20). Upon substituting n + 1
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for n, using (4.16), the nc Jacobi identity (3.5) and the homology relations (3.6) we have

f[n+2] = −θ[n+1](θ[n+1],x)−1f

= −

∣∣∣∣∣∣∣∣∣∣∣∣

Θ θn+1

...
...

Θ(n−1) θ
(n−1)
n+1

Θ(n) θ
(n)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ(n+1) θ
(n+1)
n+1

Θ(1) θ
(
n+11)

...
...

Θ(n−1) θ
(n−1)
n+1

Θ(n) θ
(n)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ 0

Θ(1) 0
...

...

Θ(n−1) 0

Θ(n) 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
f

= −

∣∣∣∣∣∣∣∣∣∣∣∣

Θ θn+1

...
...

Θ(n−1) θ
(n−1)
n+1

Θ(n) θ
(n)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ(n+1) θ
(n+1)
n+1

Θ(1) θ
(1)
n+1

...
...

Θ(n−1) θ
(n−1)
n+1

Θ(n) θ
(n)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1

f.

Now if we use the quasi-Plücker coordinate formula (3.12), we get

f[n+2] =

∣∣∣∣∣∣∣∣∣∣∣∣

Θ θn+1 0
...

...
...

Θ(n) θ
(n)
n+1 0

Θ(n+1) θ
(n+1)
n+1 1

∣∣∣∣∣∣∣∣∣∣∣∣
f.

This completes the proof of (4.21).

An analogous transformation can be made on f−1. Let g = f−1. This gives

w = −(g−1)xg = g−1gx.

The effect of

L̃mKP = GθLmKPG
−1
θ , L̃mKP = GθLmKPG

−1
θ or M̃mKP = GθMmKPG

−1
θ

is that

w̃ = g̃−1g̃x = (−gθxθ−1)−1(−gθxθ−1)x,

giving

g̃ = −gθxθ−1 = g

∣∣∣∣∣∣ θ 1

θx 0

∣∣∣∣∣∣ .
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After n Darboux transformations we have

g[n+1] = g

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ 1

Θ(1) 0
...

...

Θ(n−1) 0

Θ(n) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (4.22)

We can see that (4.22) is consistent with (4.21) since∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ 1

Θ(1) 0
...

...

Θ(n−1) 0

Θ(n) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1

=

∣∣∣∣∣∣∣∣∣∣∣∣

Θ 0
...

...

Θ(n−1) 0

Θ(n) 1

∣∣∣∣∣∣∣∣∣∣∣∣
.

4.3 Quasigrammian solutions obtained from binary Darboux

transformations

In the same way as for ncKP, we may extend the notion of the adjoint to obtain the adjoint

Lax pair

L†mKP = ∂2
x − 2w†x − 2w†∂x + ∂y,

M †mKP = −4∂3
x + 12w†∂2

x + 6(3w†x − w†
2 −W †)∂x + 6(w†xx − w†xw† − w†w†x −W †x)− ∂t.

The compatibility condition [L†mKP,M
†
mKP] gives

w†t + w†xxx − 6w†w†xw
† + 3W †y + 3[w†x,W

†]+ − 3[w†xx, w
†]− 3[W †, w†

2
] = 0, (4.23)

W †x − w†y + [w†,W †] = 0, (4.24)

which is the adjoint of (4.7) and (4.8).

In order to be able to define a binary Darboux transformatiom, we need to introduce

a potential Ω(φ, ψ) satisfying

Ω(φ, ψ)x = ψ†φx, Ω(φ, ψ)y = 2ψ†wφx + ψ†φxx − ψ†xφx,

Ω(φ, ψ)t = 2(−2ψ†xxφx − 2ψ†φxxx + 2ψ†xφxx − 3ψ†w2φx − 3ψ†Wφx − 3ψ†wxφx

+ 6ψ†xwφx − 6ψ†wφxx).
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The parts of this definition are compatible when LmKP[φ] = MmKP[φ] = 0 and L†mKP[ψ] =

M †mKP[ψ] = 0. In addition, we may define Ω(Φ,Ψ) for any row vectors Φ and Ψ such that

LmKP[Φ] = MmKP[Φ] = 0 and L†mKP[Ψ] = M †mKP[Ψ] = 0. If Φ is an n-vector and Ψ is an

m-vector then Ω(Φ,Ψ) is an m× n matrix.

Let θi, i = 1, 2, . . . , n be the eigenfunctions defined in the previous section and let ρi,

i = 1, 2, . . . , n be adjoint eigenfunctions. For Lax operators with matrix coefficients, a

binary Darboux transformation was defined in [41] and is

φ[n+1] = φ[n] − θ[n]Ω(ρ[n], θ[n])
−1Ω(ρ[n], φ[n])

and

ψ[n+1] = ψ[n] − ρ[n]Ω(ρ[n], θ[n])
†−1

Ω(ψ[n], θ[n])
†

in which

θ[n] = φ[n]|φ→θn , ρ[n] = ψ[n]|ψ→ρn .

Using the notation Θ = (θ1, . . . θn) and P = (ρ1, . . . , ρn) we have, for n ≥ 1

φ[n+1] =

∣∣∣∣∣∣Ω(Θ,P) Ω(φ,P)

Θ φ

∣∣∣∣∣∣ , (4.25)

ψ[n+1] =

∣∣∣∣∣∣Ω(Θ,P)† Ω(Θ, ψ)†

P ψ

∣∣∣∣∣∣ . (4.26)

If the above binary Darboux transformation holds then, using (3.25), we have

Ω(φ[n+1], ψ[n+1]) =

∣∣∣∣∣∣Ω(Θ,P) Ω(φ,P)

Ω(Θ, ψ) Ω(φ, ψ)

∣∣∣∣∣∣ .
To prove (4.25), first observe that when n = 1,

φ[2] = φ− θ1Ω(ρ1, θ1)−1Ω(ρ1, φ)

=

∣∣∣∣∣∣Ω(ρ1, θ1) Ω(φ, ρ1)

θ1 φ

∣∣∣∣∣∣ .
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Using the nc Jacobi identity (3.5) and the row homological relations (3.6), we have

φ[n+2] = φ[n+1] − θ[n+1]Ω(ρ[n+1], θ[n+1])
−1Ω(ρ[n+1], φ[n+1])

=

∣∣∣∣∣∣Ω(Θ,P) Ω(φ,P)

Θ φ

∣∣∣∣∣∣
−

∣∣∣∣∣∣Ω(Θ,P) Ω(θn+1,P)

Θ θn+1

∣∣∣∣∣∣
∣∣∣∣∣∣Ω(θ,P) Ω(φ,P)

Ω(Θ, ρ) Ω(θ, ρ)

∣∣∣∣∣∣
−1 ∣∣∣∣∣∣Ω(Θ,P) Ω(φ,P)

Ω(Θ, ρ) Ω(φ, ρ)

∣∣∣∣∣∣
=

∣∣∣∣∣∣Ω(Θ,P) Ω(φ,P)

Θ φ

∣∣∣∣∣∣
−

∣∣∣∣∣∣Ω(Θ,P) Ω(θn+1,P)

Θ θn+1

∣∣∣∣∣∣
∣∣∣∣∣∣Ω(θ,P) Ω(φ,P)

Ω(Θ, ρ) Ω(θ, ρ)

∣∣∣∣∣∣
−1 ∣∣∣∣∣∣Ω(Θ,P) Ω(φ,P)

Ω(Θ, ρ) Ω(φ, ρ)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
Ω(Θ,P) Ω(θn+1,P) Ω(φ,P)

Ω(Θ, ρn+1) Ω(θn+1, ρn+1) Ω(φ, ρn+1)

Θ θn+1 φ

∣∣∣∣∣∣∣∣∣ .
This proves the inductive step and completes the proof. The proof of (4.26) is very similar.

The effect of

L̂mKP = Gθ,φxLmKPG
−1
θ,φx

, L̂mKP = Gθ,φxLmKPG
−1
θ,φx

or M̂mKP = Gθ,φxMmKPG
−1
θ,φx

is that

f̂ = (1− θΩ−1ρ†)f =

∣∣∣∣∣∣Ω ρ†

θ 1

∣∣∣∣∣∣ f. (4.27)

After n Darboux transformations we have, for n ≥ 1

f[n+1] =

∣∣∣∣∣∣Ω(P,Θ) P†

Θ I

∣∣∣∣∣∣ f. (4.28)

Proof of (4.28) is again by induction. For n = 1, the result clearly follows from (4.27).

Next, replacing n with n+ 1 gives

f[n+2] =
(
I −Θ[n+1]Ω(Θ[n+1],P[n+1])

−1P[n+1]

)
f[n+1]

=

I −
∣∣∣∣∣∣Ω(Θ,P) Ω(θn+1,P)

Θ θn+1

∣∣∣∣∣∣
∣∣∣∣∣∣ Ω(Θ,P) Ω(θn+1,P)

Ω(Θ, ρn+1) Ω(θn+1, ρn+1)

∣∣∣∣∣∣
−1

∣∣∣∣∣∣ Ω(Θ,P) P†

Ω(Θ, ρn+1) ρ†n+1

∣∣∣∣∣∣
 ∣∣∣∣∣∣Ω(P,Θ) P†

Θ I

∣∣∣∣∣∣ f.
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By observing that∣∣∣∣∣∣ Ω(Θ,P) P†

Ω(Θ, ρn+1) ρ†n+1

∣∣∣∣∣∣
∣∣∣∣∣∣Ω(P,Θ) P†

Θ I

∣∣∣∣∣∣
=
(
ρ†n+1 − Ω(Θ, ρn+1)Ω(Θ,P)−1P†

)(
I −ΘΩ(P,Θ)−1P†

)
=

∣∣∣∣∣∣ Ω(Θ,P) P†

Ω(Θ, ρn+1) ρ†n+1

∣∣∣∣∣∣
and using the nc Jacobi identity (3.5) we have

f[n+2] =


∣∣∣∣∣∣Ω(P,Θ) P†

Θ I

∣∣∣∣∣∣−
∣∣∣∣∣∣Ω(Θ,P) Ω(θn+1,P)

Θ θn+1

∣∣∣∣∣∣
∣∣∣∣∣∣ Ω(Θ,P) Ω(θn+1,P)

Ω(Θ, ρn+1) Ω(θn+1, ρn+1)

∣∣∣∣∣∣
−1

∣∣∣∣∣∣ Ω(Θ,P) P†

Ω(Θ, ρn+1) ρ†n+1

∣∣∣∣∣∣
 f

=

∣∣∣∣∣∣∣∣∣
Ω(P,Θ) Ω(P, θn+1) P†

Ω(ρn+1,Θ) Ω(ρn+1, θn+1) ρ†n+1

Θ θn+1 I

∣∣∣∣∣∣∣∣∣ f,
which proves the inductive step and the proof is now complete.

There appears to be no way of inverting (4.28). Consequently, an analogous transfor-

mation on f−1
[n+1] is not made in the quasigrammian case.

4.4 Reduction to commutative Wronskian and Grammian

solutions

As we saw with ncKP, all of the quasideterminants expressing the Darboux-transformed

eigenfunctions and variables f[n+1] should reduce to the corresponding commutative results

in Chapter 2. Using (3.11), in the commutative case we have:

• The transformed eigenfunction

φ[n+1] =

∣∣∣∣∣∣∣∣∣∣∣∣

Θ φ
...

...

Θ(n−1) φ(n−1)

Θ(n) φ(n)

∣∣∣∣∣∣∣∣∣∣∣∣
c= (−1)n+1

∣∣∣∣∣∣∣∣∣∣∣∣

Θ φ
...

...

Θ(n−1) φ(n−1)

Θ(n) φ(n)

∣∣∣∣∣∣∣∣∣∣∣∣
/∣∣∣Θ̂∣∣∣ ,
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• The transformed variable

f[n+1] =

∣∣∣∣∣∣∣∣∣∣∣∣

Θ 0
...

...

Θ(n−1) 0

Θ(n) 1

∣∣∣∣∣∣∣∣∣∣∣∣
f

c= (−1)n+1e−V

∣∣∣∣∣∣∣∣∣∣∣∣

Θ 0
...

...

Θ(n−1) 0

Θ(n) 1

∣∣∣∣∣∣∣∣∣∣∣∣
/∣∣∣∣∣∣∣∣∣

Θ(1)

...

Θ((n))

∣∣∣∣∣∣∣∣∣ .

This gives

V[n+1]
c= − log(f[n+1])

c= V + (−1)n log



∣∣∣∣∣∣∣∣∣∣∣∣

Θ 0
...

...

Θ(n−1) 0

Θ(n) 1

∣∣∣∣∣∣∣∣∣∣∣∣
/∣∣∣∣∣∣∣∣∣

Θ(1)

...

Θ((n))

∣∣∣∣∣∣∣∣∣



c= V + (−1)n log

Θ̂
/∣∣∣∣∣∣∣∣∣

Θ(1)

...

Θ((n))

∣∣∣∣∣∣∣∣∣

 .

• The transformed binary eigenfunction

φ[n+1] =

∣∣∣∣∣∣Ω(Θ,P) Ω(φ,P)

Θ φ

∣∣∣∣∣∣ c=
∣∣∣∣∣∣Ω(Θ,P) Ω(φ,P)

Θ φ

∣∣∣∣∣∣
/∣∣∣Ω(Θ,P)

∣∣∣ ,
• The transformed adjoint eigenfunction

ψ[n+1] =

∣∣∣∣∣∣Ω(Θ,P)† Ω(Θ, ψ)†

P ψ

∣∣∣∣∣∣ c=
∣∣∣∣∣∣Ω(Θ,P)† Ω(Θ, ψ)†

P ψ

∣∣∣∣∣∣
/∣∣∣Ω(Θ,P)†

∣∣∣ ,
• The transformed binary variable

f[n+1] =

∣∣∣∣∣∣Ω(Θ,P) P†

Θ I

∣∣∣∣∣∣ f c= e−V

∣∣∣∣∣∣Ω(Θ,P) P†

Θ I

∣∣∣∣∣∣
/∣∣∣Ω(Θ,P)

∣∣∣ .
Therefore

V[n+1]
c= − log(f[n+1])

c= V + log
(∣∣∣Ω(Θ,P)

∣∣∣)
x
.

We therefore recover all of the commutative solutions given in Chapter 2.
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4.5 Direct verification of the solutions

Since we did not derive an expression for f̂−1
[n+1] when finding quasigrammian solutions, we

only prove the quasiwronskian solutions in this section.

The Lax pairs of KP and mKP are the same when the vacuum solutions are trivial.

Let Θ be a common eigenfunction for these two (trivial vacuum) Lax pairs. For ncmKP,

the trivial vacuum solution, obtained from f = 1, which gives w = 0 = W , is

F =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ 0

Θ(1) 0
...

...

Θ(n−1) 0

Θ(n) 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (4.29)

To verify directly that (4.29) is a solution, we also use the solutions v = −2Q and v̂ = −2Q̂

of ncKP (3.19). Here, for convenience this is written in potential form

Q = Q(0, 0) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ 0

Θ(1) 0
...

...

Θ(n−1) 1

Θ(n) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, Q̂ = Q̂(0, 0) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ(1) 0

Θ(2) 0
...

...

Θ(n) 1

Θ(n+1) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Note that Q̂ is only a solution if the vacuum is zero.

In a similar way we define

F (j) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ 0

Θ(1) 0
...

...

Θ(n−j) 1
...

...

Θ(n) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (4.30)

so that F = F (0). Using (3.14), we have homological relations expressed as the identities

FQ(0, j) = F (j + 1). (4.31)

From the quasi-Plücker coordinates (3.12), the inverse of F can be obtained from the

expression for F by swapping the boxed entry and the 1 in the last column of F . Thus we
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define

G = F−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ 1

Θ(1) 0
...

...

Θ(n−1) 0

Θ(n) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.32)

and additionally

G(j) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ 1

Θ(1) 0
...

...

Θ(n−1) 0

Θ(n+j) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Then

Q̂(j, 0)G = −G(j + 1). (4.33)

Now consider the derivatives of F (j): using (4.30) and (4.31),

F (j)x = FQ̂(0, j)− F (j + 1) = F (Q̂(0, j)−Q(0, j)). (4.34)

More generally, if we assume that Θ satisfies the linear equations Θxk = Θx · · ·x︸ ︷︷ ︸
k

, we have

F (j)xk+1
=

k∑
i=0

F (i)Q̂(k − i, j)− F (k + j + 1) (4.35)

= F

(
Q̂(k, j) +

k∑
i=1

Q(0, i− 1)Q̂(k − i, j)−Q(0, k + j)

)
. (4.36)

Thus, using (3.30),

Fx = FQ̂− F (1) = F (Q̂−Q), (4.37)

Fxx = F
(
(Q̂−Q)2 + Q̂x −Qx

)
, (4.38)

and

Fy = FQ̂(1, 0) + F (1)Q̂− F (2),

and so

Fxx + Fy = 2FQ̂x. (4.39)
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Using the nc Jacobi identity and (4.33) we can show that

Q̂(0, 1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ(1) 0
...

...

Θ(n−1) 1

Θ(n) 0

Θ(n+1) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ 1 0

Θ(1) 0 0
...

...
...

Θ(n−1) 0 1

Θ(n) 0 0

Θ(n+1) 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= Q(1, 0)−G(1)F−1Q = Q(1, 0) + Q̂Q.

This is the noncommutative version of the first bilinear identity in the ncmKP hierarchy.

It can be generalized to get to the other members of the hierarchy:

Q̂(i, j) = Q(i+ 1, j − 1) + Q̂(i, 0)Q(0, j − 1). (4.40)

This follows immediately from considering Q̂(i, j) written as∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ 1 0

Θ(1) 0 0
...

...
...

Θ(n−j) 0 1
...

...
...

Θ(n−1) 0 0

Θ(n) 0 0

Θ(n+1+i) 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ 0

Θ(1) 0
...

...

Θ(n−j) 1
...

...

Θ(n−1) 0

Θ(n+1+i) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ 1

Θ(1) 0
...

...

Θ(n−j) 0
...

...

Θ(n−1) 0

Θ(n+1+i) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ 1

Θ(1) 0
...

...

Θ(n−j) 0
...

...

Θ(n−1) 0

Θ(n) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ 0

Θ(1) 0
...

...

Θ(n−j) 1
...

...

Θ(n−1) 0

Θ(n) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= Q(i+ 1, j − 1)−G(i+ 1)F−1Q(0, j − 1)

and then using (4.33).

On substituting F and its derivatives into (4.7), all the terms cancel and the solution

is therefore verified.

Using (4.37) and (4.38) in (4.39), we can isolate u = −2Qx to give

u = −F−1wxF − F−1w2F − F−1Fy, (4.41)

which is the noncommutative Miura transformation between the KP and mKP equations.



CHAPTER 4. A NONCOMMUTATIVE MKP EQUATION 92

4.6 Matrix solutions

We take trivial the vacuum solution f = 1 so that w = W = 0. This gives

f[n+1] =

∣∣∣∣∣∣Ω(P,Θ) P†

Θ I

∣∣∣∣∣∣ . (4.42)

The eigenfunctions θi and the binary eigenfunctions ρi satisfy

θi,xx = θi,y, θi,t = −4θi,xxx

and

ρi,xx = −ρi,y, ρi,t = −4ρi,xxx.

The simplest nontrivial solutions of these equations are

θj = Aje
ηj , ρi = Bie

−γi ,

where ηj = pj(x+ pjy− 4p2
j t), γi = qi(x+ qiy− 4q2

i t) and Aj , Bi are d×m matrices. With

this, we have

Ω(θ, ρ) = δi,jI −
pjB

T
i Aj

qi(pj − qi)
eηj−γi .

We take Aj = rjPj , where rj is a scalar and Pj is a projection matrix, and we take Bi = I.

In the case n = 1, expanding (4.42) gives

f[2] = I +
r
qP

e−Λ − rp
q(p−q)

.

If r > 0 and either q > p > 0 or 0 > q > p, or alternatively, if r < 0 and either p > q > 0

or 0 > p > q then

w = −f[2],xf
−1
[2] =

1
4

(pq)−
1
2 (p− q)2P sech

(
Λ + ϕ

2

)
sech

(
Λ + χ

2

)
,

W = −f[2],yf
−1
[2] = (p+ q)w,

where ϕ = log
(
−pr
q(p−q)

)
and χ = log

(
−r
p−q

)
. Both w and W have a unique maximum where

Λ = − log

(
−(pq−1)

1
2 r

p− q

)
= ξ.
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In the case n = 2, expanding (4.42) gives

f[3] = I +
(
A1e

η1 A2e
η2

)(
δi,jI − pjAj

qi(pj−qi)e
ηj−γi

)−1

2×2

I e−γ1

q1

I e
−γ2

q2


= I +

(
L1e

γ1 L2e
γ2

)I e−γ1

q1

I e
−γ2

q2

 , say

= I +
1
q1
L1 +

1
q2
L2,

where L1 and L2 satisfy

L1

(
I − p1r1e

Λ1

(p1 − q1)q1
P1

)
= eΛ1A1 +

p1e
Λ1

(p1 − q2)q2
L2A1,

L2

(
I − p2r2e

Λ2

(p2 − q2)q2
P2

)
= eΛ2A2 +

p2e
Λ2

(p2 − q1)q1
L1A2.

Solving for L1 and L2 gives

L1 =
(p2 − q1)q1

h
((p1 − q2)q2h2I + p1A2)A1,

L2 =
(p1 − q2)q2

h
((p2 − q1)q1h1I + p2A1)A2,

where hi = e−Λi − piri
(pi−qi)qi and h = h1h2q1q2(p1 − q2)(p2 − q1)− αp1p2r1r2.

We now investigate the behaviour of f[3] as t → ±∞. We first fix Λ1 and assume

without loss of generality that 0 > p2 > q2 > p1 > q1. Then, as t→ −∞,

f[3] ∼ I +
r1
q1
P1

h1

and therefore

w ∼ 1
4

(p1q1)−
1
2 (p1 − q1)2P1 sech

(
Λ1 + ϕ−1

2

)
sech

(
Λ1 + χ−1

2

)
, (4.43)

where ϕ−1 = log
(
−p1r1

q1(p1−q1)

)
and χ−1 = log

(
−r1
p1−q1

)
. We also have the phase-constant

ξ−1 = − log
(
−(p1q

−1
1 )

1
2 r1

p1−q1

)
.

Note that w = −f[3],xf
−1
[3] and W = −f[3],yf

−1
[3] are invariant under the transformation
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f[3] → f[3]C where C is a non-singular constant matrix. As t→ +∞, we get

f[3] ∼
(
I +

(
M

h1r2p2q1(p1 − q2)(p2 − q1) + αp1p2r1r2(p2 − q2)

)
×
(
I +

(p2 − q2)A2

q2r2

))(
I − (p2 − q2)A2

p2r2

)
∼
(
I +

(
M

h1r2p2q1(p1 − q2)(p2 − q1) + αp1p2r1r2(p2 − q2)

)
×
(
I +

(p2 − q2)A2

q2r2

))
∼ I +

r̂1
q1
P̂1

eγ1−η1 − p1r̂1
q1(p1−q1)

,

where

M = r2p2(p1 − q2)(p2 − q1)A1 − (p2 − q2)(p1(p2 − q1)A2A1

+ p2(p1 − q2)A1A2 + αp1r1(p2 − q2))A2,

r̂1 = r1

(
1− α(p1 − q1)(p2 − q2)

(p1 − q2)(p2 − q1)

)
=
r1(µ̂1, ν̂1)
(µ1, ν1)

,

µ̂1 = µ1 −
p1(p2 − q2)(µ1, ν2)µ2

p2(p1 − q2)(µ2, ν2)
,

ν̂1 = ν1 −
q1(p2 − q2)(µ2, ν1)ν2

q2(p2 − q1)(µ2, ν2)
,

P̂1 =
µ̂1 ⊗ ν̂1

(µ̂1, ν̂1)
.

Therefore

w ∼ 1
4

(p1q1)−
1
2 (p1 − q1)2P̂1 sech

(
Λ1 + ϕ+

1

2

)
sech

(
Λ1 + χ+

1

2

)
,

where ϕ+
1 = log

(
−p1r̂1

q1(p1−q1)

)
, χ+

1 = log
(
−r̂1
p1−q1

)
and ξ+

1 = − log
(
−(p1q

−1
! )

1
2 r̂1

p1−q1

)
.

Similarly, fixing Λ2 gives

w ∼ 1
4

(p2q2)−
1
2 (p2 − q2)2P̂2 sech

(
Λ2 + ϕ−2

2

)
sech

(
Λ2 + χ−2

2

)
as t→ −∞,

w ∼ 1
4

(p2q2)−
1
2 (p2 − q2)2P2 sech

(
Λ2 + ϕ+

2

2

)
sech

(
Λ2 + χ+

2

2

)
as t→ +∞,

where µ̂2 = µ2 − p2(p1−q1)(µ2,ν1)µ1

p1(p2−q1)(µ1,ν1) , ν̂2 = ν2 − q2(p1−q1)(µ1,ν2)ν1

q1(p1−q2)(µ1,ν1) , P̂2 = µ̂2⊗ν̂2

(µ̂2,ν̂2) ,

ϕ−2 = log
(
−p2r̂2

q2(p2−q2)

)
, χ−2 = log

(
−r̂2
p2−q2

)
, r̂2 = r2

(
1− α(p1−q1)(p2−q2)

(p1−q2)(p2−q1)

)
= r2(µ̂2,ν̂2)

(µ2,ν2) ,

ϕ+
2 = log

(
−p2r2

q2(p2−q2)

)
and χ+

2 = log
(
−r2
p2−q2

)
. The soliton phase-constants are:

ξ−1 = − log
(
−(pq−1)

1
2 r1

p1−q1

)
, ξ+

1 = − log
(
−(pq−1)

1
2 r̂1

p−q

)
, ξ−2 = − log

(
−(p2q

−1
2 )

1
2 r̂2

p2−q2

)
and

ξ+
2 = − log

(
−(p2q

−1
2 )

1
2 r2

p2−q2

)
.
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The soliton phase shifts ∆i = ξ+
i − ξ

−
i are

∆1 = log
(
r1

r̂1

)
= − log β, ∆2 = log

(
r̂2

r2

)
= log β.

The characteristics of the two-soliton solution may be summarised in the same way as

the matrix solutions of ncKP:

• The matrix amplitude of the first soliton changes from 1
4(p1q1)−

1
2 (p1 − q1)2P1 to

1
4(p1q1)−

1
2 (p1 − q1)2P̂1 and the matrix amplitude of the second soliton changes from

1
4(p2q2)−

1
2 (p2 − q2)2P̂2 to 1

4(p2q2)−
1
2 (p2 − q2)2P2 as t changes from −∞ to +∞.

• If (µ1, ν2) = 0 (P2P1 = 0) or (µ2, ν1) = 0 (P1P2 = 0) then α = 0 and therefore β = 1,

so there is no phase shift but the matrix amplitudes may still change.

• If (µ1, ν2) = 0 and (µ2, ν1) = 0 (giving P1P2 = P2P1 = 0) there is no phase shift or

change in amplitude and so the solitons have trivial interaction.

In general, for n ≥ 1, expanding (4.42) gives

f[n+1] = I +
(
A1e

η1 A2e
η2 . . . Ane

ηn

)(
δi,jI −Aj pje

(ηj−γi)

(pj−qi)qi

)−1

n×n


Ie−γ1

Ie−γ2

...

Ie−γn

 (4.44)

= I +
(
L1e

γ1 L2e
γ2 . . . Lne

γn

)

I e
−γ1

q1

I e
−γ2

q2
...

I e
−γn
qn

 , say, (4.45)

= I +
n∑
i=1

1
qi
Li. (4.46)

In a similar way to that of matrix solutions of ncKP, for n > 3, it is very difficult to isolate

each Li. So we will now only investigate the three-soliton solution. When n = 3, (4.46)

gives

f[4] = I +
1
q1
L1 +

1
q2
L2 +

1
q3
L3. (4.47)
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From (4.44 – 4.46) we must have that

L1 =
1
h1

(
A1 +

p1L2A1

q2(p1 − q2)
+

p1L3A1

q3(p1 − q3)

)
, (4.48)

L2 =
1
h2

(
A2 +

p2L1A2

q1(p2 − q1)
+

p2L3A2

q3(p2 − q3)

)
, (4.49)

L3 =
1
h3

(
A3 +

p3L1A3

q1(p3 − q1)
+

p3L2A3

q2(p3 − q2)

)
, (4.50)

where hi = e−Λi − ripi
(pi−qi)qi , for i = 1, 2, 3. Solving for L1, L2 and L3 gives

L1 =
h(2, 3)

h(1, 2, 3)q2q3(p2 − q3)(p3 − q2)

(
A1 +

p1L
′
2,3A1

q2(p1 − q2)
+

p1L
′
3,2A1

q3(p1 − q3)

)
, (4.51)

L2 =
h(1, 3)

h(1, 2, 3)q1q3(p1 − q3)(p3 − q1)

(
A2 +

p2L
′
1,3A2

q1(p2 − q1)
+

p2L
′
3,1A2

q3(p2 − q3)

)
, (4.52)

L3 =
h(1, 2)

h(1, 2, 3)q1q2(p1 − q2)(p2 − q1)

(
A3 +

p3L
′
1,2A3

q1(p3 − q1)
+

p3L
′
2,1A3

q2(p3 − q2)

)
, (4.53)

in which

h(i, j) = (pi − qj)(pj − qi)qiqjhihj − pipjrirjαi,j ,

h(1, 2, 3) = − p2p3r2r3α2,3h1

q2q3(p2 − q3)(p3 − q2)
− p1p3r1r3α1,3h2

q1q3(p1 − q3)(p3 − q1)
− p1p2r1r2α1,2h3

q1q2(p1 − q2)(p2 − q1)

− p1p2p3r1r2r3

q1q2q3

(
α1,2,3

(p2 − q1)(p1 − q3)(p3 − q2)
+

α1,3,2

(p1 − q2)(p2 − q3)(p3 − q1)

)
+ h1h2h3,

L
′
i,j =

qi(pj − qi)
h(i, j)

(hjqj(pi − qj)I + piAj)Ai,

for i, j ∈ {1, 2, 3} and i 6= j.

Substituting (4.51 - 4.53) into (4.47) gives

f[4] = I +
1

h(1, 2, 3)q1q2q3
(b2,3A1 + b1,3A2 + b1,2A3 + b1,3,2A1A2 + b1,2,3A1A3

+b2,3,1A2A1 + b2,1,3A2A3 + b3,2,1A3A1 + b3,1,2A3A2) , (4.54)

in which

bi,j =
h(i, j)

(pi − qj)(pj − qi)
,

bi,j,k = pk

(
pjrjαi,j,k

(pk − qj)(pj − qi)αi,k
+

hjqj
pk − qi

)
.

Using the fact that Tr(Aj) = rj and det(Aj) = 0, for j = 1, 2, 3, expanding det(Ω)

gives

det(Ω) = 1− p1

q1
κ1e

Λ1 − p2

q2
κ2e

Λ2 − p3

q3
κ3e

Λ3 +
p1p2

q1q2
κ1κ2β1,2e

Λ1+Λ2 +
p2p3

q2q3
κ2κ3β2,3e

Λ2+Λ3

+
p1p3

q1q3
κ1κ3β1,3e

Λ1+Λ3 − p1p2p3

q1q2q3
κ1κ2κ3β1,2,3e

Λ1+Λ2+Λ3 . (4.55)
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If r > 0 and q3 > p3 > q2 > p2 > q1 > p1 > 0 or 0 > q3 > p3 > q2 > p2 > q1 > p1, or

alternatively, if r < 0 and p3 > q3 > p2 > q2 > p1 > q1 > 0 or 0 > p3 > q3 > p2 > q2 >

p1 > q1 then, βi,j > 0 and κi > 0. From (4.55), det(Ω) will be positive-definite if

α1,2,3

(p2 − q1)(p1 − q3)(p3 − q2)
+

α1,3,2

(p1 − q2)(p2 − q3)(p3 − q1)
< 0.

The asymptotic forms of each soliton can be determined by following the methods in

Chapter 3. It can again be assumed, without loss of generality, that 0 > p3 > q3 > p2 >

q2 > p1 > q1. For soliton 1, as t → −∞, hi → −∞ for i = 2, 3. Then we can see from

(4.48 - 4.50) that Li → 0 for i = 2, 3. The resulting solution may be compared with similar

expressions in the two-soliton matrix solution, giving

f[4] ∼ I +
r−1
q1
P−1

eγ1−η1 − p1r
−
1

q1(p1−q1)

,

where r−1 = r1 and P−1 = P1. Therefore

w ∼ 1
4

(p1q1)−
1
2 (p1 − q1)2P−1 sech

(
Λ1 + ϕ−1

2

)
sech

(
Λ1 + χ−1

2

)
,

where

ϕ−1 = log
(
− p1r

−
1

q1(p1 − q1)

)
, χ−1 = log

(
− r−1
p1 − q1

)
.

The phase-constant of this soliton is ξ−1 = − log
(
−(p1q

−1
1 )

1
2 r−1

p1−q1

)
.

As t → +∞, hi → − piri
qi(pi−qi) , for i = 2, 3. Using the fact that w and W are invariant

under the transformation f[4] → f[4]C, where C is a constant matrix, we have

f[4] ∼ I +
r+
1
q1
P+

1

eγ1−η1 − p1r
+
1

q1(p1−q1)

,

where

r+
1 =

r1(µ+
1 , ν

+
1 )

(µ1, ν1)
, P+

1 =
µ+

1 ⊗ ν
+
1

(µ+
1 , ν

+
1 )
,

µ+
1 = µ1 +

p1(p2 − q2)(p3 − q3)
p2(µ2, ν2)β2,3

(
(µ1, ν3)(µ3, ν2)

(µ3, ν3)(p1 − q3)(p3 − q2)
− (µ1, ν2)

(p1 − q2)(p3 − q3)

)
µ2

+
p1(p2 − q3)(p3 − q2)

p3(µ3, ν3)β2,3

(
(µ1, ν2)(µ2, ν3)

(µ2, ν2)(p1 − q2)(p2 − q3)
− (µ1, ν3)

(p1 − q3)(p2 − q2)

)
µ3,

ν+
1 = ν1 +

q1(p2 − q2)(p3 − q3)
q2(µ2, ν2)β2,3

(
(µ3, ν1)(µ2, ν3)

(µ3, ν3)(p2 − q3)(p3 − q1)
− (µ2, ν1)

(p2 − q1)(p3 − q3)

)
ν2

+
q1(p2 − q3)(p3 − q2)

q3(µ3, ν3)β2,3

(
(µ2, ν1)(µ3, ν2)

(µ2, ν2)(p3 − q2)(p2 − q1)
− (µ3, ν1)

(p3 − q1)(p2 − q2)

)
ν3.
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So we have

w ∼ 1
4

(p1q1)−
1
2 (p1 − q1)2P+

1 sech
(

Λ1 + ϕ+
1

2

)
sech

(
Λ1 + χ+

1

2

)
,

where

ϕ+
1 = log

(
− p1r

+
1

q1(p1 − q1)

)
, χ+

1 = log
(
− r+

1

p1 − q1

)
.

The phase-constant of this soliton is ξ+
1 = − log

(
−(p1q

−1
1 )

1
2 r+

1
p1−q1

)
.

Fixing Λ2 brings soliton 2 to rest. As t→ −∞, h1 → r1
p1−q1 and h3 → +∞. This gives

f[4] ∼ I +
L
′
1,2

q1
+
L
′
2,1

q2

∼ I +
r−2
q2
P−2

e−Λ2 − p2r
−
2

q2(p2−q2)

,

where

r−2 =
r2(µ−2 , ν

−
2 )

(µ2, ν2)
= r2β1,2, P−2 =

µ−2 ⊗ ν
−
2

(µ−2 , ν
−
2 )
,

µ−2 = µ2 −
p2(p1 − q1)(µ2, ν1)
p1(p2 − q1)(µ1, ν1)

µ1, ν−2 = ν2 −
q2(p1 − q1)(µ1, ν2)
q1(p1 − q2)(µ1, ν1)

ν1.

As t→ +∞, h1 → +∞ and h3 → r3
(p3−q3) . This gives

f[4] ∼ I +
L
′
2,3

q1
+
L
′
3,2

q2

∼ I +
r−2
q2
P−2

e−Λ2 − p2r
−
2

q2(p2−q2)

,

where

r+
2 =

r2(µ+
2 , ν

+
2 )

(µ2, ν2)
= r2β2,3, P+

2 =
µ+

2 ⊗ ν
+
2

(µ+
2 , ν

+
2 )
,

µ+
2 = µ2 −

p2(p3 − q3)(µ2, ν3)
p3(p2 − q3)(µ3, ν3)

µ3, ν+
2 = ν2 −

q2(p3 − q3)(µ3, ν2)
q3(p3 − q2)(µ3, ν3)

ν3.

So the asymptotic forms for soliton 2 are

w ∼ 1
4

(p2q2)−
1
2 (p2 − q2)2P−2 sech

(
Λ2 + ϕ−2

2

)
sech

(
Λ2 + χ−2

2

)
as t→ −∞,

w ∼ 1
4

(p2q2)−
1
2 (p2 − q2)2P+

2 sech
(

Λ2 + ϕ+
2

2

)
sech

(
Λ2 + χ+

2

2

)
as t→ +∞,

where ϕ−2 = log
(
−p2r

−
2

q2(p2−q2)

)
, ϕ+

2 = log
(
−p2r

+
2

q2(p2−q2)

)
, χ−2 = log

(
−r−2
p2−q2

)
and χ+

2 = log
(
−r+

2
p2−q2

)
.

We also have the soliton phase-constants

ξ−2 = − log

(
−(p2q

−1
2 )

1
2 r−2

p2 − q2

)
, ξ+

2 = − log

(
−(p2q

−1
2 )

1
2 r+

2

p2 − q2

)
.
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With Λ3 fixed, soliton 3 is a rest. As t→ −∞, hi → −piri
qi(pi−qi) for i = 1, 2. This gives

f[4] ∼ I +
r−3
q3
P−3

e−Λ3 − p3r
−
3

q3(p3−q3)

,

where

r−3 =
r3(µ−3 , ν

−
3 )

(µ3, ν3)
=
r3β1,2,3

β1,2
, P−3 =

µ−3 ⊗ ν
−
3

(µ−3 , ν
−
3 )
,

µ−3 = µ3 +
p3(p2 − q2)(p1 − q1)

p2(µ2, ν2)β1,2

(
(µ3, ν1)(µ1, ν2)

(µ1, ν1)(p3 − q1)(p1 − q2)
− (µ3, ν2)

(p3 − q2)(p1 − q1)

)
µ2

+
p3(p2 − q2)(p1 − q1)

p1(µ1, ν1)β1,2

(
(µ3, ν2)(µ2, ν1)

(µ2, ν2)(p3 − q2)(p2 − q1)
− (µ3, ν1)

(p3 − q1)(p2 − q2)

)
µ1,

ν−3 = ν3 +
q3(p2 − q2)(p1 − q1)

q2(µ2, ν2)β1,2

(
(µ1, ν3)(µ2, ν1)

(µ1, ν1)(p2 − q1)(p1 − q3)
− (µ2, ν3)

(p2 − q3)(p1 − q1)

)
ν2

+
q3(p2 − q2)(p1 − q1)

q1(µ1, ν1)β1,2

(
(µ2, ν3)(µ1, ν2)

(µ2, ν2)(p1 − q2)(p2 − q3)
− (µ1, ν3)

(p1 − q3)(p2 − q2)

)
ν1.

As t→ +∞, hi → +∞, for i = 1, 2. This gives

f[4] ∼ I +
r+
3
q3
P+

3

e−Λ3 − p3r
+
3

q3(p3−q3)

,

where r+
3 = r3, P+

3 = µ+
3 ⊗ν

+
3

(µ+
3 ,ν

+
3 )

, µ+
3 = µ3 and ν+

3 = ν3.

So the asymptotic forms for soliton 3 are

w ∼ 1
4

(p3q3)−
1
2 (p3 − q3)2P−3 sech

(
Λ3 + ϕ−3

2

)
sech

(
Λ3 + χ−3

2

)
as t→ −∞,

w ∼ 1
4

(p3q3)−
1
2 (p3 − q3)2P+

3 sech
(

Λ3 + ϕ+
3

2

)
sech

(
Λ3 + χ+

3

2

)
as t→ +∞,

where ϕ−3 = log
(
−p3r

−
3

q3(p3−q3)

)
, ϕ+

3 = log
(
−p3r

+
3

q3(p3−q3)

)
, χ−3 = log

(
−r−3
p3−q3

)
and χ+

3 = log
(
−r+

3
p3−q3

)
.

In addition, we have the soliton phase-constants

ξ−3 = − log

(
−(p3q

−1
3 )

1
2 r−3

p3 − q3

)
, ξ+

3 = − log

(
−(p3q

−1
3 )

1
2 r+

3

p3 − q3

)
.

The soliton phase shifts ∆j = ξ+
j − ξ

−
j are

∆1 = log
(

(µ+
1 , ν

+
1 )

(µ−1 , ν
−
1 )

)
= log

(
β1,2,3

β2,3

)
,

∆2 = log
(

(µ+
2 , ν

+
2 )

(µ−2 , ν
−
2 )

)
= log

(
β2,3

β1,2

)
,

∆3 = log
(

(µ+
3 , ν

+
3 )

(µ−3 , ν
−
3 )

)
= log

(
β1,2

β1,2,3

)
.



CHAPTER 4. A NONCOMMUTATIVE MKP EQUATION 100

4.7 Plots of the matrix solutions

In this section, we demonstrate the interaction properties of the two- and three-soliton

matrix solution of ncmKP with various plots.

Figure 4.1 shows a plot of the generic two-soliton matrix solution w = (wij), i, j = 1, 2,

where

r1 = 1 −→ r̂1 = 0.846,

r̂2 = −0.846 −→ r2 = −1,

µ1 =
(

1 0
)
−→ µ̂1 =

(
1.615 0.308

)
,

µ2 =
(
−1 −0.5

)
−→ µ̂2 =

(
−1.25 −0.5

)
,

ν̂1 =
(

0.692 −0.885
)
−→ ν1 =

(
1 −1

)
,

ν̂2 =
(
−0.5 −0.125

)
−→ ν2 =

(
−1 0.375

)
,

P1 =

1 −1

0 0

 −→ P̂1 =

1.321 −1.689

0.252 −0.321

,

P̂2 =

0.909 0.227

0.364 0.091

 −→ P2 =

1.231 −0.462

0.615 −0.231

,

as t changes from −∞ to +∞. This plot shows both a change in matrix amplitude and a

phase-shift upon interaction.

Figure 4.2 shows a plot of the generic three-soliton matrix solution w = (wij), i, j = 1, 2,

where
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r−1 = 1 −→ r+
1 = 0.711,

r−2 = 2 −→ r+
2 = 1.135,

r−3 = 1.21 −→ r+
3 = 1,

µ−1 =
(

1 0.333
)
−→ µ+

1 =
(

0.857 0.205
)

,

ν−1 =
(

1 2
)
−→ ν+

1 =
(

2.549 6.656
)

,

µ−2 =
(

26 11
)
−→ µ+

1 =
(

0.427 3.315
)

,

ν−2 =
(

0.125 2.25
)
−→ ν+

2 =
(

1.455 4.606
)

,

µ−3 =
(

2.362 0.328
)
−→ µ+

3 =
(

1 −0.2
)

,

ν−3 =
(

1.377 −1.806
)
−→ ν+

3 =
(

3 4
)

,

P−1 =

0.6 1.2

0.2 0.4

 −→ P+
1 =

0.615 1.606

0.147 0.385

,

P−2 =

0.116 2.089

0.049 0.884

 −→ P+
2 =

0.039 0.124

0.303 0.961

,

P−3 =

1.222 −1.604

0.17 −0.222

 −→ P+
3 =

 1.364 1.818

−0.273 −0.364

,

as t changes from −∞ to +∞. This plot shows both a change in matrix amplitude and a

phase-shift upon interaction.
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Figure 4.1: Plot of matrix mKP two-soliton solution at t = 0 with parameters p1 = 1
4 ,

p2 = −1
4 , q1 = 3

4 , q2 = −3
4 , r1 = 1 and r2 = −1.
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Figure 4.2: Plot of matrix mKP three-soliton solution at t = 0 with parameters p1 = 1,

p2 = 5
2 , p3 = 6, q1 = 2, q2 = 5, q3 = 9 and r1 = r2 = r3 = 1.

4.8 The noncommutative Miura transformation

Using the same method as in the commutative case, we can construct a noncommutative

Miura transformation between the ncKP and ncmKP equations. Upon calculation of the

transformed pseudodifferential operator L̃KP = θ−1LKPθ, we have

LKP = ∂ + θ−1θx +
1
2
θ−1uθ∂−1 + (θ−1u2θ −

1
2
θ−1uθx)∂−2 + . . . .

Comparing this with the operator

LmKP = ∂x + w + w1∂
−1
x + w2∂

−2
x + w3∂

−3
x + . . . . (4.56)
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and equating coefficients gives

w = θ−1θx, (4.57)

w1 =
1
2
θ−1uθ, (4.58)

w2 = θ−1u2θ −
1
2
θ−1uθx. (4.59)

. . .

These coefficients will satisfy (4.3), (4.4) and (4.5). Isolating u in (4.58) gives

u = 2θw1θ
−1. (4.60)

Given that w = θ−1θx and w = −fxf−1, we can conclude that f = θ−1. Therefore, we

can rewrite (4.60) as

u = 2f−1w1f, (4.61)

which was also derived in [8]. Upon substitution of (4.10) in (4.61) we obtain the noncom-

mutative Miura transformation between the ncKP and ncmKP equations:

u = −f−1wxf − f−1w2f − f−1fy (4.62)

= f−1fxx − 2fxf−1fxf
−1 − f−1fy. (4.63)

Direct substitution of (4.63) into ncKP (3.19) leads to the left-hand side of (3.19) being

identically zero. Therefore, (4.63) defines a new solution of ncKP (3.19). Furthermore,

(4.62) is consistent with the nc Miura transformation (4.41).



Chapter 5

Dromions of the matrix equations

The aim of this chapter is to find exponentially localized structures, obtained from the

matrix versions of the nc KP and nc mKP equations. The commutative KP equation [3]

and the commutative Davey-Stewartson (DS) equations [49] are known to have localized

lump solutions, which have algebraic decay at infinity. However, when each lump collides,

the interaction is completely trivial. Equations such as the DSI equations [2, 18] and the

Nizhnik-Veselov-Novikov (NVN) [42] equations are known to have localized solutions which

have exponential decay at infinity. In this case, the solutions have interesting interaction

properties such as changes in amplitude and trajectory. For the NVN equations, it was

shown, in [50], that an exponentially localized solution may be thought of as a two-soliton

solution made out of two intersecting “ghost” solitons. In [18], the authors show, by means

of direct methods, how to derive the characteristics of exponentially localized solutions of

the DSI equations. This has been extended to the noncommutative setting in [17]. In

both the DSI and NVN equations, the underlying solitons which interact to create the

localized solution are perpendicular. These localized solutions are called dromions which

comes from the Greek word dromos meaning track. This term was coined in [11] because

the dromions are located at soliton interactions which can be thought of as forming tracks.

5.1 Matrix KP single dromion

Since the one-soliton matrix solutions of ncKP and ncmKP have projection matrices gov-

erning their amplitude, their determinant will equal zero. Therefore, the natural thing

to investigate when looking for dromions of these solutions, is the determinant of the

two-soltion matrix solution. We begin by investigating the two-soliton matrix solution of

105
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ncKP.

Recall from Chapter 3 that the two-soliton matrix solution of ncKP is u = vx where

v = 2(K1 +K2),

in which

K1 =
p2 − q1

h
(h2(p1 − q2)I −A2)A1,

K2 =
p1 − q2

h
(h1(p2 − q1)I −A1)A2,

and

h = h1h2(p1 − q2)(p2 − q1)− αr1r2,

hi = e−Λi +
ri

pi − qi
and α =

(µ1, ν2)(µ2, ν1)
(µ1, ν1)(µ2, ν2)

= Tr(P1P2).

Since the determinant of a projection matrix is zero and the trace of a projection

matrix is equal to its rank, det(u) can easily be expanded along any row or column. In

doing so, the result greatly simplifies and we obtain

det(u) = 4r1r2(p1 − q2)(p2 − q1)(1− α)

×

(
(p1 − q2)(p2 − q1)

(
h1

h

)
x

(
h2

h

)
x

− r1r2α

(
1
h

)2

x

)
= 4r1r2(p1 − q2)2(p2 − q1)2(1− α)h1,xh2,xh

−2. (5.1)

The single dromion (5.1) can be rewritten as

det(u) =
4r1r2(p1 − q1)(p2 − q2)(1− α)e−(Λ1+Λ2)(
e−(Λ1+Λ2) + κ1e−Λ2 + κ2e−Λ1 + κ

)2 (5.2)

=
4r1r2(p1 − q1)(p2 − q2)(1− α)(

e−
1
2

(Λ1+Λ2) + κ1e
1
2

(Λ1−Λ2) + κ2e
1
2

(Λ2−Λ1) + κe
1
2

(Λ1+Λ2)
)2 . (5.3)

where κi = ri
(pi−qi) , for i = 1, 2 and κ = κ1κ2β, where β = 1− α(p1−q1)(p2−q2)

(p1−q2)(p2−q1) .

Figure 5.2 shows a plot of the dromion (5.3). The method of describing the charac-

teristics of this dromion is in the spirit of that in [18] and [50] with one main difference

being that the solitons governing the dromion are not necessarily perpendicular to one

another. The characteristics of det(u) as given by equation (5.3) may be summarised by

the following theorem:

Theorem 2. If det(Ω) is positive-definite and if α 6= 1, then det(u) has the following

properties:
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1. det(u) decays to zero exponentially as (x, y)→∞ in any direction and has a unique

maximum or minimum value

det(u)max/min =
(1− α)(p1 − q1)2(p2 − q2)2(√

β + 1
)2 . (5.4)

The dromion will have negative, zero or positive amplitude. The amplitude is

• negative if α > 1,

• zero if α = 1,

• positive if α < 1.

2. At time t this maximum or minimum is located at

(x, y) =
1

2l1,2

(
l
(2)
2 (ξ−1 + ξ+

1 )− l(2)
1 (ξ−2 + ξ+

2 ) + 8l2,3t ,

l
(1)
1 (ξ−2 + ξ+

2 )− l(1)
2 (ξ−1 + ξ+

1 ) + 8l1,3t
)
, (5.5)

where li,j = l
(i)
i l

(j)
j − l

(j)
i l

(i)
j and l

(j)
i = qji − p

j
i . This result implies that the dromion

is located symmetrically between the solitons in the two-soliton matrix solution as

illustrated by Figure 5.1.

3. The trajectory of the dromion is the straight line

y =
(
l1,3
l2,3

)
x+

(
l
(1)
1 l2,3 + l

(2)
1 l1,3

)
(ξ−2 + ξ+

2 )−
(
l
(1)
2 l2,3 + l

(2)
2 l1,3

)
(ξ−1 + ξ+

1 )

2l1,2l2,3
. (5.6)

soliton
phase-shift

phase-shift
soliton

dromion

Figure 5.1: Phase-shifts in the solitons and the location of the dromion.
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Proof. From (5.3), we see that det(u) decays to zero exponentially as (x, y)→∞ in any

direction since, along any ray in the (x, y)-plane, at least one of the exponentials in the

denominator is unbounded as (x, y) approaches infinity. To see this, let y = kx, where

k ∈ R, be a ray in any direction. Substituting this into (5.3) gives

e
− 1

2

((
l
(1)
1 +l

(1)
2 +

(
l
(2)
1 +l

(2)
2

)
k
)
x−4

(
l
(3)
1 +l

(3)
2

)
t
)

+ κ1e
1
2

((
l
(1)
1 −l

(1)
2 +

(
l
(2)
1 −l

(2)
2

)
k
)
x−4

(
l
(3)
1 −l

(3)
2

)
t
)

+κ2e
1
2

((
l
(1)
2 −l

(1)
1 +

(
l
(2)
2 −l

(2)
1

)
k
)
x−4

(
l
(3)
2 −l

(3)
1

)
t
)

+ κe
1
2

((
l
(1)
1 +l

(1)
2 +

(
l
(2)
1 +l

(2)
2

)
k
)
x−4

(
l
(3)
1 +l

(3)
2

)
t
)

on the denominator. This expression must tend to infinity for any values of k and l
(j)
i ,

i, j = 1, 2 as x→ ±∞.

Since det(u) is exponentially localized, a unique critical point must be either a maxi-

mum or a minimum. If we consider the conditions that α 6= 1 and (det(u))x and (det(u))y

vanish simultaneously, we get(
l
(1)
1 + l

(1)
2

)
e−

1
2

(Λ1+Λ2) + κ1

(
−l(1)

1 + l
(1)
2

)
e

1
2

(Λ1−Λ2)

+κ2

(
l
(1)
1 − l

(1)
2

)
e

1
2

(Λ2−Λ1) + κ
(
−l(1)

1 − l
(1)
2

)
e

1
2

(Λ1+Λ2) = 0

and (
l
(2)
1 + l

(2)
2

)
e−

1
2

(Λ1+Λ2) + κ1

(
−l(2)

1 + l
(2)
2

)
e

1
2

(Λ1−Λ2)

+κ2

(
l
(2)
1 − l

(2)
2

)
e

1
2

(Λ2−Λ1) + κ
(
−l(2)

1 − l
(2)
2

)
e

1
2

(Λ1+Λ2) = 0

which imply that

e−(Λ1+Λ2) = κ and e(−Λ1+Λ2) =
κ1

κ2

and so

e−Λ1 =
√
κ1κ

κ2
= κ1

√
β and e−Λ2 =

√
κ2κ

κ1
= κ2

√
β. (5.7)

Substituting (5.7) into (5.2) gives the maximum or minimum of det(u).

Solving (5.7) for x and y gives (5.5), the location of the dromion. Eliminating t in

(5.5) gives the trajectory of the dromion.

The dromion as given by (5.3) is still prevalent when there is no phase-shift and when

there is both no phase-shift and no change in amplitude. This is different from the DSI

and NVN equations where the dromion vanishes when there is no phase-shift.
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(a)

(b)

Figure 5.2: (a) Plot of a single dromion at t = 0 with parameters r1 = 2, r2 = 1, p1 = −1
4 ,

q1 = −3
4 , p2 = 3

4 , q2 = 1
4 , µT1 = (1 2), µT2 =

(
4
5

1
4

)
, νT1 =

(
1
3

2
3

)
and νT2 =

(
2 1

3

)
. (b) Plot

of the corresponding ncKP two-soliton matrix solution.
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5.1.1 A three-dromion example

The determinant of the three-soliton matrix solution gives a three-dromion structure. In

this case, the three dromions will always collide as they are effectively sharing the same

origin. This is illustrated in Figure 5.3. Adding more solitons to the solution would

give a much more complicated dromion scattering scheme in which all dromions may not

simultaneously collide. Therefore, we will concentrate on the three-dromion case here and

perform a detailed asymptotic analysis.

Figure 5.3: Schematic form of the dromion scattering.

Upon expansion of det(u) = det(v[4],x), where u is the three-soliton matrix solution of

ncKP, by using the fact that the trace of a projection matrix is equal to its rank and its

determinant is equal to zero we get

det(u) =
h1,xh2,xm1,2,3 + h1,xh3,xm1,3,2 + h2,xh3,xm2,3,1

h2(1, 2, 3)
, (5.8)

where we have the quadratic equations in hk:

mi,j,k = rirj

(
h2
k(1− αi,j) + hkrk

(
αi,j,k(`i,k + `k,j)

`i,k`k,j
−
αi,k,j(`j,k + `k,i)

`j,k`k,i
−
αj,k(`j,k + `k,j)

`j,k`k,j

−
αi,k(`i,k + `k,i)

`i,k`k,i

)
− r2

k

(
αi,j,k
`i,j`k,j

+
αi,k,j
`j,k`k,i

+
αi,kαj,k(`j,k − `k,i)(`i,k − `k,j)

`i,k`k,i`j,k`k,j

+
αj,k
`j,k`k,j

+
αi,k
`i,k`k,i

))
,

in which `i,j = pi − qj for i, j, k ∈ {1, 2, 3} and i 6= j 6= k. To investigate the behaviour of

each dromion as t→ ±∞, we fix attention on the dromion arising from the interaction of

the ith and jth solitons, which we term d(i, j). In addition, the corresponding two-soliton

interaction matrix potential will be termed vi,j . We consider det(u) as given by (5.8) in a
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frame moving with the (i, j)th dromion by rewriting it in terms of

x = x̂+ 4

(
(q3
j − p3

j )(q
2
i − p2

i )− (q3
i − p3

i )(q
2
j − p2

j )
(qj − pj)(q2

i − p2
i )− (q2

j − p2
j )(qi − pi)

)
t,

y = ŷ + 4

(
(q3
i − p3

i )(qj − pj)− (q3
j − p3

j )(qi − pi)
(qj − pj)(q2

i − p2
i )− (q2

j − p2
j )(qi − pi)

)
t,

from which we obtain

Λi = (qi − pi)x̂+ (q2
i − p2

i )ŷ, Λj = (qj − pj)x̂+ (q2
j − p2

j )ŷ,

for i, j = 1, 2, 3.

In accordance with the three-soliton matrix solution, we will assume, without loss of

generality, that 0 > p3 > q3 > p2 > q2 > p1 > q1. Let us begin with the frame moving with

d(1, 2). To obtain the characteristics of this dromion, we let soliton 3 pass through solitons

1 and 2, which are stationary, as t → ±∞. We then study the asymptotic behaviour of

the resulting two-soliton interaction. With solitons 1 and 2 fixed, h1 and h2 are are also

fixed and we study the asymptotic behaviour of h3 as t→ ±∞. We have that

h3 →


r3

p3−q3 as t→ −∞,

+∞ as t→ +∞.

When h3 → r3/(p3 − q3), equation (3.51) gives

v1,2 =
2(p3 − q3)
h̃(1, 2)r3

(b1,2A3 + b1,2,3A1A3 + b3,2,1A3A1 + b2,1,3A2A3 + b3,1,2A3A2

+
(

r3h2

p3 − q3
− r2r3α2,3

(p2 − q3)(p3 − q2)

)
A1 +

(
r3h1

p3 − q3
− r1r3α1,3

(p1 − q3)(p3 − q1)

)
A2

+
(

r3α1,3,2

(p2 − q3)(p3 − q1)α1,2
− r3

(p2 − q1)(p3 − q3)

)
A1A2

+
(

r3α1,2,3

(p1 − q3)(p3 − q2)α1,2
− r3

(p1 − q2)(p3 − q3)

)
A2A1

)
, (5.9)

where

h̃(1, 2) =
(
h1h2 −

r2α2,3(p3 − q3)h1

(p2 − q3)(p3 − q2)
− r1α1,3(p3 − q3)h2

(p1 − q3)(p3 − q1)
− r1r2α1,2

(p1 − q2)(p2 − q1)

+r1r2(p3 − q3)
(

α1,2,3

(p2 − q1)(p1 − q3)(p3 − q2)
+

α1,3,2

(p1 − q2)(p2 − q3)(p3 − q1)

))
.

To obtain the characteristics of the dromion d(1, 2), we find the asymptotic forms of ũ :=

(v1,2)x. Firstly, let us fix Λ1. Since ũ is invariant under the transformation v1,2 → v1,2 +C,
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where C is a constant matrix, we have

v−1,2 =
2r1(1, 2)−P1(1, 2)−

e−Λ1 + r1(1,2)−

p1−q1

as t→ −∞,

v+
1,2 =

2r1(1, 2)+P1(1, 2)+

e−Λ1 + r1(1,2)+

p1−q1

as t→ +∞,

where

P1(1, 2)− =
µ1(1, 2)−ν1(1, 2)−

T

(µ1(1, 2)−, ν1(1, 2)−)
, P1(1, 2)+ =

µ1(1, 2)+ν1(1, 2)+T

(µ1(1, 2)+, ν1(1, 2)+)
,

µ1(1, 2)− = µ1 −
(p3 − q3)(µ1, ν3)µ3

(p1 − q3)(µ3, ν3)
, ν1(1, 2)− = ν1 −

(p3 − q3)(µ3, ν1)ν3

(p3 − q1)(µ3, ν3)
,

µ1(1, 2)+ = µ1 +
(p2 − q2)(p3 − q3)

(µ2, ν2)β2,3

(
(µ1, ν3)(µ3, ν2)

(µ3, ν3)(p1 − q3)(p3 − q2)
− (µ1, ν2)

(p1 − q2)(p3 − q3)

)
µ2

+
(p2 − q3)(p3 − q2)

(µ3, ν3)β2,3

(
(µ1, ν2)(µ2, ν3)

(µ2, ν2)(p1 − q2)(p2 − q3)
− (µ1, ν3)

(p1 − q3)(p2 − q2)

)
µ3,

ν1(1, 2)+ = ν1 +
(p2 − q2)(p3 − q3)

(µ2, ν2)β2,3

(
(µ3, ν1)(µ2, ν3)

(µ3, ν3)(p2 − q3)(p3 − q1)
− (µ2, ν1)

(p2 − q1)(p3 − q3)

)
ν2

+
(p2 − q3)(p3 − q2)

(µ3, ν3)β2,3

(
(µ2, ν1)(µ3, ν2)

(µ2, ν2)(p3 − q2)(p2 − q1)
− (µ3, ν1)

(p3 − q1)(p2 − q2)

)
ν3,

r1(1, 2)− =
r1(µ1(1, 2)−, ν1(1, 2)−)

(µ1, ν1)
= r1β1,3 and

r1(1, 2)+ =
r1(µ1(1, 2)+, ν1(1, 2)+)

(µ1, ν1)
= r1

β1,2,3

β2,3
.

These asymptotic expressions for v1,2 are of the same form as the one-soliton matrix

potential v[2] discussed in Chapter 3. Therefore, the asymptotic forms for ũ are

ũ ∼ 1
2

(p1 − q1)2P1(1, 2)− sech2

(
1
2

(Λ1 + ξ1(1, 2)−)
)

as t→ −∞,

ũ ∼ 1
2

(p1 − q1)2P1(1, 2)+ sech2

(
1
2

(Λ1 + ξ1(1, 2)+)
)

as t→ +∞,

with phase-constants ξ1(1, 2)− = log
(
r1(1,2)−

p1−q1

)
and ξ1(1, 2)+ = log

(
r1(1,2)+

p1−q1

)
.

Next we fix Λ2. Since ũ is invariant under the transformation v1,2 → v1,2 + C, where

C is a constant matrix, we have

v−1,2 =
2r2(1, 2)−P2(1, 2)−

e−Λ2 + r2(1,2)−

p2−q2

as t→ −∞,

v+
1,2 =

2r2(1, 2)+P2(1, 2)+

e−Λ2 + r2(1,2)+

p2−q2

as t→ +∞,
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in which

P2(1, 2)− =
µ2(1, 2)−ν2(1, 2)−

T

(µ2(1, 2)−, ν2(1, 2)−)
P2(1, 2)+ =

µ2(1, 2)+ν2(1, 2)+T

(µ2(1, 2)+, ν2(1, 2)+)
,

µ2(1, 2)+ = µ2 −
(p3 − q3)(µ2, ν3)µ3

(p2 − q3)(µ3, ν3)
, ν2(1, 2)+ = ν2 −

(p3 − q3)(µ3, ν2)ν3

(p3 − q2)(µ3, ν3)
,

µ2(1, 2)− = µ2 +
(p1 − q1) (p3 − q3)

(µ1, ν1)β1,3

(
(µ2, ν3)(µ3, ν1)

(µ3, ν3)(p2 − q3)(p3 − q1)
− (µ2, ν1)

(p2 − q1)(p3 − q3)

)
µ1

+
(p1 − q1)(p3 − q3)

(µ3, ν3)β1,3

(
(µ2, ν1)(µ1, ν3)

(µ1, ν1)(p2 − q1)(p1 − q3)
− (µ2, ν3)

(p2 − q3)(p1 − q1)

)
µ3,

ν2(1, 2)− = ν2 +
(p1 − q1)(p3 − q3)

(µ1, ν1)β1,3

(
(µ3, ν2)(µ1, ν3)

(µ3, ν3)(p1 − q3)(p3 − q2)
− (µ1, ν2)

(p1 − q2)(p3 − q3)

)
ν1

+
(p1 − q1)(p3 − q3)

(µ3, ν3)β1,3

(
(µ1, ν2)(µ3, ν1)

(µ1, ν1)(p3 − q1)(p1 − q2)
− (µ3, ν2)

(p3 − q2)(p1 − q1)

)
ν3,

r2(1, 2)− =
r2(µ2(1, 2)−, ν2(1, 2)−)

(µ2, ν2)
= r2

β1,2,3

β1,3
and

r2(1, 2)+ =
r2(µ2(1, 2)+, ν2(1, 2)+)

(µ2, ν2)
= r2β2,3.

So the asymptotic forms for ũ are

ũ ∼ 1
2

(p2 − q2)2P2(1, 2)− sech2

(
1
2

(Λ2 + ξ2(1, 2)−)
)

as t→ −∞,

ũ ∼ 1
2

(p2 − q2)2P2(1, 2)+ sech2

(
1
2

(Λ2 + ξ2(1, 2)+)
)

as t→ +∞.

The phase-constants are: ξ2(1, 2)− = log
(
r2(1,2)−

p2−q2

)
and ξ2(1, 2)+ = log

(
r2(1,2)+

p2−q2

)
. Fur-

thermore, the soliton phase-shifts ∆j(1, 2) = ξj(1, 2)+ − ξj(1, 2)−, for j = 1, 2 are

∆1(1, 2) = log
(
β−1,2

)
and ∆2(1, 2) = − log

(
β−1,2

)
, in which β−1,2 =

β1,2,3

β1,3β2,3
.

The asymptotic expressions for ũ can now be used to describe the dromion d(1, 2) as

t→ −∞. When h3 → r3/(p3 − q3), equation (5.8) gives

d(1, 2) ∼
4r1(1, 2)−r2(1, 2)+(p1 − q1)(p2 − q2)(1− α−1,2)(

e−
1
2

(Λ1+Λ2) + κ1(1, 2)−e
1
2

(Λ1−Λ2) + κ2(1, 2)−e
1
2

(Λ2−Λ1) + κ−1,2e
1
2

(Λ1+Λ2)
)2 , (5.10)

where

α−1,2 = Tr(P1(1, 2)−P2(1, 2)+), κ1(1, 2)− =
r1(1, 2)−

p1 − q1
, κ2(1, 2)− =

r2(1, 2)+

p2 − q2
and

κ−1,2 = κ−1 κ
−
2 β
−
1,2.

In Chapter 3, we had that

K
′
i,j =

pj − qi
h(i, j)

(hj(pi − qj)I −Aj)Ai,
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for i, j ∈ {1, 2, 3} and i 6= j. When h3 → +∞, from (3.47) we have that K3 → 0 and

therefore

v1,2 ∼ 2(K
′
1,2 +K

′
2,1). (5.11)

The asymptotic expression (5.11) is of the same form as the two-soliton matrix potential

v[3] and the resulting dromion is therefore of the same form as the single dromion as given

by (5.3). Therefore, when Λ1 is fixed, the asymptotic forms for ˆ̃u := (v1,2)x are

ˆ̃u ∼ 1
2

(p1 − q1)2P̂1(1, 2)− sech2

(
1
2

(Λ1 + ξ̂1(1, 2)−)
)

as t→ −∞,

ˆ̃u ∼ 1
2

(p1 − q1)2P̂1(1, 2)+ sech2

(
1
2

(Λ1 + ξ̂1(1, 2)+)
)

as t→ +∞,

where

P̂1(1, 2)− =
µ̂1(1, 2)−ν̂1(1, 2)−

T

(µ̂1(1, 2)−, ν̂1(1, 2)−)
, P̂1(1, 2)+ =

µ̂1(1, 2)+ν̂1(1, 2)+T

(µ̂1(1, 2)+, ν̂1(1, 2)+)
,

µ̂1(1, 2)− = µ1, ν̂1(1, 2)− = ν1, µ̂1(1, 2)+ = µ1 −
(p2 − q2)(µ1, ν2)µ2

(p1 − q2)(µ2, ν2)
,

ν̂1(1, 2)+ = ν1 −
(p2 − q2)(µ2, ν1)ν2

(p2 − q1)(µ2, ν2)
, r̂1(1, 2)− = r1, r̂1(1, 2)+ =

r1(µ̂1, ν̂1)
(µ1, ν1)

= r1β1,2,

ξ̂1(1, 2)− = log
(
r̂1(1, 2)−

p1 − q1

)
and ξ̂1(1, 2)+ = log

(
r̂1(1, 2)+

p1 − q1

)
.

When Λ2 is fixed, the asymptotic forms for ˆ̃u are

ˆ̃u ∼ 1
2

(p2 − q2)2P̂2(1, 2)− sech2

(
1
2

(Λ2 + ξ̂2(1, 2)−)
)

as t→ −∞,

ˆ̃u ∼ 1
2

(p2 − q2)2P̂2(1, 2)+ sech2

(
1
2

(Λ2 + ξ̂2(1, 2)+)
)

as t→ +∞,

in which

P̂2(1, 2)− =
µ̂2(1, 2)−ν̂2(1, 2)−

T

(µ̂2(1, 2)−, ν̂2(1, 2)−)
, P̂2(1, 2)+ =

µ̂2(1, 2)+ν̂2(1, 2)+T

(µ̂2(1, 2)+, ν̂2(1, 2)+)
,

µ̂2(1, 2)+ = µ2, ν̂2(1, 2)+ = ν2, µ̂2(1, 2)− = µ2 −
(p1 − q1)(µ2, ν1)µ1

(p2 − q1)(µ1, ν1)
,

ν̂2(1, 2)− = ν2 −
(p1 − q1)(µ1, ν2)ν1

(p1 − q2)(µ1, ν1)
, r̂2(1, 2)− =

r2(µ̂2, ˆ̃ν2)
(µ2, ν2)

= r2β1,2, r̂2(1, 2)+ = r2,

ξ̂2(1, 2)− = log
(

r̂−2
p2 − q2

)
and ξ̂2(1, 2)+ = log

(
r̂2(1, 2)+

p2 − q2

)
.

The soliton phase-shifts ∆̂j(1, 2) = ξ̂j(1, 2)+ − ξ̂j(1, 2)−, for j = 1, 2 are

∆̂1(1, 2) = log
(
β+

1,2

)
and ∆̂2(1, 2) = − log

(
β+

1,2

)
, where β+

1,2 = β1,2.
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The dromion d(1, 2) as t→ +∞ can now be written as

d(1, 2) ∼
4r̂1(1, 2)−r̂2(1, 2)+(p1 − q1)(p2 − q2)(1− α+

1,2)(
e−

1
2

(Λ1+Λ2) + κ1(1, 2)+e
1
2

(Λ1−Λ2) + κ2(1, 2)+e
1
2

(Λ2−Λ1) + κ+
1,2e

1
2

(Λ1+Λ2)
)2 , (5.12)

where α+
1,2 = Tr(P̂1(1, 2)−P̂2(1, 2)+), κ1(1, 2)+ = κ1, κ2(1, 2)+ = κ2 and

κ+
1,2 = κ1(1, 2)+κ2(1, 2)+β+

1,2.

When in a frame moving with the dromion d(2, 3), the asymptotic analysis is very

similar to that of d(1, 2). In this case, h2 and h3 are fixed and

h1 →


r1

p1−q1 as t→ −∞,

+∞ as t→ +∞.

When h1 → r1
p1−q1 , fixing Λ2 gives the asymptotic forms for ũ:

ũ ∼ 1
2

(p2 − q2)2P2(2, 3)− sech2

(
1
2

(Λ2 + ξ2(2, 3)−)
)

as t→ −∞,

ũ ∼ 1
2

(p2 − q2)2P2(2, 3)+ sech2

(
1
2

(Λ2 + ξ2(2, 3)+)
)

as t→ +∞,

with phase-constants ξ2(2, 3)− = log
(
r2(2,3)−

p2−q2

)
and ξ2(2, 3)+ = log

(
r2(2,3)+

p2−q2

)
and

P2(2, 3)− =
µ2(2, 3)−ν2(2, 3)−

T

(µ2(2, 3)−, ν2(2, 3)−)
, P2(2, 3)+ =

µ2(2, 3)+ν2(2, 3)+T

(µ2(2, 3)+, ν2(2, 3)+)
,

µ2(2, 3)− = µ2 −
(p1 − q1)(µ2, ν1)µ1

(p2 − q1)(µ1, ν1)
, ν2(2, 3)− = ν2 −

(p1 − q1)(µ1, ν2)ν1

(p1 − q2)(µ1, ν1)
,

µ2(2, 3)+ = µ2 +
(p1 − q1) (p3 − q3)

(µ1, ν1)β1,3

(
(µ2, ν3)(µ3, ν1)

(µ3, ν3)(p2 − q3)(p3 − q1)
− (µ2, ν1)

(p2 − q1)(p3 − q3)

)
µ1

+
(p1 − q1)(p3 − q3)

(µ3, ν3)β1,3

(
(µ2, ν1)(µ1, ν3)

(µ1, ν1)(p2 − q1)(p1 − q3)
− (µ2, ν3)

(p2 − q3)(p1 − q1)

)
µ3,

ν2(2, 3)+ = ν2 +
(p1 − q1)(p3 − q3)

(µ1, ν1)β1,3

(
(µ3, ν2)(µ1, ν3)

(µ3, ν3)(p1 − q3)(p3 − q2)
− (µ1, ν2)

(p1 − q2)(p3 − q3)

)
ν1

+
(p1 − q1)(p3 − q3)

(µ3, ν3)β1,3

(
(µ1, ν2)(µ3, ν1)

(µ1, ν1)(p3 − q1)(p1 − q2)
− (µ3, ν2)

(p3 − q2)(p1 − q1)

)
ν3,

r2(2, 3)− =
r2(µ2(2, 3)−, ν2(2, 3)−)

(µ2, ν2)
= r2β1,2 and

r2(2, 3)+ =
r2(µ2(2, 3)+, ν2(2, 3)+)

(µ2, ν2)
= r2

β1,2,3

β1,3
.

Fixing Λ3 gives the asymptotic forms for ũ:

ũ ∼ 1
2

(p3 − q3)2P3(2, 3)− sech2

(
1
2

(Λ3 + ξ3(2, 3)−)
)

as t→ −∞,

ũ ∼ 1
2

(p3 − q3)2P3(2, 3)+ sech2

(
1
2

(Λ3 + ξ3(2, 3)+)
)

as t→ +∞,
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where ξ3(2, 3)− = log
(
r3(2,3)−

p3−q3

)
and ξ3(2, 3)+ = log

(
r3(2,3)+

p3−q3

)
and

P3(2, 3)− =
µ3(2, 3)−ν3(2, 3)−

T

(µ−3 , ν
−
3 )

, P3(2, 3)+ =
µ3(2, 3)+ν3(2, 3)+T

(µ3(2, 3)+, ν3(2, 3)+)
,

µ3(2, 3)+ = µ2 −
(p3 − q3)(µ2, ν3)µ3

(p2 − q3)(µ3, ν3)
, ν3(2, 3)+ = µ2 −

(p3 − q3)(µ2, ν3)µ3

(p2 − q3)(µ3, ν3)
,

µ3(2, 3)− = µ3 +
(p2 − q2)(p1 − q1)

(µ2, ν2)β1,2

(
(µ3, ν1)(µ1, ν2)

(µ1, ν1)(p3 − q1)(p1 − q2)
− (µ3, ν2)

(p3 − q2)(p1 − q1)

)
µ2

+
(p2 − q2)(p1 − q1)

(µ1, ν1)β1,2

(
(µ3, ν2)(µ2, ν1)

(µ2, ν2)(p3 − q2)(p2 − q1)
− (µ3, ν1)

(p3 − q1)(p2 − q2)

)
µ1,

ν̃−3 = ν3 +
(p2 − q2)(p1 − q1)

(µ2, ν2)β1,2

(
(µ1, ν3)(µ2, ν1)

(µ1, ν1)(p2 − q1)(p1 − q3)
− (µ2, ν3)

(p2 − q3)(p1 − q1)

)
ν2

+
(p2 − q2)(p1 − q1)

(µ1, ν1)β1,2

(
(µ2, ν3)(µ1, ν2)

(µ2, ν2)(p1 − q2)(p2 − q3)
− (µ1, ν3)

(p1 − q3)(p2 − q2)

)
ν1,

r3(2, 3)− =
r3(µ3(2, 3)−, ν3(2, 3)−)

(µ3, ν3)
= r3

β1,2,3

β1,2
and

r3(2, 3)+ =
r3(µ3(2, 3)+, ν3(2, 3)+)

(µ3, ν3)
= r3β2,3.

The soliton phase-shifts ∆j(2, 3) = ξj(2, 3)+ − ξj(2, 3)−, for j = 2, 3 are

∆2(2, 3) = log
(
β−2,3

)
and ∆3(2, 3) = − log

(
β−2,3

)
, in which β−2,3 =

β1,2,3

β1,2β1,3
.

The asymptotic expressions for ũ can be used to describe the dromion d(2, 3) as t →

−∞. When h1 → r1/(p1 − q1), equation (5.8) gives

d(2, 3) ∼
4r2(2, 3)−r3(2, 3)+(p2 − q2)(p3 − q3)(1− α−2,3)(

e−
1
2

(Λ2+Λ3) + κ2(2, 3)−e
1
2

(Λ2−Λ3) + κ3(2, 3)−e
1
2

(Λ3−Λ2) + κ−2,3e
1
2

(Λ2+Λ3)
)2 , (5.13)

where

α−2,3 = Tr(P2(2, 3)−P3(2, 3)+), κ2(2, 3)− =
r2(2, 3)−

p2 − q2
, κ3(2, 3)− =

r3(2, 3)−

p3 − q3
, and

κ−2,3 = κ2(2, 3)−κ3(2, 3)−β−2,3.

In the case that h1 → +∞, when Λ2 is fixed, the asymptotic forms for ˆ̃u := (v2,3)x are

ˆ̃u ∼ 1
2

(p2 − q2)2P̂2(2, 3)− sech2

(
1
2

(Λ2 + ξ̂2(2, 3)−)
)

as t→ −∞,

ˆ̃u ∼ 1
2

(p2 − q2)2P̂2(2, 3)+ sech2

(
1
2

(Λ2 + ξ̂2(2, 3)+)
)

as t→ +∞,
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in which

P̂2(2, 3)− =
µ̂2(2, 3)−ν̂2(2, 3)−

T

(µ̂2(2, 3)−, ν̂2(2, 3)−)
, P̂2(2, 3)+ =

µ̂2(2, 3)+ν̂2(2, 3)+T

(µ̂2(2, 3)+, ν̂2(2, 3)+)
,

µ̂2(2, 3)− = µ2, ν̂2(2, 3)− = ν2, µ̂2(2, 3)+ = µ2 −
(p3 − q3)(µ2, ν3)µ3

(p2 − q3)(µ3, ν3)

ν̂2(2, 3)+ = ν2 −
(p3 − q3)(µ3, ν2)ν3

(p3 − q2)(µ3, ν3)
r̂2(2, 3)− = r2,

r̂2(2, 3)+ =
r2(µ̂2(2, 3), ν̂2(2, 3))

(µ2, ν2)
= r2β2,3, ξ̂2(2, 3)− = log

(
r̂2(2, 3)−

p2 − q2

)
and

ξ̂2(2, 3)+ = log
(
r̂2(2, 3)+

p2 − q2

)
.

When Λ3 is fixed, the asymptotic forms for ˆ̃u are

ˆ̃u ∼ 1
2

(p3 − q3)2P̂3(2, 3)− sech2

(
1
2

(Λ3 + ξ̂3(2, 3)−)
)

as t→ −∞,

ˆ̃u ∼ 1
2

(p3 − q3)2P̂3(2, 3)+ sech2

(
1
2

(Λ3 + ξ̂3(2, 3)+)
)

as t→ +∞,

where

P̂3(2, 3)− =
µ̂3(2, 3)−ν̂3(2, 3)−

T

(µ̂3(2, 3)−, ν̂3(2, 3)−)
, P̂3(2, 3)+ =

µ̂3(2, 3)+ν̂3(2, 3)+T

(µ̂3(2, 3)+, ν̂3(2, 3)+)
,

µ̂3(2, 3)+ = µ3, ν̂3(2, 3)+ = ν3, µ̂3(2, 3)− = µ3 −
(p2 − q2)(µ3, ν2)µ2

(p3 − q2)(µ2, ν2)
,

ν̂3(2, 3)− = ν3 −
(p2 − q2)(µ2, ν3)ν2

(p2 − q3)(µ2, ν2)
, r̂3(2, 3)− =

r3(µ̂3(2, 3), ν̂3(2, 3))
(µ3, ν3)

= r3β2,3,

r̂3(2, 3)+ = r3, ξ̂3(2, 3)− = log
(
r̂3(2, 3)−

p3 − q3

)
and

ξ̂3(2, 3)+ = log
(
r̂3(2, 3)+

p3 − q3

)
.

Furthermore, the soliton phase-shifts are ∆̂j(2, 3) = ξ̂j(2, 3)+ − ξ̂j(2, 3)−, for j = 2, 3 are

∆̂2 = log
(
β+

2,3

)
and ∆̂3 = − log

(
β+

2,3

)
, where β+

2,3 = β2,3.

The dromion d(2, 3) as t→ +∞ can now be written as

d(2, 3) ∼
4r̂2(2, 3)−r̂3(2, 3)+(p2 − q2)(p3 − q3)(1− α+

2,3)(
e−

1
2

(Λ2+Λ3) + κ2(2, 3)+e
1
2

(Λ2−Λ3) + κ3(2, 3)+e
1
2

(Λ3−Λ2) + κ+
2,3e

1
2

(Λ2+Λ3)
)2 , (5.14)

where Tr(P̂2(2, 3)−P̂3(2, 3)+), κ2(2, 3)+ = κ2, κ3(2, 3)+ = κ3 and κ+
2,3 = κ2(2, 3)+κ3(2, 3)+β+

2,3.

Finally, we move to a frame moving with d(1, 3). In this case h1 and h3 are fixed and

h2 →

 +∞ as t→ −∞,
r2

p2−q2 as t→ +∞.
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When h2 → +∞, fixing Λ1 gives the asymptotic forms for ũ := (v1,3)x:

ũ ∼ 1
2

(p1 − q1)2P1(1, 3)− sech2

(
1
2

(Λ1 + ξ1(1, 3)−)
)

as t→ −∞,

ũ ∼ 1
2

(p1 − q1)2P1(1, 3)+ sech2

(
1
2

(Λ1 + ξ1(1, 3)+)
)

as t→ +∞,

where

P1(1, 3)− =
µ1(1, 3)−ν1(1, 3)−

T

(µ1(1, 3)−, ν1(1, 3)−)
, P1(1, 3)+ =

µ1(1, 3)+ν1(1, 3)+T

(µ1(1, 3)+, ν1(1, 3)+)
,

µ1(1, 3)− = µ1, ν1(1, 3)− = ν1, µ1(1, 3)+ = µ1 −
(p3 − q3)(µ1, ν3)µ3

(p1 − q3)(µ3, ν3)

ν1(1, 3)+ = ν1 −
(p3 − q3)(µ3, ν1)ν3

(p3 − q1)(µ3, ν3)
r1(1, 3)− = r1, r1(1, 3)+ =

r1(µ1, ν1)
(µ1, ν1)

= r1β1,3,

ξ1(1, 3)− = log
(
r1(1, 3)−

p1 − q1

)
and ξ1(1, 3)+ = log

(
r1(1, 3)+

p1 − q1

)
.

When Λ3 is fixed, the asymptotic forms for ũ are

ũ ∼ 1
2

(p3 − q3)2P3(1, 3)− sech2

(
1
2

(Λ3 + ξ3(1, 3)−)
)

as t→ −∞,

ũ ∼ 1
2

(p3 − q3)2P3(1, 3)+ sech2

(
1
2

(Λ3 + ξ3(1, 3)+)
)

as t→ +∞,

where

P3(1, 3)− =
µ3(1, 3)−ν3(1, 3)−

T

(µ3(1, 3)−, ν3(1, 3)−)
, P3(1, 3)+ =

µ3(1, 3)+ν3(1, 3)+T

(µ3(1, 3)+, ν3(1, 3)+)
,

µ3(1, 3)+ = µ3, ν3(1, 3)+ = ν3, µ3(1, 3)− = µ3 −
(p1 − q1)(µ3, ν1)µ1

(p3 − q1)(µ1, ν1)
,

ν3(1, 3)− = ν3 −
(p1 − q1)(µ1, ν3)ν1

(p1 − q3)(µ1, ν1)
, r3(1, 3)− =

r3(µ3(1, 3), ν3(1, 3))
(µ3, ν3)

= r3β1,3,

r3(1, 3)+ = r3, ξ3(1, 3)− = log
(
r3(1, 3)−

p3 − q3

)
and

ξ3(1, 3)+ = log
(
r3(1, 3)+

p3 − q3

)
.

In addition, we have the soliton phase-shifts ∆j(1, 3) = ξj(1, 3)+ − ξj(1, 3)−, for j = 1, 3,

which are

∆1(1, 3) = log
(
β−1,3

)
and ∆3(1, 3) = − log

(
β−1,3

)
, in which β−1,3 = β1,3.

The dromion d(1, 3) as t→ −∞ can now be written as

d(1, 3) ∼
4r1(1, 3)−r3(1, 3)+(p1 − q1)(p3 − q3)(1− α−1,3)(

e−
1
2

(Λ1+Λ3) + κ1(1, 3)−e
1
2

(Λ1−Λ3) + κ3(1, 3)−e
1
2

(Λ3−Λ1) + κ−1,3e
1
2

(Λ1+Λ3)
)2 , (5.15)
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where α−1,3 = Tr(P1(1, 3)−P3(1, 3)+), κ1(1, 3)− = κ1, κ3(1, 3)− = κ3,

κ−1,3 = κ1(1, 3)−κ3(1, 3)−β−1,3 and β−1,3 = β1,3.

When h1 → r1/(p1 − q1), fixing Λ1 gives the asymptotic forms for ˆ̃u:

ˆ̃u ∼ 1
2

(p1 − q1)2P̂1(1, 3)− sech2

(
1
2

(Λ1 + ξ̂1(1, 3)−)
)

as t→ −∞,

ˆ̃u ∼ 1
2

(p1 − q1)2P̂1(1, 3)+ sech2

(
1
2

(Λ1 + ξ̂1(1, 3)+)
)

as t→ +∞,

with phase-constants ξ̂1(1, 3)− = log
(
r̂1(1,3)−

p1−q1

)
and ξ̂1(1, 3)+ = log

(
r̂1(1,3)+

p1−q1

)
and

P̂1(1, 3)− =
µ̂1(1, 3)−ν̂1(1, 3)−

T

(µ̂1(1, 3)−, ν̂1(1, 3)−)
, P̂1(1, 3)+ =

µ̂1(1, 3)+ν̂1(1, 3)+T

(µ̂1(1, 3)+, ν̂1(1, 3)+)
,

µ̂1(1, 3)− = µ1 −
(p2 − q2)(µ1, ν2)µ2

(p1 − q2)(µ2, ν2)
, ν̂1(1, 3)− = ν1 −

(p2 − q2)(µ2, ν1)ν2

(p2 − q1)(µ2, ν2)
,

µ̂1(1, 3)+ = µ1 +
(p2 − q2)(p3 − q3)

(µ2, ν2)β2,3

(
(µ1, ν3)(µ3, ν2)

(µ3, ν3)(p1 − q3)(p3 − q2)
− (µ1, ν2)

(p1 − q2)(p3 − q3)

)
µ2

+
(p2 − q3)(p3 − q2)

(µ3, ν3)β2,3

(
(µ1, ν2)(µ2, ν3)

(µ2, ν2)(p1 − q2)(p2 − q3)
− (µ1, ν3)

(p1 − q3)(p2 − q2)

)
µ3,

ν̂1(1, 3)+ = ν1 +
(p2 − q2)(p3 − q3)

(µ2, ν2)β2,3

(
(µ3, ν1)(µ2, ν3)

(µ3, ν3)(p2 − q3)(p3 − q1)
− (µ2, ν1)

(p2 − q1)(p3 − q3)

)
ν2

+
(p2 − q3)(p3 − q2)

(µ3, ν3)β2,3

(
(µ2, ν1)(µ3, ν2)

(µ2, ν2)(p3 − q2)(p2 − q1)
− (µ3, ν1)

(p3 − q1)(p2 − q2)

)
ν3,

r̂1(1, 3)− =
r1(µ̂−1 , ν̂

−
1 )

(µ1, ν1)
= r1β1,2 and ˆ̃r+

1 =
r1(µ̂1(1, 3)+, ν̂1(1, 3)+)

(µ1, ν1)
= r1

β1,2,3

β2,3
.

Next we fix Λ3. Then the asymptotic forms for ˆ̃u are

ˆ̃u ∼ 1
2

(p3 − q3)2P̂3(1, 3)− sech2

(
1
2

(Λ3 + ξ̂3(1, 3)−)
)

as t→ −∞,

ˆ̃u ∼ 1
2

(p3 − q3)2P̂3(1, 3)+ sech2

(
1
2

(Λ3 + ξ̂3(1, 3)+)
)

as t→ +∞.
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The phase-constants are: ξ̂−3 = log
(

r̂−3
p3−q3

)
and ξ̂+

3 = log
(

r̂+
3

p3−q3

)
and we also have

P̂3(1, 3)− =
µ̂3(1, 3)−ν̂3(1, 3)−

T

(µ̂3(1, 3)−, ν̂3(1, 3)−)
, P̂3(1, 3)+ =

µ̂3(1, 3)+ν̂3(1, 3)+T

(µ̂3(1, 3)+, ν̂3(1, 3)+)
,

µ̂3(1, 3)+ = µ3 −
(p2 − q2)(µ3, ν2)µ2

(p3 − q2)(µ2, ν2)
, ν̂3(1, 3)+ = ν3 −

(p2 − q2)(µ2, ν3)ν3

(p2 − q3)(µ2, ν2)
,

µ̂3(1, 3)− = µ3 +
(p2 − q2)(p1 − q1)

(µ2, ν2)β1,2

(
(µ3, ν1)(µ1, ν2)

(µ1, ν1)(p3 − q1)(p1 − q2)
− (µ3, ν2)

(p3 − q2)(p1 − q1)

)
µ2

+
(p2 − q2)(p1 − q1)

(µ1, ν1)β1,2

(
(µ3, ν2)(µ2, ν1)

(µ2, ν2)(p3 − q2)(p2 − q1)
− (µ3, ν1)

(p3 − q1)(p2 − q2)

)
µ1,

ν̂3(1, 3)− = ν3 +
(p2 − q2)(p1 − q1)

(µ2, ν2)β1,2

(
(µ1, ν3)(µ2, ν1)

(µ1, ν1)(p2 − q1)(p1 − q3)
− (µ2, ν3)

(p2 − q3)(p1 − q1)

)
ν2

+
(p2 − q2)(p1 − q1)

(µ1, ν1)β1,2

(
(µ2, ν3)(µ1, ν2)

(µ2, ν2)(p1 − q2)(p2 − q3)
− (µ1, ν3)

(p1 − q3)(p2 − q2)

)
ν1,

r̂3(1, 3)− =
r3(µ̂3(1, 3)−, ν̂3(1, 3)−)

(µ3, ν3)
=
r3β1,2,3

β1,2
and

r̂3(1, 3)+ =
r3(µ̂3(1, 3)+, ν̂3(1, 3)+)

(µ3, ν3)
= r3β2,3.

Furthermore, the soliton phase-shifts ∆̂j(1, 3) = ξ̂j(1, 3)+ − ξ̂j(1, 3)−, for j = 1, 3 are

∆̂1(1, 3) = log
(
β+

1,3

)
and ∆̂3(1, 3) = − log

(
β+

1,3

)
, where β+

1,3 =
β1,2,3

β1,2β2,3
.

The asymptotic expressions for ˆ̃u can again be used to describe the dromion d(1, 3) as

t→ +∞. When h2 → r2/(p2 − q2), equation (5.8) gives

d(1, 3) ∼
4r̂1(1, 3)−r̂3(1, 3)+(p1 − q1)(p3 − q3)(1− α+

1,3)(
e−

1
2

(Λ1+Λ3) + κ1(1, 3)+e
1
2

(Λ1−Λ3) + κ3(1, 3)+e
1
2

(Λ3−Λ1) + κ+
1,3e

1
2

(Λ1+Λ3)
)2 , (5.16)

where

α+
1,3 = Tr(P̂1(1, 3)−P̂3(1, 3)+), κ1(1, 3)+ =

r̂1(1, 3)−

p1 − q1
, κ3(1, 3)+ =

r̂3(1, 3)+

p3 − q3
and

κ+
1,3 = κ1(1, 3)+κ3(1, 3)+β+

1,3.

5.1.2 Summary of the three-dromion structure

The asymptotic expressions (5.10), (5.12), (5.13), (5.14), (5.15) and (5.16) all have the

same form as the dromion structure given by (5.3). Therefore, we have shown that the

three-dromion structure det(u) = det(v[4],x) decomposes asymptotically into six dromions:

d(i, j) ∼


4ri(i,j)

−rj(i,j)+(pi−qi)(pj−qj)(1−α−i,j)(
e−

1
2 (Λi+Λj)+κi(i,j)−e

1
2 (Λi−Λj)+κj(i,j)−e

1
2 (Λj−Λi)+κ−i,je

1
2 (Λi+Λj)

)2 , t→ −∞,

4r̂i(i,j)
−r̂j(i,j)+(pi−qi)(pj−qj)(1−α+

i,j)(
e−

1
2 (Λi+Λj)+κi(i,j)+e

1
2 (Λi−Λj)+κj(i,j)+e

1
2 (Λj−Λi)+κ+

i,je
1
2 (Λi+Λj)

)2 , t→ +∞,

for i, j ∈ {1, 2, 3} and i 6= j, giving the following generalisation of Theorem 2:
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Theorem 3. If det(Ω) is positive-definite, then det(u), as given by (5.8), has the following

properties:

1. det(u) decomposes asymptotically into six dromions as described in Theorem 2. Each

d(i, j) decays to zero exponentially as (x, y)→∞ in any direction.

2. The amplitude of d(i, j) is

A− :=
(1− α−i,j)(pi − qi)2(pj − qj)2(√

β−i,j + 1
)2 as t→ −∞,

A+ :=
(1− α+

i,j)(pi − qi)2(pj − qj)2(√
β+
i,j + 1

)2 as t→ +∞.

The amplitude is

• negative

(a) as t→ −∞: if α−i,j > 1,

(b) as t→ +∞: if α+
i,j > 1,

• zero

(a) as t→ −∞: if α−i,j = 1,

(b) as t→ +∞: if α+
i,j = 1,

• positive

(a) as t→ −∞: if α−i,j < 1,

(b) as t→ +∞: if α+
i,j < 1,

3. At time t the location of d(i, j) moves from

(x, y) =
1

2li,j

(
l
(2)
j (ξi(i, j)− + ξi(i, j)+)− l(2)

i (ξj(i, j)− + ξj(i, j)+) + 8lj,kt ,

l
(1)
i (ξj(i, j)− + ξj(i, j)+)− l(1)

j (ξi(i, j)− + ξi(i, j)+) + 8li,kt
)
,

as t→ −∞ to

(x, y) =
1

2li,j

(
l
(2)
j (ξ̂i(i, j)− + ξ̂i(i, j)+)− l(2)

i (ξ̂j(i, j)− + ξ̂j(i, j)+) + 8lj,kt ,

l
(1)
i (ξ̂j(i, j)− + ξ̂j(i, j)+)− l(1)

j (ξ̂i(i, j)− + ξ̂i(i, j)+) + 8li,kt
)
,

as t→ +∞.
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4. The trajectory of d(i, j) changes from

y =
(
li,k
lj,k

)
x+(

l
(1)
i lj,k + l

(2)
i li,k

)
(ξj(i, j)− + ξj(i, j)+)−

(
l
(1)
j lj,k + l

(2)
j li,k

)
(ξi(i, j)− + ξi(i, j)+)

2li,jlj,k
,

as t→ −∞ to

y =
(
li,k
lj,k

)
x+(

l
(1)
i lj,k + l

(2)
1 li,k

)
(ξ̂j(i, j)− + ξ̂j(i, j)+)−

(
l
(1)
j lj,k + l

(2)
j li,k

)
(ξ̂i(i, j)− + ξ̂i(i, j)+)

2li,jlj,k
,

as t→ +∞.

5.1.3 Plots of dromions

In this section, the interaction properties of the three-dromion structure are highlighted

with various plots. It is interesting to see under what conditions each dromion vanishes

before and after undergoing interaction. Let us label the elements of the 2-vectors as

µ(i, j)− =

a−ij,1
a−ij,2

 , ν(i, j)− =

b−ij,1
b−ij,2

 , µ(i, j)+ =

a+
ij,1

a+
ij,2

 , ν(i, j)+ =

b+ij,1
b+ij,2

 ,

µ̂(i, j)− =

c−ij,1
c−ij,2

 , ν̂(i, j)− =

d−ij,1
d−ij,2

 , µ̂(i, j)+ =

c+
ij,1

c+
ij,2

 , ν̂(i, j)+ =

d+
ij,1

d+
ij,2

 ,

for j = 1, 2, 3 and i 6= j.

As t→ −∞, d(i, j) vanishes

⇔ Tr(Pi(i, j)−Pj(i, j)+) = 1

⇔ (µ(i, j)−, ν(i, j)+)(µ(i, j)+, ν(i, j)−) = (µ(i, j)−, ν(i, j)−)(µ(i, j)+, ν(i, j)+)

⇔ a−ij,2a
+
ij,1 = a−ij,1a

+
ij,2 or b−ij,2b

+
ij,1 = b−ij,1b

+
ij,2.

As t→ +∞, d(i, j) vanishes

⇔ Tr(P̂i(i, j)−P̂j(i, j)+) = 1

⇔ (µ̂(i, j)−, ν̂(i, j)+)(µ̂(i, j)+, ν̂(i, j)−) = (µ̂(i, j)−, ν̂(i, j)−)(µ̂(i, j)+, ν̂(i, j)+)

⇔ c−ij,2c
+
ij,1 = c−ij,1c

+
ij,2 or d−ij,2d

+
ij,1 = d−ij,1d

+
ij,2.

There is enough freedom in the parameters of the three-dromion structure to set up a

situation where there are three dromions where one or two dromions vanish as t→ ±∞.
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Figure 5.4 shows a plot of the three-dromion structure with

µT1 =
(

1 −1
2

)
, µT2 =

(
1
2

3
4

)
, µT3 =

(
1 −1

)
,

νT1 =
(
−3

7
1
2

)
, νT2 =

(
−1 −1

)
and νT3 =

(
5
8

7
8

)
,

so that no dromions vanish as t→ ±∞.

Figure 5.5 shows a plot of the three-dromion structure with

µT1 =
(

1 3
)
, µT2 =

(
1 3

)
, µT3 =

(
−1

4 6
)
,

νT1 =
(

1 −3
)
, νT2 =

(
5 −2

)
and νT3 =

(
−5

2 1
)
,

so that d(1, 2) and d(2, 3) vanish as t→ +∞.

Figure 5.6 shows a plot of the three-dromion structure with

µT1 =
(

1 −1
2

)
, µT2 =

(
1
2

3
4

)
, µT3 =

(
1 −1

2

)
,

νT1 =
(
−3

7
1
2

)
, νT2 =

(
−1 −1

)
and νT3 =

(
5
8

7
8

)
,

so that d(1, 3) vanishes as t→ −∞. Note that this structure has a dromion with negative

amplitude.

Figure 5.7 shows the details of the interaction in Figure 5.6.
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Figure 5.7: Details of the interaction shown in Figure 5.6

.

5.2 Matrix mKP single dromion

As we were able to find dromions of the matrix version of the ncKP equation, the matrix

mKP equation should also possess dromions. Again, the simplest case is the single dromion

which appears from the two-soliton matrix solution obtained when n = 2. Most of the

results obtained in this section bear close resemblance to those of the matrix KP solutions.

Recall from Chapter 4 that the two-soliton matrix solution of ncmKP can be written

in terms of

f[3] = I +
1
q1
L1 +

1
q2
L2,

in which

L1 =
(p2 − q1)q1

h
((p1 − q2)q2h2I + p1A2)A1,

L2 =
(p1 − q2)q2

h
((p2 − q1)q1h1I + p2A1)A2,

and

h = h1h2q1q2(p1 − q2)(p2 − q1)− αp1p2r1r2

hi = e−Λi − piri
(pi − qi)qi

and α =
(µ1, ν2)(µ2, ν1)
(µ1, ν1)(µ2, ν2)

= Tr(P1P2).

Expanding det((f[3])x) and det(f[3]) and using the fact that the determinant of a pro-

jection matrix is zero and its trace is equal to its rank, we get

det((f[3])x) = q1q2r1r2(p1 − q2)2(p2 − q1)2(1− α)h1,xh2,xh
−2 and

det(f[3]) = 1 + h−1 (h1(p1 − q2)(p2 − q1)q1r2 + h2(p1 − q2)(p2 − q1)q2r1

+(p1 − q2)(p2 − q1)r1r2 + r1r2α(p1p2 − q1q2)) .
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We may now calculate the determinant of w, which is

det(w) =
det((f[3])x)

det(f[3])
=
r1r2(p1 − q1)(p2 − q2)(1− α)

q1q2SκSι
, (5.17)

where

Sκ =
(
e−

1
2

(Λ1+Λ2) − κ1e
1
2

(Λ1Λ2) − κ2e
1
2

(Λ2−Λ1) + κe
1
2

(Λ1+Λ2)
)
,

Sι =
(
e−

1
2

(Λ1+Λ2) − ι1e
1
2

(Λ1Λ2) − ι2e
1
2

(Λ2−Λ1) + ιe
1
2

(Λ1+Λ2)
)
,

ιi = pi
qi
κi, i = 1, 2, κ = κ1κ2β and ι = ι1ι2β.

The characteristics of det(w), as given by equation (5.17), may be summarised by the

following theorem:

Theorem 4. If det(Ω) is positive-definite and if α 6= 1, then det(w) has the following

properties:

1. det(w) decays to zero exponentially as (x, y)→∞ in any direction and has a unique

maximum or minimum value

det(w)max/min =
(1− α)p1p2(p1 − q1)2(p2 − q2)2(√

β
(√

p1p2

q1q2
+ p1p2

q1q2

)
+ p1

q1

√
p2

q2
+ p2

q2

√
p1

q1

)2
q2

1q
2
2

.

The dromion will have negative, zero or positive amplitude. The amplitude is

• negative if α > 1,

• zero if α = 1,

• positive if α < 1.

2. At time t this maximum or minimum as located at

(x, y) =
−1

2l1,2

(
l
(2)
2 (ξ−1 + ξ+

1 )− l(2)
1 (ξ−2 + ξ+

2 ) + 8l2,3t ,

l
(1)
1 (ξ−2 + ξ+

2 )− l(1)
2 (ξ−1 + ξ+

1 ) + 8l1,3t
)
, (5.18)

where li,j = l
(i)
i l

(j)
j − l

(j)
i l

(i)
j and l

(j)
i = qji − p

j
i . This result implies that the dromion

is located symmetrically between the solitons in the two-soliton matrix solution.

3. The trajectory of the dromion is the straight line

y =
(
l1,3
l2,3

)
x+

(
l
(1)
2 l2,3 + l

(2)
2 l1,3

)
(ξ−1 + ξ+

1 )−
(
l
(1)
1 l2,3 + l

(2)
1 l1,3

)
(ξ−2 + ξ+

2 )

2l1,2l2,3
. (5.19)
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Proof. From (5.17), we see that det(w) decays to zero exponentially as (x, y) → ∞ in

any direction since, along any ray in the (x, y)-plane, at least one of the exponentials in

the denominator is unbounded as (x, y) approaches infinity. To see this, we use the same

technique as for the matrix KP single dromion. Let y = kx, where k ∈ R, be a ray in any

direction. Substituting this into (5.17) gives

Sκ = e
− 1

2

((
l
(1)
1 +l

(1)
2 +

(
l
(2)
1 +l

(2)
2

)
k
)
x−4

(
l
(3)
1 +l

(3)
2

)
t
)
− κ1e

1
2

((
l
(1)
1 −l

(1)
2 +

(
l
(2)
1 −l

(2)
2

)
k
)
x−4

(
l
(3)
1 −l

(3)
2

)
t
)

− κ2e
1
2

((
l
(1)
2 −l

(1)
1 +

(
l
(2)
2 −l

(2)
1

)
k
)
x−4

(
l
(3)
2 −l

(3)
1

)
t
)

+ κe
1
2

((
l
(1)
1 +l

(1)
2 +

(
l
(2)
1 +l

(2)
2

)
k
)
x−4

(
l
(3)
1 +l

(3)
2

)
t
)
,

Sι = e
− 1

2

((
l
(1)
1 +l

(1)
2 +

(
l
(2)
1 +l

(2)
2

)
k
)
x−4

(
l
(3)
1 +l

(3)
2

)
t
)
− ι1e

1
2

((
l
(1)
1 −l

(1)
2 +

(
l
(2)
1 −l

(2)
2

)
k
)
x−4

(
l
(3)
1 −l

(3)
2

)
t
)

− ι2e
1
2

((
l
(1)
2 −l

(1)
1 +

(
l
(2)
2 −l

(2)
1

)
k
)
x−4

(
l
(3)
2 −l

(3)
1

)
t
)

+ ιe
1
2

((
l
(1)
1 +l

(1)
2 +

(
l
(2)
1 +l

(2)
2

)
k
)
x−4

(
l
(3)
1 +l

(3)
2

)
t
)

on the denominator. This expression must tend to infinity for any values of k and l
(j)
i ,

i, j = 1, 2 as x→ ±∞.

Since det(w) is exponentially localized, a unique critical point must be either a maxi-

mum or minimum. If we consider the conditions that α 6= 1 and (det(w))x and det((w))y

vanish simultaneously, we get

X2Y 2 − κ1ι1Y
2 + κ2ι

2X2 − κ1κ2ι1ι2β
2 − (κ2 + ι2)X2Y + (κ2 + ι2)κ1ι1βY = 0

and

X2Y 2 + κ1ι1Y
2 − κ2ι

2X2 − κ1κ2ι1ι2β
2 − (κ1 + ι1)XY 2 + (κ1 + ι1)κ2ι2βX = 0,

in which

X = e−Λ1 and Y = e−Λ2 .

Solving this equation for X and Y gives only one pair of positive roots which is

e−Λ1 =
√
κ1ι1β and e−Λ2 =

√
κ2ι2β. (5.20)

Substituting (5.20) into (5.17) gives the maximum or minimum of det(w).

Solving (5.20) for x and y gives (5.18), the location of the dromion. Eliminating t in

(5.18) gives the trajectory of the dromion.

5.2.1 A three-dromion example

For the matrix mKP solution, the determinant of the three-soliton matrix solution again

gives a three-dromion structure. The schematic form of the dromion scattering will be in

accordance with the dromions of the matrix KP solutions as illustrated in Figure 5.3.



CHAPTER 5. DROMIONS OF THE MATRIX EQUATIONS 130

When n = 3, expanding det((f[4])x) and det(f[4]), the expressions simplify greatly and

we obtain

det((f[4])x) =
h1,xh2,xm1,2,3 + h1,xh3,xm1,3,2 + h2,xh3,xm2,3,1

h2(1, 2, 3)
, (5.21)

det(f[4]) = 1 +
1

q1q2q3h(1, 2, 3)
(r1r2r3M+ q1h1%2,3 + q2h2%1,3 + q3h3%1,2

+
r3h(1, 2)

(p1 − q2)(p2 − q1)
+

r2h(1, 3)
(p1 − q3)(p3 − q1)

+
r1h(2, 3)

(p2 − q3)(p3 − q3)

)
, (5.22)

where

%i,j = rirj

(
1− αi,j(qiqj − pipj)

(pi − qj)(pj − qi)

)
,

M = α1,2,3
p1(p3q1 + (p2 − q1)q2) + q3(p2(p3 − q2)− p3q1)

(p1 − q3)(p3 − q2)(p2 − q1)

α1,3,2
q2((p3 − q1)p2 − p3q3) + p1(p2q1 + q3(p3 − q1))

(p1 − q2)(p2 − q3)(p3 − q1)

+ α1,2

(
p2(p1 − q2) + p1(p2 − q1)

(p1 − q2)(p2 − q1)

)
+ α1,3

(
p3(p1 − q3) + p1(p3 − q1)

(p1 − q3)(p3 − q1)

)
+ α2,3

(
p3(p2 − q3) + p2(p3 − q2)

(p2 − q3)(p3 − q2)

)
,

mi,j,k = qiqjrirj

(
q2
kh

2
k(1− αi,j) + hkqkrk

(
−
αi,j,k(pk`i,k + pi`k,j)

`i,k`k,j

−
αi,k,j(pj`j,k + pk`k,i)

`j,k`k,i
+
αj,k(pk`j,k + pj`k,j)

`j,k`k,j
+
αi,k(pk`i,k + pi`k,i)

`i,k`k,i

)
−pkr2

k

(
−
piαi,j,k
`i,j`k,j

−
pjαi,k,j
`j,k`k,i

+
αi,kαj,kqk(pi − pj)(qi − qj)

`i,k`k,i`j,k`k,j
+
pjαj,k
`j,k`k,j

+
piαi,k
`i,k`k,i

))
,

for i, j, k ∈ {1, 2, 3} and i 6= j 6= k. As in the previous section, we have `i,j = pi − qj .

To investigate the behaviour of each dromion as t → ±∞, we fix attention on the

dromion arising from the interaction of the ith and jth solitons, which will again be

termed d(i, j). Furthermore, we will call the corresponding two-soliton interaction matrix

variable fi,j . We consider det(w) = det(−(f[4])x)/det(f[4]) as given by (5.21) and (5.22)

in a frame moving with the (i, j)th dromion by rewriting it in terms of

x = x̂+ 4

(
(q3
j − p3

j )(q
2
i − p2

i )− (q3
i − p3

i )(q
2
j − p2

j )
(qj − pj)(q2

i − p2
i )− (q2

j − p2
j )(qi − pi)

)
t,

y = ŷ + 4

(
(q3
i − p3

i )(qj − pj)− (q3
j − p3

j )(qi − pi)
(qj − pj)(q2

i − p2
i )− (q2

j − p2
j )(qi − pi)

)
t,

from which we obtain

Λi = (qi − pi)x̂+ (q2
i − p2

i )ŷ, Λj = (qj − pj)x̂+ (q2
j − p2

j )ŷ,



CHAPTER 5. DROMIONS OF THE MATRIX EQUATIONS 131

for i, j = 1, 2, 3.

In accordance with the three-soliton matrix solution, we will assume, without loss of

generality, that 0 > p3 > q3 > p2 > q2 > p1 > q1. Let us begin by fixing d(1, 2). With

solitons 1 and 2 fixed, h1 and h2 are fixed and we study the asymptotic behaviour of h3

as t→ ±∞. We have that

h3 →

 −
p3r3

q3(p3−q3) , t→ −∞,

+∞, t→ +∞.

When h3 → −p3r3
q3(p3−q3) , equation (4.54) gives

f1,2 = − (b1,2A3 + b1,2,3A1A3 + b3,2,1A3A1 + b2,1,3A2A3 + b3,1,2A3A2 (5.23)

−
(
p3q2r3h2

p3 − q3
+

p2p3r2r3α2,3

(p2 − q3)(p3 − q2)

)
A1 −

(
p3q1r3h1

p3 − q3
+

p1p3r1r3α1,3

(p1 − q3)(p3 − q1)

)
A2

+
(

p2p3r3α1,3,2

(p2 − q3)(p3 − q1)α1,2
− p2p3r3

(p2 − q1)(p3 − q3)

)
A1A2

+
(

p1p3r3α1,2,3

(p1 − q3)(p3 − q2)α1,2
− p1p3r3

(p1 − q2)(p3 − q3)

)
A2A1

)
(p3 − q3)

h̃(1, 2)p3q1q2r3

+ I,

where

h̃(1, 2) =
(
h1h2 −

p2r2α2,3(p3 − q3)h1

q2(p2 − q3)(p3 − q2)
− p1r1α1,3(p3 − q3)h2

q1(p1 − q3)(p3 − q1)
− p1p2r1r2α1,2

q1q2(p1 − q2)(p2 − q1)

+
p1p2r1r2(p3 − q3)

q1q2

(
α1,2,3

(p2 − q1)(p1 − q3)(p3 − q2)
+

α1,3,2

(p1 − q2)(p2 − q3)(p3 − q1)

))
.

To obtain the characteristics of the dromion d(1, 2), we find the asymptotic forms of

w̃ := (−f1,2)xf−1
1,2 . Firstly, let us fix Λ1. Since w̃ is invariant under the transformation

f1,2 → f1,2C, where C is a constant matrix, we have

f−1,2 = I +
r1(1,2)−

q1
P1(1, 2)−

e−Λ1 + p1r1(1,2)−

q1(p1−q1)

as t→ −∞,

f+
1,2 = I +

r1(1,2)+

q1
P1(1, 2)+

e−Λ1 + p1r1(1,2)+

q1(p1−q1)

as t→ +∞,
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where

P1(1, 2)− =
µ1(1, 2)−ν1(1, 2)−

T

(µ1(1, 2)−, ν1(1, 2)−)
, P1(1, 2)+ =

µ1(1, 2)+ν1(1, 2)+T

(µ1(1, 2)+, ν1(1, 2)+)
,

µ1(1, 2)− = µ1 −
p1(p3 − q3)(µ1, ν3)µ3

p3(p1 − q3)(µ3, ν3)
, ν1(1, 2)− = ν1 −

q1(p3 − q3)(µ3, ν1)ν3

q3(p3 − q1)(µ3, ν3)

µ1(1, 2)+ = µ1 +
p1(p2 − q2)(p3 − q3)

p2(µ2, ν2)β2,3

(
(µ1, ν3)(µ3, ν2)

(µ3, ν3)(p1 − q3)(p3 − q2)
− (µ1, ν2)

(p1 − q2)(p3 − q3)

)
µ2

+
p1(p2 − q3)(p3 − q2)

p3(µ3, ν3)β2,3

(
(µ1, ν2)(µ2, ν3)

(µ2, ν2)(p1 − q2)(p2 − q3)
− (µ1, ν3)

(p1 − q3)(p2 − q2)

)
µ3,

ν1(1, 2)+ = ν1 +
q1(p2 − q2)(p3 − q3)

q2(µ2, ν2)β2,3

(
(µ3, ν1)(µ2, ν3)

(µ3, ν3)(p2 − q3)(p3 − q1)
− (µ2, ν1)

(p2 − q1)(p3 − q3)

)
ν2

+
q1(p2 − q3)(p3 − q2)

q3(µ3, ν3)β2,3

(
(µ2, ν1)(µ3, ν2)

(µ2, ν2)(p3 − q2)(p2 − q1)
− (µ3, ν1)

(p3 − q1)(p2 − q2)

)
ν3,

r1(1, 2)− =
r1(µ1(1, 2)−, ν1(1, 2)−)

(µ1, ν1)
= r1β1,3 and

r1(1, 2)+ =
r1(µ1(1, 2)+, ν1(1, 2)+)

(µ1, ν1)
= r1

β1,2,3

β2,3
.

These asymptotic expressions for f1,2 are of the same form as the one-soliton matrix

variable f[2] discussed in Chapter 4. So the asymptotic forms for w̃ are

w̃ ∼ (p1 − q1)2

4(p1q1)
1
2

P1(1, 2)− sech
(

Λ1 + ϕ1(1, 2)−

2

)
sech

(
Λ1 + χ1(1, 2)−

2

)
as t→ −∞,

w̃ ∼ (p1 − q1)2

4(p1q1)
1
2

P1(1, 2)+ sech
(

Λ1 + ϕ1(1, 2)+

2

)
sech

(
Λ1 + χ1(1, 2)+

2

)
as t→ +∞,

in which ϕ1(1, 2)− = log
(
−p1r1(1,2)−

q1(p1−q1)

)
, ϕ1(1, 2)+ = log

(
−p1r1(1,2)+

q1(p1−q1)

)
,

χ1(1, 2)− = log
(
− r1(1,2)−

p1−q1

)
, χ1(1, 2)+ = log

(
− r1(1,2)+

p1−q1

)
and the phase-constants are:

ξ1(1, 2)− = − log

(
−(p1q

−1
1 )

1
2 r1(1, 2)−

p1 − q1

)
and ξ1(1, 2)+ = − log

(
−(p1q

−1
1 )

1
2 r1(1, 2)+

p1 − q1

)
.

Next we fix Λ2. Since w̃ is invariant under the transformation f1,2 → f1,2C, where C

is a constant matrix, we have

f−1,2 = I +
r2(1,2)−

q2
P2(1, 2)−

e−Λ2 + p2r2(1,2)−

q2(p2−q2)

as t→ −∞

f+
1,2 = I +

r2(1,2)+

q2
P2(1, 2)+

e−Λ2 + p2r2(1,2)+

q2(p2−q2)

as t→ +∞,



CHAPTER 5. DROMIONS OF THE MATRIX EQUATIONS 133

in which

P2(1, 2)− =
µ2(1, 2)−ν2(1, 2)−

T

(µ−2 , ν
−
2 )

P2(1, 2)+ =
µ2(1, 2)+ν2(1, 2)+T

(µ2(1, 2)+, ν2(1, 2)+)
,

µ2(1, 2)+ = µ2 −
p2(p3 − q3)(µ2, ν3)µ3

p3(p2 − q3)(µ3, ν3)
, ν2(1, 2)+ = ν2 −

q2(p3 − q3)(µ3, ν2)ν3

q3(p3 − q2)(µ3, ν3)

µ2(1, 2)− = µ2 +
p2 (p1 − q1) (p3 − q3)

p1(µ1, ν1)β1,3

(
(µ2, ν3)(µ3, ν1)

(µ3, ν3)(p2 − q3)(p3 − q1)
− (µ2, ν1)

(p2 − q1)(p3 − q3)

)
µ1

+
p2(p1 − q1)(p3 − q3)

p3(µ3, ν3)β1,3

(
(µ2, ν1)(µ1, ν3)

(µ1, ν1)(p2 − q1)(p1 − q3)
− (µ2, ν3)

(p2 − q3)(p1 − q1)

)
µ3,

ν2(1, 2)− = ν2 +
q2(p1 − q1)(p3 − q3)

q1(µ1, ν1)β1,3

(
(µ3, ν2)(µ1, ν3)

(µ3, ν3)(p1 − q3)(p3 − q2)
− (µ1, ν2)

(p1 − q2)(p3 − q3)

)
ν1

+
q2(p1 − q1)(p3 − q3)

q3(µ3, ν3)β1,3

(
(µ1, ν2)(µ3, ν1)

(µ1, ν1)(p3 − q1)(p1 − q2)
− (µ3, ν2)

(p3 − q2)(p1 − q1)

)
ν3,

r2(1, 2)− =
r2(µ2(1, 2)−, ν2(1, 2)−)

(µ2, ν2)
= r2

β1,2,3

β1,3
and

r2(1, 2)+ =
r2(µ2(1, 2)+, ν2(1, 2+)

(µ2, ν2)
= r2β2,3.

So the asymptotic forms for w̃ are

w̃ ∼ (p2 − q2)2

4(p2q2)
1
2

P2(1, 2)− sech
(

Λ2 + ϕ2(1, 2)−

2

)
sech

(
Λ2 + χ2(1, 2)−

2

)
as t→ −∞,

w̃ ∼ (p2 − q2)2

4(p2q2)−
1
2

P2(1, 2)+ sech
(

Λ2 + ϕ2(1, 2)+

2

)
sech

(
Λ2 + χ2(1, 2)+

2

)
as t→ +∞,

in which ϕ2(1, 2)− = log
(
−p2r2(1,2)−

q2(p2−q2)

)
, ϕ2(1, 2)+ = log

(
−p2r2(1,2)+

q2(p2−q2)

)
,

χ2(1, 2)− = log
(
− r2(1,2)−

p2−q2

)
, χ2(1, 2)+ = log

(
− r2(1,2)+

p2−q2

)
and the phase-constants are:

ξ2(1, 2)− = − log

(
−(p2q

−1
2 )

1
2 r2(1, 2)−

p2 − q2

)
and ξ2(1, 2)+ = − log

(
−(p2q

−1
2 )

1
2 r2(1, 2)+

p2 − q2

)
.

Furthermore, the soliton phase-shifts ∆j(1, 2) = ξj(1, 2)+ − ξj(1, 2)−, for j = 1, 2 are

∆1(1, 2) = − log
(
β−1,2

)
and ∆2(1, 2) = log

(
β−1,2

)
, in which β−1,2 =

β1,2,3

β1,3β2,3
.

The asymptotic expressions for w̃ can now be used to describe the dromion d(1, 2) as

t→ −∞. When h3 → −p3r3
q3(p3−q3) , equation (5.21) and (5.22) give

d(1, 2) ∼
r1(1, 2)−r2(1, 2)+(p1 − q1)(p2 − q2)(1− α−1,2)

S−κ (1, 2)S−ι (1, 2)
, (5.24)
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where

S−κ (1, 2) = e−
1
2

(Λ1+Λ2) − κ1(1, 2)−e
1
2

(Λ1−Λ2) − κ2(1, 2)−e
1
2

(Λ2−Λ1) + κ−1,2e
1
2

(Λ1+Λ2),

S−ι (1, 2) = e−
1
2

(Λ1+Λ2) − ι1(1, 2)−e
1
2

(Λ1−Λ2) − ι2(1, 2)−e
1
2

(Λ2−Λ1) + ι−1,2e
1
2

(Λ1+Λ2),

α−1,2 = Tr(P1(1, 2)−P2(1, 2)+), κ1(1, 2)− =
r1(1, 2)−

p1 − q1
, κ2(1, 2)− =

r2(1, 2)+

p2 − q2
,

ι1(1, 2)− =
p1

q1
κ1(1, 2)−, ι−2 =

p2

q2
κ2(1, 2)−, ι−1,2 = ι1(1, 2)−ι2(1, 2)−β−1,2, and

κ−1,2 = κ1(1, 2)−κ2(1, 2)−β−1,2.

In Chapter 4, we had that

L
′
i,j =

qi(pj − qi)
h(i, j)

(hj(qjpi − qj)I + piAj)Ai,

for i, j ∈ {1, 2, 3} and i 6= j. When h3 → +∞, from (4.50) we have that L3 → 0 and

therefore

f1,2 ∼ I +
L
′
1,2

q1
+
L
′
2,1

q2
, (5.25)

The asymptotic expression (5.25) is of the same form as the two-soliton matrix variable

f[3] and the resulting dromion is therefore of the same form as the single dromion as given

by (5.17). Therefore, when Λ1 is fixed, the asymptotic forms ˆ̃w := −(f1,2)xf−1
1,2 are

ˆ̃w ∼ (p1 − q1)2

4(p1q1)
1
2

P̂1(1, 2)− sech
(

Λ1 + ϕ̂1(1, 2)−

2

)
sech

(
Λ1 + χ̂1(1, 2)−

2

)
as t→ −∞,

ˆ̃w ∼ (p1 − q1)2

4(p1q1)
1
2

P̂1(1, 2)+ sech
(

Λ1 + ϕ̂1(1, 2)+

2

)
sech

(
Λ1 + χ̂1(1, 2)+

2

)
as t→ +∞,

where

P̂1(1, 2)− =
µ̂1(1, 2)−ν̂1(1, 2)−

T

(µ̂1(1, 2)−, ν̂1(1, 2)−)
, P̂1(1, 2)+ =

µ̂1(1, 2)+ν̂1(1, 2)+T

(µ̂1(1, 2)+, ν̂1(1, 2)+)
,

µ̂1(1, 2)− = µ1, ν̂1(1, 2)− = ν1, µ̂1(1, 2)+ = µ1 −
p1(p2 − q2)(µ1, ν2)µ2

p2(p1 − q2)(µ2, ν2)
,

ν̂1(1, 2)+ = ν1 −
q1(p2 − q2)(µ2, ν1)ν2

q2(p2 − q1)(µ2, ν2)
, r̂1(1, 2)− = r1,

r̂1(1, 2)+ =
r1(µ̂1(1, 2), ν̂1(1, 2))

(µ1, ν1)
= r1β1,2, ϕ̂1(1, 2)− = log

(
−p1r̂1(1, 2)−

q1(p1 − q1)

)
,

χ̂1(1, 2)− = log
(
−r̂1(1, 2)−

p1 − q1

)
, ϕ̂1(1, 2)+ = log

(
−p1r̂1(1, 2)+

q1(p1 − q1)

)
and

χ̂1(1, 2)+ = log
(
−r̂1(1, 2)+

p1 − q1

)
.
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The soliton phase-constants are

ξ̂1(1, 2)− = − log

(
−(p1q

−1
1 )

1
2 r̂1(1, 2)−

p1 − q1

)
and ξ̂1(1, 2)+ = − log

(
−(p1q

−1
1 )

1
2 r̂1(1, 2)+

p1 − q1

)
.

When Λ2 is fixed, the asymptotic forms for ˆ̃w are

ˆ̃w ∼ (p2 − q2)2

4(p2q2)
1
2

P̂2(1, 2)− sech
(

Λ2 + ϕ̂2(1, 2)−

2

)
sech

(
Λ2 + χ̂2(1, 2)−

2

)
as t→ −∞,

ˆ̃w ∼ (p2 − q2)2

4(p2q2)−
1
2

P̂2(1, 2)+ sech
(

Λ2 + ϕ̂2(1, 2)+

2

)
sech

(
Λ2 + χ̂2(1, 2)+

2

)
as t→ +∞,

in which

P̂2(1, 2)− =
µ̂2(1, 2)−ν̂2(1, 2)−

T

(µ̂2(1, 2)−, ν̂2(1, 2)−)
, P̂2(1, 2)+ =

µ̂2(1, 2)+ν̂2(1, 2)+T

(µ̂2(1, 2)+, ν̂2(1, 2)+)
,

µ̂2(1, 2)+ = µ2, ν̂2(1, 2)+ = ν2, µ̂2(1, 2)− = µ2 −
p2(p1 − q1)(µ2, ν1)µ1

p1(p2 − q1)(µ1, ν1)
,

ν̂2(1, 2)− = ν2 −
q2(p1 − q1)(µ1, ν2)ν1

q1(p1 − q2)(µ1, ν1)
, r̂2(1, 2)− =

r2(µ̂2(1, 2), ν̂2(1, 2))
(µ2, ν2)

= r2β1,2,

r̂2(1, 2)+ = r2, ϕ̂2(1, 2)− = log
(
−p2r̂2(1, 2)−

q2(p2 − q2)

)
, χ̂2(1, 2)− = log

(
−r̂2(1, 2)−

p2 − q2

)
,

ϕ̂2(1, 2)+ = log
(
−p2r̂2(1, 2)+

q2(p2 − q2)

)
and χ̂2(1, 2)+ = log

(
−r̂2(1, 2)+

p2 − q2

)
.

The soliton phase-constants are

ξ̂2(1, 2)− = − log

(
−(p2q

−1
2 )

1
2 r̂2(1, 2)−

p2 − q2

)
and ξ̂2(1, 2)+ = − log

(
−(p2q

−1
2 )

1
2 r̂2(1, 2)+

p2 − q2

)
.

Furthermore, the soliton phase-shifts ∆̂j(1, 2) = ξ̂j(1, 2)+ − ξ̂j(1, 2)−, for j = 1, 2 are

∆̂1(1, 2) = − log
(
β+

1,2

)
and ∆̂2(1, 2) = log

(
β+

1,2

)
, where β+

1,2 = β1,2.

The dromion d(1, 2) as t→ +∞ can now be written as

d(1, 2) ∼
r̂1(1, 2)−r̂2(1, 2)+(p1 − q1)(p2 − q2)(1− α+

1,2)

S+
κ (1, 2)S+

ι (1, 2)
, (5.26)

where

S+
κ (1, 2) = e−

1
2

(Λ1+Λ2) − κ1(1, 2)+e
1
2

(Λ1−Λ2) − κ2(1, 2)+e
1
2

(Λ2−Λ1) + κ+
1,2e

1
2

(Λ1+Λ2),

S+
ι (1, 2) = e−

1
2

(Λ1+Λ2) − ι1(1, 2)+e
1
2

(Λ1−Λ2) − ι2(1, 2)+e
1
2

(Λ2−Λ1) + κ+
1,2e

1
2

(Λ1+Λ2),

α+
1,2 = Tr(P̂1(1, 2)−P̂2(1, 2)+), κ1(1, 2)+ = κ1, κ2(1, 2)+ = κ2, κ+

1,2 = κ+
1 κ

+
2 β

+
1,2,

ι1(1, 2)+ =
p1

q1
κ1(1, 2)+ ι2(1, 2)+ =

p2

q2
κ2(1, 2)+ and ι+1,2 = ι+1 ι

+
2 β

+
1,2.
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Similar calculations give expressions for the dromions d(2, 3) and d(1, 3). As t→ −∞.

d(2, 3) ∼
r2(2, 3)−r3(2, 3)+(p2 − q2)(p3 − q3)(1− α−2,3)

S−κ (2, 3)S−ι (2, 3)
, (5.27)

d(1, 3) ∼
r1(1, 3)−r3(1, 3)+(p1 − q1)(p3 − q3)(1− α−1,3)

S−κ (2, 3)S−ι (2, 3)
, (5.28)

and as t→ +∞ we have

d(2, 3) ∼
r̂2(2, 3)−r̂3(2, 3)+(p2 − q2)(p3 − q3)(1− α+

2,3)

S+
κ (2, 3)S+

ι (2, 3)
, (5.29)

d(1, 3) ∼
r̂1(1, 3)−r̂3(1, 3)+(p1 − q1)(p3 − q3)(1− α+

1,3)

S+
κ (1, 3)S+

ι (1, 3)
. (5.30)

5.2.2 Summary of the three-dromion structure

The asymptotic expressions (5.24), (5.26), (5.27), (5.28), (5.29) and (5.30) all have the

same form as the dromion given by (5.17). Therefore, we have shown that the three-

dromion structure det(w) = −det((f[4])x)/det(f[4]) decomposes asymptotically into six

dromions:

d(i, j) ∼


ri(i,j)

−rj(i,j)+(pi−qi)(pj−qj)(1−α−i,j)
S−κ (i,j)S−ι (i,j)

as t→ −∞,
r̂i(i,j)

−r̂j(i,j)+(pi−qi)(pj−qj)(1−α+
i,j)

S+
κ (i,j)S+

ι (i,j)
as t→ +∞,

for i, j ∈ {1, 2, 3} and i 6= j, giving the following generalisation of Theorem 4:

Theorem 5. If det(Ω) is positive-definite, then det(w), as given by (5.21) and (5.22), has

the following properties:

1. det(w) decomposes asymptotically into six dromions as described in Theorem 4. Each

d(i, j) decays to zero exponentially as (x, y)→∞ in any direction.

2. The amplitude of d(i, j) is

A− :=
(1− α−i,j)pipj(pi − qi)2(pj − qj)2(√

β−i,j

(√
pipj
qiqj

+ pipj
qiqj

)
+ pi

qi

√
pj
qj

+ pj
qj

√
pi
qi

)2
q2
i q

2
j

, t→ −∞

A+ :=
(1− α+

i,j)pipj(pi − qi)2(pj − qj)2(√
β+
i,j

(√
pipj
qiqj

+ pipj
qiqj

)
+ pi

qi

√
pj
qj

+ pj
qj

√
pi
qi

)2
q2
i q

2
j

, t→ +∞.

The amplitude is

• negative

(a) as t→ −∞: if α−i,j > 1,
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(b) as t→ +∞: if α+
i,j > 1,

• zero

(a) as t→ −∞: if α−i,j = 1,

(b) as t→ +∞: if α+
i,j = 1,

• positive

(a) as t→ −∞: if α−i,j < 1,

(b) as t→ +∞: if α+
i,j < 1,

3. At time t the location of d(i, j) moves from

(x, y) =
−1
2li,j

(
l
(2)
j (ξi(i, j)− + ξi(i, j)+)− l(2)

i (ξj(i, j)− + ξj(i, j)+) + 8lj,kt ,

l
(1)
i (ξj(i, j)− + ξj(i, j)+)− l(1)

j (ξi(i, j)− + ξi(i, j)+) + 8li,kt
)
,

as t→ −∞ to

(x, y) =
−1
2li,j

(
l
(2)
j (ξ̂i(i, j)− + ξ̂i(i, j)+)− l(2)

i (ξ̂j(i, j)− + ξ̂j(i, j)+) + 8lj,kt ,

l
(1)
i (ξ̂j(i, j)− + ξ̂j(i, j)+)− l(1)

j (ξ̂i(i, j)− + ξ̂i(i, j)+) + 8li,kt
)
,

as t→ +∞.

4. The trajectory of d(i, j) changes from

y =
(
li,k
lj,k

)
x+(

l
(1)
j lj,k + l

(2)
j li,k

)
(ξi(i, j)− + ξi(i, j)+)−

(
l
(1)
i lj,k + l

(2)
i li,k

)
(ξj(i, j)− + ξj(i, j)+)

2li,jlj,k
,

as t→ −∞ to

y =
(
li,k
lj,k

)
x+(

l
(1)
j lj,k + l

(2)
j li,k

)
(ξ̂i(i, j)− + ξ̂i(i, j)+)−

(
l
(1)
i lj,k + l

(2)
1 li,k

)
(ξ̂j(i, j)− + ξ̂j(i, j)+)

2li,jlj,k
,

as t→ +∞.
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5.2.3 Plots of dromions

Let us again label the elements of the 2-vectors as

µ(i, j)− =

a−ij,1
a−ij,2

 , ν(i, j)− =

b−ij,1
b−ij,2

 , µ(i, j)+ =

a+
ij,1

a+
ij,2

 , ν(i, j)+ =

b+ij,1
b+ij,2

 ,

µ̂(i, j)− =

c−ij,1
c−ij,2

 , ν̂(i, j)− =

d−ij,1
d−ij,2

 , µ̂(i, j)+ =

c+
ij,1

c+
ij,2

 , ν̂(i, j)+ =

d+
ij,1

d+
ij,2

 ,

for j = 1, 2, 3 and i 6= j.

As t→ −∞, d(i, j) vanishes

⇔ Tr(Pi(i, j)−Pj(i, j)+) = 1

⇔ (µ(i, j)−, ν(i, j)+)(µ(i, j)+, ν(i, j)−) = (µ(i, j)−, ν(i, j)−)(µ(i, j)+, ν(i, j)+)

⇔ a−ij,2a
+
ij,1 = a−ij,1a

+
ij,2 or b−ij,2b

+
ij,1 = b−ij,1b

+
ij,2.

As t→ +∞, d(i, j) vanishes

⇔ Tr(P̂i(i, j)−P̂j(i, j)+) = 1

⇔ (µ̂(i, j)−, ν̂(i, j)+)(µ̂(i, j)+, ν̂(i, j)−) = (µ̂(i, j)−, ν̂(i, j)−)(µ̂(i, j)+, ν̂(i, j)+)

⇔ c−ij,2c
+
ij,1 = c−ij,1c

+
ij,2 or d−ij,2d

+
ij,1 = d−ij,1d

+
ij,2.

Figure 5.8 shows a plot of the three-dromion structure with

µT1 =
(

1 2
)
, µT2 =

(
3 6

)
, µT3 =

(
−1 −3

)
,

νT1 =
(

2 2
3

)
, νT2 =

(
−1 3

)
and νT3 =

(
3 1

)
,

so that d(1, 3) vanishes as t→ −∞ and d(1, 2), d(2, 3) vanish as t→ +∞.
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Chapter 6

Summary and conclusions

In Chapter 3, we saw that our noncommutative KP equation had two families of solutions,

obtained from Darboux and binary Darboux transformations, which could be expressed as

quasiwronskians and quasigrammians. Like the commutative case reviewed in Chapter 2,

it was shown that these solutions can be verified directly. In doing so, both types of solu-

tion reduced to identities with the same structure, just as the Wronskian and Grammian

solutions did. Our noncommutative mKP equation again had a family of quasiwronskian

and a family of quasigrammian solutions, obtained from Darboux and binary Darboux

transformations. However, when attempting to directly verify these solutions, we were

only able to do so for the quasiwronskians as there appears to be no obvious way of invert-

ing the quasigrammian F discussed in Chapter 4. Further work is required to investigate

the invertibility of F and the subsequent direct verification of the family of quasigram-

mian solutions of ncmKP. The process of directly verifying the quasigrammian solutions

of ncKP proved to be easier than that of the commutative case outlined in Chapter 2 since

no Frobenius partition was needed.

For both ncKP and ncmKP, we saw in Chapters 3 and 4 that all of the quasiwronskians

and quasigrammians expressing transformed eigenfunctions and solutions can always be

reduced to the corresponding commutative results in Chapter 2 using a known result of a

quasideterminant. Quasideterminants therefore appear to be more beneficial as a compact

expression for iterated Darboux transformations. However, quasideterminant solutions

cannot be obtained from Hirota’s method and in this thesis their existence was limited to

Darboux transformations.

The nature of the noncommutativity of the dependent variables in ncKP and ncmKP

was specified in Chapters 3 and 4 by projection matrices. Though not the most general

140



CHAPTER 6. SUMMARY AND CONCLUSIONS 141

case of matrices, they provided a richer picture of interaction of soliton solutions of ncKP

and ncmKP by adding a change of matrix amplitude in addition to a phase-shift. Examples

of other types of noncommutative variables such as vectors could also be investigated in

addition to the projection matrix examples discussed in this thesis.

Taking the determinant of the projection matrix solutions allowed us to find a new class

of dromion structures. These dromions are unique to this example of noncommutativity

and clearly have no commutative analogue. The properties of the single dromion are

similar to those of the DSI and NVN equations and are found using the same techniques.

After finding the single dromion, interaction properties of these new structures were then

examined for three-dromion structures. The key to changes in amplitude lies in the trace

of the projection matrices governing the amplitude of the underlying interacting solitons.

This is different from the DSI and NVN equations. The changes in location and trajectory

are similar to the DSI and NVN dromions in that they are governed by changes in phase-

shift of the underlying solitons in the three-soliton structure.

Another different feature of the dromions of ncKP and ncmKP is the orientation of

the underlying solitons in the solution. For the DSI and NVN equations, the underlying

solitons are perpendicular and/or parallel to one another. This orientation gives a nicer

schematic form of dromion scattering allowing for generalisation of the asymptotics to

any n ≥ 1. However, the orientation of the solitons of the matrix versions of both ncKP

and ncmKP is not fixed in the same way which prevented us from finding asymptotic

expressions for each dromion in the solution beyond n = 3. Further work would be

required to generalise the result to any n ≥ 1.
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