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Summary - This paper considers the problem of maximizing the expected annual response
to mass selection when testing facilities are limited and so do not allow testing of all
potential candidates. In such situations, there is room for variation both in the proportion
of breeding animals selected on the basis of the test result "nd in the allocation of testing
places between male and female candidates. When testing facilities are very limited (case
1), males have priority in testing and the maximum proportion to select based on test
results is 27%. This means that it is then better to use untested males, i.e. taken at
random, than males which are in the lower 73%. This situation holds until the ratio (k)
of tested to potential candidates reaches kl = 1.85/c(4aA + 1), where c is the degree of
polygyny (mating ratio), a the age at first offspring (yr) and À, the annual fecundity
(s.e. half the dam progeny crop). As k increases above kl (case 2), all replacement males
should be tested and testing space should be entirely devoted to males, with random
choice of females. This situation holds until k reaches a critical value, k2, above which
testing space should be equally distributed between the 2 sexes (case 3). The value of k2,
obtained iteratively for any given set of parameters c, a and À, as defined above, is shown
to increase when c increases and when aA decreases. The strategies recommended, which
imply contrasting turn-over rates between selected candidates and candidates chosen at
random, are compared to those aimed at maximizing selection intensity for a fixed value of
the generation interval. Numerical examples are provided, covering the range of situations
prevailing in farm livestock species.
mass selection / selection response / selection intensity / generation interval

Résumé - La sélection massale chez les animaux domestiques avec une capacité
de contrôle limitée - Cet article traite de la maximisation du gain génétique annuel
attendu en sélection massale quand la capacité de contrôle est limitée et ne permet pas de
contrôler tous les candidats potentiels à la sélection. Dans une telle situation, on peut
faire varier à la fois la proportion des reproducteurs sélectionnés sur leur résultat de
contrôle et la répartition des places de contrôle entre les 2 sexes. Quand la capacité de
contrôle est restreinte (cas 1), les mâles ont la priorité et le taux de sélection maximal
à l’issue des contrôles est de 27%. Il vaut mieux alors utiliser des mâles non controlés,
c’est-à-dire choisis au hasard, que des mâles se trouvant dans les 73% inférieurs. Cette
situation prévaut tant que le rapport (k) des candidats contrôlés aux candidats potentiels ne
dépasse pas kl = 1, 85/c(4a&lambda;+1), où c est 1_e degré de polygynie (nombre de reproducteurs
femelles/nombre de reproducteurs mâles), à l’âge au ler descendant (an) et ) g la fécondité
annuelle (c’est-à-dire la moitié du nombre de descendants produits annuellement par



femelle). Quand k dépasse ki (cas 2) tous les mâles de renouvellement doivent être
contrôlés et toutes les places de contrôle doivent être réservées aux mâles, les femelles
étant choisies au hasard. Cette situation prévaut jusqu’à une valeur critique k = k2, au-
dessus de laquelle les places doivent être également réparties entre les 2 sexes (cas 3). On
montre que cette valeur k2, qui est obtenue par itération pour tout ensemble donné des
paramètres c, a et À, définis ci-dessus, augmente avec c et diminue quand aa augmente.
Les stratégies recommandées, qui impliquent des taux de renouvellement très différents
entre les candidats sélectionnés et les candidats choisis au hasard, sont comparées à celles
qui visent à maximiser l’intensité de sélection à intervalle de génération fixé. Des exemples
sont donnés pour illustrer le cas des diverses espèces animales domestiques.
sélection massale / réponse à la sélection / intensité de sélection / intervalle de
génération

INTRODUCTION

Mass selection is a simple and widely used selection method for farm animals.
Considering a trait expressed in both sexes, and following a normal distribution,
the expected annual response can be shown to be a function of the mean ages of
males and females at culling. The maximum response is obtained by determining an
optimal balance between selection intensities and generation intervals, as shown by
Ollivier (1974) for the case when all potential candidates are tested. The purpose
of this paper is to extend the treatment to situations where testing facilities are
limited and so do not allow testing of all potential candidates. In such cases, there
is room for variation both in the proportion of breeding animals selected on the
basis of the test resultgand in the allocation of testing places between male and
female candidates. The effect of such a variation on the overall selection intensity
has previously been considered by Smith (1969).

The general method

Dickerson and Hazel (1944) gave a general formula for the expected annual response
to selection, Rd = (i1 + i2)/(tl + t2), as a function of female and male selection
intensities (il and i2,’ respectively) and generation intervals (tl, t2), Ra being
expressed in genetic standard deviations for a trait assumed to have a heritability
equal to 1. With selection of respective proportions f and m of the females and
males required for breeding, and corresponding proportions 1 &mdash; f and 1 &mdash; m taken
at random, the expected annual response becomes:

where tll and t12 are the generation intervals for the females selected and the
females taken at random, respectively, and t21 and t22 are similarly defined for
males. &dquo;

If selection is by truncation of a normal distribution, il = zlnl, where ni is the
number of female candidates tested per female selected and zl the ordinate of the
normal curve for a proportion 1/n, selected, and i2 is similarly defined. Moreover,
generation intervals may be expressed as functions of demographic parameters
pertaining to any given species, and of the distribution of testing space between
males and females. Using the simple demographic model assumed by Ollivier (1974};-.
for instance, one can write: 

-



where a is the parents’ age (in years) at birth of first offspring, assumed equal for
both sexes; c is the degree of polygyny, or mating ratio; A is the annual female
fecundity, referring to the number of candidates of 1 sex (sex ratio assumed to be
1/2) able to breed successfully; h and 12 are the respective numbers of female and
male candidates tested annually per dam.

Expressions (2) are based on the definition taken for the generation interval,
which is assumed to be the arithmetic mean of the parents’ ages at birth of first
(a) and of last offspring. The latter is determined by the time necessary to replace
1 breeding animal, either selected among n candidates or taken at random. For
instance, knowing that h female candidates are tested annually per breeding female,
ie, Illf candidates per female selected, and that each selected female is chosen
among n1 candidates, the time required is fnl/l1 years, which leads to eqn(2a). On
the other hand, (A - 11) females are untested, ie, (À -1¡)/(1- f) per female chosen
at random. The time necessary to obtain 1 candidate, if one takes the first born,
is (1 - f)/(A - 11), which leads to eqn(2b). Equations (2c) and (2d) are similarly
obtained.
Now h and 12 depend on the overall testing capacity, defined as the proportion

k of available candidates which can be tested annually, and of the distribution of
testing places between females and males, defined by the sex ratio a among the
tested candidates, so that:

The possible range of a extends from 0 to 1 as long as k < 0.5. Then, as k
exceeds 0.5, the range is progressively narrowed, until a = 0.5 when k = 1.

Case 1: only males are tested (a = 1); a proportion (m < 1) of males
required for breeding is tested

In this case, f = h = 0 and 12 = 2kA. Expression (1) reduces to a function of 2
variables, m and n2, such that:

with

The maximum of R’f,)with respect to m is obtained for:

With this value of m, Ra becomes a quantity approximately proportional to
z2ng.5, which is maximum for n2 - 3.7. Thus, the critical value of k for which
m = l,,,is from eqn(5):



or, with n2 - 3.7,

Consequently, when testing capacity is limited to a value k < ki, a proportion of
untested males should be used, in order to maintain a constant proportion selected
of about 27% (1/3.7) among those tested. Under these conditions, the expected
annual response is approximately proportional to kl-’, as

Case 2: only males are tested (a = 1); all males required for breeding
are tested (m = 1)

As k becomes equal to kl, and then increases above kl, m = 1 and eqn(4a) reduces
to:

which can be maximized iteratively with respect to !2. But the question then arises
as to whether a higher response can be expected by diverting some testing space
for the selection of females. This case will now be considered.

Case 3: all males tested (m = 1) and a proportion of females (a < 1; f > 0)

With selection of all males (m = 1), and of a proportion ( f ) of the females required
for breeding, Ra becomes:

which is a function of f, a, ni and n2 for any given testing capacity.
It can easily be shown that the derivative of Ra; with respect to f, is positive

when 0 < f < 1, provided 2i2 > il. As selection should generally be more intense
in males (i2 > il), this condition is always fulfilled, and the optimum value of f is
therefore 1, irrespective of the other parameters.

Then, assuming f = 1 (ie, all females required for breeding are tested), the
question is how to allocate the testing places between 2 sexes, within the limits
previously indicated for the sex ratio a among tested candidates. In fact, the value
of Ra is rather insensitive to variations of a (although the optimal value of a is
slightly below 0.5), as shown by Ollivier (1988: see eqn(6), p 446). One can then
take a to be 0.5, and the optimal values of n1 and n2 are obtained by maximizing:

where t, l = a + Mi/2A:A, and t21 = a + n2 /2ckA, as h = 12 = kA.

For any given testing capacity, the maximum of eqn(10) can be compared to the
maximum of eqn(8) considered in case 2, and (by iteration) the k2 value yielding
equal responses in the 2 cases is obtained. Thus, when testing capacity is below k2,
all testing space should be devoted to males, and when k > k2; it should be equally
distributed between the 2 sexes. 

-

The strategies to be applied in each of the 3 cases considered are summarised in
Table I.



Numerical illustration

As an illustration of the above results, Table II gives ki and k2 values for 9 sets
of demographic parameters implying 3 values of aA (0.5, 1 and 5) valid for sheep,
cattle and pigs, respectively, and 3 degrees of polygyny, either corresponding to
natural mating (c = 10) or artificial insemination (c = 100 or 1000). The Table
also gives the expected response for k = k1 and k = k2, expressed relative to the
maximum response expected with k = 1.

The Table clearly shows that, for a given degree of polygyny, kl and k2 both
decrease when fecundity increases. For species of high fecundity, such as poultry
and rabbits, kl becomes negligible and the low value of k2 is likely to fall below
the actual testing capacity, owing to the low cost of testing. Therefore; case 3 will
usually apply to those species. On the other hand, kl decreases when polygyny
increases, as it is inversely proportional to c, (from eqn(6)) !where.-t§;,k2 increases
with c up to a point where, particulary when fecundity is low, a large proportion
of the maximum response can be expected from testing males only. It is also worth
noting that when fecundity is low (below a limit which is somewhere between 1
and 5 for aa), the critical testing capacity, k2;yis above 0.5. As this corresponds to
situations when all males are tested, it means that the expected response remains
constant, and above the maximum of eqn(10), for 0.5 <_ k < k2. The evolution of
the maximum annual response, as a function of testing capacity, therefore follows



one of the patterns illustrated in Fig 1, according to whether k2 < 0.5 or kl > 0.5.
In the latter case, rather paradoxically, the extra space available when all males
are tested should not be used for testing. The worst solution would actually be to
use it for testing females, as shown by point C in Fig la. This is because the extra
selection intensity obtained by testing females is more than offset by the increase
in their generation interval.

DISCUSSION

A parallel can be draw between the above results and those of Smith (1969). He
considered maximizing selection intensity, or response per generation, for a given
number of testing places (T) available, assuming a fixed generation interval. Here
the objective is to maximize annual response, with variable generation length, and
the testing capacity (k),which is defined on a yearly basis. If generation interval is
set at a value t, and T is defined as the number tested per breeding female over a
period of time equal to the average breeding life of sires and dams, 2(t &mdash; a), the
relationship between T and k is:

In case 1, the selection strategy recommended here, may be compared to the
rule given by Smith (1969), which states that &dquo;if testing facilities are very limited,
it is better to use untested males, than males which are below average&dquo;. Thu!!
1/2 is the maximum proportion to select in order to maximize the response
per generation, as against 1/3.7 ,‘two, ) if the response per year is considered.
The two approaches can, for instance, be compared in terms of expected annual
response for a testing capacity equal to kl. Using Smith’s approach, the critical
number of testing places below which untested males should be used,is T = 2/c,
i e, 2 male candidates tested per sire to be replaced. This implies a generation
interval t = 2.1a + 1/3.7A, a value obtained from solving eqn(11) for T = 2/c and
k = kl, and which can also be derived from eqn(2c) with m = 1, n2 = 2 and





12 = 2k, A. The supplementary gain expected from applying Table I strategy when
k = kl, using the value Ra = 1.2A/(1 + 4aA) derived from eqn(7), can then be
shown to range from 33 to 53%,’when aa goes from 0.5 to 5.

For case 2 and 3, Smith’s approach leads to recommendation of a gradual increase
in the proportion (f) of females selected, whereas, here no intermediate optimum
for f exists, but rather an abrupt change from- f = 0 to f = 1, between case 2
and case 3. In Smith’s approach, the gradual increase in f should start at T - 1,
and case 3 is reached when T ! 3. Taking a generation interval t = 2a, usual
in livestock populations, it can be seen from eqn(ll) that the equivalent testing
capacity necessary to reach case 3 is k = 3/4aA. This means that when the
generation interval is not acted upon, case 3 can be reached only if aa > 0.75.

The model used in this study,) rests on several simplifying assumptions, of
which a detailed discussion has een given by Ollivier (1974). The population
undergoing selection is supposed to be large and stationary in size, and a uniform
age distribution of the breeding animals is assumed. It perhaps should be stressed
that testing space is defined relative to a given population size. If the testing
space were defined as an absolute value, the population size might be reduced
to match the testing capacity in order to increase the immediate response. Loss
of genetic variance would, however, be incurred, thus compromising long-term
response. Optimal strategies for maximizing long-term response to selection in such
situations have been explored by Robertson (1960; 1970), Smith (1969; 1981mand
James (1972), among others, under the assumption of a fixed generation time.
In a situation of restricted yearly testing facilities, it would then be advisable to
maximize the generation length in order to also maximize the number of candidates
per generation.

The assumption of a uniform age distribution is not generally met in practice
and can only be accepted as an approximation in situations of fast replacement,
or when the increase in fecundity with age can compensate for the gradual decay
in the number of breeding individuals. With low testing capacity, however, the
procedure recommended herpr,--implies contrasting turnover rates between males
(selected) and females (takeirat randQm). When k < k2, the female generation
interval should be minimized, whereas, the male generation interval will gradually
increase as k decreases. When k = kl;‘£his interval exceeds 3 times the age at birth
of the first offspring, as shown in Table I. Obviously, such a strategy can be strictly
implemented,, provided enough semen from the selected sires can be stored and if
breeding can be carried on$ artificially if necessary.

In spite of the limitations discussed above, the results presented may serve as
guidelines for the optimal use of limited testing facilities. They also show that a
sizeable proportion of the maximum genetic gain can be obtained with very limited
testing facilities. The conclusions are restricted to mass selection, which requires
no pedigree information. Extension to family selection may be considered. Extra
selection intensity could, for instance, be obtained by applying family selection to
untested candidates whenever tested relatives are available. However, in a situation
of limited testing facilities, information on relatives would also be limited and
the extra selection intensity would have to be set against the resulting increase
in generation interval. Evaluation of tested candidates could also be made more
accurate by using combined selection, as in the designs considered by Poujardieu



and Rouvier (1971) or, more generaly, with best linear unbiased prediction of
breeding value (Henderson, 1963). One would then expect the accuracy of selection
to increase with the testing capacity. This would mean, for any given testing
capacity, a lower response relative to complete testing, than with mass selection. N

An optimal strategy would, therefore, be more complex to establish for combined
selection, as it would depend on the relationship between the testing capacity and
the selection accuracy.
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