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Abstract 
 
 
Background: 
 
Pulmonary hypertension (PH) is a rare condition that  can occur as a primary disease 

process, Idiopathic Pulmonary Hypertension (IPH) or secondary to other disorders. In 

Familial IPH mutations have been identified in the bone morphogenetic protein 

receptor II gene (BMPRII) (chromosome 2q32-31) a member of the Transforming 

Growth Factor β (TGFβ) (Lane et al, 2000).  Despite the mutation being present in all 

cells, vascular wall remodelling is only seen in the pulmonary circulation with marked 

thickening of the intima and neointimal formation, muscularisation of small-

generation resistance vessels and thickening of the adventitial layer together with 

increased ECM deposition.  Similar appearances are noted in the pulmonary 

circulation’s response to hypoxia.  Prolonged exposure of the pulmonary circulation 

to hypoxia results in vasoconstriction and subsequent vascular wall remodelling. 

 

The hypothesis of this work is that the pulmonary circulation’s response to hypoxia 

may be partially explained by the existence of differences in cell signalling pathways 

in  adventitial fibroblasts from pulmonary and systemic arteries.  Studies from the 
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Scottish Pulmonary Vascular (SPVU) Laboratory have shown that pulmonary arterial 

fibroblasts (PAFB) in bovine and rat models of acute hypoxic exposure preferentially 

proliferate to hypoxia, whereas systemic arterial fibroblasts (SAFB) do not, that the 

stress mitogen activated protein kinase p38 MAPK is consistently activated in PAFB 

exposed to acute hypoxia, and is constitutively upregulated in PAFB cultured from 

rats exposed to chronic hypoxia (Welsh et al, 1998; Welsh et al; 2001).  This response 

to hypoxic exposure has been shown to be dependent on p38 MAPK activity, as use 

of SB203580 can block the hypoxia-mediated proliferative response to acute hypoxia 

(Scott et al, 1998; Welsh et al, 2001). 

 

Aims and methods: 

We wished to establish whether the pro-proliferative response of PAFB to acute 

hypoxic exposure previously noted in bovine and rat models could also be 

demonstrated in a human model.  We wished to establish a role for both classic 

MAPK and stress MAPKs in hypoxia-mediated PAFB proliferation.  We also wished 

to examine the role of hypoxia inducible factor 1 (HIF1) in human arterial fibroblast 

responses to acute hypoxia.  There is a body of literature that documents cross talk 

between p38 MAPK and the Bone Morphogenetic Protein (BMPR) signalling 

pathways.  We wished to establish whether Smad proteins (involved in the 

downstream signalling cascade from BMPR) might play a role in human pulmonary 

and systemic arterial fibroblast proliferation to acute hypoxia. 

 

Following approval from the local Ethics Committee, PAFB were harvested from 

patients undergoing lobectomy for the treatment of lung cancer.  Left internal 

mammary arteries (SAFB) were harvested from patients undergoing coronary artery 
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bypass grafting.  Cells from systemic and pulmonary arterial fibroblasts were grown 

in conditions of normoxia or acute hypoxia (PO2 35 mmHg ~ 5% O2).  Cellular 

proliferation was assessed using [3H]Thymidine uptake as a surrogate.  p38, p44/p42 - 

ERK1/2 and JNK MAPKs and Smad protein activity was assessed using Western 

Blotting Techniques with the use of appropriate primary and secondary antibodies and 

Chemiluminescence to detect the presence of protein.  p38 MAPK isoform activity 

was assessed using Catch and Release® immunophoresis techniques. 

 

Findings and conclusions: 

We demonstrated that acute hypoxic exposure results in human PAFB proliferation, 

associated with increased p44/p42 – ERK 1/2 MAPK activity, but dependent on p38 

MAPK α activity.  We also found that the p38 MAPK γ isoform was expressed in 

human PAFB following hypoxic exposure but this did not appear to be involved in the 

hypoxia-mediated proliferative response.  p38 MAPK α activity appeared to occur in 

a bi-phasic pattern with peaks of activity at t = 6 and 16 hours, the second peak was 

found to be responsible for the hypoxia-mediated proliferation seen in these cells in 

agreement with previous work from the SPVU laboratory (Scott et al, 1998; Welsh et 

al., 2001).  The second peak in p38 MAPK α activity was synchronous with peak 

HIF1α activity (between t = 8 –16 hours).  We demonstrated that HIF1α activity can 

be abrogated by pre-incubation of human PAFB with SB203580 suggesting a 

mechanistic link between p38 MAPK α activation and HIF1α in a human model of 

acute hypoxic exposure. 

 

We have also demonstrated that that BMPR2-associated Smad 1, 5 and 8 activation is 

increased in hypoxic human SAFB, suggestive of the activation of an anti-
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proliferative pathway in these cells that is not associated with p38 MAPK activity.   

To our knowledge this is the first demonstration of an active response in SAFB to 

acute hypoxic exposure that involves the active upregulation of an anti-proliferative 

pathway in these cells.  In addition we have demonstrated that in hypoxic pulmonary 

arterial fibroblasts phospho Smad 1, 5 and 8 expression is reduced (suggestive of the 

down-regulation of an anti-proliferative pathway) and can be further abrogated by 

pre-incubation with SB203580.  This suggests that in SAFB Smad 1, 5 and 8 

activation occurs independent of p38 MAPK activation while in PAFB, p38 MAPK 

activity augments Smad 1, 5 and 8 activation. 
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Chapter 1: 

1.1.1.  Introduction and Hypothesis 

Pulmonary hypertension (PH) is a rare condition that  can occur as a primary disease 

process, Idiopathic Pulmonary Hypertension (IPH) or secondary to other disorders 

such as congenital heart disease, thyroid dysfunction, liver cirrhosis with portal 

hypertension, HIV infection or hypoxia. The development of increased pulmonary 

vascular resistance results in elevated pulmonary artery pressures leading to  right 

ventricular failure.  Untreated survival rarely exceeds three years (D’Alsonzo et al, 

1991).   

 

The diagnosis of PH requires the demonstration of elevated mean pulmonary arterial 

pressure in excess of 25 mmHg at rest, or 30 mmHg on exercise, during right heart 

catheterisation (RHC).  At The World Symposium on Pulmonary Hypertension held 

in Venice 2003 PH was re-classified with Group 1 diagnoses including IPH, Familial 

PH (FPAH) and porto-pulmonary PH but in addition Groups 2 – 4 included many 

causes of PH not primarily the result of pulmonary vascular pathology such as PH 

associated with left-sided heart disease (Simonneau et al, 2004).  The rationale for this 

was the importance of making a definitive diagnosis in order to establish an 

appropriate treatment plan.  Table 1.1 details the classification system currently in use 

for the diagnosis of PH. 

 

Currently there are broadly 3 groups of therapeutic agents for the treatment of PH: 

prostaglandins including epoprostanol, treprostinil and iloprost, endothelin receptor 

antagonists such as bosentan, ambrisentan and sitaxentan and phosphodiesterase 

inhibitors such as sildenafil and tadalafil.  Treatment aims to reduce pulmonary  
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1. Pulmonary arterial hypertension (PAH) 
1.1. Idiopathic (IPAH) 
1.2. Familial (FPAH) 
1.3. Associated with (APAH): 
1.3.1. Connective tissue disease 
1.3.2. Congenital systemic to pulmonary shunts 
1.3.3. Portal hypertension 
1.3.4. HIV infection 
1.3.5. Drugs and toxins 
1.3.6. Other (thyroid disorders, glycogen storage disease, Gaucher's disease, 
hereditary haemorrhagic telangiectasia, haemoglobinopathies, myeloproliferative 
disorders, splenectomy) 
1.4. Associated with significant venous or capillary involvement 
1.4.1. Pulmonary veno-occlusive disease (PVOD) 
1.4.2. Pulmonary capillary haemangiomatosis (PCH) 
1.5. Persistent pulmonary hypertension of the newborn (PPHN) 
2. Pulmonary hypertension associated with left heart diseases 
2.1. Left-sided atrial or ventricular heart disease 
2.2. Left-sided valvular heart disease 
3. Pulmonary hypertension associated with lung respiratory diseases and/or hypoxia 
3.1. Chronic obstructive pulmonary disease 
3.2. Interstitial lung disease 
3.3. Sleep disordered breathing 
3.4. Alveolar hypoventilation disorders 
3.5. Chronic exposure to high altitude 
3.6. Developmental abnormalities 
4. Pulmonary hypertension due to chronic thrombotic and/or embolic disease 
4.1. Thromboembolic obstruction of proximal pulmonary arteries 
4.2. Thromboembolic obstruction of distal pulmonary arteries 
4.3. Non-thrombotic pulmonary embolism (tumour, parasites, foreign material) 
5. Miscellaneous 
Sarcoidosis, histiocytosis X, lymphangiomatosis, compression of pulmonary vessels 
(adenopathy, tumour, fibrosing mediastinitis) 
 

Table 1.1 Venice Classification of Pulmonary Arterial Hypertension. (Simonnaeu 

et al, 2004) 
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arterial vasoconstriction and prevent vascular remodelling, improving exercise 

capacity and quality of life.  In addition calcium channel blockers (CCB) such as 

nifedipine are used in the small proportion of patients who prove to be vasodilator 

responders on RHC (a fall in mean PAP – PAPm of greater than 10mmHg to a level 

less than 40 mmHg with inhalation of nitric oxide or intravenous administration of 

other agents such as adenosine) together with oxygen therapy, anticoagulation and 

diuretics (Lee et al, 2005).  Table 1.2 details the current treatment algorithm in use 

for PH. 

 

1.2. Pulmonary and Systemic Vascular Response to Injury 

 

1.2.1 Histological changes in pulmonary hypertension. 

In PH regardless of disease aetiology, the histological changes seen in the pulmonary 

vasculature appear to be consistent.  The vascular wall consists of three layers; the 

intima, a single layer of endothelial cells (EC) on a basement membrane, the media, 

vascular smooth muscle cells (VSMC) in a matrix of connective tissue and the 

adventitia, composed of fibroblasts (FB) and extra cellular matrix (ECM). In PH there 

is marked thickening of the intima and neointimal formation, muscularisation of 

small-generation resistance vessels and thickening of the adventitial layer together 

with increased ECM deposition (figure 1.2).  The extent of these structural changes 

varies throughout the pulmonary circulation with medial expansion most marked in 

the small diameter resistance vessels (< 150μm diameter) and thickening of the 

adventitia apparent in the larger conduit vessels (Stenmark et al, 1999).  This results 

in a narrowed vessel lumen and reduced vessel compliance with secondary elevation  
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Figure 1.1 Treatment algorithm for pulmonary arterial hypertension (PAH), (Galie et 

al, 2004) 
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Figure 1.2: Section of pulmonary arterial and vein wall taken from a patient with 

Familial Pulmonary Arterial Hypertension.  This demonstrates marked thickening 

of the intima and neointimal formation, muscularisation of small-generation resistance 

vessels and thickening of the adventitial layer together with increased ECM 

deposition.  The adjacent pulmonary vein does not demonstrate these changes. 
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of pulmonary artery pressure, hypoxaemia (low arterial oxygen tension) and 

subsequent polycythaemia (over production of red blood cells).   

 

1.2.2.  The systemic circulation’s response to hypertension. 

In a biological context remodelling can be defined as an increase in the number of 

cells, size or mass of a structure.  It may either be appropriate, as in fetal development  

or growth, or inappropriate, when change continues or persists to the disadvantage of 

physiological function.  Evidence of remodelling in response to altered environment is 

seen in both the pulmonary and systemic vasculature.  Remodelling in pulmonary 

hypertension appears to involve all layers of the vascular wall; in the systemic 

circulation the response to injury seems to occur more focally in the intimal and 

medial layers (Stenmark et al, 1997).  Intimal hyperplasia with migration of VSMC 

into the neointimal layer has been demonstrated in vein grafts following coronary 

artery by-pass surgery, vessels supplying transplanted organs, in arteriosclerotic 

vessels and in coronary arteries following angioplasty (Newby and Zaltsman, 2000).  

Remodelling of the vascular wall is also seen in systemic hypertension (Su et al, 

2001).  Changes are variable but occur in the medial and intimal layers in both 

conduit and resistance arteries.   

 

In systemic hypertension ‘remodelling’ is considered by some investigators to imply 

altered shape without an increase in cellular proliferation (Baumbach et al, 1993).   

Mulvany et al (1996) detail a highly complex classification of systemic vascular 

‘remodelling’.  They define it as either hypertrophic, (an increase in medial thickness 

as a result of cellular hypertrophy with subsequent narrowing of the vessel lumen); 

eutrophic remodelling, (no alteration in medial thickness but involving a reduction in 
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both external and internal vessel diameter); and hypotrophic remodelling where there 

is loss of medial wall thickness and reduction in vascular lumen diameter.  Mulvany et 

al (1996) hypothesised that the character of vascular wall remodelling may be specific 

to vessel generation.  Work by Dunn et al  (1998) suggested that patterns of vascular 

remodelling are not so easily generalised: they demonstrate significant histological 

differences between ‘remodelled’ vessels of the same generation - from the 

mesenteric and cerebral circulations - in genetically hypertensive rats.   

 

In summary, both systemic and pulmonary circulations can remodel as a result of 

hypertension but vessel wall remodelling can also cause hypertension. However it 

seems that while pulmonary arteries appear to respond in a histologically consistent 

manner regardless of aetiology, there is considerable variation in patterns of systemic 

artery remodelling. 

 

1.2.2.  A comparison of pulmonary and systemic arterial response to hypoxia 

Von Euler and Liejstrand first demonstrated pulmonary artery vasoconstriction to 

hypoxia in 1946 using a cat model.   The response to hypoxia seemed to be two-fold: 

acute hypoxia resulted in rapid onset of pulmonary artery vasoconstriction while 

chronic hypoxia resulted in vascular wall remodelling and the eventual development 

of pulmonary hypertension.  The acute vasoconstrictive response was mediated by an 

increase in VSMC tone while the chronic changes occurred as a result of increased 

cellular proliferation and ECM deposition (Meyrick and Reid, 1979). Pulmonary 

artery vasoconstriction is important in fetal life to maintain blood flow through the 

foramen ovale to the systemic circulation from the placenta.  The retention of this 

response in the adult may assist with ventilation-perfusion matching under hypoxic 
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conditions (Voelkel, 1996) and as such the development of hypoxic pulmonary 

hypertension may be viewed as an adaptive response that becomes harmful to the 

organism (Strauss and Rabinovitch, 2000).  

 

In contrast to the pulmonary circulation, the systemic vascular response to 

hypoxaemia is marked vasodilatation together with  increased cardiac output in order 

to maintain systemic blood pressure (Wagner and Mitzner, 1988).  This is mediated in 

part by glomus type I cells in the carotid body, which sense partial arterial oxygen 

pressure (PaO2), and by the central respiratory centre which monitors partial arterial 

carbon dioxide pressure (PaCO2) by means of cerebrospinal fluid pH.   Peripheral 

vasodilatation in response to hypoxia serves to increase oxygen supply to hypoxic 

tissues. 

   

In summary, despite superficial histological similarities in the response to 

hypertensive injury, there are significant differences between the pulmonary and 

systemic circulations.  They ‘remodel’ differently in response to a sustained increase 

in blood pressure.  They also behave differently to hypoxic challenge in order to 

respond appropriately to the physiological demands placed upon them.  

 

1.3.1.  Pulmonary vascular response to hypoxia: Interspecies variation. 

The pulmonary vascular response to hypoxia appears to be maintained across all 

mammals but the extent of this response varies between species.  Tucker and Rhodes 

(2001) distinguished between hyper-responders, species having rapid and dramatic 

elevations of pulmonary artery pressures (PAPs) on hypoxic exposure: e.g.: cattle and 

pigs; moderate responders: humans and other primates, rats, mice and cats; and hypo-
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responders, those showing little increase in PAPs: camelids (llama, vicunas etc.), 

sheep, goats and dogs.  

 

A possible explanation for the development of hypoxic pulmonary hypertension lies 

in the absence of collateral ventilation (CV) leading to pulmonary arteriolar 

muscularisation.  Collateral ventilation is defined in man as the ventilation of alveolar 

structures through passages or channels that bypass the normal airways (Cetti et al, 

2006).  In man resistance to airflow through these structures is approximately 50 

times higher than through normal airways and CV is not thought to have a functional 

role.  CV can occur across inter-alveolar pores, accessory bronchiole-alveolar 

communications and accessory respiratory bronchioles (Krahl, 1959; Lambert, 1955).  

Collateral ventilation is variably present in mammals; dogs and sheep exhibit 

collateral ventilation, horses and man to a lesser extent whereas cattle and pigs do not 

(Kuriyama et al, 1981; Kuriyama et al, 1984; Robinson et al, 1978).   The lack of CV 

would require dependence on hypoxia-mediated vasoconstriction to protect PaO2 in 

the context of regional hypoxia within the lung resulting in a more muscularised 

pulmonary arterial media at sea level.  Mammals with CV would theoretically be able 

to preferentially ventilate relatively hypoxic portions of the lung via accessory 

pathways.  This has been demonstrated experimentally in a canine model – a species 

known to exhibit CV – in comparison to a porcine one (known to lack CV) 

(Kuriyama, 1984).  

 

Species with highly muscularised media at sea level such as cattle and pigs develop 

severe pulmonary hypertension on hypoxic exposure whereas those lacking a 

muscular media, such as camelids, seem more resistant to the effects of relative 
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hypoxia.  Experimental data from the coati, a South American mammal with a highly 

muscularised arteriolar wall which is thought to lack CV at sea level  (therefore 

theoretically expected to develop PH on hypoxic exposure), provides conflicting data.  

Hanson et al (1993) demonstrated that coati develop acute hypoxic pulmonary 

hypertension but indices suggestive of PAH: for example histological changes in the 

pulmonary artery muscularis or evidence of right ventricular hypertrophy, were 

lacking in animals exposed to chronic alveolar (A) hypoxia (10% PAO2 for 6 weeks).  

The vasoconstrictor response to acute hypoxia however was retained in the 

chronically hypoxic coati (Hanson et al, 2000).  It appears that in some species the 

response to acute hypoxic exposure does not predict the response to chronic hypoxia. 

 

Work from the Scottish Pulmonary Vascular Laboratory has focused on the need to 

establish a valid cellular experimental model for human hypoxic pulmonary arterial 

hypertension.  Models investigated include bovine, chronically hypoxic rat and 

human; and have specifically looked at the behaviour of classical (ERK 1/2 ~ p44/p42 

mitogen activated protein kinases or MAPKs) and stress activated protein kinases 

(p38 and JNK MAPK) – enzymes involved in stress and growth responses - in 

pulmonary artery fibroblasts  (Table 1.2).    There are a variety of activation patterns 

for both ERK and JNK MAPK but p38 MAPK is consistently activated in all models 

investigated so far. 

 

1.4.1.  Pulmonary vascular response to hypoxia: Intraspecies variation. 

Evidence also exists for intraspecies variation in response to both acute and chronic 

hypoxic exposure.     Only a proportion of climbers develop high altitude pulmonary 

oedema (HAPE) – non-cardiogenic pulmonary oedema - or cerebral oedema,  
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Table 1.2:  Summary of Pulmonary Vascular Unit findings: cross species 

differences in responses to hypoxia.  All three adult species so far investigated 

demonstrate pulmonary arterial fibroblast proliferation to hypoxic exposure whereas 

systemic arterial fibroblasts do not.  While there is a variable expression pattern for 

ERK and JNK MAPKs in adult human, bovine and rat models there is consistent 

activation of p38 MAPK associated with hypoxic pulmonary arterial fibroblast 

proliferation in all three adult models. 

Table 1.2:  Summary of Pulmonary Vascular Unit findings: cross species differences 

in responses to hypoxia 
Species Fibroblast Proliferation 

to Hypoxia 

p38 

phosphorylation 

to hypoxia 

ERK 

phosphorylation 

to hypoxia 

JNK 

phosphorylation to 

hypoxia 

Pulmonary       YES          YES YES NO Human 

Systemic NO NO NO NO 

Pulmonary       YES          YES NO          YES Bovine 

Systemic NO NO NO NO 

Pulmonary       YES          YES YES NO Rat 

Systemic NO NO NO NO 
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suggesting a  variable  response in man to high altitude-induced hypoxia (Sartori et al, 

2000; Basnyat et al, 2003). This is supported by the work of Morrell and colleagues 

who found that only 6% of Kyrghyz Highlanders develop symptomatic chronic 

mountain sickness (CMS) – the association of polycythaemia, hypoxaemia and right  

ventricular failure.  If  ECG data are taken into consideration 14% of high altitude 

residents demonstrate evidence of right ventricular strain as a result of chronic 

hypoxaemia (Morrell et al, 1999; Aldashev et al, 2000).  

 

1.4.2. Response to hypoxia in man: Phenotypic variation and genetic 

polymorphisms. 

In a small study comparing right heart catheter data from native Tibetans and low 

altitude Chinese, at rest and on exercise, Groves et al (1993) found that the majority 

of those Tibetans examined had normal pulmonary artery pressures at rest in 

comparison to the low altitude natives.  This perhaps suggests that long-term 

residence of a population at altitude may predispose towards greater tolerance of 

hypoxia and hypoxaemia.  There is a considerable body of work in the literature that 

investigates the potential genetic influences on the response to acute and chronic 

hypoxia. 

 

1.4.2.1  Genetic polymorphism – Candidate genes   

i   ACE genotype 

Following the association of the Angiotensin Converting Enzyme Insertion genotype 

(ACE I) with enhanced athletic performance (Gayagay et al, 1998; Montgomery et al, 

1998; Myerson et al, 1999) and with enhanced performance at high altitude (Woods et 

al, 2002) there has been interest in its potential role in hypoxic adaptation and hypoxic 
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lung disease in man.  ACE, a component of the renin-angiotensin system (RAS), is 

involved with fluid balance and sodium excretion.  It acts by converting angiotensin I 

(ATI) to the highly active angiotensin II (ATII) causing systemic vasoconstriction and 

aldosterone secretion.  ACE is particularly abundant in the lung and most conversion 

of AT1 to ATII occurs there.   The gene for ACE is located on chromosome 17q23 

and takes the form of an insertion (I) or deletion (D) genotype.  Homozygotes for the 

ACE I/I genotype have low levels of circulating ACE while the D/D (deletion) 

genotype is associated with high ACE levels (Rigat et al, 1990).  High levels of 

circulating ACE, causing increased fluid load, could potentially be associated with a 

worse prognosis in hypoxic pulmonary hypertension. 

 

There have been several studies in differing populations attempting to associate ACE 

I/D genotype with hypoxic lung diseases such as chronic obstructive pulmonary 

disease (COPD).  The results have been conflicting.  Some studies have found a 

positive association of the ACE D/D genotype with lower PAPs in COPD – 

suggesting that homozygotes for the deletion genotype are more able to adapt to 

chronic hypoxia (Abraham et al, 1995).  Other studies found that the D/D genotype 

was associated with more severe hypoxic pulmonary hypertension in patients with 

COPD (Kanazawa, 2002).   In the Kyrghyz Highlanders Morrell et al (1999) found a 

positive association between the ACE I/I genotype and the development of CMS.   At 

first this seems surprising given that the I/I genotype is found more commonly in elite 

mountaineers who have climbed above 7000m without the aid of supplemental 

oxygen (Montgomery et al, 1998) and the finding that on cardiopulmonary exercise 

testing (CPET) those individuals with I/I genotype had higher minute ventilation and 

lower end tidal PACO2 when breathing O2 at a concentration of 12.5% (Patel et al, 
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2003).  A possible explanation is Woods’ et al (2002) finding that ACE genotype only 

influences performance during rapid ascent.  Acute hypoxic exposure causes an 

imbalance in the ratio between plasma aldosterone and plasma renin while chronic 

hypoxic exposure results in down-regulation of AT-1 receptor.  Morrell et al (1999) 

suggest that the association between CMS (and therefore high altitude PH) and the I/I 

genotype probably rests on the linkage of this gene with another that predisposed 

towards the development of PH.   

 

ii   Endothelial Nitric Oxide Synthase 

Another gene potentially linked with a variable response to hypoxia is that for 

endothelial Nitric Oxide Synthase (eNOS).  So far two polymorphisms have been 

identified on the NOS gene (chromosome 7q35-6) which may be associated with the 

development of High Altitude Pulmonary Oedema (HAPE). The association of eNOS 

polymorphisms with high altitude illness has only been identified in a Japanese 

population (Droma et al, 2002) and not in Europeans (Bartsch et al, 2002; Smith et al, 

2006).  Droma et al have also identified a higher incidence of wild-type alleles 

Glu298Asp and eNOS4b/a in Sherpa Nepalis in Kathmandu, which they suggest 

might be beneficial to high altitude adaptation.  They did not find a correlation 

between eNOS genotype and serum NO suggesting that eNOS polymorphisms are not 

a reliable indicator of endogenous NO production (Droma et al, 2006). 

 

iii Serotonin (5-HT) hypothesis and Serotonin transporter (5-HTT) 

polymorphisms 

Following two separate ‘out-breaks’ of pulmonary hypertension associated with the 

use of anorexigens such as dexfenfluramine and fenfluramine (amphetamine 
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derivatives which interfere with neuronal uptake of serotonin or 5-hydroxytryptamine) 

in the 60’s and 80’s; there has been interest in how disordered serotonin handling 

results in pulmonary hypertension. In addition altered serotonin handling has been 

implicated in the aetiology of pulmonary hypertension by the association between 

some glycogen storage disorders – in particular von Gierke’s syndrome types 1a and 

1b which demonstrate abnormal 5-HT handling  - and pulmonary hypertension.   

 

In work on chronically hypoxic mice, Eddahibi et al (2000) demonstrated that mice 

homozygous for a deleted copy of the 5HT transporter (5-HTT ~ or serotonin 

transporter SERT) had maintained hypoxic pulmonary vasoconstriction to acute 

hypoxic exposure but demonstrated less right ventricular hypertrophy and a reduced 

right ventricular systolic pressure following two weeks of hypoxic exposure (10% 

oxygen) in comparison to wild-type mice exposed to the same conditions.  The same 

investigators demonstrated that the use of specific 5-HTT inhibitors (citalopram and 

fluoxetine) could produce similar results under identical growth conditions in wild-

type mice (Eddahibi et al, 2001) and that fluoxetine infusion could completely 

abrogate monocrotaline-induced pulmonary hypertension in Wistar rats (Guignabert 

et al, 2005).  Welsh et al (2004) demonstrated that both 5HTT and 5HT2A receptors 

were required for PA fibroblast proliferation in a chronically hypoxic rat model as 

both fluoxetine and ketanserin (a specific 5HT2A receptor inhibitor) pre-incubation 

were required to completely abrogate the proliferative response in this model.  

Eddahibi et al (2006) demonstrated cross talk between pulmonary arterial EC and 

SMC in a human model, showing that SMC are stimulated to proliferate by 

supernatant taken from EC cultured in serum-free conditions.  The proliferative 

effects have been ascribed to the action of 5HTT as EC cultured in serum free 
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conditions with the addition of fluoxetine but not ketanserin significantly abrogated 

the proliferative effects noted.   

 

The influence of 5HTT polymorphisms on the development of pulmonary 

hypertension is less clear.   The gene for 5HTT is localised to 17q11.1-q12 and 

consists of 14 exons spanning a 31kb region (Lesch et al, 1996).  Within the promoter 

region  long (L) and short (S) functional polymorphisms have been identified.  The 

L/L polymorphism is associated with a 2 to 3 times increase in the expression of 

5HTT in comparison to the S allele.  Eddahibi et al (2003) demonstrated that in a 

population of patients with moderate/severe COPD those carrying the LL genotype 

for 5-HTT had higher 5-HTT expression and had higher pulmonary artery pressures: 

the effect of hypoxia on right ventricular systolic pressure was additive.  

Heterozygotes (L/S genotype) had an indermediate response to hypoxia.  The same 

group demonstrated that L/L expression was present in 56% of patients with 

pulmonary hypertension undergoing lung transplantation in comparison to controls 

(undergoing lobectomy or pneumonectomy for either lung volume reduction surgery 

or for treatment of carcinoma) (Marcos et al, 2004; Marcos et al, 2005).  These data 

have not been reproduced by other groups who have looked at patients with PAH 

rather than COPD associated/hypoxic PAH.  Willers et al (2006) did not find an 

association between 5HTT L/S allele expression in patients with IPAH, nor did they 

find an association between 5HTT polymorphisms and Bone Morphogenetic Protein 

Receptor II (BMPRII) mutations in patients with FPAH.  They did however note that 

patients with FPAH with the L/L allele presented at an earlier age – however there 

was no difference in survival data.  Machado et al (2006) found no association 

between BMRRII mutations and 5HTT polymorphisms in a large cohort of FPAH 
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patients.  There is clear experimental evidence for the influence of both 5HT and 

5HTT in the development of pulmonary hypertension in hypoxic and inflammatory 

models but the genetic basis for this effect is yet to be elucidated. 

 

iv  Transforming growth factor β and Bone Morphogenetic Protein Receptor 

II polymorphisms 

Genetic mutations important in the aetiology of pulmonary hypertension include 

mutations in the bone morphogenetic protein receptor II gene (BMPRII) 

(chromosome 2q32-31) (Lane et al, 2000) in Familial IPH and mutations in the 

activin-like kinase (Alk-1) gene (chromosome 12q13) and endoglin (ENG) 

(chromosome 9) (Trembath et al, 2001) in hereditary haemorrhagic telangectasia 

(HHT).  All of these receptors are members of the Transforming Growth Factor β 

(TGFβ) superfamily and are involved in transmembrane signalling of bone 

morphogenetic protein (BMP) and TGFβ respectively.  It is not known how these 

mutations result in the development of pulmonary hypertension or whether these 

mutations also affect an individual’s ability to adapt to hypoxia.  In Familial IPH there 

is a high incidence of BMPRII mutations in ‘unaffected’ relatives.  This  suggests a 

‘double hit’ hypothesis; where a pre-existing abnormality plus another external insult 

(such as HIV infection or anorexigens use) results in the development of PH.   

Alternatively, overt Familial IPH could represent the extreme of a disease spectrum as 

‘unaffected’ carriers of the BMPRII mutation demonstrate elevated pulmonary artery 

pressures on stress echo implying an abnormal but not symptomatic response to 

exercise (Grunig et al, 2000). 
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1.5.  Hypoxia as an experimental model for pulmonary hypertension.  

PAH regardless of aetiology, appears to demonstrate histological consistency 

although there has been debate about whether pulmonary arterial hypertension 

secondary to hypoxia or hypoxic lung disease can be said to be truly representative of 

the PAH vascular phenotype. However there is a body of evidence that suggests a 

small number of individuals with hypoxic lung disease can develop significant PAPs 

comparable to those seen in patients with PAH associated with other conditions, and 

that their pulmonary vasculature appears similarly remodelled to those with PAH 

accepting the absence of plexiform lesions within the endothelial layer (Naeije and 

Barbera, 2001; Naeije, 2005; Wilkinson et al, 1988).  In experimental work the 

hypoxic model of pulmonary hypertension is well established.  It is easily 

reproducible in the laboratory, both in vivo and in vitro; moreover the effects of 

hypoxia on the pulmonary circulation can be studied in vivo at altitude both in animal 

and in human models.   

 

The relevance of hypoxic PH has been questioned because PAH associated with 

hypoxic lung disease - such as chronic obstructive pulmonary disease (COPD) - 

typically progresses slowly with mean PAPs rarely reaching the extremes seen in IPH 

or PAH secondary to other causes (Kessler et al, 1999; Kessler et al, 2001; Oswald-

Mammosser et al, 2005).  However there is evidence that prolonged exposure to 

hypoxia at altitude can result in severe hypoxic pulmonary hypertension and 

secondary right ventricular failure (Stenmark et al, 1987; Peacock et al, 2007).   

Morrell et al demonstrated symptomatic chronic mountain sickness (CMS) in 6% of 

Kyrghyz Highlanders with 14% showing evidence of right ventricular strain on ECG 

(Morrell et al, 1999; Aldashev et al, 2002).    In the Everest II study, Groves et al 
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(1987) demonstrated significant elevations of PAPm that were not reversible with 

reoxygenation following exposure to hypobaric hypoxia for 40 days in previously 

healthy adult males.  Recent work examining the histological changes seen in 

peripheral pulmonary arteries taken from a cohort of patients undergoing lung volume 

reduction surgery demonstrated significant intimal and medial expansion together 

with migration of adventitial fibroblasts into the medial compartment (Sirico et al, 

2005).  These findings differed from those noted in patients undergoing lobectomy for 

the treatment of lung cancer.  Sirico et al (2005) did not note any evidence of 

plexigenic lesion formation within the intimal regions of these arteries – but they did 

not include patients within their study who had clinical evidence of pulmonary 

hypertension.  

 

1.6.  Location and nature of the oxygen sensor 

 

1.6.1.  The role of K+ channels in the hypoxic response 

The distribution of voltage-sensitive potassium channels (K+) throughout the vascular 

tree may provide an explanation for the opposing tonal responses of pulmonary and 

systemic circulations to hypoxic exposure.  Several different isotypes of membrane 

bound K+ channels have been identified: KV, KCa2+, KDR, KIR and KATP (Brijj and 

Peacock, 1998; Gurney, 2002).  Their function appears to be closely allied to the 

control of membrane potential (Voelkel, 1997; Dittrich and Daut, 1999).  K+ channels 

act by maintaining a constant efflux of K+ from the cell cytosol.  This produces a 

constant negative internal cell potential in comparison with the positive extra cellular 

milieu, rendering the cell potentially excitable. 
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1.6.2.  Variable distribution of K+ channels throughout the vasculature 

The relative distribution of K+ channel isotypes varies throughout the vascular tree.  

The increased frequency of KATP channels in VSMC in the systemic circulation may 

provide an explanation for systemic vasodilatation observed in response to hypoxic 

exposure (Dittrich and Daut, 1999; Weir and Olschewski, 2006).  These channels are 

not oxygen sensitive but open when intracellular ATP levels fall resulting in a 

hyperpolarized and less excitable cell.  Cell contraction is prevented by the failure of 

intra-cellular Ca2+ release and therefore maintains vasodilatation (Archer and Rich, 

2000).   

 

The VSMC in the pulmonary circulation express higher numbers of KV and KDR 

channels in comparison to systemic VSMC.  Hypoxaemia inhibits the K+ current 

through these channels causing the cytosol to become more positive relative to the 

external environment (Archer et al, 1986; Archer and Rich, 2000).  This results in 

depolarisation of the SMC and activation of voltage dependent Ca2+ channels.  The 

subsequent influx of Ca2+ ions plus the release of Ca2+ from intracellular stores as a 

result of increased [Ca2+]i  stimulates SMC contraction causing vasoconstriction (Weir 

and Archer, 1995).  K+ channels appear to vary in their sensitivity to oxygen and this 

adds support to their potential role in pulmonary vascular oxygen sensing (Archer et 

al, 1986; Archer et al, 2004; Platoshyn et al, 2006; Voelkel, 1997). 

 

1.6.3.  Interspecies variation in K+ channel distribution 

There is considerable interspecies variation in K+ channel type, distribution and 

responsiveness (Ward and Aaronson, 1999).  In vitro, Yuan et al (1998) have shown 

that hypoxia down-regulates KV channels in hypoxic rat pulmonary artery VSMC but 
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not in mesenteric VSMC cells grown in hypoxic conditions.  It has been suggested 

that conduit vessels in the pulmonary circulation  (similar to systemic arteries in 

structure and responsiveness to hypoxaemia) have more KCa2+ and Ca2+
L channels 

(Archer et al, 1986).  The response of conduit vessels to hypoxaemia appears to be 

one of initial vasoconstriction followed by relaxation.  Resistance vessels appear to 

have higher frequencies of oxygen sensitive KDR channels (Franco-Obregon et al, 

1996) . 

 

1.6.4. Hypoxia induces rapid changes in vascular tone: adventitial location of 

primary O2 sensor? 

In the altitude/hypobaric model of hypoxic pulmonary hypertension, changes in 

vascular tone may occur via the sensing of a low alveolar oxygen tension (PAO2) 

rather than a low arterial oxygen tension (PaO2) as increases in vascular tone occur 

within seconds of exposure to hypoxia (Voelkel, 1996).   In support of this,  patients 

who are hypoxaemic as a result of right to left intracardiac shunts do not develop 

pulmonary hypertension unless the shunt is reversed (Eisenmenger’s syndrome).  The 

O2 sensor may be located on the adventitial rather than the endothelial side of the 

vascular wall.   Meyrick and Reid (1979) noted the earliest and most marked 

structural changes following hypoxic exposure occurred in the adventitial walls of rat 

pulmonary arteries and not in the media or intima. 

 

1.6.5. Other proposed models for the hypoxic sensor 

A review of the literature  suggests another two possible models for the cellular O2 

sensor (Zhu and Bunn, 1999).  It is possible that the O2 sensor is either a membrane-

bound flavohaem protein or a mitochondrial haem protein, on the basis that cell 
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responsiveness to hypoxia can be mimicked in normoxic conditions by both nitric 

oxide (NO) and carbon monoxide (CO), both of which have high affinity for 

haemoglobin (Zhu and Bunn, 1999).  A membrane-bound receptor that binds O2 could 

generate reactive oxygen species (ROS) by the reduction of oxygen to superoxide and 

hydrogen peroxide.  The expression of oxygen-sensitive genes might then be altered. 

For example, H2O2/superoxide results in the degradation of the hypoxia inducible 

factor 1 α (HIF1α) subunit therefore preventing the upregulation of genes involved in 

the hypoxic response.   

 

Work on the mitochondrial model has demonstrated that hypoxia results in a 

reduction of mitochondrial respiration, not as a result of decreased ATP use, but by 

inhibition of a mitochondrial proton pump (Zhu and Bunn, 1999).   Mitochondria are 

significant producers of ROS.  A decrease in mitochondrial respiration would result in 

reduced production of ROS: ROS production has been shown to be proportional to 

PaO2 (Chandel and Schumacker, 2000).  However production ROS has also been 

shown to be upregulated in hypoxaemic lung parenchyma (Voelkel and Tuder, 2000).  

Unfortunately differences in the experimental models used by investigators make 

direct comparisons difficult. 

 

Waypa et al (2006) argue that hypoxia results in increased ROS production on the 

basis that they have demonstrated increased DCF (dichlorfluoresceine-diacetate) 

fluorescence in patch-clamped pulmonary VSMC to hypoxia.  Moudgil et al (2005) 

suggest that isolated cultured cells rapidly lose ion channels ex vivo and therefore 

have reduced oxygen sensitivity.  In addition they also comment that DCF also detects 

NO and is able to produce H2O2 independently, which may influence the reliability of 
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DCF as a model to detect ROS experimentally.   Irrespective of current theoretical and 

experimental disagreements – there do appear to be areas of consensus.  It appears 

that hypoxia-mediated ROS generation is dependent on proximal electron transport 

chain (ETC) complexes, that the ROS required for hypoxia-mediated pulmonary 

vasoconstriction are derived from mitochondria, that inhibitors of ETC complexes I 

and III mimic the effect of hypoxia and that hypoxia-mediated production of ROS 

does not depend on having a completely functional ETC, as cyanide (a complex IV 

inhibitor) fails to inhibit hypoxia-mediated vasoconstriction. 

 

Michelakis et al (2002), argue for mitochondrial diversity as an explanation for the 

divergent responses of pulmonary and systemic arteries to hypoxia.  They 

demonstrated that whole lung and pulmonary arterial SMC mitochondria show slower 

respiratory rates than that seen in whole kidney and renal arterial SMC.  They have 

also demonstrated that lung mitochondria produced more activated oxygen species 

(AOS) both at baseline and under hypoxic conditions, and that rotenone (an ETC 

complex I inhibitor) was able to mimic the effects of hypoxic exposure on both 

systemic (renal) and pulmonary arterial ring models, suggesting that the oxygen 

sensor is closely allied with early ETC complex function  (Michelakis et al, 2002).      

 

 

1.7.  Differential responses of vascular wall components to hypoxia  

 

1.7.1.  Endothelium 

Pulmonary hypertension is characterised by concentric EC proliferation and 

neointimal formation.  Neointimal expansion represents both an increase in total cell  
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number (hyperplasia) and the size and quantity of surrounding ECM.  Intimal 

hyperplasia is not necessarily a pathological process and occurs within the aorta as 

part of normal physiological process of aging (Su and Mioa, 2001) (figure 1.3). 

 

1.7.1.2. Disruption of endothelial basement membrane as stimulus for 

proliferative change 

A large body of work supports a central role for the endothelial cell in the aetiology of 

pulmonary hypertension.  The EC is the primary barrier between the blood, a 

potentially hypoxaemic environment and other vascular wall components, together 

with its capacity to secrete mitogens and growth factors for other cell types following 

hypoxaemic stimulus.  One of the first histological changes noted in the development 

of pulmonary hypertension is disruption of the endothelial basement membrane 

(Stenmark et al, 1999).  It has been suggested that endothelial injury – whether as the 

result of hypoxaemia, inflammation or alteration of haemodynamic flow – is the 

stimulus for vascular remodelling.  Damage to the endothelial basement membrane 

would permit plasma-born mitogens and growth factors access to underlying cells and 

matrix (Cowan et al, 2000).   

 

In vivo work performed on neonatal hypoxic calves has demonstrated that hypoxia 

acts as a stimulus for endothelial proliferation.  EC proliferation is magnified and 

prolonged by hypoxic exposure in neonatal calves (Belknap et al, 1997).  In addition 

the plexigenic lesions seen in IPH, but not secondary pulmonary hypertension, 

represent a monoclonal expansion of the EC layer suggesting disordered growth 

regulation  as is seen in neoplasia (Lee et al, 1998).   Interestingly, Teichert-

Kuliszewska et al (2006) have demonstrated that loss of function of Bone  



 25

 

 

 

 

Figure 1.3: Vascular endothelial cells.  Vascular EC under magnification showing 

confluent growth. 

 

 

 

 

 

 

 

 

 



 26

Morphogenetic Receptor 2 (BMPR2) is associated with increased apoptosis in EC.  

The same investigators have also shown that epithelial progenitor cells (EPC) from 

patients with FPAH are resistant to BMP2-mediated protection to apoptosis.   This 

appears to be contradictory at first sight – but Michelakis (2006) suggests that perhaps 

pulmonary arterial hypertension may be a disease process of altering cellular function 

– with EC apoptosis occurring in the early stages allowing mitogens access to the 

medial and adventitial layers while in later phases of the disease EC proliferation 

dominates. 

 

1.7.1.3.  Endothelial cells produce mitogens for SMC and fibroblasts 

Endothelial cells are capable of producing a variety of mitogens for SMC and 

fibroblasts.  They produce platelet derived growth factor (PDGF), Endothelin – 1 (ET-

1), vasoactive endothelial growth factor (VEGF) and NO in response to hypoxaemia 

(Faller, 1999; Veyssier-Belot and Cacoub, 1999).  In vitro increases in PDGF and 

steady-state PDGF mRNA in response to hypoxia have been noted in human 

umbilical vein endothelial cells (HUVEC), rat pulmonary artery and aortic EC and 

bovine pulmonary artery and aortic EC.  Increases in ET-1 have also seen 

(Kourembanas et al, 1997).   EC mitogen and growth factor production is not isolated 

to the pulmonary circulation,  however local effects on surrounding tissues may be 

different to those seen in the systemic circulation.  

 

1.7.1.4.  Platelet derived growth factor  

PDGF is a growth promoting vasoactive mitogen that is produced by EC and platelets 

under hypoxaemic conditions.  It induces vasoconstriction and proliferation in smooth 

muscle cells and can also stimulate pulmonary artery fibroblast migration and 
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proliferation (Veyssier-Belot and Cacoub, 1999).   There are three isotypes of PDGF, 

PDGF AA, AB and BB that have a variety of responses in VSMC (Faller, 1999).  

PDGF AA is mitogenic for cultured VSMC in vitro, the effect being augmented by 

the addition of PDGF BB (Majack et al, 1990).  Induction of PDGF-B mRNA is 

inversely proportional to the degree of hypoxia and has been shown to be reversible 

on reoxygenation (Faller, 1999).  PDGF has actions on other mitogens: upregulating 

the production of VEGF mRNA in EC via its interaction with specific endothelial 

PDGF-B receptors (Wang et al, 1999).  A role for PDGF in the aetiology of 

pulmonary arterial hypertension has been suggested by recent case studies showing 

improved functional status in patients with PAH following treatment with imatinib 

(Gleevec – a multikinase/PDGF inhibitor used in the treatment of haematological 

malignancies)  (Ghofrani et al, 2005; Patterson et al, 2006).  Imatinib has been shown 

to both prevent and reverse pulmonary arterial hypertension in a monocrotaline model 

of pulmonary arterial hypertension (Schermuly et al, 2005). 

 

1.7.1.5.  Vascular endothelial growth factor  

VEGF is a hypoxia-inducible angiogenic factor and is only produced under 

hypoxaemic conditions.  It has been implicated in intimal proliferation.  It is produced 

by EC, SMC, macrophages and epithelial cells (Veyssier-Belot and Cacoub, 1999).  

Its production in response to hypoxaemia has been shown to be dose and time 

dependent (Ankoma-Sey et al, 2000) and its only known target is the epithelial cell 

(Veyssier-Belot and Cacoub, 1999).  The upregulation of VEGF mRNA is dependent 

on the presence of Hypoxia Inducible Factor-1 (HIF-1) that is only stable under 

hypoxic conditions (Voelkel and Tuder, 2000).  Other HIF-1 dependent growth 
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factors/mitogens are erythropoetin (EPO), glucose transporters and glycolytic 

enzymes. 

 

1.7.1.6.  HIF-1 and cellular adaptation to hypoxia 

HIF-1 is important in mammalian cellular adaptation to hypoxic conditions (Semenza, 

2000).  It upregulates genes which enable the cell to adapt both acutely and in the long 

term, to a hypoxic environment; target genes for HIF-1 include most enzymes 

involved in the glycolytic pathways to assist with the shift from aerobic to anaerobic 

respiration together with those for NOS 2, ET – 1, insulin-like growth factor 2 (IGF – 

2).  The upregulation of EPO and VEGF assist with adaptation to chronic hypoxia.  

Upregulation of EPO results in an increase in haematocrit assisting oxygen delivery to 

hypoxic cells while VEGF, which specifically targets EC, results in angiogenesis 

thereby facilitating oxygen supply to hypoxic tissues.  Three HIF isoforms have been 

identified: HIF1 appears to be ubiquitously expressed, HIF2 appears to be localised to 

the lung and is approximately 48% homologous to HIF1 while HIF3 appears to act as 

a HIF1 inhibitor (Semenza, 2007). 

 

1.7.1.7.  Structure of HIF-1 

HIF-1 is a heterodimer consisting of two basic helix-loop-helix subunits; these 

subunits combine together to form an active complex HIF-1 that is necessary for 

activation of transcription.   HIF-1 β is a constitutively expressed protein found in 

normoxic cells (also known as aryl hydrocarbon receptor or ARNT subunit 1).   The 

stability of HIF-1 α, an 826 amino acid peptide, regulates HIF-1 activity.  Under 

normoxic conditions HIF-1 α has a half-life of approximately 5 minutes, rapidly 

targeted by von Hippel Lindau protein (pVHL) and Factor Inhibiting HIF-1α (FIH-1) 



 29

for degradation by E3 ubiquitin ligase in the cytosol.  At present HIF-1α is thought to 

be unique in that molecular oxygen is required for its breakdown under normoxic 

conditions.  The hydroxylation of prolyl and asparaginyl residues at HIF-1α’s Oxygen 

Dependent Domain (ODD) enables pVHL to bind the protein.  Under hypoxic 

conditions HIF-1α remains active, is phosphorylated and forms an active complex 

with HIF-1β which enables the upregulation of genes possessing a Hypoxia Response 

Element (HRE) within their promoter region (Semenza, 2000).  

 

1.7.1.8.  HIF-1 and pulmonary vascular remodelling 

 Mice null for HIF-1α and HIF2α die in early life as a result of vascular abnormalities 

(Yu et al, 1999).  Mice heterozygous for HIF-1 α   exposed to relative hypoxia (10% 

O2 for six weeks) develop  less  right ventricular hypertrophy and have a lower 

haematocrit than control mice (Semenza, 2000).  In addition mice heterozygote for 

HIF2α appear to be completely protected from hypoxic pulmonary arterial 

hypertension (Brusselmans et al, 2003).  This suggests that HIF-1 and HIF-2 have  

significant roles in the control of hypoxia-mediated pulmonary vascular remodelling.    

But HIF-1 can also be activated under normoxic conditions, for example via a G 

protein coupled receptor (GPCR) associated with the Kaposi’s Sarcoma-associated 

Human Herpes Virus 8, via p38 Mitogen Activated Protein Kinase (MAPK) in 

immortalised fibroblasts (Sodhi et al, 2000).  Both classical ERK1/2 (p44/p42) 

MAPK  and p38 MAPK have the capacity to phosphorylate HIF-1 α (Berra et al, 

2000; Minet et al, 2001).  Activation of HIF-1 under normoxic conditions is rarely of 

the same magnitude as seen in hypoxia but a pathway known to affect hypoxia-

mediated pulmonary vascular remodelling (Welsh et al, 2001) also activated under 
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normoxic conditions could also be involved in pulmonary vascular remodelling 

without a hypoxic stimulus. 

  

1.7.1.9.  Endothelin 1 

ET-1 is the most powerful vasoconstrictor in man and is known to be upregulated in 

pulmonary, but not systemic, hypertension (Giaid, 1998; Grimpen et al, 2000).  It is 

produced by EC in both systemic and pulmonary vasculature and is mitogenic for 

VSMC and fibroblasts.  It can also act as a chemotaxin for adventitial fibroblasts 

(Stenmark and Mecham, 1997).  ET-1 is produced from Big ET-1 by Endothelin 

Converting Enzyme (ECE) and acts via ET – A or B receptors that are mostly 

localised in VSMC (Veyssier-Belot and Cacoub, 1999).  The frequency and 

distribution of ET A and ET B receptors varies within the vasculature, in a human 

model ET B receptors predominate in the circulation with the highest density in the 

alveolar epithelium and VSMC (Henry, 1999).  The upregulation of both ET-1 and ET 

receptors has been demonstrated in both human and rat endothelial cells following 

hypoxic exposure (Veyssier-Belot and Cacoub, 1999). 

 

1.7.1.10.  Nitric Oxide 

NO is thought to be central in maintaining low basal blood pressure in normal 

pulmonary vasculature balancing the effects of ET-1 and thromboxane.  It is 

synthesised by EC by the action of nitric oxide synthase (NOS) on L-arginine.  Three 

isosymes of NOS exist: (endothelial) eNOS, (inducible) iNOS and (neuronal) nNOS. 

Neuronal NOS is found in vascular endothelial cells but eNOS appears to be the 

predominant isozyme implicated in pulmonary hypertension – dense immunostaining 

for eNOS has been found in plexigenic lesions in patients with IPH (Veyssier-Belot 
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and Cacoub, 1999). NO has an inhibitory effect on platelet aggregation and on SMC 

and ECM proliferation (Adnot et al, 1995).   eNOS also downregulates PDGF and 

ET-1 gene expression at the level of gene transcription (Faller, 1999).   In the rat 

model eNOS expression is upregulated by hypoxic exposure, shear stress and by 

elevations in [Ca2+]i in both pulmonary and systemic circulations (Adnot et al, 1995).  

But experimental  evidence is conflicting, some investigators have found that both NO 

and NOS production are down regulated in response to hypoxia (Higenbottam and 

Cremona, 1993).   There is also considerable inter-species variation in NO expression.  

If NO is produced by the endothelium and pulmonary hypertension is thought to be a 

disease process at least in part mediated by endothelial dysfunction, then it would be 

reasonable to infer that reduced NO and eNOS production occurs secondary to 

damaged endothelium; an increase in eNOS expression does not necessarily imply an 

increase in NO activity (Veyssier-Belot and Cacoub, 1999). 

 

1.8.1.  Vascular Smooth Muscle Cells 

Pulmonary hypertension is a disease process characterised by progressive 

muscularisation of previously non-muscularised small arteries and venules.  There is 

evidence of migration of VSMC into the neointima, their development of a secretory 

function and of a proliferative role.  The alteration of VSMC function is not unique to 

pulmonary hypertension but also occurs in the systemic circulation; for example in 

response to increases in systolic blood pressure (Su and Miao, 2001).  The adult 

differentiated VSMC normally resides in a quiescent state; this is maintained by its 

interactions with neighbouring EC and the matrix proteins that surround it (Newby 

and Zaltsman, 2000)  (figure 1.4). 
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Figure 1.4: Vascular smooth muscle cells.  VSMC under magnification. 
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1.8.2.  Hypoxia enhances and prolongs VSMC proliferation 

As in EC, hypoxia prolongs and enhances proliferation in VSMC from pulmonary 

artery tissue (Belknap et al, 1997).  DNA indices were increased in both the media 

and adventitia of pulmonary artery tissue from neonatal calves following prolonged 

hypoxic exposure.  VSMC proliferation was most marked in small generation vessels.   

 

1.8.3.  Phenotypic switching of resident VSMC in response to hypoxia. 

Cowan and Rabinovitch (2000) have suggested that the disruption of EC basement 

membrane permits growth factors either from the serum or from neighbouring EC to 

gain access to the underlying VSMC and ECM, thereby enabling a change in function 

(Cowan et al, 2000).   Whether this change in function is as a result of the reactivation 

of an inherent fetal state (Stenmark and Mecham, 1997) or as the result of growth 

factor stimulation of phenotypically distinct groups of VSMC (Frid et al, 1994; 

Stenmark et al, 1999) remains questionable.    Hypoxic VSMC have been shown to 

upregulate elastin and tropoelastin mRNA production; elastin secretion is normally 

confined to fetal development and is down-regulated before birth.  The re-expression 

of a gene product normally associated with the embryological period suggests a return 

to a more immature state of development (Stenmark et al, 1997).  Evidence to support 

the co-existence of varying SMC phenotypes has been demonstrated in vitro.  Frid et 

al (1994) were able to identify four different ‘types’ of VSMC from bovine 

pulmonary arteries on the basis of immunohistochemical staining following hypoxic 

culture. This may argue for the emergence of oxygen-sensitive VSMC that respond 

preferentially to hypoxia in comparison with other VSMC. 

 



 34

1.8.4.  VSMC involvement in systemic vascular remodelling 

As discussed earlier, VSMC have been implicated in vascular remodelling in systemic 

hypertension.  Substantial structural change in the aorta has been noted in sinuaortic 

denervated (SAD) rats (Su and Miao, 2001).  There is marked increase in total wall 

thickness and ‘wall thickness: internal diameter’ ratio.  As seen in pulmonary 

hypertension, there is an increase in total collagen and a relative decrease in elastin 

content in the aortic media implying an altered synthetic role for VSMC.  However on 

staining, the number of nuclei remains the same in comparison to non-denervated rats.  

This suggests that in the aorta, the mechanism behind the increase in medial wall 

thickness, at least in systemic hypertension, is VSMC hypertrophy rather than 

hypertrophy and hyperplasia, as seen in pulmonary hypertension (Su and Miao, 2001).  

As discussed previously, the patterns of systemic small artery and arteriolar 

remodelling in the face of elevated systolic hypertension or increased pulse pressure is 

variable and not predictable, but in the human model there is evidence for altered 

VSMC function and behaviour throughout the systemic circulation as a result of 

endothelial injury (Newby and Zaltsman, 2000). 

 

1.9. Adventitial Fibroblasts 

 

1.9.1.  Earliest structural changes in pulmonary vascular wall to hypoxia are 

seen in the adventitial layer 

The earliest and most marked changes in vascular wall remodelling to hypoxic 

exposure have been seen in the adventitial layer of rat hilar pulmonary artery 

(Meyrick and Reid, 1979).  In vitro, hypoxic exposure has a direct effect on 

fibroblasts, stimulating proliferation without the addition of growth factors (Welsh et 
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al, 1998; Strauss and Rabinovitch, 2000).  This makes the adventitial fibroblast 

unique from other cells in the vascular wall.  VSMC can contract independent of other 

stimuli but require growth factors to enable a functional change (Voelkel, 1997) 

(figure 1.5). 

 

1.9.2.  Hypoxia sensitises adventitial fibroblasts to mitogenic stimuli 

In addition to enhancing proliferation, Welsh et al (1998) have also shown that 

hypoxia sensitises pulmonary artery adventitial fibroblast to the effects of mitogens 

and the increase in proliferation is associated with increased inositol 1,4,5-

triphosphate (IP3) production (see section 1.11.2.3).  This effect does not extend to 

hypoxic fibroblasts from systemic arteries (Welsh et al, 1998).  The addition of 

growth factors such as Basic Fibroblast Growth Factor (bFGF), PDGF and insulin-

like growth factor- 1 (IGF-1) seems to augment the growth response of pulmonary 

artery fibroblasts to hypoxia (Strauss and Rabinovitch, 2000).  This effect can be 

partially abrogated by the addition of inhibitors to PDGF and ET-1 suggesting that 

these are important in hypoxia-stimulated fibroblast proliferation (Dawes et al, 1994). 

However, structural changes to the vessel wall are not uniform throughout the 

pulmonary vascular tree.  In smaller generation vessels adventitial thickening is more 

marked, while large pulmonary arteries appear to develop medial hypertrophy like 

systemic arteries subjected to elevated systolic blood pressure (Stenmark et al, 1999). 

This heterogeneous response to hypoxia (or an increase in vascular pressure) suggests 

that ‘phenotypic switching’ may be an important concept not only for the VSMC but 

also the adventitial fibroblast.  
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Figure 1.5: Adventitial fibroblast cells.  Adventitial fibroblasts under magnification. 
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1.9.3.  Hypoxia enables phenotypic switching of mature fibroblasts 

The mature fibroblast is non-mobile and non-contractile.  As a result of hypoxic and 

growth factor exposure, adventitial fibroblasts appear to differentiate into highly 

active cells.  Mecham and Stenmark (1997) note that during embryological 

development the fibroblast has a very unstable phenotype.  They suggest that this 

enables it to respond in a multiplicity of ways to various stimuli.  This potential 

instability is seen as an advantage in the adult state as it enables a more adaptive 

response to injury and altered haemodynamics (Mecham et al, 1987). 

 

Whether this variable response is as a result of a fibroblast population that contains 

cells at different stages in the cell cycle, enabling a variety of  outcomes from a single 

stimuli, or whether this represents a variety of phenotypically distinct cells co-existing 

in the vessel wall capable of responding differently to the same stimulus, is unknown.  

Evidence for a variety of distinct cell lines is supported by the work of Das et al 

(2001).  They compared pulmonary artery fibroblasts with fibroblasts from different 

parts of the arterial circulation in neonatal calves.  Significantly they identified two 

fibroblast cell lines cultured from hypoxic neonatal calf aortic adventitia that 

proliferated in response to hypoxic exposure.  These cells were  stable through a series 

of passages demonstrating a maintained  phenotype (Das et al, 2001).  This suggests 

that phenotypic variation is not specific to the pulmonary vasculature but can also 

occur in the systemic circulation.  However, neonatal and fetal cells appear to be more 

capable of proliferation with any given stimulus than adult cells, and this may provide 

an explanation for the growth of neonatal aortic fibroblasts under hypoxic conditions 

(Strauss and Rabinovitch, 2000). 
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1.10.  Extra Cellular Matrix 

 

1.10.1.  Hypoxic expansion of ECM is not reversed by normoxia 

It has been demonstrated that rat hilar pulmonary artery structure is significantly 

altered by hypoxic exposure (Meyrick and Reid, 1979).  While Meyrick and Reid 

show that the changes in adventitial and medial wall thickness are reversible on re-

oxygenation, the expansion in ECM is not reversed.  Hypoxic exposure upregulates 

the production of elastin and collagen in calf pulmonary arteries matched by steady 

state upregulation of tropoelastin mRNA (Stenmark and Mecham, 1997).  A similar 

upregulation of ECM proteins has been seen in human umbilical vein endothelial cells 

(HUVEC) following hypoxic exposure (Stenmark and Mecham, 1997).   

 

1.10.2.  ECM makeup varies with the function of the vessel 

There is marked variability in the relative proportions of matrix collagen and elastin 

content throughout the vascular tree. Major arteries that are subjected to large 

pulsatile pressures: for example the thoracic and abdominal aorta, have a higher 

proportion of elastin than the small generation resistance vessels.  Elastin production 

also appears to be confined in a time and tissue specific manner to the embryological 

period (Stenmark and Mecham, 1997).  As the distance from the heart increases, so 

the proportion of elastin in the vascular wall decreases and collagen content increases.  

Collagen when mature and cross-linked is much stiffer and less distensible that 

elastin.  The structural properties of ECM appear to be dependent not only on the 

function of the vessel, but also the amount and type of collagen which increases with 

age.  There is much less type 1 collagen in the vascular wall of the neonate than the 

adult (Stenmark and Mecham, 1997).  Therefore it is easy to see how a pathological 
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process that results in altered blood flow and localised shear stress could have a 

profound effect on the composition of the underlying ECM.   

 

1.10.3.  Hypoxia and matrix metalloproteinases 

Vascular wall cells may be  maintained in a quiescent phase by their interactions with 

integrins and proteoglycans in the ECM (Newby and Zaltsman, 2000).  Hypoxia 

appears to result in the upregulation of proteins that disrupt and inhibit this 

interaction; particularly marked is the increase in matrix metalloproteinases (MMPs).   

These matrix proteins act by degrading elastin and proteoglycans, adding support to 

the theory that elastolysis is required prior to cell migration and proliferation 

(Rabinovitch, 1997; Cowan et al, 2000).  They also act by releasing growth factors 

from the ECM such as endogenous vascular elastase (EVE), bFGF and tenascin C.  

EVE has also been shown to increase bFGF release from ECM in its own right and 

bFGF has been shown to be mitogenic for SMC (Jones et al, 1997).  MMPs also 

induce the production of fibronectin, which can also be stimulated by inflammatory 

markers such as interleukin 1 (IL-1) and tumour necrosis factor α (TNF α).  

Upregulation of fibronectin may provide paths along which SMC and fibroblasts are 

able to migrate (Rabinovitch, 1995) and  experimentally-induced pulmonary 

hypertension can be reversed by MMPs inhibitors (Cowan et al, 2000).  However 

there are species differences: MMPs only appear to be upregulated in the rat 

pulmonary hypertension model in the post-hypoxic period (Strauss and Rabinovitch, 

2000).   
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1.11.  Cell signalling mechanisms 

 

1.11.1.  Upregulation of genes and gene products in response to hypoxia and 

other stimuli 

Hypoxic exposure results in the upregulation of genes and gene products in the 

pulmonary circulation that differ substantially from those seen in normoxic 

vasculature.  These genes are not only upregulated in response to hypoxia; but can 

also occur following the action of shear stress and growth factors.  The mechanism of 

action is thought to be mediated by an extra cellular signal;  a growth factor, altered 

vessel pressure or hypoxia which is then conveyed across the cell membrane via a 

transmembrane receptor and thence to the nucleus where it exerts its effect on mRNA 

transcription and protein translation (figure 1.6). 

 

1.11.2.  Transmembrane Receptors 

 

1.11.2.1.  G Protein Coupled Receptors 

G protein coupled receptors (GPCR)  consist of a seven membrane-spanning unit 

which associates with an inner membrane bound ‘G protein’ (Berridge, 1993).  The G 

proteins (heterodimeric guanine nucleotide binding proteins) exist in several isoforms, 

including β, γ and δ.  They vary in their distribution and specificities.  G proteins 

enable phosphorylation of the cytosolic portion of the transmembrane receptor 

resulting in a conformational change and interaction with other enzymes and proteins 

located at the plasmalemma surface (Berridge, 1987).  An example of a GPCR agonist 

is antithrombin II (AT II) or ET-1.   
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Figure 1.6: Overview of membrane bound receptor signalling.  Extracellular 

ligand binds to the membrane bound receptor enabling conformational change of the 

intracellular component.  This in turn permits the transduction of the signal to the 

nucleus via a series of intermediary protein signalling molecules where it then affects 

upregulation of specific gene products and subsequent protein translation. 
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1.11.2.3.  Association of GPCR, G protein and Phospholipase C 

The association of the inner membrane complex – phosphorylated GPCR and G 

protein - enables the translocation of phospholipase C (PLC) from the cytosol to the 

inner cell membrane where it is then activated by the receptor-G protein complex 

(Majerus et al, 1990).  There are several different isoforms of PLC, γ and δ 

predominate in fibroblasts.  The function of these different subtypes is not yet known.  

PLC’s main action is to hydrolyse phosphatidylinositol 1-4-5 bisphosphate (PhtdInst 

P2) to inositol triphosphate (IP3) and diacylglycerol (DAG) (Berridge, 1993).  

 

1.11.3.  IP3 stimulates release of intra cellular Ca 2+ stores 

Soluble IP3 dissociates from the membrane surface into the cytosol where it binds 

specific IP3 receptors on the sarcoplasmic and endoplasmic reticulum (Berridge, 

1987).  This stimulates the release of intra cellular Ca2+ stores (Berridge, 1993).  Ca2+ 

acts as a co-factor for many intracellular enzymes, is necessary for muscle contraction 

and is required for DNA synthesis.   

 

1.11.4.  Phosphatidylcholine derivatives also activate DAG 

DAG is lipid soluble and remains bound to the inner surface of the cell membrane 

where it can  interact with Protein Kinase C (PKC) (Berridge, 1993).  PKC 

translocates to the membrane from the cytosol as a result of DAG formation.  DAG 

can also be activated by phophatidylcholine derivatives.  PKC has a variety of 

functions: it is involved in smooth muscle contraction, it enhances the action of 

Na+/H+ antiporters at the cell membrane enabling increases in intracellular pH, it also 

acts as a stimulus for other intracellular signalling pathways including the activation 

of HIF-1 in hypoxic conditions and in the upregulation of EPO (Berridge, 1987).  
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Like the G protein family, there are several isosymes for PKC.  The differential 

response of pulmonary artery fibroblasts to hypoxia may be related to  an oxygen-

sensitive PKC isosyme (Das et al, 2000).  Hasan et al (1996) have demonstrated that 

PKCα  is preferentially upregulated in hypoxic lung fibroblasts.   Das et al (1997) and 

Xu et al (1997) have demonstrated variation in PKC isoform expression in both 

adventitial fibroblasts and vascular smooth muscle cells respectively, in neonatal and 

fetal models of hypoxic pulmonary arterial hypertension.   This suggests that there 

may be intrinsic differences in cell signalling pathways between the hypoxic 

pulmonary and systemic vasculature (figure 1.7). 
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Figure 1.7 over view of G-Protein coupled receptor signalling.  Growth factors 

bind to the membrane-bound G protein coupled receptor (GPCR) that enables 

phosphorylation (P) of the inner membrane component and association with a G 

protein.  G protein association subsequently permit phospholipase C (PLC) to move 

from the cytosol to the cell membrane where it is then activated by the G protein.  

PLC then hydrolyses phosphatidylinositol 1-4-5 bisphosphate (PhtdInst P2) to inositol 

triphosphate (IP3) and diacylglycerol (DAG).  Soluble IP3 stimulates intracellular 

calcium release from the sarcolemma.  PhtdInstP2 can also activate diacylglycerol 

(DAG) which in concert with protein kinase C (PKC) influences membrane Na+/H+ 

antiporters and HIF1α. 
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1.11.5.  Tyrosine Kinase Receptors 

Tyrosine kinase receptors (TKR) are transmembrane receptors that have intrinsic 

autophosphorylation ability; they are not dependent on G proteins for activation 

(Berridge, 1993).  The binding of an agonist, for example PDGF, to the extracellular 

portion of the receptor is sufficient to result in autophosphorylation.  The 

conformational change occurring at the inner membrane surface allows the 

association of an shc protein that translocates from the cytosol to the inner membrane 

wall (Obermeier et al, 1993).  The shc protein does not have any innate catalytic 

capacity in its own right but mediates the subsequent association of other proteins 

with the TKR: for example Grb and SOS (Segal and Greenberg, 1996).  Grb is a Ras-

GTP exchanger enabling the activation of Ras from its GDP bound form to active 

GTP form.  NO is thought to inhibit this reaction by increasing intracellular cGMP 

(Voelkel, 1997).  SOS acts as another nucleotide exchange factor that promotes the 

activation of Ras in association with Grb. The autophosphorylation of TKR results in 

the translocation of shc, Grb and SOS migrate to the cell membrane that act in concert 

to activate Ras.  Ras acts as a G protein and enables the translocation and activation of 

Raf-1 to the cell membrane.  Raf-1 is a serine/threonine kinase and is activated by 

becoming tyrosine phosphorylated.  Raf-1 is part of the Raf-1-MAPK pathway that is 

intimately bound up with intra cellular signalling and has been extensively studied 

(Marshall, 1994; Marshall, 1996; Marias and Marshall, 1996).  The substrate for Raf-

1 is MEK 1 kinase or MAP kinase kinase (figure 1.8). 
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Figure 1.8: Overview of tyrosine kinase receptor signalling.  The tyrosine kinase 

receptor (TKR) has autophosphorylative ability and does not require a G protein to 

enable signal transduction.  The resulting conformational change occurring at the 

inner membrane surface allows the association of an shc protein that translocates from 

the cytosol to the inner membrane wall which mediates the subsequent association of 

other proteins with the TKR: for example Grb and SOS.  Grb is a Ras-GTP exchanger 

enabling the activation of Ras from its GDP bound form to active GTP form.  SOS 

acts as another nucleotide exchange factor that promotes the activation of Ras in 

association with Grb.  Shc, Grb and SOS to the cell membrane that act in concert to 

activate Ras.  Ras acts as a G protein and enables the translocation and activation of 

Raf-1 to the cell membrane.  Raf-1 is a serine/threonine kinase and is activated by 

becoming tyrosine phosphorylated.  Raf-1 is part of the Raf-1-MAPK pathway.  The 

substrate for Raf-1 is MEK 1 kinase (MEKK1) or MAP kinase kinase (MKK), which 

enables signal transduction to the nucleus via MAPK activation and subsequent 

transcription and translation of relevant gene products with associated transcription 

factors such as c-myc and ATF-2. 
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1.11.6.  Raf-1-MAP kinase pathway  

MAP kinase is the substrate for MEK-1,  a dual specificity kinase that has 2 binding 

sites for Raf-1.  MAPKs are dual specificity serine/threonine kinases that appear to be  

involved in a variety of cellular responses and which can be activated by the Raf-

MEK-MAPK cascade, by DAG and PLC and by TAB-1/TAK-1.  Two classes of 

MAPK have been identified so far, the so-called ‘classic’ MAPK – p44/p42 or ERK 1 

and 2 MAPK – and the stress-activated MAPK or SAPK – including p38 and C-Jun 

N-terminal kinase (JNK) MAPK.  The classic MAPKs are involved in cellular 

proliferation in some cell lines while the SAPK are known to mediate apoptosis in 

others together with cellular adaptation to altered pH, temperature or oxygen tension 

(Han et al, 1994; Lee et al, 1994; Rouse et al, 1994; Raingeaud et al, 1995; Verheij et 

al, 1996).   

 

There is an increasing body of work investigating the relative roles of MAPK in a 

variety of human disease, in particular p38 MAPK appears to be involved with 

inflammatory responses and regulation of the immune system (Hale et al, 1999; Ono 

and Han, 2000).  It has also been implicated in ischaemia/reperfusion injury of the 

brain, in myocardial pre-conditioning and in systemic hypertension (Ono and Han, 

2000; Behr et al, 2003; Ju et al, 2003).  However the exact nature of its role in these 

disease states remains uncertain. 

 

The MAPKs function within highly complex signalling cascades that depend on their 

dual phosphorylation at threonine and tyrosine residues within their regulatory loop 

by upstream MEKs that are activated by Raf-1 binding.  All MAPKs share threonine 

and tyrosine residues within this loop but the intervening protein varies between 
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subtypes and confers their relative specificity to substrate, but not to their upstream 

kinases.  In addition a variety of different MAPK isoforms exist: JNK has three 

identified isoforms (JNK 1/2/3), while four isoforms of p38 MAPK have so far been 

isolated: α, β, γ and δ.  p38 α and β isoforms appear to be ubiquitously expressed 

whereas γ and δ isoforms are more tissue specific (Enslen et al, 2000; Brancho et al, 

2003).  p38 γ appears to be strongly expressed in skeletal muscle, is involved with the 

regulation of basal state glucose uptake via its action on GLUT1 and 4 transporters, in 

addition it may also be involved with muscle cell differentiation (Wang et al, 1997; 

Sweeney et al, 1999; Ono and Han, 2000; Fujishiro et al, 2001).  p38 δ appears to be 

expressed in glandular tissue – its exact function remains obscure (Ono and Han, 

2000).  It also appears that isoform expression is not only tissue-type specific but can 

also vary with developmental stage. 

 

Upstream MEKs exhibit varying specificity for MAPKs – with MEK 1 and 2 

phosphorylating p44/p42 MAPK, MEK4 and 7 - JNK isoforms and MEK3 and 6 - 

p38 isoforms (Brancho et al, 2003).  There is however a degree of overlap with cells 

over-expressing MEK4 able to phosphorylate p38 MAPK and MEKs 3 and 6 also able 

to activate JNK MAPK isoforms.  p38 MAPK isoforms also exhibit relative 

specificity to MEK, with MEK 6 showing high affinity for all isoforms but MEK 3 

only showing affinity for α, β and δ (Enslen et al, 2000).  It appears that MEK 6 is 

preferentially able to activate p38 MAPK α at significantly lower concentrations than 

other isoforms demonstrating another level of control within the cellular signalling 

cascade (Alonso et al, 2000).  Once activated MAPKs act as serine/threonine kinases 

on their substrates – MAPKAP kinases – which then are able to phosphorylate and 

activate a variety of downstream transcription factors - including ATF-1 and 2 and the 
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AP-1 family of transcription factors (c-jun, c-fos etc.) resulting in transcription and 

subsequent translation of MAPK-mediated gene products.  Control of signalling 

cascades appears to occur not only as a result of signal transduction at the membrane 

surface, but also as a result of subcellular localisation of the various signalling 

cascade components, which is in part dictated by the presence of nuclear export 

elements within proteins but also as a result of scaffolding proteins such as TAB-1 

which can control access that individual signalling components have to each other 

(Ono and Han, 2000). 

 

Like MEK-1, the MAP kinases have dual specificity phosphorylation sites and 

following activation, MAP kinase translocates to the nucleus from the cytosol where it 

acts as a substrate for transcription factors such as Elk-1 and the ribosomal S6 kinase 

family (Segal and Greenberg, 1996).  This results in the upregulation of so-called 

immediate early genes (IEG), such as c-fos, by association with a serum response 

element (SRE) that acts as a docking site for Elk-1.  This enables increased 

transcription of mRNA.  The MAP kinases can also be activated by DAG/PLC 

complexes, phorbol esters and by GPCR without the necessity of tyrosine kinase 

involvement.  The Raf-1-MAP kinase pathway appears to be a central cell-signalling 

pathway enabling the conversion of an extracellular signal into increased transcription 

of mRNA. p38 and JNK MAPKs are mediated through the action of G proteins; the 

action of JNK together with ERK can be abrogated by the use of pertussis toxin in 

neonatal calf pulmonary artery fibroblasts (Das et al, 2001).  Pertussis toxin is a 

known inhibitor of G1α/0 protein.  p38 MAPK is not inhibited by pertussis toxin 

suggesting that another G protein mediates its action.   Figure 1.9 represents a 

summary of the p38 MAPK signalling cascade. 
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Figure 1.9 An overview of p38 MAPK signalling.   Tyrosine kinase receptors 

(TKR) are stimulated by the action of a variety of growth factors resulting in the 

association at the inner cell membrane of shc, Grb and SOS proteins enabling the 

activation of Ras.  Ras is able to activate p38 MAPK via Mixed Lineage Kinases 

(MLK) and MAPK kinases (MKKs). p38 MAPK function within highly complex 

signalling cascades that depend on their dual phosphorylation at threonine and 

tyrosine residues within their regulatory loop by upstream MEKs that are activated by 

Raf-1 binding.  Once activated p38 MAPK act as serine/threonine kinases on their 

substrates – MAPKAP kinases and MAPK signal-integrating kinases (MNKs) – 

which then are able to phosphorylate and activate a variety of downstream 

transcription factors - including ATF-1 and 2 and the AP-1 family of transcription 

factors (c-jun, c-fos etc.) resulting in transcription and subsequent translation of 

MAPK-mediated gene products. 
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Most recently Welsh et al (2001) have demonstrated that p38 and ERK MAPK are 

constitutively upregulated in pulmonary artery fibroblasts in the chronically hypoxic 

rat model but not in fibroblasts from systemic arteries.  Inhibitors of p38, but not ERK 

MAPK, abrogate the proliferative response to hypoxia.  Unlike Das and colleagues 

(2001), Welsh et al did not demonstrate an upregulation of JNK in hypoxic bovine 

pulmonary artery fibroblasts.  Das et al (2001) were using neonatal calf rather than an 

adult rat model and, as noted above, there appear to be significant differences between 

mature and neonatal lung physiology.  Both species difference and developmental 

stage may play a role in explaining these conflicting results. 

 

 

1.12.   BMP, BMP receptors and TGF β superfamily 

 

1.12.1.  BMPRII and PPH 

With the discovery of mutations within BMPRII as the predominant inherited genetic 

abnormality in IPH (Lane et al, 2000)  attention has now focused on the function of 

BMP and its receptor-signalling cascade in the aetiology of PH.  BMP, a member of 

the TGF β superfamily, has an important role in development – particularly osteo- and 

chondrogenesis.  However its role in adult physiology is less certain (Kawabata et al, 

1998). 

 

1.12.2.  BMP mediated signalling 

As with other TGF β related ligands, signal transduction occurs via a two-step 

receptor process at the cell membrane.  BMP binds the higher affinity BMPR2 which 

when activated phosphorylates BMPR1.  In turn this results in the downstream 



 55

activation of cytosolic SMAD proteins, which act as the intracellular messengers of 

TGF β superfamily receptors (Kawabata et al, 1998).  SMAD (Sma – from 

Caenorhabditis elegans - and Mad, Mothers Against Decapentaplegia in Drosophila) 

proteins are the mammalian equivalents of signalling factors downstream of TGF β 

which were originally identified in Drosophila, termed decapentaplegic or Dpp (Hata 

et al, 1997).   TGF β related ligands exert a wide variety of effects.  Their role tends 

to be inhibitory for example in EC but can be proliferative in cells of mesenchymal 

origin. 

 

1.12.3.  Smad proteins act as intracellular messengers for TGF β superfamily 

Smad proteins are highly conserved between species and can be divided into three 

categories: Receptor activated Smads (R Smads), Common (Co) Smads and Inhibitory 

Smads (I Smads).  R Smads are phosphorylated by an activated membrane bound type 

1 receptor and are then able to bind either Co Smad (Smad 4)  enabling nuclear 

translocation of the R/Co Smad complex and subsequent DNA transcription, or an I 

Smad (Smad 6/7) which prevents nuclear transport and gene upregulation.  Smad 6 

appears to be a specific inhibitor of BMP stimulated signal transduction (Hata et al, 

1997).  The specificity of the intracellular signalling cascade appears to be determined 

by the L45 area of the type 1 receptor’s kinase region (Chen et al, 1998).  TGF β 

specific Smads appear to be Smads 2, 3 and 7 BMP specific Smads are 1,5, 6 and 8 

(Kawabata et al, 1998). 
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1.12.4.  Cross talk between TKR and serine/threonine kinase (RSK) receptors in 

BMP signalling 

BMP and TGF β do not appear to work exclusively through this signalling cascade.  

There is a growing body of evidence documenting cross talk between RSK and TKR 

(Yue et al, 1999).  VSMC taken from patients with IPH show abnormally enhanced 

growth responses to both BMP and TGF β stimulation despite the use of BMP 

inhibitors (Morrell et al, 2001).  This suggests a wider disturbance of TGF β related 

cellular signalling than could be explained by BMPR 2 disruption alone. 

 

1.12.5.  ERK1 inhibits R/Co Smad nuclear translocation 

TGF β signalling has the capacity to upregulate not only RSK but also the 

Ras/MEK/ERK1 classic MAP kinase pathway and ERK1 (but not JNK or p38) is able 

to phosphorylate R Smads resulting in inhibition of nuclear transport (Kretzschmar et 

al, 1997).  ERK1 phosphorylation occurs at a different site to that of Smad 4 

phosphorylation and does not interfere with R/Co Smad binding (Kretzschmar et al, 

1997).  There is also evidence that TGF β can upregulate p38 MAP kinase signalling 

via TAK 1 and MKK6 and that this signalling cascade is enhanced by the intervention 

of Smad2/4 complex.  Smad 4 binding to the ATF 2 domain of DNA has been shown 

to be dependent on p38 phosphorylation (Kretzschmar et al, 1997).  

 

1.12.6.  BMP receptors exist in two conformational states 

BMP receptors 1 and 2  exist in two distinct conformational states: either as isolated 

membrane bound receptors that are then activated by binding ligand, or as pre-formed 

membrane bound heterodimers (Nohe et al, 2002).  The heterodimeric form appears 

to be unique to BMP receptors amongst the TGF β superfamily.  The mechanism by 
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which these different receptor conformations are activated seems to dictate which 

intracellular signalling cascade is upregulated.  If BMP activates preformed receptor 

heterodimers the Smad pathway appears to be activated,  as a result of ligand 

mediated receptor conformational change.  If BMP binds and then activates, an 

isolated type 2 receptor- the p38 MAP kinase signalling pathway seems to be 

preferentially activated.  Activation of divergent signalling pathways would be 

dependent on the relative frequency of preformed heterodimers at the cell membrane, 

which is in turn dependent on the presence of functional type 2 receptor subunits.  If 

in Familial IPH, the BMPR2 were non-functioning then this would result in a skewing 

of activation of intracellular signalling cascades away from Smads (an inhibitory 

pathway in fibroblasts) towards p38 MAPK.  This would result in the upregulation of 

proliferative pathways that had previously been held in check by BMP/Smad 

dependent signalling (figure 1.10).   

 

However there also appears to be degrees of interdependence between the BMP-

BMPR2-Smad signalling axis and p38 MAPK activation.  There is evidence that p38 

MAPK is required for Smad 1 phosphorylation in a human osteoclast model  (Noth et 

al, 2003) but p38 MAPK also appears to be required for both early and late TGFβ 

mediated signalling via TAK-1 and GADD45β respectively.  Early activation via 

TAK-1 seems to be Smad independent (Horowitz et al, 2004) while late activation 

requires Smad activation (Takekawa et al, 2002).   
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Figure 1.10: Overview of BMPR/Smad signalling from Zwijsen et al (2003) 
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 1.12.7.  Inconsistencies in BMP and TGF β cell signalling 

It is not known how TGF β exerts a negative influence on Smad signalling via 

activation of TKR/Ras/MEK/ERK1, releasing the stimulus towards cell proliferation, 

or why the Smad2/4 complex acts as a cofactor in p38 MAPK-dependent transcription 

when its previously documented function appears to be to act as an inhibitory pathway 

to prevent cell growth.   

 

1.13 HYPOTHESIS 

Macroscopically, it has been shown that significant differences exist between the 

pulmonary and systemic arterial responses to both hypertension and to hypoxia.  The 

central hypothesis of this thesis is that these dissimilarities are partially explained by 

the existence of fundamental differences in cell signalling pathways in  adventitial 

fibroblasts from the pulmonary and systemic circulations.  Studies from this 

laboratory have already shown in a bovine model that IP3 is upregulated in  fibroblasts 

from pulmonary arteries in comparison with those from the mesenteric vasculature 

when exposed to acute hypoxia (Welsh et al, 1998) and that the stress activated 

kinases p38 and JNK (rather than ERK 1 and 2) are upregulated in pulmonary artery 

fibroblasts that have been exposed to acute hypoxia.  In a chronic hypoxic adult rat 

model (5% 02 for 2 weeks), p38 MAPK is constitutively upregulated in pulmonary but 

not systemic artery fibroblasts.  In addition pulmonary artery fibroblasts appear to 

have been phenotypically altered by a chronic hypoxic exposure, demonstrating 

increased proliferative activity even when subsequently cultured under normoxic 

conditions.  This proliferative response is not seen in fibroblasts taken from the 

systemic circulation (Welsh et al, 2001).   
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In this work ‘acute’ hypoxia is defined as 24 hours of continuous hypoxic exposure 

while ‘chronic’ hypoxia is understood as at least 2 weeks of continuous hypoxia.  

These definitions differ from those employed in experiments investigating the 

mechanisms of HPV, a process that begins within seconds of hypoxic exposure and 

becomes sustained over a period of minutes (Gurney, 2002).  Because this work aims 

to examine the proliferative behaviour of human pulmonary and systemic arterial 

fibroblasts to hypoxic exposure, a necessary consideration in designing the 

experimental model is the duration of the cell cycle in arterial fibroblasts: work from 

Scott et al (1998) confirms this to be between 20 and 24 hours in an adult bovine 

model.  As noted above work by Meyrick and Reid (1979: 1980) and Welsh et al 

(2001) have demonstrated that long-term ‘chronic’ hypoxic exposure results in 

sustained structural change in the pulmonary vasculature in comparison to the 

systemic circulation.  This work aims to examine the pulmonary circulation’s ‘early’ 

proliferative response to hypoxia in a human model. 

 

The literature shows that there  is remarkably little work that has been performed on 

human cells despite the numbers of studies performed looking at hypoxic vascular 

remodelling.  What has been done in animal models shows significant interspecies 

variation.  Scott et al  (1998) demonstrated upregulation of JNK and p38 MAPK, but 

not ERK 1 and 2 MAPK, in a hypoxic adult bovine model.  In an adult rat model of 

chronic hypoxia both ERK and p38 but not JNK MAPK, were upregulated (Welsh et 

al, 2001) in comparison to similar work performed by Das et al (2000) in neonatal 

calves.  Regardless of inter-species variations, there appear to be fundamental 

differences in cell signalling response to hypoxia between pulmonary and systemic 

circulations.  Given this, it is important to investigate cell-signalling systems in a 
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hypoxic human model to establish whether the same pathways are used and to attempt 

to find a suitable animal model comparison. 

 

Aims: 

1) To investigate the role of hypoxia in both human pulmonary and systemic 

artery fibroblast proliferation. 

2) To investigate a potential role for the stress activated and classic MAPK in 

hypoxia mediated fibroblast proliferation and a possible role for HIF-1α in 

this process. 

3) To investigate the relative roles of various SMAD proteins involved in BMPR 

signal transduction in human pulmonary and systemic arterial fibroblasts 

exposed to acute hypoxia and attempt to identify any possible interaction with 

both stress activated and classic MAPK. 
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Chapter 2: 
 
Materials and Methods 
 

2.1. Materials 

All general chemicals were of Analar grade and were supplied by Merck 

(Thornliebank, Glasgow) or Sigma (Poole, Dorset) unless otherwise stated. All tissue 

culture plastics were from Greiner Labortechnick Ltd (Gloucestershire.UK). All 

components of tissue culture medium were purchased from Gibco Life Technologies 

(Paisley, Scotland). [3H]thymidine was from Amersham (Little Chalfont, Bucks). 

Antibodies used for Western Blot analysis were from New England Biolabs 

(Hertfordshire, UK). Gel electrophoresis equipment was purchased from Bio-Rad 

Laboratories (Herts, UK). Incubators were supplied by LEEC (Nottingham, UK). 

 

2.2. Cell and tissue culture 

Cells derived from human pulmonary and left internal mammary arteries were used. 

Following ethical approval (R+D No. 03RM004VRM) and full written consent (see 

appendix), tissue was obtained fresh on the day of experimentation from patients 

undergoing surgical treatment for lung cancer. All patients were smokers but had 

normal spirometry at the time of surgery; tissue from patients with abnormal 

spirometry or with any known respiratory condition was not used.  Tissue was 

transported from theatres at the Western Infirmary, Glasgow to the Pathology 

Department where suitable samples were removed by pathology staff.  The samples 

were then taken directly to the laboratory in a container filled with chilled Krebs-

Henseleit Solution (NaCl 118mM, NaHCO3 25mM, KCl 4.7mM, KH2PO4 1.2mM, 

MgSO4 1.2mM, CaCl2 2.5mM, and Glucose 11mM).  
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2.3. Primary Cell Culture 
 
Fibroblasts used throughout these studies were obtained from primary culture by 

explant.  

 
Since the conditions (warm, humid and nutrient rich) necessary for culturing the cells 

are an ideal environment for promoting fungal and bacterial growth, extreme caution 

must be taken to avoid contamination. All steps such as making up solutions, 

changing media, etc were conducted under sterile conditions, that is, within a clean, 

Microflow laminar flow hood (model number M25121/1) (figure 2.1). The flow hood 

was dismantled and cleaned regularly and before use each day was sprayed liberally 

with 70% (v/v) ethanol. Anything taken inside the flow hood (i.e. pipettes and reagent 

bottles) was also sprayed with ethanol and sterile gloves were worn throughout. 

Pipette tips and distilled water were sterilised using a prestige Medical “Omega” 

autoclave (model number 220140).  

 

2.3.1. Primary fibroblast culture 

Lobar pulmonary artery was dissected free from the lung tissue and then cut 

longitudinally into a flat sheet (figure 2.2 and 2.3). Pulmonary and systemic artery 

fibroblasts were prepared using the technique of Freshney (1983), with some 

modifications. Muscular tissue and endothelial cell layers were removed by gentle 

abrasion of the vessel using a sterile razor blade (figure 2.4). The remaining tissue 

(adventitia) was then dissected into 5mm2 portions.  Approximately 25 portions of 

tissue were evenly distributed over the base of a 25cm2 culture flask containing 2ml of 

DMEM with 20% FCS, supplemented with penicillin/streptomycin (400iu/ml and 

400μg/ml) and amphotericin B (5μg/ml) (figure 2.5). The explants were incubated in 

a humidified atmosphere of 5% CO2 in air at 37oC. Within a few days cells were 
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Figure 2.1: Microflow laminar hood (model number M25121/1) 
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Figure 2.2:  Lobar pulmonary artery in situ.   
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Figure 2.3: Pulmonary artery dissected from gross specimen 
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Figure 2.4: Dissection of longitudinally sectioned pulmonary artery using sterile 
razor blade 
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Figure 2.5: Sections of pulmonary artery seeded into 25cm3 culture flask 
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observed growing out from the tissue fragments (figure 2.6). Once a monolayer of 

cells had partially covered the flask, cells were lifted from the flask by trypsinisation 

as described in Chapter 2.3.1. Tissue fragments were removed by aspiration. 

 

The main branch of the pulmonary artery was used to acquire pulmonary artery 

fibroblasts. To study fibroblasts from the systemic circulation, the internal mammary 

artery was dissected – this artery is typically 3mm in diameter and is consistent with 

the dimensions of systemic control vessels previously used by this laboratory (rat 

aorta and bovine mesenteric arteries) (Scott et al, 1998; Welsh et al, 1998; 2001; 

2004; 2006).  

 

Cells were not selected for experimentation.  The only criteria used were that the cells 

did not stain positively for either smooth muscle actin or for Von Willebrand Factor – 

markers for smooth muscle cells and endothelial cells respectively and that they 

proliferated.  Cells that did not proliferate from explant and stained positively for 

other cell markers were discarded.  Figure 2.7 (a) and (b) demonstrate cell staining 

for smooth muscle actin and Von Willebrand Factor (VWF).  Cells were used 

between passage 2 and 10 – there appeared to be no significant alteration in 

proliferative response in the later passages.   

 

2.3.2. Routine Cell Maintenance 

Cells were grown routinely in 75cm2 culture flasks in Dulbeccos modification of 

Eagles medium (DMEM), supplemented with penicillin (200 units/ml) and 

streptomycin (200 ug/ml), L-glutamine (27 mg/ml) and 10% foetal calf serum (FCS).  
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Figure 2.6: Fibroblast cells growing from explant tissue under magnification 
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 (a) 

(b) 

 

 

Figure 2.7 (a)  α-Actin and (b) VWF Staining of Human Pulmonary Artery 

Fibroblasts. 

 positive α- 
actin staining 



 

   
 
 

 

72

The cultures were kept in a humidified atmosphere of 5% CO2 in air at 37oC. Culture 

medium was changed every 2 days and cells were passaged just prior to confluency. 

  

Cell passage was performed by removing the culture medium and washing the cells 

with 2mls pre-warmed trypsin solution (0.05% trypsin / EDTA 0.02%) which was 

then aspirated. A further 2ml of trypsin solution was then added and left on the 

surface of the cells for approximately 10s before aspiration. The cells were then 

incubated at 37oC for approximately 15 minutes or until they had began to detach 

from the surface of the flask. This was observed under a light microscope (Olympus 

CK2) (figure 2.8). Gentle tapping of the dish was used to dislodge the cells and 10ml 

of DMEM containing 10% FCS was added to the flask to re-suspend the cells. A 

portion of this cell suspension (0.3ml) was then aliquoted into new flasks containing 

another 10mls of fresh medium. At this stage cells could be plated out onto dishes as 

required for experimentation. Cells were used for experimentation between passage 3-

10. 

 

2.3.3. Cell Freezing/Thawing 

A cell suspension was collected from a 75cm2 flask by trypsinisation (Chapter 2.3.1) 

in 10ml of culture medium. Cells were centrifuged at 1000g for 10 minutes. The cell 

pellet was then resuspended in 1ml Cryopreservation Medium growth medium 

(DMEM containing 10% FBS and 10% DMSO). The resuspended cells in the freezing 

medium were placed in a 2ml cryotube and left in a fridge for 20 minutes followed by 

a –80oC freezer overnight. The tube was then transferred to the vapour phase of the 

liquid nitrogen for 1h, then placed directly into the liquid nitrogen.  
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Figure 2.8:  Light microscope (Olympus CK2)  
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Frozen cells were removed from liquid nitrogen and thawed rapidly in a water bath at 

37oC. The cryotubes were then swabbed with tissue paper soaked in 70% ethanol and 

the caps loosened. Holding the vial in one hand, the cap was removed and the contents 

taken up into a pipette, then placed in a 10ml centrifuge tube. The cell suspension was 

diluted slowly with 5mls of fresh growth medium and the tubes centrifuged at 1000g 

for 10mins. The cells were resuspended in 10mls fresh growth medium and seeded 

onto a 25cm2 flask. After approximately 4h the cells attached to the flask. The 

medium was replaced with fresh medium.  

 

2.4 Hypoxia: Methods for studying acute hypoxic fibroblast cells in vitro  

 

2.4.1. Generation of Hypoxic Environment 

A humidified temperature controlled incubator (Model GA156; LEEC, Colwick, 

Nottingham, UK) (figure 2.9) was used to produce a hypoxic environment. This 

incubator allows control of internal oxygen levels between 0 and 21% using medical 

grade nitrogen, while the CO2 level is simultaneously controlled at 5%. Due to the 

large volume of nitrogen required to sustain a suitable degree of hypoxia, nitrogen 

cylinders were linked using a Pneuchange automatic gas cylinder change over unit 

(NTC, Woulton, Liverpool, UK), which activated a fresh supply of nitrogen as 

required. 

 

2.4.2. Measurement of Hypoxia 

The levels of hypoxia achieved within the environment of the incubator could be 

monitored with the oxygen probe that was an integral part of the unit. Measurements 

from within the bathing medium of the cells were also analysed with a portable  
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Figure 2.9: Humidified temperature controlled incubator (Model GA156; LEEC,  

Colwick, Nottingham, UK)
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oxygen probe (Jenway: 9015. Dunmon, Essex, UK) to determine the rate of gaseous 

diffusion, and the pH of the medium analysed throughout the course of hypoxic 

exposure with the use of a portable pH probe (Mettler Delta 340, Hanstead, UK). 

Cells were routinely maintained for acute hypoxia in an atmosphere of 5% O2  

(35mmHg) and 5% CO2 at 37oC. 

 

2.5. Assessment of Cell Proliferation 

2.5.1 Cell counting 
 
Cell counts were confirmed manually using a haemocytometer following fibroblast 

cell staining with propodium iodide. 

 
 
 
2.5.1 [3H] Thymidine uptake assays 
 

Cell proliferation was measured by determining the uptake of [3H]thymidine into 

DNA. Cells were seeded at a density of 5x103 cells / well into 24-well plates in 500μl 

of culture medium. Cells were grown to 70% confluency in 24-well plates and then 

growth-arrested for 24h by replacing the medium with 500μl serum-free DMEM. 

Cells were then stimulated with appropriate agonists and incubated for 24h, either in a 

normal CO2 incubator (5% CO2) or in the hypoxic incubator to obtain an acute 

hypoxic exposure (Chapter 2.4). In the latter case, the O2 content of the atmosphere 

was reduced from 21% to 5% by flooding with N2.  

 

For the final 4h of agonist stimulation, cells were labelled with [3H]thymidine 

(0.1μCi/well). The reaction was stopped by washing the cells twice in ice-cold PBS 
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(500μl/well). Proteins were precipitated by washing three times with 500μl/well 5% 

trichloroacetic acid (TCA) and lipid fractions were solubilised by washing twice with 

90% ethanol (500μl/well). The remaining cell contents were incubated in 0.3M NaOH 

(500μl/well) for 30mins. The contents of each well were transferred to scintillation 

vials, to each of which was added 3mls of Ecoscint A (Ecoscint, Atlanta, Georgia, 

USA) scintillation fluid. Vials were vortexed briefly before radioactivity was 

measured by scintillation counting using a Wallac scintillation counter. Results are 

expressed as disintegrations per minute (DPM) and were confirmed manually using a 

haemocytometer following fibroblast cell staining with propodium iodide 

demonstrating that [3H]Thymidine uptake was a good proxy for cellular proliferation. 

 

2.6 Detection and Analysis of Proteins 

 

2.6.1 Preparation of samples for SDS-PAGE and immunoblotting 

Cells were seeded at a density of 5x103 cells/well onto 6-well dishes. After the cells 

had reached 60% confluency, they were growth-arrested in serum-free DMEM for a 

period of 24h. After the cells had been agonist-stimulated, the medium was removed, 

the cells placed on ice and the cell monolayer washed 2x with 500μl ice-cold PBS. 

The cells are then lysed with 50μl RIPA buffer.  The samples were left on ice for 15 

mins.  (Tris-HCl 50mM pH 7.4, NP-40 1%, C24H39O4Na 0.25%, NaCl 150mM, 

EGTA 1mM, PMSF 1mM, Na3VO4 1mM, NaF 1mM, CLAP 1/1000, pH 7.4). 

 

The cells were scraped on ice into the RIPA buffer and the contents placed in 

microcentrifuge tubes.  The lysates were centrifuged at 14,000g at 4oC for 15mins. 

The supernatant was then transferred to fresh tubes, aliquoted and stored at –70oC. 
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2.6.2 SDS Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

Pre prepared gel plates (Amersham) were used for protein electrophoresis.  Each gel 

plate was removed from its packaging and rinsed thoroughly with dH2O.  The combs 

were removed and the wells rinsed with Electrophoresis Buffer (Tris-base 25mM, 

glycine 192mM and SDS 0.1%).  Unloaded gels were then placed in the BioRadTM 

electrophoresis unit and the central well filled with Electrophoresis buffer containing 

500 μl electrophoresis antioxidant. 

 

2.6.3.  Electrophoresis conditions 

All protein samples to be examined by SDS-PAGE were first diluted to 22μl by the 

addition of 10μl of sample buffer and 2μl of rainbow marker to the original 10μl of 

sample. Samples were heated to 70oC for 10 min to denature proteins and disrupt 

disulphide bonds. The required volume was loaded into the individual wells of the 

electrophoresis gel using loading tips. Pre-stained SDS protein molecular weight 

markers (Biorad) of known size were also placed in lanes either side of the loaded gel. 

The outer chambers of the electrophoresis unit was filled with Electrophoresis Buffer 

and the polyacrylamine gel subjected to electrophoresis for approximately 50 min at a 

constant current of 200 mA. 

 

The molecular weight of proteins was estimated by comparing their mobility to that of 

pre-stained SDS-PAGE standards. The standards used were myosin (205kDa), β-

galactosidase (120kDa), bovine serum albumin (87kDa) and ovalbumin (48kDa). 
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2.6.4.  Western blot analysis 

 

2.6.4.i   Transblotting to nitrocellulose. 

Following completion of electrophoresis, polyacrylamide gels were removed from the 

apparatus and washed once. Proteins were transferred from the polyacrylamide gel to 

the nitrocellulose by assembling a transfer cassette with the nitrocellulose 

juxtapositioned between the polyacrylamide gel and the cathode. By this method 

negatively charged proteins were transferred to nitrocellulose for 1h at a constant 30-

amp current. 

 

2.6.4.ii.  Immunoblotting 

Samples (15μg of protein) were subjected to SDS-PAGE (Chapter 2.8.3) and the 

proteins transferred to nitrocellulose by Western blotting (Chapter 2.8.4.1). The 

nitrocellulose blots were washed in PBS/T (PBS containing 0.02% Tween-20 (v/v)) 

and blocked for non-specific binding for 1h on a rocking platform at room 

temperature in PBS/T supplemented with 10% non-fat milk (Marvel) (w/v). Blots 

were incubated for 1h in PBS/T supplemented with 5% Marvel (w/v) containing the 

appropriate dilution of primary antibody. The primary antibody dilutions used for 

detection of specific antigens is detailed in table 2.1. The nitrocellulose blots were 

rinsed in PBS/T, and washed with 1 litre of PBS/T over an hour. The blots were then 

incubated for a further 60mins in PBS/T containing 5% Marvel (w/v) containing the 

appropriate secondary antibody dilution. The blots were then washed as before. 

Following completion of washing procedure proteins were detected using a method of 

Enhanced Chemilumenescence (ECL). Blots were incubated in ECL solution 

(Amersham) for 30s and sandwiched between acetate film. Care was taken to ensure 
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all air bubbles were removed. Blots were then placed in an X-ray cassette and light 

emission from the HRP enzymatic action on its substrate contained within the ECL 

solution was detected following exposure (10 mins – 24 h) of nitrocellulose blots to a 

piece of X-ray film using a KODAK M35-M X-OMAT processor. 

 

2.6.4.iii. Immunoprecipitation  

Using Catch and Release® Immunoprecipitation Kit (Upstate) cell lysates were 

prepared for Western Blotting as follows:  2.5mls of x1 Catch and Release® wash 

buffer was prepared.  The snap off bottom plug was removed from the spin column 

and inserted into the capture tube.  The screw cap was then removed from the spin 

column and was then centrifuged at 2000 x g for 15-30 seconds to remove the resin 

slurry buffer.  The resin was then washed x 2 with 400 µl of x 1 wash buffer.  The 

capture tube was emptied and the bottom end of the column was re-plugged with the 

inverted snap-off plug.  500µg cell lysates were added to the tube together with 4 µg 

of specific p38 MAPK isoform antibody together with 10µl of antiserum, 10µl 

antibody capture affinity ligand and diluted to a total volume of 500 µl with x 1 wash 

buffer.  Samples were added to the spin tube in the following order:  x 1 wash buffer, 

cell lysates, specific primary antibody followed by antibody capture affinity ligand.  

The spin tube was re-capped and then mixed at room temperature for 30 minutes 

ensuring that the slurry remained suspended throughout.  The snap-off bottom was 

discarded from the spin tube and was placed on a fresh capture tube, the screw on cap 

removed and was then centrifuged at 1,500 x g for 15 –30 seconds; the flow through 

was discarded.  The column was washed x 3 with 400 µl of x 1 wash buffer and spun 

at 1,500 x g for a further 15-30 seconds for each wash.  The spin column was then 

placed on a fresh capture tube, 70 µl of x 1 non-denaturing elution buffer was then 
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added to the spin column which was then centrifuged at 1,500 x g with the elutant 

being reserved for Western blotting.  This last step was repeated x 3 – 4 in order to 

obtain maximum retrieval.  Samples were then processed as for Western blotting and 

immunophoresis as described above. 

 

Table 2.1 

 

Analysed Protein Antibody Type Dilution 

phospho p38 rabbit monoclonal anti-phospho p38 IgG antibody 1:500 

whole p38 rabbit monoclonal anti- whole p38 IgG antibody 1:500 

phospho p42/44 rabbit monoclonal anti- phospho p42/44 IgG antibody 1:500 

Whole p42/44 rabbit monoclonal anti- whole p42/44 IgG antibody 1:500 

phospho Jnk rabbit monoclonal anti- phospho Jnk IgG antibody 1:500 

whole Jnk rabbit monoclonal anti- whole Jnk IgG antibody 1:500 

HIF 1 rabbit monoclonal anti- phospho HIF 1 IgG antibody 1:500 

phospho Smad 

1/5/8 

rabbit monoclonal anti-whole Smad 1/5/8 IgG 

antibody 

1:5000 

phospho Smad 2 rabbit monoclonal anti-whole Smad 2 IgG antibody 1:500 

Whole Smad 6  goat monoclonal anti-whole Smad 6 1:1000 

Whole Smad 7 goat monoclonal anti-whole Smad 7 1:750 

 

Table 2.1 Primary antibody dilutions utilised for Western blotting 

 

2.6.4.iv.  Re-probing nitrocellulose membranes 

 

In instances where the same membrane was used to probe for different proteins, 

primary and secondary antibodies were stripped from the nitrocellulose by incubating 

in Stripping Buffer (100mM B-mercaptoethanol, 2% SDS and 62.5mM Tris-HCl, pH 
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2.7) for 1 hour at room temperature with agitation. Blots were then rinsed with PBS/T 

overnight before the immunodetection protocol was repeated (Chapter 2.6.3.2). 

 

2.7 Densitometric analysis of blots 

 

Densitometric analysis of blots was carried out using a computer programme that 

allowed for comparison of blot density in graphical form (Quantiscan). 

 

2.8 Data analysis 

 

Data are expressed as mean ± S.D. for replicate plates from the same experiment. 

Experiments were repeated in cells from 4 different individuals. The statistical 

significance of differences between mean values from control and treated groups were 

determined by Student’s t-tests, unpaired and paired where applicable, using OXTAT 

software. Two-tailed probability values of less than 0.05 (p<0.05) were considered to 

be significant. 
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Chapter 3:  

To examine the proliferative behaviour of human pulmonary and systemic 

arterial fibroblasts under normoxic and acute hypoxic conditions 

 

3.1. Introduction 

In the Everest II study, Groves et al (1987; 1993) demonstrated that graded and 

chronic hypobaric hypoxia over a period of 40 days, resulted in significant elevations 

in mean pulmonary artery pressure (> 60mmHg) in healthy male adults that could not 

be fully reversed with adequate reoxygenation.  This implied that the rise in mean 

PAP was not only the result of hypoxic vasoconstriction, but also the result of 

structural remodelling within the pulmonary vascular tree.  In a rat model, Meyrick 

and Reid (1979) demonstrated that chronic hypoxic exposure resulted in structural 

change in all compartments of the vascular wall: intimal, medial and adventitial, but 

with the earliest, most marked and irreversible changes occurring within the 

adventitia.  The persistence of adventitial thickening following reoxygenation was in 

part the result of extracellular matrix deposition, but also the result of increased 

numbers of adventitial fibroblasts.   

 

In a recent review article, Stenmark et al (2006) commented that there are features 

that are nearly universally present in the pulmonary vasculature of animals that 

develop PAH secondary to hypoxic exposure: namely intimal hyperplasia, medial 

thickening and extension of the muscularis into previously unmuscularised arterioles, 

together with adventitial expansion.  These authors also noted that there are 

significant differences between animal models in terms of proximal and distal 

vascular structural changes. Specifically they remarked on the different structural 

responses to hypoxia seen in the conduit vessels of large mammals where medial 
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hyperplasia predominates with minimal associated adventitial expansion, compared to 

the distal vessels, where smooth muscle cells appear to be more resistant to 

proliferation and there is more marked adventitial thickening.  This review is written 

on a background of increased interest in the phenotypic diversity of cells that make up 

the vascular wall not only in the medial compartment, but also in the adventitia that 

provide a pulmonary circulation that is much more plastic in its response to 

physiological stress. 

 

Das et al (2002) cultured a variety of fibroblast subpopulations taken from conduit 

pulmonary arterial adventitia in a chronically hypoxic neonatal calf model. These 

cells demonstrated a variety of morphologies and proliferative responses when 

compared with adventitial fibroblasts from normoxic calves.  Neither morphology nor 

smooth-muscle actin expression predicted the proliferative response to further 

hypoxic exposure, but Das et al identified twice as many pro-proliferative fibroblasts 

in chronically hypoxic calves than controls.  Previously they had identified two 

fibroblast cell lines cultured from hypoxic neonatal calf aortic adventitia that not only 

proliferated in response to hypoxic exposure, but also were  stable through a series of 

passages demonstrating a maintained  phenotype (Das et al, 2001).  This suggests that 

phenotypic variation is not specific to the pulmonary vasculature but can also occur in 

the systemic circulation albeit in an immature experimental animal model (Das et al, 

1995; Das et al, 2000; Das et al, 2001; Das et al, 2002). 

 

Pulmonary arterial fibroblast proliferation to hypoxic exposure has been demonstrated 

in a number of animal models (fetal, neonatal and adult bovine, adult rat and adult 

human) by a number of different investigators.  In an adult bovine model, Welsh et al 

(1998) have demonstrated that pulmonary arterial fibroblasts proliferate vigorously to 
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hypoxic exposure compared to the same cells cultured in normoxia, or systemic 

arterial fibroblasts cultured in hypoxia. The increased proliferation seen in pulmonary 

arterial fibroblasts associated with upregulation of the IP3/DAG pathway.  In a 

chronically hypoxic rat model the same group have demonstrated that pulmonary 

arterial fibroblasts cultured in normoxia develop a permissively proliferative 

phenotype when compared to fibroblasts from the systemic circulation (Welsh et al, 

2001).  In adult bovine and human models, the Scottish Pulmonary Vascular Unit 

Laboratory has shown that pulmonary arterial fibroblasts can proliferate to hypoxia 

without additional serum stimulation.  In an adult rat model however, adventitial 

fibroblasts require serum to enable the hypoxic proliferative response (Welsh et al, 

1998).  Other laboratories have been able to demonstrate increased DNA synthesis in 

pulmonary arterial fibroblasts to hypoxia alone, but have not been able to show 

increased proliferation (Short et al, 2005).  This may be as a result of differing 

experimental models as fibroblast and smooth muscle cell behaviour to hypoxia 

appears to change with increasing age (Das et al, 1997; Xu et al, 1997). 

 

There is a body of work documenting the alteration in pulmonary arterial adventitial 

fibroblast behaviour to chronic hypoxic exposure in a variety of models (Xu et al, 

1997; Das et al, 2000; Welsh et al, 2001).  Until recently investigators have focused 

on the ‘phenotypic switching’ of resident fibroblasts – enabling a gain of function 

towards a pro-proliferative phenotype - but latterly there has been interest in the role 

of circulating progenitor stem cells in pulmonary adventitial expansion. 

 

In a chronically hypoxic neonatal bovine model Davie et al (2004) have demonstrated 

a significant increase in the density of vasa vasorum at all levels of the pulmonary 

circulation; the differences being most marked in the distal resistance vessels.  They 
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noted that these new blood vessels were immature and leaky (as indicated by the 

presence of erythrocytes both within the adventitia, and in the adventitial/medial 

interface) allowing access to the media by circulating mitogens and stem cells.  They 

noted an increase in the number of cells staining positive for the tyrosine kinase 

marker c-kit (a marker for circulating mononuclear (MNC) cells) within the adventitia 

of pulmonary arteries from chronically hypoxic calves compared to calves raised in 

normoxia.  These MNC when cultured in enriched media were able to differentiate 

into either EC or SMC – with the transformed EC demonstrating a similar expression 

profile to EC resident within the vasa vasorum or within the vessels.  Davie et al 

theorised that the pluripotent MNC either represented external seeding of the 

adventitia by circulating stem cells, or expansion of a c-kit positive subclass of 

fibroblasts already resident within the adventitia.  

 

Circulating MNC appear to make a significant contribution to adventitial thickening 

as a result of chronic hypoxic exposure.  Using weanling Wistar-Kyoto rat and 

neonatal bovine models, Frid et al (2005; 2006) demonstrated that circulating MNC 

contributed to approximately one third of proliferating cells within the adventitia.  In 

addition some MNC stained positively for smooth muscle actin and collagen type I 

(suggesting a myofibroblast phenotype).  By blocking MNC production in the bone 

marrow these investigators have demonstrated a marked reduction in the degree of 

adventitial expansion to hypoxic exposure in a neonatal rat model (Davie et al, 2006).   

 

In spite of the current debate about the origins of cells proliferating within the 

pulmonary adventitia, there is little to explain why the pulmonary and systemic 

circulations should behave so differently to both acute and chronic hypoxic exposure.  

Previous work has shown that pulmonary and systemic arteries behave in a different 
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manner following hypoxic exposure: pulmonary arteries vasodilatate and systemic 

arteries vasoconstrict suggesting that there are significant differences between the two 

circulations (Von Euler and Liljestrand, 1946; Wagner and Mitzner, 1988).  This is 

born out by the results of experimental work examining the relative behaviours of 

fibroblasts cultured from pulmonary and systemic arteries following both acute and 

chronic hypoxic exposure in a variety of animal models.  Previous work from the 

Scottish Pulmonary Vascular Unit Laboratory has demonstrated that pulmonary artery 

fibroblasts harvested from both adult bovine and rat models show a permissively 

proliferative response to hypoxic exposure, whereas fibroblasts taken from the 

systemic circulation do not when grown under identical conditions (Scott et al, 1998; 

Welsh et al, 1998; Welsh et al, 2001).  So far this work has only been performed in 

animal models; we wished to see whether pulmonary and systemic arterial fibroblasts 

in a human model behaved similarly in order that we might better be able to confirm 

or refute the extrapolation of results from animal experiments to hypoxic pulmonary 

vascular disease in man. 
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3.2. Methods 

Cells were obtained from pulmonary and systemic arteries of consented patients 

undergoing lobectomy for the treatment of lung cancer or coronary artery bypass 

surgery respectively. Fibroblasts were grown by primary cell culture using an explant 

technique as described above (chapter 2.3).  Human pulmonary (HPAF) and 

mammary (HMAF) artery fibroblast cells were grown to 60% confluency in 24 well 

plates.  The cells were quiesced for 24 hours using serum-free media; they were then 

grown in normoxic conditions for 24 hours with the addition of incremental serum 

concentrations (0, 0.1, 1, 3, 5 & 10%).  [3H]Thymidine uptake was used as a surrogate 

marker for DNA synthesis, cell counts having confirmed this method as being 

representative of fibroblast proliferation (chapter 2.5).  

 

We wished to examine the relative behaviour of HPAF cells to increasing serum 

concentrations under both hypoxic growth conditions and those of normoxia for the 

same time period.  HPAF cells were grown to 60% confluency in 24 well plates.  The 

cells were quiesced using serum-free media for a period of 24 hours.  They were then 

cultures in conditions of acute hypoxia (35mmHg PO2) for 24 hours or normoxia with 

increasing serum concentrations (0, 0.1, 1, 3, 5 & 10 %).  Proliferation was assessed 

by [3H]Thymidine uptake. 

 

Following this we wished to examine the behaviour of human mammary arterial 

fibroblast (HMAF) cells under conditions of acute hypoxia.  As above HMAF cells 

were grown to 60% confluency in 24 well plates.  They were quiesced using serum-

free media for 24 hours.  They were then grown in conditions of normoxia or hypoxia 

(35mmHg PO2) for a period of 24 hours.  The cells were incubated with incremental 
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serum concentrations (0, 0.1, 1, 3, 5 & 10 %).  Cellular proliferation was assessed 

using [3H]Thymidine uptake as above.   

 

A visual assessment of pulmonary arterial fibroblast proliferation was made.  In 

addition cell counts were performed on both systemic and pulmonary arterial 

fibroblast cells cultured in both normoxic and hypoxic conditions with or without 5% 

serum stimulation for a period of 24 hours.  This confirmed that [3H]Thymidine 

assays were a good proxy for cellular proliferation – as a result of this concurrence 

further cell counts were not performed for subsequent experiments. 

 

All experiments were repeated 4 times in the same individual – the results shown are 

representative of the mean of those experiments.  The experiments were repeated in a 

total of 4 individuals. 

 

3.3. Statistics 

Results are expressed as the mean + S.D. with statistical analysis being carried out as 

described in Chapter 2.6 with * indicating a statistically significant result (p<0.05). 
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3.4. Results 

Human pulmonary arterial fibroblasts demonstrate dose-response to increasing 

serum concentrations under normoxic growth conditions for 24 hours 

HPAF cells were grown in normoxic conditions in 24 well plates to 60% confluency.  

They were then serum starved for a period of 24 hours and were then grown in 

normoxic conditions with increasing serum concentrations (0, 0.1, 1, 3, 5 & 10%) for 

a further 24 hours.  HPAF proliferation was assessed by [3H]Thymidine up take as 

described above (chapter 2.5.1).  [3H]Thymidine incorporation by human pulmonary 

artery fibroblasts showed a dose-response to increasing serum concentrations under 

normoxic growth conditions for 24 hours (figure 3.1.a).  Cellular proliferation was 

also assessed visually over a 24h period figure 3.1.b. Figure 3.1.b A and B shows 

serum-starved normoxic fibroblast cells at t = 0. Figure 3.1.b C and D shows 

fibroblast cells at 12 and 24h later after 5% serum stimulation.   Cell counts were 

confirmed manually using a haemocytometer following fibroblast cell staining with 

propodium iodide (chapter 2.5.1).  Visual assessment and cell counting techniques 

confirmed that [3H]Thymidine uptake was a reliable indicator of proliferation as a 

result of this further cell counts were not performed in subsequent experiments.  The 

experiment was repeated 4 times in the same individual and performed in 4 

individuals; the results illustrated are representative of 4 separate experiments in the 

same individual with results expressed as mean +/- 2 SD with * indicating a 

statistically significant result (p<0.05). 
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Figure 3.1a: Human pulmonary arterial fibroblasts demonstrate dose-response 

to increasing serum concentrations under normoxic growth conditions for 24 

hours.  Human pulmonary artery fibroblasts proliferated in a dose-response manner to 

increasing serum concentrations (0, 0.1, 1, 3, 5 & 10%) under normoxic growth 

conditions for 24 hours with proliferation being assessed by [3H]Thymidine counts 

(DPM ~ disintegrations per minute).  The experiment was repeated 4 times in the 

same individual and performed in 4 individuals; the results illustrated are 

representative of 4 separate experiments in the same individual with results expressed 

as mean +/- 2 SD with * indicating a statistically significant result (p<0.05). 
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Figure 3.1.b. Visual assessment of human pulmonary arterial fibroblast 

proliferation.  Visual confirmation of the hypoxic proliferation of these cells over a 

24h period when compared with those maintained in normoxia can be seen in figure 

3.1.b. Figure 3.1.b A and B shows serum-starved normoxic fibroblast cells at t = 0. 

Figure 3.1.b C and D shows fibroblast cells 12 and 24h later after 5% serum 

stimulation.  
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Human mammary arterial fibroblasts demonstrate dose-response to increasing 

serum concentrations under normoxic growth conditions for 24 hours 

 

HMAF cells were grown in 24 well plates under normoxic conditions to 60% 

confluency.  They were then quiesced with serum-free medium for 24 hours.  They 

were then cultured with increasing serum concentrations (0, 0.1, 1, 3, 5 & 10%) under 

normoxic growth conditions for 24 hours.  Figure 3.2 demonstrated that 

[3H]Thymidine incorporation by human systemic artery fibroblasts showed a dose-

response to increasing serum concentrations.  The growth response appeared similar 

to that seen in human pulmonary arterial fibroblasts cultured under similar conditions.  

The experiment was repeated 4 times in the same individual and performed in 4 

individuals; the results illustrated are representative of 4 separate experiments in the 

same individual with results expressed as mean +/- 2 SD.  
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Figure 3.2: Human mammary arterial fibroblasts demonstrate dose-response to 

increasing serum concentrations under normoxic growth conditions for 24 hours 

Human systemic artery fibroblasts proliferate in a dose-response manner to increasing 

serum concentrations (0, 0.1, 1, 3, 5 & 10%) under normoxic growth conditions for 24 

hours.  Cellular proliferation was assessed by [3H]Thymidine uptake measured in 

DPM ~ disintegrations per minute. The experiment was repeated 4 times in the same 

individual and performed in 4 individuals; the results illustrated are representative of 

4 separate experiments in the same individual with results expressed as mean +/- 2 

SD. 
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Human pulmonary arterial fibroblasts demonstrate increased proliferation to 

acute hypoxia compared with normoxic growth conditions for 24 hours. 

 

HPAF cells were grown in 24 well plates to 60% confluency under normoxic 

conditions.  They were then quiesced in serum free medium for a period of 24 hours.  

They were then cultured with incremental serum concentrations under either 

normoxic or hypoxic growth conditions for a further 24 hours. Figure 3.3 

demonstrates that under 24 hours normoxic conditions human pulmonary artery 

fibroblasts demonstrated increased proliferation (as indicated by an increase in 

[3H]Thymidine incorporation) in a dose-dependent manner to increasing serum 

concentrations (figure 3.1).  HPAF grown in conditions of acute hypoxia 

demonstrated increased proliferation to incremental serum concentrations (0, 0.1, 1, 3, 

5 & 10%) when compared to identical cells grown in normoxic conditions as 

evidenced by increased [3H]Thymidine incorporation.  Hypoxia alone without 

additional serum stimulation was enough to cause increased proliferation in HPAF 

cells.  The experiment was repeated 4 times in the same individual and performed in 4 

individuals; the results illustrated are representative of 4 separate experiments in the 

same individual with results expressed as mean +/- 2 SD and where * indicates a 

statistically significant value (p<0.05).  
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Figure 3.3: Human pulmonary arterial fibroblasts demonstrate increased 

proliferation to acute hypoxia compared with normoxic growth conditions for 24 

hours.  Hypoxic HPAF cell (white bar) show increased proliferative response to 

increasing serum concentrations (0, 0.1, 1, 3, 5 & 10%) when compared to identical 

cells cultured under normoxic conditions (black bar).  Cellular proliferation was 

assessed by [3H]Thymidine uptake – (DPM) disintegrations per minute.  The 

experiment was repeated 4 times in the same individual and performed in 4 

individuals; the results illustrated are representative of 4 separate experiments in the 

same individual with results expressed as mean +/- 2 SD and where * indicates a 

statistically significant value (p<0.05).  
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Human mammary arterial fibroblasts do not demonstrate increased 

proliferation to 24 hours hypoxia (PO2 35 mmHg).   

 

HMAF cells were grown in 24 well plates until 60% confluent under conditions of 

normoxia.  They were then quiesced with serum free media for a period of 24 hours.  

They were then cultured in conditions of either normoxia or hypoxia for a further 24 

hours with increasing serum concentrations (0, 0.1, 1, 3, 5 & 10%).  Figure 3.4 shows 

that although HMAF cells demonstrated incremental proliferation to increasing serum 

concentrations under normoxic (black bar) growth conditions (24 hours) no increased 

proliferation to acute hypoxia 5% PO2 ~ 35 mmHg (white bar) was demonstrated.  

The experiment was repeated 4 times in the same individual and performed in 4 

individuals; the results illustrated are representative of 4 separate experiments in the 

same individual with results expressed as mean +/- 2 SD.  There was no statistical 

difference between normoxic (black bar) and hypoxic (white bar) groups. 

 

 

 

 

 

 

 

 

 

 

 



 98

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4:  Human mammary arterial fibroblasts do not demonstrate increased 

proliferation to acute hypoxia – 24 hours 5% PO2 ~ 35mmHg.   HMAF cells show 

a dose response to increasing serum concentrations (0, 0.1, 1, 3, 5 & 10%) under both 

hypoxic (white bar) and normoxic (black bar) growth conditions.  Cellular 

proliferation was assessed by [3H]Thymidine uptake – disintegrations per minute 

(DPM). The experiment was repeated 4 times in the same individual and performed in 

4 individuals; the results illustrated are representative of 4 separate experiments in the 

same individual with results expressed as mean +/- 2 SD.  There was no statistical 

difference between the 2 groups.  
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Effect of Hypoxia on proliferation of human pulmonary and systemic artery 

fibroblasts. a, pulmonary artery fibroblasts were maintained in normoxic (black bar) 

or hypoxic (white bar) conditions in the absence (1) or presence (2) of 5% serum.  

Figure 3.5 shows that hypoxia alone could induce a significant proliferative response 

that was greatly augmented in the presence of 5% serum. b, systemic (mammary) 

artery fibroblasts were treated in the same way as the pulmonary fibroblasts.  

Hypoxia, whether in the presence or absence of serum, had no effect on proliferation 

of the systemic artery fibroblasts. Figures 3.4 c & d demonstrate the rate of fibroblast 

proliferation using cell counting in response to hypoxia and that [3H]thymidine uptake 

is a good proxy for cellular proliferation.  The data shown are representative data of 4 

experiments performed in the same individual.  The experiment was performed in 4 

individuals.  The results are expressed as mean +/- 2 SD,  * signifies a statistically 

significant result (p < 0.05). 
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Figure 3.5 a shows that hypoxia (H) alone could induce a significant proliferative 

response that was greatly augmented in the presence of 5% serum in pulmonary 

arterial fibroblasts when compared to normoxic (N) growth conditions.  This response 

was not seen in systemic (mammary) artery fibroblasts (b) which were treated in the 

same way as the pulmonary fibroblasts.  Hypoxia (H), whether in the presence or 

absence of serum, had no effect on proliferation of the systemic artery fibroblasts. 

Figures 3.4 c & d demonstrate the rate of fibroblast proliferation using cell counting 

in response to hypoxia and that [3H]Thymidine uptake is a good proxy for cellular 

proliferation.  The experiment was repeated 4 times in the same individual and 

performed in 4 individuals; the results illustrated are representative of 4 separate 

experiments in the same individual with results expressed as mean +/- 2 SD and 

where * indicates a statistically significant value (p<0.05).  
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Figure 3.5 
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3.5. Discussion 

In this chapter we have demonstrated that both human pulmonary and systemic 

arterial fibroblasts proliferate to increasing concentrations of serum in a dose-

dependent manner.  We have also demonstrated that human pulmonary arterial 

fibroblasts demonstrate an additional proliferative response when exposed to acute 

hypoxia; a capacity to proliferate that can occur in the absence of serum stimulation.  

Hypoxia-related proliferation is not seen in human systemic arterial fibroblasts 

cultured under identical conditions.   

 

These findings agree with other experimental data from the Scottish Pulmonary 

Vascular Unit Laboratory which demonstrate that pulmonary arterial fibroblasts show 

a permissively proliferative phenotype when exposed to hypoxia (both acute and 

chronic) in both adult bovine and rat models when compared to identical cells 

cultured from the systemic circulation (Scott et al, 1998; Welsh et al, 1998; Welsh et 

al, 2001; Welsh et al, 2006).  This concurs with work from other laboratories, albeit 

using different models.  Krick et al (2005) have demonstrated human pulmonary 

arterial fibroblast proliferation to acute hypoxic exposure (as assessed by cell cycle 

progression and reduced apoptosis), when compared to renal arterial fibroblast control 

cells.  These investigators, using pulmonary arterial fibroblasts taken from small 

vessels (< 1mm diameter), found that these cells proliferated maximally when 

cultured in 1.5% oxygen and noted an increase in the apoptotic rate of renal arterial 

fibroblasts cultured under identical conditions.  In a neonatal bovine model, Das et al 

(2001) demonstrated a significantly higher proportion of replicating pulmonary 

arterial fibroblast cells when grown under conditions of acute hypoxia than identical 

cells grown in normoxic conditions; they also noted that fibroblasts taken from 

neonatal bovine aorta generally did not proliferate to hypoxic exposure. Of interest 
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however is that these investigators were able to identify some aortic adventitial 

fibroblasts that were able to proliferate to hypoxia, suggesting a degree of plasticity in 

the immature circulation that is not seen in the adult.   Consistent with differences in 

developmental stage and species, work from the Scottish Pulmonary Vascular Unit 

Laboratory has repeatedly demonstrated that pulmonary arterial fibroblasts from adult 

bovine and human models are able to proliferate to acute hypoxia alone without 

additional serum stimulation (Scott et al, 1998; Welsh et al, 1998).  Other 

investigators have only been able to show increased DNA synthesis – as assessed by 

[3H]Thymidine uptake – but not increased proliferation to hypoxia alone in a juvenile 

model (Short et al, 2005).    

 

There has been a robust debate about the origin of pulmonary arterial fibroblasts that 

proliferate to hypoxia.  It is not known whether the vigorous proliferative response 

seen in pulmonary arterial fibroblasts to hypoxia represents a global increase in 

proliferative potential of all resident cells, or whether it results in the preferential 

growth of subpopulations of fibroblasts more able to proliferate to hypoxia, or 

whether circulating precursor cells also contribute to hypoxia-mediated adventitial 

expansion.  Given the functional and structural heterogeneity of fibroblasts (Jordana 

et al, 1987; Raghu et al, 1988; Goldring et al, 1990; Rodemann and Muller, 1990; 

Derdak et al, 1992; Hakkinen and Larjava, 1992) it seems likely that adventitial 

expansion is the result of selective expansion of resident fibroblast subpopulations 

that are hypoxia-responsive.   

 

In the attempt to characterise pulmonary arterial adventitial fibroblasts, Das et al 

(2002) using limited dilutional cloning techniques, were unable to demonstrate a 

reliable means of predicting adventitial fibroblast growth characteristics in a 
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chronically hypoxic neonatal calf model, based on cell morphology.  They did show 

that fibroblasts taken from chronically hypoxic animals demonstrated a higher 

proportion of proliferating cells than their control littermates when these cells were 

grown under normoxic conditions.  Previously, the same laboratory had demonstrated 

that chronic hypoxic exposure resulted in increased smooth-muscle actin expression 

in cultured neonatal bovine pulmonary arterial fibroblasts (Stenmark et al, 2002).  

Smooth muscle actin is considered a marker for myofibroblast cells – so-called 

‘activated fibroblasts’ or ‘hybrid non-muscle’ muscle cells – and increased smooth-

muscle actin expression is synchronous with increased myofibroblast number in a 

systemic balloon angioplasty injury model – suggesting the development of a more 

active fibroblast phenotype (Sartore et al, 2001).  However in a chronically hypoxic 

neonatal bovine model, Das et al (2002) found that fibroblast smooth-muscle actin 

expression was a poor predictor of adventitial fibroblast behaviour to hypoxia.  In a 

human model, we were unable to demonstrate increased smooth-muscle actin 

expression following acute hypoxic exposure - a finding that has been confirmed by 

other investigators (Krick et al, 2005).  The differences in smooth-muscle actin 

expression may be as a result of inter-species differences in the regulatory regions of 

the smooth-muscle actin gene (Min et al, 1990) but also highlight the difficulties of 

attempting to sub-type adventitial fibroblasts and the significant diversity apparent 

when using non-human experimental models.   

 

Significant diversity occurs not only between species, but also within the same 

species model at different developmental stages.   Illustrative of this point, work from 

Das et al (1997) demonstrated that pulmonary arterial fibroblasts from adult cattle 

proliferated less vigorously to acute hypoxia than identical cells from fetal or neonatal 

animals.  These investigators found that the variation in proliferative response was 
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associated with differing expression of Protein Kinase C (PKC) isozymes, with more 

immature cells expressing largely Ca2+ dependent isozymes α and βII, with only PKC 

ζ  (a Ca2+ independent isozyme) being reproducibly expressed across all generations.   

Work from the same laboratory also demonstrated a similar age-related variation in 

proliferative potential in a pulmonary arterial smooth muscle cell model (Xu et al, 

1997).  Of note is the fact that smooth muscle cells from animals exposed to chronic 

hypoxia appeared to have been phenotypically modified, showing increased 

proliferative potential to normoxia when compared to identical cells cultured from 

normoxic controls.  Xu et al theorised that this represented a specific gain of function 

rather than a reversion to a more immature phenotype, as indicated by differing PKC 

isozyme expression patterns.   

 

In spite of the differences that exist between animal models, chronic hypoxic 

exposure appears to exert a reliably modulatory effect on pulmonary vascular cell 

phenotype.  Work from the Scottish Pulmonary Vascular Unit Laboratory in a rat 

model has demonstrated that chronic hypoxic exposure results in increased 

proliferative potential in pulmonary arterial fibroblasts when cultured in normoxia 

compared to normoxic controls (Welsh et al, 2001).  The increase in proliferative 

potential in this model was associated with constitutive activation of p38 MAPK, a 

SAPK that has been shown to have a significant role in pulmonary arterial fibroblast 

proliferation to acute hypoxia in adult bovine and rat models (Welsh et al, 1998; 

Welsh et al, 2006).   In a chronically hypoxic adult rat model Welsh et al (2001) did 

not demonstrate any further proliferative response when pulmonary arterial fibroblasts 

were exposed to further hypoxia.  Das et al (2000) demonstrated increased 

proliferation of pulmonary arterial fibroblasts from chronically hypoxic neonatal 

calves when grown in normoxia but also found that further acute hypoxic exposure 
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resulted in an augmented proliferative response.  The increased proliferative response 

of pulmonary arterial fibroblasts to further hypoxic exposure in a chronically hypoxic 

neonatal calf model may be a result of the plasticity of an immature experimental 

model. 

 

Recent work has investigated the contribution of circulating precursor cells to 

adventitial compartment expansion to chronic hypoxic exposure.   Davie et al (2004) 

have identified accumulation of cells positive for c-kit – a transmembrane spanning 

receptor expressed by cells of bone marrow origin – in the adventitia and 

extravascular adventitial portions of pulmonary arteries taken from neonatal cattle 

exposed to chronic hypoxia.  In addition, mononuclear cells (MNC) taken from 

chronically hypoxic animals were able differentiate into smooth-muscle actin 

expressing cells using conditioned media.  Work from the same laboratory has shown 

that in primary cell culture, pulmonary adventitial fibroblast cells did not express c-

kit, nor did they express markers for MNC such as CD45 (Frid et al, 2005; Frid et al, 

2006).  This suggested that a significant proportion of proliferating adventitial 

fibroblasts may have originated outside the vascular wall.  Work from Hayashida et al 

(2005) confirmed this in a lethally irradiated mouse model repopulated with 

radiolabelled bone marrow cells.  Radiolabelled cells were found to accumulate in the 

pulmonary arteries of irradiated mice, but not in the systemic circulation, nor in any 

other organ when compared to control animals.  A significant expansion in the vasa 

vasorum of pulmonary, but not systemic arteries taken from chronically hypoxic 

neonatal calves, particularly marked in resistance vessels, would permit access by 

MNC to the adventitia (Davie et al, 2004; Davie et al, 2006).  The expanded vasa 

vasorum appears to be functionally immature – allowing extravasation of circulating 

erythrocytes into the adventitial compartment and adventitial perivascular 
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compartment – enabling access by circulating mitogens from both autocrine and 

paracrine sources.   

 

There is evidence to demonstrate that pulmonary arterial fibroblasts proliferate to 

hypoxic growth conditions whereas identical cells taken from the systemic circulation 

do not.  Our findings from an adult human model under conditions of acute hypoxia 

concur with these data.  It is not certain whether this increased proliferation is as a 

result of an increase in proliferative potential of all pulmonary arterial fibroblasts or 

whether this represents the expansion of subpopulations within the adventitia that are 

more responsive to hypoxic stimuli.  Unlike other laboratories we have demonstrated 

that hypoxia alone is adequate to stimulate pulmonary arterial fibroblast proliferation 

without the addition of other mitogens in both human and bovine adult models.  These 

findings are likely to result from differences in experimental model.   Further 

speculation regarding the origin of fibroblasts within the adventitia following chronic 

hypoxic exposure is less certain. 
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Chapter 4: 

To investigate the relationship between hypoxia-mediated proliferation and 

stress activated protein kinase (SAPK) signalling in human pulmonary and 

systemic arterial fibroblast cells. 

 

4.1. Introduction 

In chapter 3 we demonstrated that human pulmonary arterial fibroblast cells 

proliferate to acute hypoxic exposure while human mammary arterial fibroblast cells 

grown in identical conditions do not.  This is in keeping with previous work not only 

from the SPVU Laboratory but also from other investigators.  We have shown 

increased pulmonary arterial fibroblast proliferation to hypoxic exposure in adult 

bovine and rat models (Scott et al, 1998; Welsh et al, 1998; Welsh et al, 2001). Other 

investigators have produced similar results in both fetal and neonatal bovine models 

under both acute and chronically hypoxic conditions (Das et al, 1995; Das et al, 2000; 

Das et al, 2001).   

 

The mechanism behind the differential response of systemic and pulmonary arterial 

fibroblasts to hypoxia has not been fully elucidated.  Earlier work from our laboratory 

demonstrated a link between hypoxia-mediated proliferation in adult bovine 

pulmonary arterial fibroblasts with increased inositol tri-phosphate (IP3) generation – 

a protein component of GPCR signalling which is responsible for mediating Ca2+ 

release from sarcoplasmic and endoplasmic reticulum which is a necessary cofactor 

for many intra-cellular enzymes (Welsh et al, 1998) (Introduction 1.11.2.3).  In the 

same experimental model pulmonary arterial fibroblast proliferation to hypoxia was 



   109

also found to be associated with increased levels of mitogen activated protein kinases 

(MAPKs) (Scott et al, 1998).    

 

As discussed previously (Introduction 1.11.6), MAPKs are dual specificity 

serine/threonine kinases that appear to be involved in a variety of cellular responses 

and which can be activated by a variety of up-stream signalling cascades.   The classic 

MAPKs (p44/p42 MAPK ~ ERK 1/2) are involved in cellular proliferation in some 

cell lines while the SAPK (p38 MAPK and JNKs) are known to mediate stress 

responses (Han et al, 1994; Lee et al, 1994; Rouse et al, 1994; Raingeaud et al, 1995; 

Verheij et al, 1996).  There is evidence that p38 MAPK is involved with 

inflammatory responses and regulation of the immune system (Hale et al, 1999; Ono 

and Han, 2000) in addition it has also been implicated in a variety of vascular disease 

processes (Ono and Han, 2000; Behr et al, 2003; Ju et al, 2003). 

 

Four isoforms of p38 MAPK have so far been identified: α, β, γ and δ with p38 α and 

β isoforms ubiquitously expressed whereas γ and δ isoforms demonstrating tissue 

specificity (Enslen et al, 2000; Brancho et al, 2003).  The γ isoform is strongly 

expressed in skeletal muscle and may have a role in basal state glucose uptake; it may 

also be involved with muscle cell differentiation (Wang et al, 1997; Sweeney et al, 

1999; Ono and Han, 2000; Fujishiro et al, 2001).  The δ isoform is expressed in 

glandular tissue – its exact function remains unknown (Ono and Han, 2000).  Isoform 

expression may also vary with developmental stage in addition to varying within 

tissue type. 
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Previous work from the SPVU laboratory has demonstrated an important role for 

MAPKs in the pulmonary arterial fibroblast hypoxia-mediated response.  Scott et al 

(1998) identified that increased pulmonary arterial fibroblast proliferation to hypoxia 

was associated with increased p38 and JNK but not p44/p42, activation in an adult 

bovine model.  In a chronically hypoxic adult rat model, Welsh et al (2001) 

demonstrated constitutive activation of p38 MAPK that was associated with a 

permissively proliferative phenotype in pulmonary arterial fibroblasts.  The same 

investigators also noted constitutive activation of p44/p42 MAPK but noted that this 

also occurred in the systemic circulation, making the significance of this less certain.  

It appeared that pulmonary arterial fibroblasts cultured from chronically hypoxic 

animals had in someway been modified and that their enhanced proliferative potential 

was linked to alterations of p38 MAPK activation as levels of whole p38 MAPK 

remained stable in both experimental and control animals. 

 

While pulmonary arterial fibroblasts appear to exhibit enhanced growth potential to 

hypoxia – whether acute or chronic – the exact mechanism by which hypoxia-

mediated signalling occurs is still uncertain.  There is a body of work that investigates 

the relative contribution of hypoxia inducible factors-1, 2 and 3 (HIF1/2/3) in oxygen 

sensing.  HIF-1 is ubiquitously expressed and is known to upregulate gene products 

that enable cellular adaptation to hypoxic environments, either in the short term – for 

example enzymes involved in anaerobic metabolism – or long-term hypoxia – EPO 

and VEGF (Semenza, 2000a).  The expression of HIF-2 and 3 appears to be more 

restricted with HIF-2 expression being most marked within the lungs (Krick et al, 

2005; Eul et al, 2006).  HIF-1 is a two subunit basic helix-loop-helix protein complex, 

the β subunit of which is constitutively expressed in all cells. Control of HIF-1 
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activity is achieved via the rapid breakdown of the HIF-1α subunit under normoxic 

conditions by proteosomal ubiquitinylation.  In normoxia HIF-1α is targeted for 

enzymatic degradation by the interaction of molecular oxygen, iron and the von 

Hippel Lindau Protein (pVHL) and under these conditions HIF-1α has a half-life of 

less than 5 minutes (Yu et al, 1998).  However under hypoxic conditions pVHL is 

unable to bind HIF-1α – a direct result of low cellular oxygen concentrations – 

enabling the α and β subunits to combine to form an active protein which is then able 

to upregulate transcription of genes containing hypoxia response elements (HRE)  

(Lee et al, 1997; Semenza, 2000a; Semenza, 2000b; Semenza, 2001).  

 

Experimental work has demonstrated that mice heterozygote for HIF1 α +/- develop 

less right ventricular hypertrophy and pulmonary vascular resistance to hypoxic 

exposure compared to controls (Semenza, 2000b) while mice heterozygote for HIF2α 

+/- appear to be completely protected from hypoxic pulmonary hypertension 

(Brusselmans et al, 2003).  Given that HIF-1α inactivation requires molecular oxygen 

and that hypoxia-mediated proliferation in pulmonary arterial fibroblasts has been 

linked to p38 MAPK activation in a number of animal models, a functional 

relationship may exist between the two. Previous work from the SPVU laboratory has 

demonstrated that pulmonary arterial fibroblasts appear to demonstrate enhanced 

proliferation to hypoxic exposure - whether acute or chronic – whereas identical cells 

from the systemic circulation do not.  This has been demonstrated in adult bovine and 

rat models.  In animal models increased proliferative potential has been associated 

with upregulation of MAPK activity – specifically p38 MAPK – while the relative 

roles of other MAPKs are less consistent.  We wished to establish whether MAPK 

were also involved in the human pulmonary artery fibroblast proliferation 



   112

demonstrated in chapter 3.  We also wished to determine the relative contribution of 

p38 MAPK isoforms in hypoxia-mediated proliferation and whether any link could be 

demonstrated between p38 MAPK activation and HIF1α expression.   
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4.2. Methods 

4.2.1.  Stress activated protein kinase (SAPK) (p38 and JNK MAPK) and classic 

(ERK 1/2) MAPK expression in human pulmonary (HPAF) and systemic 

(HMAF) artery fibroblasts grown in normoxia and acute hypoxia. 

 
Cells were obtained from pulmonary arteries of consented patients undergoing 

lobectomy for the treatment of lung cancer and systemic arteries from consented 

patients undergoing coronary artery by-pass grafting.  Cells were prepared by the 

method described above (Chapter 2.3).  Cells were grown to 60% confluence in 6 well 

plates and were then quiesced using serum-free media for a period of 24 hours.  They 

were then grown in conditions of normoxia or hypoxia (35mmHg PO2 ~ 5%) for a 

total period of 48 hours with the addition of 5% serum stimulation.  Cell lysates were 

prepared at a variety of time points (t = 0, 1, 2, 4, 8, 16, 24, 32 and 48 hours) using the 

method previously described (chapter 2.6).   MAPK phosphorylation was assessed 

using Western blotting with retardation on SDS-PAGE gels as a marker of 

phosphorylation using the appropriate primary and secondary antibodies on 

nitrocellulose membranes and a Chemiluminescence detection system (chapter 2.6). 

 

We wished to assess the relative activation of both classic (ERK 1/2) and stress (JNK 

and p38) MAPKs in HMAF and HPAF cells under conditions of normoxia and acute 

hypoxia. Membranes were loaded with cell lysates from HMAF and HPAF cells 

grown under conditions of normoxia and acute hypoxia at a variety of time points (t = 

0, 1, 2, 4, 8, 16 and 24 hours) and probed using a 1:500 dilution of a rabbit anti-

phospho ERK monoclonal IgG antibody with a 1:1000 dilution of a flagged anti-

rabbit monoclonal IgG secondary antibody.  The membrane was then stripped (using 

the method described above) and re-probed using a 1:500 dilution of a rabbit anti-
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whole ERK monoclonal IgG antibody and a 1:1000 dilution of a flagged anti-rabbit 

monoclonal IgG secondary antibody.  This experiment was repeated looking for 

expression of phospho-JNK MAPK using a 1:500 dilution of a rabbit anti-JNK 

monoclonal IgG antibody and a 1:1000 dilution of a flagged anti-rabbit monoclonal 

IgG secondary antibody.  The membrane was then stripped and re-probed for whole 

JNK activity using a 1:500 dilution of a rabbit anti-whole JNK IgG monoclonal 

antibody and a 1:1000 dilution of a flagged anti-rabbit monoclonal IgG secondary 

antibody.  This procedure was repeated for expression of phospho-p38 MAPK using a 

1:500 dilution of a rabbit anti-phospho-p38MAPK monoclonal IgG antibody and a 

1:1000 dilution of a flagged anti-rabbit monoclonal IgG secondary antibody.  The 

membrane was then stripped and re-probed using a 1:500 dilution of a rabbit anti-

whole p38MAPK monoclonal IgG antibody using a 1:1000 dilution of a flagged anti-

rabbit monoclonal IgG secondary antibody. 

 

4.2.2.  Stress activated p38 MAPK expression at different time points over 24 

hours of hypoxic exposure. 

HPAF cells were grown in 6 well plates to 60% confluency under normoxic growth 

conditions.   They were quiesced for a period of 24 hours using serum-free media.  

They were then exposed to hypoxia for a range of time points (time = 0, 2, 3, 4, 6, 8, 

10, 12, 16, 18 and 24 hours) with the addition of 5% serum.  Cell lysates were 

prepared as previously described; solubilised protein was transferred to nitrocellulose 

membrane using SDS-PAGE.  Phospho and whole p38 MAPK expression were 

assessed using the appropriate primary and secondary antibodies (at concentrations 

listed above) using Western Blotting techniques. 
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4.2.3.  Influence of phospho-ERK and phospho p38 MAPK inhibitors on HMAF 

and HPAF hypoxia-mediated growth. 

HMAF and HPAF cells were grown in 24 well plates to 60% confluency and were 

then quiesced using serum-free medium for a period of 24 hours.  The cells were then 

subjected to either normoxic or hypoxic (35mmHg PO2) growth conditions for 24 

hours in the absence of serum, the presence of 5% serum or the presence of 5% serum 

plus a specific phospho-ERK inhibitor U0126 added 6 hours prior to the end of the 

experiment.  Four hours before the end of the experiment the cells were labelled with 

[3H]Thymidine (0.1µCi/well).  The samples were processed as described above 

(Methods 2.5.1) with radiation being measured by scintillation counting and results 

being expressed as disintegrations per minute (DPM).  This experiment was repeated 

adding SB203580 - a specific p38 MAPK inhibitor - 6 hours prior to the end of the 

experiment. 

 

4.2.4.  Reoxygenation study to establish temporal relationship between phospho-

p38 MAPK expression and hypoxia-mediated proliferation in HPAF cells. 

HPAF cells were cultured in 24 well plates until 60% confluent.  They were then 

quiesced for a period of 24 hours using serum free medium.  5% serum was added to 

each well and the cells were then grown in conditions of either normoxia or hypoxia 

over a variety of time points (t = 6, 16, 20 and 24 hours).  Those cells grown under 

hypoxic conditions were returned to normoxia for the duration of the 24-hour 

experimental period.  Four hours prior to the end of the experiment [3H]Thymidine 

was added to each well and the samples were processed as described above. 
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4.2.5. Phospho-p38 MAPK isoforms and hypoxia-mediated proliferation in 

HPAF cells. 

HPAF cells were grown in 6 well plates to 60% confluency.  They were then quiesced 

for 24 hours using serum-free medium.  5% serum was added to each well and the 

cells were grown in hypoxic conditions (35mmHg PO2) for 16 hours.  Cell lysates 

were then prepared (as described above).  As there were no specific primary 

antibodies to the α, β, γ and δ isoforms of p38 MAPK at the time of the experiment, 

cell lysates were subjected to Catch and Release® immunoprecipitation (Methods 

2.6.3.3) using primary antibody capture ligands specific for the α, β, γ and δ isoforms.  

The relevant isoforms were released using elution buffer and the resulting samples 

were then processed as Western Blots probed for phospho-p38 MAP with sorbitol 

being used as a positive control.  The membrane was then stripped as described above 

and re-probed for whole p38 MAPK expression. 

 

4.2.6.  Relationship between phospho-p38 MAPK expression and HIF-1 α in 

HMAF and HPAF cells exposed to hypoxic growth conditions. 

HPAF and HMAF cells were grown in 6 well plates to 60% confluency – they were 

then transferred to either normoxic or hypoxic (35mmHg PO2) growth conditions for 

16 hours with the addition of 5% serum.  SB203580 – a specific p38 MAPK inhibitor 

at t = 0, 2, 4 and 6 hours prior to the start of the experiment.  Cell lysates were 

prepared and processed as previously described by immunophoresis and Western 

Blotting techniques.  The membrane was stripped and then probed for whole-p38 

MAPK (as described above). 
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4.3 Densitometry.  

 Densitometric analysis of blots was carried out using a computer programme that 

allowed for comparison of blot density in graphical form (Quantiscan) with values 

expressed as a percentage of proliferation under conditions of normoxia without 5% 

serum stimulation as a control. 

 

4.4. Statistics 

All experiments were repeated 4 times in the same individual and were performed in a 

total of 4 individuals.  The results presented are representative of the mean of 

experiments performed in a single individual. Results are expressed as the mean +/- 2 

S.D. and statistical analysis was undertaken as described in chapter 2.8. 
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4.4. Results 

Human pulmonary arterial fibroblasts do not express increased levels of 

phosphorylated JNK under either normoxic or hypoxic growth conditions t = 0 – 

48 hours. 

 

Pulmonary arterial fibroblasts were grown in normoxia and 5% serum in 6 well plates 

until 60% confluent they were then quiesced in serum-free media for 24 hours.  The 

cells were then kept in conditions of normoxia and acute hypoxia (5% PO2 ~ 

35mmHg) for t = 0 – 48 hours and lysates were prepared for Western Blot analysis as 

outlined in Chapter 2.6.  As seen in figure 4.1 there was no expression of 

phosphorylated JNK in HPAF cells grown in either normoxic (N) or hypoxic (PO2 ~ 

35mmHg) (H) growth conditions at any time point examined (a).  The membrane 

probed for whole JNK expression demonstrates the consistent presence of inactive 

JNK at all time points and demonstrates equal protein loading (b).   These results 

were confirmed by densitometry (c) with values expressed as a percentage of 

proliferation using conditions of normoxia without 5% serum stimulation as a control. 

The results illustrated are representative of 4 experiments performed in the same 

individual, the experiment was performed in n = 4 individuals, with results expressed 

as mean +/- 2 SD.  There was no statistical difference between the 2 groups. 
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Figure 4.1.  Human pulmonary arterial fibroblasts do not express increased 

levels of phosphorylated JNK under either normoxic or hypoxic growth 

conditions. (a) No phosphorylated JNK was detected in HPAF cells under either 

normoxic (N) or hypoxic (H) growth conditions over a variety of time points (t = 0, 1, 

2, 4, 8, 16, 24, 32, 48 hours.  (b) The membrane was re-probed for whole JNK 

demonstrating the presence of consistent whole JNK expression at all time points 

under both normoxic (N) and hypoxic (H) growth conditions demonstrating equal 

protein loading. These results were confirmed by densitometry – cells cultured in 

normoxia (black box) and hypoxia (white box) using conditions of normoxia without 

5% serum stimulation as a control (c).  The experiment was repeated 4 times in the 

same individual and performed in 4 individuals; the results illustrated are 

representative of 4 separate experiments in the individual with results expressed as 

mean +/- 2 SD.  There was no statistical difference between normoxic (N) and 

hypoxic (H) groups. 
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Human systemic arterial fibroblasts do not express increased levels of 

phosphorylated JNK under either normoxic or hypoxic growth conditions 

 

Systemic arterial fibroblasts were grown in normoxia and 5% serum in 6 well plates 

until 60% confluent they were then quiesced in serum-free media for 24 hours.  The 

cells were then kept in conditions of normoxia and acute hypoxia (5% PO2 ~ 

35mmHg) for t = 0 – 48 hours and lysates were prepared for Western Blot analysis as 

outlined in Chapter 2.6.  Figure 4.2 demonstrates that here was no expression of 

phosphorylated JNK in human mammary artery fibroblasts in either normoxic or 

hypoxic (35mmHg PO2) growth conditions (a).  The membrane probed for whole 

JNK demonstrated equal expression of whole JNK at all time points and equal protein 

loading (b).  These results were confirmed by densitometry – cells cultured in 

normoxia (black box) and hypoxia (white box) (c) with values expressed as a 

percentage of proliferation under conditions of normoxia without 5% serum 

stimulation as a control. The experiment was repeated 4 times in the same individual 

and performed in 4 individuals; the results illustrated are representative of 4 separate 

experiments from the same individual with results expressed as mean +/- 2 SD.  There 

was no statistical difference between the 2 groups. 
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Figure 4.2: Human systemic arterial fibroblasts do not express increased levels of 

phosphorylated JNK under either normoxic or hypoxic growth conditions.  (a) 

No phosphorylated JNK was detected in HMAF cells under either normoxic (N) or 

hypoxic (H) growth conditions over a variety of time points (t = 0, 1, 2, 4, 8, 16, 24, 

32, 48 hours.  (b) The membrane was re-probed for whole/total JNK demonstrating 

the presence of consistent whole JNK expression at all time points under both 

normoxic (N) and hypoxic (H) growth conditions demonstrating equal protein 

loading.   These results were confirmed by densitometry – cells cultured in normoxia 

(black box) and hypoxia (white box) (c) with values expressed as a percentage of 

proliferation under conditions of normoxia without 5% serum stimulation as a control. 

The experiment was repeated 4 times in the same individual and performed in 4 

individuals; the results illustrated are representative of 4 separate experiments in the 

same individual with results expressed as mean +/- 2 SD.   There was no statistical 

difference between normoxic (N) and hypoxic (H) groups. 
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Human pulmonary arterial fibroblasts show equal activation of phosphorylated 

ERK1/2 mitogen activated protein kinase (MAPK) under both normoxic and 

hypoxic growth conditions 

 

Pulmonary arterial fibroblasts were grown in normoxia and 5% serum in 6 well plates 

until 60% confluent they were then quiesced in serum-free media for 24 hours.  The 

cells were then kept in conditions of normoxia and acute hypoxia (5% PO2 ~ 

35mmHg) for t = 0 – 48 hours and lysates were prepared for Western Blot analysis as 

outlined in Chapter 2.6.  Figure 4.3 demonstrates equal phospho-ERK expression in 

HPAF cells at all time points under both normoxic and hypoxic growth conditions (a).  

The membrane probed for whole ERK demonstrates consistent presence of 

whole/total ERK at all time points and confirms equal protein loading (b).  These 

results were confirmed by densitometry – cells cultured in normoxia (N) (black box) 

and hypoxia (H) (white box) (c) with values expressed as a percentage of proliferation 

under conditions of normoxia without 5% serum stimulation as a control.  The 

experiment was repeated 4 times in the same individual and performed in 4 

individuals; the results illustrated are representative of 4 separate experiments in the 

same individual with results expressed as mean +/- 2 SD.  There was no statistical 

difference between the 2 groups. 
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Figure 4.3: Human pulmonary arterial fibroblasts show equal activation of 

phosphorylated ERK 1/2 mitogen activated protein kinase (MAPK) under both 

normoxic and hypoxic growth conditions.  (a) Phosphorylated ERK was equally 

expressed in HPAF cells under both normoxic (N) or hypoxic (H) growth conditions 

over a variety of time points (t = 0, 1, 2, 4, 8, 16, 24, 32, 48 hours.  (b) The membrane 

was re-probed for whole ERK demonstrating the presence of consistent whole JNK 

expression at all time points under both normoxic (N) and hypoxic (H) growth 

conditions demonstrating equal protein loading.  These results were confirmed by 

densitometry – cells cultured in normoxia (black box) and hypoxia (white box) (c) 

with values expressed as a percentage of proliferation under conditions of normoxia 

without 5% serum stimulation as a control.  The experiment was repeated 4 times in 

the same individual and performed in 4 individuals; the results illustrated are 

representative of 4 separate experiments in the same individual with results expressed 

as mean +/- 2 SD.  There was no significant statistical difference between normoxic 

(N) and hypoxic (H) groups. 
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Human systemic arterial fibroblasts demonstrate phosphorylated ERK1/2 

MAPK under both normoxic and hypoxic growth conditions 

 

Systemic arterial fibroblasts were grown in normoxia and 5% serum in 6 well plates 

until 60% confluent they were then quiesced in serum-free media for 24 hours.  The 

cells were then kept in conditions of normoxia and acute hypoxia (5% PO2 ~ 

35mmHg) for t = 0 – 48 hours and lysates were prepared for Western Blot analysis as 

outlined in Chapter 2.6.  Figure 4.4 demonstrates equal phospho-ERK expression in 

HMAF cells at all time points under both normoxic and hypoxic growth conditions 

(a).  The membrane probed for whole ERK demonstrates consistent presence of 

whole/total ERK at all time points and confirms equal protein loading (b).  These 

results were confirmed by densitometry – cells cultured in normoxia (black box) and 

hypoxia (white box) (c) with values expressed as a percentage of proliferation under 

conditions of normoxia without 5% serum stimulation as a control.  The experiment 

was repeated 4 times in the same individual and performed in 4 individuals; the 

results illustrated are representative of 4 separate experiments in the same individual 

with results expressed as mean +/- 2 SD.  There was no statistical difference between 

the 2 groups. 
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Figure 4.4: Human systemic arterial fibroblasts demonstrate equal 

phosphorylated ERK 1/2 MAPK under both normoxic and hypoxic growth 

conditions.  (a) Phosphorylated ERK was equally expressed in HMAF cells under 

both normoxic (N) or hypoxic (H) growth conditions over a variety of time points (t = 

0, 1, 2, 4, 8, 16, 24, 32, 48 hours).  (b) The membrane was re-probed for whole ERK 

demonstrating the presence of consistent whole JNK expression at all time points 

under both normoxic (N) and hypoxic (H) growth conditions demonstrating equal 

protein loading.  These results were confirmed by densitometry – cells cultured in 

normoxia (black box) and hypoxia (white box) (c) with values expressed as a 

percentage of proliferation under conditions of normoxia without 5% serum 

stimulation as a control.  The experiment was repeated 4 times in the same individual 

and performed in 4 individuals; the results illustrated are representative of 4 separate 

experiments in the same individual with results expressed as mean +/- 2 SD.  There 

was no statistical difference between normoxic (N) and hypoxic (H) groups. 
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Human pulmonary arterial fibroblasts show increased p38 MAPK 

phosphorylation at t = 6 and t = 16 hours under hypoxic growth conditions 

 

Pulmonary arterial fibroblasts were grown in normoxia and 5% serum in 6 well plates 

until 60% confluent they were then quiesced in serum-free media for 24 hours.  The 

cells were then kept in conditions of normoxia and acute hypoxia (5% PO2 ~ 

35mmHg) for t = 0 – 48 hours and lysates were prepared for Western Blot analysis as 

outlined in Chapter 2.6.  Figure 4.5 demonstrates that there was little expression of 

phosphorylated p38 at any time point (t = 0, 3, 6, 8, 16 and 24 hours) under normoxic 

(N) conditions but under hypoxic (H) growth conditions there were peaks of 

expression at 6 and 16 hours of hypoxic exposure (a).  Expression of whole 

(unphosphorylated) p38 was uniform at all time points and both growth conditions 

(b).  These results were confirmed by densitometry – cells cultured in normoxia 

(black box) and hypoxia (white box) (c) with values expressed as a percentage of 

proliferation under conditions of normoxia without 5% serum stimulation as a control. 

The experiment was repeated 4 times in the same individual and performed in 4 

individuals; the results illustrated are representative of 4 separate experiments in the 

same individual with results expressed as mean +/- 2 SD with * denoting a 

statistically significant result (p<0.01). 
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Figure 4.5: Human pulmonary arterial fibroblasts show increased p38 MAPK 

phosphorylation at t = 6 and t = 16 hours under hypoxic growth conditions.  (a) 

There was no identified expression of phosphorylated p38 MAPK under normoxic 

(N) growth conditions  (t = 0, 3, 6, 8, 16 and 24 hours).  Under hypoxic (H) growth 

conditions there were peaks of p38 MAPK activity at t = 6 and 16 hours.  (b) 

Expression of whole (unphosphorylated) p38 was uniform at all time points and under 

both hypoxic (H) and normoxic (N) growth conditions and demonstrates equal protein 

loading throughout.  These results were confirmed by densitometry – cells cultured in 

normoxia (black box) and hypoxia (white box) (c) with values expressed as a 

percentage of proliferation under conditions of normoxia without 5% serum 

stimulation as a control.  The experiment was repeated 4 times in the same individual 

and performed in 4 other individuals; the results illustrated are representative of 4 

separate experiments performed in the same individual with results expressed as mean 

+/- 2 SD, and where * indicates a statistically significant result (p<0.01). 

.  
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Human systemic arterial fibroblasts demonstrate no phosphorylation of p38 

MAPK under either normoxic or hypoxic growth conditions 

 

Systemic arterial fibroblasts were grown in normoxia and 10% serum in 6 well plates 

until 60% confluent they were then quiesced in serum-free media for 24 hours.  The 

cells were then kept in conditions of normoxia and acute hypoxia (5% PO2 ~ 

35mmHg) for t = 0 – 48 hours and lysates were prepared for Western Blot analysis as 

outlined in Chapter 2.6.    Figure 4.6 demonstrates that there is little phospho-p38 

MAPK expression in HMAF cells in either growth condition at any time point (t = 0, 

3, 6, 8, 16 and 24 hours) (a).  The membrane probed for whole p38 MAPK expression 

demonstrates the consistent presence of inactive p38 MAPK and demonstrates equal 

protein loading throughout (b).  These results were confirmed by densitometry – cells 

cultured in normoxia (black box) and hypoxia (white box) (c) with values expressed 

as a percentage of proliferation under conditions of normoxia without 5% serum 

stimulation as a control.  The experiment was repeated 4 times in the same individual 

and performed in 4 individuals; the results illustrated are representative of 4 separate 

experiments performed in the same individual with results expressed as mean +/- 2 

SD.  There was no statistical difference between the 2 groups. 
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Figure 4.6: Human systemic arterial fibroblasts demonstrate no phosphorylation 

of p38 MAPK under either normoxic or hypoxic growth conditions. (a) There is 

little phosphorylated p38 MAPK expression in HMAF cells under either normoxic 

(N) or hypoxic (H) growth conditions at any time point (t = 0, 3, 6, 8, 16 and 24 

hours). (b) There is equal expression of whole/total p38 MAPK in HMAF cells under 

both normoxic (N) and hypoxic (H) growth conditions at all time points investigated 

demonstrating equal protein loading throughout.  These results were confirmed by 

densitometry – cells cultured in normoxia (black box) and hypoxia (white box) (c) 

with values expressed as a percentage of proliferation under conditions of normoxia 

without 5% serum stimulation as a control.  The experiment was repeated 4 times in 

the same individual and performed in 4 individuals; the results illustrated are 

representative of 4 separate experiments in the same individual with results expressed 

as mean +/- 2 SD.  There was no statistical difference between normoxic (N) and 

hypoxic (H) 2 groups. 



   135

 

 

 

 

 

 

 

 

 

 

 

(c) 

 

 

b 

a 



   136

Human pulmonary arterial fibroblasts demonstrate peaks of p38 MAPK 

activation between t = 4 –6 and t = 16 –18 hours. 

 

Pulmonary arterial fibroblasts were grown in normoxia and 10% serum in 6 well 

plates until 60% confluent they were then quiesced in serum-free media for 24 hours.  

The cells were then kept in conditions of normoxia and acute hypoxia (5% PO2 ~ 

35mmHg) for t = 0 – 24 hours and lysates were prepared for Western Blot analysis as 

outlined in Chapter 2 6. Figure 4.7 (a) demonstrates that there was little expression of 

phosphorylated p38 MAPK at any time point (t = 0, 2, 3, 4, 5, 6, 10, 12, 16, 18, 20, 24 

hours) under normoxic (N) conditions but under hypoxic (H) growth conditions there 

were peaks of expression at t = 4-6 and t = 16-18 hours of hypoxic exposure. The 

membrane probed for whole p38 MAPK expression demonstrates the consistent 

presence of inactive p38 MAPK and demonstrates equal protein loading throughout.  

These results were confirmed by densitometry – cells cultured in normoxia (black 

box) and hypoxia (white box) (b) with values expressed as a percentage of 

proliferation under conditions of normoxia without 5% serum stimulation as a control. 

The experiment was repeated 4 times in the same individual and performed in 4 

individuals; the results illustrated are representative of 4 separate experiments 

performed in the same individual with results expressed as mean +/- 2 SD with * 

denoting a statistically significant result (p<0.01). 
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Figure 4.7: Human pulmonary arterial fibroblasts demonstrate peaks of p38 

MAPK activation between t = 4 –6 and t = 16 –18 hours.  Under normoxic (N) 

growth conditions there was no demonstrated increase in phosphorylated p38 MAPK 

activity at any time point (t = 0, 2, 3, 4, 5, 6, 10, 12, 16, 18, 20, 24 hours).  However 

under hypoxic (H) growth conditions there were peaks of activity at t = 4 –6 hours 

and t = 16 – 18 hours (figure 4.7.a).  These results were confirmed by densitometry – 

cells cultured in normoxia (black box) and hypoxia (white box) (b) with values 

expressed as a percentage of proliferation under conditions of normoxia without 5% 

serum stimulation as a control.  The experiment was repeated 4 times in the same 

individual and performed in 4 individuals; the results illustrated are representative of 

4 separate experiments in the same individual with results expressed as mean +/- 2 SD 

and where * indicates a statistically significant value (p<0.01). 

.  
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Preincubation with U0126 – a specific p 44/p42 - ERK1/2 MAPK inhibitor - has 

no effect on human pulmonary arterial fibroblast cell proliferation to acute 

hypoxia. 

Pulmonary arterial fibroblasts were grown in normoxia and 5% serum in 24 well 

plates until 60% confluent they were then quiesced in serum-free media for 24 hours.  

The cells were then kept in conditions of normoxia and acute hypoxia (5% PO2 ~ 

35mmHg) for t = 0 – 24 hours and were cultured with either 0% serum (C), 5% serum 

(5%) or 5% serum plus 50 μl U0126 (U0126) which was added six hours prior to the 

end of the experiment.  The cells were then returned to either normoxic or hypoxic 

growth conditions. Samples were prepared for [3H]Thymidine uptake assays as 

outlined in Chapter 2.5.  Figure 4.8 demonstrates that there is a significant increase in 

proliferation witnessed under hypoxic growth conditions (white bar) without the 

addition of serum (C), a further marked increase in proliferation is noted relative to 

HPAF grown in normoxic conditions (black bar) with the addition of 5% serum to the 

cell sample grown under hypoxic conditions (5%).  The addition of U0126 – a 

specific phospho-ERK inhibitor has no influence on the growth behaviour of HPAF 

grown under either hypoxic or normoxic conditions (U0126).  The experiment was 

repeated 4 times in the same individual and performed in 4 individuals; the results 

illustrated are representative of 4 separate experiments in the same individual with 

results expressed as mean +/- 2 SD and where * indicates a statistically significant 

value (p<0.01).  
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Figure 4.8: Preincubation with U0126 – a specific ERK 1/2 MAPK inhibitor - has 

no effect on human pulmonary arterial fibroblast cell proliferation to acute 

hypoxia.  There is increased proliferation under hypoxic growth conditions (H) (white 

bar) compared to normoxic growth (N) (black bar) with or without the addition of 5% 

serum.  The addition of U0126 had no effect of HPAF growth behaviour under 

hypoxic conditions.  The results illustrated are representative of 4 separate 

experiments in the same individual with the experiment being repeated in 4 

individuals. The figures are representative of the mean of 4 experiments in the same 

individual with results expressed as mean +/- 2 SD with ∗ denoting a statistically 

significant result (p < 0.01). 
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Preincubation with U0126 has no effect on human systemic arterial fibroblast 

cell proliferation under either normoxic or hypoxic growth conditions 

 

Systemic arterial fibroblasts were grown in normoxia and 5% serum in 24 well plates 

until 60% confluent they were then quiesced in serum-free media for 24 hours.  The 

cells were then kept in conditions of normoxia and acute hypoxia (5% PO2 ~ 

35mmHg) for t = 0 – 24 hours.  They were cultured with either 0% serum (C), 5% 

serum (5%) or 5% serum plus 50 μl U0126 (U0126) which was added six hours prior 

to the end of the experiment.  The cells were then returned to either normoxic or 

hypoxic growth conditions. Samples were prepared for [3H]Thymidine uptake assays 

as outlined in Chapter 2.5.  Figure 4.9 demonstrates that there is an increase in 

proliferation witnessed with the addition of 5% serum under normoxic (N) (black bar) 

conditions in keeping with the initial growth response curve to increasing serum 

concentrations (see figure 1.1).  There is no significant difference in growth under 

hypoxic (H) (white bar) conditions.  The addition of U0126 – a specific phospho ERK 

inhibitor – has no influence on HMAF proliferation.  The experiment was repeated 4 

times in the same individual and performed in 4 individuals; the results illustrated are 

representative of 4 separate experiments in the same individual with results expressed 

as mean +/- 2 SD.  There was no statistically significant difference between the 2 

groups.  
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Figure 4.9: Preincubation with U0126 has no effect on human systemic arterial 

fibroblast cell proliferation under either normoxic or hypoxic growth conditions.  

There was no difference in HMAF proliferation under either normoxic (N) (black bar) 

or hypoxic (H) (white bar) growth conditions.  The addition of 5% serum resulted in a 

dose response increase in HMAF proliferation in both normoxic and hypoxic growth 

conditions.  The addition of U0126 made no difference to the proliferative response 

under either growth condition.  Proliferation was assessed by [3H]Thymidine uptake ~ 

disintegrations per minute (DPM).  The experiment was repeated 4 times in the same 

individual and performed in 4 individuals; the results illustrated are representative of 

4 separate experiments in the same individual with results expressed as mean +/- 2 

SD.  There was no statistically significant difference between the 2 groups.  



   144

Preincubation with SB203580 – a specific p38 MAPK α and β isoform inhibitor – 

abrogates hypoxia-mediated proliferation in human pulmonary arterial 

fibroblast cells 

 

Pulmonary arterial fibroblasts were grown in normoxia and 5% serum in 24 well 

plates until 60% confluent they were then quiesced in serum-free media for 24 hours.  

The cells were then kept in conditions of normoxia and acute hypoxia (5% PO2 ~ 

35mmHg) for t = 0 – 24 hours.  They were cultured with either 0% serum (C), 5% 

serum (5%) or 5% serum plus 50 μl SB203580 (SB203580) which was added six 

hours prior to the end of the experiment.  The cells were then returned to either 

normoxic or hypoxic growth conditions. Samples were prepared for [3H]Thymidine 

uptake assays as outlined in Chapter 2.5.  Figure 4.10 demonstrates that HPAF cells 

were grown in the absence of serum under hypoxic conditions (H) (white bar) show 

increased proliferation compared to HPAF cells grown without serum stimulation 

under normoxic conditions (N) (black bar), the presence of 5% serum further 

enhances this response.  The addition of 5% serum and SB203580– a specific p38 

MAPK inhibitor - results in the abrogation of the hypoxia-mediated proliferative 

response.  The experiment was repeated 4 times in the same individual and performed 

in 4 individuals; the results illustrated are representative of 4 separate experiments in 

the same individual with results expressed as mean +/- 2 SD and where * indicates a 

statistically significant value (p<0.01).  
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Figure 4.10: Preincubation with SB203580 – a specific p38 MAPK α and β 

isoform inhibitor – abrogates hypoxia-mediated proliferation in human 

pulmonary arterial fibroblast cells.  HPAF cells preferentially proliferate to 

hypoxia (white bar) compared to normoxia (black bar) with or without the addition of 

5% serum.  The addition of SB203580 and 5% serum completely abrogated the 

hypoxia-mediated proliferative response.  The experiment was repeated 4 times in the 

same individual and performed in 4 individuals; the results illustrated are 

representative of 4 separate experiments in the same individual with results expressed 

as mean +/- 2 SD and where * indicates a statistically significant value (p<0.01).  
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Preincubation with SB203580 has no effect on human systemic arterial fibroblast 

proliferation under either normoxic or hypoxic growth conditions 

 

Systemic arterial fibroblasts were grown in normoxia and 10% serum in 24 well 

plates until 60% confluent they were then quiesced in serum-free media for 24 hours.  

The cells were then kept in conditions of normoxia and acute hypoxia (5% PO2 ~ 

35mmHg) for t = 0 – 24 hours.  They were cultured with either 0% serum (C), 5% 

serum (5%) or 5% serum plus 50 μl SB203580 (SB203580) which was added six 

hours prior to the end of the experiment.  The cells were then returned to either 

normoxic or hypoxic growth conditions. Samples were prepared for [3H]Thymidine 

uptake assays as outlined in Chapter 2.5.  Figure 4.11 demonstrates that there is a no 

significant increase in proliferation in HMAF cells grown in hypoxic conditions 

(white bar) without serum stimulation (C) compared to cells grown in normoxic 

conditions (black bar) or with the addition of 5% serum (5%). The addition of 5% 

serum and SB203580 to HMAF cells has no influence on proliferative behaviour 

whether under normoxic or hypoxic conditions (SB203580).  The experiment was 

repeated 4 times in the same individual and performed in 4 individuals; the results 

illustrated are representative of 4 separate experiments in the same individual with 

results expressed as mean +/- 2 SD.  There was no statistical difference between the 2 

groups.  
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Figure 4.11: Preincubation with SB203580 has no effect on human systemic 

arterial fibroblast proliferation under either normoxic or hypoxic growth 

conditions.  There was no significant difference in proliferative response in HMAF 

cells grown under either normoxic (N) (black bar) or hypoxic (H) (white bar) 

conditions with or without 5% serum. The addition of SB203580 + 5% serum did not 

affect the growth response of HMAF under either growth condition.  Cellular 

proliferation was assessed by [3H]Thymidine uptake ~ disintegrations per minute 

(DPM).   The experiment was repeated 4 times in the same individual and performed 

in 4 individuals; the results illustrated are representative of 4 separate experiments in 

the same individual with results expressed as mean +/- 2 SD.  There was no statistical 

difference between normoxic (N) and hypoxic (H) groups. 
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Reoxygenation of human pulmonary fibroblast cells after 6 hours abrogates 

hypoxia-mediated proliferation 

 

Pulmonary arterial fibroblasts were grown in normoxia and 5% serum in 24 well 

plates until 60% confluent they were then quiesced in serum-free media for 24 hours.  

The cells were then kept in conditions of acute hypoxia for t = 0, 6, 16, 20 and 24 

hours with the cells being returned to normoxia following hypoxic exposure to 

complete a total culture time of t = 24 hours.  Samples were prepared for 

[3H]Thymidine uptake assays as outlined in Chapter 2.5.    Figure 4.12 demonstrates 

that there was no difference in [3H]Thymidine uptake in HPAF cells grown in 

normoxic conditions for the whole 24-hour period (C) and those HPAF cells grown in 

hypoxic conditions for 6 hours.  [3H]Thymidine uptake was significantly increased in 

HPAF cells grown in hypoxic conditions for between t= 16, 18 and 20 hours.  A slight 

decrease in [3H]Thymidine uptake was noted in HPAF cells grown in hypoxic 

conditions for 24 hours in comparison to those grown for t = 16 to 20 hours in 

hypoxia.   The experiment was repeated 4 times in the same individual and performed 

in 4 individuals; the results illustrated are representative of 4 separate experiments in 

the same individual with results expressed as mean +/- 2 SD and where * indicates a 

statistically significant value (p<0.05).  
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Figure 4.12: Reoxygenation of human pulmonary fibroblast cells after 6 hours 

abrogates hypoxia-mediated proliferation.  HPAF cells grown in normoxic 

conditions for t = 24 hours (C) and reoxygenated following t = 6 hours of hypoxic 

exposure exhibited similar reduced proliferative responses when compared with 

HPAF cells grown in hypoxic conditions for t = 16 and 20 hours with subsequent 

return to normoxia for the remainder of the 24 hour period.  Cellular proliferation as 

assessed by [3H]Thymidine uptake ~ disintegrations per minute (DPM).  

[3H]Thymidine uptake was significantly increased in HPAF cells grown in hypoxic 

conditions for between t = 16, 18 and 20 hours. The experiment was repeated 4 times 

in the same individual and performed in 4 individuals; the results illustrated are 

representative of 4 separate experiments in the same individual with results expressed 

as mean +/- 2 SD and where * indicates a statistically significant value (p<0.05).  
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Human pulmonary arterial fibroblasts express phosphorylated p38 MAPK α 

and γ isoforms in response to hypoxic growth conditions 

 

Pulmonary arterial fibroblasts were grown in normoxia and 5% serum in 6 well plates 

until 60% confluent they were then quiesced in serum-free media for 24 hours.  The 

cells were then kept in conditions of d acute hypoxia (5% PO2 ~ 35mmHg) for t = 16 

hours and lysates were prepared for Western Blot analysis as outlined in Chapter 2.6.  

Figure 4.13 (a) demonstrates that α and γ isoforms of phospho-p38 MAPK are 

expressed in HPAF cells grown in hypoxia for t = 16 hours.  Sorbitol acting as a 

positive control demonstrates that inactive forms of all 4 isoforms are present - 

probing for whole-p38 MAPK demonstrates equal protein loading.  These results 

were confirmed by densitometry (b) with values expressed as a percentage of sorbitol 

induced p38 MAPK phosphorylation as a positive control.  The experiment was 

repeated 4 times in the same individual and performed in 4 individuals; the results 

illustrated are representative of 4 separate experiments in the same individual with 

results expressed as mean +/- 2 SD.  
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Figure 4.13: Human pulmonary arterial fibroblasts express phosphorylated p38 

MAPK α and γ isoforms in response to hypoxic growth conditions.  (a) HPAF 

cells were grown in hypoxia for t = 16 hours.  α and γ isoforms of p38 MAPK were 

expressed in hypoxic HPAF cells but not β or δ isoforms.  Sorbitol was used as a 

positive control for all phosphorylated p38 MAPK activity.  Probing for whole/total 

p38 MAPK demonstrated equal protein loading throughout. These results were 

confirmed by densitometry (b) with values expressed as a percentage of sorbitol 

induced p38 MAPK phosphorylation as a positive control.  The experiment was 

repeated 4 times in the same individual and performed in 4 individuals; the results 

illustrated are representative of 4 separate experiments in the same individual with 

results expressed as mean +/- 2 SD.  
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Human pulmonary arterial fibroblasts express HIF1α to hypoxic exposure that 

is inhibited by preincubation with SB203580.  Human systemic arterial 

fibroblasts demonstrate no activation of HIF1α to hypoxic exposure 

 

Pulmonary and systemic arterial fibroblasts were grown in normoxia and 5% serum in 

6 well plates until 60% confluent they were then quiesced in serum-free media for 24 

hours.  The cells were then kept in conditions of normoxia and acute hypoxia (5% 

PO2 ~ 35mmHg) for t = 16 hours.  Both HMAF and HPAF cells were pre-incubated 

either without (C) or with SB203580 for a variety of time points (t = 2, 4 and 6 hours 

before the end of the experiment).  Lysates were prepared for Western Blot analysis 

as outlined in Chapter 2.6.  Figure 4.14 (a) demonstrates that there is no HIF-1α 

expression in HMAF cells at any time point examined.  In HPAF cells HIF-1α 

expression was inhibited by the presence of SB203580, but maximally at 6 hours pre-

incubation.  The lower panel demonstrates even expression of whole p38 MAPK and 

equal protein loading.  These results were confirmed by densitometry (b) with values 

expressed as a percentage of proliferation under conditions of normoxia without 5% 

serum stimulation as a control. The experiment was repeated 4 times in the same 

individual and performed in 4 individuals; the results illustrated are representative of 

4 separate experiments in the same individual with results expressed as mean +/- 2 

SD. 
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Figure 4.14: Human pulmonary arterial fibroblasts express HIF1α to hypoxic 

exposure that is inhibited by preincubation with SB203580.  Human systemic 

arterial fibroblasts demonstrate no activation of HIF1α to hypoxic exposure.  (a) 

HMAF (systemic) cells did not demonstrate any evidence of HIF1α activity under 

either normoxic or hypoxic growth conditions with preincubation with SB203580 for 

a variety of time points at t = 0, 2, 4 and 6 hours prior to the start of the experiment. 

HPAF (pulmonary) cells demonstrated that HIF1α expression could be progressively 

abrogated – with SB203580 preincubation which was maximal when added at t = 6 

hours prior to the start of the experiment.  The membrane was stripped and then 

probed for whole-p38 MAPK which demonstrated equal protein loading throughout.  

These results were confirmed by densitometry (b) with values expressed as a 

percentage of proliferation under conditions of normoxia without 5% serum 

stimulation as a control.  The experiment was repeated 4 times in the same individual 

and performed in 4 individuals; the results illustrated are representative of 4 separate 

experiments in the same individual with results expressed as mean +/- 2 SD.  
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4.5. Discussion: 

In chapter 3 we have demonstrated that human pulmonary arterial fibroblasts 

proliferate to acute hypoxic exposure whereas systemic arterial fibroblasts do not 

(with or without serum stimulation).  In this section we have demonstrated that both 

p38 MAPK and p44/p42 – ERK 1/2 MAPK are activated in hypoxic human 

pulmonary arterial fibroblasts (HPAF) and in systemic arterial fibroblast (HMAF) 

cells but that hypoxia-mediated proliferation in HPAF cells is associated with p38 

MAPK activity alone.  We have also demonstrated that JNK MAPK is not activated 

in either hypoxic or normoxic HPAF and HMAF cells.  In addition we have 

demonstrated that inhibition of p38 MAPK in HPAF cells with SB203580 (a specific 

p38 MAPK α and β inhibitor) results in complete abrogation of the hypoxia-mediated 

proliferative response observed in HPAF, in contrast to HMAF cells which show no 

change in behaviour under identical growth conditions.   

 

Phospho-p44/42 – ERK 1/2 expression was activated under both normoxic and 

hypoxic growth conditions in human pulmonary arterial fibroblasts at all time points 

with no significant differences in activity witnessed at any of the time points 

examined.  Pre-incubation of HPAF cells with U0126 (a p44/42 – ERK 1/2 

MAPK/MEK inhibitor) did not affect the hypoxia-mediated response witnessed in 

HPAF cells.  This suggests that p38 MAPK and p44/p42 – ERK 1/2 MAPK may have 

different roles in hypoxic HPAF cells: p38 MAPK appears to be crucial for the 

hypoxia-mediated proliferative response seen in these cells and this agrees with 

observations from other animal models (Scott et al, 1998; Das et al, 2001; Welsh et 

al, 2001).  The role of p44/42 – ERK 1/2 MAPK is less certain – classic MAPKs may 

be involved in cell hypertrophy in response to the hypoxic stimulus in this model.  
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Other investigators have found that both p44/p42 – ERK 1/2 and JNK MAPK to be 

important in hypoxia-mediated proliferation of pulmonary artery fibroblasts in a 

neonatal bovine model (Das et al, 2001).  Scott et al (1998) found evidence of both 

p38 and JNK MAPK activation in an adult bovine model, however in a human model 

we did not find any evidence of JNK MAPK activation in human pulmonary artery 

fibroblasts although whole JNK MAPK was equally expressed in both normoxic and 

hypoxic HPAF and HMAF cells.  This would suggest that while JNK MAPK is 

present in this model, it does not take an active role in human pulmonary or systemic 

artery fibroblast response to hypoxia 

 

In human pulmonary arterial fibroblasts subjected to acute hypoxia p38 MAPK 

activity appears to be biphasic in nature with peaks of activity at t = 6 hours and at 16 

hours.  This finding concurs with previous work from the SPVU laboratory: Scott et 

al (1998) demonstrated that increases in p38 MAPK activity occurred in a biphasic 

manner at t = 6 hours and 24 hours in an adult bovine model.  It also concurs with 

work from other investigators using a neonatal bovine model (Das et al, 2001).  In 

addition work from the SPVU laboratory has also demonstrated constitutive activation 

of p38 MAPK in pulmonary arterial fibroblasts to chronic hypoxic exposure that 

display a permissively proliferative phenotype (Welsh et al, 2001).  However our 

results differ from those seen in animal models in that we were unable to demonstrate 

any phospho-JNK activity in human arterial fibroblasts exposed to acute hypoxia.  In 

an adult bovine model Scott et al (1998) demonstrated that pulmonary arterial 

fibroblast proliferation was also associated with JNK activation.  In a neonatal bovine 

model, Das et al (2001) demonstrated that phospho-JNK, p44/42 – ERK1/2 and p38 

MAPK were all required for hypoxia-mediated pulmonary arterial fibroblast 
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proliferation to acute hypoxia.  They also demonstrated that SB203580 (a p38 MAPK 

α and β isoform inhibitor) was not able to fully abrogate hypoxia-mediated 

proliferation witnessed in this model whereas pertussis toxin (a Gαi/o protein inhibitor) 

completely abrogated neonatal bovine pulmonary arterial fibroblast proliferation 

implying a crucial role for JNK1 and p44/42 – ERK1/2 in hypoxia-mediated 

proliferation in this model.   

 

It seems likely that the relative differences in MAPK activation patterns witnessed in 

bovine, rat and human models rest on intrinsic inter-species differences.  They may 

also be the result of development differences – Das and Xu et al (1995; 1997) 

demonstrated significant differences in PKC isoform expression in pulmonary arterial 

fibroblasts and vascular smooth muscle cells to acute hypoxia between fetal, neonatal 

and adults in a bovine model.  In addition Hale et al (1999) demonstrated that p38 

MAPK isoform expression in human inflammatory cell lineages was not ubiquitous 

but was controlled at different developmental stages.  Despite the significant 

differences that exist interspecies, and intraspecies at different developmental stages, 

p38 MAPK activation appears to be a constant and important feature of all models 

that we have so far investigated.   Moreover it appears to behave consistently in a 

biphasic manner to acute hypoxic exposure with activity peaks at t = 6 hours and 

around 16-24 hours – a finding which has been demonstrated in neonatal and adult 

bovine models, and now also in man (Scott et al, 1998; Das et al, 2001). 

 

The functional significance of biphasic p38 MAPK activity in hypoxic pulmonary 

arterial fibroblasts is not certain.  Following reoxygenation experiments we have 

demonstrated that in a human model the second peak of p38 MAPK activity is 
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responsible for hypoxia-mediated proliferation in pulmonary arterial fibroblasts as 

fibroblasts reoxygenated after only 6 hours of hypoxic exposure fail to show the same 

proliferative response as identical cells cultured for 16 hours in hypoxic conditions.  

This concurs with previous work from the SPVU laboratory that demonstrated that the 

second peak of p38 MAPK activity could be abrogated following reoxygenation after 

6 hours (Scott et al, 1998).  It appears both from human and bovine models that the 

second peak of p38 MAPK activity is required for the hypoxia-mediated proliferative 

response witnessed in pulmonary arterial fibroblasts.  Scott et al (1998) noted that the 

second peak of p38 MAPK activity coincided with DNA synthesis in a fibroblast 

model.  This finding is at odds with work from Lavoie et al (1996) who demonstrated 

that p38 MAPK inhibited cell cycle progression from G0 to G1 in a fibroblast cell line.  

Contrary to our findings, Lavoie et al found that p44/p42 – ERK 1/2 activation 

appeared to be crucial for cell cycle progression via activation of cyclin D1, 2 and 3 in 

conjunction with cyclin dependent kinases (cdk) 4 and 6.  p38 MAPK over-expression 

inhibited cell cycle progression, causing cell cycle arrest that could be overcome with 

pre-incubation with SB203580.   Previous work from this laboratory has not been able 

to demonstrate a role for p38 MAPK inhibition of cell cycle progression via cyclin D1 

in an acute hypoxic adult rat model (Welsh et al, 2006) and this is in keeping with 

other work from our laboratory demonstrating a consistent association of pulmonary 

arterial fibroblast proliferation with p38 MAPK activity.  The variance in results may 

be a result of Lavoie et al’s use of immortalised cell lines rather than primary cell 

culture. 

 

Given the finding by other investigators that p38 MAPK α and γ isoform activity 

were upregulated by hypoxic exposure in PC12 cells (phaeochromocytoma cell 
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lineage) (Conrad et al, 1999), and work from the SPVU laboratory that implicated 

p38 MAPK α isoform activity in adult rat pulmonary arterial fibroblasts following 

acute hypoxic exposure (Welsh et al, 2006), we wished to establish which of the p38 

MAPK isoforms were involved with pulmonary arterial fibroblast proliferation to 

hypoxia in a human model.   p38 MAPK isoform expression appears to vary with 

tissue type and with developmental stage (Ono and Han, 2000).  p38 MAPK α and β 

appear to be ubiquitously expressed whereas γ and δ isoform expression appears to be 

more restricted.  SB203580 is a p38 MAPK inhibitor of the pyridinyl-imidazole class 

with a high level of activity against α and β isoforms by blocking their ATP binding 

site – but it has little activity against γ and δ isoforms.  The effective abrogation of 

hypoxia-mediated proliferation in human pulmonary arterial fibroblast by pre-

incubation with SB203580 strongly implicates α and β isoform involvement.  Using 

immunophoresis techniques we identified α and γ as the major isoforms expressed in 

acutely hypoxic human pulmonary arterial fibroblasts which concurs with the findings 

of Conrad et al (1999) in PC12 cells and those of the SPVU laboratory.  In this work 

we have demonstrated that α isoform is responsible for pulmonary arterial fibroblast 

proliferation in a human model. 

 

The role of p38 MPAK α appears to be crucially linked with vascular development in 

the fetus – mice homozygous for null/deleted p38 MAPK α die in utero at 

approximately 10 days of development as a result of vascular and placental 

abnormalities.  A similar phenotype is found in mice homozyote for null/deleted 

MEK3/6 (upstream activators of p38α) (Emerling et al, 2005).   HIF1α -/-mice also 

die in utero as a result of vascular anomalies (Yu et al, 1999) however mice 

heterozygote for HIF1α +/- are relatively protected against hypoxic pulmonary arterial 
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hypertension – developing less right ventricular hypertrophy and less pulmonary 

vascular resistance.  Given the association of p38 MAPK activation and pulmonary 

arterial fibroblast proliferation to hypoxic exposure we wished to establish whether a 

functional link might exist between p38 MAPK and HIF1α activity in a human 

model. 

 

Interestingly Emerling et al (2005) demonstrated that mouse embryonic fibroblast 

cells null for p38 α were unable to stabilise HIF1 α to hypoxic exposure (1.5% O2) – 

these cells could however stabilise HIF1α to iron chelators (desferrioximine DFO) 

and anoxia – implying that HIF1α stabilisation under these circumstances involves a 

p38 MAPK independent mechanism.  Embryonic fibroblasts null for p38 MAPK α 

could be rescued by adenoviral transfection with p38 MAPK α.  Fibroblasts that 

expressed p38 MAPK α, exposed to electron transport chain (ETC) complex III 

inhibitors such as anisomycin, were also unable to stabilise HIF1α to hypoxia neither 

were they able to activate p38 MAPK α.  This suggests a strong mechanistic link 

between p38 MAPK activation and HIF1α in a murine model.   

 

In this series of experiments we have demonstrated that whole HIF-1 activity is 

increased in hypoxic pulmonary artery fibroblasts alone.  There is no expression of 

whole HIF-1 activity in hypoxic HMAF cells.  We have also demonstrated a temporal 

link between p38 MAPK and whole HIF-1 activity coincident with the second peak of 

p38 MAPK activity at t = 16 hours.  The exact nature of this relationship is not clear 

but may be mechanistic and would be in keeping with work by Sodhi et al (2000) who 

were able to demonstrate that SB203580 was able to inhibit HIF-1α phosphorylation 

in a Hep3B cell line.  Work from Richard et al (1999) however proved a central role 
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for p44/p42 – ERK 1/2 MAPK in HIF-1 activation in a variety of different cell lines 

and were unable to prove a role for p38.  This work was performed in immortalised 

cells.  However Stroka et al (2001) demonstrated that HIF-1 expression demonstrated 

a considerable degree of variation between organs and it may well be that HIF-1 

activation shows not only species, but also organ specificity in the pattern of its 

activation. 

 

Previous experimental models have demonstrated that HIF-1 is rapidly upregulated 

within minutes of hypoxic exposure (Yu et al, 1998; Stroka et al, 2001) so it is 

unusual that we only found evidence of whole HIF-1 activity in HPAF and that there 

was no evidence of HIF-1 activity at all in HMAF cells grown in hypoxic conditions.  

Other investigators have demonstrated that HIF-1 activity can vary in a time and 

tissue dependent manner in hypoxic mice (Stroka et al, 2001), it may well be that 

pulmonary artery fibroblasts that are normally subjected to a lower PaO2 than present 

in systemic arterial blood may express HIF-1 at more extreme levels of hypoxaemia 

in man. 

 

Yu et al (1999) demonstrated that mice heterozygous for HIF1α(+/-) did not 

demonstrate comparable responses to chronic hypoxic exposure as homozygotes.  

Heterozygous mice did not demonstrate an increase in haematocrit, an increase in 

right ventricular mass or pressure – nor did they develop as dramatic 

neomuscularisation of their pulmonary arteries to prolonged hypoxic exposure in 

comparison to wild-type littermates.   Interestingly mice heterozygote for HIF2α (+/-) 

appear to be completely protected from hypoxic pulmonary arterial hypertension, 

suggesting that certainly in a murine model HIF2α may be the predominant isoform 
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present in the lung.  This does in fact concur with work from Eul et al (2006) who 

demonstrated that both HIF1α and HIF2α were required for pulmonary arterial 

proliferation to hypoxia in a human model and that HIF1α in isolation appeared to 

mediate pulmonary arterial fibroblast migration suggesting that HIF α isoforms play 

critical roles in hypoxia-mediated the signal transduction.    

 

The nature of the apparent interaction between p38 MAPK and HIF-1 is not certain.   

HIF-1 could represent a down-stream effector of p38 MAPK as suggested by Sodhi et 

al (2000), alternatively p38 MAPK could stabilise HIF-1α, the rate-limiting factor that 

dictates HIF-1 activity, in hypoxic HPAF cells.  It seems unlikely that p38 MAPK 

acts by increasing protein synthesis as control of HIF-1 activity is achieved by 

reduced degradation on HIF-1α  (Kallio et al, 1999). 

 

In a human model we have demonstrated that hypoxia results in HIF1α activation in 

pulmonary arterial fibroblasts exposed to acute hypoxia.  This finding concurs with 

work from other laboratories (Krick et al, 2005).   We have demonstrated that pre-

incubation of human pulmonary arterial fibroblast cells with SB203580 inhibits 

HIF1α stabilisation which is maximal at t = 6 hours preincubation and is congruent 

with the second peak of p38 MAPK activity in these cells.  It is possible that the first 

peak of p38 MAPK activity is responsible for the upregulation of gene products with 

HRE responsive to HIF1α that enables the proliferative response resulting from the 

second peak of p38 MAPK activity. 
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In summary we have shown: 

1) Human pulmonary artery fibroblasts proliferate to acute hypoxic exposure 

whereas systemic arterial fibroblasts do not. 

2) Hypoxic pulmonary arterial fibroblast proliferation in a human model is 

associated with increased p44/p42 and p38 MAPK activity. 

3) p38 MAPK activity is responsible for hypoxia-mediated pulmonary artery 

fibroblast proliferation in a human model. 

4) p38 MAPK α and γ isoforms are expressed in hypoxic pulmonary arterial 

fibroblast cells. 

5) p38 MAPK α is responsible for hypoxia-mediated pulmonary arterial 

fibroblast proliferation in a human model. 

6) That p38 MAPK activity is associated with HIF1α activity and that SB203580 

can inhibit HIF1α activity in human pulmonary arterial fibroblasts exposed to 

hypoxia. 
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Chapter 5:  

To examine the contribution of Smad signalling in human pulmonary and 

systemic arterial fibroblast cell proliferative responses to acute hypoxic exposure 

 

5.1. Introduction 

Two separate groups mapped the chromosomal locus of the PPH1 gene to 

chromosome 2q31,32  (Morse et al, 1997; Nichols et al, 1997) which was later found 

to code for the Bone Morphogenetic Protein Receptor II gene (BMPRII) (Deng et al, 

2000; Lane et al, 2000).  In hereditary haemorrhagic telangectasia (HHT), a condition 

also associated with pulmonary hypertension, mutations were found in the activin-like 

kinase (Alk-1) gene (chromosome 12q13) and endoglin (ENG) (chromosome 9) 

(Trembath et al, 2001).  BMPR2, Alk-1 and ENG receptors are members of the 

Transforming Growth Factor β (TGFβ) superfamily and are involved in 

transmembrane signalling of bone morphogenetic protein (BMP) and TGFβ 

respectively.   

 

TGFβ superfamily signalling is highly complex, exerting variable effects on differing 

cell types – effects that can vary with the cell’s developmental and metabolic states.  

A relatively simple two-step membrane-bound receptor combination represents only 

one level of signalling control which also includes regulation of extra-cellular ligand 

binding, variable specificity of intracellular signalling proteins and differing 

combinations of transcriptional co-activators and co-repressors.  It is through this 

multi-faceted system of checks and balances that the TGFβ superfamily is able to 

produce a wide variety of effects from ligand-receptor interaction (Massague et al 

2000; Massague and Wooton, 2000; Miyazono, 2000). 
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The TGFβ receptor superfamily can be sub-divided into either TGFβ receptors 1, 2 

and 3, or BMPR 1 and 2 (Blobe et al, 2000).  Activation of the receptor complex 

occurs via ligand binding and subsequent phosphorylation of a type 2 receptor, which 

is then able to bind to, and activate, a type 1 receptor.  Downstream intracellular 

signalling effectors for the TGFβ superfamily receptors are the Smad signalling 

proteins.  Smad proteins are divided into subclasses: Receptor or R-Smads (Smads 1-

3, 5 and 8) responsible for binding to the activated type 2 TGFβ or BMP receptor at 

the membrane surface, the Common or Co Smad (Smad 4) which enables nuclear 

transport of the phosphorylated R Smad and Inhibitor or I-Smads (Smad 6 and 7) 

which block Co-Smad binding to the activated R-Smad subunit.  Smads 2 and 3 are 

specific R-Smads for TGFβ receptor signalling, Smads 1, 5 and 8 for BMPR 

signalling (Chen et al, 1998; Massague, 1990; Massague et al, 2000; Massague and 

Wooton, 2000).   

 

Recent work from Nohe et al (2002; 2003; 2004) has suggested that BMP receptor 

conformation at the membrane surface dictates the subsequent intracellular signalling 

cascade upregulated by BMP stimulation.  BMP receptors either exist as preformed 

hetero-oligomeric receptor complexes (PFC) where ligand binding results in 

activation of the Smad signalling pathway, or as homo-oligomers where ligand 

binding to a type 2 receptor subunit results in recruitment and phosphorylation of a 

type 1 receptor and subsequent activation of the p38 MAPK pathway. 

 

Initially only 55% of all families with Familial PAH were found to carry a single 

mutated copy of the BMPRII gene and a functional analysis of these mutations 

appeared to be associated with reduced BMPR2 expression at the cell surface 
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membrane, reduced kinase ability or truncation of the long C-terminal chain which is 

unique to BMPR2 (Atkinson et al, 2002; Rudarakanchana et al, 2002).  The mutation 

is thought to act either by haploinsufficiency or by a dominant negative effect.  More 

recent work looking at both intronic and exonic regions has identified that the 

frequency of mutation with the BMPRII gene may be as high as 70% within affected 

families (Cogan et al, 2006).  Exonic or duplication mutations were identified in 48% 

of all BMPRII mutations within a large number of affected families who had not been 

identified as carrying a mutation in previous studies, this is in comparison to a 

frequency of 14% in individuals with IPH.  This work further underlines the 

significance of BMP-BMPR2-Smad/p38MAPK signalling in the aetiology of 

pulmonary hypertension. 

 

The primary ligands for BMPR2 are Bone Morphogenetic Proteins 2, 4 and 7.  The 

effects of BMP signalling largely appear to be that of anti-proliferation, anti-

differentiation and anti-apoptosis, but as in TGF β mediated signalling the response is 

cell specific.  BMP 2 has been shown to inhibit proliferation of human aortic VSMC 

via p21 preventing G1/S phase transition through its action on cyclins (Wong et al, 

2003).  BMP 2 has also been shown to induce apoptosis in mouse hybridoma MH60 

cell lines via p38 MAPK (Kimura et al, 2000). 

 

A functional analysis of mutated BMPR2 has identified reduced receptor expression 

either as a result of failure of a truncated receptor to localise to the cell membrane or 

as a result of a kinase domain mutation causing signal transduction failure 

(Rudarakanchana et al, 2002).  The effect of BMPR2 mutation appears to have effects 

that extend beyond the immediate influence of BMPR2-BMPR1 interaction, with 

TGF β signalling (not normally a ligand for BMPR2) enhanced as a result of reduced 
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BMPR2 function (Morrell et al, 2001).  Nohe et al (2002) have demonstrated that the 

frequency of receptor units at the cell surface membrane predicts the downstream 

signalling cascade activated with differential activation of either Smad or p38 MAPK 

signalling.   Support for this argument is demonstrated by recent work from Yu et al 

(2005) which shows that disruption of BMPR2 signalling in a mouse VSMC model 

which is haploinsufficient for BMPRII, enables signal transduction via an alternative 

pathway via activin type 2 receptors (ActR2 - a TGF beta superfamily receptor) that is 

normally suppressed in wild-type animals.  Reduction in BMP4-mediated signalling 

resulted in an increase in BMP6 and predominantly BMP7-mediated signalling 

leading to increased Smad 1, 5 and 8 phosphorylation and p38 MAPK activation. 

 

Morrell et al (2001) have demonstrated altered cell responsiveness to BMP4 and TGF 

β in VSMC from patients with Familial PAH.  They demonstrated that TGF β 

stimulation resulted in an increase in VSMC proliferation in cells cultured from the 

proximal pulmonary arteries of patients with FPAH, but not in patients with 

secondary PAH or controls.  In addition BMP4 did not, as expected, suppress 

proximal VSMC proliferation in patients with FPAH in comparison to VSMC 

cultured from patients with secondary PAH.  The same group also demonstrated that 

VSMC cultured from human proximal pulmonary arteries were growth-inhibited by 

BMP4 stimulation, but that VSMC from distal pulmonary arteries were protected 

from apoptosis and proliferated to BMP4 stimulation (Yang et al, 2005).  The 

differential growth response did not appear to be as a result of activation of an 

alternative signalling pathway as both Smad and p38 MAPK pathways appeared to be 

equally upregulated in VSMC from both proximal and distal pulmonary arteries.  

Yang et al (2005) also demonstrated that VSMC from the proximal pulmonary 

arteries could be converted to a pro-proliferative phenotype by transfection with a 
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dominant-negative Smad 1 protein, suggesting that abnormalities within BMPR2 

mediated signalling could result in deficient Smad signalling.  Interestingly the pro-

proliferative effects of BMP4 on peripheral VSMC appeared to be p38 MAPK and 

ERK1/2 dependent.  VSMC known to express BMPR2 with mutations within the 

kinase domain demonstrated reduced Smad signalling and reduced Smad signalling 

has been demonstrated in both patients with FPAH and IPAH.  It is possible that 

defective Smad signalling could result in unchecked p38MAPK/ERK1/2 signalling, 

resulting in abnormal cellular proliferation.  This is in part born out but the finding 

that in pulmonary artery VSMC, BMPR2 stimulation by BMP2 results in divergent 

gene activation in patients with IPAH in comparison to controls (Fantozzi et al, 

2005). 

 

Recent work from Teichert-Kuliszewska et al (2006) demonstrates that the effects of 

disordered BMPR2 signalling are not only confined to the media.  BMP-mediated 

signalling appears to be largely proapoptotic for VSMC but inhibits apoptosis in EC.  

When BMPR2 expression is reduced by approximately 50%, a 3 to 4 fold increase in 

EC apoptosis was demonstrated.  In Epithelial Progenitor Cells (EPC) from both 

patients with IPAH and controls there was no difference in BMPR2 expression levels 

but there was a significant difference in response to BMP stimulation: BMP2 

stimulation was only able to reduce apoptosis in EPC from controls but not from 

patients with IPAH where the loss of function of BMPR2 resulted in a marked 

increase in EPC apoptosis.  Unfortunately this study did not include any information 

regarding the genotype of the study group.  Michelakis (2006) suggests that perhaps 

primary pulmonary hypertension should be considered not only as a disorder 

involving different vascular compartments but also that the behaviour of these 

compartments may vary with time.  He suggested that an early increase in EC 
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apoptosis may allow mitogens access to the medial layer resulting in VSMC 

proliferation and that later EC may develop an antiapoptotic phenotype resulting in 

the plexigenic lesions. 

 

Using hypoxia as a model for pulmonary arterial hypertension, Frank et al (2005) 

demonstrated that BMP4 was upregulated in the lungs of mice exposed to chronic 

hypoxia.  They went on to investigate the behaviour of pulmonary arterial VSMC 

cultured from mice haploinsufficient for BMP4.  BMP4+/- mice were protected from 

developing hypoxia-related pulmonary hypertension when exposed to conditions of 

chronic hypoxia.  In addition they demonstrated that these animals showed less 

VSMC proliferation and significantly less pulmonary arterial remodelling, together 

with a reduction in Smad 1, 5 and 8 phosphorylation.  This finding is counter-

intuitive, as a reduction in total BMP4 would be expected to release VSMC from anti-

proliferative control thereby causing VSMC proliferation and vascular remodelling.  

The investigators also noted an increase in BMP2 mRNA in the BMP4+/- mouse in 

response to hypoxia – they theorised that the reduction in total BMP4 allowed BMP2 

to become the dominant signal. 

 

There is scant work published on the role of BMP-BMPR2-Smad signalling in 

fibroblasts.  Jeffrey et al (2005) demonstrated that pre-incubation of fetal whole lung 

fibroblasts with BMP4 in combination with serum resulted in reduced proliferation 

that was associated with an increase in Smad 1 phosphorylation and nuclear 

translocation.  They also noted an increase in smooth muscle actin (SMA) and myosin 

light chain (MLC) expression in these cells, suggesting a switch to a VSMC 

phenotype – a response that was specific to BMP4 pre-incubation and not found when 

cells were pre-incubated with BMP2 or 7.  BMP4 stimulation was also associated 
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with an increase in p21 expression that controls G1/S phase transition and increases in 

p38, JNK and ERK1/2 phosphorylation.  Jeffrey et al also demonstrated that fetal 

whole lung fibroblasts transfected with a dominant negative Smad 1 were released 

from their anti-proliferative phenotype, an effect that could be partially abrogated by 

pre-incubating the cells with a JNK inhibitor, but not SB203580 or U0126 specific 

p38 and ERK1/2 inhibitors respectively.  

 

Given that BMPRII mutations are known to be associated with Familial IPH and that 

we have previously demonstrated that p38 MAPK activation is required for hypoxia-

mediated pulmonary artery proliferation (see chapter 4) we wished to assess the role 

of Smad signalling in human pulmonary and systemic artery responses to acute 

hypoxia; in particular concentrating on Smads 1, 5 and 8 – R Smads directly down-

stream from BMPR 1 and 2.  We theorised that as the BMP-BMPR-Smad signalling 

cascade has an inhibitory influence in mesenchymal cells (Massague and Wooton, 

2000), Smad 1, 5 and 8 signalling would be down-regulated in proliferating hypoxic 

pulmonary artery fibroblasts when compared with identical cells grown under 

normoxic conditions.  We also wished to examine any potential interaction between 

the stress activated MAPK, p38 MAPK, classic MAP kinases ERK 1/2  MAPK and 

Smad signalling.  We also wished to examine the contribution of TGFβ-specific R 

Smad 2 and Inhibitory Smads 6 and 7 in hypoxic-mediated pulmonary artery 

fibroblast proliferation; Smad 6 being the specific inhibitory signalling protein for the 

BMP-BMPR-Smad cascade via its phosphorylation of Smad 4 (Hata et al, 1997; 

Imamura et al, 1997; Miyazono, 2000) and on the p38 MAPK cascade via its 

influence on TAK-1.  
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5.2. Methods 

 

5.2.1.  Activation of Smad proteins in human pulmonary and systemic arterial 

fibroblasts under conditions of normoxia and acute hypoxia 

 

Cells were obtained from pulmonary and systemic arteries of consented patients 

undergoing lung reduction surgery for the treatment of lung cancer or chronic 

obstructive pulmonary disease.  Cells were prepared by the method described above 

(Chapter 2.3).  Cells were grown to 60% confluence in 6 well plates and were then 

quiesced using serum-free media for a period of 24 hours.  They were then grown in 

conditions of normoxia or hypoxia (35mmHg PO2 ~ 5%) for a total period of 24 hours 

with the addition of 5% serum stimulation.  Cell lysates were prepared following 24 

hours exposure to either normoxia or hypoxia using the method previously described 

(chapter 2.6).   Smad 1, 5 and 8, Smad 2, Smad 4 together with Smad 6 and 7 

phosphorylation was assessed using Western blotting using retardation on SDS-PAGE 

gels as a marker of phosphorylation using a 1:500 dilution of a rabbit anti-Smad IgG 

primary antibody and a 1:1000 dilution of a flagged anti-goat secondary antibody on 

nitrocellulose membranes and a Chemiluminescence detection system (chapter 2.6).  

Each experiment was repeated 4 times in the same individual and in a total of 4 

individuals and the results shown were representative of the mean from a single 

individual.  The results were confirmed with densitometry (chapter 2.7). 

 

 

 

 

 



 173

5.2.2.  Influence of stress (p38) MAP kinase inhibitor (SB203580) on Smad 

protein expression in human pulmonary and systemic arterial fibroblasts under 

conditions of normoxia and acute hypoxia. 

Human pulmonary and systemic arterial fibroblast cells were prepared for culture as 

described above.  They were grown to 60% confluency in 6 well plates and were then 

quiesced for a period of 24 hours using serum-free media.  Cells were then stimulated 

with 5% serum and were then grown under conditions of normoxia or hypoxia 

(35mmHg PO2 ~ 5%) for a period of 24 hours.  50 μl of a specific p38 MAPK 

inhibitor SB203580 was added to each well 6 hours before the end of the experiment.  

Cell lysates were then prepared and protein expression assessed by means of SDS-gel 

electrophoresis and Western Blotting techniques using a 1:500 dilution of a rabbit 

anti-Smad IgG primary antibody together with a 1:1000 dilution of an anti-goat 

secondary antibody (as described above).  This experiment was then repeated using 

anti Smad 2, 6 and 7 primary antibodies using the same dilutions.  Each experiment 

was repeated 4 times in the same individual and in a total of 4 individuals and the 

blots demonstrated were representative of the mean from a single individual 

 

5.2.3.  Influence of classic (ERK) MAP kinase inhibitors (U0126) on Smad 

protein expression in human pulmonary and systemic arterial fibroblasts under 

conditions of normoxia and acute hypoxia. 

Cells were prepared as described above, grown to 60% confluence in 6 well plates 

and were then quiesced using serum-free media for 24 hours.  Cells were then 

stimulated with 5% serum and were then grown in conditions of either normoxia or 

acute hypoxia (35mmHg PO2 ~ 5%) for a period of 24 hours.  Six hours prior to the 

end of the experiment 50 μl of a specific ERK 1/2 MAP kinase inhibitor – U0126 – 
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was added to each well.  Cell lysates were prepared as previously described (Chapter 

2.6) and protein expression was assessed by Western Blotting techniques and by using 

a 1:500 dilution of a rabbit anti-Smad IgG primary antibody and a 1:1000 dilution of 

an anti-goat secondary antibody.  This experiment was repeated using anti Smad 2, 6 

and 7 antibodies using the same dilutions.  Each experiment was repeated 4 times in 

the same individual and in a total of 4 individuals and the blots demonstrated were 

representative of the mean from a single individual 

 

5.2.4 Densitometric analysis of blots 

Densitometric analysis of blots was carried out using a computer programme that 

allowed for comparison of blot density in graphical form (Quantiscan).  The results 

are expressed as a percentage of normoxic control without the addition of 5% serum 

stimulation. 

 

5.3. Statistics 

Results are expressed as the mean + S.D. and statistical analysis was undertaken as 

described in chapter 2.8. 
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5.4. Results 

Smad 5 and 8 activation is increased in human systemic arterial fibroblasts 

(HMAF) and decreased in human pulmonary arterial fibroblasts (HPAF) to 

acute hypoxic exposure 

 

HPAF and HMAF cells were grown in 6 well plates until 60% confluent.  They were 

then quiesced in serum-free media for a period of 24 hours.  Cells were then grown 

under conditions of normoxia or acute hypoxia (35mmHg ~ 5% PO2) for a period of 

16 hours without the addition of serum, with 5% serum and with 5% serum plus 

SB203580 a specific p38 MAPK inhibitor (which was added 6 hours prior to the end 

of the experiment).  Cell lysates were prepared for Western Blotting as per chapter 

2.6.  Figure 5.1 (a) demonstrates that phospho Smad 5 and 8 activation was increased 

in normoxic pulmonary artery fibroblasts with the addition of 5% serum but was 

down-regulated under hypoxic conditions.  In human mammary artery fibroblasts 

phospho Smad 5 and 8 activation was increased under hypoxic conditions following 

the addition of 5% serum.  Pre-incubation of HPAF cells with SB203580 reduces the 

expression of phospho Smad 5 and 8 to the level seen in hypoxic conditions The 

membranes were probed for whole p38 MAPK that is expressed uniformly in both 

cell types - irrespective of growth condition - in order to act as a control.  These 

results were confirmed by densitometry – HMAF cells grown in normoxia (N) (black 

bar) and hypoxia (H) (white bar) (b) and (c) with results expressed as a percentage of 

normoxic control.  The experiment was repeated 4 times in the same individual with 

the results illustrated being representative of 4 separate experiments.  The experiment 

was repeated in 4 individuals.  The results are expressed as mean +/- 2 SD with * 

signifying a statistically significant result (p <0.05). 
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Figure 5.1(a): Smad 5 and 8 activation is increased in human systemic arterial 

fibroblasts (HMAF) and decreased in human pulmonary arterial fibroblasts 

(HPAF) to acute hypoxic exposure.  HMAF and HPAF cells were grown in 6 well 

plates until 60% confluent.  They were then quiesced with serum free media for a 

period of 24 hours.  They were then grown in conditions of normoxia (N) or hypoxia 

(H) for 16 hours.  Cells were grown in serum-free media (C), with 5% serum (S) or 

with 5% serum plus SB203580 (S + SB).  Phospho Smad 5 and 8 expression was 

increased in HMAF cells grown in hypoxia with 5% serum stimulation, SB203580 

did not alter phospho Smad 5 and 8 expression: figure 5.1 (a).  In HPAF cells there 

was a relative reduction in phospho Smad 5 and 8 expression under conditions of 

hypoxia with 5% serum stimulation: figure 5.1 (a).  Preincubation with SB203580 

appeared to reduce phospho Smad 5 and 8 expression in these cells. These results 

were confirmed by densitometry – cells grown in normoxia (black bar) and hypoxia 

(white bar) (b), (c), (d) and (e) with results expressed as a percentage of normoxic 

control.  The experiment was repeated 4 times in the same individual with the results 

illustrated being representative of 4 separate experiments.  The experiment was 

repeated in 4 individuals.  The results are expressed as mean +/- 2 SD with * 

signifying a statistically significant result (p <0.05). 
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Figure 5.1(a) (b) and (c): Smad 5 and 8 activation is increased in human systemic 

arterial fibroblasts (HMAF) and decreased in human pulmonary arterial 

fibroblasts (HPAF) to acute hypoxic exposure.  HMAF cells were grown in 6 well 

plates until 60% confluent.  They were then quiesced with serum free media for a 

period of 24 hours.  They were then grown in conditions of normoxia (N) or hypoxia 

(H) for 16 hours.  Cells were grown in serum-free media (C), with 5% serum (S) or 

with 5% serum plus SB203580 (S + SB).  Phospho Smad 5 and 8 expression was 

increased in HMAF cells grown in hypoxia with 5% serum stimulation, SB203580 

did not alter phospho Smad 5 and 8 expression: Figure 5.1 (a).  These results were 

confirmed by densitometry – cells grown in normoxia (N) (black bar) and hypoxia 

(H) (white bar) (b), (c), with results expressed as a percentage of normoxic control.  

The experiment was repeated 4 times in the same individual with the results 

illustrated being representative of 4 separate experiments.  The experiment was 

repeated in 4 individuals.  The results are expressed as mean +/- 2 SD with * 

signifying a statistically significant result (p <0.05). 
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Figure 5.1(a), (d) and (e): Smad 5 and 8 activation decreased in human 

pulmonary arterial fibroblasts (HPAF) to acute hypoxic exposure.  HPAF cells 

were grown in 6 well plates until 60% confluent.  They were then quiesced with 

serum free media for a period of 24 hours.  They were then grown in conditions of 

normoxia (N) or hypoxia (H) for 16 hours.  Cells were grown in serum-free media 

(C), with 5% serum (S) or with 5% serum plus SB203580 (S + SB).  In HPAF cells 

there was a relative reduction in phospho Smad 5 and 8 expression under conditions 

of hypoxia with 5% serum stimulation which did not reach statistical significance.  

These results were confirmed with densitometry: figures 5.1 (a) (d) (e).  

Preincubation with SB203580 appeared to reduce phospho Smad 5 and 8 expression 

in these cells. These results were confirmed by densitometry – cells grown in 

normoxia (black bar) and hypoxia (white bar) (d) and (e) with results expressed as a 

percentage of normoxic control.  The experiment was repeated 4 times in the same 

individual with the results illustrated being representative of 4 separate experiments.  

The experiment was repeated in 4 individuals.  The results are expressed as mean +/- 

2 SD. 
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(d) 
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Human pulmonary and systemic arterial fibroblasts demonstrate no activation 

of Smads 2, 6 or 7 under either normoxic or hypoxic growth conditions 

 

HPAF and HMAF cells were grown in 6 well plates until 60% confluent.  They were 

then quiesced in serum-free media for a period of 24 hours.  Cells were then grown 

under conditions of normoxia or acute hypoxia (35mmHg ~ 5% PO2) for a period of 

16 hours without the addition of serum, with 5% serum and with 5% serum plus 

U0126 a specific p44/42 MAPK inhibitor (which was added 6 hours prior to the end 

of the experiment).  Cell lysates were prepared for Western Blotting as per chapter 

2.6.  Figure 5.2 (a) demonstrates that there was no alteration in activated Smad 2 

expression irrespective of growth condition. There was no alteration in whole Smad 6 

or 7 activation in either cell type irrespective of growth conditions.  Pre-incubation 

with U0126 did not alter the expression of whole Smad 6 or 7. These results were 

confirmed by densitometry – cells grown in normoxia (N) (black bar) and hypoxia 

(H) (white bar) (b), (c), (d) and (e) with results expressed as a percentage of 

normoxic control.  The experiment was repeated 4 times in the same individual with 

the results illustrated being representative of 4 separate experiments.  The experiment 

was repeated in 4 individuals.  The results are expressed as mean +/- 2 SD.  There was 

no statistical difference between normoxic (N) or hypoxic (H) growth conditions in 

either human pulmonary or systemic arterial fibroblast cells. 
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Figure 5.2(a): Human pulmonary and systemic arterial fibroblasts demonstrate 

no activation of Smads 2, 6 or 7 under either normoxic or hypoxic growth 

conditions.  HPAF and HMAF cells were grown in 6 well plates until 60% confluent.  

They were then quiesced in serum-free media for a period of 24 hours.  Cells were 

then grown under conditions of normoxia or acute hypoxia (35mmHg ~ 5% PO2) for a 

period of 16 hours without the addition of serum (C), with 5% serum (S) and with 5% 

serum plus U0126 a specific p44/42 MAPK inhibitor (S + U0126) which was added 6 

hours prior to the end of the experiment.  Cell lysates were prepared for Western 

Blotting as per chapter 2.6.  HPAF and HMAF demonstrated no increased activity of 

phospho Smad 2, whole Smad 6 and whole Smad 7 (figure 5.2a).  These results were 

confirmed by densitometry – cells grown in normoxia (N) (black bar) and hypoxia 

(H) (white bar) figures 5.2(b) – (g) with results expressed as a percentage of 

normoxic control.  The experiment was repeated 4 times in the same individual for 

both systemic and pulmonary arterial fibroblasts with the results illustrated being 

representative of 4 separate experiments.  Each experiment was repeated in a total of 

4 individuals.  The results are expressed as mean +/- 2 SD.  There was no statistical 

difference between normoxic (N) or hypoxic (H) growth conditions in either human 

pulmonary or systemic arterial fibroblast cells. 
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Figure 5.2(a), (b) and (c): Human pulmonary and systemic arterial fibroblasts 

demonstrate no activation of Smad 2 under either normoxic or hypoxic growth 

conditions.  HPAF and HMAF cells were grown in 6 well plates until 60% confluent.  

They were then quiesced in serum-free media for a period of 24 hours.  Cells were 

then grown under conditions of normoxia or acute hypoxia (35mmHg ~ 5% PO2) for a 

period of 16 hours without the addition of serum (C), with 5% serum (S) and with 5% 

serum plus U0126 a specific p44/42 MAPK inhibitor (S + U0126) which was added 6 

hours prior to the end of the experiment.  Cell lysates were prepared for Western 

Blotting as per chapter 2.6.  HPAF and HMAF demonstrated no increased activity of 

phospho Smad 2 (figures 5.2 a, b and c).  These results were confirmed by 

densitometry – cells grown in normoxia (N) (black bar) and hypoxia (H) (white bar) 

(b) – (c) with results expressed as a percentage of normoxic control.  The experiment 

was repeated 4 times in the same individual with the results illustrated being 

representative of 4 separate experiments.  The experiment was repeated in 4 

individuals.  The results are expressed as mean +/- 2 SD.  There was no statistical 

difference between normoxic (N) or hypoxic (H) growth conditions in pulmonary or 

systemic arterial fibroblast cells. 

 

 

 

 

 

 

 

 



 186

 

 

 

 

(b) 

Human Systemic Artery Fibroblasts - Phospho Smad 2

0
20
40
60
80

100
120
140
160

control 5% serum 5% serum + U0126

Ph
 S

m
ad

 2
 %

 C
on

tr
ol

 

(c) 

Human Pulmonary Artery Fibroblasts - Phospho Smad 2

0
20
40
60
80

100
120
140
160

control 5% serum 5% serum + U0126

Ph
 S

m
ad

 2
 %

 C
on

tr
ol

 



 187

Figure 5.2(a), (d) and (e): Human pulmonary and systemic arterial fibroblasts 

demonstrate no activation of Smad 6 under either normoxic or hypoxic growth 

conditions.  HPAF and HMAF cells were grown in 6 well plates until 60% confluent.  

They were then quiesced in serum-free media for a period of 24 hours.  Cells were 

then grown under conditions of normoxia or acute hypoxia (35mmHg ~ 5% PO2) for a 

period of 16 hours without the addition of serum (C), with 5% serum (S) and with 5% 

serum plus U0126 a specific p44/42 MAPK inhibitor (S + U0126) which was added 6 

hours prior to the end of the experiment.  Cell lysates were prepared for Western 

Blotting as per chapter 2.6.  HPAF and HMAF demonstrated no increased activity of 

whole Smad 6 (figures 5.2, a, d, e).    These results were confirmed by densitometry – 

cells grown in normoxia (N) (black bar) and hypoxia (H) (white bar) (d) - (e) with 

results expressed as a percentage of normoxic control.  The experiment was repeated 

4 times in the same individual with the results illustrated being representative of 4 

separate experiments.  The experiment was repeated in 4 individuals.  The results are 

expressed as mean +/- 2 SD.  There was no statistical difference between normoxic 

(N) or hypoxic (H) growth conditions in human pulmonary or systemic arterial 

fibroblast cells. 
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Figure 5.2(a, f and g): Human pulmonary and systemic arterial fibroblasts 

demonstrate no activation of Smad 7 under either normoxic or hypoxic growth 

conditions.  HPAF and HMAF cells were grown in 6 well plates until 60% confluent.  

They were then quiesced in serum-free media for a period of 24 hours.  Cells were 

then grown under conditions of normoxia or acute hypoxia (35mmHg ~ 5% PO2) for a 

period of 16 hours without the addition of serum (C), with 5% serum (S) and with 5% 

serum plus U0126 a specific p44/42 MAPK inhibitor (S + U0126) which was added 6 

hours prior to the end of the experiment.  Cell lysates were prepared for Western 

Blotting as per chapter 2.6.  HPAF and HMAF demonstrated no increased activity of 

whole Smad 7 (figures 5.2, a, f, g).  These results were confirmed by densitometry – 

cells grown in normoxia (black bar) and hypoxia (white bar) (f) - (g) with results 

expressed as a percentage of normoxic control.  The experiment was repeated 4 times 

in the same individual with the results illustrated being representative of 4 separate 

experiments.  The experiment was repeated in 4 individuals.  The results are 

expressed as mean +/- 2 SD.  There was no statistical difference between normoxic 

(N) or hypoxic (H) growth condition in either human pulmonary or systemic arterial 

fibroblast cells. 
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5.5. Discussion 

We have demonstrated that human pulmonary artery fibroblast proliferate to acute 

hypoxia is associated with increased activity of both phosphorylated p44/p42 – ERK 

1/2 and p38 MAPKs but that the proliferative response is dependent on 

phosphorylation of p38 MAPK.   The BMP-BMPR-Smad pathway acts to inhibit 

proliferation in mesenchymal cells and therefore the finding that phosphorylated 

Smad 1, 5 and 8 is reduced in hypoxic HPAF in comparison to identical cells grown 

in normoxia is in keeping with the theory that these cells are maintained in a pro-

proliferative state when grown in conditions of acute hypoxia.  This would suggest 

active down-regulation of growth-inhibitory pathways with concomitant upregulation 

of pro-proliferative signalling in these cells. 

 

To date we have not been able to show that there is any response in human systemic 

artery fibroblast cells to acute hypoxic exposure.  We have found upregulation of 

p44/p42 – ERK1/2 MAPK and have found no expression of p38 MAPK in hypoxic 

systemic arterial fibroblast cells.  This is in keeping with the lack of proliferative 

response to hypoxic stimuli seen in this cell type.  However our investigation of Smad 

signalling in hypoxic pulmonary artery fibroblasts has led to the surprise discovery 

that Smad signalling is upregulated in human systemic arterial fibroblast cells grown 

under conditions of both normoxia and acute hypoxia when compared to human 

pulmonary arterial fibroblasts grown under identical conditions.  The increase in 

Smad 1, 5 and 8 phosphorylation in human systemic arterial fibroblast cells grown 

under hypoxic conditions was even more marked compared to identical cells grown in 

normoxic conditions.  This increase was further augmented by the addition of 5% 

serum.   
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We were not able to demonstrate any differential expression of whole Smad 6 and 7 

in either cell type under any growth condition investigated.  We were unable to 

examine the potential effects of phosphorylated Smad 6 and 7 in these cells because at 

the time of experimentation primary antibodies did not exist for these proteins and 

previous attempts to transfect these cells with active proteins via an adenoviral vector 

had proved unsuccessful resulting in premature cell death.  There appeared to be no 

alteration in expression of phosphorylated Smad 2 (a TGFβ associated R-Smad) in 

either cell type under either growth condition.  This suggests that phospho-Smad 2 

does not have an active role to play in human pulmonary or systemic arterial 

fibroblast behaviour in response to acute hypoxia. 

 

Our findings concur with work performed by Jeffrey et al (2005), who found that in 

whole fetal lung fibroblast cells BMP4 stimulation resulted in a reduction in 

proliferation which was associated with increased phospho Smad 1 expression.  In 

this model phospho Smad 1-mediated fibroblast growth inhibition was associated with 

increases in p38 MAPK, JNK and ERK 1/2 expression whereas in our adult arterial 

fibroblast hypoxic model increases in these MAPKs – both stress and classical - were 

associated with cellular proliferation in pulmonary arterial fibroblasts only.     There is 

a significant body of work examining the effects of hypoxia on BMP/BMPR/Smad 

signalling but it is largely based on murine models where it is easier to modify the 

underlying genotype in order to investigate specific components of the 

BMP/BMPR/Smad signalling cascade. 

 

The mouse models so far investigated are either haploinsufficient for the BMPR2 

receptor (Beppu et al, 2004; Jeffery et al, 2005; Long et al, 2006) or express a 

dominant negative BMPR2 (West et al, 2004; Young et al, 2006) or are heterozygous 
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for BMP4 (Frank et al, 2005).  Although these investigators examine the effects of 

disordered BMP/BMPR/Smad signalling on vascular smooth muscle cells or 

endothelial cells under hypoxic conditions, some parallels can be drawn between 

these models and the hypoxic human arterial fibroblast model.  Frank et al (2005) 

found that Smad 1, 5 and 8 expression was reduced in VSMC cultured from mice 

heterozygous for BMP4 when exposed to chronic hypoxia (4 weeks at 10% oxygen) 

in comparison to wild-type controls.  The reduction in Smad 1, 5 and 8 was associated 

with less right ventricular hypertrophy and a reduced number of muscularised arteries 

in heterozygotes.  These investigators demonstrated that BMP4 secretion from 

endothelial cells from BMP4+/- animals was reduced following hypoxic exposure but 

that there was increased BMP2 secretion from these cells in comparison to wild-type 

controls.  Beppu et al (2004) also demonstrated reduced Smad 1, 5 and 8 expression 

in a haploinsufficient mouse model following 3 weeks exposure to 10% oxygen 

compared to wild-type controls.  They showed that while Smad 1, 5 and 8 

phosphorylation did not differ between wild type and BMPR2+/- animals at base-line 

there was a significant downregulation of BMPR2 associated Smads 1, 5 and 8 at 3 

weeks.  This was associated with attenuated vessel remodelling at 3 weeks compared 

to controls.  Neither of these models demonstrated the spontaneous development of 

pulmonary arterial hypertension under normoxia.   

 

The results from both Frank et al (2005) and Beppu et al (2004) appear to be counter-

intuitive. Following the discovery that BMPRII mutations appear to be the 

predominant genetic abnormality in patients with FPAH (Cogan et al, 2006), that 

BMPR2 expression is reduced in patients with PPH (Atkinson et al, 2002) and that 

BMPRII mutations are associated with disordered BMP/BMPR2/Smad signalling – in 

particular with an absolute reduction in Smad 1 expression (Rudarakanchana et al, 
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2002; Yang et al, 2005), it seems strange that animals which demonstrate disordered 

BMP/BMPR2/Smad signalling should show less right ventricular remodelling and 

less muscularisation of the pulmonary vasculature to chronic hypoxic exposure.  In 

comparison to Frank et al (2005) and Beppu et al (2004), West et al (2004) 

demonstrated the development of spontaneous pulmonary hypertension without the 

additional hypoxic stimulus, in a mouse model expressing a dominant negative 

BMPR2.  They demonstrated the presence of mutated BMPR2 in both pulmonary and 

systemic vasculature using immunohistochemistry but only morphological changes 

associated with hypoxic PAH in the pulmonary and not systemic circulations.  This 

underlines the functional differences between the two circulations despite their 

identical genotype.  West et al (2004) demonstrated that there was a significant 

increase in right ventricular weight and in right ventricular systolic pressure in 

comparison to wild-type controls under normoxic conditions and that these 

differences were further enhanced by mild hypoxia (PO2 ~ 75 – 80 mmHg). 

 

In contrast, work from other laboratories has not shown reduced Smad 1, 5 and 8 

expression on exposure to hypoxia.  Long et al (2006) demonstrated that Smad 1 and 

5 expression was increased in VSMC from both wild type mice and mice 

heterozygote for BMPRII following hypoxic exposure.  They also demonstrated that 

Smad 1 and 5 expression was reduced as a result of hypoxia plus infused 5HT that 

was associated with an increase in VSMC proliferation in BMPR2+/- mice but not 

wild-type controls.  The increased proliferation could be inhibited by the addition of 

ketanserin (a 5HT2A receptor antagonist) but not by 5HT2B or 5HTT inhibitors.  This 

is in keeping with previous work demonstrating a link between PAH and 5HT (Welsh 

et al, 2004).  Takahashi et al (2006) demonstrated no change in Smad 1, 5 and 8 

expression in VSMC in a chronically hypoxic rat model without disordered 
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BMP/BMPR2/Smad signalling following 21 days of hypoxic exposure when 

compared to normoxic controls.  These investigators found a transient increase in p38 

MAPK expression at day 0.5 – 3 that then fell to below control levels at day 7 – 21.  

This is in contrast to work from the SPVU laboratory that has demonstrated 

constitutive activation in p38 MAPK activation in pulmonary arterial fibroblasts 

following chronic hypoxic exposure in a rat model (Welsh et al, 2001).    

 

Meaningful comparison between disparate models is difficult.  There are significant 

variations in the results obtained from mice genetically engineered to express 

dysfunctional BMP/BMPR2/Smad signalling.  The dominant negative BMPR2 model 

used by West et al (2004) appeared to develop pulmonary hypertension spontaneously 

without any additional stimulus.  Mice heterozygote for BMPRII, appeared either to 

display reduced or enhanced Smad 1, 5 and 8 phosphorylation to hypoxic exposure 

(Beppu et al, 2004; Long et al, 2006) and mice heterozygote for BMP4 appeared to 

show reduced Smad 1, 5 and 8 signalling on exposure to hypoxia (Frank et al, 2005).   

 

Yang et al (2005) demonstrated that pulmonary artery SMC taken from patients with 

PPH are deficient in BMP/BMPR2 Smad signalling – specifically Smad 1 – in 

addition to this they found that VSMC cultured from proximal and distal pulmonary 

arteries demonstrated divergent behaviour to BMP4 stimulation.  This work was 

performed on the background of altered TGFβ and BMP signalling in SMC cultured 

from proximal pulmonary arteries taken from patients with IPH.  Morrell et al (2001) 

found that proximal PASMC taken from IPH patients proliferated to TGFβ 

stimulation – not a known ligand for BMPR2 – in comparison with similar cells 

cultured from patients with secondary PAH.  These investigators also found that 
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BMP4 was not able to inhibit proximal VSMC proliferation in IPH patients compared 

to identical cells cultured from patients with secondary PAH suggesting a wider 

dysfunction in TGFβ superfamily signalling.  This has been confirmed by Yu et al 

(2005) who found that disrupted BMPR signalling in VSMC cultured from mice 

haploinsufficient for BMPRII, resulted in a net gain of function in TGFβ superfamily 

receptors Akt2/3 that do not normally act as receptors for BMP-mediated signalling.  

These investigators found that consistent with a haploinsufficient genotype, cells 

expressed approximately half the number of BMPR2 receptors seen in wild-type cells.  

In addition they were further able to modify the genotype of these cells so that 

BMPR2 was not expressed at all.  Despite the absence of BMPR2 they were able to 

demonstrate Smad 1, 5 and 8 phosphorylation but at 30 –50% of wild-type level, 

implying that there exist alternative signalling mechanisms for BMP signal 

transduction.  In this model Smad activation occurred preferentially via BMP 6 and 7 

via ActR2a and was associated with increased p38 MAPK phosphorylation.  

Signalling was not found to be a result of residual BMPR or mutant BMPR, neither 

was it associated with alterations in inhibitory Smad 6 and 7 expression.  Wild-type 

cells did not transduce BMP signal in this manner. 

 

This concurs with work by Nohe et al (2002; 2004) that examines the interaction of 

BMPR 1 and 2 at the cell membrane surface.  As previously discussed receptor 

oligomerisation at the cell membrane appears to dictate the intracellular signalling 

cascade activated by BMP ligand.  Ligand stimulation of preformed heterodimers of 

BMPR1 and 2 transduce signal via Smad signalling cascade whereas ligand that binds 

an individual receptor prior to forming a hetero-oligomer activates the p38 MAPK 

cascade (Nohe et al, 2002; Nohe et al, 2004).   The majority of BMPR exist as 
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heteroligomers allowing preferential Smad activation whereas TGFβ receptors exist 

as homo-oligomers (Gilboa et al, 2000).  Hetero-oligomerization of BMPR appears to 

be dependent on a functional C chain – therefore BMPR2 mutants without a 

functional kinase domain are unable to form hetero-oligmers with BMPR1a or 1b, 

again allowing preferential p38 MAPK signalling.  In addition the presence of 

BMPR2 affects the dispersal of BMPR1 at the membrane surface with BMPR1 being 

widely dispersed without ligand stimulation of BMPR2 (Nohe et al, 2003).  This is 

significant because many of the BMPRII mutations identified in FPAH involve a 

dysfunctional or truncated kinase domain (Nishihara et al, 2002; Rudarakanchana et 

al, 2002) and because much of the work examining the effects of dysfunctional 

BMPR2 signalling has identified upregulation of p38 MAPK in a variety of 

experimental models and cell types (Jeffery et al, 2005; Takahashi et al, 2005; Yang 

et al, 2005; Yu et al, 2005).  In addition co-activation of both Smad and p38 MAPK 

signalling pathways by BMP ligand has been observed in limb bud development 

(Zuzarte-Luis et al, 2004). 

 

In the hypoxic human fibroblast model we have also identified a link between Smad 

1, 5 and 8 signalling and p38 MAPK in pulmonary arterial fibroblasts.  We have 

demonstrated that p38 MAPK appears to influence the expression of Smad 1, 5 and 8 

in these cells under normoxic conditions in that preincubation with SB203580, a 

specific p38 MAPK inhibitor, was able to partially abrogate Smad 1, 5 and 8 

phosphorylation.  So-called classic MAPKs ERK 1/2 are known to inhibit Smad 

4/Smads 2/3 nuclear translocation by binding to the Smad 4 linker region between 

MH1 and MH2 domains (Kretzschmar et al, 1999).  Brown et al (1999) have also 

demonstrated that ERK1/2 can also prevent Smad4/Smad 1 nuclear translocation in an 

endothelial cell model.  There is also a body of work that demonstrates significant 
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cross-talk between p38 MAPK and Smad signalling.   Noth et al (2003) show that p38 

MAPK activation is required for Smad 1 phosphorylation and subsequent nuclear 

translocation in a human osteoclast model.  Inhibition of p38 MAPK blocked BMP2 

mediated signal transduction.  TGFβ signalling is known to cause simultaneous 

activation of Smad signalling and early p38 MAPK phosphorylation via a Smad-

independent mechanism through TAK-1 (Horowitz et al, 2004).  In addition 

Takakawa et al (2002) have also demonstrated late-phase activation of p38 MAPK by 

TGFβ via GADD45β protein in a Smad-dependent fashion in a human pancreatic cell 

model. There is also evidence that p38 MAPK is involved in the regulation of the 

recently discovered Smad phosphatases (Knockaert et al, 2006; Sapkota et al, 2006), 

increasing Smad 4 half-life and increasing Smad 4/R Smad mediated gene product 

transcription (Ohshima and Shimotohno, 2003).  It therefore appears that far from 

being a comparatively simple choice between preferential Smad and p38 MAPK 

signal transduction based on receptor conformation at the cell surface membrane 

(Gilboa et al, 2000; Nohe et al, 2002; Nohe et al, 2003), p38 MAPK regulation of 

Smad-mediated intracellular signalling appears to occur at many different levels.  In 

addition the influence of Smad signalling cascades on p38 MAPK and vice versa 

cannot be easily predicted and are strongly dependent on cell type and the sequence in 

which the two cascades coincide.  

 

In our model it appears that Smad expression is increased in HMAF in hypoxic 

conditions – acting as a break on cellular proliferation - while in HPAF Smad 

signalling appears to be reduced allowing a more permissively proliferative 

phenotype.  The reduced expression of BMP related Smads 1, 5 and 8 in HPAF cells 
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is synchronous with upregulation of p38 MAPK.  This would agree with accepted 

roles for BMP mediated signalling in mesenchymal tissue  (figure 5.3). 
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Figure 5.3: Summary of BMP/BMPR/Smad signalling in human pulmonary and 

systemic arterial fibroblasts in hypoxic growth conditions Ligand binds BMPR2 at 

the cell surface membrane enabling the formation of a BMPR1/2 complex.  This 

results in the activation of downstream Smad 1, 5 and 8 phosphorylation with 

subsequent signal transduction to the nucleus and upregulation of relevant gene 

products by transcription with the aid of co-activators and co-repressors and later 

translation to new cellular protein.  In a human systemic arterial model, Smad 1, 5 and 

8 phosphorylation is associated with an anti-proliferative phenotype, whereas in the 

human pulmonary arterial fibroblast it is associated with a pro-proliferative 

phenotype. 
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Figure 5.3: Summary of BMP/BMPR/Smad signalling in human pulmonary and 

systemic arterial fibroblasts in hypoxic growth conditions 
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Chapter 6: 

Discussion – Thesis: 

 

6.1. Human pulmonary arterial fibroblasts proliferate to acute hypoxic 

exposure whereas systemic arterial fibroblasts do not. 

 

The hypothesis underlying this project is that significant differences exist between the 

pulmonary and systemic arterial circulations in terms of their response to hypoxia.       

Macroscopically Von Euler and Liljestrand (1946) demonstrated that the pulmonary 

circulation vasoconstricts, while Wagner and Mitzner (1988) showed that the 

systemic circulation vasodilatates, to acute hypoxic exposure, in cat and dog models 

respectively.  Histologically Meyrick and Reid (1979; 1980) demonstrated that 

chronic hypoxic exposure resulted in significant structural changes in the pulmonary 

arterial vessel wall in a rat model.  These changes were not confined to the intima or 

media but involved all three layers of the vessel wall – with the first and most 

significant changes being witnessed in the adventitial layer. The changes in this 

compartment were not completely reversible on re-exposure to a normoxic 

environment unlike those in the media and intima.   

 

Previous studies from the SPVU laboratory have established fundamental differences 

in arterial adventitial fibroblast proliferative behaviour to hypoxic exposure in a 

number of animal models under conditions of both acute and chronic hypoxia.  Welsh 

et al (1998) established that pulmonary arterial fibroblasts from an adult bovine model 

proliferated to acute hypoxic exposure whereas mesenteric arterial fibroblasts did not.  

Similar findings were noted in an adult rat model to acute hypoxic exposure (Welsh et 
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al, 2006).  We wished to establish whether these findings could be reproduced in an 

adult human model.    

 

Our work has demonstrated that in an adult human model, pulmonary arterial 

fibroblasts preferentially proliferate to acute hypoxic exposure whereas systemic 

arterial fibroblasts do not – as assessed by both cell counts and [3H]Thymidine 

uptake; this work has been confirmed by other investigators in an adult human model.  

Krick et al (2005) found that pulmonary arterial fibroblasts cultured from small 

vessels (< 1mm diameter) proliferated vigorously to 1% oxygen when compared to 

cells taken from renal arteries of similar generation.  They found that cells taken from 

systemic arteries showed an increased rate of apoptosis when cultured under identical 

conditions.  Das et al (2001) found similar proliferative responses in pulmonary 

arterial fibroblasts cultured from a neonatal calf model of acute hypoxic exposure. 

 

We have also established that hypoxia-mediated proliferation in human pulmonary 

arterial fibroblasts occurred without the need for additional serum stimulation.  This 

finding has also been demonstrated by our group in an adult bovine model (Welsh et 

al, 1998).  This finding differs from those of other investigators who have been able 

to demonstrate increased BrdU uptake (a marker for DNA synthesis and therefore cell 

replication) in pulmonary arterial fibroblasts to acute hypoxic exposure, but have not 

been able to demonstrate increased cell counts (Short et al, 2005).  This work was 

performed in a juvenile calf model.  The differences are not easily explainable.  Work 

from this same laboratory has shown that pulmonary arterial fibroblasts from fetal and 

neonatal calves proliferate more vigorously to hypoxic exposure than similar cells 

from adult cows (Das et al, 1997).  They have also demonstrated that pulmonary 
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arterial fibroblasts taken from neonatal calves exposed to chronic hypoxia from birth 

show an enhanced proliferative response when cultured in normoxic conditions but 

that this proliferative response can be augmented by further hypoxic exposure (Das et 

al, 2000).  Using a chronic hypoxic adult rat model, Welsh et al (2001) were only able 

to demonstrate increased proliferation under normoxic conditions; they were not able 

to show any increased proliferative potential to further hypoxic exposure.  

Investigators from Denver demonstrated that patterns of PKC isosyme expression 

altered with increasing age and with chronic hypoxic exposure in pulmonary arterial 

smooth muscle cells cultured from fetal and neonatal calves (Xu et al, 1997). The 

same investigators also noted varying PKC expression patterns in adventitial 

fibroblasts in neonatal and fetal calves (Das et al, 1997). They speculated that 

developmental changes in hypoxia-responsive PKC isosymes might explain the 

varying behaviour of the maturing pulmonary circulation.   

 

Overall, it appears that there is a degree of plasticity in the fetal and neonatal 

mammalian pulmonary circulation that is not seen in the adult, which makes our 

finding that adult pulmonary arterial fibroblasts proliferate to hypoxic exposure alone 

more puzzling.  A possible explanation is that cells cultured in our laboratory were 

taken from adult cattle and humans living at sea level (Glasgow, UK).  It is known 

that cattle develop severe pulmonary arterial hypertension on hypoxic exposure 

(Tucker and Rhodes, 2001).  The Denver group consistently use Holstein calves 

sourced from Fort Collins, Colorado ~ 1,540 metres above sea level (Das et al, 2002; 

Frid et al, 2006).  It is possible that this may have affected the responsiveness of 

pulmonary arterial fibroblast cultured from these animals to hypoxia alone.   
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In summary we have demonstrated that adult human pulmonary arterial fibroblasts 

proliferate to acute hypoxic exposure whereas systemic arterial fibroblasts do not.  

We have now demonstrated this finding in adult bovine, rat and now human models 

of acute hypoxia.  These findings have been confirmed by other investigators: in not 

only an adult human but also, in neonatal and juvenile bovine models.  In addition we 

have also demonstrated that hypoxia-mediated proliferation in both adult bovine and 

human models can occur without serum stimulation (see figure 6.1). 

 

6.2.   Hypoxia-mediated proliferation in human pulmonary arterial 

fibroblasts is dependent on p38 MAPK activity and associated with HIF1α 

activity. 

 

Work from the SPVU laboratory has demonstrated that pulmonary arterial fibroblast 

proliferation to hypoxia is associated with increased mitogen activated protein kinase 

(MAPK) activity.  Scott et al (1998) demonstrated that in an adult bovine model 

pulmonary arterial fibroblast proliferation was linked with increased JNK and p38 

MAPK activity but not p44/p42 – ERK1/2 MAPK activity.  In a chronically hypoxic 

adult rat model, Welsh et al (2001) demonstrated that chronic hypoxic exposure 

resulted in constitutive activation of p38 MAPK in pulmonary arterial fibroblasts 

under normoxic growth conditions – suggestive that these cells had in some way been 

phenotypically altered by prolonged hypoxic exposure.  Interestingly Welsh et al  

(2001) showed that chronic hypoxic exposure resulted in constitutive activation of 

p44/p42 – ERK1/2 MAPK in both pulmonary and systemic arterial fibroblasts in a rat 

model.  They speculated that p44/p42 –ERK1/2 might be linked with cell hypertrophy  
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Figure 6.1 Summary of MAPK and BMPR signalling in human pulmonary and 

systemic arterial fibroblast cells under hypoxic growth conditions.  The G protein 

Coupled Receptor (GPCR), the Tyrosine Kinase Receptor (TKR) and BMPR/Smad 

signalling cascades are shown alongside each other.  Relevant ligand binds the 

membrane bound receptor resulting in conformational change of the inner 

membranous portion of the receptor.  Second messengers are either activated via G 

protein in the case of GPCR or via autophosphorylation in the case of TKR or 

phosphorylation of BMPR1 by BMPR2.  Signal transduction is effected by 

downstream signalling cascades via Ras, MEK and MAPKs or via Smads resulting in 

the upregulation, transcription and translation of relevant gene products and may 

involve the assistance of co-activators or co-repressors in the case of Smad mediated 

signalling. 
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Figure 6.1: Summary of MAPK and BMPR signalling in human pulmonary and 

systemic arterial fibroblast cells under hypoxic growth conditions 
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rather than proliferative responses as the p44/p42 – ERK 1/2 MAPK inhibitor U0126 

had no effect on pulmonary arterial fibroblast proliferation in this model.   

 

Recent debate has focused on the origin of cells within the pulmonary vascular wall 

exposed to chronic hypoxia – there is a body of evidence to suggest that circulating 

mononuclear cells (MNC) originating within the bone marrow may make a significant 

contribution to pulmonary vascular remodelling. Davie et al (2004) found increased 

vasa vasorum formation in the resistance vessels of neonatal calves exposed to 

chronic hypoxia.  They suggested that this allowed access by mitogens and MNC to 

the adventitial layer permitting an environment enabling further remodelling.  

Evidence to consolidate this view was provided by Hayashida et al (2005) in a 

lethally irradiated mouse model.  These investigators demonstrated that radiolabelled 

cells accumulated within the pulmonary circulation of mice whose bone marrow had 

been replaced with labelled cells.   This response was only noted in the pulmonary 

circulation and not in any other organ in the body.  Meanwhile Frid et al (2005, 2006) 

demonstrated that circulating MNC made up approximately one third of proliferating 

cells within the adventitia of chronically hypoxic weanling rats and neonatal calves.  

Whether proliferating pulmonary arterial fibroblasts to chronic hypoxia originate 

within the bone marrow or in the local expansion of a pro-proliferative cell type 

remains uncertain.  Work from this laboratory and from Denver has demonstrated that 

p38 MAPK is consistently involved with proliferative responses in both adult and 

neonatal mammalian models (Scott et al, 1998; Welsh et al, 2001; Das et al, 2001; 

Welsh et al, 2006).  
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In an adult human model we have demonstrated that acute hypoxic exposure results in 

p38 and p44/42 – ERK 1/2 MAPK activation in pulmonary arterial fibroblasts. P44/42 

MAPK is also activated in systemic arterial fibroblasts grown under hypoxic 

conditions but this does not appear to have any modifying effect on systemic arterial 

fibroblast proliferation.   Hypoxia-mediated proliferation in human pulmonary arterial 

fibroblasts is dependent on p38 MAPK activation as pre-incubation of these cells with 

SB203580 – a specific p38 MAPK α and β isoform inhibitor – was able to abrogate 

the proliferative response.  Pre-incubation with U0126 – a p44/p42 – ERK 1/2 MAPK 

activity inhibitor – had no effect on human pulmonary arterial fibroblast behaviour to 

acute hypoxic exposure.  We did not find any evidence of JNK MAPK activity in 

either pulmonary or systemic arterial fibroblasts under either hypoxic or normoxic 

growth conditions.   

 

In a human model, p38 MAPK expression in hypoxic pulmonary arterial fibroblasts 

appeared to be bi-phasic in nature with peaks of activity at t = 6 hours and 16 hours.   

This agrees with previous work from the SPVU laboratory using an adult bovine 

model (Scott et al, 1998) and also from other investigators using a neonatal bovine 

model (Das et al, 2001).  By using re-oxygenation techniques, we have established 

that in an adult human model the second peak of p38 MAPK activity is responsible 

for pulmonary arterial fibroblast proliferation to acute hypoxic exposure, as re-

oxygenation after 6 hours failed to elicit the same proliferative response.   This again 

concurs with previous work from the SPVU laboratory using an adult bovine model 

(Scott et al, 1998).  The significance of the first peak of p38 MAPK activity is not 

certain but may be associated with HIF1α activity – the second peak appears to 

coincide with DNA replication in a fibroblast model, although we have not been able 



 210

to establish a definite link between p38 MAPK activity and cell cycle progression in a 

adult rat model of acute hypoxia (Welsh et al, 2006).  Our findings in the adult human 

model show some variance with those from other adult animal models used in the 

SPVU laboratory.   These results are summarised in table 1.2. 

 

Scott et al (1998) demonstrated that in an adult bovine model of acute hypoxic 

exposure both JNK and p38 MAPK were involved in hypoxia-mediated pulmonary 

arterial fibroblast proliferation.  In all other models so far investigated by the SPVU 

laboratory only p38 MAPK activity appears to be consistently associated with 

pulmonary arterial fibroblast proliferation.  This is not in agreement with work from 

other investigators who found that p44/p42 – ERK 1/2, p38 and JNK MAPK activity 

were all required for hypoxia-mediated pulmonary arterial fibroblast proliferation in a 

neonatal bovine model (Das et al, 2001).  Pre-incubation with SB203580 was only 

able to partially abrogate the hypoxia-mediated proliferation seen in this model 

whereas pre-incubation with pertussis toxin – a Gαi/0 protein inhibitor – prevented 

pulmonary arterial fibroblast proliferation, implying central roles for JNK and 

p44/p42 – ERK1/2 MAPK in a neonatal bovine model which signal via this G protein.  

As previously discussed, these investigators noted varying patterns of PKC isosyme 

activity in pulmonary arterial smooth muscle cells and adventitial fibroblasts at 

different developmental stages (Das et al, 1997; Xu et al, 1997).  It seems likely that 

the differences in MAPK expression patterns to hypoxia are as a result not only of 

inter-species differences, but also of developmental stage.  The SPVU laboratory has 

used adult mammalian models exclusively and our work has demonstrated a 

consistent role for p38 MAPK activity in hypoxic pulmonary arterial fibroblast 

proliferation irrespective of species and duration of hypoxic exposure.   This suggests 
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Table 1.2 Summary of Scottish Pulmonary Vascular Unit findings: cross species 

differences in responses to hypoxia 

Species Fibroblast Proliferation 

to Hypoxia 

P38 

phosphorylation 

to hypoxia 

ERK 

phosphorylation 

to hypoxia 

JNK 

phosphorylation 

to hypoxia 

Pulmonary       YES          YES YES NO Human 

Systemic NO NO NO NO 

Pulmonary       YES          YES NO          YES Bovine 

Systemic NO NO NO NO 

Pulmonary       YES          YES YES NO Rat 

Systemic NO NO NO NO 

 

Table 1.2:  Summary of Pulmonary Vascular Unit findings: cross species 

differences in responses to hypoxia.  All three adult species so far investigated 

demonstrate pulmonary arterial fibroblast proliferation to hypoxic exposure whereas 

systemic arterial fibroblasts do not.  While there is a variable expression pattern for 

ERK and JNK MAPKs in adult human, bovine and rat models there is consistent 

activation of p38 MAPK associated with hypoxic pulmonary arterial fibroblast 

proliferation in all three adult models. 
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that certainly in the adult mammalian model, p38 MAPK activation is fundamental to 

pulmonary arterial fibroblast proliferation to hypoxia. 

 

There are four known isoforms of p38 MAPK: α, β, γ and δ.  Conrad et al (1999) 

demonstrated that hypoxic exposure resulted in activation of p38 MAPK α and γ 

isoforms in a human phaeochromocytoma (PC12) cell model.  Work from the SPVU 

laboratory has previously established a role for the ubiquitously expressed p38 MAPK 

α in pulmonary arterial fibroblast proliferation to acute hypoxic exposure in an adult 

rat model (Welsh et al, 2006).   Here we have confirmed a role for p38 MAPK α 

activation in an adult human model of acute hypoxic exposure using immunophoresis 

techniques.  p38 MAPK α appears to be crucial for vascular development: mice null 

for p38 MAPK α die in utero as a result of significant vascular anomalies (Emerling 

et al, 2005); a similar phenotype is seen in mice null for HIF1α (Yu et al, 1999).  p38 

MAPK α also appears to be required for HIF1α stabilisation under hypoxic 

conditions – as fibroblasts cultured from mice null for p38 MAPK α are unable to 

stabilise HIF1α to hypoxic exposure but can be rescued by adenoviral transfection 

with p38 MAPK α.  In addition fibroblasts cultured with anisomycin (a known 

mitochondrial electron transport chain – ETC – complex III inhibitor) also prevented 

HIF1α stabilisation (Emerling et al, 2005).    

 

Here we have established a link between p38 MAPK α activity and HIF1 α in an 

adult human model of acute hypoxic exposure and have demonstrated that HIF1α 

activity was associated with p38 MAPK α activity.  We have also demonstrated that 

HIF1α activity in these cells could be completely abrogated by 6-hour pre-incubation 
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with SB203580 – a specific p38 MAPK α and β isoform inhibitor.  This concurs with 

work by other investigators who have established that SB203580 was also able to 

inhibit HIF1α activity in a Hep3B cell line (Sodhi et al, 2000).  The exact nature of 

the interaction between p38 MAPK α and HIF1α is not clear but may be linked to 

mitochondrial function in that Emerling et al (2005) were able to reproduce the 

effects of fibroblasts null for p38 MAPK α by the use of anisomycin – an electron 

transport chain (ETC) complex III inhibitor - in a murine model.  The association may 

also be an functional one: hypoxia-mediated proliferation in human pulmonary 

arterial fibroblasts is dependent on the second peak in p38 MAPK activity and it has 

been demonstrated that this second peak of p38 MAPK activity is synchronous with 

DNA synthesis in a fibroblast model (Scott et al, 1998).  The maximal inhibition of 

HIF1α by SB203580 at 6 hours suggests that both p38 MAPK and HIFα are required 

for hypoxia-mediated proliferative responses in human pulmonary arterial fibroblasts.  

 

Interestingly we demonstrated HIF1α activity in human pulmonary arterial fibroblasts 

alone and we were not able to demonstrate any HIF1α activity at all in human 

systemic arterial fibroblasts grown under hypoxic conditions.  The reason for this is 

not entirely clear given that HIF1α is rapidly stabilised under hypoxic conditions (Yu 

et al, 1998; Stroka et al, 2001).  Stroka et al (2001) demonstrated that HIF1α 

expression patterns showed significant variation in different organs and so it is 

reasonable to postulate that pulmonary arterial fibroblasts, normally exposed to low 

partial oxygen pressures of mixed venous blood, may only activate HIF1α at 

significantly lower PaO2 than might occur in other organs.  A possible explanation 

may lie in cellular diversity.  Mickelakis et al (2002) have demonstrated significant 

variability in mitochondrial respiration rate in cells taken from pulmonary and renal 
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arteries – with mitochondria from the pulmonary arteries exhibiting a lower 

respiratory rate both at base-line and on hypoxic exposure. They also noted that both 

hypoxia and proximal inhibitors of the mitochondrial ETC resulted in reduced 

production of activated oxygen species (AOS) and reduced K+ channel activity in 

pulmonary, but not in renal arteries; thus providing further evidence that significant 

signalling and metabolic differences exist between the two circulations.  In our work 

the preparation of cell lysates was not performed in a hypoxic environment, perhaps 

allowing for the oxygen-mediated degradation of active HIF1α by von Hippel Lindau 

protein (pVHL) and subsequent ubiquitinylation (see chapter 4).  There is still no 

adequate explanation for the absence of HIF1α in human systemic arterial fibroblasts 

grown in conditions of acute hypoxia but perhaps differences in baseline 

mitochondrial respiration may provide a partial explanation.   

 

In summary we have found that acute hypoxic exposure results in human pulmonary 

arterial fibroblast proliferation, which is associated with p44/p42 – ERK 1/2 MAPK 

activity, but which is dependent on p38 MAPK α activity.  p38 MAPK α activity 

appears to occur in a bi-phasic pattern with peaks of activity at t = 6 and 16 hours, the 

second of which is responsible for the hypoxia-mediated proliferation seen in these 

cells.  The second peak in p38 MAPK α activity is synchronous with HIF1α activity.   

We have also demonstrated that HIF1α activity can be abrogated by pre-incubation of 

human pulmonary arterial fibroblasts with SB203580 suggesting a strong mechanistic 

link between p38 MAPK α activation and HIF1α in a human model (see figure 6.1). 
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6.3.  Lack of proliferation of human systemic arterial fibroblasts to acute 

hypoxia is associated with increased Smad 1/5 and 8 activity. 

 

Familial pulmonary arterial hypertension is associated with mutations within the Bone 

Morphogenetic Protein Receptor II gene (BMPRII) in approximately 70% of cases 

(Cogan et al, 2006).  BMPR2 is a member of the Transforming Growth Factor β 

(TGFβ) receptor superfamily that appears to be ubiquitously expressed and whose 

effects are protean.  Atkinson et al (2002) have demonstrated that BMPR2 expression 

occurs predominantly in the intima and media of the human pulmonary artery – 

although some expression also occurs within the adventitia.   

 

An extensive body of work has established that BMPRII mutations found in FPAH 

are largely associated with a loss of function that results not only in reduced 

efficiency of intracellular signalling cascades associated with BMPR2 signal 

transduction (Rudarakanchana et al, 2002), but also extends to affect other 

components of TGFβ superfamily signalling (Morrell et al, 2001).  The effect of fully 

functional BMPR2 signalling results in a growth-inhibitory phenotype, whereas 

TGFβ-mediated signalling appears to be pro-proliferative in mesenchymal cells 

(Massague, 1990).   While the effects of BMPR2 signalling appear to vary with cell 

type, they also appear to vary within cell type.  Morrell et al (2001) demonstrated 

altered growth responses to BMP4 in pulmonary vascular smooth muscle cells in 

patients with FPAH compared to secondary causes of pulmonary hypertension with 

VSMC from resistance vessels in FPAH being resistant to the growth-inhibitory 

effects of BMP4.  This would therefore result in a permissively proliferative VSMC 
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phenotype perhaps explaining the medial expansion seen in the pulmonary resistance 

vessels of those with mutation positive FPAH. 

 

Given the association of BMPRII mutations with FPAH we wished to establish the 

contribution of BMPR2 mediated signalling in human pulmonary and systemic 

arterial fibroblast proliferation to acute hypoxia.  The SPVU laboratory has 

consistently demonstrated pulmonary arterial fibroblast proliferation to hypoxic 

exposure but has not managed to elicit any positive response from systemic arterial 

fibroblasts under similar growth conditions.  Here we have demonstrated that acute 

hypoxic exposure results in upregulation of phospho Smad1, 5 and 8 activity in 

human systemic arterial fibroblasts, which may suggest the active upregulation of a 

growth-inhibitory pathway in these cells.  We found that phospho Smad 1, 5 and 8 

activity was down regulated in hypoxic pulmonary arterial fibroblasts when compared 

to hypoxic systemic arterial fibroblasts grown under identical conditions; this would 

again suggest that BMPR2 – Smad signalling in arterial fibroblasts exerts a growth 

inhibitory influence.  To our knowledge this is the first demonstration of an active 

anti-proliferative response in human systemic arterial fibroblasts to hypoxic exposure.  

These findings are in keeping with work from Jeffrey et al (2005) who demonstrated 

that BMP4 stimulation of whole fetal lung fibroblasts resulted in growth inhibition in 

these cells associated with upregulation of phospho Smad 1.  However in this model 

whole lung fibroblast growth inhibition was associated with increased p38 MAPK 

activity together with JNK and p44/p42 – ERK 1/2 MAPK expression.  In contrast we 

have found that p44/p42 – ERK 1/2 MAPK expression is associated with proliferating 

human pulmonary arterial fibroblasts to hypoxia, but that the proliferative response is 

dependent on p38 MAPK activation.  The differences may be explained by the fact 
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that Jeffrey et al (2005) were using whole lung fibroblasts taken from a human fetal 

model whereas we used adult human pulmonary arterial fibroblasts.  We were not 

able to identify a role for phospho Smad 2 (predominantly a TGFβ-responsive Smad), 

nor for Smads 6 and 7  (inhibitory Smads for BMPR2 and TGFβ receptor signalling 

respectively) in either cell type under either growth condition. 

 

In a human model we have been able to demonstrate that pre-incubation with 

SB203580 – a specific p38 MAPKα and β - influences the relative expression of 

activated Smad 1, 5 and 8 in hypoxic human pulmonary arterial fibroblasts. There is a 

significant body of evidence which documents cross talk between p38 MAPK 

signalling and BMPR2-Smad signalling.  Nohe et al (2002; 2004) have documented 

that BMP receptor conformation at the cell membrane dictates the down-stream 

signalling cascade activated by BMP ligand.  In addition there appear to be several 

levels of control within the signal transduction cascade where MAPK and Smads 

influence each other.   Noth et al (2003) have demonstrated that p38 MAPK is 

required for Smad 1 phosphorylation and nuclear translocation in a human osteoclast 

model, a discovery which would be consistent with our finding that p38 MAPK 

inhibition appears to down-regulate phospho Smad 1, 5 and 8 in human pulmonary 

arterial fibroblasts in a hypoxic model. In addition there is also evidence of early 

activation of p38 MAPK by TGFβ via a Smad-independent cascade via TAK-1 

(Horowitz et al, 2004).  TGFβ is also able to activate p38 MAPK in a Smad-

dependent manner via its action on GADD45β (Takekawa et al, 2002).  In addition 

recent work from Upton et al (2008) also argues for an as-yet-to-be-identified 

membrane-bound protein – possibly similar to Noggin or BAMBI (see Chapter 1) - 
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which exerts a further level of control on the intracellular signalling cascade activated 

by BMP4.   

 

In summary we have shown that BMPR2 associated Smad 1, 5 and 8 activation is 

increased in hypoxic human systemic arterial fibroblasts, suggestive of the activation 

of an anti-proliferative pathway in these cells that is not associated with p38 MAPK 

activity.   In addition we have shown that in hypoxic pulmonary arterial fibroblasts 

phospho Smad 1, 5 and 8 expression is reduced – suggestive of the active down-

regulation of an anti-proliferative pathway - and can be further abrogated by pre-

incubation with SB203580.  This suggests that in systemic arterial fibroblasts Smad 1, 

5 and 8 activation occurs independent of p38 MAPK activation while in pulmonary 

arterial fibroblasts p38 MAPK activity augments Smad 1, 5 and 8 activation (see 

figure 6.1). 

 

6.4.   Limitations of study. 

 

In this work we have examined the behaviour of adult human pulmonary arterial 

fibroblasts to hypoxic exposure, using hypoxia-related pulmonary arterial 

hypertension as a proxy for pulmonary arterial hypertension proper.  Despite 

significant remodelling of all components of the pulmonary vascular wall to 

prolonged hypoxic exposure (Meyrick and Reid, 1979; 1980) pulmonary arterial 

hypertension developed as a result of hypoxia does not appear to demonstrate the 

typical plexigenic lesions seen in both FPAH and PH secondary to other causes.  In 

this respect the monocrotaline experimental model of pulmonary arterial hypertension 

is more accurately able to reproduce the histological changes expected with 
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pulmonary arterial hypertension.  The intravenous administration of monocrotaline in 

animal models has been shown to rapidly induce pulmonary arterial hypertension that 

is rapidly fatal and which is histologically consistent with PH (Yip et al, 2008).  

However because monocrotaline is highly toxic it can only be used in vivo in animal 

models.  Hypoxia is a useful model precisely because it can be applied to both in vitro 

and in vivo work, both in animals and in man, but it must be accepted that it does not 

accurately represent the pathology of FPAH. 

 

In this work we have used atmospheric partial pressure of oxygen (21 kPa ~ 

140mmHg) as a control in experiments to assess cellular proliferation and to quantify 

MAPK and Smad activation patterns.  It should be borne in mind that atmospheric 

PO2 is not truly representative of arterial PaO2 which in the pulmonary veins of a 

healthy adult would be in the region of 13.3 kPa ~ 100mmHg (allowing for the effects 

of humidification in the upper airways (saturated water vapour pressure of 6.2 kPa), 

the continuous exchange of CO2 for O2 at the alveolar membrane and the presence of 

a small physiological shunt).  The use of atmospheric PAO2 does not take into 

consideration that PO2 varies throughout the vasculature with normal venous PO2 

being in the range of 6 kPa ~ 40 mmHg and the average PaO2 within the renal cortex 

being within the region of 26 mmHg ~ 4 kPa (O’Connor et al, 2007).  Work from 

Moudgil et al (2005) demonstrates variable cellular mitochondrial respiration with 

pulmonary arteries showing significantly lower mitochondrial respiratory rates than 

mitochondria from renal arteries.  This suggests that cells within the human body are 

attuned to oxygen gradients that bear little resemblance to clinically accepted values 

for PaO2.   Stroka et al (2001) have shown that HIF1 α activation patterns vary 

significantly between different organs and within different mammalian species again 
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suggesting that accepted arterial PO2 values do not represent a true picture of organ 

oxygenation.  However, our use of 5% PO2 ~ 35 mmHg as a hypoxic model would 

represent significant arterial hypoxaemia in a pulmonary arterial model.  Grocott et al 

(2009) demonstrated that the PaO2 of climbers at 7100m ranged between 19.1 – 29.5 

mmHg ~ 2.55 – 3.93 kPa – demonstrating that the use of 5% PO2 ~ 35 mmHg for 

hypoxic cellular proliferation and enzyme activation assays is physiologically 

relevant.  In addition it is a model that has been utilised by other laboratories (Krick et 

al, 2005; Eul et al, 2006). 

 

There is brisk debate about the significance of pulmonary arterial hypertension 

associated with hypoxic lung disease.  PH seen in conjunction with hypoxic lung 

diseases such as chronic obstructive airways disease (COPD) is demonstrated to be 

typically mild (mean pulmonary arterial pressures > 20mmHg), and slowly 

progressive in those with mild/moderate airways obstruction in association with mild 

resting hypoxaemia (Chaouat et al, 2001; Kessler et al, 2001).  It is also poorly 

responsive to re-oxygenation (Naeije, 2005).  However hypoxia-associated pulmonary 

hypertension secondary to altitude exposure can result in significant elevations in 

pulmonary arterial pressures that approach those seen in FPAH but which are more 

readily reversible with correction of altitude and oxygen therapy (Groves et al, 1987; 

Morrell et al, 1999; Aldashev et al, 2002; Dinh-Xuan et al, 2002; Naeije, 2005). 

Moreover it is difficult to assess contribution and extent of pulmonary hypertension in 

patients with severe COPD, as these individuals are often too unstable for invasive 

investigation.  Vizza et al (1998) found that right ventricular failure (defined as an 

ejection fraction < 45% on transthoracic echo) in isolation, was relatively common in 

those individuals referred for lung transplantation as a result of COPD, cystic fibrosis, 
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interstitial lung disease or pulmonary arterial hypertension.  Significant elevations of 

pulmonary arterial pressure were noted in 59% of those patients with COPD referred 

for lung transplantation.  Left ventricular systolic dysfunction was noted in only 6.5% 

of all patients investigated.  Scharf et al (2002) found a high prevalence of pulmonary 

arterial hypertension (found on right heart catheter) in patients with severe COPD 

(average FEV1 ~ 27% predicted).  Meanwhile Raeside et al (2002) demonstrated that 

patients with resting hypoxaemia secondary to COPD showed significant elevations 

of pulmonary arterial pressures overnight without the benefit of supplemental oxygen 

using ambulatory right heart data.  

 

The relative contribution that hypoxic pulmonary arterial hypertension may make to 

the underlying lung function of patients with COPD is not quantifiable, but 

significantly patients referred for lung volume reduction surgery  (LVRS) - typically 

displaying severe air flow limitation, initially demonstrate improved total lung 

capacity (TLC) values post-operatively consistent with significant reduction in 

dynamic hyperinflation.  The failure of these patients to improve in terms of their 

functional status despite significant improvements in lung function suggests that while 

LVRS may improve pulmonary function, the surgery itself does little to affect the 

underlying vascular changes commensurate with the degree of underlying lung 

disease and resting hypoxaemia (Haniuda et al, 2003; Higenbottam, 2005).  It can 

therefore be argued that despite its limitations the hypoxic model of pulmonary 

arterial hypertension is the most common and physiologically relevant model.  It is 

applicable to other disease states besides PH, can be investigated in vitro and in vivo, 

and most importantly, can be investigated in vivo in a human model. 
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Pulmonary vascular tissue used for explant and primary cell culture techniques in this 

work was taken from patients undergoing lobectomy for the treatment of lung 

carcinoma.  The systemic vessels were harvested from the left internal mammary 

arteries of patients under-going coronary artery by-pass grafting as previously noted 

the vessel calibre was consistent with previously utilised systemic controls used by 

the SPVU laboratory.  In the case of the pulmonary vessels, the vascular tissue was 

sampled at a distance from the site of the primary tumour in those patients with lung 

carcinoma and for the most part consisted of inter-lobar arteries.  The source of our 

tissue may have influenced the results of our work in several ways: in terms of the 

generation of pulmonary vessel investigated and the potential influence of cigarette 

smoking on fibroblast cell behaviour to hypoxic cell culture. 

 

Pulmonary arterial hypertension is a disease condition that predominantly affects 

smaller resistance arteries, arteries that become increasingly muscularised with 

disease progression with additional adventitial and intima thickening.  Our 

experimental work has been based on adventitial fibroblasts cultured primarily from 

conduit vessels.  There is a significant body of work that documents the difference in 

behaviour of conduit and resistance vessels to hypoxic exposure: resistance vessels 

typically exhibit sustained vasoconstriction to hypoxia whereas conduit vessels show 

an initial constrictive response followed by vasodilatation (Archer et al, 1986; Franco-

Obregon and Lopez-Barneo, 1996).  In addition Meyrick and Reid (1979; 1980) 

demonstrated that conduit and resistance vessels displayed different histological 

responses to prolonged hypoxic exposure – with adventitial expansion predominating 

in conduit vessels and medial and intimal expansion in resistance vessels.  It has been 

shown that the distribution of voltage-sensitive K+ channels varies throughout the 
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vascular tree with a high concentration of oxygen-sensitive Kv 1.2, 1.5 and 2.1 channels 

in resistance compared to conduit vessels that may partially explain the differences in 

their relative behaviours to hypoxic exposure (Platoshyn et al, 2004; Weir and 

Olschewski, 2006).  Yang et al (2005) have demonstrated that vascular smooth 

muscle cells taken from resistance vessels in IPAH patients are less responsive to the 

growth-inhibitory effects of BMP4 stimulation when compared to patients with 

secondary PAH or to controls.  This suggests that vessel generation may exert a 

significant effect on the behaviour to varying stimuli.   The use of pulmonary arterial 

fibroblasts cells cultured from human conduit vessels may therefore not provide an 

accurate picture of hypoxic pulmonary arterial fibroblasts cultured from resistance 

vessels.  In defence of our work – other investigators have found that pulmonary 

arterial fibroblasts cultured from small vessels (diameter < 1mm) also proliferate to 

hypoxic exposure (Eul et al, 2006).   

 

As a result of the nature of the surgeries, most of the vessels sampled were retrieved 

from smokers.  There is documentary evidence to suggest that smoking in isolation 

may have a significant effect on the pulmonary vasculature.  Santos et al (2002) found 

that patients with COPD and smokers without evidence of airflow limitation 

demonstrated significant pulmonary arterial intimal thickening in comparison to non-

smokers.  Cigarette smoke is known to be toxic to pulmonary vascular endothelial 

cells and airway epithelial cells, with cigarette smokers having lower levels of eNOS, 

higher levels of circulating endothelin-1, reduced vasoreactivity to hypoxic exposure 

and lower levels of circulating epithelial progenitor cells (EPC) (Yamakami et al, 

1997; Santos et al, 2002; Kondo et al, 2004).  It is not known whether the reduction in 

circulating EPC represents an absolute depletion of these cells in cigarette smokers or 
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increased margination of these cells in order to repair vascular damage.     It has not 

been possible in this work to control for these potential influences on primary 

adventitial fibroblast culture.  

 

6.5. Future work 

 

This work has established that the pro-proliferative changes to acute hypoxia 

previously demonstrated by the SPVU laboratory in adult bovine and rat pulmonary 

arterial fibroblasts are also seen in an adult human model.  In addition we have 

identified a consistent role for p38 MAPK across all three adult mammalian species 

so far investigated (see table 1.2).    

 

With this in mind therefore, a natural extension of this work would be to establish 

whether p38 MAPK was involved in pulmonary arterial adventitial fibroblast 

proliferation in a patient population – those with FPAH both with and without, 

identified BMPRII mutations, and those with pulmonary arterial hypertension 

secondary to other disease processes.   In addition, given our finding of a distinct 

temporal relationship between HIF1α and p38 MAPK activation in hypoxic human 

pulmonary arterial fibroblasts it would be of interest to examine whether the same 

relationship existed in a patient population and to see whether, as in the work from the 

Geissen laboratory, HIF2α is the predominantly important isoform for PH-related 

pulmonary arterial fibroblast proliferation.   

 

The finding that mice heterozygous for HIF1α develop only minimal pulmonary 

arterial remodelling to hypoxic exposure and that mice heterozygote for HIF2α 
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appear to be completely protected from hypoxia-induced pulmonary arterial 

hypertension and right ventricular impairment (Yu et al, 1999; Brusselmans et al, 

2003), suggests a central role for HIF isoforms in the adaptation of the pulmonary 

circulation to prolonged hypoxia.  It appears that the HIF2α isoform is predominantly 

expressed in the lung, while HIF1α is more ubiquitously expressed (Eul et al, 2006).  

Closer examination of HIF isoform function reveals that HIF1α and HIF2α are 

approximately 48% homologous and are able to regulate the transcription of some of 

the same genes with HRE.  However their expression patterns vary throughout the 

developmental process with HIF2α being crucial for embryological vascular epithelial 

cell development.  Mice null for HIF2α die in utero as a result of gross vascular 

abnormalities (Hu et al, 2003).  HIF1α appears to be responsible for the upregulation 

of proteins involved with glycolysis that would explain its importance in the response 

to hypoxia.  HIF2α appears to be responsible for the upregulation of proteins involved 

in the response to hypoglycaemia (Brusselmans et al, 2001; Carroll and Ashcroft, 

2006).  In addition to finding HIF1α activation to hypoxic exposure, Eul et al (2006) 

have also noted a role for HIF2α in human pulmonary arterial fibroblasts cultured in 

hypoxic conditions.  These investigators found that hypoxia-mediated proliferation in 

human pulmonary arterial fibroblasts was dependent on HIF2α with HIF1α appearing 

to exert an influence over fibroblast migration under hypoxic conditions (Eul et al, 

2006).  An examination of HIF1α and HIF2α activation patterns and function in a 

patient model of PH – particularly in view of the finding that HIF2α heterozygote 

mice are completely protected from hypoxia-mediated pulmonary vascular 

remodelling – might provide possible therapeutic strategies for the treatment of 

pulmonary hypertension. 
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There is an extensive body of work documenting cross talk between 

BMP/BMPR2/Smad and p38 MAPK signalling pathways, and between p38 MAPK 

and HIF1α activation, as previously discussed.  Of interest is the finding by Yu et al 

(2005) that vascular smooth muscle cells cultured from mice haploinsufficient for 

BMPRII and further modified to be null for BMPRII in culture, could activate both 

p38 MAPK and Smad 1,5 and 8 via an alternative BMP signal transduction pathway 

involving BMPs 6 and 7 and TGFβ receptor type 2 subtype ActR2a.  This suggests a 

potential role for disordered p38 MAPK signalling in a model known to exhibit 

aberrant BMP/BMPR2/Smad signalling.  We did not demonstrate increased Smad 1, 5 

and 8 activation in human pulmonary arterial fibroblasts but did show upregulated 

Smad 1, 5 and 8 signalling in systemic arterial fibroblasts to hypoxic exposure.  This 

appears to be a novel development as we have not until this point been able to 

establish any positive response to hypoxic exposure in systemic arteries.  Further 

investigation of Smad signalling pathways in systemic arteries may provide additional 

evidence as to the fundamental differences between the two circulations. 

 

Given our finding that p38 MAPK is consistently activated in pulmonary arterial 

fibroblasts to hypoxic exposure, the pharmacological inhibition of p38 MAPK 

therefore might represent an attractive treatment strategy in the prevention of 

pulmonary vascular remodelling, certainly in the context of hypoxic lung disease but 

also possibly for PH.  Currently there are two potential areas of pharmacological 

interest: the development of kinase inhibitors - specific p38 MAPK inhibitors and 

multi-kinase inhibitors such as imatinib (Gleevec) and sorafenib, and the use of small 

interfering RNA, or siRNA, to effect targeted post-translational gene silencing. 
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6.5.1.   p38 MAPK inhibitors 

There are several p38 MAPK inhibitors undergoing trials currently (Lee and 

Dominguez, 2005).  There is interest in their role as anti-inflammatory agents – they 

have been shown to reduce joint destruction in murine arthritis model (Badger et al, 

1996). There is some evidence that p38 MAPK inhibitors may help in pain control, 

delaying time to rescue medication in a human model.  Some agents are currently 

undergoing trials to assess their benefit in the treatment of myelodysplastic disease 

(Lee and Dominguez, 2005) and COPD (Barnes, 2008).   There have been concerns 

regarding the variable tolerability of these agents, with significant problems occurring 

related to liver toxicity and in some cases, central nervous system toxicity.  Despite 

these problems there are still some agents undergoing phase II trials (Lee and 

Dominguez, 2005). 

 

6.5.2. Multi-targeted kinase inhibitors 

Current theories that pulmonary arterial hypertension may represent a disorder of non-

metastasising dysfunctional cellular proliferation have been raised following the 

unexpected association of pulmonary hypertension with myelodysplastic disease in 

some individuals (Gupta et al, 2006). Work by Schermuly et al (2005) has examined 

the role of imatinib (Gleevec) – a tyrosine kinase receptor inhibitor/PDGF B receptor 

inhibitor used in the treatment of haematological malignancies – in reversing 

monocrotaline induced pulmonary arterial hypertension in a rat model.   Ghofrani et 

al (2005) and Patterson et al (2006) have reported case studies where imatinib has 

been used as rescue therapy for patients with NYHA stage IV heart failure secondary 

to pulmonary hypertension with good effect.  In addition further work has 

demonstrated that sorafenib – a multi-kinase inhibitor/PDGF B and VEGF inhibitor – 
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inhibits hypoxia-mediated pulmonary arterial remodelling in a rat model (Moreno-

Vinasco et al, 2008).    There is a body of literature – both experimental and from 

clinical practice – that demonstrates that multi-kinase inhibitors are well tolerated and 

effective in modifying pulmonary arterial remodelling (Ghofrani et al, 2005; 

Patterson et al, 2006). 

 

6.5.3.  small interfering RNA (siRNA) 

The discovery of post-translational gene silencing by RNA molecules in plants as a 

strategy against viral infection in the late 90’s (Hamilton and Baulcombe, 1999) and 

the subsequent discovery that small nucleotide sequences (21-23 nucleotide in length) 

in double-strand conformation efficiently result in targeted post-translational gene 

silencing in man (Elbashir et al, 2001), has resulted in interest in post-translational 

gene silencing as a therapeutic strategy.  There are a wide variety of Biotech 

companies – for example Dharmacon - who are able to engineer specific siRNA for 

targeted genes which can be used experimentally to generate knockdown models both 

in vitro and in vivo.  For example Teichert-Kuliszewska et al (2006) used siRNA to 

BMPRII in order to create a BMPRII knockdown model while investigating the 

effects of BMPR2 deficiency in human circulating EPC.  These investigators were 

able to demonstrate a 50% reduction in BMPR2 expression in transfected cells 

following use of siRNA to BMPRII.    

 

siRNAs to p38 MAPK are commercially available and have been used experimentally 

to assess effective delivery to bronchial epithelial cells in a murine model (Moshos et 

al, 2007).  These investigators found that intra-tracheal delivery of anti-p38 MAPK 

siRNA conjugated to cholesterol, TAT (48-60) (transactivator of transcription) 



 229

originally isolated from HIV TAT, and Penetratin (isolated from the insect 

Antennapedia) resulted in 30 – 45% knock down of p38 MAPK expression in 

macrophages and EC within the murine bronchial tree that was maximal at 6 hours 

post delivery.  The effectiveness was short-lived however.  In addition these 

investigators also noted that TAT (48-60) and Penetratin independently resulted in 

generalised non-specific alterations in gene expression between 12 and 24 hours post 

delivery.  The conjugation of p38 MAPK siRNA to cholesterol appeared to increase 

the duration of effectiveness. 

 

Issues concerning siRNAs as both an experimental and therapeutic strategy centre on 

the mode of delivery to the cell, the duration of their effectiveness and worries 

concerning their ability to activate host cell mediated immunity.  siRNAs are 

relatively large anionic molecules which need an effective delivery system to enable 

them to cross the cell membrane.  Cholesterol molecules and so-called cationic cell 

penetrating peptides such as TAT (48-60) have been investigated as possible agents 

that might cargo siRNA into the cell.  As noted above, initial experimental work 

suggests that both TAT (48-60) and Penetratin may result in gene expression 

modification independent of their ability to transport siRNA, a finding that may limit 

their use.  Concerns regarding the potential immunogenicity were proven to be well 

founded in a murine model as Penetratin was also noted to activate the innate immune 

system via its action on Toll like receptor (TLR) 3-7 and 8  (Moschos et al, 2007).   

Concerns have also been expressed in the literature regarding the lack of 

demonstrated effectiveness in clinically relevant routes of delivery – for example oral 

or intravenous delivery systems – and the mechanisms by which siRNA is rapidly 

cleared from the plasma is not yet fully understood.   It does appear however that 
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topical delivery systems are more effective and better tolerated: for example Moschos 

et al (2007) demonstrated effective reduction of p38 MAPK in bronchial epithelial 

cells via an endotracheal delivery system.  siRNAs are an attractive experimental tool 

in the investigation of disordered p38 MAPK, BMPR2 and Smad signalling pathways 

in pulmonary hypertension, however they may also represent a potential therapeutic 

strategy. 

 

 

6.6.  Conclusion 

 

In summary, in this work we have demonstrated that human pulmonary arterial 

fibroblasts proliferate to acute hypoxic exposure whereas human systemic arterial 

fibroblasts do not.  We have shown that the proliferative response to acute hypoxic 

exposure witnessed in human pulmonary arterial fibroblasts is dependent on 

activation of p38 MAPK which is biphasic (at t = 6 and 16 hours) with the 

proliferative response being dependent on the activity peak at t = 16 hours and being 

congruent with the activation of HIF1α.  These findings concur with those from our 

own laboratory using adult rat and bovine models, they also concur with work from 

other laboratories.  In addition we have demonstrated that acute hypoxic exposure 

results in Smad 1, 5 and 8 activation in human systemic arterial fibroblasts, a 

signalling pathway that is generally held to be growth inhibitory in cells of mesenteric 

origin.  The activation of a growth inhibitory pathway to acute hypoxia in human 

systemic arterial fibroblasts appears to be a novel finding.   

 

As previously discussed, there is an extensive body of literature that documents cross-

talk between BMP/BMPR2/Smad and p38 MAPK signalling pathways and between 
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p38 MAPK and HIF1α activation in a variety of experimental models.  p38 MAPK 

certainly appears to be central to pulmonary arterial fibroblast proliferation to 

hypoxia, whether acute or chronic, which suggests that it might represent an attractive 

therapeutic strategy against pulmonary arterial remodelling associated with hypoxic 

lung disease. It would be of interest to establish whether p38 MAPK activation was 

also as central to dysfunctional pulmonary vascular cell proliferation in BMPRII 

mutation-related FPAH and IPH.  p38 MAPK inhibition (either directly by enzyme 

inhibition or indirectly by post-translational gene silencing) would be a novel 

therapeutic strategy for pulmonary arterial hypertension.   
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Appendix 
 

Consent documents for experimental work. 



DEPARTMENT OF CARDIOTHORACIC SURGERY

CONSENT FORM FOR PERMISSION TO USE RESECTED LUNG TISSUE

FOR RESEARCH PURPOSES IN PATIENTS UNDERGOING LUNG

OPERATIONS

As it will have been explained to you, you are about to undergo an operation to
remove all, or part of, your lung. Doctors in the Pathology Department will perform a
number of tests on the tissue that is removed during the operation. This will allow
your surgeon to give you a diagnosis and prognosis and guide you if any other
treatment is required. Once they have completed their examination, the tissue is
normally discarded.

Because we are constantly engaged in research ourselves and in collaboration with
others, we are seeking your permission to use some of this tissue that is normally
discarded. This would be used in a number of ongoing projects designed to investigate
cancer and in detailing the anatomy & physiology of the blood vessels within the
lung.

If you wish your resected tissues to be used in this way, the following guarantees will
be given:

•a- .'
• No tissue will be removed apart from what is deemed necessary for your

operation as decided by your surgeon.
• S ampling of tissue will not prejudice in any way the results of your operation

or affect the ability of the pathologist to produce an accurate report.
• Samples used for research will be removed from tissue that would normally be

discarded.
• In cases of cancer research, small samples may be frozen and stored to allow

tests to be done at a future date.

Should you not wish tissues to be removed, this will not affect your treatment in any
way!



Details of the current research projects and the project leaders are to be found below.
The ultimate responsibility rests however with your surgeon to whom all queries
should be addressed.

The pharmacology of endogenous vasoactive factors in human pulmonary arteries.
Supervisor: Professor M Macbean, University of Glasgow

Molecular markers of chemosensitivity in non-small cell lung cancer.
Supervisor: Professor R Brown, Beatson Institute

The physiology of human pulmonary vasculature.
Supervisor: Dr. AJ Peacock, Western Infirmary, Glasgow.

These projects have been approved by the Research & Ethics Committee for North
Glasgow Hospitals, University Trust.

CONSENT

.-f.nneftnt.tn the use of any tissues removed from me
during my lung operation to be used for the purposes of research. I have read the
notes above and understand them. I appreciate that under certain circumstance it may
be necessary to store some tissue samples for analysis at a later date.

Patient signature: : : • Date:

Surgeon's name: _____^___^.,,^—___«_«.

Surgeon's signature: • a ' Date:
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