
 

 

 

 
An evaluation of small-area statistical methods for 

detecting excess risk: with applications in breast and 
colon cancer mortality in Scotland 1986-1995 

 

Grant Mark Andrew Wyper 

 

A Dissertation Submitted to the 

University of Glasgow 

for the degree of 

Master of Science 

 

 
Department of Statistics 

June 2009 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Glasgow Theses Service

https://core.ac.uk/display/281635?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 ii

Acknowledgements 
 
  
 
There are a number of people who have helped me throughout my period of research and 

postgraduate degree.  Firstly I would like to extend my appreciation to ISD Scotland as 

an organisation for providing the funding to allow my period of research to take place.  I 

hope my research can help to add value to the department of Epidemiology and Statistics 

or at the very least present information for thought on alternative ways of analysing their 

data.  Within this department I would like to thank Roger Black who has overseen the 

research from ISD Scotland.  Roger’s expertise in the area of Epidemiology has both 

been inspirational and invaluable.   

 

During my final year of my postgraduate degree, I have been employed by ISD Scotland 

to work in the Primary Medical Services Information team.  I would like to thank my 

team manager and co-workers for being understanding and for providing me with the 

opportunity to continue my research. 

 

The staff and postgraduate students at the University of Glasgow have helped my period 

of study be both useful in developing my education and an enjoyable experience.   The 

level of support and educational insight that my supervisor Professor E. Marian Scott has 

put into this thesis has helped guide me through my research.  I am indebted for her 

support and I appreciate the time and effort that she has spent during the production of 

this thesis. 

 



 iii

Finally I would like to thank both my family and my fiancé for standing by me 

throughout this period.  There have been some difficult times experienced over my period 

of study and without support coming from home and work, the production of this thesis 

would not have been possible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iv

Abstract 
 
 
 
The need to report data at small-area level is constantly increasingly.   In a society which 

is both health-conscious and environmentally aware, statistics at small-area level have a 

high degree of political significance.   This type of data is required to plan and implement 

regional policies and apportion health care in accordance to the differing needs of the 

population.  Recent advances in computer power has brought many advances to this area 

of study.   For all the advances in technology and methodology, the problem of small 

numbers consistently appears.  Is there an excess risk or is it down to chance?  This is a 

question which is paramount in small-area statistics and will be addressed in this thesis. 

 

An overview of the thesis is provided below: 

 

Chapter 1 introduces the concept of small-area statistics and some of the social and 

political issues connected with this topic.  There is a discussion of the analysis of small-

area health data and the principal ideas that need to be considered in a statistical, political 

and social sense in this area of work.  The aims of ISD Scotland are introduced and how 

they can be linked to this field of study. 

 

Chapter 2 describes an overview of the methods used in small-area statistics.  The chapter 

begins by firstly considering the Standardised Incidence Ratio (SIR) which is the 

technique mainly used in the basic analysis done by ISD Scotland.  Other techniques are 

then considered, however not all of these techniques are directly comparable to each 
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other.  The strengths and weaknesses of these techniques in previous research are 

discussed to give an idea of how the techniques perform in different scenarios. 

 

Chapter 3 is a simulation study of three of the techniques discussed in Chapter 2, these 

being the SIR, Circular Spatial Scan and Flexibly-Shaped Spatial Scan.  The reason for 

this simulation study is to evaluate these techniques on simulated data arising from real 

scenarios.  The strengths and weaknesses of these techniques are then highlighted which 

will prove helpful when analysing the data in Chapter 4. 

 

Chapter 4 provides an analysis of the mortality of breast and colon cancer in Scotland in 

the ten-year time period from 1986 to 1995.  Using data provided by ISD Scotland, the 

analysis is carried out to identity any potential mortality clusters in both diseases.   

 

Chapter 5 provides a conclusion to this research by providing a summary of findings of 

the thesis and gives recommendations based upon these findings.  A discussion is also 

given for potential further study in this field that could provide some value to ISD 

Scotland as they look to other ways of analysing their small-area data. 
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Glossary of Abbreviations 
 
 
 
ISD  Information Services Division 
 
CSA   Common Services Agency 
 
ESG  Epidemiology and Statistics Group 
 
GIS   Geographic Information System 
 
HRT  Hormone Replacement Therapy 
 
ICD International Statistical Classification of Diseases and Related Health 

Problems 
 
MLE   Maximum Likelihood Estimator 
 
NHS   National Health Service 
 
RIF   Rapid Inquiry Facility 
 
RRF  Relative Risk Function 
 
ScotPHO  Scottish Public Health Observatory 
 
SAHSU  Small Area Health Statistics Unit 
 
SEHD  Scottish Executive Health Department 
 
SIMD   Scottish Index of Multiple Deprivation 
 
SIR   Standardised Incidence Ratio 
 
SMR  Standardised Mortality Ratio 
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Chapter 1 

Introduction to Small-Area Spatial Epidemiology 

1.1 Introduction to Epidemiology 

 

Epidemiology is an investigation into disease, and its occurrence, in different groups of 

people.  This information is used to prepare and assess different strategies to limit or 

prevent illness.  It is also used as a guide to the management of patients where the disease 

has already developed [1].   

 

A key concept of epidemiology that differentiates it from clinical medicine is that 

epidemiologists are concerned with both people who get a disease and those that do not 

and how these two groups of people differ.  Epidemiologists are concerned with whole 

groups and communities whereas clinicians direct their questions at particular patients.   

 

To further study disease, Epidemiologists study the distribution of disease amongst 

groups. Epidemiologists ask the questions ‘Who?’, ‘When?’ and ‘Where?’ [2].  The first 

question refers to groups of people under investigation, for example males and females or 

people of different ages.  The second refers to the time period over which the study takes 

place.  The last question refers to where it is that the study is taking place i.e. referring to 

the geographical region, for example it may be a city or a country.   

 



 13

After answering these questions the next step in the process is to find out why some 

groups of people are at a higher risk.  This question can be answered by considering 

associations between certain risk factors and increased risk of disease.  These risk factors 

can vary from environmental exposures to lifestyle factors such as diet.  The relationship 

between risk factors and disease is the fundamental concept of Epidemiology. 

 

1.2 Introduction to Small-Area Statistics 

 

Nowadays in our increasingly health-conscious and environmentally aware society there 

is a need to report on data at a scale fine enough to meet the demands of the local 

population.  Advances in computer technology and statistical methods have made 

possible the collecting and reporting of statistics at a small-area level [3].   

 

Small-area statistics have a high degree of political significance.  Small communities can 

often unite based on ethnicity, gender, location or age and have strong feelings 

surrounding their identity and how they are portrayed [4].  It is not uncommon to see 

tabloid headlines portraying a community in a negative way.   These headlines can 

tarnish the reputation of communities since many people believe them to be true in every 

sense.  Small-area statistics are useful since they can objectively and independently report 

on specific populations on issues such as crime rates and disease rates on a fine scale.   

 

The need for data reporting at this level is constantly increasing.  The data are required to 

carry out regional policies and apportion health care in accordance to the need and 
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demand for it.  Problems can only be dealt with efficiently when data on disease is 

explained well and can be followed back to a defined area.   

 

1.3 Spatial Epidemiology 

 

Spatial data has been studied for millennia through the construction of maps.  The need to 

reduce these data to numbers is a relatively new idea, made possible by the surge in 

computer power over the past few decades [5].  Spatial Epidemiology is the account and 

analysis of geographically indexed health data in respect to demographic, environmental, 

behavioural, socio-economic, genetic and infectious risk factors [6].  

 

Epidemiologists are primarily concerned with the distribution and determinants of health 

related conditions or events in a specified population.  Epidemiology is the study and 

application of these concerns in an attempt to exert a level of control over health 

problems.  Studying the distribution of a defined disease in a specified population, rather 

than individuals, allows us to seek which factors are causing the condition.  The 

identification of these factors not only alerts us to which types of people are at risk, it aids 

us in making changes or introducing measures in an effort to control the risk. 

 

Spatial Epidemiology deals with an array of issues.  Given below are some practical 

examples of questions that may be addressed. 

 

 How does cancer vary between local government regions in Scotland? 
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 Do cases cluster together in a particular area? 

 Is there a raised incidence of leukemia around a nuclear installation? 

 

These practical issues are amongst the basic types of questions that arise in this area.  To 

deal with these sorts of questions effectively, Spatial Epidemiology must be split into a 

number of areas and depending on the type of issue, it may fall within one of these sub-

sections.  These areas include disease mapping, geographic correlation studies and 

disease clusters and surveillance.  Although these areas of study are considered to be 

different they often overlap. 

 

1.3.1 Disease Mapping 

 

Disease mapping is a visual summary of the geographic indexed health data on the 

disease under inspection.  This helps to create a picture of how risk varies across the 

entire study area.  Typically this involves the mapping of Standardised Incidence Ratios 

(SIR) for each area nested within the overall study area.  The SIR is a method which can 

be used to assess the risk of disease and its methodology will be discussed further in 

Chapter 2.  

 

By constructing a visual summary of the risk of disease this can help highlight patterns or 

any causes for concern which may have been overlooked in any previous analysis [6].  

This mapping tool has been used from as early as 1936 where it was used to explain the 

variation in cancer mortality in England and Wales [7]. 
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This function can aid surveillance, as any high-risk areas are visually noticeable.  

Although this technique can be very helpful it also has several drawbacks so care must be 

taken when these maps are constructed.  In creating these maps there are many choices 

for consideration and one that can drastically change any inferences is the number and 

geographic boundary of sub-areas which are used.  If maps of the same area are 

produced, using different numbers of sub-areas and different geographical boundaries for 

these sub-areas, they can suggest very different things [7, 8].   

 

 

(i) (ii)  

Figure 1.1: Estimates of smoking prevalence in the adult population in Scotland 

  

The example above is health data taken from the website of the Scottish Public Health 

Observatory (ScotPHO).  Figure 1.1 above shows estimates of smoking prevalence in the 

adult population (ages 16 or over) in Scotland by (i) NHS Board and by (ii) Community 
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Health Partnership (CHP) [9].  Both of these graphs are plotted using the same scale and 

the same data but produce very different pictures.  In (i) some of the higher prevalence 

rates are lost due to them being grouped together with lower rates.  The difference 

between the two also displays the need for health care to be apportioned according to the 

need for it, rather than uniformly over larger areas, like (i) would suggest. 

 

When these maps are constructed, the size of units and the method to aggregate units 

must be selected to highlight the features we are interested in.  Groups that are aggregated 

must display similar characteristics for any conclusions to be meaningful.  Varying the 

scales and aggregation approaches can lead to different characteristics of the data being 

displayed, though in practise we seek to choose geographic units which are as small as 

possible although the option is not usually available as the accessibility of the data 

usually dictates the selection.  Since the data are often sparse in small area statistics there 

is a trade-off between homogeneity within small geographic units and precision of risk 

estimates. 

 

1.3.2 Geographic Correlation Studies 

 

In geographic correlation studies our primary concern is how geographical variations in 

disease data relate to geographical variations in risk factors.  The problems arising from 

disease mapping are also true for geographic correlation studies.  Another drawback is 

the potential for correlation between the confounding variables.  For example it is not 
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unusual for people living in a deprived area to be living close to a hazardous 

environmental source.  

 

A crucial consideration is the ecological fallacy.  This is when relationships that are 

observed at group level are incorrectly taken to imply association at an individual level.   

A study carried out by Davies (1997) is an example of the ecological fallacy in 

application.  In this study the deprivation score was classified using a number of 

indicators [10].  The fallacy occurs in that many people view individuals on low incomes 

as deprived. 

   

1.3.3 Disease Clusters 

 

The connotation of the word clustering suggests a gathering of events within a small area.  

A disease cluster exists when the frequency of the number of cases of a particular disease 

in a defined population is greater than it is expected to be over a given time period. 

 

The proposition of disease clusters can surface when people observe a raised incidence of 

a given disease within a defined population.  In many instances members of the public 

start to observe a similar disease pattern within family members, neighbours or co-

workers.  These perceptions can trigger a public outcry if the media pick up on these 

insights.  The reaction to these reports can cause problems of post-hoc inference.  These 

problems occur when information that has no relationship is manipulated until it appears 

to have meaning.  This is known as the Texas Sharpshooter fallacy. 
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From an ethical viewpoint it is essential that Epidemiologists take these views into 

account rather than disregard them [11].  In considering these views Epidemiologists can 

devise a framework to make the required decision on whether or not to address the 

publics’ uncertainty.  Trumbo (2000) documents the framework which was used in the 

United States in 1997.  In this study the importance of cluster investigations relative to 

other tasks was scored 3.5 where 1 is unimportant and 7 is important so it shows that 

whilst these claims are not the top priority, they are still taken seriously.   

 

For concerns to be valid the perceived raised incidence must be between diseases which 

are the same, if not very similar.  If the observed disease is different in each sample under 

observation, the proposed disease cluster is not as likely to be a true cause for concern 

since a combination of different factors cause different diseases.  A more frequent 

occurrence of a rare disease should instantly raise the level of alert compared to common 

disease since there may be something to explain this raised incidence in the rare disease. 

 

The differences between a surplus of cases in a small-area or around a hazard source and 

the general tendency for clustering must be taken into account.  This is a key idea within 

the Spatial Epidemiology framework, where numbers could simply be down to chance 

alone rather than some underlying mechanism.  Only clusters that have a disease rate that 

is statistically significantly greater than the rate of the general population are 

investigated. 
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1.4 Confounding 

Confounding occurs when one or more factors distort the association being studied 

between two variables due to a strong correlation between the factors and the two 

variables being studied.  An example of this is that alcohol appears to cause lung cancer.  

In this example the confounder is smoking, since increased alcohol consumptions tens to 

be associated with increased smoking, which is in turn associated with lung cancer.  

 

Let us suppose that the risk of disease amongst our population is increased for those 

individuals living near a nuclear installation where the harmful substances given off are 

perceived to be having an adverse affect on a given disease.  The population around and 

nearby this site does not represent a random sample of the general population; instead 

they have to live in an area that is subject to many social weaknesses [12]. 

 

On the whole when diseases display a difference between social classes, the more 

deprived individuals experience a higher risk of disease [13].  These socio-economic 

factors act as a confounder to the link between disease and exposure.  If these socio-

economic factors are not taken into account then the relationship between disease and 

location may suffer from bias. 
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Figure 1.2: Rate of heart disease per 1,000 population plotted against SIMD decile 

 

Figure 1.2 is an example which was published by ISD Scotland on the website of the 

Scottish Government [14].  The study aimed to link ill health or mortality with 

deprivation, in this example heart disease.  The Scottish Index of Multiple Deprivation 

2006 (SIMD 2006) is used to allocate individuals into a deprivation category based on 

their postcode of residence.   

 

SIMD 2006 is based across seven domains which are: current income, employment, 

health, education, housing, geographic access and crime.  The overall index score is a 

weighted sum of each of these scores in the seven domains.  The weighting given to each 

domain is based upon the relative importance of the domain in measuring multiple 

deprivation.  The weights which were used in SIMD 2006, expressed as a percentage of 

the overall SIMD score, were as follows: current income (28%), employment (28%), 
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health (14%), education (14%), geographic access (9%), crime (5%) and housing (2%) 

[15]. 

 

In Figure 1.2, decile 1 is the most deprived where as decile 10 is the least deprived.  In 

this example the rate of heart disease per 1,000 people, for hospital inpatients and day 

cases are most frequent in the most deprived deciles.  By looking at Figure 1.2 it is clear 

that the rate of heart disease per 1,000 people decreases as it shifts to the least deprived 

deciles.   

 

1.5 Types of Data 

 

Our goal in epidemiological research is to be able to quantify the occurrence of disease in 

a defined population.  To be able to do so we must be able to clearly define what is meant 

by a case, the population from which the case originates and the time period over which 

the data were collected.  The epidemiological definition of a case is not always the same 

as the clinical definition and epidemiologists usually have to rely on tests which are less 

reliable and cheaper than a clinicians test.   

 

Data can be collected through registries, notification systems, death certificates, abstracts 

or clinical records or surveys of the general population.  In the instance of measuring the 

occurrence of disease in a town, we must include all the cases from that town, even those 

which have been diagnosed elsewhere.  Cases where the samples normally reside 

elsewhere, such as a term-time student, must be omitted from our calculations.  When 
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analysing small-areas, there are many other factors which should be considered.  People 

commuting to and from a defined area will be subject to a different risk of disease than 

people that rarely or never leave the specified area [16]. 

 

To be able to infer conclusions about a certain disease or exposure, it is essential that the 

size of the population which the cases occur in is known.  For instance it cannot be 

concluded that a disease is more frequent in city A than city B if it simply has more 

cases, instead comparing the frequency of disease with the population size allows more 

meaningful conclusions to be made.  If there are any others who are not subject to the risk 

of living in the defined population then they should be excluded.  In addition to this the 

time period must be clearly defined.  Most health related events are not constant through 

time so we cannot interpret the measure of occurrence without clearly defining the time 

period. 

 

Firstly we must measure our exposure variable by obtaining information surrounding it.  

This information can be collected in many forms such as personal interviews, 

questionnaires, diaries, records, biological measurements and measurements in the 

environment.  In the event that the subject under observation cannot disclose the required 

information then the data can be obtained from a proxy respondent.   There are many 

difficulties faced when dealing with exposure due the difficulties faced when measuring 

consistently over time.  Data on the history of residential locations is not readily available 

in the United Kingdom [17].  Knowing these data would benefit analysis of longer 
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latency health outcomes as the history of exposure could be more readily reconstructed 

rather than the location at time of diagnosis or death. 

 

The duty of care does not only lie with the subject under examination.  If we are to 

receive the information which we desire, then it is essential that our questions reflect this.  

Generalised questions must not be asked if we require detailed information e.g. we 

should enquire about specific forms of a disease rather than just generally the disease. 

 

Defining exposure is rarely a simple question because exposure is seldom simply present 

or absent.  Some exposures are quantitative variables and relate to different extremes of 

exposure, for instance, radiation could be measured by extent where the people living 

closest to it would be subject to greater doses than people living further away would.  In 

studying the link between radiation and cancer, we can further analyse our conclusions if 

there is a trend of increasing numbers of cases of cancer with increasing exposure to 

radiation. 

 

We can obtain our data on a defined outcome of interest through various sources.  

Similarly to collecting data on our exposure variable, we can use questionnaires or 

interviews amongst many other methods to collate information on the samples’ health 

status.  An individual’s status can be monitored by following them up using techniques 

such as periodic interviews or check-ups to update the information on their health state.   

With cancer cases it is more likely that our information would be obtained from hospital 

records, cancer registrations or death certificates.  By using records our data can be 
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limited because outcomes are often recorded routinely and may omit other data that we 

may be interested in. 

 

There are two types of data which can be used in the analysis of small area statistics, the 

first of which being point data.  Point data is where the exact location of each case is 

known.  On the other hand there is count data, where the number of cases over a defined 

area has been aggregated.  In order to allow for different age and social differences 

amongst populations, we can allow for the division of groups where differences in the 

population are clear.  For example age specific expected rates can be calculated. 

 

When using health data, it is essential that consideration is paid to the protection of 

individuals.  At ISD Scotland, the Disclosure Control protocol sets out procedures to 

guard, not only, patient level data but also potentially disclosive data such as small 

numbers.  This consideration is especially relevant in the field of small area statistics due 

to the scale of some of the analysis. 

 

1.6 ISD Scotland 

 

This M.Sc. project is carried out in conjunction with ISD Scotland.  The role of ISD 

needs to be reactive to the requirements of the NHS due to the developing delivery of 

healthcare.  Its dynamic approach helps to resolve and advise how to best use information 

effectively to guarantee the highest standard of patient care [18].  The project is run by 

the Epidemiology and Statistics Group (ESG) which maintains the area of work on 



 26

disease surveillance, public health, the evaluation of health and social care interventions 

and quality improvement in health services. 

 

ISD Scotland is the Information Services Division of the National Health Service (NHS) 

National Services Scotland, which is formerly the Common Services Agency (CSA).  

ISD Scotland has been in existence for over 40 years.  The division provides a support 

service to NHS Scotland and the Scottish Executive Health Department (SEHD) in 

response to the needs of NHS Scotland as the delivery of health and social care changes 

over time.  The ISD Scotland website [18] documents ISDs vision of success in the 

future.  The vision is to be an essential partner in providing better health and better care 

for people in Scotland through: 

 

 Information that leads to action 

 Proactive and innovative approaches 

 Working in partnership with our customers 

 

ISD Scotland brings together a range of data about the individual and stores it in the 

national database.  It works with a widespread range of organisations from hospitals, 

General Practitioners and voluntary organizations, amongst many more, to build the 

national database.  The information which is collected can be broadly defined as: patient 

and activity data workforce and earnings data and NHS Scotland complaints data. 
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From January 2001 the majority of the statistics published by ISD have been covered by 

National Statistics.  During June 2000, National Statistics was introduced to the UK, 

changing the way which official statistics were governed and how accountability was 

assigned.  The main objective of National Statistics is to improve the quality, timeliness 

and relevance of its service to customers [19].   Every publication that is published under 

National Statistics must have a planned release date and all publications must be pre-

announced on the ISD website. 

 

In addition to publications, information can be requested through ISDs Information 

Request Service.  This method is another opportunity to better understand and explore 

health and social care.  This service is subject to resource constraints and a prioritisation 

process.  Priority is given to NHS Scotland, Scottish Executive, Local Authorities, Audit 

Scotland and independent contractors such as Dentists or General Practitioners.   

 

1.7 Aims of Thesis 

 

In this project the aim is to review some of the current methods used in the analysis of 

small-area statistics data and to compare those to the current methodology used in ISD 

Scotland.  Firstly this will begin by reviewing the theory of some of the commonly used 

techniques in small-area analysis that will lead to a discussion on the apparent advantages 

and drawbacks which these methods exhibit in different scenarios.   
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Whilst the theory and previous analysis provides a deep insight to how these techniques 

perform, a simulation study will be carried out in Chapter 3 to asses their performance.   

Once the methods have been documented and analysed, an investigation of breast and 

colon cancer in Scotland will take place.  This is an ISD Scotland dataset which will be 

analysed for the first time. 

 

The final aim of the project is to make recommendations based upon the research which 

can hopefully benefit as they look towards other ways of improving their analysis of 

small-area data. 
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Chapter 2 

Comparison of Small-Area Statistical Methods 

2.1 Introduction 

 

The following chapter documents the theory of some of the most commonly used 

techniques in small-area statistics.  The advantages and disadvantages of each technique 

as discussed in academic literature will also be covered.  This is to give an indication of 

the level of importance placed on each of the techniques in small-area data analysis. 

 

The methods which will be covered are: 

 

 Standardised Incidence Ratio (SIR) 

 Besag and Newell Cluster Test 

 Circular Spatial Scan 

 Flexible Spatial Scan 

 Bithell’s Linear Risk Score 

 

The methodology of these techniques greatly differ however all these techniques look at 

count data which has been aggregated to small-area level.  In ISD Scotland, the 

Standardised Incidence Ratio (SIR) is the technique which is most commonly used.  This 

technique takes a set region and calculates the risk for that region.  The other methods 
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implement a range of techniques to scan the entire study area.  These types of tests can 

further be segregated.  Besag and Newell and the Spatial Scan techniques are based upon 

drawing a centroid or another flexible shape which scans for clusters.  Bithell’s Linear 

Risk Score differs in that it is concerned with the relationship of risk over a distance; 

usually how risk varies in relation to a point source.   

 

The first technique which will be documented is the SIR.  The technique is highlighted in 

much more detail since it is the technique which is primarily used in ISD and will, in 

some forms, re-appear within the other techniques.  The theory of the other techniques is 

documented to give a basic understanding, however the use of these techniques to support 

the findings of this thesis are used mainly in R software and WinBUGS. 

 

2.2 Standardised Incidence Ratio (SIR) 

2.2.1 Overview and assumptions 

 

To get an estimate of the relative risk of disease the SIR can be used.  The notation of the 

method is Standardised Mortality Ratio (SMR) if the data are death rates rather than 

incidence of disease.  This measure of risk is a single summary of incidence, which can 

be used to compare the risk of similar regions within a study area.  It is for this reason 

and its ease of application that the SIR method is widely used when analysing small-area 

health data.   
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2.2.2 Methodology 

 

When using the SIR method the data being used must be count data.  The test statistic is 

concerned with the number of cases within a geographically defined area, rather than 

point data where the exact location of each case is known.  The null hypothesis of the test 

is set such that the 1i  .  It is assumed that the observed number of cases Oi are drawn 

from a Poisson distribution with mean i iE and relative risk θi, that is ~ ( )i i iO Pois E , 

where i=1,2,…, is the number of regions in the study area. 

 

Firstly the notation required for the method is defined as: 

 

A step-by-step guide to the estimation of the SIR is provided below: 

 

1. Calculate Ei where .i i iE N r   To allow for different age or social structures 

within the population this is calculated as ij ij ij
j

E N r   where Nij is the 

population-at-risk in a sub-group j in a region i and rij is the incidence of a defined 

disease in a sub-group j in a region i.  

Oi 

Ni 

ri 

Ei 

θi 

= the number of observed cases of a defined disease in a region i 

= the population-at-risk in a region i 

= the incidence of a defined disease in a region I for a standard population 

= the number of expected cases of a defined disease in a region i 

= the relative risk of a defined disease in a region i 
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2. Recalling that ~ ( ),i i iO Pois E the Maximum Likelihood Estimator (MLE) of θi 

ˆ .i
i i

i

O
SIR

E
    

 

An SIR of 1 would occur if the observed number of cases for a given population equals 

the number we would expect.  If the SIR < 1 then this suggests that the incidence rate for 

the defined population is lower compared to a standard population.  Finally the case 

where SIR > 1 is what we are primarily concerned with.  This situation arises when there 

is a surplus of observed cases suggesting that the incidence rate is greater for the defined 

population when compared to a standard population.  This can also be expressed as a 

percentage by multiplying the MLE by 100 [20].  For example an SIR of 125% would 

mean that there were 25% more cases observed in the population under study compared 

to that if the incidence was that of the standard population. 

 

Now we wish to test whether there is evidence that there is an excess risk for a defined 

area.  A surplus of observed cases may simply be down to chance so we cannot conclude 

there is an excess risk if an SIR > 1.  The case where SIR < 1 is not considered due to the 

fact this represents the case where fewer cases are observed than we expected and does 

not raise any concerns. 

 

3. Now to test under the null hypothesis that the mean ~ ( )i iO Pois E  the probability 

of observing at least Oi cases by chance is derived from a Poisson distribution 

with mean Ei,  
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     (2.1)

 

In Equation 2.1, the value p is the probability that represents the one sided p-value.  If p ≤ 

α where α is the chosen significance level then we would reject the null hypothesis and 

conclude that the risk of disease is significantly greater at the α% level.  If this is the case 

then there must be some further investigation into the cause of this excess risk [21]. 

 

2.2.3 Summary 

 

The SIR is one of the most widely used methods in the analysis of spatial data.  There are 

many reasons for the use of the technique, but there are also many disadvantages or 

dangers to using the technique.   

 

Disease mapping is an area where the use of SIRs are important.  Mapping the SIR of 

each of the regions in a study area can give a good picture of how the risk is varying 

amongst the entire study region.  However there is a difficulty in deciding what size of 

geographic area should be used.  When areas have larger populations then the rates of 

disease are more stable.  Although there is the danger that small areas with high or low 

rates will be smoothed out with the choice of a larger area [22].  There are many possible 
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solutions or ways to get around this problem.  Extending the data collection over a larger 

time period could help as areas with a higher risk may just be down to chance [23]. 

 

Unfortunately this does not always overcome the problem.  A study of the risk of 

leukaemia among children living near the Solway coast of Dumries and Galloway Health 

board area in Scotland was carried out for the period 1975-2002 [24].  This study 

investigated two similarly sized time periods 1975-1989 and 1990-2002 to analyse the 

incidence of childhood leukaemia.  During this study confidence intervals were used for 

the SIRs.  Confidence intervals can be useful when SIRs are being used.  If the 

confidence interval for the SIR does not contain 1, then this can be used as a test for a 

statistically significant excess risk of disease.  However during this study the width of the 

confidence intervals were large due to the numbers of cases being small. 

 

Another difficulty that needs to be considered when using SIRs is that the data can show 

extra Poisson variability where Var(Oi) > E(Oi) [25].  The reason for this may be due to 

the data being dependent on an unknown or missing confounding factor.   

 

A major advancement in the area of SIRs is the use of smoothing for risk estimation [26].  

Using smoothing techniques allows the user to make use of the data on disease rates in 

nearby regions which is useful if there a spatial dependence between rates in nearby or 

neighbouring regions.  This can also be a useful technique to overcome small numbers 

and unstable rates.  The way smoothing works is that the smoothing estimate borrows 
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precision from data in nearby areas that depends on the precision of the raw estimate for 

each area.   

 

There are some disadvantages to using smoothing methods.  In using these techniques the 

raw data is being adjusted.  Many people are apprehensive when numbers are adjusted, 

especially if money or power is to be allocated based upon the numbers [27].  Although 

borrowing strength from other nearby regions can be an advantage, it can also be 

problematic as it introduces autocorrelation [28].  Another disadvantage to using 

smoothing techniques is that it can smooth out any high rates which may represent a true 

elevated risk of disease. 

 

2.3 Besag-Newell Cluster Test 

2.3.1 Overview and assumptions 

 

The method proposed by Besag and Newell [29] was formulated to detect clusters of 

disease.  The method was first used to search for clusters of childhood leukaemia in 

northern England.  The test statistic searches for clusters of a set observed number of 

cases.  At each region where a case is observed, the number of nearby regions needed to 

reach the set number of cases is computed.  If there are too many observed cases in a 

small number of regions then it the result is that is a potential cluster.   

 

When using this technique some questions that need to be considered are: 
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What time period of data to use? 

 

There are many factors which could influence data arising from different time periods.  

The Besag and Newell method is based upon identifying historical clusters so it cannot be 

used to make any forecasts on future clusters or clustering.  

 

What is the risk of disease? 

 

The risk of disease can be calculated in many different ways.  Firstly the risk of disease 

may be the same for each individual.  The Besag and Newell method assumes that the 

risk of disease is the same for everyone, however this may not be the case in some 

regions. 

 

What number of cases defines a cluster? 

 

This is one of the main selection criteria of the Besag and Newell test statistic.  Users of 

the test must pick a value, corresponding to the number of cases, which is the minimum 

number of cases that can appear as a cluster.   This value is vital as different numbers of 

cases can have an affect on which clusters appear to be statistically significant.  When 

choosing the cut-off value for a cluster to be statistically significant, the value must not 

be too strict as some clusters on the borderline may not be detected.  
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2.3.2 Methodology 

 

Firstly the region of observation must be defined.  For each region, the centroid is 

calculated by taking the population-weighted centre of the region.  In order to calculate 

this, it is essentiall that the weighted centre is based upon the population-at-risk of 

disease and not the general population.  If it is based upon the general population then if a 

specialised group of the population is being studied then the centroid will not be accurate. 

 

Once the centroid of each area is set then the closest centroid in distance is added to the 

current region up until the number of cases which is specified is attained.  The null 

hypothesis is set to state that the observed number of cases is distributed at random 

among the population-at-risk.  This test is for data that is aggregated to areal units. 

 

Firstly the following terminology is defined: 

 

 

k 

Oj 

pj 

t 

A0 

Ai 

= the minimum number of cases defined for the test statistic for each region 

= the number of observed cases in a region j 

= the population of a region j 

= the incidence of disease across the entire region 

= the region where the cluster occurs 

= {1,2,3,4,…} which is determined by the increasing distances of the centroids 

from A0. 



 38

The method is outlined below: 

 

1. Firstly calculate 1
i

i j
j o

D O


 
  
 
  where ,...,o iD D are the summed number of 

cases in regions ,...,o iA A . 

2. The numbers of population-at-risk 
0

1
i

i j
j

u p


 
  
 
  where 0 1 ...u u  in regions 

i=1,2,… 

3. Now let  min : iM i D k  so that regions ,...,o MA A but not 1,...,o MA A  contain 

at least k other cases. 

4. The probability under the null hypothesis is the hypergeometric probability that s 

individuals amongst mu are cases.  This can be approximated by the Poisson term 

!
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s



 where mu t   and .
O

t
p

   

5.    Pr 1 PrM m M m     where M related to the minimum number of regions 

required to sum to at least k cases, so  
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    (2.2)

 

The resulting p-value in Equation 2.2 is the Monte Carlo p-value which is determined 

from comparing the observed test statistic to the reference distribution created by 

randomising the cases across the study area.  If the value of the test statistic is large, that 
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is when there are much more observed cases in just a few regions with low expected 

cases, then the null hypothesis of no clustering is likely to be rejected. 

 

2.3.3 Summary 

 

The Besag and Newell cluster test is designed to be used as a screening test to detect 

clusters.  Further analysis may be required if the test identifies a cluster of several 

regions.  One of the main criticisms of the Besag and Newell test is that it does not 

control for multiple testing through the definition of consistent clusters [30].  This can 

lead to many false positive clusters arising.  It is recommended that this test is run 

multiple times to try to better detect the presence of clustering [31].  Song and Kulldorff 

(2003) evaluated the power of numerous methods of detecting disease clusters [32].  It 

concluded that the Besag and Newell technique is a good choice if the size and scale of 

clustering is roughly known.  The reason for this is because the technique is greatly 

dependent on the choice of parameter [33].  Knowing the size and scale of a cluster can 

help because there is less difficulty in choosing a minimum number of cases to define a 

cluster. 
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2.4 Circular Spatial Scan Statistic 

2.4.1 Overview and assumptions 

 

Rather than investigating the risk of a disease in a single region, spatial scan statistics 

scan the full study region for clustering.  The circular spatial scan, allows users to 

investigate data on disease across an entire number of sub-areas and to detect if there is a 

circular cluster of disease amongst a circular window imposed around an area. 

 

When running the spatial scan, the scanning window is in the form of either a circle or an 

ellipse.  The window with the Maximum Likelihood Estimator is the most likely cluster 

which is the cluster which is least likely to be due to chance.   

 

The spatial scan statistic used in this thesis is based on the spatial scan used in the 

SaTScan [34] software.  The only difference is that for this thesis the number of cases in 

each region is assumed to be Poisson distributed.  When using the Poisson model, the 

requirements are as follows: 

 

 Case and population counts are defined for each region 

 The geographical location of each region is defined 

 The time period over which the analysis is to take place is defined 
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2.4.2 Methodology 

 

The theory for this method is based upon the method as outlined by Kulldorff (1997) 

[35]. 

 

Firstly let N stand for a spatial point process where the number of random points is 

defined as ( )N A in the set A G  where G is a geographical space of which A is a subset 

of.  As the scan statistic window scans the study area it defines a set Z of zones where 

Z G .  There is just one zone Z G  where individuals have probability p of being a 

point, probability q of being outside the zone and   is the underlying intensity governing 

the distribution of points under the null hypothesis such that 

( ) ~ ( ( ) ( )) .CN A Pois p A Z q A Z A     . The null hypothesis can be defined as 

p q whilst on the other hand, the alternative hypothesis is such that , .p q Z Z   

( ) ~ ( ( ))N A Pois p A A   under the null hypothesis.  The null hypothesis is that the risk of 

disease is the same in the entire study area, where as the alternative is that there is an 

excess risk in the circular scan window. 

 

Now the likelihood of the Poisson model is defined.  The probability of Gn points in the 

study region is defined as 

  ( ) ( ( ) ( )) ( ) ( ( ) ( ))

!

Gnp Z q G Z

G

e p Z q G Z

n

         
 (2.3)

 

The density function of a specific point being observed at location x, ( )f x is 
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The likelihood function can now be written in the following form: 
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The likelihood ratio   can be defined as ,

0

ˆsup ( , , ) ( )

sup ( , , )
Z Z p q

p q
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  .                (2.6) 

 

We have 
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  .                                   (2.7) 

 

Now we take the supremum over all p and q for a fixed Z.  It takes a maximum when 

( )
 and 

( ) ( ( ) ( ))
G ZZ n nn

p q
Z G Z  


 


.                                                                                (2.8) 

 

We now have 
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The likelihood ratio can now be written as  
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when there is at least one Z where 
( ) ( ) ( )

G ZZ n nn

Z G Z  





 and 1  .  If this is not the case 

then I( ) is the indicator function. 

 

To find the distribution of the test statistic under the null hypothesis, Monte Carlo 

hypothesis testing is used.  The p-value of the test is based upon the null distribution of 

likelihood ratio test statistic with a recommended large number of Monte Carlo 

replications of the specified data set generated under the null hypothesis. 
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2.4.3 Summary 

 

Where the spatial scan differs from other methods is that it is concerned with comparing 

what is inside the spatial scanning window with what is outside, for example the number 

of cases.  This is seen to be an advantage as there may be a raised risk in the whole study 

area.   

 

Unlike the Besag and Newell method, the circular spatial scan is useful if the size and 

scale of clustering is not known [36].  The spatial scan may be a better choice to gain 

inferences about possible clusters and then it may be useful to test using the Besag and 

Newell method once information on clustering is generally known. 

 

Another advantage of this method is that it does not have multiple testing problems [37].  

The test is said to be good at pinpointing hot spot clusters, but a limitation of the circular 

spatial scan is that the shape of the clusters is restricted, that being the shape of a circle of 

an ellipse [38].  

 

2.5 Flexible-Shaped Spatial Scan Statistic 

2.5.1 Overview and assumptions 

 

Tango and Takahashi (2005) proposed a new method of scanning the study area to detect 

clusters [39].  The underlying reason behind this proposal was that the previous scan 
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statistic proposed by Kulldorff (1997) [35] was set up to use a circular window to define 

possible clusters.  This is seen is a disadvantage, as there are many situations where 

clusters may take a different shape.  The flexible spatial scan, allows users to explore 

disease data across an entire number of sub-regions and to detect if there is an irregularly 

shaped cluster of disease amongst a circular window imposed around an area.  An 

example of this may be on a coastline.  Tango and Takashi (2005) discusses the use of a 

scan statistic for detecting non-circular clusters [39]. 

 

2.5.2 Methodology 

 

The methodology discussed is based upon the findings of Tango and Takahashi (2005).  

The use of this method in this thesis is utilised using FleXScan software, which is 

software for the flexible spatial scan statistic [40].  This software is similar to SaTScan 

[34]. 

 

The first step in the method is to consider the entire region being split into m sub-regions.  

In each sub-region i, the number of cases is given by the random variable Ni where the 

observed value is given by ni where i=1, 2, …, m.  The null hypothesis H0 is that there is 

no clustering in the region.  We define Ni as independent Poisson variables under H0 such 

that 

 

,)(:0 iiNEH  ~iN Pois ),( i  i=1, 2, …, m. 
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In the above equation Pois(e) is the Poisson distribution with mean e and the ξi are the 

expected number of cases in the sub-region i under the null hypothesis.  For the purposes 

of this thesis the geographical position of each sub-region i will be the population-

weighted centroid.  The null hypothesis is such that the underlying risk of disease is the 

same in the entire study area, where as the alternative is that there is an excess risk in at 

least one scan window. 

 

The circular scan statistic uses a circular window Z on each population-weighted centroid 

of each sub-region i.  The radius of the circle d varies from 0 to a fixed maximum 

distance, or a set maximum number of regions K which are to be included in the cluster.  

If the population-weighted centroid of a sub-region i is incorporated within the scan 

window then the entire region is included in the window.  A number of overlapping 

circles that are possible clusters are created, each of different scale and location.  If Zik is 

the scan window, where k=1,2, …, K, created by the (k – 1) nearby neighbouring regions 

to i then the windows to be scanned by the circular spatial scan statistic are included in 

the set. 

 

1 { |ikZ  Z ,1 mi  1 }k K  . (2.11)

 

On the other hand, the flexible scan statistic creates a set of irregularly shaped windows 

which has k sub-regions which include the sub-region i.  The connected sub-regions are 

forced to be subsets of the set of sub-regions i and (K – 1) nearest neighbours to the sub-

region i where K is the maximum length of the cluster which is pre-specified.  
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 If Zik(j) is the jth window where j=1,2, …, jik and is a set of k sub-regions which are 

joined, starting at the sub-region i where jik is the number of j which satisfies Zik(j)  Zik 

when k = 1, 2, …, K.  All the windows scanned are included within the set 

 

 
2 ( ){ |ik jZ  Z ,1 mi  ,1 Kk  }1 ikjj  . (2.12)

 

Where this differs from the circular spatial scan statistic is that the flexible spatial scan 

statistic considers K concentric circles and all the possible permutations of connected 

regions and including the chosen sub-region i where the centroids are within the Kth 

largest concentric circle.  Therefore the size of Z2 is much greater than the size of Z1 

which is a maximum of mK. 

 

Now we consider the alternative hypothesis where there is at least one scan window Z 

where the risk is higher in the scan window than it is on the outside 

 

),())((:0 ZZ NEH  for all Z; 

     ),())((:1 ZZ NEH  for some Z. 

 

N( ) is the random number of cases and ξ( ) is the number of cases under the null 

hypothesis in the scan window.  In each window the likelihood is computed in order to 

examine the observed number of cases in and outside the specified window.  The test 

statistic is 
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where ZC refers to every region which lies outwith the window Z, n( ) is the number of 

cases observed within the window and I( ) is the indicator function.  The window Z* 

which has the maximum likelihood is defined as the most likely cluster.  

 

In order to find the distribution of the test statistic under the null hypothesis, we need to 

use Monte Carlo hypothesis testing.  To compute the p-value of the test, we base it upon 

the null distribution of likelihood ratio test statistic, where the number of Monte Carlo 

replications of the dataset generated under the null hypothesis should be as large as 

possible. 

 

2.5.3 Summary 

 

In proposing the method, Tango and Takahashi (2005) compared the performance of the 

circular spatial scan to that of the flexible spatial scan [39].  The findings of the analysis 

confirmed that the circular spatial scan statistic is highly accurate in detecting circular 

regions and correctly identifying hot spot regions as part of the most likely cluster.  The 

flexible spatial scan is shown to have good power in detecting circular clusters.  The main 

strength of the technique is the ability to pinpoint non-circular hot spot clusters more 

accurately than the circular spatial scan method. 
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One drawback of the analysis was that the flexible spatial scan statistic only works well 

for small or reasonable cluster sizes of up to around 30.  The method was found not to be 

practical for larger clusters sizes. 

 

2.6 Bithell’s Linear Risk Score 

2.6.1 Overview and assumptions 

 

An alternative method of analysing small-area data is to consider the relationship 

between risk and the distance from a point source.  One of the most common techniques 

to use when dealing with this sort of data is Bithell’s Linear Risk Score [41, 42].  This is 

a focused cluster test which examines how the risk of a disease varies as the distance 

from a defined hazard source changes. 

 

This method assumes that there is hazard source, or point of reference from which the 

distance can be measured to centroids as defined earlier in subsection 2.3.2.  It also 

assumes that the alternative hypothesis is defined by a Relative Risk Function (RRF) to 

outline how the relative risk varies with distance. 
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2.6.2 Methodology 

 

The method, known as Bithell’s T statistic is formulated by assigning a risk score to each 

region.  

 

The notation required for the method is defined as follows: 

 

The steps required in the analysis are provided below: 

 

1. Firstly define the coordinates of the hazard source or point of reference. 

2. Define the alternative hypothesis in the form of a RRF.   

 

The null hypothesis is that the observed counts are Poisson distributed with relative risk 

1.  The alternative hypotheses are drawn up to show how the relative risk varies with 

distance.  An example of some of these relative risk functions are given below in Figure 

2.1 

 

Oi 

θ1i 

= the number of observed cases of a defined disease in a region i 

= the relative risk for a defined region I based on the alternative hypothesis 
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(i) (ii) 
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(iii) (iv) 

Figure 2.1: Examples of relative risk functions which can be used to define the alternative hypothesis 

 

In Figure 2.1 we have the following: 
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 In (i) the relative risk is 3 at the hazard source which declines linearly to 1 at 

25km from the source 

 

 In (ii) the relative risk is 3 at the hazard source which declines exponentially to 1 

at 5km 

 

 In (iii) the relative risk in the entire 25km region is raised at 2 

 

 In (iv) the relative risk is 2 at the hazard source up to 10km from the point source 

then the relative risk instantly drops to 1 

 

The reason behind using these functions is that they can incorporate how risk can vary to 

exposure in distance and direction.  Figure 2.1 (iii) and (iv) however show that risk can 

vary in a different way and does not need to follow a set drop.  In the case of (iii) the risk 

has a constant rise, and in the case of (iv) the risk takes a sudden drop.  For these 

examples, the risk function would still be identical in all directions. 

 

To simulate these scenarios, the expected number of cases would be generated using 

mathematical functions set-up to generate cases in a way that would reflect the relative 

risks relationship with distance from the point source. 

 

3. The next step is to calculate  1logi i
i

T O   
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The p-value of the test is based upon Monte Carlo simulations, for which a large number 

is recommended. 

 

2.6.3 Summary 

 

Recently the study of risk in relation to distance from a point source has been a central 

area of investigation.  The political, social and health aspects of areas surrounding many 

nuclear installations in the UK have prompted a great deal of research within this area.  

The Black Advisory Group was set up in 1983 in response to a documentary connecting 

raised risk of cancer within the surrounding area of a nuclear installation and the 

radioactivity which this installation released [43].  The report released by the group [44] 

concluded that there was a higher incidence of childhood leukaemia, however the 

estimated radiation source could not account for this increased incidence on the basis of 

the knowledge available at that time.   

 

Since the publication of this report, there have been countless studies and re-analysis of 

data and data of a similar nature, such as the study into the incidence of childhood 

leukaemia and non-Hodgkin’s lymphoma in the vicinity of nuclear sites in Scotland from 

1968-93 [45].  This study was an investigation into seven nuclear sites in Scotland, 

namely: Dounreay, Chapelcross, Hunterston, Torness, Faslane, Holy Loch and Rosyth. 

This study found that there was no statistically significant excess risk of disease within 

the vicinity, however the numbers of cases were low.  This is a problem with using 
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methods such as the linear risk score, as the areas can be small, so expected numbers of 

rare diseases can be very small. 

 

One of the pioneers of these methods is the Small Area Health Statistics Unit (SAHSU) 

[46].  SAHSU have been involved in the area of risk and exposure assessment since its 

foundation in 1987.  SAHSU have developed a software tool for this type of analysis, 

called the Rapid Inquiry Facility (RIF) [47].  The RIF is a tool that is provided as an 

extension to Geographic Information Software (GIS) technology.  The software can 

quickly perform risk analysis around a hazard source by generating standardised rates and 

relative risks for a defined disease.  The RIF was intended for internal use at SAHSU but 

has since been available to other organisations.  A recent analysis [48] found the RIF to 

be useful in enhancing the interpretation of spatial scan results. 
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Chapter 3 

Simulation study 

3.1 Size and power of a study 

 

When we are assessing error there are two sorts of statistical error.  In a study there is a 

null hypothesis which relates to the status quo.  When testing there must be a defined 

state which relates to the opposite situation than that of the null hypothesis, namely the 

alternative hypothesis.  When a hypothesis is tested, the main aim is to precisely conclude 

if the null hypothesis can be discarded or not.  There are two results which can occur 

when a test is carried out e.g. a positive result or a negative result.  However mistakes can 

occur, so if the result of the test is not the same as the true condition then an error in 

testing has occurred.  On the other hand if the conclusion is the same as the true condition 

then the conclusion is correct.   

The two types of error which can be made are known as a type I and type II error.  When 

making reference to these, a type I error (α) is when the null hypothesis is rejected when 

it is in fact true.  Therefore it is the error when we reject the null hypothesis in favour of 

the alternative hypothesis.  This error relates to claiming that something is positive when 

it is not e.g. a population has higher than expected risk of a disease when it does not.  On 

the other hand there is a type II error (β) which is the error when the null hypothesis is 

not rejected when the alternative hypothesis is the true state of nature.  This error means 

that the test has failed to recognise a difference when there actually is one e.g. it is 
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concluded that a population has the same risk as expected when it has a higher risk than 

is expected.  The probability of not making a type II error is known as the power of a test 

which is equal to 1- β. 

When assessing the power of a test we are assessing the probability that the test will 

reject a false null hypothesis.  This is the same as the probability of not making a type II 

error.  A preset significance level α which is usually set to 0.05 (5%), which is known as 

a type I error.  The premise behind a type I error is that we should be minimising the 

chance of it occurring [49].  For example if we look to set α as 0.05 then there is roughly 

a 5 in 100 chance that the observed result is down to chance.  When dealing with power, 

any increase results in the chance of a type II error decreasing and vice versa. 

 

3.2  Introduction to SIR simulation 

 

The first method considered in this simulation is the SIR.  In order to reflect a real life 

scenario the leukaemia incidence in Scotland for 2003 will be used.  The reason for using 

leukaemia is that the distribution of risk in leukaemia is varied, enabling tests of different 

statistical size to take place. 

 

Assuming that there is no underlying process affecting the risk of leukaemia and 

therefore the cases are occurring at random, leukaemia incidence will be monitored to 

assess the performance of techniques used in small area statistics in relation to disease.  
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Table 3.1: Rates of leukaemia per 100,000 person-years at risk in Scotland in 2003 

Age ≤ 9 10-19. 20-29 30-39 40-49 50-59 60-69 70-79 ≥ 80 

Male 18.9 8.5 5.2 5.4 11.9 26.8 60.7 159.6 223.0
Female 06.7 6.4 3.9 4.0 10.8 17.5 40.5 079.3 114.3

 

 

In order to model leukaemia, the historical trends in incidence for Scotland are used.  The 

most up-to-date rates are the 2003 rates found on the ISD Scotland Cancer webpages.  

These rates are chosen as the expected rates.  Table 3.1 shows these data which will be 

used for the analysis.  The data includes eighteen age groups that are separated by five-

year age gaps, but for this analysis, the age groups have been aggregated to give nine age 

groups.  
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Figure 3.1: Plotted rates of leukaemia per 100,000 person-years at risk in Scotland in 2003 
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From Figure 3.1 it is clear that overall the rate of leukaemia is greater in males than 

females.  The rate of leukaemia is also much greater in those over 50 years old as we 

observe a sharp increase in rate for both genders, especially males.  On the whole the rate 

seems fairly steady between the ages of 10 and 40. 

 

3.3 SIR – Simulating under the null hypothesis 

 

When simulating under the null hypothesis we aim to assess the empirical size of the 

study.  In assessing this size, we are looking to measure the amount of times the null 

hypothesis is rejected when it is actually true.  In order to properly define the null 

hypothesis it is important to think about what information we are receiving from the test 

statistic regarding the population.  When testing the SIR our null hypothesis takes the 

following form: 

 

H0: θ = 1 

 

which indicates that the relative risk is 1, meaning that there is no excess risk of disease 

in the set region. 

 

In order to duplicate the conditions under which cases occur, the cases must be simulated 

under a similar premise.  Suppose that the number of cases which are observed in a given 

population are each located randomly in a fixed region.  The assumption of complete 
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spatial randomness is that the locations of these cases do not influence each other and that 

risk is uniform throughout the region [50].  To model this type of behaviour the Poisson 

distribution can be used to simulate the number of cases, with the formula outlined in 

Equation 3.1, given below 

 

 O = Pois (E ). (3.1)

The Poisson distribution is regularly used to model the number of events that occur in a 

fixed spatial region when they are taking place at random, such as cases of a rare non-

infectious disease. This expresses the probability that a number of events will occur in a 

fixed period of time and a fixed geographical region given that the expected number of 

these events is known from average rates.  For non-infectious diseases it is assumed that 

the observed number of cases are independent of one another, which the Poisson 

distribution fulfils. 

The foundations upon which we will be testing have been set up so we look to define our 

population and region which will be subject to the formal analysis.  To do this, 

information is required on the age, sex and location of the cases which we observe.  

Although leukaemia is one of the more common diseases, the rates are still fairly low in 

some age groups so grouping them further will give higher rates within each of the age 

groups, as displayed in Table 3.1.  From Equation 3.1, E is calculated from the figures 

given in Table 3.1 which contains the leukaemia rates per 100,000 people in Scotland in 

2003.  When population is allowed to vary during the simulation study, E will be adjusted 

according to the rates given in Table 3.1. 
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As previously highlighted, a problem with the SIR is its performance when there are low 

expected counts.  The method is evaluated in a set region, allowing the performance to be 

assessed over a widespread population range to allow the tests to be conducted in both 

sparse and dense populations.  The problems of low expected counts also arise when the 

disease under scrutiny is rare.  By changing the population size, the expected numbers of 

disease cases within the population will vary, which will allow the SIR to be evaluated in 

both low and high extremes. 

 

3.3.1 Empirical size 

 

Looking back, the null hypothesis states that θ=1 meaning that there is no excess risk of 

disease in the defined region.  When we simulate from the Poisson distribution the 

random variation suggests that the null hypothesis may not always be satisfied.  We now 

test to see how many times we observe a type I error over 1,000 simulations i.e. when we 

reject the null hypothesis when it is the true state of nature.  

 

For this we will test at the 10%, 5% and 1% significance levels to see how the choice of 

rejection criteria affects the results.  At these significance levels, as a rule of thumb, the 

null hypothesis should be rejected roughly 100, 50 and 10 times respectively from 1,000 

simulations.  The results of the entire analysis can be viewed in Appendix A.  Due to the 

amount of output in results the discussion will be based on males aged 20-29 years and 

females aged 80 years and over.  The males aged 20-29 years group has the smallest 

expected number of leukaemia cases in males and the females aged 80 years and over 
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group has the highest expected number of leukaemia cases, so the results will reflect the 

low and high expected numbers scenarios. 
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Figure 3.2: Comparison of SIR size calculations when α=0.1 

 

The results when testing at the 10% significance level are displayed in Figure 3.2.  The 

results in the male aged 20-29 years group are very unsteady.  The data displays that as 

the population size increase i.e. as the expected number increases, there are less type I 

errors being made.  The results of the female aged 80 years and over group are steady at 

the 10% level.  As a rule of thumb the size calculations should be approximately 0.1 for 

each of the populations.  This criterion is met by the female group but not by the male 

group where the results are very volatile.  Recalling that the male rates used in Figure 3.2 
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were chosen because it is the smallest rate in males, then this result underscores the 

problem with small numbers.  
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Figure 3.3: Comparison of SIR size calculations when α=0.05 

 

Figure 3.3 compares the results of the SIR size calculations at the 5% significance level.  

The results of these should approximately lie around 0.05.  The male group again 

displays a lot of variation, which can be attributed to the small number of cases.  The 

amount by which the results fluctuate across the differing population sizes is not as large 

as in Figure 3.  This implies that although the testing conditions are stricter, the SIR is 

still fairly unstable, although not as much as in the previous case.  The female data is 
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again fairly steady and is approximately around the 0.05 level which we would expect it 

to be. 
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Figure 3.4: Comparison of SIR size calculations when α=0.01 

 

Finally Figure 3.4 displays the results when testing at the 1% significance level.  This 

significance level relates to when the conditions for rejection are very tight.  The results 

for the male age group are a lot closer to what they should be.  The results should be 

close to 0.01.  The female age group results are very close to 0.01.  Overall both age 

groups are fairly good when the grounds for rejection are very tight.  From Figure 3.4 you 

can see that the results for the male age group are slightly higher than the female age 

group. This highlights that although the results are better at this significance level, the 

fact the expected numbers are low in the male age group affects the quality of the results. 
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From applying the SIR method to the data, there are clearly some major strengths and 

weaknesses.  The size of the SIR is very unstable when the population is sparse from 

around the ages 10 to 49 years, especially when the significance level is set as 10% and 

5%.  The reason for this is that setting the significance level as small as possible helps to 

protect the null hypothesis and can help prevent false claims being made.  Around the 

ages of 50 and over the size is fairly stable.  Looking to the plot of the leukaemia rates in 

Figure 3.1 there is a clear trend.  Between the ages of 10 and 49 this is when the rates are 

at the lowest.  It is at this stage where the null hypothesis is being rejected the most 

meaning this is where type I errors are most likely to be made.  Around the age of 50 the 

rates start to rise and this rise in numbers is reflected in the size since the size appears to 

be very stable and closer to the preset significance level around this point. 

 

3.4 SIR – Simulating under the alternative hypothesis 

 

It is not unreasonable for a member of the public to perceive that there may be an 

underlying mechanism causing the risk of disease in an area to rise.  It is for this reason 

the power of a statistical hypothesis test is measured, since this computes the tests’ ability 

to reject the null hypothesis when it is actually false.  The alternative hypothesis is used 

to assess the power of the study.   The alternative hypothesis takes the following form 

 

H1: θ > 1 
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which means the relative risk is greater than 1 for the region meaning that there is an 

excess risk of disease in the defined region. 

 

The alternative hypothesis will be simulated from a Poisson process just like the null 

hypothesis was.  The difference this time is that the expected numbers will be 

manipulated to create a scenario where the relative risk is raised for each age group  

  

O = Pois ( )E  (3.2)

  

where θ in Equation 3.1 is the relative risk.  In the case when simulating the null 

hypothesis the relative risk was set to 1.  When simulating the alternative hypothesis the 

relative risk will be set to 2 meaning that the number of cases being simulated will be 

double what we actually expect.   

 

3.4.1 Power 

 

Now we look to assess how many times a type II error occurs, that is when the null 

hypothesis is not rejected when the alternative hypothesis is the true state.  As before, in 

the empirical size calculations, the males aged 20-29 years and females aged 80 years and 

over age groups will be used in the analysis.  The results for the other age groups can be 

found in Appendix A. 
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Figure 3.5: Comparison of power of SIR when α=0.1 

 

The power at the 10% significance level is good.  The results of the analysis are 

displayed in Figure 3.5.  The power is strong in both the male and female age groups.  

The lowest power is around 97% that is observed in the male group.  
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Figure 3.6: Comparison of power of SIR when α=0.05 

 

The results in Figure 3.6 are not as powerful than the previous example, due to the 

tightening of the rejection region.  However, the results display that the female group has 

good power, roughly around 95%.  The male group also has good power, however the 

low population size of 10,000 is exhibiting weaker power at around 80% than the rest of 

the population groups. 
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Figure 3. 7: Comparison of power of SIR when α=0.01 

 

Figure 3.7 displays the power of the SIR method when the significance level is set to 1%.   

The female group displays good power at this significance level.  The power of the male 

group is fairly unsteady in comparison to the female group - at the lower population sizes 

the power is significantly lower than at the higher population size.  

 

The results of the powers calculations, mirror that of the empirical size calculations.  This 

underscores the important of size and power.  The analysis reinforces the previous 

knowledge on the SIR.  The SIR performs poorly when sparse data is involved, especially 

when expected numbers of cases are below or around 1.  This analysis underscores the 

fact that there are often cases when a region may observe far more cases than expected 

which can produce a result which we cannot find a reason for. 



 69

3.5 Introduction to Spatial Scan simulation 

 

The direction of the study now takes a different approach by considering an alternative 

scenario.  Leukaemia incidence in children is a controversial and well-researched area so 

the section of the simulation will be structured to represent practical examples which 

would be likely to prompt a research interest.  Likewise in the previous section the 

historical trends in incidence for Scotland are used.  This time the population of interest is 

restricted to those boys and girls under 15, to represent childhood leukaemia cases.  The 

rates are averaged over the ten-year period so that the chosen rates are more stable. 

 

The breakdown of childhood leukaemia rates by gender is provided in Table 3.2. 

 

Table 3.2: Rates of  childhood leukaemia per 100,000 person-years at risk in Scotland in 1994-2003 

Age < 5 5-9. 10-14 

Male 84.2 36.4 19.7 
Female 067.2 23.5 25.6 

 

3.6 Spatial scan – Simulating under the null hypothesis 

 

The form of the null hypothesis is such that it defines the state of no clustering.  

Essentially this means that the risk inside the scan window is not significantly different 

from the risk outside of the window.    
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The null hypothesis is the simplest model to define in the spatial scan scenario.  To do 

this regions are set-up using Scotland’s local government district [51].  There are 56 local 

government districts in Scotland.  The first step is to calculate the number of childhood 

leukaemia cases that occur in each of these 56 areas.  The spatial scan methods used are 

purely based upon observed and expected numbers so the locations of these cases do not 

need to be determined.  Instead we are only interested in the number of cases that occur 

within each of these local government districts, the point of reference is the population-

centroid that is calculated by finding the weighted centre point of the population-at-risk. 

 

Similarly to the first scenario of the study, the Poisson distribution is used to calculate the 

observed number of cases within each local government region.  To mimic the conditions 

of leukaemia incidence, we simulate the cases based upon their expected numbers.  In 

order to calculate these expected numbers, we use data on the age, sex and grid reference 

of the cases which we observe. 

 

3.6.1 Empirical size 

 

By simulating the null hypothesis using the expected number, we look to see how many 

times we observe a type I error.  Due to limitations in computing time of the method, this 

type I error is observed over 100 simulations and the population at risk is combined by 

age and sex, giving us a single expected number for each region.  These restrictions may 

also limit the conclusions which can be drawn from this study since due to the small 

number of simulations used and may not be enough to draw meaningful conclusions 
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about the data.  In this analysis, small differences between the methods may be down to 

chance, where as large variations between methods are more likely to be real differences. 

 

Taking both the observed and expected number of cases for each local government 

district, we calculate the empirical size for both the circular spatial scan statistic and the 

flexible spatial scan statistic. 

 

Table 3.3: Empirical size of the spatial scan statistic when using the circular spatial scan 

Significance Level 10% 5% 1% 

Empirical Size 0.11 0.06 0.01 

 

Table 3.4: Empirical size of the spatial scan statistic when using the flexible spatial scan 

Significance Level 10% 5% 1% 

Empirical Size 0.08 0.05 0.01 

 

 

Table 3.3 shows the empirical size results of the circular spatial scan method when 

applied to the childhood leukaemia data.  Looking at the figures, the empirical size 

calculations look to be around what would be expected.  At the 10% significance level 

there is only one more case that we would expect, which similarly is the case at the 5% 

significance level.  At the 1% level, we get exactly the same, as we would expect to 

observe as a rule of thumb.  However if we observed one more case then we would be 

observing double the number of cases that we would expect to observe.  This highlights 
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the main problem with using 100 simulations.  From these results, we can conclude that 

the size of the circular spatial scan method is seemingly stable. 

 

The empirical size results of the flexible spatial scan method are displayed in Table 3.4.  

On investigation, the empirical size looks steady.  At the 10% significance level we 

observe two less type I errors than we would expect where as the 5% and 1% significance 

levels give us results which we would expect. 

 

3.7 Spatial scan - Simulating under the alternative hypothesis 

 

The alternative hypothesis of the spatial scan statistic will take two forms.  The reason 

behind this is because of the two scan statistic methods which are being used, namely the 

circular and flexible spatial scans.  It is important that specialised scenarios are identified 

to assess their performance.  The form each alternative hypothesis will take is that four 

local government districts will take the form of a cluster.  The relative risk in each of 

these four areas is set to be 2.  Each of the local government districts in the cluster must 

be connected to at least one another local government district within the cluster. 

 

The alternative hypotheses are set-up as in Figure 3.8.  The local government regions 

included in the clusters are as follows: 

 

Circular Cluster (i): Falkirk, Dunfermline, Edinburgh City and West Lothian 
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 Flexible Cluster (ii): Stewartry, Wigtown, Cunninghame and Kyle & Carrick 

 

Looking at Figure 3.8 gives a feel for how the clusters are set-up.  Cluster (i) is closely 

representative of a circular cluster since the local government districts are set-up in a 

manner that represents a circular shape.  Cluster (ii) on the other hand does not exhibit 

the characteristics of a circular cluster; instead it has been set-up to cover the south-west 

coast line of Scotland.  A flexible cluster such as this one could emerge from the presence 

of a risk-factor on the coastline, which could possibly explain increased incidence along 

or around this area.  Another applicable example of a cluster of this form is if the water 

from a river running through the country was contaminated and this was a risk-factor 

responsible for raising the incidence of disease in areas adjacent to the river. 
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(i) (ii) 

Figure 3.8: Alternative hypothesis defined for a circular and flexible cluster 

 

3.7.1 Power 

 

In this section, the results of the circular scan statistic are compared against the results of 

the flexible spatial scan to highlight the advantages and disadvantages of each method.  

We now look to see the probability that each of the methods have of rejecting the null 

hypothesis of no clustering when there is a cluster present, either (i) or (ii).  Due to the 

limitations in computing power, 100 simulations are used.  When investigating the results 
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small differences are likely to be due to chance and large differences are more likely to be 

true variations. 

 

Firstly we investigate the circular cluster.  Table 3.5 contains the results of the power 

calculations when both the circular and flexible spatial scan statistic methods are used.   

 

Table 3.5: Results of power calculations for the circular cluster 

Circular Spatial Scan Method    
Significance Level 10% 5% 1% 
Power 0.99 0.98 0.96 
    
Flexible Spatial Scan Method    
Significance Level 10% 5% 1% 
Power 0.98 0.98 0.94 

 

 

The results show that the power is very high for both the circular and flexible spatial scan 

methods when carried out upon the data with the circular cluster as defined in (i).  A 

difference in the results occurs at the 10% level, where the circular spatial scan method 

has a power of 0.99 with the flexible spatial scan method yielding a power of 0.98.  The 

only other difference is at the 1% significance level where the circular spatial scan 

method yields a slightly higher power of 0.96 compared to the flexible spatial scans 

power of 0.94.  The difference in power between the circular and flexible scan are very 

small, which indicates that they are likely to have occurred through chance. 
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The power is a good indication of how well the method is performing, however it does 

not give us any indications of the type or size of the significant cluster in each simulation.  

Table 3.6 details the proportion of times the areas from the ‘true’ cluster were actually 

part of the most likely cluster according to both the circular and flexible spatial scan 

methods.  

 

Table 3.6: Proportion of times the MLC contains a true district from the circular cluster 

Area Circular Method Flexible Method 
Falkirk 0.93 0.83 
Dunfermline 0.95 0.65 
Edinburgh City 0.95 0.93 
West Lothian 0.97 0.94 

 

 

Table 3.6 gives us more of an idea of how the actual method is performing.  Although the 

flexible spatial scan method was yielding very similar power to the circular spatial scan, 

it is clearer that the areas with the raised relative risk i.e. the districts from the true 

cluster, were not part of the significant cluster as much for the flexible method than they 

were the circular method.  This helps provide evidence that the circular spatial scan 

statistic is a better at picking up areas which are closely joined together and represent a 

circular shape. 

 

Now we examine the results of the power calculations for the alternative hypothesis as 

describes in (ii).  Table 3.7 displays the results of the power comparisons. 
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Table 3.7:  Results of power calculations for the flexible cluster 

Circular Spatial Scan Method    
Significance Level 10% 5% 1% 
Power 0.81 0.68 0.50 
    
Flexible Spatial Scan Method    
Significance Level 10% 5% 1% 
Power 0.82 0.71 0.57 

 

 

For the alternative hypothesis (ii) the power is lower than the power achieved under the 

alternative hypothesis (i).  However the flexible spatial scan method yields higher power 

than the circular spatial scan at all three significance levels, 10%, 5% and 1%, albeit, just 

slightly higher power.  Although the power is not as high, it is fairly good at the 10% 

significance level.  Again the differences between both methods are fairy negligible and 

are likely to be down to chance rather than being a true difference. 

 

Table 3.8 outlines how often we observe a district from the defined cluster in each of our 

simulations. 

 

Table 3.8: Proportion of times the MLC contains a true district from the flexible cluster 

Area Circular Method Flexible Method 
Stewarty 0.36 0.63 
Wigtown 0.36 0.67 
Cunninghame 0.73 0.92 
Kyle & Carrick 0.80 0.95 

 

The results in Table 3.8 help us investigate the findings of the previous power 

calculations.  The circular spatial scan statistic does not have a high proportion of the 
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districts from the true cluster (ii) appearing in the most likely cluster.  For the districts of 

Stewartry and Wigtown, these areas appear almost two times more often when the 

flexible spatial scan method is used compared with the circular spatial scan.  The flexible 

spatial scan has a higher percentage of true hot spot districts in it, and has slightly greater 

power when the cluster in (ii) is used, providing more support to the findings that the 

flexible spatial scan is a better choice of method to pick up non-circular clusters. 

 

3.8  Conclusions 
 

In analysing the performance of the SIR in different scenarios, the strengths and 

weaknesses that were discussed in Chapter 2 can be further highlighted.  In the instance 

where the population was low, therefore the expected rates were low, the SIR proved to 

be very unstable.  This underscores the fact that when dealing with sparse data, the 

performance of the SIR can be very volatile.  These weaknesses lead us to consider 

different techniques.  However it must be noted that when the data is dense, therefore 

expected numbers were high, the SIR mostly yielded the correct results, indicating that in 

this scenario the technique performs very well. 

 

Both spatial scan techniques yielded high power, indicating that the technique performs 

well.  The circular and flexible scan statistics both performed well regardless of the shape 

of the cluster.  However, the choice of scan used is very important, since the circular scan 

was poor in correctly pinpointing the correct cluster hotspots, when the cluster took a 

non-circular shape. 
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Chapter 4 

Mortality of breast and colon cancer in Scotland 

4.1 Epidemiology of breast cancer 

 

The most common cancer for women in the United Kingdom is breast cancer.  Around 

44,000 cases of breast cancer occur each year.  The lifetime risk of breast cancer amongst 

women is one in nine and it accounts for one-third of all cases of cancer in women [53]. 

 

Breast cancer can develop in the milk-producing glands within the breasts or from the 

passages from which milk is delivered to the nipples.  It can spread to the surrounding 

tissues as well as other body parts.  However due to earlier detection and improved 

treatments for breast cancer, the death rates in the United Kingdom have fallen by one-

fifth in the last decade.  Although breast cancer is predominantly a female cancer, it is 

still found in males but cases are very rare.  Each year in the United Kingdom there are 

roughly 300 cases diagnosed. 

 

With breast cancer there are a number of risk factors which can increase the chance of a 

patient being diagnosed with the disease.  The following factors affect the risk of breast 

cancer: 
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 Age – This is the main risk factor for breast cancer which is not gender-specific is 

age.  Breast cancer is more commonly found in older women and is considered 

rare in woman under 30 

 

 Children – If a woman has more children then this lowers her risk of breast 

cancer, the younger she has these children will also decrease the risk.  

 

 Menstruation and menopause – Women that start their periods early or have a 

late menopause are subject to an increased risk. 

 

 Contraceptive pill – Women who take the pill have a slightly raised risk of breast 

cancer however this risk returns to normal once a woman stops taking it. 

 

 Hormone replacement therapy (HRT) – Women undergoing HRT are at an 

increased risk.  This risk increases if they are taking combined 

oestrogen/progestagen HRT and the longer they take it.  This risk goes back to 

normal around 5 years after the treatment stops. 

 

 Weight – If a woman is overweight once she has gone through the menopause 

then she is at an increased risk due to body fat affecting the level of oestrogen in 

her body.  A balanced diet and regular exercise can help a woman keep a health 

body weight. 
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 Alcohol – A woman who drinks alcohol every day will increase her risk of breast 

cancer.  If a woman drinks more every day then the risk will get greater. 

 

 Family – If one or more of a woman’s close family have had breast cancer then 

the woman’s risk of being diagnosed is greater. 

 

 Breastfeeding – The only recognised risk factor in reducing the risk of being 

diagnosed with breast cancer is breastfeeding.  A woman who breastfeeds her 

children for longer will lower her risk of being diagnosed. 

 

With breast cancer being a common disease it is not unusual for other members of a 

family to be diagnosed with breast cancer through chance.  However there are cases of 

breast cancer being hereditary due to a faulty gene, although only a small amount of 

breast cancer is thought to be attributable to this. 

 

4.2 Analysis of breast cancer mortality in Scotland 1986-1995 

4.2.1    Introduction 

 

Breast cancer mortality data in Scotland for the years 1986-1995 were obtained from the 

General Register Office for Scotland for analysis.  The data included information on 

deaths due to breast cancer in Scotland for both men and women between the ages of 20-

39 years.  In this time period there were 382 deaths from breast cancer in this age group 
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in Scotland.  Two of the cases were male deaths.  Due to the main risk factor associated 

with breast cancer being gender specific, the male cases were removed from the data.  

The number of cases is so small it cannot merit an analysis on its own right.  The 

individual cases had data on the date of death, the age of death, the cause of death given 

by ICD 9 coding and the output area where this death occurred where the output areas 

correspond to the postcode sectors of the 1991 census geography, which were linked to 

the output areas corresponding local government distict.  There are 5 cases of breast 

cancer where the census output area is not defined.  For the purposes of summary 

statistics these cases were included, however they were excluded from all other analysis. 

 

Table 4.1: Cases of breast cancer mortality for females aged 20-39 years in Scotland 1986-1995 

  Age group (years) 

  20-24 25-29 30-34 35-39 Total 
1986 1 0 9 26 36 
1987 0 1 11 22 34 
1988 0 5 7 22 34 
1989 0 2 8 24 34 
1990 0 6 11 25 42 
1991 0 2 17 21 40 
1992 1 5 15 19 40 
1993 0 3 13 24 40 
1994 0 1 15 25 41 
1995 0 3 12 24 39 

Y
ea

r 

Total 2 28 118 232 380 
 

 

The data published on the numbers of breast cancer deaths by the NHS are broken up into 

age groups of five-year age groups.  The breast cancer mortality in Scotland in women 

aged between 20-39 years is displayed in Figure 4.1.   
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Figure 4.1: Trend of breast cancer mortality in females aged 20-39 years in Scotland 1986-1995 

 

The breast cancer mortality in females between 20-24 years has 2 cases over a 10-year 

period.  The number of deaths due to breast cancer in females aged 25-29 years starts to 

rise as the time period advances.  In general the number of cases fluctuate however the 

changes seem to be due to random variation.  Mortality in females aged 30-34 years is 

greater than the previous age group.  The number of deaths due to breast cancer varies 

over the years however there is a very slight increase in the number of deaths as a general 

trend.  For females between the ages 35-39 years there are a lot more cases.  These 

fluctuate like the other groups and no general trend is apparent.  It can be seen that age is 

a risk factor in Figure 4.1 since the cases are more prevalent in the older age groups.  
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4.2.2    Methodology 

 

The rationale behind investigating the breast cancer mortality between females aged 

between 20-39 years is that it has been suggested that younger breast cancer patients have 

a poorer survival rate.  Although the incidence is far higher in older women, breast cancer 

in younger women is said to be more aggressive and is more deadly in younger women 

[54].  By looking at a disease map for the whole of Scotland it will pinpoint the fact that 

different areas are exposed to different risk factors.  By considering that there is a 

hereditary nature in breast cancer mortality in younger women we would expect any 

excess in cases to occur closed to each other due to families’ members mostly living in 

similar districts.  

 

In order to analyse the data the expected numbers are needed.  To calculate these 

expected numbers, the age-standardised mortality rates for Scotland are used.  These rates 

are adjusted in proportion to the population-at-risk within each local government district.  

For each of the 56 local government districts we now have the expected numbers of 

deaths due to breast cancer.  The first step in our analysis is to calculate the SMR for the 

56 local government districts and the 12 local government regions.  Once this has been 

carried out then a spatial scan analysis of the data will be carried out, using both a 

circular and flexible shaped scan window.  Finally the Besag and Newell test statistic will 

be carried out to add to any exploratory findings from the data.  
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4.2.3    Results of analysis 

 

To gain further information into the data the disease map is plotted in Figure 4.2.  

Plotting the SMR for each district provides a useful insight on how breast cancer 

mortality is varying across the local government regions and more importantly Scotland 

as a whole.  Without considering statistical significance and just focusing purely on the 

SMR, many inferences can be made about the way the mortality of breast cancer varies 

across the country.  The north-west area of the Highlands and Orkney appear to have an 

excess of mortality due to breast cancer.  The rest of the Highland districts do not exhibit 

this trend.  In the Highland districts the population is sparse so there may be some 

difficulties in interpreting the SMR due to small numbers. 

 

The north-east area of Scotland, notably the Grampian region has a level of mortality 

greater than is expected.  This trend continues down into the Lothian region and is 

displayed most noticeably across central Scotland.  There are some districts in the south 

that also display this behaviour but most of the districts surrounding this area are 

implying there is less deaths due to breast cancer than we expect so there is not much 

more information that we can gather from this.   
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Figure 4.2: Disease map of breast cancer mortality in females in Scotland 1986-1995 

 

The ideas gathered from analysing the disease map can now be formally tested by 

considering the statistical significance of the SMR for each district.  SMR results for each 

of the 56 local government districts, as well as for each of the 11 local government 

regions, are given in Table 4.2. 
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Table 4.2: Results of SMR analysis for breast cancer mortality in females in Scotland 1986-1995 
Local Government District Observed (Oi) Expected (Ei) SMR p-value 
Borders 7 7.10 0.99 0.42 
   Berwickshire 1 1.26 0.79 0.36 
   Ettrick & Lauderdale 3 2.40 1.25 0.22 
   Roxburgh 3 2.39 1.25 0.22 
   Tweeddale 0 1.05 0 0.65 
Central 22 19.59 1.12 0.25 
   Clackmannan 5 3.50 1.43 0.14 
   Falkirk 8 10.44 0.77 0.71 
   Stirling* 9 5.64 1.59 0.06 
Dumfries & Galloway 4 10.31 0.39 0.98 
   Annandale & Eskdale 0 2.61 0 0.93 
   Nithsdale 2 4.17 0.48 0.79 
   Stewartry 1 1.51 0.66 0.44 
   Wigtown 1 2.02 0.50 0.60 
Fife 29 24.95 1.16 0.18 
   Dunfermline 12 9.54 1.26 0.17 
   Kirkcaldy 11 10.77 1.02 0.39 
   North East Fife 6 4.63 1.30 0.19 
Grampian** 52 38.87 1.34 0.02 
   Aberdeen City 20 15.56 1.29 0.11 
   Banff & Buchan* 9 6.05 1.49 0.09 
   Gordon** 12 6.91 1.74 0.02 
   Kincardine & Deeside 6 4.42 1.36 0.16 
   Moray 5 5.92 0.84 0.54 
Highland 12 14.93 0.80 0.73 
   Badenoch & Strathspey 0 0.75 0 0.53 
   Caithness 0 1.83 0 0.84 
   Inverness 2 5.03 0.40 0.88 
   Lochaber 0 1.43 0 0.76 
   Nairn 0 0.72 0 0.51 
   Ross & Cromarty** 7 3.54 1.98 0.03 
   Skye & Lochalsh 1 0.82 1.22 0.20 
   Sutherland** 2 0.81 2.46 0.05 
Lothian 55 56.87 0.97 0.56 
   East Lothian 5 6.38 0.78 0.61 
   Edinburgh City* 40 32.49 1.23 0.08 
   Midlothian 4 6.19 0.65 0.74 
   West Lothian 6 11.81 0.51 0.95 
Strathclyde 160 167.57 0.95 0.70 
   Argyll & Bute 5 4.39 1.14 0.28 
   Bearsden & Milngavie 1 3.02 0.33 0.80 
   Clydebank 1 3.17 0.32 0.83 
   Cumbernauld & Kilsyth 4 5.03 0.79 0.57 
   Cumnock & Doon Valley 4 3.01 1.33 0.19 
   Cunninghame 13 10.10 1.29 0.14 
   Dumbarton 6 6.03 1.00 0.40 
   East Kilbride 9 6.56 1.37 0.13 
   Eastwood* 8 05.03 1.59 0.07 
   Glasgow City 37 48.32 0.77 0.94 
   Hamilton 8 8.20 0.98 0.44 
   Inverclyde 3 6.31 0.48 0.87 
   Kilmarnock & Loudoun 3 6.12 0.49 0.86 
   Kyle & Carrick 6 8.20 0.73 0.71 
   Clydesdale 5 4.51 1.11 0.30 
   Monklands 10 7.59 1.32 0.15 
   Motherwell* 15 10.33 1.45 0.06 
   Renfrew 18 14.81 1.22 0.17 
   Strathkelvin 4 6.83 0.59 0.81 
Tayside 31 27.52 1.13 0.22 
   Angus 7 6.82 1.03 0.37 
   Dundee City 12 11.82 1.02 0.40 
   Perth & Kinross 12 8.88 1.35 0.12 
Orkney 2 1.32 1.52 0.15 
Shetland 2 1.67 1.19 0.24 
Western Isles 1 1.75 0.57 0.52 
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4.2.4    Discussion 

 

Using the SMR method there are a significant excess risk of mortality at both the local 

government district level and local government region at the 5% and 10% significance 

levels.  Those districts which produced significant results at the 10% significance level 

but not at the 5% significance level were Stirling, Banff & Buchan, Edinburgh City, 

Eastwood and Motherwell. 

 

At the 5% level the most statistically significant results are at the districts Gordon, Ross 

& Cromarty and Sutherland.  The local government region of Grampian had a significant 

excess risk at the 5% level.  These results are very much like was expected from 

examining the disease map.  Although the disease map did not provide a definitive 

response to any concerns, it is useful to get a visual representation of the geographic 

variation. 

 

Firstly we look to the Highland region where there are two regions which the analysis 

suggests have an excess risk of breast cancer mortality at the 5% significance level.  

Looking to the plot we see Ross & Cromarty and Sutherland areas are neighbouring 

districts.  For the Sutherland district there are only 2 deaths due to breast cancer in the 

ten-year period which is over two times what we expect. This excess risk could just be 

down to chance due to the small amount of deaths involved.  However since it is a 

neighbouring district of Ross & Cromarty, which has almost double the amount of deaths 
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than it is expected to have, there could possible be an excess risk of death due to breast 

cancer in females aged 20-39 years. 

 

Now we look to the Grampian region. Banff & Buchan and Gordon display a significant 

excess risk of mortality at the 10% and 5% significance levels respectively.  Although the 

Grampian region contains three other districts which do not display an excess risk of 

mortality, there are two of them which have an SMR greater than 1.  Overall the results 

from the analysis suggest that there is an excess risk of breast cancer mortality in females 

between the ages of 20-29. 

 

The other 3 districts which are significant at the 10% level are from different local 

government regions.  Stirling, Edinburgh City, Eastwood and Motherwell all have a 

significant excess risk of mortality however they are located close to or in the central belt 

of Scotland.  Although they are from different regions, geographically they are located a 

great distance from one another. 

 

In order to fully analyse the data for a possible elevated risk of death due to breast cancer 

it is necessary that we look to further investigate the possibility of one or more mortality 

clusters.  To do so, we carry out the circular and flexible spatial scan.  Summary results 

of this analysis are provided below in Table 4.3.  More detailed results of this analysis are 

provided in Appendix B. 
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Table 4.3: Spatial Scan analysis of Breast Cancer Mortality 

  Circular Scan Flexible Scan 

Overall Relative Risk 1.20 1.41 

p-value 0.37 0.63 
 

The results of the analysis did not find any significant most likely clusters.  The most 

likely cluster which was found using the circular spatial scan had a p-value of 0.374.  

Using the flexible spatial scan the most likely cluster had a p-value of 0.627.  

 

Recalling that the Besag and Newell test statistic is useful if the basic size and shape of a 

cluster is known, we can now call upon that.  The advantage in setting the size of the 

cluster prior to the analysis is that we can set it in relation to the number of deaths 

observed within a region, or a combination of districts.  However the application of the 

Besag and Newell test statistic after the SMR analysis raises post-hoc testing issues.  Due 

to this, the results of the analysis are considered to add to investigative findings, rather 

than definitive conclusions.  

 

First of all we consider the Highland region.  In this region the SMR analysis suggests 

that there may be an excess risk of mortality in both Sutherland and Ross & Cromarty.   

Since these are neighbouring districts we look to see if there could be a possible 

clustering of deaths.   Testing using the Besag and Newell method for a cluster of size 9 

yields a p-value of 0.079 which is statistically significant at the 10% level.  Accumulating 

the cases for both regions gives 9 observed deaths where only 4.35 were expected.  The 

evidence of a significant cluster at the 10% level, made up of Sutherland and Ross & 
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Cromarty, gives us an indication that there may be an excess risk of mortality within this 

sub-region of the Highlands. 

 

Now we consider the Grampian local government region.  The analysis appeared to 

suggest that living in this region during the study time period put females aged 20-39 

years at a raised risk of mortality of breast cancer.  We look for a cluster of 52 cases, 

which is the amount of deaths observed in the region.  Whilst 52 deaths are observed 

there are only 38.86 deaths expected in the Grampian region.  Testing using the Besag 

and Newell method results in a p-value of 0.042 for the Grampian region which is 

significant at the 5% level.  This may suggest that there is evidence of clustering of breast 

cancer mortality in the Grampian region.  The geographical location of the clusters are 

represented by Figure 4.3. 
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Figure 4.3: Clusters of breast cancer mortality in females aged 20-29 in Scotland 1986-1995 

 

Overall the analysis has suggested that there may be a possibility of a cluster of breast 

cancer mortality amongst females aged 20-29 from 1986-1995 in a small sub-section of 

the Highlands (Sutherland and Ross & Cromarty).  There may also be evidence of a 

cluster of breast cancer mortality in the Grampian region, where the most significance 

cluster is made up of the Aberdeen City, Banff & Buchan, Gordon, Moray and Kircardine 

districts.  Although the tests have provided some evidence to suggest this, neither of the 
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scan statistics showed displayed any evidence of clustering.  Another issue to consider is 

multiple testing, whereby some false positive results may occur by chance.  

 

4.3    Epidemiology of colon cancer 

 

Cancer of the colon is more commonly known as bowel cancer.  It is a very common 

cancer, being the third most common in men and the second in females in the United 

Kingdom.  Colon cancer accounts for around 13% of all cancers with around 21,617 and 

13.389 new cases in men and women respectively each year in the UK [54]. 

 

This form of cancer occurs in the colon and takes around five to eight years to develop.  

The first stage is often a small growth, called a polyp or adenoma, which grows on the 

wall of the bowel.  Colon cancer can spread to other body parts, most frequently the liver. 

 

The factors which can result in a raised risk of colon cancer are outlined below: 

 

 Age – Bowel cancer is most frequent in older people and as you become older the 

risk of developing this cancer increases.  Around eight out of ten cases of are 

people that are over 60. 

 

 Weight – Overweight or obese people are at a higher risk. 
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 Physical ability – Those who do not exercise and are inactive are at a higher risk 

than those who don’t.  Moderate exercising can aid to lower the risk of the 

disease. 

 

 Diet – Diets which are high in red or processed meat and fat and low in fruit, 

fibre, folate and vegetables can be at a higher risk 

 

 Smoking and alcohol – Those who smoke may be at an increased risk, especially 

those who are also heavy drinkers.  The consumption of alcohol can possibly lead 

to a raised risk, especially in people that have low levels of folate in their diet. 

 

 Previous diagnosis – Those that have previously been diagnosed with bowel 

cancer or people that have had a polyp in their bowel are at a raised risk.  If the 

polyp was an adenomatous polyp then it is possible that there is another increase 

in the risk. 

 

 Crohn’s disease – Anyone that has had Crohn’s disease may have a small 

increased risk. 

 

 Family - Colon cancer can run in families.  Some people inherit a faulty gene 

from one of their parents which puts them at a higher risk than normal.  Families 

that contain this gene usually have a history of bowel cancer within their family. 
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4.4    Analysis of colon cancer mortality in Scotland 1986-1995 

4.4.1    Introduction 

 

Data on colon cancer mortality were gathered from the GRO Scotland.  The time period 

of the study is from 1986-1995.  The information obtained was deaths due to colon 

cancer for males and females aged between 15-39 years.  There were 104 deaths due to 

colon cancer in Scotland between 1986 and 1995.  Of these 104 deaths, 53 of these were 

males and 51 of them females.  For each case, data were provided on the date of death, 

the age of death, the cause of death and the output area which the death occurred in, 

which was then matched to the output areas corresponding local government district. 

 

The data published regarding numbers of colon cancer deaths were gathered from ISD 

Scotland, where the mortality is broken up into age groups of five year gaps.  A 

breakdown of the difference in mortality trends between both genders in the study time 

period is displayed in Tables 4.4 and 4.5. 
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Table 4.4: Cases of colon cancer mortality for males aged 15-39 years in Scotland 1986-1995 

  Age group 

   15-19 20-24 25-29 30-34 35-39 Total 
1986 0 0 1 1 2 4 
1987 0 2 0 1 5 8 
1988 0 0 0 1 4 5 
1989 0 0 0 1 0 1 
1990 1 0 2 2 3 8 
1991 0 0 0 0 4 4 
1992 0 2 0 1 4 7 
1993 0 0 0 1 3 4 
1994 0 0 0 3 2 5 
1995 0 0 1 2 4 7 

Y
ea

r 

Total 1 4 4 13 31 53 
 

Table 4.5: Cases of colon cancer mortality for females aged 15-39 years in Scotland 1986-1995 

  Age group 

   15-19 20-24 25-29 30-34 35-39 Total 
1986 0 0 0 1 1 2 
1987 0 0 1 0 6 7 
1988 0 0 1 1 1 3 
1989 0 1 1 2 3 7 
1990 1 0 1 0 1 3 
1991 1 0 0 0 2 3 
1992 0 1 1 1 4 7 
1993 1 2 0 0 4 7 
1994 0 0 0 1 7 8 
1995 0 0 0 3 1 4 

Y
ea

r 

Total 3 4 5 9 30 51 
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Figure 4.4: Trend of colon cancer mortality in males aged 15-39 years in Scotland 1986-1995 

 

There are 53 male deaths due to colon cancer in males aged 15-39 years of age.  Over the 

ten year period there was only 1 death due to colon cancer in males aged 15-19 years.  

This number rises to 4 deaths in both the 20-24 and 25-29 years age groups.  There is a 

rising number of deaths as the age groups get older confirming that colon cancer is more 

frequent in older males, which can be seen in Figure 4.4. 
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Figure 4.5: Trend of colon cancer mortality in females aged 15-39 years in Scotland 1986-1995 

 

Over the 10-year study period there are 51 colon cancer deaths in females aged 15-39 

years.  Figure 4.5 shows that the data follows the same trend as the male deaths in that 

colon cancer mortality is more frequent in older age groups than it is in younger age 

groups. 

 

4.4.2    Methodology 

 

The analysis is an investigation into colon cancer mortality in both males and females 

aged 15-39 years in Scotland.  Since the aforementioned risk factors were not gender 

specific the sex of the individual is not an issue so it can be omitted from the analysis.  

Just like the previous breast cancer mortality analysis, we would expect any excess in 
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mortality of colon cancer to occur close together representing that family members live 

close by to one another. 

 

Before analysing the data, expected numbers were needed.  These were calculated using 

the age-standardised mortality rates for Scotland.  The rates were then adjusted to 

represent the proportion of the population-at-risk living in each local government region.  

For each local government district, data are now available for the numbers of deaths 

observed and the number of deaths that were expected due to colon cancer in the 

population-at-risk.  Firstly we calculate the SMR for each of the local government 

districts and the local government regions.  A spatial scan analysis of the data will then 

be carried out, using both a circular and flexible shaped scan window.  The final step is to 

apply the Besag and Newell test statistic that will allow us to add to any exploratory 

findings. 

 

4.4.3    Results of analysis 

 

Before looking to formally test the results of the SMR analysis, the disease map of colon 

cancer mortality is plotted in Figure 4.6.  This gives us an idea on how colon cancer 

mortality is varying across Scotland as a whole and not just in each local government 

region.  The most notable point is that there is an excess of colon cancer mortality which 

seems to cluster around the central to the south of Scotland.  This excess spreads mostly 

across the Tayside, Central and Strathclyde regions of Scotland.  There seems to also be 

an excess risk in the Western Isles, Caithness and Banff & Buchan. 
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Figure 4.6: Disease map of colon cancer mortality in Scotland 1986-1995 

 

These subjective impressions from investigating the disease map are now formally tested 

with the results displayed in Table 4.6 where the statistical significance of the SMR for 

each local government district and region is considered. 
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Table 4.6: Results of SMR analysis for colom cancer mortality in Scotland 1986-1995 
Local government district Observed (Oi) Expected (Ei) SMR p-value 
Borders 1 1.90 0.53 0.57 
   Berwickshire 0 0.33 0.00 0.28 
   Ettrick & Lauderdale 1 0.66 1.52 0.14 
   Roxburgh 0 0.63 0.00 0.47 
   Tweeddale 0 0.28 0.00 0.24 
Central 6 5.11 1.17 0.25 
   Clackmannan 1 0.93 1.08 0.24 
   Falkirk 4 2.71 1.48 0.14 
   Stirling 1 1.47 0.68 0.43 
Dumfries & Galloway 1 2.71 0.37 0.75 
   Annandale & Eskdale 0 0.69 0.00 0.50 
   Nithsdale 1 1.09 0.92 0.30 
   Stewartry 0 0.39 0.00 0.32 
   Wigtown 0 0.54 0.00 0.42 
Fife 6 6.56 0.92 0.48 
   Dunfermline 4 2.51 1.59 0.11 
   Kirkcaldy 1 2.81 0.36 0.77 
   North East Fife 1 1.24 0.80 0.35 
Grampian 8 10.36 0.77 0.71 
   Aberdeen City 0 4.23 0.00 0.99 
   Banff & Buchan *** 6 1.62 3.70 0.00 
   Gordon 1 1.78 0.56 0.53 
   Kincardine & Deeside 0 1.15 0.00 0.68 
   Moray 1 1.58 0.63 0.47 
Highland 2 3.95 0.51 0.75 
   Badenoch & Strathspey 0 0.20 0.00 0.18 
   Caithness * 1 0.48 2.08 0.08 
   Inverness 1 1.30 0.77 0.37 
   Lochaber 0 0.38 0.00 0.31 
   Nairn 0 0.20 0.00 0.18 
   Ross & Cromarty 0 0.94 0.00 0.61 
   Skye & Lochalsh 0 0.22 0.00 0.20 
   Sutherland 0 0.23 0.00 0.20 
Lothian * 20 14.87 1.35 0.08 
   East Lothian 1 1.66 0.60 0.49 
   Edinburgh City * 12 8.59 1.40 0.10 
   Midlothian * 3 1.58 1.90 0.08 
   West Lothian 4 3.05 1.31 0.19 
Strathclyde 45 43.23 1.04 0.36 
   Argyll & Bute *** 5 1.15 4.33 0.00 
   Bearsden & Milngavie 0 0.77 0.00 0.54 
   Clydebank 1 0.80 1.25 0.19 
   Cumbernauld & Kilsyth 1 1.30 0.77 0.37 
   Cumnock &Doon Valley** 2 0.78 2.57 0.04 
   Cunninghame 0 2.59 0.00 0.92 
   Dumbarton 1 1.57 0.64 0.47 
   East Kilbride 1 1.73 0.58 0.52 
   Eastwood 1 1.26 0.79 0.36 
   Glasgow City 12 12.60 0.95 0.49 
   Hamilton * 4 2.07 1.93 0.06 
   Inverclyde 0 1.65 0.00 0.81 
   Kilmarnock & Loudoun 2 1.52 1.32 0.20 
   Kyle & Carrick 3 2.05 1.46 0.15 
   Clydesdale ** 3 1.18 2.55 0.03 
   Monklands 1 1.97 0.51 0.58 
   Motherwell 4 2.68 1.49 0.13 
   Renfrew 2 3.83 0.52 0.74 
   Strathkelvin 2 1.73 1.16 0.25 
Tayside *** 13 7.07 1.84 0.01 
   Angus ** 4 1.79 2.23 0.04 
   Dundee City ** 6 3.02 1.99 0.03 
   Perth & Kinross 3 2.26 1.33 0.19 
Orkney 0 0.36 0.00 0.30 
Shetland 0 0.47 0.00 0.38 
Western Isles *** 2 0.50 3.98 0.01 
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4.4.4    Discussion 

 

There is a significant excess risk of mortality at both the local government district and 

region level at the 1%, 5% and 10% significance level.  The districts which produced 

significant results at the 1% significance level were Banff & Buchan and Argyll & Bute.  

The local government regions of Tayside and the Western Isles had an excess of 

mortality which was significant at the 1% level.  At the 5% level the districts of 

Clydesdale, Angus, Dundee City and Cumnock & Doon Valley produced significant 

results.  At the 10% significance level the excess of mortality was significant in the 

districts of Hamilton, Midlothian, Edinburgh City, Caithness and in the region of Lothian. 

 

These results pair up with the impressions gathered from examining the disease map.  

Most of the districts and regions which had a significant excess risk of mortality were 

located in the central area of Scotland going south to the region of Strathclyde.  The 

others which fell outwith these bounds were located towards the north of Scotland and 

concerns were already raised regarding these districts. 

 

To further investigate the possibility of one or more mortality clusters, the circular and 

flexible spatial scan statistics are used on the data.  Summary results of the analysis can 

be found in Table 4.7.  More detailed results are provided in Appendix B. 
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Table 4.7: Spatial Scan analysis of Colon Cancer Mortality 

  Circular Scan Flexible Scan 

Overall Relative Risk 4.06 1.45 

p-value 0.46 0.73 
 

The results of the spatial scan analysis did not find any significant most likely clusters.  

The most likely cluster which was found using the circular spatial scan had a p-value of 

0.46.  Using the flexible spatial scan the most likely cluster had a p-value of 0.731. 

 

To go one step further it is necessary to investigate the possibility of a mortality cluster in 

the south-central area of Scotland.  To do so the Besag and Newell test for clusters is 

carried out.  Due to the uncertainty regarding a perceived cluster due to the number of 

regions exhibiting an potential excess being a lot larger, we will search for clusters of size 

k where k = 1, …, N where N is the total number of cases of colon cancer.   Again it must 

be noted that the application of the Besag and Newell test statistic after the SMR analysis 

raises post-hoc testing issues, therefore any results are considered as exploratory rather 

than definitive. 

Table 4.8: Significant clusters of colon cancer mortality in Scotland 1986-1995 

Cluster centre Observed Expected p-value 
Kirkcaldy 55 41.69 0.095 
 57 43.42 0.096 
 61 45.82 0.072 
North East Fife 44 32.15 0.088 
East Lothian 59 44.72 0.086 
 61 46.45 0.086 
West Lothian 36 25.57 0.091 
 37 26.5 0.094 
 41 28.57 0.058 
 43 30.58 0.067 
 44 32.05 0.085 
Angus 10 4.81 0.078 
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Table 4.8 contains a summary of the findings of analysing the data with the Besag and 

Newall test statistic.  Testing around south-central Scotland has found many possible 

clusters.  All the possible clusters are significant at the 10% level, indicating that there 

may be an indication of a colon cancer cluster in south-central Scotland.  Looking to 

Figure 4.6, the disease map indicated that there was an excess risk of mortality around the 

south-central area of Scotland.  The number of results in Table 4.8 indicates that there are 

many possible clusters in this area.  This suggests that there may be possible evidence 

that there was a clustering of colon cancer mortality in south-central Scotland.  Once 

again the numbers are very small during this study.  Problems with small numbers and 

multiple testing prohibit these results from being underlined.  This is because the use of 

these methods on small counts can be misleading due to unstable results.  The caveats 

associated with the small numbers only allow us to view these findings as investigative 

rather than definitive. 
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Chapter 5 

Summary and Further Research 

5.1 Summary of Thesis 

 

The purpose of this thesis was to introduce the issues that arise in the analysis of small-

area data and to examine some commonly used methods in the analysis of small-area 

spatial health data.  Firstly this was achieved by reviewing the methods, taking into 

account their strengths and weaknesses and noting the scenarios in which they performed 

both well and poorly in.  In Chapter 1, the political, social and health issues that arise in 

small-area statistics were discussed, noting the fundamental concepts of spatial 

epidemiology. 

 

In Chapter 2, the relative merits of five techniques were discussed, namely the 

Standardised Incidence Ratio, Besag and Newell Cluster Test, Circular Spatial Scan, 

Flexibly-Shaped Spatial Scan and Bithell’s Linear Risk Score. The main emphasis was 

placed upon exploring the benefits of using the SIR as a method of detecting the risk of 

disease in small-areas, with the performance of the others being taken into account to 

provide a possible alternative to analysing small-area health data.  

 

Chapter 3 extended on the theory and academic findings of each of the five methods 

through a detailed simulation study, helping underscore historical findings by using 
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empirical results as evidence.  The simulation study, detailing the performance of the 

circular and flexibly-shaped spatial scan, confirmed the prior findings, however the 

limitations in computing power placed some uncertainties over the outcomes. 

  

Chapter 4 rounded off the thesis with an analysis of the mortality of breast and colon 

cancer in Scotland for the ten-year time period 1986-1995.  The analysis was carried out 

using the SIR method, the circular spatial scan and flexibly-shaped spatial scan, with the 

Besag and Newell method also being considered after the original analysis, due the 

method performing better when the size and scale of clustering is known.  The findings of 

this analysis were that there might be evidence of a cluster of breast cancer mortality in 

the Grampian region.  The post-hoc problems associated with using the Besag and 

Newell test statistic prohibits the results from being anything other than exploratory.  The 

analysis also suggested evidence of clustering of colon cancer mortality in south-central 

Scotland. 

 

5.2 Conclusions 

 

From the thesis, many conclusions can be drawn.  The SIR method is very useful as it 

provides a quick and basic summary of risk.  Its performance in areas with small 

population or small numbers of cases is the main drawback of using the SIR.  Using 

smoothing techniques, or constructing confidence intervals can help combat these 

problems, however there is always a difficulty faced when numbers are very small. 
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Methods such as the spatial cluster scan statistics and the Besag and Newell cluster tests 

are useful to get a general feeling around the data.  Observations from the Besag and 

Newell are difficult to underscore due to the post-hoc application of this method.   

 

Many more advances are being made to address the relationship between risk and 

distance from a point source, due to the political and social significance attached to this 

association.  SAHSUs development of the RIF has proved a big advance in this field, due 

to the fact that it draws concentric circles and calculates the risk of the area inside the 

circle.  The drawback of the older methods is that the cases are assumed to fall upon the 

population-weighted centroid.   The reliance on the distance between centroids is a main 

drawback since any cases falling within the distance, but outwith a centroid would not be 

included. 

 

At ISD Scotland, the SIR is the primary technique used in the basic analysis of small-area 

data.  For a basic analysis of the data, the SIR method is very useful for illustrating how 

risk is varying amongst the entire study area.  With any method there will always be 

some limitations, however at a basic level the caveats associated with the SIR method are 

not enough to justify scrapping the use of the method.  There will be times where 

conclusions cannot be drawn from a purely SIR analysis and this is where ISD Scotland 

could rely on other methods. 

 

ISD Scotland should consider the use of spatial scan statistics and cluster tests to drill 

down another level in the data, to try to draw more specific conclusions.  Methods such 
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as the circular and flexible spatial scan statistics would be useful to ISD Scotland to help 

gain a deeper insight into risk within a study region.  These techniques are powerful in 

detecting hot spot clusters, with the flexible spatial scan being able to identify clusters of 

any shape.  If an SIR analysis starts to indicate that there is an excess risk of disease 

among similarly located areas, then the use of cluster tests can also help to validate or 

reject such suggestions.  This would be very useful to ISD Scotland since there would be 

more concrete evidence to present to its customers to support or reject any claims, thus 

reinforcing any conclusions made. 
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Appendix A: Appendix for Chapter 2 
 

A.1 Empirical Size calculations of SIR method 

A.1.1 Size calculations for Male age-groups when α=0.1 
  Population Size 
  10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

< 10 0.127 0.195 0.136 0.152 0.160 0.131 0.118 0.126 0.129 0.111 
10-19 0.217 0.230 0.130 0.142 0.134 0.147 0.158 0.144 0.161 0.162 
20-29 0.401 0.268 0.190 0.159 0.123 0.110 0.178 0.135 0.109 0.172 
30-39 0.112 0.307 0.240 0.171 0.142 0.120 0.174 0.156 0.113 0.203 
40-49 0.138 0.254 0.134 0.129 0.130 0.131 0.145 0.103 0.127 0.135 
50-59 0.111 0.161 0.119 0.137 0.141 0.092 0.141 0.143 0.123 0.110 
60-69 0.150 0.108 0.107 0.116 0.130 0.127 0.109 0.096 0.124 0.087 
70-79 0.140 0.120 0.110 0.125 0.118 0.103 0.131 0.127 0.104 0.094 A

ge
 G

ro
up

 (
Y

ea
rs

) 

80 + 0.142 0.123 0.128 0.099 0.110 0.103 0.114 0.095 0.106 0.110 
 

A.1.2 Size calculations for Female age-groups when α=0.1 
  Population Size 
  10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

< 10 0.139 0.149 0.161 0.134 0.131 0.116 0.105 0.165 0.185 0.137 
10-19 0.133 0.130 0.145 0.111 0.106 0.155 0.172 0.147 0.130 0.126 
20-29 0.323 0.190 0.121 0.210 0.132 0.107 0.162 0.189 0.171 0.113 
30-39 0.338 0.194 0.123 0.216 0.151 0.111 0.137 0.114 0.157 0.098 
40-49 0.295 0.198 0.105 0.147 0.172 0.132 0.132 0.165 0.105 0.144 
50-59 0.110 0.146 0.144 0.167 0.100 0.102 0.128 0.123 0.131 0.133 
60-69 0.107 0.125 0.121 0.161 0.133 0.112 0.108 0.098 0.125 0.118 
70-79 0.089 0.133 0.135 0.116 0.101 0.118 0.125 0.107 0.102 0.122 A

ge
 G

ro
up

 (
Y

ea
rs

) 

80 + 0.114 0.116 0.109 0.119 0.109 0.099 0.100 0.101 0.111 0.120 
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A.1.3 Size calculations for Male age-groups when α=0.05 
  Population Size 
  10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

< 10 0.127 0.095 0.074 0.087 0.057 0.066 0.078 0.052 0.052 0.071 
10-19 0.060 0.088 0.130 0.061 0.079 0.055 0.092 0.084 0.076 0.055 
20-29 0.088 0.087 0.067 0.058 0.123 0.056 0.081 0.067 0.109 0.111 
30-39 0.112 0.091 0.089 0.060 0.058 0.067 0.086 0.070 0.054 0.119 
40-49 0.138 0.108 0.064 0.067 0.063 0.063 0.088 0.057 0.074 0.061 
50-59 0.043 0.094 0.064 0.085 0.060 0.053 0.073 0.076 0.091 0.056 
60-69 0.070 0.077 0.073 0.053 0.073 0.066 0.060 0.058 0.072 0.043 
70-79 0.059 0.068 0.050 0.068 0.059 0.055 0.068 0.061 0.043 0.047 A

ge
 G

ro
up

 (
Y

ea
rs

) 

80 + 0.078 0.063 0.055 0.037 0.052 0.050 0.061 0.032 0.060 0.055 
 

A.1.4 Size calculations for Female age-groups when α=0.05 
  Population Size 
  10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

< 10 0.139 0.149 0.050 0.055 0.050 0.057 0.105 0.093 0.097 0.072 
10-19 0.133 0.130 0.145 0.111 0.106 0.054 0.094 0.065 0.073 0.067 
20-29 0.062 0.190 0.121 0.067 0.132 0.057 0.064 0.100 0.079 0.113 
30-39 0.062 0.194 0.123 0.076 0.057 0.058 0.066 0.114 0.071 0.042 
40-49 0.104 0.078 0.105 0.068 0.093 0.058 0.078 0.054 0.068 0.090 
50-59 0.110 0.076 0.074 0.051 0.053 0.064 0.071 0.071 0.058 0.059 
60-69 0.051 0.080 0.085 0.074 0.070 0.062 0.062 0.056 0.058 0.065 
70-79 0.047 0.062 0.062 0.062 0.058 0.061 0.075 0.055 0.048 0.065 A

ge
 G

ro
up

 (
Y

ea
rs

) 

80 + 0.071 0.055 0.051 0.057 0.050 0.045 0.051 0.061 0.055 0.059 
 

A.1.5 Size calculations for Male age-groups when α=0.01 
  Population Size 
  10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

< 10 0.007 0.015 0.021 0.014 0.020 0.015 0.022 0.012 0.013 0.012 
10-19 0.010 0.025 0.019 0.028 0.013 0.019 0.022 0.011 0.010 0.015 
20-29 0.013 0.018 0.016 0.025 0.015 0.014 0.016 0.011 0.018 0.016 
30-39 0.024 0.022 0.023 0.019 0.021 0.022 0.017 0.012 0.009 0.028 
40-49 0.035 0.016 0.010 0.037 0.016 0.007 0.012 0.014 0.012 0.010 
50-59 0.011 0.020 0.015 0.017 0.012 0.014 0.014 0.012 0.024 0.013 
60-69 0.015 0.014 0.016 0.014 0.016 0.014 0.015 0.011 0.010 0.006 
70-79 0.012 0.011 0.006 0.014 0.020 0.013 0.011 0.011 0.010 0.010 A

ge
 G

ro
up

 (
Y

ea
rs

) 

80 + 0.013 0.011 0.008 0.005 0.005 0.006 0.014 0.007 0.014 0.008 
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A.1.6 Size calculations for Female age-groups when α=0.01 
  Population Size 
  10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

< 10 0.027 0.018 0.015 0.025 0.022 0.025 0.027 0.020 0.022 0.016 
10-19 0.029 0.006 0.012 0.012 0.022 0.012 0.018 0.009 0.016 0.017 
20-29 0.062 0.049 0.032 0.021 0.012 0.021 0.016 0.022 0.014 0.024 
30-39 0.062 0.048 0.034 0.018 0.022 0.018 0.028 0.022 0.010 0.019 
40-49 0.024 0.022 0.020 0.013 0.007 0.013 0.011 0.013 0.009 0.013 
50-59 0.030 0.024 0.017 0.013 0.019 0.013 0.017 0.013 0.011 0.022 
60-69 0.019 0.024 0.022 0.014 0.016 0.014 0.009 0.013 0.014 0.008 
70-79 0.012 0.012 0.010 0.007 0.015 0.007 0.013 0.008 0.007 0.010 A

ge
 G

ro
up

 (
Y

ea
rs

) 

80 + 0.007 0.011 0.010 0.009 0.008 0.009 0.006 0.007 0.013 0.008 
 

A.2 Power calculations of SIR method 

A.2.1 Power calculations for Male age-groups when α=0.1 
  Population Size 
  10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

< 10 0.986 0.992 0.986 0.979 0.992 0.984 0.991 0.992 0.980 0.991 
10-19 0.968 0.983 0.986 0.987 0.984 0.981 0.988 0.995 0.979 0.993 
20-29 0.984 0.978 0.988 0.992 0.989 0.991 0.985 0.991 0.986 0.988 
30-39 0.972 0.982 0.980 0.984 0.981 0.978 0.989 0.982 0.989 0.986 
40-49 0.993 0.980 0.991 0.986 0.993 0.987 0.988 0.984 0.993 0.995 
50-59 0.980 0.985 0.976 0.992 0.991 0.993 0.985 0.987 0.990 0.982 
60-69 0.981 0.986 0.981 0.985 0.990 0.987 0.992 0.984 0.988 0.988 
70-79 0.988 0.989 0.992 0.994 0.989 0.983 0.985 0.995 0.992 0.991 A

ge
 G

ro
up

 (
Y

ea
rs

) 

80 + 0.982 0.988 0.982 0.989 0.990 0.994 0.988 0.979 0.992 0.990 
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A.2.2 Power calculations for Female age-groups when α=0.1 

  Population Size 
  10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

< 10 0.986 0.980 0.977 0.987 0.982 0.984 0.987 0.990 0.994 0.989 
10-19 0.989 0.981 0.973 0.991 0.989 0.978 0.985 0.975 0.988 0.987 
20-29 0.956 0.974 0.985 0.988 0.978 0.979 0.994 0.992 0.987 0.986 
30-39 0.954 0.978 0.988 0.985 0.986 0.979 0.992 0.977 0.985 0.979 
40-49 0.985 0.985 0.979 0.988 0.987 0.986 0.985 0.985 0.988 0.988 
50-59 0.969 0.991 0.993 0.990 0.985 0.984 0.986 0.993 0.979 0.986 
60-69 0.987 0.988 0.981 0.987 0.992 0.982 0.988 0.986 0.989 0.993 
70-79 0.986 0.994 0.989 0.994 0.986 0.976 0.982 0.988 0.987 0.988 A

ge
 G

ro
up

 (
Y

ea
rs

) 

80 + 0.984 0.984 0.986 0.984 0.987 0.983 0.987 0.987 0.987 0.994 
 

A.2.3 Power calculations for Male age-groups when α=0.05 
  Population Size 
  10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

< 10 0.856 0.944 0.947 0.911 0.923 0.931 0.952 0.925 0.948 0.953 
10-19 0.850 0.887 0.900 0.928 0.925 0.940 0.931 0.942 0.925 0.943 
20-29 0.806 0.928 0.916 0.914 0.903 0.931 0.958 0.953 0.947 0.937 
30-39 0.813 0.917 0.901 0.888 0.958 0.932 0.948 0.921 0.940 0.929 
40-49 0.940 0.924 0.923 0.938 0.921 0.955 0.936 0.917 0.938 0.954 
50-59 0.929 0.948 0.926 0.929 0.942 0.928 0.943 0.964 0.935 0.937 
60-69 0.960 0.942 0.957 0.929 0.944 0.926 0.942 0.942 0.947 0.945 
70-79 0.946 0.943 0.945 0.947 0.940 0.942 0.952 0.947 0.951 0.955 A

ge
 G

ro
up

 (
Y

ea
rs

) 

80 + 0.941 0.934 0.932 0.939 0.948 0.951 0.939 0.939 0.950 0.943 
 

A.2.4 Power calculations for Female age-groups when α=0.05 
  Population Size 
  10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

< 10 0.856 0.944 0.947 0.911 0.923 0.931 0.952 0.925 0.948 0.953 
10-19 0.850 0.887 0.900 0.928 0.925 0.940 0.931 0.942 0.925 0.943 
20-29 0.806 0.928 0.916 0.914 0.903 0.931 0.958 0.953 0.947 0.937 
30-39 0.813 0.917 0.901 0.888 0.958 0.932 0.948 0.921 0.940 0.929 
40-49 0.940 0.924 0.923 0.938 0.921 0.955 0.936 0.917 0.938 0.954 
50-59 0.929 0.948 0.926 0.929 0.942 0.928 0.943 0.964 0.935 0.937 
60-69 0.960 0.942 0.957 0.929 0.944 0.926 0.942 0.942 0.947 0.945 
70-79 0.946 0.943 0.945 0.947 0.940 0.942 0.952 0.947 0.951 0.955 A
ge

 G
ro

up
 (

Y
ea

rs
) 

80 + 0.941 0.934 0.932 0.939 0.948 0.951 0.939 0.939 0.950 0.943 
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A.2.5 Power calculations for Male age-groups when α=0.01 

  Population Size 
  10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

< 10 0.839 0.841 0.898 0.846 0.905 0.892 0.886 0.893 0.887 0.911 
10-19 0.750 0.887 0.871 0.859 0.845 0.850 0.849 0.866 0.857 0.889 
20-29 0.726 0.814 0.808 0.886 0.846 0.888 0.890 0.879 0.853 0.893 
30-39 0.705 0.849 0.880 0.851 0.824 0.872 0.872 0.832 0.888 0.879 
40-49 0.804 0.889 0.890 0.899 0.857 0.851 0.873 0.898 0.881 0.895 
50-59 0.827 0.883 0.858 0.871 0.905 0.906 0.890 0.870 0.868 0.879 
60-69 0.879 0.892 0.859 0.893 0.882 0.885 0.898 0.872 0.901 0.908 
70-79 0.884 0.894 0.871 0.877 0.878 0.873 0.886 0.907 0.915 0.900 A

ge
 G

ro
up

 (
Y

ea
rs

) 

80 + 0.878 0.894 0.895 0.893 0.909 0.909 0.886 0.884 0.904 0.889 
 
 

A.2.6 Power calculations for Female age-groups when α=0.01 

  Population Size 
  10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

< 10 0.856 0.856 0.879 0.826 0.869 0.885 0.837 0.872 0.899 0.874 
10-19 0.850 0.887 0.801 0.857 0.868 0.891 0.879 0.843 0.873 0.847 
20-29 0.806 0.797 0.783 0.793 0.903 0.885 0.911 0.903 0.830 0.819 
30-39 0.813 0.783 0.763 0.888 0.901 0.882 0.903 0.860 0.886 0.892 
40-49 0.837 0.837 0.871 0.830 0.871 0.903 0.852 0.882 0.865 0.907 
50-59 0.859 0.824 0.885 0.888 0.881 0.880 0.889 0.913 0.889 0.904 
60-69 0.900 0.868 0.904 0.894 0.917 0.878 0.900 0.878 0.889 0.898 
70-79 0.881 0.889 0.898 0.904 0.901 0.882 0.908 0.881 0.890 0.899 A

ge
 G

ro
up

 (
Y

ea
rs

) 

80 + 0.891 0.852 0.881 0.900 0.899 0.901 0.884 0.889 0.890 0.884 
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Appendix B: Appendix for Chapter 4 
 

B.1 Spatial Scan Analysis of Breast Cancer Mortality 

B.1.1 Results of Circular Spatial Scan 
 
SUMMARY OF DATA: 
 
Limit length of cluster: 15 
Number of census areas.: 56 
Total cases ...........: 377 
 
MOST LIKELY CLUSTER: 
 
Census areas included .: 5, 12, 13, 14, 15, 17, 18, 28, 29, 51, 52, 53 
Maximum distance.......: 15917.8    (areas: 17 to 29) 
Number of cases .......: 148          (123.158 expected) 
Overall relative risk .: 1.20171 
Log likelihood ratio ..: 3.60947 
Monte Carlo rank ......: 374/1000 
P-value ...............: 0.374 
 
 

B.1.2 Results of Flexible Spatial Scan 
 
SUMMARY OF DATA: 
 
Limit length of cluster: 15 
Number of census areas.: 56 
Total cases ...........: 377 
 
MOST LIKELY CLUSTER: 
 
Census areas included .: 15, 16, 17, 18, 23, 25, 26, 27, 53 
Maximum distance.......: 23724.2    (areas: 16 to 26) 
Number of cases .......: 69          (49.0216 expected) 
Overall relative risk .: 1.40754 
Log likelihood ratio ..: 4.23017 
Monte Carlo rank ......: 627/1000 
P-value ...............: 0.627 
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B.2 Spatial Scan Analysis of Colon Cancer Mortality 

B.2.1 Results of Circular Spatial Scan 
 
SUMMARY OF DATA: 
 
Limit length of cluster: 15 
Number of census areas.: 56 
Total cases ...........: 104 
 
MOST LIKELY CLUSTER: 
 
Census areas included .: 32 
Maximum distance.......: 0    (areas: 32 to 32) 
Number of cases .......: 5          (1.23172 expected) 
Overall relative risk .: 4.05936 
Log likelihood ratio ..: 3.3068 
Monte Carlo rank ......: 460/1000 
P-value ...............: 0.46 
 

B.2.2 Results of Flexible Spatial Scan 
 
SUMMARY OF DATA: 
 
Limit length of cluster: 15 
Number of census areas.: 56 
Total cases ...........: 104 
 
 
MOST LIKELY CLUSTER: 

 
Census areas included .: 5, 6, 12, 29, 30, 31, 51, 52, 53 
Maximum distance.......: 9740.16    (areas: 31 to 51) 
Number of cases .......: 41          (28.3188 expected) 
Overall relative risk .: 1.4478 
Log likelihood ratio ..: 3.61798 
Monte Carlo rank ......: 731/1000 
P-value ...............: 0.731 
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