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q-Fermionic Numbers and Their Roles in Some Physical Problems

R.Parthasarathy1

The Institute of Mathematical Sciences
C.I.T. Campus, Tharamani Post

Chennai, 600 113, India.

Abstract

The q-fermion numbers emerging from the q-fermion oscillator algebra are
used to reproduce the q-fermionic Stirling and Bell numbers. New recurrence
relations for the expansion coefficients in the ’anti-normal ordering’ of the q-
fermion operators are derived. The roles of the q-fermion numbers in q-
stochastic point processes and the Bargmann space representation for q-
fermion operators are explored.
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q-deformed Stirling numbers were introduced by Carlitz, Gould and Milne
[1]. Such numbers are encountered in [2] in the ’normal ordering’ of q-
deformed boson oscillator creation and annihilation operators [3]. Recently,
Schork [4] considered generalized q-Stirling numbers and obtained useful
properties. He further introduced unsigned q-deformed Lah numbers. Subse-
quently, he [5] considered q-fermionic Stirling numbers which are encountered
in the ’normal ordering’ of q-fermionic oscillator creation and annihilation
operators introduced by the author and Viswanathan [6]. Katriel [7] has de-
rived q-Dobinski formula for q-bosonic Bell number by using q-boson coherent
states. In contrast to this semi-classical derivation, a probabilistic derivation
of the q-Dobinsky formula for q-bosonic Bell number has been obtained by
the author and Sridhar [8] by considering q-stochastic point processes.

The Stirling numbers are crucial in many combinatorial problems [9].
Milne [1] in his studies on generalized restricted growth functions obtained q-
Stirling numbers (bosonic), q-Dobinski formula and q-Charlier polynomials.
It is very intriguing that these numbers occurring in combinatorial problems,
arise naturally in undeformed and q-deformed harmonic oscillator algebra of
the creation and annihilation operators.

In this paper we consider q-fermionic numbers in more detail and obtain
q-fermionic Stirling and Bell numbers explicitly. Further we consider the
’anti-normal ordering’ of the q-deformed bosonic and fermionic operators
and obtain new recurrence relations. Using their Fock space states, we give a
meaning to these numbers as expressing powers of q-bosonic and q-fermionic
numbers in terms of ’raising factorials’. This is the counterpart of the q-
Stirling numbers of the second kind in expressing the powers of q-numbers
in terms of ’falling factorials’.

In the subsequent part of this paper, we attempt to give a probabilistic
interpretation of the q-fermionic Stirling numbers of the second kind by con-
sidering q-stochastic point processes. This introduces q-product densities,
a generalization of the concept of product densities introduced in 1950 by
Ramakrishnan [10] in his study of cosmic ray cascades. Then, we give a
Bargmann space representation of the q-fermion operators as multiplication
by and q-differentiation with respect to quasi-Grassmann variable leading to
differential equations involving q-differentiation on spaces of entire functions
of quasi-Grassmann variable.
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2.q-fermionic numbers

Macfarlane [3] and Biedenharn [3] introduced q-boson oscillator algebra
as

aa† −√
qa†a = q−N/2 ; [N, a] = −a , [N, a†] = a†, (1)

where q > 0. By making a transformation

A = qN/4a ; A† = a†qN/4, (2)

one obtains

AA† − qA†A = 1; q > 0, (3)

and the associated q-bosonic number

[n]b =
1− qn

1− q
. (4)

In the above q is strictly positive. The author and Viswanathan [6], proposed
a non-trivial q-fermion oscillator algebra as

ff † +
√
qf †f = q−N/2 ; [N, f ] = −f, [N, f †] = f †, f 2 6= 0 , (f †)2 6= 0,(5)

where q > 0. By making a transformation

F = qN/4f ; F † = f †qN/4, (6)

one obtains

FF † + qF †F = 1 ; F 2 6= 0, (F †)2 6= 0, q > 0, (7)

and the associated q-fermionic number

[n]f =
1− (−1)nqn

1 + q
. (8)

In (5) to (8), q is strictly positive. Thus, it is not correct to replace q by
−q in the q-boson algebra to obtain q-fermion algebra (7), as q in (1) to (4)
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is strictly positive. Nevertheless, for mathematical expressions such replace-
ment may be carried out. In what follows, we shall denote (8) by q-fermion
number. This definition is of fundamental importance and is quite different
from [n]b. In the limit q → 1, [n]b → n while [n]f → 1

2
(1 − (−1)n) taking

values 0 and 1 for n even and odd. The properties of the q-fermion num-
bers associated with (5) (which are different from (8)) have been studied by
Narayana Swamy [11]. For q < 1, the q-fermion numbers (8) never go beyond
1 for any value of n and for n→ ∞, it asymptotically approches 0.5. On the
other hand the q-boson numbers (4), become the usual numbers when q = 1,
and for q < 1, as n→ ∞ we have, [n]b asymptotically goes to 1/(1− q). For
q > 1, we have for q-fermion numbers, [0]f = 0 , [1]f = 1 and [n]f > 0 for n
odd, < 0 for n even.

The q-fermions described by (5) or (7) with the q-numbers (8) are different
from the k-fermions introduced by Daoud, Hassouni and Kibler [12]. The k-
fermion algebra is a non-Hermitian realization of the q-deformed Heisenberg
bosonic algebra with q being a root of unity and satisfy fk± = 0 and f+ 6= f−

†,
except for k = 2, for which they become ordinary fermions. On the other
hand, q-fermions admit q real or complex and only when q = 1, they become
ordinary fermions.

3.Normal Ordering of q-fermion operators

We wish to evaluate (F †F )r using (7). It is straightforward to expand,

(F †F )r =
r

∑

s=1

F r
s (F

†)sF s, (9)

and find a recurrence relation for F r
s . From (9), it follows

(F †F )r+1 =
r

∑

s=1

F r
s (F

†)sF sF †F. (10)

From (7), we have

F sF † = [s]fF
s−1 + (−1)sqsF †F s. (11)

Using (11) in (10) and noting from (9), F r
0 = 0 , F r

r+1 = 0, we find

F r+1
s = (−1)s−1qs−1F r

s−1 + [s]fF r
s , (12)
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the desired recurrence relation for F r
s coefficients in (9). The recurrence

relation (12) with F1
1 = 1 is the same as that of the q-fermionic Stirling

numbers of the second kind [5].

The q-fermionic Bell number introduced in [5] is

B(f)
r =

r
∑

s=1

F r
s . (13)

An attempt along the lines of [7] for q-fermionic Bell number runs into dif-
ficulty. q-fermion coherent states have been constructed in [13] using ’quasi
Grassmann’ variables ψ. It is to be noted that the replacement of q by −q
in the q-boson coherent states will not give q-fermion coherent states. These
two coherent states are structurally very different. As ψ†ψ + ψψ† = 0;ψ2 6=
0, (ψ†)2 6= 0, it is not possible to use the analogue of |z| = 1 here. So, we
take the matrix elements of (9) between q-fermion Fock space states [13] |n >
with n > r and use F |n >=

√

[n]f |n− 1 > ; F †|n >=
√

[n+ 1]f |n + 1 > to
arrive at

[n]f
r =

r
∑

s=1

F r
s

[n]f !

[n− s]f !
, (14)

which can be verified explicitly using (8) and (12). Multiplying (14) by λn

and summing n from 1 to ∞ and then setting λ = 1, we obtain

B(f)
r = (e(f)q (1))−1

∞
∑

n=1

[n]rf
[n]f !

, (15)

where

e(f)q (x) =
∞
∑

n=0

xn

[n]f !
.

(15) is the q-fermionic Dobinski formula.

Some of the q-fermionic Bell numbers are:

B(f)
1 = 1,

B(f)
2 = 1− q,
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B(f)
3 = 1− q − q[2]f − q3,

B(f)
4 = 1− q − q[2]f − q[2]2f − q3 − q3[2]f − q3[3]f + q6,

B(f)
5 = 1− q + (−q − q[2]f − q[2]2f)([2]f + q2)

+ (−q3 − q3[2]f − q3[3]f )([3]f − q3) + q6[4]f + q10. (16)

In the limit q = 1, we have

B(f)
1 = 1 ; B(f)

2 = 0,

B(f)
r = (−1)r if r = 0 (mod 3)

(−1)r+1 if r = 1 (mod 3)

0 if r = 2 (mod 3). (17)

The results (17) have been obtained by Wagner [14] in his study of generating
functions for some well known statistics on the family of partitions of a finite
set.

The q-fermionic Stirling numbers of the first kind are introduced by ex-
pressing the inverse of (9), as

(F †)rF r =
r

∑

s=1

Srs (F †F )s.

The matrix elements of the above between q-fermion Fock space states |n >
, (n > r) give

[n]f !

[n− r]f !
=

r
∑

s=1

Srs [n]sf . (18)

Using [n]f − [r]f = (−1)rqr[n− r]f , we have the recurrence relation

Sr+1
s = (−1)rq−rSrs−1 − [r]f(−1)rq−rSrs . (19)

Similarly, the q-fermionic unsigned Lah numbers introduced as

[r + n− 1]f !

[r − 1]f !
=

n
∑

s=0

Lns
[r]f !

[n− s]f !
, (20)
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have the recurrence relation

Ln+1
s = (−1)n+s−1qn+s−1Lns−1 + [s + n]fLns . (21)

These mathematical results reveal the feature of obtaining them from their
q-bosonic counterparts by replacing q by −q. The unsigned q-Lah numbers
are met in the normal ordering of ((A†)rAs)n for r = 2 and s = 1 [15] and
their q-analogues have been obtained in [4,5].

4.Anti-Normal Ordering of q-fermion operators

In this section, we seek an expansion for (AA†)r. First, we consider q-
bosonic operators in (3). It is straightforward to expand

(AA†)r =
r

∑

s=1

Ar
sA

s(A†)s, (22)

and use

(A†)sA =
1

qs
A(A†)s − 1

qs
[s](A†)s−1,

to obtain a recurrence relation for Ar
s with A1

1 = 1,Ar
0 = 0,Ar

r+1 = 0 as

Ar+1
s = q−(s−1)Ar

s−1 − [s]q−sAr
s. (23)

A similar relation for q-fermionic operators anti-normal orderering, namely

(FF †)r =
r

∑

s=1

BrsF s(F †)s, (24)

can be obtained from (7). We have from (7)

(F †)sF = (−1)sq−sF (F †)s − (−1)sq−s[s]f(F
†)s−1.

Using this and (24), we find (B1
1 = 1;Br0 = 0;Brr+1 = 0),

Br+1
s = (−1)s−1q−(s−1)Brs−1 − (−1)sq−s[s]fBrs . (25)

7



These recurrence relations (23) and (25) are different from those of q-Stirling
or Lah numbers.

In order to obtain a relationship between Ar
s (Brs) and [n]b ([n]f ), we use

the q-boson Fock space states for (22) and q-fermion Fock space for (24).
Then using the standard action of the creation and annihilation q-operators
on the Fock space states, we find

[n+ 1]rb =
r

∑

s=1

Ar
s

[n+ s]b!

[n]b!
,

[n + 1]rf =
r

∑

s=1

Brs
[n+ s]f !

[n]f !
. (26)

It is interesting to observe that while the normal ordering of operators yielded
expressions for [n]rb ([n]

r
f) in terms of q-stirling numbers of the second kind as

’falling factorials’ (namely (14) and its q-bosonic analogue), the anti-normal
ordering yields expressions for [n]rb([n]

r
f ) in terms of Ar

s, Brs as ’raising fac-
torials’.

5.q-fermionic Stirling number of second kind - a probabilistic view

In this section we extend the theory of product densities of Ramakrishnan
[10] to a q-extension of the stochastic variable [n(E)]f which depend on a
continuous parameter E taken to be ordinary variable, The statistical prop-
erties of these q-fermionic stochastic variable taking values [n(E)]f will be
governed by q-stochastic point processes. Recall that [n]f for q < 1 never ex-
ceeds unity. So the feature assumed in [10] namely atmost one particle occurs
in the interval dE is maintained. Now we define the q-number of particles in
the range E and E + dE to be [n(E + dE)− n(E)]f which is just [dn(E)]f .
Following [10], we take the probability that there occurs [1]f = 1 particle
in the interval dE is proportional to dE and that for the occurrence of [n]f
particles in dE is proportional to (dE)n. The average number of particles
in the interval dE, denoted by E([dn(E)]f), is represented by a q-function

f
(q)
1 (E) such that

E([dn(E)]f) = f
(q)
1 (E) dE. (27)
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Denoting the probability that [n]f particles occuring in the interval dE by
Pq([n]f ), we have

Pq([1]f) ≡ Pq(1) = f
(q)
1 (E)dE +O((dE)2),

Pq([0]f) ≡ Pq(0) = 1− f
(q)
1 (E)dE −O((dE)2),

Pq([n]f) = O((dE)n) ; n > 1. (28)

The average of the rth moment of [n]f is then

E([n]rf ) =
∑

n

[n]rfPq([n]),

= f
(q)
1 (E)dE = E([dn(E)]), (29)

where the second step follows from (27) and (28). Thus all the moments
are equal to the probability that the q-stochastic variable assumes the value
[1]f = 1. This feature of [10] is maintained here. f

(q)
1 (E) is the q-product

density of degree 1.

Now we consider the distribution of [n]f particles in the E-axis, that is,
in the intervals dE1, dE2, · · ·dEn, with [1]f (= 1) particle in each interval. For
the first interval dE1, this can be done in [n]fC[1]f = [n]f !/[n− 1]f ! = [n]f
number of ways, where [n]fC[1]f is the q-binomial coefficient. Thus, from the
average number of particles in (27), we have

f
(q)
1 (E1)dE1 = [n]ff

(q)0
1 (E1)dE1, (30)

with
∫

whole range
f
(q)0
1 (E)dE = 1. (31)

If we now use the reamaining particles as ([n]f −1), then the number of ways
of putting [1]f particle in dE2 will be [n]f − 1. Then the joint probability of
putting [1]f particle each in dE1 and dE2 will be proportional to [n]f ([n]f−1),
if we were to use the same product density in [10]. But, in this way, we will
not be exhausting the total number [n]f of particles. So, in dealing with q-
numbers, it is necessary to introduce q-product densities, such that the joint
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probability of putting [1]f particle each in dE1 and dE2 will be taken to be
proportional to [n]f [n− 1]f . Then the average number in this case will be

E([dn(E1)]f [dn(E2)]f) ≡ f
(q)
2 (E1, E2)dE1 dE2,

= [n]f [n− 1]ff
(q)0
1 (E1)f

(q)0
1 (E2) dE1 dE2. (32)

Proceeding further, the joint probability of putting [1]f particle each in
dE1, dE2, · · · dEn will be proprtional to [n]f !, thereby exhausting the total
number [n]f particles. This gives

f (q)
m (E1, · · ·Em)dE1 · · · dEm =

[n]f !

[n−m]f !
f
(q)0
1 (E1) · · ·f (q)0

1 (Em)dE1 · · · dEm,

f (q)
n (E1 · · ·En)dE1 · · · dEn = [n]f !f

(q)0
1 (E1) · · ·f (q)0

1 (En)dE1 · · · dEn. (33)

In (32) and (33), the intervals do not overlap. When the intervals overlap, a
degeneracy occurs [10] and then for a finite interval △E = Eu −Et

∫ Eu

Et

∫ Eu

Et

E([dn(E1)]f [dn(E2)]f) =
∫ Eu

Et

f
(q)
1 (E)dE

+
∫ Eu

Et

∫ Eu

Et

f
(q)
2 (E1, E2)dE1 dE2.(34)

The rth moment of the q-number of particles in the finite range △E, namely
E([n]rf △E) can be represented, after taking the degeneracy into account, by

E([n]rf △E) =
r

∑

s=1

Crs
∫ Eu

Et

· · ·
∫ Eu

Et

f (q)
s (E1, · · ·Es)dE1 · · · dEs, (35)

where the coefficients Crs are functions of r and s alone. For [n]f fixed,
integrating over the whole range and using (31) and (33), we obtain

[n]rf =
r

∑

s=1

Crs
[n]f !

[n− s]f !
, (36)

which is same as (14) upon identifying Crs with F r
s . This derivation of (36)

gives the role of the q-fermionic Strirling number of the second kind as taking
into account the degenarcaies in the joint probabilities of the distribution of
q-fermionic number [n]f as a stochastic variable when the intervals overlap.
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6.Bargmann Space Representation for q-fermion operators

A Bargmann space realization for q-bosons has been developed by Bracken,
MacAnally, Zhang and Gould [16] and that for q-fermions has been developed
by the author [17]. As the q-fermion coherent states involve quasi-Grassmann
variable ψ, the space consists of monomials of ψ. In this section, we briefly
recall the main results to illustrate two points. First, a naive replacement of
q by −q is not sufficient and is incorrect. Second, we would like to represent
(9) and (24) in terms of ’differential operators’. The q-fermion coherent state
[13] is given by

|ψ > =
(

eψ
†ψ

q

)− 1

2 e−ψF
†

q |0 >,

=
(

eψ
†ψ

q

)− 1

2

∞
∑

n=0

(−1)n
{ ψ2n

√

[2n]f !
|2n >

− ψ2n+1

√

[2n+ 1]f !
|2n+ 1 >

}

, (37)

and it can be verified F |ψ >= ψ|ψ >. We will first map a vector in the
Hilbert space |φ > to a function φ(ψ) by

φ(ψ) ≡ < ψ†|φ >,

=
(

eψ
†ψ

q

)− 1

2

∞
∑

n=0

(−1)n
{ ψ2n

√

[2n]f !
< 2n|φ >

+
ψ2n+1

√

[2n + 1]f !
< 2n+ 1|φ >

}

, (38)

where we have made use of the anti-commuting property of ψ with F and
F †. In [17] it has been shown that φ(ψ) is an entire function.

Now consider the matrix element < ψ†|F †|φ >. Using F |ψ >= ψ|ψ >,
we have

< ψ†|F †|φ > = ψφ(ψ), (39)

and so in the space of φ(ψ), F † is represented by multiplication by ψ. Consider
now the expression ψ < ψ†|F |φ > which can rewritten as

ψ < ψ†|F |φ > = < ψ†|F †F |φ > . (40)

11



Writing F †F as [N ]f (which is possible in view of the expression for |ψ > in
terms of expansion of q-fermion Fock space states), we have

ψ < ψ†|F |φ > = < ψ†|[N ]f |φ >,

= < ψ†|1− (−1)NqN

1 + q
|φ >, (41)

where in the last step we used (8). Using (38), we have < ψ†|qN |φ > = φ(qψ)
with the prefactor in (38) unaltered and so,

ψ < ψ†|F |φ > =
φ(ψ)− φ(−qψ)

1 + q
. (42)

This suggests to introduce q-differentiation as

dq
dqψ

φ(ψ) ≡ φ(ψ)− φ(−qψ)
ψ(1 + q)

. (43)

Thus in the space of φ(ψ), F is represented by q-differentiation with respect
to ψ. It can be verified dq

dqψ
ψn = [n]fψ

n−1. In this way, we realize that the

Bargmann spaces for q-boson and q-fermion are very different. The mono-
mials of quasi-Grassman variables cannot be obtained by naive replacement
of q by −q. Now using these results, the expression (9) can be written as

(

ψ
dq
dqψ

)

r

φ(ψ) =
r

∑

s=1

F r
s (ψ)

s
( dq
dqψ

)s
φ(ψ), (44)

and the expression (24) gives

( dq
dqψ

ψ
)

r

φ(ψ) =
r

∑

s=1

Brs
( dq
dqψ

)s
ψs φ(ψ). (45)

Expressions (44) and (45) reveal the role of q-fermion Stirling number of
the second kind and ’number Brs ’ appearing in the anti-normal ordering of
q-fermion operators, in expressing powers of q-differential operators.

7.Summary

We have considered the q-fermion numbers introduced in the q-fermion
oscillator algebra by Parthasarathy and Viswanathan [6] in detail and ob-
tained q-fermionic Stirling numbers of first and second kind explicitly. The
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q-fermionic Bell number is obtained by means of q-fermionic Dobinsky for-
mula. q-fermionic Lah numbers are also considered. These results agree with
those of Schork [4,5]. The case of ’anti-normal ordering’ of q-fermionic anni-
hilation and creation operators is studied and expansion coefficients Ar

s for
q-bosonic operators and F r

s for q-fermionic operators are introduced. Recur-
rence relations for these are derived and these are very different from those
encountered in q-stirling numbers or q-Lah numbers. In this sense they are
new. By taking matrix elements of the defining relations for these coefficients
between q-bosonic and q-fermionic Fock space states, we obtain expressions
for the powers of q-bosonic and q-fermionic numbers in terms of ’raising fac-
torials’. These compliment the role of the q-Stirling numbers of the second
kind as they express powers of q-bosonic and q-fermionic numbers in terms
of ’falling factorials’. The theory of product densities of Ramakrishnan [10]
is extended to q-stochastic point process and the necessity of introducing q-
product densities is emphasized. This leads to the identification of the effect
of the degeneracy with q-fermionic Stirling numbers of the second kind. We
have given a Bargmann space representation of q-fermion operators F and
F † using q-fermion coherent states. This representation is used to express
powers of q-differential operators acting on the space of entire functions of
quasi-Grassmann variable as a series.
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