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Abstract

Reliability of the measure of precision of the estimate is crucial; a correct value of the

standard error of the point estimate entails that the resulting significance of the analy-

sis is correctly stated and that confidence intervals have correct coverage probabilities.

Stating an incorrect precision, on the contrary, can often result in biased and mislead-

ing results. In particular, in fixed-effects meta-analysis the overall estimator usually

used in practice tends to have a variance higher than the optimal one even though this

appears to be lower, just by chance.

In performing a fixed-effects meta-analysis, individual treatment estimates are weighted

proportionately to the precision of the study. Such weighting is optimal only under the

assumption that variances are known, which is never the case in practice. As a con-

sequence, the estimator is sub-optimal and the resulting meta-analysis overstates the

significance of the results: in particular, overstatements are dramatic when we sum-

marise studies with small number of patients. Focusing the attention to the fixed-effects

model, the main aim of this thesis is to investigate the behaviour of the precision of

the overall estimator under different circumstances in order to assess how biased and

incorrectly reported the overall variance of the commonly used estimator is and also to

highlight in which circumstances improved estimates are deemed necessary.

In fixed-effects meta-analysis, problems are related to poor estimates of the individual

variances σ2
i since these values are imprecise and both θ (the point estimator) and V

(the overall variance estimator) depend upon them. Poorly estimated study variances

can lead to the overall estimate of the variance of the treatment effect being badly

underestimated. In order to evaluate the circumstances in which the imprecision in

the estimates of σ2
i badly affects V, a number of simulations in different settings were

performed. Under both the assumption of common and uncommon variance of the

observations at the patients level, the average total number of patients per study plays

an important role and this appears to be more important than the total number of

each single study. Moreover, the allocation of patients per arm does not seem to be

decisive for the estimated overall variance of the estimator even though balanced allo-

cation as well as having roughly the same amount of patients per study yields better

results. Furthermore, true to form, the higher the average number of patients per arm,
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the closer the estimator is to the optimal one, i.e. the fewer the number of patients,

the less precise the estimates of σ2
i are and the greater the impact is on the results.

Given the imprecision in the estimate of σ2
i , we may severely overstate the precision

of θ̂. Better estimation of the variances are therefore investigated. Are there ways to

account for the imprecise estimates of the within-studies variances?

Shrunk variances were considered in order to assess whether borrowing information

across variances would produce an overall variance estimate whose ‘real’ and ‘average’

dispersion were both closer to the optimal value. Combining measurements minimises

the total ‘Mean Squared Error ’. Therefore, particularly when the nature of the prob-

lem is not to estimate each expected return separately but rather to minimise the total

impact, shrinkage estimators represent a reasonable alternative to the classical estima-

tors. This approach seems reasonable since the goal of this thesis is to minimise the

real dispersion of the overall variance estimator. Moreover, shrinkage approaches (that

combine variance information across studies and are study-specific at the same time)

usually perform well under a wide range of assumptions about variance heterogeneity,

behaving well both when the variances were truly constant as well as when they varied

extensively from study to study. In particular, in this thesis the ‘modified CHQBC

estimator’ suggested by Tong and Wang is used (where CHQBC stands for the James-

type shrinkage estimator for variances initially proposed by Cui,Hwang,Qiu,Blades and

Churchill).

Results obtained via simulations (with different patterns for various variance schemes

and diverse average amounts of patients per study), emphasise that the estimator based

on the ‘shrunk variances’ performs better than the one based on the estimated sam-

ple variances. Regardless of the variance structure across studies (homoscedasticity

or uncommon variances), the estimator based on the shrunk variances performs op-

timally, even with an average small number of patients per trial, achieving almost

optimal results even when the variances are strongly heterogenous and without relying

on computational expensive procedures. Chapter 3 shows the results obtained if shrunk

variances are used instead of the declared ones; moreover, this new approach is applied

to some real data-sets showing how the declared variance tends to be higher in all cases

and presumably closer to the ‘real’ optimal value.

Finally, chapter 4 highlights the merits of this new approach to the problem of impre-

cise precision estimates in fixed-effects methods and also looks at the further work that

needs to be done in order to improve results for this and other meta-analytical settings;

this thesis, in fact, only considers the case of continuous normally distributed data ig-

noring binary, ordinal or survival data meta-analyses. Moreover, despite the fact that

the problem of estimating σ2
i is particularly urgent and dramatic in the fixed-effects

model, the estimation of σ2
i might also be expected to influence random effects coverage
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probabilities especially when all studies in the meta-analysis are small (Brockwell &

Gordon, 2001).
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Chapter 1

Introduction

Meta-analysis is intended to provide the statistical summary of a collection of results

from individual studies for the purpose of integrating the findings. Data-analysis is

only the last step of a long and complicated research synthesis procedure that involves

a problem formulation stage, a data collection stage and a data evaluation step all of

them necessary to evaluate and decide what reported studies to include in the analysis.

The outcome of a meta-analysis may therefore be a long awaited process.

During the last 20 years or so, literally thousands of meta-analytic papers primar-

ily covering applications in health and medical sciences have been published, making

meta-analysis have a very important role in diverse fields of applications. Moreover, the

essential character of meta-analysis is quantitative in nature and since this statistical

summary is applied to numerous diverse applications in many fields, it is essential that

misleading results are not produced. In fact, often, final decisions are based upon the

conclusions obtained through such a quantitative research synthesis; small variations

in the outputs can have an important impact and substantial consequences in public

and health planning policies, for instance. Given the length of a meta-analysis and the

impact results may have, precision of the estimates is a crucial point.

There is no empirical nor theoretical basis for preferring the fixed-effects model over

the random-effects model or viceversa. There are some arguments in favour of each

approach which depend on the purpose as well as conceptual difficulties linked to both

points of view. This thesis, however, will focus on fixed-effects models, trying to in-

vestigate how reliable and accurate results are. The reason why we will concentrate

attention on fixed-effects meta-analysis is that weights, overall point estimate θ as well

as the precision of the estimate depend entirely and solely upon the findings of many

empirical studies which are usually assumed to be known. The simplifying assumption

is that the sampling variances of the effect size estimates are known; however, this is

approximately true only when sample sizes are large. It is therefore essential to allow
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for the imprecision of these estimates.

The ordinary method is too sensitive to individual study variances and is negatively

biased when sample sizes are too small. In particular, the precision of σ2
i has a dra-

matic influence on weights and therefore on V, the overall precision of the estimator

that describes how uncertain we are about the point estimate. Treating σ2
i ’s as known

underestimates V and can lead to a loss of efficiency, especially for small trials. When

we consider small sizes, standard errors should not be considered as if they were known,

because this would overestimate precision, leading to unreliable results.

1.1 Aim

Fixed-effects models do not account nor allow for the sampling error in σ̂2
i ; however, it

is known that sampling errors are present in practice. When we ignore this problem -

as it happens with the ordinary method – the usual variance estimator performs very

poorly in detecting the true variance of θ and underestimates the true value. Moreover,

the actual variability of the variance estimator is always higher than both the declared

and optimal ones, with a consequent overstatement of the precision of the estimator and

misleading results in the form of too liberal significance tests and Confidence Intervals

without correct coverage properties, in particular with small size studies.

The aim of this thesis is therefore to illustrate via simulations - and calculations where

possible - what circumstances (variance structure across studies at the patient level,

number of studies, allocation per arm, study size) worsen the estimate of the variance of

the overall estimator. Moreover, and more importantly, it will be investigated whether

a different method, able to be accurate and flexible at the same time, exists. In partic-

ular, an estimator whose variance does not diverge substantially from the optimal value

both on average and in practice is highly wanted and warmly recommended. This would

guarantee both more accurate statements about the precision of the point estimate and

confidence intervals more likely to have the correct nominal coverage probabilities.

2



Chapter 2

Meta-Analysis is biased

2.1 Meta-Analysis

“Meta-analysis is a quantitative approach for systematically combining the results of

previous studies in order to arrive at summary conclusions about the body of research”

(Petitti, 1994, pg. 4,15). The need for such a quantitative review and synthesis of re-

sults of related but independent studies became particularly acute in the social sciences

in the mid-70s, when the narrative literature reviews were perceived selective in the

inclusion of studies and subjective in their weighting (Petitti, 1994). Since then, uti-

lization of meta-analytic techniques to combine results and information from separate

quantitative investigations has become increasingly common, and statistical methods

for its application have been further explored and developed. “Over the past 20 years

the number of published meta-analyses and discussions on meta-analysis methodology

has dramatically increased. This has occurred particularly in the areas of medical

and epidemiological research” (Brockwell & Gordon, 2001, pg. 825). The popularity

of meta-analysis is due to its overall goal: integrated analysis has “more statistical

power to detect a treatment effect than an analysis based only on one study” (Nor-

mand, 1999, pg. 321). Furthermore, “when several studies have conflicting conclusions

a meta-analysis can be used to estimate an average effect or to identify a subset of

studies associated with a beneficial effect” (Normand, 1999, pg.322). Meta-analysis

can be of great advantage in situations for which individual outcomes are difficult to

interpret or when treatment effects are small or not significant in each study alone.

“Owing to this rapid rise in the popularity of meta-analysis, it is becoming increasingly

important that the methodology and statistics used are sound” (Brockwell & Gordon,

2001, pg. 825).

Consider k separate studies looking at the same clinical question (as, for example,

a comparison between a new medication and placebo) in which each trial treatment is

3



estimated in terms of a difference in means of a quantitative variable. Meta-analysis

can be based on a fixed-effects model (where the inference is conditional on the studies

actually done) or on a random-effects model (where studies are considered a random

sample of some hypothetical population of studies). The two different assumptions ad-

dress to two different theoretical questions. “The random-effects model is appropriate

if the question is whether the treatment will, on average, have an effect. If the question

is whether the treatment has caused an effect in the studies that have been done, then

the fixed-effects model is more suitable” (Petitti, 1994, pg. 93). Evidently, these dis-

tinct assumptions entail distinct statistical methods; “the random-effects model uses

a two-stage sampling idea, as if we sampled from a superpopulation of studies that

might be carried out and then sampled patients within the studies. Of course, the

real situation is more like a selection of studies that can be carried out” (Mosteller &

Chalmers, 1992, pg. 232).

“The random-effects model in meta-analysis has actually been suggested as a way to

model known differences between studies such as study-design, different within-study

matching protocols, different treatment protocols” (treatment doses, lengths, exposures

or intensities, for example), interventions, outcomes studied “or perhaps even gender or

cultural differences between study participants” (Biggerstaff & Tweedie, 1997, pg. 753).

In practice, there are so many different approaches to conducting a study that there

are many different potential treatment effects that could arise. “Such diversity is com-

monly referred to as (methodological or clinical) heterogeneity (τ2) and may or may

not be responsible for observed discrepancies in the results of the studies. Addressing

such heterogeneity has been and still is one of the most troublesome aspects of many

systematic reviews” (Higgins & Thompson, 2002, pg. 1539,1540) as its magnitude can

influence the conclusions of the meta-analysis. Quantifying the amount of heterogene-

ity is therefore one of the most important aspects of systematic reviews.

Whether fixed-effects or random-effects models are more appropriate, the choice of

model is very important as this “can lead to noticeably different conclusions” (Mengersen

et al., 1995, pg. 38). The impact of the choice of method can be significant. Even small

absolute variations can have an important impact and “they may have substantial con-

sequences in arenas such as public policy, health planning and litigation” (Mengersen

et al., 1995, pg. 39). There are conceptual difficulties linked to both the fixed-effects

and random-effects points of view: “in both models, it may be difficult to characterize

precisely the universe to which we are inferring” (Normand, 1999, pg. 326). In partic-

ular, random-effects model assumes that the results from the trials are representative

of the results which would be obtained from the total population of centres while, in

reality, centres are not chosen at random. On the other hand, the fixed-effects model

makes the assumption that the characteristics of patients in meta-analytical studies are

4



the same as those in the total patient population.

There is no empirical nor theoretical basis for preferring the fixed-effects model over the

random-effects model or viceversa. Nonetheless, despite the long controversial debate

as to the choice of the appropriate model, statisticians’ attention has focused mainly

on the random-effects model that incorporates a parameter explicitly accounting for

the between-trial variability, producing results which can be considered more general-

isable. Mosteller and Chalmers, for instance, “fear that some investigators prefer the

fixed-effects approach because it gives narrower confidence limits rather than because

they want to apply their inferences to the particular population sampled” (Mosteller &

Chalmers, 1992, pg. 232). Biggerstaff and Tweedie remark that “the application of the

fixed-effects model in meta-analytic contexts has been called into question” (Biggerstaff

& Tweedie, 1997, pg. 753). Moreover, it is believed that, although random-effects mod-

els are generally conservative since they typically widen confidence intervals and lead

to a lower chance of calling a difference ‘statistically’ different, they give a “much truer

picture of variability both in individual studies and across a set of studies and conse-

quently enable more informed inference” (Mengersen et al., 1995, pg. 41). Normand

notes that “it is almost always reasonable to believe that there is some between-study

variation and few reasons to believe it is zero”. Especially when studies conflict, “it

is difficult to ignore the between-study variation” (Normand, 1999, pg. 326). Further-

more, “the test for the heterogeneity for assessing the validity of the fixed effect model

is of limited use, particularly when the total information is low, or when the amount of

information available in each trial is very variable” (Hardy & Thompson, 1998, pg. 853).

Hardy and Thompson believe that “in practical medical research, clinical homogeneity

is rare owing to the nature of the studies and the many variables involved, and a degree

of a statistical heterogeneity may be anticipated” (Hardy & Thompson, 1996, pg. 620).

The fixed-effects approach is “open to criticism and is generally discouraged. A truly

random effects approach estimating τ2, which simplifies to a fixed effects model only if

τ2=0, may therefore be preferable” (Jackson, 2006, pg. 2689).

2.2 The models

In light of the above, attention and energies have focused mainly on random-effects

models and on the quantification of the heterogeneity τ2. This thesis, nonetheless, will

focus on fixed-effects meta-analysis. The problem of estimating correct within-study

variances (σ2
i ) is important for both models: it is crucial for fixed-effects models but

it is also expected to have consequences on random-effect models as well. Fixed-effects

models will be preferred in order to simplify the presentation of the problem but the

potential strategies to handle with the imprecision of σ2
i ’s could be applied to both
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models.

Fixed-effects and random-effects statistical methods are outlined briefly below. We

consider the problem of combining information from a series of k comparative clinical

trials, where the data from each trial consists of the number of patients in treatment

and control groups, nT and nC . For simplicity, we assume a series of parallel group

trials. When means, X, in each treatment arm are known, the mean difference and

the associated measure of precision for each primary study can be calculated. Letting

i index the trials, a potential summary measure is the difference in means, Yi = XTi

- XCi with standard error σ̂i, calculated (under the assumption that the variances in

both groups are identical in each study) by

var(Yi) = σ2
i =

(
σ2

Ti

nTi
+

σ2
Ci

nCi

)
= S2

i

(
1

nTi
+

1
nCi

)
(2.1)

where a common estimate of S2
i based on both σ2

Ti and σ2
Ci is given by

Ŝ2
i =

(nTi − 1)ŝ2
Ti + (nCi − 1)ŝ2

Ci

nTi + nCi − 2
(2.2)

where ŝ2
Ti and ŝ2

Ci are the treatment and control group sample variances, respectively,

for the ith study and S2
i is the so called ‘pooled variance’.

2.2.1 The fixed-effects model

The fixed-effects model assumes that each study summary statistic, Yi, is a realization

from a population of study estimates with common mean θ, i.e. every study evaluates

a common treatment effect. This means that the effect of treatment, allowing for the

play of chance, was the same in all studies and if all the studies were infinitely large

they would give identical results.

Let θ - the average effect - be the central parameter of interest and assume there are i=

1,2,...,k studies. Assume that Yi is such that E(Yi) = θ (implying that each study has

the same underlying effect) and let σ2
i = var(Yi) be the variance of the summary statistic

in the ith study. Even under a fixed effect model, in order to calculate confidence

intervals for the overall estimate of treatment effect, it is assumed that the observed

effects in each trial are normally distributed and approximately unbiased (which, for

moderately large study sizes, is guaranteed by the central limit theorem). Thus,

Y i ∼ N(θ, σ2
i ) for i = 1, 2, ..., k

where σ2
i is assumed known and equal to σ̂2

i . Making these additional assumptions,

then θ̂ ∼ N(θ, 1/
∑k

i=1 wi) where wi = 1/σ̂2
i which allows the calculation of confidence

intervals for θ (Hardy & Thompson, 1998).
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2.2.2 The random-effects model

The random-effects model is an alternative approach to meta-analysis that does not

assume that a common (‘fixed’) treatment effect exists; on the contrary, the true treat-

ment effects in the individual studies may be different from each other. This means

there is no single number to estimate in the meta-analysis, but a distribution of num-

bers. The random-effects framework postulates that each study statistic, Yi, is a draw

from a distribution with a specific mean, θi, and variance σ2
i :

Yi | θi, s
2
i ∼ N(θi, σ

2
i ) for i = 1, 2, ..., k

where σ2
i = σ̂2

i . Furthermore, each study-specific mean, θi, is assumed to be a draw from

some superpopulation of effects with mean θ and variance τ2, under the assumption

that these different true effects are normally distributed, i.e. with

θi | θ, τ2 ∼ N(θ, τ2)

This gives a two stage model: {
Yi = θi + ei

θi = θ + εi

where ei ∼ N(0, σ2
i ) and εi ∼ N(0, τ2). The error terms are assumed to be independent.

In this case, the true effect for study i is centred around the overall effect, allowing in-

dividual studies to vary both in estimated effect and true effect. θ and τ2 are referred to

as hyperparameters and represent, respectively, the average treatment effect and inter-

study variation. Given the hyperparameters, the distribution of each study summary

measure, Yi, after averaging over the study-specific effects, is Normal with mean θ and

variance (σ2
i + τ2). As in the fixed-effects model, θ is the parameter of central interest

as this represents the overall treatment effect (i.e. the average effect size in the popula-

tion); however, the between-study variation, τ2 (often referred to as the heterogeneity

variance) plays an important role. The special case where τ2 = 0 implies that the effect

sizes are homogeneous (θi = θ, i = 1, 2, ..., k) and the resulting model is the fixed-effects

one. The σ2
i values (the variance of the difference in means for the ith study) are esti-

mated by the sample variances σ̂2
i (see equation 2.1) usually calculated from the data of

the ith observed sample and are treated as known constants. “In practice the variances

are not known so estimated variances σ̂2
i are used to estimate both θ and its variance.

Any effect of this is generally ignored in practice” (Brockwell & Gordon, 2001, pg. 826).
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2.3 The Usual Meta-Analytical Estimators

In order to account for differences in sample size and study-level characteristics, a

weighted average differences of the estimates from each study is taken into account.

The parameter of interest θ is estimated by

θ̂ =
∑k

i=1 Yiŵi∑k
i=1 ŵi

with ŵi = (τ̂2 + σ̂2
i )
−1 (2.3)

where τ̂2 is a suitable estimator of the heterogeneity parameter τ2. When a fixed effect

model is considered, weights are equal to the reciprocal of the within-variability, i.e.

ŵi = 1/σ̂2
i . “Any choice of weight will lead to an unbiased estimate of the common

treatment effect, but wi is generally taken to be the reciprocal of the variance for the

study i. These particular weights provide the most precise estimate of the treatment

effect, that is they minimise the variance of θ̂” (Hardy & Thompson, 1996, pg. 619,620),

V̂ . Furthermore, assuming σ2
i known and equal to σ̂2

i for all i implies that

V̂ = var(θ̂) =
1∑k

i=1 ŵi

(2.4)

where ŵi = 1/σ̂2
i .

2.4 The Heterogeneity Parameter and the different meth-

ods of estimation

In light of the above considerations, attention has been paid particularly to estima-

tion of the heterogeneity parameter. There exists an extensive literature about the

estimation of τ2. This parameter can be estimated using different methods of estima-

tion: namely, the method of moments estimator by DerSimonian and Laird (DSL –

DerSimonian & Laird (1986)), the variance-component type estimator by Hedges (VC

– Hedges (1983)), the simple heterogeneity variance estimator by Sidik and Jonkman

(SH – Sidik & Jonkman (2005)), the maximum likelihood estimator by Hardy and

Thompson (ML – Hardy & Thompson (1996)) and the approximate restricted maxi-

mum likelihood estimator (REML – Thompson & Sharp (1999)).

The DerSimonian and Laird method of moments estimator is based on the test statistic

of homogeneity originally proposed by Cochran (Cochran, 1937) in 1937. Using the test

statistic

QC =
k∑

i=1

ŵi(Yi − θ̂fix)2

where ŵi = (σ̂2
i )
−1 for i = 1, 2, ...k and where θ̂fix is the estimator of θ when τ2 is set

equal to zero in equation 2.3, the DerSimonian and Laird estimator has the explicit form
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τ̂2
DSL = max

0;
QC − (k − 1)[∑k

i=1 ŵi − (
∑k

i=1 ŵ2
i /
∑k

i=1 ŵi)
]


The DSL estimator is unbiased if the study-specific σ2
i are assumed known and equal

to σ̂2
i . The VC estimator is

τ2
V C = max

{
0,

1
k − 1

k∑
i=1

(Yi − Y )2 − 1
k

k∑
i=1

σ̂2
i

}

where Y =
∑k

i=1 Yi/k. The SH estimator is based on weighted least squares, it is simple

to compute and always yields a non-negative estimate of τ2. This is given by

τ̂2
SH =

1
k − 1

k∑
i=1

v̂−1
i (Yi − θ̂v̂)2 ,

where v̂i = r̂i + 1, r̂i = σ̂2
i /
[∑k

i=1(Yi − Y )2/k
]

and θ̂v̂ =
∑k

i=1 v̂−1
i Yi/

∑k
i=1 v̂−1

i .

The ML and REML estimators are less simple computationally and require iterative

solutions. The ML estimator can be calculated by iterating the equation

τ2
ML = max

{
0,

∑k
i=1 ŵ2

i {(Yi − θ̂)2 − σ̂2
i }∑k

i=1 ŵ2
i

}

until it converges, where θ̂ =
∑k

i=1 ŵiYi/
∑k

i=1 ŵi and ŵi = 1/(σ̂2
i + τ̂2

ML), given an

initial estimate of τ2. Similarly, the REML estimator is computed using the iterative

equation

τ̂2
REML = max

{
0,

∑k
i=1 ŵ2

i [(k/(k − 1))(Yi − θ̂)2 − σ̂2
i ]∑k

i=1 ŵ2
i

}
,

where θ̂ =
∑k

i=1 ŵiYi/
∑k

i=1 ŵi with ŵi = 1/(σ̂2
i + τ̂2

REML).

Despite the number of methods available to estimate τ2, they usually yield similar

estimates of θ; “this may not be surprising because the weighted mean estimator θ̂ that

is given in equation 2.3 for an overall effect is not particularly sensitive to the estimated

weights” (Sidik & Jonkman, 2005, pg. 374). It is believed that results “are nearly in-

variant with respect to the choice of the between-study variance estimator” (Hartung &

Knapp, 2001, pg. 3876). Moreover, in practice, the point estimates from the 2 methods

(fixed or random-effects) can even vary only slightly from each other. Estimates of τ2

are important for the calculation of V̂ , the variance of the overall estimate θ̂. In fact,

in addition to point estimates, reporting the overall variance of the estimator and a

confidence interval is usually considered a useful habit in order to indicate the precision

of the overall effect estimate and therefore to stress the level of uncertainty about the

point estimate.
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2.5 Estimating the variance of the overall effect estimate

V̂ : an ignored problem

In the random effects model for meta-analysis, an overall effect is usually estimated with

a weighted average of the single effect measurements. Weights are given by the preci-

sion, i.e. by the inverse of the sum of the within-study and between-study variances.

Such weighting is ‘optimal’ provided that the correct variances are used. Nevertheless,

these values are unknown and weights used in practice are obtained by substituting

estimated variances in place of the true ones. “Because of sampling error, however, the

precision will be estimated with some inaccuracy” (Senn, 2000, pg. 546). Hence such a

weighting is not optimal anymore. “Although such weights based on estimated values

are incorrect and stochastic, and may have large errors in some cases, approximate

inference about an overall effect typically ignores completely the errors associated with

estimation of the marginal variances” (Sidik & Jonkman, 2006, pg. 3682). Moreover,

the variance of θ̂, V, is often estimated by equation 2.4 obtained by using the estimated

weights ŵ−1
i = σ̂2

i + τ̂2 in place of the original ‘correct’ marginal variances, a practice

which fails to account for the error associated with estimated weights. Clearly, if σ̂2
i

and τ̂2 have substantial errors, then ŵ−1
i would be a poor estimate of the variance of

each study summary measure; as a consequence, V̂ could be unreliable as an estimator

for the variance of θ. The accuracy of the estimated values of σ2
i and τ2 is therefore

decisive: both the variance and the confidence intervals of θ may be considerably af-

fected by using different methods of estimating τ2.

In practice, the point estimates from the two methods (i.e. fixed and random effects

models) can even vary only slightly from each other, but the random-effects model

leads to wider confidence intervals for the overall treatment effect. However, in the

calculation of θ̂ and var(θ̂), since both τ2 and σ2
i are assumed known when in practice

they both are estimated, the confidence interval is still too narrow. The imprecision

of the estimates of both τ2 and σ2
i should be considered. In general, random-effects

estimators tend to weight studies more equally, because of the presence of a common

variance τ2 contributing to the weights. In the case where the relative weight of each

single trial is determined more by the value of τ2, it may be acceptable to treat the

standard errors as if they were known. Nonetheless, when σ2
i ’s have a consistent in-

fluence on the weights, it is essential to allow for the imprecision of these estimates,

whether fixed or random-effects analyses are used. In particular, in fixed-effects mod-

els both the weights and the variance of the overall estimator depend solely upon the

within-study variances σ2
i . Hence, the precision with which σ2

i ’s are estimated will have

a dramatic influence on weights and therefore on the overall precision of the estimator.

Treating σ2
i ’s as known particularly in fixed-effects analysis overestimates the precision

and can lead to a loss of efficiency, especially for small trials. This should not be simply
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ignored. As a consequence, this project will focus on the precision of estimates of σ2
i

in fixed-effects meta-analysis.

Problems related to poor estimates of σ2
i have been addressed several times in the

literature and better estimates of var(Yi) have been advocated by a number of authors.

DerSimonian and Laird themselves warned the reader that in their work sampling vari-

ances were “assumed known even though in reality these were estimated from the data”

and exhorted to do “further research” in this area and to investigate different methods

of calculating the variances (DerSimonian & Laird, 1986, pg. 187). Viechtbauer recalls

that all the methods briefly cited above concentrate on the study of τ2 given the sim-

plifying assumption that the sampling variances of the effect size estimates are known.

“This is only approximately true when the within-study sample sizes are large (in this

case, σ̂2
i ≈ σ2

i ). On the other hand, when the within-study sample sizes are small, then

the error in the σ̂2
i values cannot be simply ignored. A meta-analysis of a large num-

ber of studies with small sample sizes yields coverage probabilities that deviate quite

substantially from the nominal level” (Viechtbauer, 2007, pg. 46, 47). Both random

and fixed-effects models do not account nor allow for the sampling error in σ̂2
i which

is present in practice. “Inference is carried out ignoring the sampling errors in the

individual study variances. Estimated values σ̂2
i are used without modification to the

form of θ̂, its variance or distribution” (Brockwell & Gordon, 2001, pg. 837). Given the

imprecision in the estimate of σ2
i , we may be severely overstating the precision of the

estimated overall effect size. Confidence intervals for σ2
i could facilitate such sensitivity

analyses by suggesting a possible range of σ2
i values one should consider. Confidence

intervals may become anticonservative especially with increasing number of trials and

small sample sizes (Knapp et al., 2006). In particular, the fewer the number of patients

the less precise will be the estimate of σ2
i , and this additional uncertainty would there-

fore be expected to have a great impact on the results (Hardy & Thompson, 1996).

The problem of estimating σ2
i ’s is particularly urgent and dramatic in the fixed-effects

model, even though “the estimation of σ2
i might also be expected to influence random

effects coverage probabilities” especially when all studies in the meta-analysis are small

(Brockwell & Gordon, 2001, pg. 837).

Consider the case where there are many but small, equally sized trials and homoscedas-

ticity applies (i.e. the variances of sampling errors are identical in each trial). The opti-

mal approach is to weight every single trial equally. Fixed-effects meta-analysis will de

facto weight inversely proportional to the observed variance. In so doing it will produce

an estimator whose true variance is higher than that produced by equal weighting (the

’correct one’) but which will appear to be lower, “claiming to have produced a lower

standard error for what is, in fact, a less precise estimate” (Senn, 2000, pg. 547) . The
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real observed variances will vary and weighting by these values will produce a variance

estimate that is lower than that for the optimal estimator just by chance. However,

the estimator is sub-optimal because its ’true’ variance is higher. Unfortunately, the

resulting meta-analysis overstates the significance of the results (Senn, 2000). As a con-

sequence, significance tests associated with it are too liberal and confidence intervals

do not have correct coverage properties (cf. the simulation).

“The problem is not severe if individual trials are not small” (Senn, 2000, pg. 547).

On the other hand, when we consider a number of small trials, standard errors should

not be considered as if they were known because this would overestimate precision and

could also lead to unreliable results. Especially in these cases, investigation of better

estimation of the variances is highly recommended and warmly supported.

2.6 Simulations with common variance

2.6.1 Number of Patients per Arm Equal

“Simulation studies use computer intensive procedures to test particular hypotheses and

assess the appropriateness and accuracy of a variety of statistical methods in relation

of the known truth. These techniques provide empirical estimation of the sampling

distribution of the parameters of interest that could not be achieved from a single

study and enable estimation of accuracy measures, such as the bias in the estimates of

interest, as the truth is known” (Burton et al., 2006, pg. 4279).

Consider a meta-analysis of k similar but independent studies. The observations consist

of two sets of independent random variables XTi1, XTi2, ...XTinTi
and XCi1, XCi2, ...

XCinCi
for i=1, 2, ..., k from the treatment and the control groups, respectively. Note

that nTi and nCi are respectively the study specific sample sizes for the treatment and

the control groups in the ith study, so the total sample size is Ni = nTi +nCi. Suppose

that these two sets of variables have independent normal distributions with different

means and equal variances as follows

XTi1, XTi2, . . . , XTinTi
∼ N(µTi, σ

2
Ti)

XCi1, XCi2, . . . , XCinCi
∼ N(µCi, σ

2
Ci)

for i = 1, . . . , k where σ2
Ti = σ2

Ci

The parameter of interest is the overall mean difference, denoted by θ. The study

specific mean difference is defined as Yi = (µTi − µCi) and is estimated by Yi = XTi −
XCi, where XTi =

∑nTi
j=1 XTij/nTi and XCi =

∑nCi
j=1 XCij/nCi. We assume that Yi is

such that E(Yi) = θ (each study has the same underlying effect) and that the variance

of the difference between two independent means based on nTi and nCi observations

respectively is equal to var(Yi) = σ2
i = σ2

Ti/nTi + σ2
Ci/nCi = S2

i (1/nTi + 1/nCi) given

the assumption that S2
i = σ2

Ti = σ2
Ci (i.e. the two groups in the treatment and control

arms have the same variance). For moderately large study sizes, each Yi should be
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asymptotically normal distributed. Thus,

Y i ∼ N(θ, σ2
i ) for i = 1, 2, ..., k

For the purpose of the simulation a fixed-effects model is considered, that is each study

summary statistic Yi is thought as a realization from a population of study estimates

with common mean θ.

In addition to the point estimate, Confidence Intervals (CIs) for the overall mean dif-

ference (constructed based on the standard normal distribution) are calculated.

“ The coverage probability of a random interval (A,B) for θ is defined as Pr(θ ∈ (A,B))

which –for a nominal 95 per cent confidence interval– should be close to 0.95. The ex-

act coverage can actually only be found if the distribution of the interval is known”

(Brockwell & Gordon, 2001, pg. 831). However, as in this case, the distribution is un-

known; this implies that the coverage probability must be estimated using simulation.

“This is done by simulating a large number of meta-analyses and for each meta-analysis

calculating the appropriate confidence interval” (Brockwell & Gordon, 2001, pg. 831).

The estimated coverage probability is then the proportion of times that the obtained

confidence interval contains the true specified parameter value θ. “The coverage should

be approximately equal to the nominal coverage rate, e.g. 95 per cent of samples for

the 95 per cent confidence intervals, to properly control the type I error rate for testing

a null hypothesis of no effect. Over-coverage suggests that the results are too conser-

vative as more simulations will not find a significant result when there is a true effect

thus leading to a loss of statistical power with too many type II errors. In contrast,

under-coverage (where the coverage rates are lower than 95%) is unacceptable as it

indicates over-confidence in the estimates since more simulations will incorrectly detect

a significant result, which leads to higher than expected type I errors”(Burton et al.,

2006, pg. 4287).

The coverage probability is usually dependent on the parameters of the model and so

the coverages presented are estimated for a range of values of S2
i and Ni. The value

of θ is nevertheless irrelevant as “the procedure is invariant with respect to a location

shift” (Brockwell & Gordon, 2001, pg. 831). For all simulations we use θ = 3. The data

for each meta-analysis is simulated using the fixed-effects model described above (i.e.

Yi = θ + ei), assuming normal errors ei with zero mean and variances σ2
i . The coverage

probability is then estimated by simulating 10000 meta-analyses. The number of runs

was set to 10000 in order to reduce the standard error of the simulation process for the

nominal 95% coverage probability (cp) to 0.002179 (SE(cp)=
√

cp(1− cp)/M) without

being computationally expensive. “A possible criterion for acceptability of the coverage

is that the coverage should not fall outside of approximately two SEs of the nominal

coverage probability (cp)” (Burton et al., 2006, pg. 4287); therefore, in our simulations

between 9457 and 9543 of the 10000 confidence intervals should include the true value.
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The simulations are implemented using a programme in R, with each simulation gen-

erating nTi and nCi observations from normal distributions with mean µTi and µCi =

µTi+θ respectively and variance S2
i . This procedure is repeated k times and the data is

then used to calculate the fixed-effects estimates for θ and the corresponding confidence

interval.

In order to simplify the situation, let us assume that homoscedasticity applies, i.e.

S2
i = S2 for all i. Secondly, even if it is far from reality, we assume that all the studies

have exactly the same size (n = nTi = nCi). This is just to give an indication of what

happens in the case we consider a number of studies all of them with few patients in-

volved; such assumption should therefore only be used as a rough guide of what would

happen in an unlikely but still possible situation (large numbers of big studies is not a

common occurrence in meta-analysis either).

Each estimated significance level is based on 10000 independent replications of the

same model and the significance level is α = 0.05. We discuss the meta-analytical

combination of the results of k= 10, 15, 20, 35 clinical trials and Ni = 10, 16, 20, 30,

40, 60, 100 patients (i.e. as sample sizes we examine (nTi, nCi) = (5, 5), (8, 8), (10,10),

(15, 15), (20,20), (30,30) and (50, 50)). As regards the variances, we consider S2 = 1.

With this choice of these patterns we are able to give an impression about the general

attitude of the fixed-effects meta-analysis when both the number of studies and the

sample size change. We will summarise the estimates once all simulations have been

performed. As in many published simulation studies, the average estimate of interest

(i.e. the overall variance of the estimator) over the M simulations performed will be

reported as a measure of the ‘declared’ estimate of interest. Similarly, as an assessment

of the uncertainty in the estimate of interest between simulations, the variance of the

estimates of the overall variance of the estimator from all simulations will be calculated.

Moreover, in order to evaluate the performance of the obtained results from the dif-

ferent scenarios and approaches being studied, the coverage of the confidence intervals

will be be considered as a measure of the performance and precision of the methods.

When judging the performance of different methods, some argue than having less bias

is more important than producing a valid estimate of sampling variance (Burton et

al., 2006). In our case, not only has the empirical estimated coverage probability to

correspond to the nominal value, but also- and in particular- the ‘declared’ precision

as well as the ‘real’ dispersion of the overall variance of the estimator should be close

to the theoretical ‘optimal’ one. The dispersion of the variances around the optimal

value will be a good way to assess the goodness of the methods used: both the average

declared variances and in particular the actual variances should be close to the optimal

‘real’ value.
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In particular, when we perform meta-analysis, we consider the estimator

θ =
∑k

i=1 wiYi∑k
i=1 wi

where wi = (σ2
i )
−1

The variance of such estimator, V, is equal to

V = var(θ) =
1∑k

i=1 wi

The demonstration is as follows

V = var(θ) = var

(∑k
i=1 wiYi∑k
i=1 wi

)
=

∑k
i=1 w2

i V ar(Yi)

(
∑k

i=1 wi)2
=

∑k
i=1 w2

i σ
2
i

(
∑k

i=1 wi)2

=

∑k
i=1(

1
σ2

i
)2σ2

i

(
∑k

i=1 wi)2
=

∑k
i=1 wi

(
∑k

i=1 wi)2
=

1∑k
i=1 wi

given that var(Yi) = σ2
i and that wi = 1/σ2

i . However, strictly speaking, var(θ) is the

‘true’ variance of the ‘correct’ estimator only when σ2
i ’s are known. When estimated

weights are used both to determine θ and its variance, the equality is not valid anymore.

Furthermore, if we assume that weights are fixed constants as they should be in this

simulation scheme (i.e. wi = 1/k), we obtain

V = var(θ) = var

(∑k
i=1 wiYi∑k
i=1 wi

)
=

∑k
i=1 w2

i V ar(Yi)

(
∑k

i=1 wi)2
=

1
k2

k∑
i=1

var(Yi)

and in our simulation, as both the sample sizes for the treatment and the control groups

are identical, it develops into

var(θ) =
2S2

kn
where n = nTi = nCi

where S2 is the variance of each arm (i.e. S2 = σ2
Ti = σ2

Ci), k is the number of trials

considered and n is the number of patients per arm. This is the ‘optimal ’ value of the

variance of θ provided that

σ2
i = var(Yi) =

(
1

nTi
+

1
nCi

)
(nTi − 1)σ2

Ti + (nCi − 1)σ2
Ci

(nTi − 1) + (nCi − 1)
=

=
(

2
n

)
2(n− 1)S2

2(n− 1)
=

2S2

n
given n = nTi = nCi, S2 = σ2

Ti = σ2
Ci

In practice, we use Ŝ2
i (see equation 2.2) and therefore σ̂2

i instead of the ‘true’ σ2
i .

Therefore, all the relationships described above hold if and only if σ2
i is perfectly es-

timated by σ̂2
i . This is hardly the case. As a consequence we usually end up considering

the estimator

θ̂ =
∑k

i=1 ŵiYi∑k
i=1 ŵi
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and the variance of θ̂, V̂ , is estimated by

V̂ =
1∑k

i=1 ŵi

with ŵi = 1/σ̂2
i

where

σ̂2
i =

(
1

nTi
+

1
nCi

)
Ŝ2

i =
(

1
nTi

+
1

nCi

)
(nTi − 1)ŝ2

Ti + (nCi − 1)ŝ2
Ci

(nTi + nCi − 2)

where ŝ2
Ti and ŝ2

Ci are sample variances.

Thanks to the simulations, it is possible in practice to calculate the ‘actual ’ vari-

ance of the estimates θ̂ obtained with ŵi as well as the ‘declared’ variance of the

estimator. As at the end of 10000 runs we have θ̂1, θ̂2, . . . , θ̂M with the respective vari-

ances V̂1, V̂2, . . . , V̂M where M = 1, 2, . . . , 10000, we can calculate the real dispersion

of the estimates as

V real(θ̂) =

∑M
j=1(θ̂j − θ̂)2

(M − 1)
where θ̂ =

M∑
j=1

θ̂j

M
(2.5)

and the expected variance E[V̂ ] as

E[V̂ ] =
M∑

j=1

V̂j

M
(2.6)

Finally, since when simulating data we have the privilege to know the correct values

for the treatment and control group variances, we can calculate the so called ‘opti-

mal’ variance, that is given by average of optimal variances calculated with the true

variances instead of with the sampled values, that is

V opt =
M∑

j=1

Vj

M
where Vj =

1∑k
i=1 wi

with wi = 1/σ2
i (2.7)

We give the results of the simulations if the fixed-effects model is the theoretically

correct one. In Table 2.1, the estimated actual percentage of CIs is given, that is the

proportion of intervals containing the true overall effect θ out of 10000 runs. We can

observe, not surprisingly, that for small sample sizes the fixed effect model is rather

liberal and that for increasing sample sizes in the studies the estimated coverage prob-

ability get closer to the nominal significance level (Böckenhoff & Hartung, 1998; Li

et al., 1994). The proportion of intervals which contains θ drops to 90% in the bal-

anced case nTi = nCi = 8 regardless of the number of trials considered. It is worth

to note that with increasing sample sizes one observes a stabilization of the actual

coverage probability. Moreover, from Table 2.1, it can be seen that the number of
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trials involved in the meta-analysis does not have a huge impact on the results. In

fact, turning to the coverage probabilities of the confidence intervals (Figure 2.1), we

observe that the empirical coverage probabilities are below 95% for all k, even for a

large number of studies taken into account. The empirical coverage probabilities are

closer to the nominal values of 95% when a total number of 30 patients per study is

considered. The four graphs show in fact the same pattern; with n < 8 the empirical

coverage probability is far below the nominal value while with more than 15 patients

per arm the figures tend to get closer to the nominal value of 95%. Therefore, the

number of patients seems to be the most relevant aspect (at least in the case where

only trials with the same dimension and with the same number of patients per arm

are considered). The smaller the number of patients, the lower the coverage probability.

Moreover, Table 2.1 clearly shows that

V real(θ̂) ≥ V opt ≥ E[V̂ ]

These relationships have a number of consequences. As we can only run 1 meta-

analysis, on average we tend to assert that the variance of the estimate obtained is

smaller that its ‘true’ optimal value. De facto, instead, the variability of such an esti-

mate is much larger than the true one. In practice, as the Table 2.1 shows, there is the

tendency to produce a variance estimate that is lower than that for the optimal esti-

mator. Nevertheless, the estimator is sub-optimal since its ‘actual’ variance V real(θ̂) is

higher than V opt. We claim that we are performing better than the optimal estimator

while, if we could run a number of meta-analyses, we would notice that the variability

of the estimate considered is larger than the ‘true’ one. Fixed-effects meta-analyses pro-

duce an estimator whose true variance is higher than that produced by equal weighting

(the ‘correct one’) but which will appear to be lower. As a consequence, we tend to

overstate the significance of the results.
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Table 2.1: The Results of Simulations for different values of studies (k) under the
assumption of equal variances and equal study sizes

k = 10 n V real(θ̂) V opt E[V̂ ] Coverage
Probability

5 0.052044 0.040000 0.031227 0.8603
8 0.029666 0.025000 0.021792 0.9008
10 0.022188 0.020000 0.018039 0.9193
15 0.014338 0.013333 0.012490 0.9309
20 0.010618 0.010000 0.009534 0.9376
30 0.006858 0.006667 0.006457 0.9420
50 0.004087 0.004000 0.003928 0.9468

k = 15 n V real(θ̂) V opt E[V̂ ] Coverage
Probability

5 0.037335 0.026667 0.020577 0.8539
8 0.020113 0.016667 0.014495 0.9000
10 0.015149 0.013333 0.011969 0.9173
15 0.009435 0.008889 0.008297 0.9314
20 0.007051 0.006667 0.006343 0.9371
30 0.004589 0.004444 0.004302 0.9395
50 0.002692 0.002667 0.002618 0.9454

k = 20 n V real(θ̂) V opt E[V̂ ] Coverage
Probability

5 0.028918 0.020000 0.015329 0.8470
8 0.014785 0.012500 0.010826 0.9063
10 0.011415 0.010000 0.008959 0.9154
15 0.007203 0.006667 0.006224 0.9334
20 0.005288 0.005000 0.004746 0.9352
30 0.003516 0.003333 0.003223 0.9376
50 0.002057 0.002000 0.001961 0.9447

k = 35 n V real(θ̂) V opt E[V̂ ] Coverage
Probability

5 0.016244 0.011429 0.008684 0.8476
8 0.008535 0.007143 0.006152 0.9039
10 0.006467 0.005714 0.005098 0.9186
15 0.004160 0.003810 0.003546 0.9312
20 0.003104 0.002857 0.002710 0.9334
30 0.001997 0.001905 0.001841 0.9419
50 0.001190 0.001143 0.001120 0.9418

This Table shows the results of simulation for θ = 3 and different values of n and k, given
S2 = σ2

Ti = σ2
Ci = 1 for all i. This simulation scheme considers for each simulation k parallel group

clinical trials each of whom with the same number of patients per arm (n = nT = nC). Empirical
Statistics for E(V̂ ) and V real(θ̂) are based on 10000 simulation replicates as well as the Empirical

Coverage Probability.
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Figure 2.1: Estimated Coverage Probabilities for the Fixed-Effects method under the
assumptions of Common Variances and Equal Number of Patients per Arm
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The figures show Estimated Coverage Probabilities of the Confidence Intervals based on 10000
simulation replicates. Different values of k –the number of trials – and n –the number of patients per
arm, with n = nC = nT – are considered: (a) k = 10, (b) k = 15, (c) k = 25, (d) k = 35.
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2.6.2 Number of Patients per Arm not Equal

So far we have considered the case where the number of patients per each arm is equal.

We now take into account the cases where nT 6= nC . In particular, we consider the case

where on average all clinical trials have the same amount of patients per arm. This

implies that E(nT ) = E(nC). Therefore, in order to consider clinical trial where each

arm has on average the same amount of patients, we sample the dimension of each arm

from a negative binomial distribution. The negative binomial distribution is a discrete

probability distribution,commonly parameterized by two real-valued parameters p and

r with 0 < p < 1 and r > 0. Under this parameterization, the probability mass function

of a random variable with a NegBin(r, p) distribution takes the following form:

f(k; r, p) =
Γ(r + k)
k!Γ(r)

pr(1− p)k

for k = 1, 2, 3, ... and where Γ is the Gamma Function. The NegBin(r, p) distribution is

the probability distribution of a certain number of failures (r) in a series of independent

and identically distributed Bernoulli trials given p as the probability of success (Piccolo,

2000). Specifically, this is the probability distribution of the number of failures before

the kth success in a Bernoulli process, with probability p of success on each trial.

Formulae for the expectation and the variance for the negative binomial distribution

are given by

E(X) =
r(1− p)

p
V ar(X) =

r(1− p)
p2

Hence, if we impose the average number of patients per arm (with at least 2 patients

per arm), we can obtain various negative binomial distributions each of which with

diverse variances. In our study, we decided to consider the cases where the variances of

the negative binomial distributions are equal to 5. Higher values of the variance were

not taken into account as this would have implied extremely high number of patients

per arm which are quite unrealistic. Given a variance equal to 5, the negative binomial

distribution whose mean is 5 assumes values ranging from 2 to 18. Similarly, as shown

in the following graphs, given a variance equal to 5 and an average value equal to 15,

the barplot of such a probability distribution has values varying from 2 to 37.
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Figure 2.2: Bar Plots of a Probability Distribution of a negative Binomial

Bar Plots of a Probability Distribution of a negative Binomial with different expected values (5 and

15 respectively) and same variances in both cases equal to 5

We run 10000 meta-analyses assuming the fixed-effects model as the correct one.

Table 2.2 shows the proportion of intervals containing the true overall effect θ as well

as the ‘real’, the ‘optimal’ and the ‘declared’ variances of the estimates.

Once again, despite the fact we are now considering the case where nT and nC are the

same only on average, we can observe (Figure 2.3) that the estimated coverage proba-

bility gets closer to the nominal level (i.e. 95 %) only when the sample sizes increases.

The proportion of intervals which does not contain the true θ rises to 20% when we

consider only 5 patients per arm on average. Interestingly, under the assumption of

common variance, the number of clinical trials taken into account does not seem to

have an important impact on the output. The empirical coverage probabilities assume

roughly the same values regardless of k, the number of clinical trials. Again, looking at

both Figure 2.3 and Table 2.2, we can observe that the coverage probability is closer

to the nominal level when, on average, there are more than 15 people per arm, regard-

less of the number of studies. In fact, if we have a look at the ratio between the real

dispersion of the estimates and the mean of the variances of these estimates we can
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observe that, as the number of the average patients per arm increases, the ratio itself

tends to be roughly the same for all the four scenarios considered (k = 10, 15, 20 and

35). What really matters is the average total number of patients per trial: the less the

average amount of patients the lower is the coverage probability.

Figure 2.3: Estimated Coverage Probabilities for the Fixed-Effects method under the
assumptions of Common Variances and Different Number of Patients per Arm
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The figures show Estimated Coverage Probabilities of the Confidence Intervals based on 10000
simulation replicates. Different values of k and n (where n = nC = nT only on average) are taken into
account: (a) k = 10, (b) k = 15, (c) k = 25, (d) k = 35.
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Considering the same average number of patients per arm entails that not neces-

sarily every single trial has got the same allocation per arm and the same total number

of patients. For instance, in a meta-analysis where each study has an average total

number of 20 people it is likely to have clinical trials with more or less than 20 people

allocated in a more or less extreme unbalanced way. This has 2 consequences. First,

under the assumption of common variance, the average total number of patients ap-

pears to be more important than the amount of every single clinical trial. Second, the

allocation per arm of these people does not seem to be significant.

In the following paragraphs the irrelevance of both the allocation and the amount of

people per study is proven investigating the effect of random variation in variances

on meta-analysis. In order to simplify the calculation, in a first instance we will con-

sider only two clinical trials under the assumptions of (i) equal number of patients

per trial when proving the insignificancy of the allocation and of (ii) balanced alloca-

tion when verifying the importance of the average total amount of patients considered.

Subsequently, both the allocation and the total amount of patients will be taken into

consideration at the same time.
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Table 2.2: The Results of Simulations for different values of studies (k) under the
assumption of equal variances and equal study sizes on average

n k V real(θ̂) V opt E[V̂ ] V real(θ̂)

E[V̂ ]

Coverage

Probability

5 10 0.13624 0.05532 0.03594 3.79055 0.7345
15 0.11109 0.03660 0.02307 4.81575 0.7026
20 0.09523 0.02726 0.01674 5.68843 0.6808
35 0.08067 0.01545 0.00911 8.85376 0.6267

8 10 0.03897 0.03024 0.02572 1.515 0.8929
15 0.02753 0.02000 0.01692 1.627 0.8793
20 0.02031 0.01495 0.01264 1.607 0.8874
35 0.01256 0.00850 0.00714 1.759 0.8756

10 10 0.02570 0.02280 0.02039 1.260 0.9166
15 0.01738 0.01513 0.01345 1.292 0.9151
20 0.01278 0.01130 0.01003 1.274 0.9153
35 0.00763 0.00645 0.00571 1.335 0.9104

15 10 0.01536 0.01417 0.01327 1.158 0.9329
15 0.01005 0.00941 0.00878 1.145 0.9315
20 0.00752 0.00707 0.00658 1.142 0.9317
35 0.00444 0.00403 0.00375 1.185 0.9268

20 10 0.01059 0.01034 0.00986 1.074 0.9413
15 0.00748 0.00690 0.00655 1.141 0.9280
20 0.00545 0.00517 0.00491 1.111 0.9351
35 0.00307 0.00295 0.00280 1.095 0.9395

30 10 0.00702 0.00680 0.00659 1.064 0.9423
15 0.00460 0.00453 0.00438 1.049 0.9430
20 0.00351 0.00339 0.00328 1.070 0.9432
35 0.00200 0.00194 0.00187 1.065 0.9425

50 10 0.00407 0.00406 0.00398 1.021 0.9484
15 0.00271 0.00271 0.00266 1.021 0.9473
20 0.00206 0.00203 0.00199 1.038 0.9468
35 0.00117 0.00116 0.00114 1.030 0.9479

This Table shows the results of simulation for θ = 3 and different values of n and k, given S2 = 1. This
simulation scheme considers for each simulation k parallel group clinical trials each of whom with the
same number of patients per arm on average(E(n) = E(nT ) = E(nC)). Empirical Statistics for E(V̂ )
and V real(θ̂) are based on 10000 simulation replicates as well as the Empirical Coverage Probability.
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2.7 Effect of Allocation of Patients per Arm on Meta-

Analysis. 2 trials

We consider two clinical trials, each of which with the same total number of patients

(N = N1 = N2). Moreover, we suppose that the variances are equal to

σ2
1 = var(Y1) =

(
1

αN
+

1
(1− α)N

)
S2

1 =
(

1
α(1− α)N

)
S2

1 = γS2
1

σ2
2 = var(Y2) =

(
1

βN
+

1
(1− β)N

)
S2

2 =
(

1
β(1− β)N

)
S2

2 = δS2
2

where α and β represent the proportion of patients allocated to each arm of the trial,

N is the total number of patient per clinical trial and S2
1 = S2

2 = 1. The optimal weight

for trial 1 would be equal to

wopt
1 =

1
σ2
1

1
σ2
1

+ 1
σ2
2

=
1

γS2
1

1
γS2

1
+ 1

δS2
2

=
1
γ

γ+δ
γδ

=
δ

γ + δ
given S2

1 = S2
2 = 1

while the empirical weight for trial number 1 would be

ŵemp
1 =

1�
1

αN
+ 1

(1−α)N

�
Ŝ2

1

1�
1

αN
+ 1

(1−α)N

�
Ŝ2

1

+ 1�
1

βN
+ 1

(1−β)N

�
Ŝ2

2

=
1

γŜ2
1

1
γŜ2

1

+ 1
δŜ2

2

=

=
1

γŜ2
1

∗ γŜ2
1δŜ2

2

[δŜ2
2 + γŜ2

1 ]
=

δŜ2
2

[δŜ2
2 + γŜ2

1 ]

=
δ

δ + γr
given

Ŝ2
1

Ŝ2
2

= r

Therefore the optimal variance of the estimator will be equal to

V opt = var(θopt) =
[

δS2
2

δS2
2 + γS2

1

]2

γS2
1 +

[
δS2

2

δS2
2 + γS2

1

]2

δS2
2 =

=
1

[γ + δ]2
(
γδ2 + γ2δ

)
= γδ

[γ + δ]
[γ + δ]2

=
γδ

γ + δ
=

1
1
γ + 1

δ

Similarly, the empirical overall variance will become.

V̂ emp = var(θemp) =

[
δŜ2

2

γŜ2
1 + δŜ2

2

]2

γS2
1 +

[
γŜ2

1

γŜ2
1 + δŜ2

2

]2

δS2
2 =

=
[

δ

δ + γr

]2

γ +
[

γr

δ + γr

]2

δ =
1

[δ + γr]2
(
δ2γ + γ2r2δ

)
=

= δγ
(δ + γr2)
(δ + γr)2
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And the ratio of this to the optimal will be

Υ =
var(θemp)
var(θopt)

=
δγ (δ+γr2)

(δ+γr)2

γδ
γ+δ

=
(δ + γr2)
(δ + γr)2

(δ + γ) (2.8)

where γ and δ depend on the proportion of patients per arm and where r can assume

values theoretically in the range (0,∞). Actually, such a proportion does not depend

on the total number of patients per clinical trials if we assume that both trials have

the same dimension. In fact,

(δ + γr2)
(δ + γr)2

(δ + γ) =

(
1

α(1−α)N + r2

β(1−β)N

)(
1

α(1−α)N + 1
β(1−β)N

)
(

1
α(1−α)N + r

β(1−β)N

)2 =

=
1

N2

(
1

α(1−α) + r2

β(1−β)

)(
1

α(1−α) + 1
β(1−β)

)
1

N2

(
1

α(1−α) + r
β(1−β)

)2 =

=

(
1

α(1−α) + r2

β(1−β)

)(
1

α(1−α) + 1
β(1−β)

)
(

1
α(1−α) + r

β(1−β)

)2

This means that the ratio Υ only depends on α, β and on r. In general, to give

an idea of the behaviour of the ratio we can plot it with different values of α and β.

The following graphs (Figure 2.4) give us a rough idea in the cases where α assumes

the values (0.1, 0.2, 0.3 and 0.5) while β ranges from 0.1 to 0.9.

26



Figure 2.4: Random Variation in Variances on a Meta-Analysis with 2 trials. Effect of
Allocation of patients per arm.
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These Figures show the variance behaviour of the ratio of the real overall variance to the optimal
value as r increases and under the assumption of 2 studies each of which with the same total number
of patients N. The 5 lines represent different values of β (– = 0.9, 0.1, – = 0.8, 0.2, – = 0.7, 0.3, – =

0.6, 0.4, – = 0.5 ) while α is set equal to 0.1 (a), 0.2 (b), 0.3 (c) and 0.5(d).
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To have a better idea we can even plot them on a logarithmic base (Figure 2.5).

Figure 2.5: Random Variation in Variances on a Meta-Analysis with 2 trials. Effect of
Allocation of patients per arm - Logarithm Scale.
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These Figures show the variance behaviour of the ratio of the real overall variance to the optimal
value as r increases and under the assumption of 2 studies each of which with the same total number
of patients N. Again, the 5 lines represent different values of β (. . . = 0.9, 0.1, . . . = 0.8, 0.2, . . . =
0.7, 0.3, . . . = 0.6, 0.4, . . . = 0.5 ) while α is set equal to 0.1 (a), 0.2 (b), 0.3 (c) and 0.5(d). The

logarithm scale is considered.
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As r ranges from simulation to simulation, we can see the average behaviour of the

ratio of the empirical and the optimal variances Υ calculating the mean. As we have

assumed an equal total number of patients per each clinical trial, i.e. N1 = N2 = N , it

follows that r = Ŝ2
1

Ŝ2
2

∼ F(N−2),(N−2), where F is the F distribution with both degrees

of freedom equal to N-2. Given α, β and N, the expected value of the ratio is equal to

E(α, β, N) =
∫ ∞

0
Υ(α, β, r) ∗ dF (r,N−2 ,N−2 )dr

where

dF (r,ν1 ,ν2 ) =
1

Beta(ν1
2 , ν2

2 )

(
ν1
ν2

) ν1
2

r
ν1
2
−1(

1 + ν1r
ν2

) ν1+ν2
2

given F(ν1,ν2) with ν1 and ν2 representing the degrees of freedom. The following tables

show the expected value of the ratio between the variance of the optimal and empirical

estimator. Each table shows the expected values for the main possible combination of

the proportion of total number of patients per arm, i.e. α and β.

Table 2.3: Expected values of the ratio of the empirical overall variance to the optimal.
Effect of Allocation for N=30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 1.0345 1.0325 1.0304 1.0291 1.0287 1.0291 1.0304 1.0325 1.0345
0.2 1.0325 1.0345 1.034 1.0335 1.0333 1.0335 1.034 1.0345 1.0325
0.3 1.0304 1.034 1.0345 1.0344 1.0343 1.0344 1.0345 1.034 1.0304
0.4 1.0291 1.0335 1.0344 1.0345 1.0345 1.0345 1.0344 1.0335 1.0291
0.5 1.0287 1.0333 1.0343 1.0345 1.0345 1.0345 1.0343 1.0333 1.0287
0.6 1.0291 1.0335 1.0344 1.0345 1.0345 1.0345 1.0344 1.0335 1.0291
0.7 1.0304 1.034 1.0345 1.0344 1.0343 1.0344 1.0345 1.034 1.0304
0.8 1.0325 1.0345 1.034 1.0335 1.0333 1.0335 1.034 1.0345 1.0325
0.9 1.0345 1.0325 1.0304 1.0291 1.0287 1.0291 1.0304 1.0325 1.0345

This Table shows the expected means of the ratio of the real overall variance to the optimal value
when different allocations per arm per study are considered. The rows represent the allocation in

study 1 (i.e. α), while the columns represent possible values of β, the allocation in the study 2. The
total number of patients in both studies (N1, N2) is set to 30.
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Table 2.4: Expected values of the ratio of the empirical overall variance to the optimal.
Effect of Allocation for N=80

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 1.0127 1.0118 1.0108 1.0103 1.0101 1.0103 1.0108 1.0118 1.0127
0.2 1.0118 1.0127 1.0125 1.0122 1.0121 1.0122 1.0125 1.0127 1.0118
0.3 1.0108 1.0125 1.0127 1.0126 1.0126 1.0126 1.0127 1.0125 1.0108
0.4 1.0103 1.0122 1.0126 1.0127 1.0127 1.0127 1.0126 1.0122 1.0103
0.5 1.0101 1.0121 1.0126 1.0127 1.0127 1.0127 1.0126 1.0121 1.0101
0.6 1.0103 1.0122 1.0126 1.0127 1.0127 1.0127 1.0126 1.0122 1.0103
0.7 1.0108 1.0125 1.0127 1.0126 1.0126 1.0126 1.0127 1.0125 1.0108
0.8 1.0118 1.0127 1.0125 1.0122 1.0121 1.0122 1.0125 1.0127 1.0118
0.9 1.0127 1.0118 1.0108 1.0103 1.0101 1.0103 1.0108 1.0118 1.0127

This Table shows the expected means of the ratio of the real overall variance to the optimal value
when different allocations per arm per study are considered. The rows represent the allocation in

study 1 (i.e. α), while the columns represent possible values of β, the allocation in the study 2. The
total number of patients in both studies (N1, N2) is set to 80.

Regardless of the combination of the values α and β, given N, it appears that our

function Υ tends to assume roughly the same values; this implies that the allocation per

arm does not affect the analysis. What really matters is the total number of patients

per clinical trial and not the way patients are allocated in each arm. In other words,

the crucial factor is the degrees of freedom available for estimating the within trial

variance. In fact, as the total number per clinical trial increases, the expected values

tend to be closer to 1 (cf. Tables 2.3 and 2.4, with N=30 and N=80 respectively).
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2.8 Effect of Number of patients per Trial on meta-analysis.

2 Trials Example

In this case we consider two clinical trials with a given total number of patients equal

to 2N. However, in this case, the number of patients per trial will vary. This means

that we can consider 2n1 patients in trial 1 and 2n2 in trial 2, where 2n1 + 2n2 = 2N .

As the allocation per arm does not really affect the meta-analysis in the case where

the variance is supposed to be equal in both clinical trials, we consider a balanced

allocation (i.e. n1 patients per arm in the clinical trial 1 and n2 patients per arm in

the clinical trial 2) in order to simplify the calculation. Moreover, we suppose that the

variances are equal to

σ2
1 = var(Y1) =

(
1
n1

+
1
n1

)
S2

1 =
(

2
n1

)
S2

1

σ2
2 = var(Y2) =

(
1
n2

+
1
n2

)
S2

2 =
(

2
n2

)
S2

2

where S2
1 = S2

2 = 1.

In this case, the optimal scheme will be to weight the trials according to the numbers

of patients, that is to use weights equal to n1/N and to n2/N respectively. In fact, if

we consider only the trial 1, we have that the optimal weight is equal to

wopt =
n1

2S2
1

n1

2S2
2

+ n2

2S2
2

=
n1

2S2
1

n1S2
2+n2S2

1

2S2
1S2

2

=
n1

n1 + n2
=

n1

N

given that in the optimal scenario S2
1 and S2

2 are known and equal to 1 and where n1 +

n2 = N . Given the optimal weights, the optimal estimator will have an overall variance

equal to 2/N. In fact, recalling that when we perform meta-analysis, we consider the

estimator

θ =
∑k

i=1 wiYi∑k
i=1 wi

=
k∑

i=1

qiYi where qi =
wi∑k
i=1 wi

with wi = 1/σ2
i

and that the overall variance of such estimator, V, is usually estimated by

V = var(θ) =
1∑k

i=1 wi

with wi = σ2
i

the optimal overall variance becomes

V opt =
(n1

N

)2 2
n1

+
(n2

N

)2 2
n2

=
2(n1 + n2)

N2
=

2
N

However, the estimated weights as well as the estimated overall variance should take

into account the fact that the variance is unknown. De facto, we could impose and

presume to know the variance of each single trial when it comes to calculate the overall
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variance of the estimator. Nonetheless, the weights will inevitably depend on the

observed variances in each trial. Therefore, for trial 1 -for instance - the weight will be

equal to

wemp =

n1

2Ŝ2
1

n1

2Ŝ2
2

+ n2

2Ŝ2
2

=

n1

2Ŝ2
1

n1Ŝ2
2+n2Ŝ2

1

2Ŝ2
1 Ŝ2

2

=
n1

2Ŝ2
1

(
2Ŝ2

1 Ŝ2
2

n1Ŝ2
2 + n2Ŝ2

1

)
=

=
n1Ŝ

2
2

n1Ŝ2
2 + n2Ŝ2

1

=
n1

n1 + n2r

given r equal to the observed ratio of within trial variances for the trial 1 compared

to the trial 2 (i.e. r = Ŝ2
1/Ŝ2

2 ). As a consequence, the overall observed variance, in

the case where we take into account the observed variances only when calculating the

weights of the trials, becomes

V̂ emp =
(

n1

n1 + n2r

)2 2
n1

+
(

n2r

n1 + n2r

)2 2
n2

= 2
(n1 + n2r

2)
(n1 + n2r)2

The ratio of this variance to the optimal one will be equal

Ψ =
var(θemp)
var(θopt)

=
2 (n1+n2r2)

(n1+n2r)2

2
N

=
(n1 + n2r

2)
(n1 + n2r)2

(n1 + n2) (2.9)

where n1 and n2 represent the total number of patients per arm in each clinical trial

and r (the ratio of the observed variances) assumes theoretically values ∈ (0,∞). This

means that the ratio depends only on the average total number of patients and on r.

In general, to give an idea of the behaviour of the ratio we can plot it with different

values of n1 and n2. The following graphs (Figure 2.6) give us a rough idea in the cases

where N assumes the value 50 with at least 5 people per clinical trial on a Normal (a)

and a Logarithmic scale (b).
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Figure 2.6: Random Variation in Variances on a Meta-analysis with 2 trials. Effect of
Number of patients per trial

V
ar

ia
nc

e
B

eh
av

io
ur

(a) Variance Ratio

V
ar

ia
nc

e
B

eh
av

io
ur

(b) Variance Ratio

These figures show the variance inflation of the ratio of the real overall variance to the optimal overall

variance (Ψ) as r –the observed ratio of within trial variances for trial 1 compared to trial 2–

increases. Each line represents a possible combination of 2n1 and 2n2 under the constraint of a total

number of patients 2n1 + 2n2 = 50 and under the assumption of a balanced allocation in each trial.

Both the Normal Scale (a) and the Logarithmic Scale (b) are considered
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As r ranges from simulation to simulation, we can see the average behaviour of

the ratio of the empirical and the optimal variances calculating the mean. As we have

assumed an average total number of patients equal to 2N, it follows that r = Ŝ2
1

Ŝ2
2

∼
F(2n1−2),(2N−2n1−2), where F is the F distribution with degrees of freedom equal to

2n1 − 2 and to 2n2 − 2. The expected value of the ratio, given N, is then equal to

E(n1, n2) =
∫ ∞

0
Ψ(n1, n2, r) ∗ dF (r,2n1−2 ,2n2−2 )dr

where

dF (r,ν1 ,ν2 ) =
1

Beta(ν1
2 , ν2

2 )

(
ν1
ν2

) ν1
2

r
ν1
2
−1(

1 + ν1r
ν2

) ν1+ν2
2

given F(ν1,ν2) with ν1 and ν2 representing the degrees of freedom.

As a consequence, if we give the total number of patients 2N we can compute the

average of the ratio between the observed and the optimal overall variances for the

estimator for all possible combinations of n1 and n2. Imposing that each single trial

has at least 5 patients in total, we can see that the the ratio has on average values close

to 1. Moreover, as the average total number of patients increases, the figures tend to

be closer to 1 (i.e. the overall empirical and optimal variances of the estimator tend to

be the same).

Figure 2.7: Expected Variance Inflation for N=30 on a Meta-Analysis with 2 trials

V
ar

ia
nc

e
B

eh
av

io
ur

(a) Patients in Trial 1

This figure shows the Expected Variance Inflation on a Meta-Analysis with only 2 trials for different

number of patients (perfectly balanced among arms) in each of the 2 studies; the x axis represents the

patients allocated in trial 1, given a total of 30 patients in the 2 trials
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Figure 2.8: Expected Variance Inflation for N=60 on a Meta-Analysis with 2 trials
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(b) Patients in Trial 1

This figure shows the Expected Variance Inflation on a Meta-Analysis with only 2 trials for different

numbers of patients (perfectly balanced in the 2 arms) in 2 studies. The x axis represents the patients

allocated in trial 1, given that a total number of 60 patients in the 2 trials is considered

2.9 Effect of Patients and Allocation per Arm. 2 Trials

Example

Let the variances of responses for trial 1 and 2 be both equal to 1. However, in this

case, both the number of patients per trial and the allocation per arm in each trial will

vary. Suppose n1 patients in trial 1 and n2 in trial two for a total number of N patients.

Moreover, let’s denote the allocation of patients in one arm as α and β for trial 1 and

2 respectively. Hence,

σ2
1 = var(Y1) =

(
1

αn1
+

1
(1− α)n1

)
S2

1 =
(

1
α(1− α)n1

)
S2

1

σ2
2 = var(Y2) =

(
1

βn2
+

1
(1− β)n2

)
S2

2 =
(

1
β(1− β)n2

)
S2

2

The optimal scheme to weight the trials will therefore depend on both the allocation

and the number of people involved in each study. In fact, the optimal weight is equal

to

wopt
1 =

1
var(Y1)

1
var(Y1) + 1

var(Y2)

S2
1=S2

2=1
=

α(1− α)n1

α(1− α)n1 + β(1− β)n2

These weights yields an estimator with an optimal overall variance given by

V opt = var(θ) = (wopt
1 )2var(Y1) + (wopt

2 )2var(Y2) =

=
[

α(1− α)n1

α(1− α)n1 + β(1− β)n2

]2 S2
1

α(1− α)n1
+[

β(1− β)n2

α(1− α)n1 + β(1− β)n2

]2 S2
2

β(1− β)n2
=

=
1

α(1− α)n1 + β(1− β)n2
given S2

1 = S2
2 = 1

35



Now, let us consider the observed variances. The empirical weight for trial 1 becomes

wemp
1 =

α(1−α)n1

Ŝ2
1

α(1−α)n1

Ŝ2
1

+ β(1−β)n2

Ŝ2
2

=
α(1− α)n1

Ŝ2
1

× Ŝ2
1 Ŝ2

2

Ŝ2
2α(1− α)n1 + Ŝ2

1β(1− β)n2

=

=
α(1− α)n1

α(1− α)n1 + β(1− β)n2r
given Ŝ2

1/Ŝ2
2 = r

and the overall empirical variance of the estimator becomes

V̂ emp = var(θ̂) =
(

α(1− α)n1

α(1− α)n1 + β(1− β)n2r

)2 1
α(1− α)n1

+

(
β(1− β)n2r

α(1− α)n1 + β(1− β)n2r

)2 1
β(1− β)n2

=

=
α(1− α)n1 + β(1− β)n2r

2

[α(1− α)n1 + β(1− β)n2r]
2

The ratio of this variance to the optimal one will be equal to

Ξ =
var(θ̂)
var(θ)

=
α(1− α)n1 + β(1− β)n2r

2

[α(1− α)n1 + β(1− β)n2r]
2 × [α(1− α)n1 + β(1− β)n2]

Ξ depends on α, β, n1 and n2. Just to give an idea of the behaviour of Ξ when r ranges

from 0 to 10, we can plot this function for different values of n1 and n2, given α and

allowing for different values of β or viceversa. The following four plots (Figure 2.9), for

example, show the behaviour of Ξ for all the possible combinations of n1 and n2 given

N=30 and for four different values of α (0.1, 0.3, 0.6, 0.8) given β equal to 0.3 in all

four cases.
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Figure 2.9: Random Variation in Variances on a Meta-analysis with 2 trials. Effect of
both Allocation and Number of patients per trial
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(d) Variance Ratio

These 4 figures show the variance inflation of the ratio of the real overall variance to the optimal
overall variance as r –the observed ratio of within trial variances for trial 1 compared to trial 2–

increases. Each line represents the variance behaviour for a possible combination of n1 and n2, given
n1 + n2 = 30. Unbalanced allocation is assumed: the allocation per arm in the trial 2 (β) is fixed and
set to 0.3 while the allocation per arm in trial 1 (α) changes for every figure ( 0.1, 0.3, 0.6 and 0.8 for

figures from (a) to (d) respectively).
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Similarly, Figure 2.10 shows the same situation in the case where α is fixed equal

to 0.5 while β varies and assumes the values 0.1, 0.3, 0.6 and 0.8.

Figure 2.10: Random Variation in Variances on a Meta-analysis with 2 trials. Effect of
both Allocation and Number of patients per trial
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(c) Variance Ratio
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These 4 figures show the variance inflation of the ratio of the real overall variance to the optimal

overall variance as the observed ratio of within trial variances for trial 1 compared to trial 2 increases.

Each line represents the variance behaviour for each possible combination of n1 and n2, given

n1 + n2 = 30. While the allocation per arm in the trial 1 is balanced (α = 0.5), β changes for every

figure (0.1, 0.3, 0.6 and 0.8 for figures from (a) to (d) respectively).

In order to have a better idea of the average behaviour of the function, we can

calculate the expected value of Ξ under the assumption that r ∼ Fn1−2,n2−2. Results

are given in Table 2.5 for N=30, β fixed and equal to 0.8 (in Table 2.5.a), 0.4 (in Table

2.5.b) and 0.1 (in Table 2.5.c) while α assumes values ranging from 0.1 to 0.9. Each

row represents different values of α (from 0.1 to 0.9) while each column represents the

number of patients in trial 1 given a total number of patients of 30 patients and under

the assumption that there are at least 5 patients in each study (i.e., if N=30, n1 ranges

from 5 to 25).
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All these matrices may not be easy to interpret, especially when N increases. A

3D visualization may better show the pattern of the calculated expected values of the

ratio of the variances. Once again, we fix the value β for each single 3D representation

( 0.8, 0.6, 0.3 and 0.1) and we set N, the combined number of subjects in the 2 trials,

equal to 40. The x axis represents the number of patients in trial 1 (and consequently

we can determine the patients in the second trial) while the y axis shows the different

values of α, i.e. the allocation per arm in trial 1 (while patients in trials 2 will always

have the same allocation β). The 4 graphs have roughly the same pattern and the same

values for every possible combination of the four variables taken into account. It can

be seen from the three-dimensional plots that the distribution of the ratio between the

empirical and the optimal variances is, as expected, symmetric (as we only considered

2 trials). Patterns and values change slightly with different values of β. The ratio Ξ

tends to assume values distant from 1 when we consider the extreme cases with only

few patients allocated in one trial, regardless of the allocation per arm. In all other

cases, differences are, on average, undetectable; the ratio calculations change by only

0.03 in the region covering most of the cases and combinations (from 10 to 30 subjects

in trial 1). Therefore, the distribution of the combined number of patients (i.e. the

total subjects in each single study) as well as the allocation per arm per study does not

have much influence on V̂ .

Nonetheless, if we observe the profiles of the expected values it can be seen that the

minimum of the calculated ratio is reached when both the trials have the same number

of patients as well as when the allocation is balanced (both arm in the trial have the

same number of patients). Under these circumstances, the ratio is closer to 1; this means

that, on average, the overall variance of the estimator is almost perfectly estimated.

Just so almost, though. The expected ratio never reaches the value 1. Therefore,

the overall variance of the estimator is on average higher than the optimal one. As

proven via simulations, the ‘real’ dispersion of the estimator is de facto higher than

that of the optimal one even though we tend to declare that the estimate has a smaller

overall variance. On the average, the estimate of the variance of the overall effect by

using the variance weighted method in meta-analysis underestimates the true pooled

variance (i.e. the significance level is overestimated). There is a tendency to produce

variance estimate lower than the optimal true one even though the ‘real’ variance of

the estimator used is higher. The estimate of the overall variance should then consider

both the effect of the sample size and the variation of sample variances in order to

produce more reliable figures.
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Figure 2.11: 3-D Visualisation of the Expected Variance Inflation for N=40 on a Meta-
Analysis with 2 trials

These 4 figures show the Expected variance inflation of the ratio of the real overall variance to the
optimal overall variance for different values of patients and allocation in both trials 1 and 2. Each
figure represents the expected values for a fixed value of β while n1 and α varies. In particular, α
ranges from 0.1 to 0.9 while the number of patients in trial 1 ranges from 5 to 35 given a total

number of 40 patients among the 2 studies. β for each single 3D representation is set to (a) 0.8, (b)
0.6, (c) 0.3 and (d) 0.1

2.10 Precision of the overall estimator: a recap

Even though “the simulated data sets should have some resemblance to reality for the

results to be generalizable to real situations and have any credibility” (Burton et al.,

2006, pg. 4283), so far we have investigated the behaviour of the precision of the overall

estimator (paying attention particularly to the individual within-study variances) under

the assumption of homoscedasticity where all studies have exactly the same nominal

value of the internal variance (i.e. S2 = σ2
Ti = σ2

Ci for all i). We simulated different

scenarios in order to evaluate both the importance of the total patients present in each

study and the significance of the allocation of patients in each arm of each study. At

least under the assumption of common variance, the average number of patients per

trial is more important than the total number of each single study. Moreover, the

allocation of patients per arm does not seem to be decisive for the estimated overall
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variance of the estimator. Nonetheless, having a perfect balanced allocation as well as

having roughly the same amount of patients per study yield better results. Further-

more, true to form, the higher the average number of patients considered in each arm,

the closer the estimator is to the optimal one, i.e. the fewer the number of patients

the less precise the estimates of S2
i ’s are and the greater the impact is on the results.

These conclusions were obtained not only via simulations but they even were math-

ematically demonstrated, at least for the case including only two studies. Moreover,

coverage probabilities (obtained by simulating 10000 meta-analyses and considering

different patterns and scenarios) show that wrongly reported values of the variance

can badly underestimate the overall variance of the estimator. This happens especially

when trials with few patients are taken into consideration. Unsurprisingly, when we

consider a number of small trials we generally overestimate precision and this leads to

unreliable results, as we tend to overstate the significance of the results. In particular

when the meta-analysis is dominated by very small studies, caution needs to be ex-

ercised. In fact, “the estimated weight ŵi has expectation E(ŵi) = (ni)wi/(ni − 3),

where ni = nTinCi/(nTi + nCi) rather than E(ŵi) = wi. This bias in the estimation of

the weights not only affects the power of the test, but also the estimate of the variance

of the overall effect and the estimate of the between-study variance τ . Hence, when

numbers are very small, results should be interpreted cautiously” (Hardy & Thompson,

1998, pg. 853).

“The bias of the estimate of the variance of the overall effect synthesised from in-

dividual studies by using the variance weighted method is proven to be negative” (Li

et al., 1994, pg. 1063). Furthermore, such an estimate of the variance of the estimator

is also too sensitive to the minimum of the estimates of the variances in the k studies.

“If the σ̂2
min happens to be wrongly reported to have a very small value, the influence

on var(θ̂) by this estimate would be over-emphasized” (Li et al., 1994, pg. 1065) and

V̂ would badly underestimate the true overall variance.

As we have shown via calculation (for two trials, without loss of generality) and sim-

ulations, on average, the estimate of the overall variance (V̂ ) underestimates the true

value. “If there is an outlier or measurement error which gives an extremely small

sample variance, the pooled variance will badly underestimate the true variance by the

ordinary method and the weight of this individual sample for the combined mean will

be too high” (Li et al., 1994, pg. 1083). “The ordinary method is too sensitive to the

variation of the sample variances and biased if the sample size is not large” (Li et al.,

1994, pg. 1082). As a consequence, an adjusted method that considers both the effect

of small sample and the variation of the variances and which is not too sensitive to any

individual result is necessary.
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Especially when we consider small trials, are there better estimations of the variances?

As the estimation of the variance and the number of patients are highly correlated (the

larger the sample size the closer the estimate of the the variance is to the real value), are

there methods capable to shrink the variances and account for their random variation

in order to have an estimator which does not depend so badly on the sizes of clinical

trials?

How can we produce less biased estimate? Can we adjust the weight method in order

to consider the effect of small sample sizes? Is there a robust weight method with

regard to the variation of the sample variances and sample sizes not too sensitive to

any individual result?
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Chapter 3

Shrinkage Estimators and a more

Realistic Scenario

3.1 Acting in a more Realistic Scenario

So far we have considered the assumption of common variances, however, such an

assumption may be unrealistic. Therefore, in this chapter we consider the case where

the population variances of the observation at the patient level differ from study to

study, by analysing two different simulation schemes. The first one will arbitrarily

impose the values of the variances, and the second one will draw the values from a

Gamma distribution. In both designs we will consider a perfect balance because in

most of the trials the sample sizes ni for the control and the treatment groups are

generally similar. Nonetheless, instead of considering k studies all of which have the

same size, we will impose the sample size to be equal only on average.

First Simulation Design

Following the example of the simulation study conducted by Knapp et al. (2006), the

first simulation study considers equal allocation (i.e. ni = nCi = nTi) and different

values for the S2
i (where S2

i = σ2
Ti = σ2

Ci). As in the paper by Knapp et al., we

“arbitrarily choose the base value of S2
i to be equal to 100 and deviations from this value

for a few of the S2
i are made to reflect patterns of imbalance possible in application.”

The first pattern has roughly half of the S2
i = 100 while the second one - the most

imbalanced - has roughly 80-90% of the S2
i = 100. When S2

i is not equal to 100, the

value chosen is S2
i = 10. As mentioned above, the sample sizes, varying from 5 to 50

people per arm, are balanced. This means that for S2
i = 100 the within-trial variability

ranges (on average) from 40 to 4 as n increases from 5 to 50, respectively.

The aim of such a simulation design is to evaluate how important the effect on the overall
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variance is when a few estimates from a few clinical trials carry a disproportionate

amount of weight, that is when a few of the within trial variances σ2
i = var(Yi) =

(1/nCi + 1/nTi) S2
i are much smaller than the others.

Second Simulation Design

In this case, as suggested by Tong and Wang (2007), S2
i ’s for i=1,...,k, are simulated

from a Gamma distribution with shape parameter γ and scale parameter β. β is set at

1 ”because it has little impact on the comparative performance” (Tong & Wang, 2007,

pg. 116). In order to evaluate the performance of the estimator under different levels of

variance heterogeneity, three different shape parameters are considered, γ = 0.25, 1 and

4, which correspond to three different coefficients of variation (CV =
√

γβ2/(γβ) =
√

γ/γ) at levels 2, 1, and 0.5 respectively. These three different settings represent

commonly encountered cases; for example, γ=0.25 corresponds to the case with different

variances across studies whereas γ = 4 corresponds to highly similar values of S2
i .

3.2 Simulations with uncommon variances

We design the simulation study to roughly follow the characteristic of a more realistic

meta-analysis. We consider two different schemes for the variance of the observations

at the patients level and for each pattern we discuss the meta-analytical combination

of the results of k clinical trials, where k = 10, 15, 20, 35. The true overall effect θ is

set at 3. The error probability α is restricted to the common value 0.05 in constructing

the approximate 100(1− α) confidence interval for θ.

As in the previous simulation designs, we consider a meta-analysis of k similar but inde-

pendent studies. The observations consist of two sets of independent random variables

XTi1, XTi2, ...XTinTi
and XCi1, XCi2, ... XCinCi

for i=1, 2, ..., k from the treatment

and the control groups, respectively. These two sets of variables have independent

normal distributions with different means and equal variances, S2
i , as follows

XTi1, XTi2, . . . , XTinTi
∼ N(µTi, σ

2
Ti)

XCi1, XCi2, . . . , XCinCi
∼ N(µCi, σ

2
Ci)

for i = 1, . . . , k where σ2
Ti = σ2

Ci = S2
i

The parameter of interest, denoted by θ, is the overall mean difference. The study

specific mean difference is defined as Yi = (µTi − µCi) and is estimated by Yi = XTi −
XCi, where XTi =

∑nTi
j=1 XTij/nTi and XCi =

∑nCi
j=1 XCij/nCi. We assume that Yi is

such that E(Yi) = θ and that the variance of the difference between two independent

means based on nTi and nCi observations respectively is equal to var(Yi) = σ2
i =

σ2
Ti/nTi + σ2

Ci/nCi = S2
i (1/nTi + 1/nCi) given that the two groups in the treatment

and control arms have the same variance. For moderately large study sizes, each Yi
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should be asymptotically normally distributed. Thus,

Y i ∼ N(θ, σ2
i ) for i = 1, 2, ..., k

where σ2
i varies from study to study accordingly to the values assumed by S2

i . Once S2
i

is set for each study, the study specific mean difference is computed. For each single

study, we use equal sample sizes (ni = nCi = nTi) for the control and the treatment

groups since these values tend to be similar in parallel trials; ni’s are sampled from

a Negative Binomial Distribution in order for the k clinical trials to have on average

the same amount of patients per arm and per study, where E(ni)’s are equal to 5, 8,

10, 15, 20, 30 and 50. The simulations are implemented using the software package R,

with each simulation generating nTi and nCi observations from normal distributions

with mean µTi and µCi = µTi +θ respectively and variance S2
i . This procedure is repli-

cated k times for each of the 10000 independent simulations run. At each replicate, the

study specific mean differences (Yi) as well as their variances σ̂2
i are computed. These

estimates allow us to obtain the estimated weights ŵi for each study and therefore

to calculate the overall effect estimate θ̂ and its overall variance estimate V̂ for each

replicate.

As done in the previous simulations, we summarise the estimates once all simulations

have been performed. In particular, we report the ‘declared’ estimate of the overall

variance as well as the ‘optimal’ and the ‘real’ variance of the point estimates (see

equations 2.5 - 2.7). Furthermore, in order to evaluate the performance and the preci-

sion of the results obtained from the different scenarios and approaches being studied,

the coverage of the confidence intervals is shown. Again, a possible criterion for ac-

ceptability of the coverage is that the coverage should not fall outside of approximately

two SEs of the nominal coverage probability.

In general our goal is to obtain not only an empirical estimated coverage probability

corresponding to the nominal value but also, and more importantly, both the ‘declared’

precision and the ‘actual’ dispersion of the overall variance of the estimator close to the

theoretical ‘optimal’ one.

3.3 The simulation results

We give the results if no heterogeneity in the treatment effect is present, that is assum-

ing the fixed-effects model is the theoretically correct one. The ‘actual’, ‘optimal’ and

‘declared’ variances are given in Tables 3.1 - 3.5 for the 5 different scenarios (i.e. differ-

ent values of k and S2
i ). Also, the empirical coverage probabilities of the approximate

95% confidence intervals based on the ‘empirical’ weights and variances are shown in

Figs 3.1 - 3.2. From the Tables 3.1 - 3.5, it should be first noted that the ‘empiri-

cal’ variances are reasonably close to the true ‘optimal’ value only for high values of n
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(where n = E(ni) for all i), regardless of the number of trials and of the S2
i pattern con-

sidered. As n decreases, the ‘declared’ variance is less accurate and precise. In all cases,

however, the ‘optimal’ variance is badly underestimated. In particular, as the average

number of patients per arm decreases, the estimated ‘declared’ overall variances start

to deviate from the ‘optimal’ value with negative and increasingly large bias. Thus,

we can assume that the method currently used leads to large error in the estimated

weights, both when common or uncommon S2
i ’s are assumed. Moreover, considering

the column of the ‘actual’ variance of the estimator, V real((̂θ)), we note that, once

again, these values are always observed to be higher than both the ‘optimal’ and the

‘declared’ ones, in particular when n decreases. Again, even without the assumption of

common S2
i for all studies, there is the tendency to produce an overall variance estimate

V̂ that is lower than that produced by the ‘optimal’ estimator, whereas the ‘actual’

variance of the estimator is higher. Fixed-effects meta-analysis uses an estimator whose

true variance is higher than the ‘correct’ one but which will appear to be lower. As a

consequence, the ordinary method tends to overstate the significance and the precision

of the results; in particular, this tendency is even more marked under the assumption

of uncommon S2
i .

As regards the Empirical Coverage Probabilities for the Confidence Intervals, the pro-

portion of intervals containing θ falls for decreasing sample sizes. Note that the coverage

probabilities for the confidence intervals in Figs. 3.1 - 3.2 are also very similar, excep-

tion made for small values of n. Under different levels of variance heterogeneity and

under different schemes of simulation, patterns are about the same regardless the num-

ber of studies taken into account. The coverage probabilities based on the ‘declared’

overall variances are generally below 95%, although they do increase when n increases.

However, for an average number of patients per arm per study less than 10, the cov-

erage probability falls to 55%. For small sample sizes, the coverage probability is far

from the nominal level whether we consider the slightly imbalanced scenario or the

most imbalanced one. The different choices of within-trial variances (S2
i ) do not have

an impact on the simulation results. As regards the number of trials, if the latter are

“large enough” then no matter how many studies we include we get roughly the same

results. On the contrary, if sizes are small, the more studies we consider the lower the

coverage probability is.

In short, the usual variance estimator performs very poorly in detecting the true vari-

ance of θ and underestimates the true value for all values of n and k. Moreover, the

‘actual’ variability of the variance estimator is always higher than both the ‘declared’

and ‘optimal’ ones, with a consequent overstatement of the precision of the estimator

and misleading results in the form of too liberal significance tests and Confidence In-

tervals without correct coverage properties. In particular, these problems arise when
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a small average number of patients per arm per study is considered: the smaller the

number of patients, the lower the coverage probability and the higher the overestima-

tion of the precision of the estimate.

When we perform fixed-effects meta-analysis, inference is based on the assumption

that weights are perfectly estimated, whereas since the variances are poorly estimated

the inferences drawn may be in error. In practice, no matter whether the true variances

are assumed to be equal or whether they vary from trial to trial, in both cases there is

the tendency to badly estimate V, the overall variance of the point estimate. Moreover,

regardless of the true values of S2
i , the fewer the average number of subjects per arm

the higher the underestimation of V. In fact, under the assumption of both equal S2
i ’s

(see Fig 2.3 and Table 2.2) and unequal S2
i ’s (see Tables 3.1 and 3.2), the empirical

coverage probabilities are generally below 95% and figures get closer to the nominal

level only for high values of n. For instance, referring to the empirical coverage proba-

bilities, we see that if n=8 and S2
i ’s are assumed to be equal, the coverage probabilities

are roughly between 87 and 89% (depending on the number of trials involved) whereas

under the assumption of unequal S2
i ’s these values may vary between 82 and 88%.

Since when performing a single meta-analysis the real values of the study variances

are unknown, little can be said about the assumptions on the variances. However,

regardless of the assumption made, a lot can be said about the expected outcome: if

small-sized studies are considered, the overall variance will be underestimated quite

badly and inferences based on these values are likely to be wrong.
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Table 3.1: The Results of Simulation for different values of studies (k) under the
assumption of Unequal S2

i and Study sizes - First Simulation Scheme (A)

k = 10 n V real(θ̂) V opt E[V̂ ] Coverage
Probability

5 5.787174 1.724529 1.090686 0.7069
8 1.716196 0.985787 0.822931 0.8691
10 0.951359 0.763757 0.681596 0.9041
15 0.537592 0.490154 0.462380 0.9274
20 0.380268 0.363268 0.348901 0.9400
30 0.245991 0.240309 0.233714 0.9439
50 0.144902 0.143970 0.141717 0.9471

k = 15 n V real(θ̂) V opt E[V̂ ] Coverage
Probability

5 4.947632 1.087694 0.656184 0.6625
8 1.418933 0.631846 0.522482 0.8620
10 0.631725 0.496492 0.440474 0.8984
15 0.334990 0.323049 0.302369 0.9361
20 0.251068 0.240756 0.230016 0.9377
30 0.165133 0.159585 0.155199 0.9418
50 0.095679 0.095648 0.094113 0.9499

k = 20 n V real(θ̂) V opt E[V̂ ] Coverage
Probability

5 4.892815 0.796330 0.467671 0.6373
8 1.258493 0.467765 0.386032 0.8506
10 0.492900 0.368996 0.326740 0.8989
15 0.257675 0.241634 0.225962 0.9319
20 0.191488 0.179803 0.171074 0.9346
30 0.122043 0.119628 0.116054 0.9473
50 0.073591 0.071738 0.070481 0.9428

k = 35 n V real(θ̂) V opt E[V̂ ] Coverage
Probability

5 4.098463 0.436752 0.245839 0.5698
8 0.845240 0.262924 0.212878 0.8319
10 0.403127 0.207927 0.182103 0.8869
15 0.146905 0.137120 0.127746 0.9319
20 0.111066 0.102539 0.097383 0.9344
30 0.069944 0.068164 0.065977 0.9443
50 0.042369 0.040884 0.040116 0.9444

This Table shows the results of simulation for θ = 3 and different values of n, k and S2
i . This

simulation scheme considers for each simulation k parallel group clinical trials each of whom with the
same number of patients per arm only on average (n = E[ni] = nTi = nCi). As regards the

within-study variances, the most imbalanced scenario is shown, i.e. 80% of the studies has S2
i set to

100 while the remaining 20% are set equal to 10. Empirical Statistics for E[V̂ ] and V real(θ̂) are based
on 10000 simulation replicates as well as the Empirical Coverage Probability.
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Table 3.2: The Results of Simulation for different values of studies (k) under the
assumption of Unequal S2

i and Study sizes - First Simulation Scheme (B)

k = 10 n V real(θ̂) V opt E[V̂ ] Coverage
Probability

5 2.917085 0.844070 0.519157 0.6988
8 0.822160 0.486116 0.401863 0.8652
10 0.496175 0.378410 0.335633 0.9046
15 0.261349 0.247350 0.231493 0.9344
20 0.197728 0.183608 0.175550 0.9333
30 0.125123 0.121904 0.118438 0.9419
50 0.075708 0.073157 0.071895 0.9423

k = 15 n V real(θ̂) V opt E[V̂ ] Coverage
Probability

5 2.515061 0.567343 0.341732 0.6644
8 0.608366 0.335919 0.275871 0.8487
10 0.361150 0.263301 0.232215 0.8970
15 0.187226 0.172940 0.161681 0.9307
20 0.134901 0.129138 0.123035 0.9367
30 0.087392 0.085815 0.083122 0.9449
50 0.051520 0.051463 0.050523 0.9479

k = 20 n V real(θ̂) V opt E[V̂ ] Coverage
Probability

5 2.050539 0.393981 0.231733 0.6381
8 0.599061 0.234913 0.191897 0.8494
10 0.271898 0.185648 0.162671 0.8943
15 0.132802 0.122398 0.114006 0.9269
20 0.097786 0.091385 0.086845 0.9353
30 0.062851 0.060831 0.058860 0.9422
50 0.036432 0.036428 0.035755 0.9480

k = 35 n V real(θ̂) V opt E[V̂ ] Coverage
Probability

5 2.019225 0.222689 0.124061 0.5592
8 0.441426 0.135820 0.109607 0.8233
10 0.163837 0.107798 0.094237 0.8911
15 0.076543 0.071281 0.066329 0.9329
20 0.055763 0.053325 0.050581 0.9398
30 0.037028 0.035547 0.034353 0.9416
50 0.021329 0.021306 0.020883 0.9484

This Table shows the results of simulation for θ = 3 and different values of n, k and S2
i . This

simulation scheme considers for each simulation k parallel group clinical trials each of whom with the
same number of patients per arm only on average (n = E[ni] = nTi = nCi). As regards the

within-study variances, a slight imbalanced scenario is shown, i.e. 50% of the studies had S2
i set to

100 while the remaining 50% were set equal to 10. Empirical Statistics for E[V̂ ] and V real(θ̂) are
based on 10000 simulation replicates as well as the Empirical Coverage Probability.
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Table 3.3: The Results of Simulation for different values of studies (k) under the
assumption of Unequal S2

i and Study sizes - Second Simulation Scheme (A)

k = 10 n V real(θ̂) V opt E[V̂ ] Coverage
Probability

5 4.81074E-04 1.53915E-04 1.08749E-04 0.8079
8 1.62910E-04 9.29367E-05 7.92131E-05 0.8982
10 8.81519E-05 7.32187E-05 6.63829E-05 0.9166
15 4.73614E-05 4.41435E-05 4.21259E-05 0.9340
20 3.37472E-05 3.30902E-05 3.18899E-05 0.9401
30 2.45493E-05 2.23964E-05 2.19227E-05 0.9460
50 1.37721E-05 1.37271E-05 1.35344E-05 0.9467

k = 15 n V real(θ̂) V opt E[V̂ ] Coverage
Probability

5 1.55977E-04 3.99302E-05 2.74604E-05 0.8110
8 4.02419E-05 2.20131E-05 1.87943E-05 0.8924
10 2.36055E-05 1.80732E-05 1.64116E-05 0.9186
15 1.09118E-05 1.08852E-05 1.04165E-05 0.9363
20 8.53535E-06 8.35436E-06 8.01270E-06 0.9409
30 5.53268E-06 5.49154E-06 5.34444E-06 0.9469
50 3.13219E-06 3.05720E-06 3.02327E-06 0.9435

k = 20 n V real(θ̂) V opt E[V̂ ] Coverage
Probability

5 7.25774E-05 1.43276E-05 9.27051E-06 0.8038
8 1.81251E-05 8.17075E-06 7.04632E-06 0.8961
10 8.29189E-06 6.33262E-06 5.79714E-06 0.9168
15 4.08453E-06 4.01735E-06 3.81904E-06 0.9387
20 3.49810E-06 2.87931E-06 2.81890E-06 0.9416
30 1.98370E-06 1.96991E-06 1.92363E-06 0.9424
50 1.26418E-06 1.25725E-06 1.23345E-06 0.9469

k = 35 n V real(θ̂) V opt E[V̂ ] Coverage
Probability

5 1.25921E-05 1.79404E-06 1.17625E-06 0.8040
8 1.51794E-06 1.07902E-06 9.32548E-07 0.8943
10 1.19789E-06 7.97212E-07 7.20237E-07 0.9135
15 5.48354E-07 5.05667E-07 4.79389E-07 0.9365
20 3.33613E-07 3.52159E-07 3.37293E-07 0.9423
30 2.92712E-07 2.67102E-07 2.61131E-07 0.9437
50 1.57857E-07 1.57786E-07 1.55980E-07 0.9486

This Table shows the results of simulation for θ = 3 and different values of n, k and S2
i . This

simulation scheme considers for each simulation k parallel group clinical trials each of whom with the
same number of patients per arm only on average (n = E[ni] = nTi = nCi). In this simulation

scheme, within-study variances S2
i are drawn from a Γ distribution with shape parameter γ = 0.25.

Empirical Statistics for E[V̂ ] and V real(θ̂) are based on 10000 simulation replicates as well as the
Empirical Coverage Probability.
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Table 3.4: The Results of Simulation for different values of studies (k) under the
assumption of Unequal S2

i and Study sizes - Second Simulation Scheme (B)

k = 10 n V real(θ̂) V opt E[V̂ ] Coverage
Probability

5 0.0515724 0.0155874 0.0098259 0.7165
8 0.0154709 0.0089368 0.0074546 0.8733
10 0.0085677 0.0069199 0.0061864 0.9128
15 0.0047821 0.0045230 0.0042589 0.9328
20 0.0034570 0.0032938 0.0031601 0.9386
30 0.0022969 0.0022170 0.0021583 0.9419
50 0.0013495 0.0013065 0.0012880 0.9441

k = 15 n V real(θ̂) V opt E[V̂ ] Coverage
Probability

5 0.0409151 0.0088253 0.0053688 0.6775
8 0.0090774 0.0050160 0.0041460 0.8650
10 0.0059114 0.0039948 0.0035261 0.9031
15 0.0028288 0.0026268 0.0024566 0.9294
20 0.0020033 0.0019289 0.0018477 0.9389
30 0.0013050 0.0012869 0.0012500 0.9456
50 0.0007744 0.0007619 0.0007493 0.9491

k = 20 n V real(θ̂) V opt E[V̂ ] Coverage
Probability

5 0.0357162 0.0059225 0.0035595 0.6558
8 0.0076422 0.0034974 0.0028850 0.8514
10 0.0036417 0.0027604 0.0024472 0.9059
15 0.0019467 0.0017814 0.0016727 0.9335
20 0.0013540 0.0013215 0.0012625 0.9374
30 0.0008975 0.0008707 0.0008459 0.9413
50 0.0005269 0.0005250 0.0005160 0.9447

k = 35 n V real(θ̂) V opt E[V̂ ] Coverage
Probability

5 0.0242387 0.0028335 0.0016546 0.6036
8 0.0062553 0.0016724 0.0013653 0.8411
10 0.0019950 0.0013180 0.0011652 0.9047
15 0.0009610 0.0008661 0.0008112 0.9285
20 0.0006909 0.0006430 0.0006125 0.9327
30 0.0004454 0.0004323 0.0004194 0.9430
50 0.0002613 0.0002531 0.0002485 0.9468

This Table shows the results of simulation for θ = 3 and different values of n, k and S2
i . This

simulation scheme considers for each simulation k parallel group clinical trials each of whom with the
same number of patients per arm on average (n = E[ni] = nTi = nCi). In this simulation scheme,
within-study variances S2

i are drawn from a Γ distribution with shape parameter γ = 1. Empirical
Statistics for E[V̂ ] and V real(θ̂) are based on 10000 simulation replicates as well as the Empirical

Coverage Probability.
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Table 3.5: The Results of Simulation for different values of studies (k) under the
assumption of Unequal S2

i and Study sizes - Second Simulation Scheme (C)

k = 10 n V real(θ̂) V opt E[V̂ ] Coverage
Probability

5 0.4561987 0.1399444 0.0849630 0.6901
8 0.1471794 0.0825180 0.0680434 0.8585
10 0.0846646 0.0644753 0.0569307 0.9009
15 0.0469084 0.0425057 0.0397063 0.9262
20 0.0333541 0.0316287 0.0301946 0.9319
30 0.0220455 0.0210269 0.0203818 0.9401
50 0.0128987 0.0125241 0.0123001 0.9414

k = 15 n V real(θ̂) V opt E[V̂ ] Coverage
Probability

5 0.3793491 0.0894609 0.0525835 0.6501
8 0.1129277 0.0532958 0.0435367 0.8497
10 0.0592798 0.0422414 0.0371362 0.8974
15 0.0303040 0.0276316 0.0257761 0.9297
20 0.0222863 0.0208020 0.0198107 0.9350
30 0.0142411 0.0138214 0.0133774 0.9419
50 0.0086080 0.0082729 0.0081168 0.9428

k = 20 n V real(θ̂) V opt E[V̂ ] Coverage
Probability

5 0.3520310 0.0653238 0.0374189 0.6112
8 0.0927032 0.0393147 0.0319142 0.8361
10 0.0445698 0.0312078 0.0274058 0.8933
15 0.0225143 0.0206696 0.0192208 0.9306
20 0.0162632 0.0153991 0.0146369 0.9386
30 0.0104935 0.0102330 0.0098997 0.9436
50 0.0063069 0.0061575 0.0060413 0.9475

k = 35 n V real(θ̂) V opt E[V̂ ] Coverage
Probability

5 0.3044838 0.0361784 0.0197527 0.5428
8 0.0714990 0.0220422 0.0178129 0.8166
10 0.0264298 0.0175457 0.0153523 0.8938
15 0.0125205 0.0116370 0.0108208 0.9316
20 0.0092827 0.0087110 0.0082593 0.9357
30 0.0059134 0.0058103 0.0056140 0.9399
50 0.0035171 0.0034782 0.0034116 0.9478

This Table shows the results of simulation for θ = 3 and different values of n, k and S2
i . This

simulation scheme considers for each simulation k parallel group clinical trials each of whom with the
same number of patients per arm only on average (n = E[ni] = nTi = nCi). In this simulation

scheme, S2
i are drawn from a Γ distribution with shape parameter γ = 4. Empirical Statistics for E[V̂ ]

and V real(θ̂) are based on 10000 simulation replicates as well as the Empirical Coverage Probability.

54



Under the assumptions of both common and uncommon S2
i , the average number of

patients per arm per clinical trial plays an important role since for small values of n

there is the tendency to badly underestimate V , the overall variance of the estimator.

Specifically, we have pointed out that the usual variance estimator commonly used in

meta-analytical inference is not robust to the estimated weights, and that in fact it may

not be a good estimator for the correct variance of an overall effect estimate when esti-

mated weights are used, as in practice. Hence, the weights used in practice are not the

correct ones and a new method to better estimate the variances σ̂2
i (and the weights)

in order to have a more precise and accurate overall variance is desperately needed.

For instance, should there be some random variation in the treatment or control group

sample variances that causes an extremely small pooled variance, the variance of the

mean difference σ̂2
i will badly underestimate the true one and the weight of this in-

dividual sample will be too high. Since the ordinary method is too sensitive to the

variation of the sample variances and biased if the sample size is not large “enough”

(being small variances more suspicious for small studies), is there a robust method to

adjust weights with regard to the variation of S2
i and sample sizes and not too sensitive

to any individual result?

In order to minimise the overall variance estimation error and to have better weights

a shrinkage estimator for within trials variances S2
i will be taken into account. This

should guarantee enough robustness in order to provide protection against errors in the

estimated weights (i.e. random variation in sample variances); this way, the ‘declared’

estimated variance should be closer to the optimal one, more importantly, the ‘actual’

variability of the overall effect estimator computed with the new weights should be

closer to both the ‘optimal’ and the ‘declared’ values. The dispersion of the variances

around the optimal value will be an indicator of the goodness of the method used.
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3.4 Shrinkage Estimators

3.4.1 Basic Logic

The ‘Shrinkage Estimators’ are commonly considered consistent with Bayesian logic

since their main idea is that, when estimating a parameter, one should not simply use

the information coming from the sample, but also some ‘extra-sample’ information.

In fact, combining measurements (i.e. estimating single parameters using some sort of

overall information) minimises the total ’Mean Squared Error ’ (MSE). When the nature

of the problem is not to estimate each expected return separately but rather minimise

the total impact, shrinkage estimators represent an efficient and reasonable alternative

to the classical estimators. In this study it is therefore reasonable to combine variance

measurements since the goal is to minimise the total variance estimation error.

Considering both the informative prior and the information obtained through the sam-

ple, the shrinkage estimators compress the general values of each single study towards

an identical common value (usually referred to as the ‘common mean’ or informative

prior) (Braga, 2004). In fact, the general logic of a shrinkage estimator is similar to the

weighted mean of a ‘common value’ and a ‘sample mean’ where weights determine how

close the expected value is to the common one that functions as a target. There are

several approaches to shrinking least squares estimators towards a common mean; all

of which suggest that in general shrinking “produces estimators with greater predictive

power than classical pooling techniques” (Smith, 1997, pg. 359).

The ‘shrinking factor’ is the element that determines the intensity of the ‘shrinking’

towards the ‘mean value’ and therefore this is the element that tells us the proximity

of the informative prior to the sample information at disposal. The shrinking factor

is quantified accordingly to the informative prior used, that is the value of the ‘com-

mon mean’ assumed. Usually the ‘common mean’ depends on the sampled values;

that is the reason why the shrinkage estimators have similarities with the empirical

Bayes approach. In general, the ‘shrinking factor’ is influenced by the dimension of the

study, the total number of studies included as well as the dispersion of the single values

around the common mean (Braga, 2004). The effect of the empirical Bayes approach

is to smooth estimates based on small numbers of events more heavily than estimates

based on large numbers of events (Cox & Solomon, 1997).

3.4.2 An introduction to Stein-Estimators

“Stein (1956) obtained the surprising result that for estimating p independent normal

means simultaneously, the sample mean was inadmissible under squared error loss when

p ≥ 3”(Ghosh et al., 1983, pg. 351). In this case (p ≥ 3), “the cost of estimating the

shrinkage intensity is already (and always!) offset by the savings in total risk” (Opgen-
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Rhein & Strimmer, 2007, pg. 4).

Stein’s paradox (or phenomenon or problem) mainly demonstrated that when 3 or

more parameters are estimated simultaneously, their combined estimator is more accu-

rate than any other method which handles the parameters separately, even when the

measurements and the parameters are totally unrelated. In fact, the combined estima-

tor achieves a lower MSE and – even if not necessarily better estimates for the single

variable alone are obtained – a better estimate (which has a reduced total risk) for the

means of all of the random variables is produced. Surprisingly, the cost of a bad esti-

mate in one component can be compensated by a better estimate in another component.

When multiple observations are present (no matter whether those observations are sta-

tistically independent), the simultaneous measurement of several parameters reduces

the total error of the parameters. Such a correction to the reduced mean squared error

can be obtained by shrinking the ordinary estimator. For example the MSE of the MLE

of the variance of the normal distribution can be reduced by shrinking the estimates

toward zero. (Hedges & Olkin, 1985). Furthermore, recent studies have demonstrated

that in many cases “shrinking towards a data-based point yields more reduction in

risk than shrinking towards the origin” (Ghosh et al., 1983, pg. 353). In general, it

is sensible to use a shrinkage estimator when it is reasonable to expect the values to

be quite close together and the possibility of an overall improvement in the estimates

at the expense of a worsening of individual ones is considered acceptable or desirable

(Cox & Hinkley, 1974). Shrinkage technique has been used in different problems and

under different assumptions and settings, both in simultaneous estimation problems

for normal, exponential or non-normal distributions (Ghosh et al., 1983). In practice,

in fact, there are several situations where it is a requirement to shrink the usual plain

estimators in order to obtain a uniformly smaller risk than the usual plain estima-

tor. Surprising results have been shown in the estimation problems of the variance; in

particular, in small sample problems the concept of shrinkage has been recognised as

beneficial. (Kubokawa, 1999).

3.4.3 Properties of the Shrinkage Estimators

While the Bayes estimators make use of the prior knowledge, the usual procedures such

as UMVUE and MLE neglect such a knowledge. The empirical Bayes estimator, on

the contrary, can be interpreted as an intermediate of the Bayes and usual ones as this

incorporates parts of the prior information (guessed or taken from the sample) even if

one cannot suppose any exact prior information.

The empirical Bayesian approach to shrinking naturally allows for information sharing

across studies, which can be important especially when the number and sizes of studies

considered are small. In fact, even though “analytic shrinkage estimators combine

properties that render them attractive for analyzing large-dimensional studies” (Opgen-
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Rhein & Strimmer, 2007, pg. 2), these can be used for small-dimensional studies as

well. Moreover, shrinkage estimators are generally fully analytic and usually require no

computer-intensive procedures and only little distributional assumptions.

3.5 Why draw on Bioinformatics?

In this research, we use an estimator of the error variance that can borrow information

across studies using the James-Stein shrinkage concept. Tong et al. (Tong & Wang,

2007), in particular, employed James-Stein Estimation, further developing the estima-

tor by Cui et al. (2005), to obtain shrinkage estimates of the gene-specific variances,

making only weak prior assumptions about the distribution of the variance components

(the sampling distribution of the logarithm of the variance estimators is assumed to be

normal) and achieving an estimator with an explicit expression that is computationally

simple. Such an estimator was originally used for microarray experiments. In the

original paper, a new test statistic was developed based and constructed on this shrink-

age estimator and this provided “a powerful and robust approach to test the differential

expressions of genes that utilises information not available in individual gene testing

approaches and does not suffer from biases of the pooled variance approach” (Cui et

al., 2005, pg. 59).

Similarly to the meta-analysis, combining information across genes in the statistical

analysis of microarray data is desirable because of the relatively small number of data

points obtained for each individual gene. Small number of freedom due to few repli-

cates is a common situation for microarray experiments (Lin et al., n.d.). In fact, since

microarrays are expensive, experiments are typically performed with a limited number

of replicates. When this is the case, the use of within-gene estimates of variability

provides unreliable results (Jain et al., 2003). Specifically, if variance heterogeneity is

assumed, individual gene-specific tests are used even though the standard gene-specific

estimators of variances are unreliable due to the relatively small number of replica-

tions (Cui et al., 2005). On the other hand, more powerful tests can be used assuming

common variance; nevertheless, this assumption is unlikely to be true. “Thus, tests

based on a pooled common variance estimator for all genes are at the risk of generating

misleading results” (Tong & Wang, 2007, pg. 113).

“A number of approaches to improving estimates for variability and statistical tests

of differential expression have thus recently emerged. Several variance function meth-

ods have been proposed” (Jain et al., 2003, 1945). In particular, over the last few

years, shrinkage approaches that combine variance information across genes have been

developed. Tests based on variance estimates that are gene specific but combine in-

60



formation across many genes are nowadays considered better approaches in microarray

experiments in order to increase power by utilizing more information in the data and

also to avoid bias (Cui et al., 2005). These approaches were usually proposed to handle

better “the situation where a gene with low expression may have very low variance by

chance” (Jain et al., 2003, pg. 1946).

Meta-analysis, i.e. a combination of results and information from independent quanti-

tative investigations, shares somehow the same problems with microarray experiments.

Also in meta-analysis, both the sample size within individual studies and the number of

studies are typically relatively small. This is the reason why the treatment and control

group sample variances as well as the σ̂2
i may be unreliable and, as a consequence, the

reported overall variance is less than the optimal value. Tests based on the common

overall variance estimator for all studies are at risk of generating misleading results in

meta-analyses as well (too liberal significance tests and Confidence Intervals without

correct coverage properties). As in meta-analysis one is usually interested in the possi-

bility of an overall gain (i.e. a better estimate of the overall variance of the estimator

rather than merely better individual estimates σ̂2
i ) and as the setting and problems

faced are similar to those which crop up in Bioinformatics, we decided to borrow the

shrinkage estimator (originally developed for microarray problems) to evaluate whether

this would be useful in a meta-analysis context as well. Moreover, the specific modified

shrinkage estimator used in our simulations usually require little assumptions and is

therefore easily adaptable to diverse and numerous frameworks. “Even though moti-

vated and applied to microarray data, the optimal shrinkage variance estimator [. . . ]

can have a wide range of applications”. Tong and Wang “methodology and theory

extend Stein’s landmark results from shrinkage estimation of means to shrinkage esti-

mation of variance, and from shrinkage estimation of a single variance to the shrinkage

estimation of multiple variances” (Tong & Wang, 2007, pg. 121).

3.6 Shrinkage Statistic of Variance Vector: method used

A shrinkage estimator for gene-specific variance components based on the James-Stein

estimator was proposed by Cui et al in 2005 (Cui et al., 2005). Their estimator made

no prior assumptions about the distribution of variances across genes. The test based

on such an estimator performed well under a wide range of assumptions about vari-

ance heterogeneity, behaving well both when the variances were truly constant as well

as when they varied extensively from gene to gene. How did they obtain a shrinkage

estimator of variance components that provided a gene-specific variance also using in-

formation across all of the genes in the data in order to improve estimation?

Stein discovered that the standard sample variance is improved by a shrinkage esti-
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mator using information contained in the sample mean. Much research has been done

since then. Nevertheless, most research concerned with a single variance, assumption

not applicable to microarray data analysis since the homogeneity of the variances is

unlikely to be true. Cui et al. focused on heterogenous variances and, instead of using

information in the sample mean, extended Stein’s theory for multiple means to multi-

ple variances. This way they obtained variance estimates that were gene-specific but

combined at the same time information across many genes, improving power but also

avoiding bias. Cui et al. method was recently further developed and improved by Tong

and Wang who presented their methods in the framework of microarray data analysis,

stressing however that both their methods and theory are general may be implemented

in a much wider range of scenarios (Tong & Wang, 2007).

3.6.1 CHQBC Estimator

As initially suggested by Cui et al. (2005), an improved estimator of variance from an

ensemble of individual variance estimators (herein referred to as the CHQBC estima-

tor) can be constructed by shrinking them towards their common corrected geometric

mean. “The amount of shrinkage depends on the variability of the individual variance

estimators. When individual variance estimates are similar, indicating homogeneity,

the shrinkage estimator effectively pools these estimates. When individual variance

estimates are widely dispersed, indicating heterogeneity, the shrinkage estimator gives

greater weight” to the study specific contributions (Cui et al., 2005, pg. 61).

For g = 1, ..., G (G ≥ 3 with G equal to the number of studies), let Xg be the residual

sum of squared errors and σ2
g be the true variance of g. Assuming that Xg/σ2

g ’s are

mutually independent (each having a Chi-squared distribution χ2
ν with ν degrees of

freedom) we have Xg ∼ σ2
gχ

2
ν . Considering the natural logarithm transformation of Xg

we then have

ln
Xg

ν
∼ lnσ2

g + ln
χ2

ν

ν

Therefore, if we denote the mean of lnχ2
g

ν as m, by subtracting m from both sides we

could write the following equation

X ′
g ∼ lnσ2

g + ε′g

where X ′
g = ln(Xg/ν)−m and ε′g = ln(χ2

ν/ν)−m. Applying the James-Stein shrinkage

method to X ′
g and then transforming back to the original scale gives the shrinkage

estimator for σ2
g ,

σ̃2
g =

 G∏
g=1

(Xg/ν)1/G

B ∗ exp

[(
1− (G− 3)V∑

(lnXg − lnXg)2

)
+

∗ (lnXg − lnXg)

]
(3.1)

where V is the variance of ε′g, lnXg = 1
G

∑G
g=1 ln(Xg) and B = exp(−m) is a bias

correction (all the details are provided by Cui et al. (2005)). “Note that multiplying
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the geometric mean
(∏G

g=1(Xg/ν)1/G
)

by B gives an unbiased estimator of σ2 when

σ2
g = σ2 for all g. The values of B (and also V) depend on ν. They can be simulated

easily and values are given in Table 3.6. Note that B is always larger than 1, hence,

the geometric mean without B underestimates σ2 when all σ2
g are equal to σ2” (Cui et

al., 2005, pg. 61).

Table 3.6: Values of B (bias correction) and V/(2/ν) as a function of ν.

ν B V/(2/ν) ν B V/(2/ν)
1 3.53 2.45 13 1.08 1.08
2 1.77 1.64 14 1.08 1.08
3 1.44 1.39 15 1.07 1.07
4 1.31 1.27 16 1.07 1.06
5 1.24 1.22 17 1.06 1.06
6 1.19 1.18 18 1.06 1.06
7 1.16 1.15 19 1.06 1.05
8 1.14 1.13 20 1.05 1.05
9 1.12 1.12 25 1.04 1.04
10 1.11 1.11 30 1.04 1.03
11 1.10 1.10 40 1.03 1.03
12 1.09 1.09 50+ 1.02 1.02

These values are used in equation 3.1 to construct the estimates that shrink the unbiased estimators
of variances to their corrected geometric mean. When ν is greater than 50, B and V/(2/ν) are

effectively 1.

3.6.2 Improvements on the CHQBC Estimator

Even though the CHQBC estimator may work well as an estimator of variance, Tong

and Wang (2007) suggested an improvement to such an estimator (for full details,

refer to the article). Let Zg = Xg/ν, Zpool =
∏G

g=1 Z
1/G
g and α̂0 = 1 − (1 − (G −

3)V/
∑

(lnXg − lnXg)2)+. It is easy to check that the CHQBC estimator can be

rewritten as

σ̃2
g = B(Zpool)α(Zg)1−α with α = α̂0.

Note that when σ2
g = σ2 for all g, E(Zpool) = σ2/B. That is, BZpool is an unbiased

estimator of σ2 when σ2
g = σ2 for all g. On the other hand, Zg is an unbiased estimator

of σ2
g . Therefore, it is reasonable to consider the following combination of two unbiased

estimators

σ2+
g = (BZpool)α(Zg)(1−α), 0 ≤ α ≤ 1. (3.2)

Referring to σ2+
g (α̂0) as the modified CHQBC estimator, σ2+

g (α̂0) in the simulations
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shown always performs better than the original CHQBC estimator σ̃2
g(α̂0) for estimating

σ2
g . “The estimator σ2+

g has a very simple structure; it borrows information across

studies by shrinking each specific variance towards the bias corrected geometric mean

of variances for all studies. The amount of shrinkage depends on the variability of the

individual variances. In particular, the shrinkage parameter α̂ was obtained by applying

the James-Stein method to the logarithm of sample variances which do not follow

the normal distribution” (Tong & Wang, 2007, pg. 114). “Although the James-Stein

shrinkage estimator was developed in a context of a normal model, it is the sampling

distribution of the logarithm of the variance estimators, not the values themselves,

that are assumed to be normal” (Cui et al., 2005, pg. 73). On the logarithm scale, the

modified CHQBC estimator is a weighted average of the study-specific variance and the

bias corrected geometric mean. If the empirical variances can be reliably determined

from the data, and consequently exhibit only a small variance themselves, there will be

little shrinkage, whereas if the empirical variance is comparatively large pooling across

studies will take place.

According to Tong and Wang simulations, “the modified CHQBC estimator σ2+
g (α̂0)

has smaller risk than the original CHQBC estimator σ̃2
g(α̂0) in all settings” (Tong &

Wang, 2007, pg. 117), in particular when the variance heterogeneity and ν are both

small.

3.7 Comparison of methods by Simulations

We perform simulation studies to compare V̂ , the usual overall variance estimator which

uses the estimated within variances, with V̂ ∗, the estimator that takes into account the

‘shrunk’ variances. We then consider the ordinary estimators θ̂ and V̂ as in equations

2.3 and 2.4 with ŵi = 1/σ̂2
i where

σ̂2
i = Ŝ2

i

(
1

nTi
+

1
nCi

)
with Ŝ2

i =
(nTi − 1)ŝ2

Ti + (nCi − 1)ŝ2
Ci

nTi + nCi − 2

When ‘shrunk’ variances are considered, we denote the ‘new’ point and overall variance

estimators as follows

θ̂∗ =
∑k

i=1 ŵ∗
i Yi∑k

i=1 ŵ∗
i

and V̂ ∗ =
1∑k

i=1 ŵ∗
i

(3.3)

where

ŵ∗
i =

1
σ̂2

si

with σ̂2
is = Ŝ2

shr.i

(
1

nTi
+

1
nCi

)
(3.4)

where Ŝ2
shr.i’s are obtained with the shrinkage estimator (see eqn 3.2) applied on Ŝ2

i ’s.

The empirical coverage probabilities of the two Confidence Intervals based on V̂ and

V̂ ∗ are computed and compared as well.
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Since it is known that errors are present in the estimated sample variances, the objec-

tive of this study is to evaluate whether the ‘improved’ CHQBC estimator improves the

behaviour of the overall variance estimates, i.e. to establish whether V̂ ∗ performs in

general better than V̂ . More specifically, we want to evaluate the robustness, precision

and accuracy of the overall variance estimator used in fixed-effects meta-analysis when

‘shrunk’ estimates of the pooled variances are used. Theoretically, the shrinkage esti-

mators for the pooled variances should better handle the situation when a single study

carry a disproportionate amount of weight and has few subjects and a very low sample

variances just by chance; moreover, ‘shrunk’ variances should take into consideration

the effect of study sizes as well. V̂ ∗ should therefore be less sensitive to any individual

results.

In order to assess and evaluate the goodness of the estimator whose weights are based

on the ‘shrunk’ variances, the dispersion around the optimal value will be computed.

In particular, non only V̂ ∗ should yield values on average closer to the optimal levels,

but also the ‘real’ dispersion should not be too imprecise nor be too far from both the

‘declared’ and the ‘optimal’ values.

Simulation settings are as specified in section 3.2. In addition, the common variance

scenario is considered, i.e. the case where S2
1 = 100 for all i. Results are given in

tables 3.7 - 3.12 for the different S2
i settings. Each table shows the Confidence Inter-

vals based on both V̂ and V̂ ∗. Moreover, since when we simulate studies we have the

privilege to know the ‘real’ values of each single within study variances, the average

(over 10000 replicates) ‘optimal’ overall variance of the estimator is calculated. The

‘declared’ and ‘actual’ dispersion for both methods are also given. Furthermore, in

order to make comparisons between the two methods easier, ratio index numbers are

shown in columns 10-15. Ratio Index numbers measure changes or differences and are

used in a variety of contexts to compare series of numbers of different size in a standard-

ised and directly comparable way. An index number is generally formed by the ratio

between the ‘current value’ of an indicator and its ‘base value’, against which all the

observations are measured and compared. The ratio itself has no units and expresses

the changes around the base. In Tables 3.7 - 3.12, columns 10 and 11 are the ratio

between the ‘real’ dispersion of the estimator and its ‘declared’ value, for V̂ and V̂ ∗

respectively. Values in these columns indicate how much larger the ‘real’ dispersion is

compared to the ‘declared’ one; the bigger the value, the wider the absolute difference

between the two numbers. Columns 12 - 15 show the ratio between either the ‘real’ or

the ‘declared’ variances (for both V̂ , V̂ ∗) and the ‘optimal’ value which is the base for

all four columns. Values less than 1 mean that there is a negative bias in the estimate

while values greater than 1 indicate the opposite. The ideal situation would be to have

both the ratio of the ‘declared’ and the ‘real’ dispersion to the ‘optimal’ equal to 1,
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indicating perfect estimation of the overall variance of the estimator.

From the results in Tables 3.7 - 3.12, we note that V̂ ∗ always perform better than

V̂ . Observing the absolute values, the estimator that uses weights based on the vari-

ance shrinkage estimator has values closer to the ‘optimal’ ones. In particular, not

only is the ‘declared’ variance closer to the ‘optimal’, but the ‘real’ dispersion is also

not badly estimated. This means that the new method tends to underestimate the

‘optimal’ value less severely, on average and in all cases. In practice, when performing

a single meta-analysis, with the new method we tend to declare on average a variability

of the point estimate closer to the correct one; moreover, the ‘real’ dispersion of the

new method is smaller than the one obtained with the ordinary estimator, meaning

that the new method yields less liberal results because of the slight difference between

the ‘real’ and the ‘declared’ dispersion of V̂ ∗. As a consequence, in general we still

tend to overstate the precision of the estimator, but less badly. In fact, observing the

absolute values, we can note that the following relationship always hold

V real(θ̂) ≥ V real(θ̂∗) ≥ V opt

As regards the ‘declared’ variances, in general we have ‘

V opt ≥ E[V̂ ∗] ≥ E[V̂ ]

Nevertheless, it may happen that the ‘average’ declared variance obtained using the new

method is slightly larger than the ‘optimal’ value. Again, if we consider the absolute

difference between the ‘optimal’ and the ‘declared’ variances obtained with the usual

and the new methods, such a difference is always smaller when the new method is taken

into account. For instance, when n > 10, the new method may declare a variance 1%

greater than the ‘optimal’ instead of underestimating it by between 3 and 12%. In

the worse scenario (Table 3.10), when n=5 and k=35, the new method overstates the

variance by 10% whereas the usual method underestimates it by 35%.

In general, however, the following relationship holds

V real(θ̂) ≥ V real(θ̂∗) ≥ V opt ≥ E[V̂ ∗] ≥ E[V̂ ]

This relationship is confirmed even when ratio index numbers are taken into consider-

ation. The ratio V real(θ̂∗)/E[V̂ ∗] is always smaller than V real(θ̂)/E[V̂ ], entailing that

the variability (and range) of the new method is smaller than the one obtained with the

usual method. In addition, from columns 12 to 15 we note that, given 1 as the optimal

value, both V real(θ̂∗) and E[V̂ ∗] are closer to the target 1. If the difference between

the two methods is almost imperceptible when n is large, this becomes dramatically

important when small studies are combined. For instance, Table 3.12 shows that for

n = 5 the ‘optimal’ variance is underestimated on average by only around 15% with
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the new method instead of 40% or more with the ordinary method. It is worth to

noting that even when n increases, both V real(θ̂∗) and E[V̂ ∗] are more accurate and

less dispersed around the ‘optimal’ value.

As a consequence, turning to the empirical coverage probabilities of the the 95% Con-

fidence Intervals for the two methods, we note that with the new method values are

always closer to the nominal value (and only in few occasions above the nominal level).

Especially when n is small, the coverage probabilities for the interval based on V̂ ∗ are

much better than the usual ones. They still suffer from inadequate coverage; never-

theless, the estimated Coverage probabilities of the CIs based on V̂ fall well below the

ones obtained with the new method whose weights were shrunk.

These results generally emphasise that the estimator based on the ‘shrunk variances’

rather than the estimated ones performs better. Regardless of the variance structure

across studies (homoscedasticity or uncommon variances), the ordinary method shows

values close to the optimal only if large sized studies are summarised. The new method,

on the other hand, performs optimally even with an average small number of patients

per trial. V̂ ∗ shows a certain accuracy and flexibility since better results are achieved

even when variances are strongly heterogenous. It is quite remarkable that the new

method based on the shrinkage estimators proposed by Tong and Wang performs well,

providing highly accurate overall variances for simulated data for all considered scenar-

ios without relying on computational expensive procedures.
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3.8 Real Data Examples

In this section, as examples to illustrate the two methods compared and discussed in the

previous sections 4 data sets are taken into consideration. In particular, meta-analyses

and data sets given in Rees et al. (2004), Thompson & Pope (2005), Whitehead (2002)

and Salpeter et al. (2002) are presented in Figs 3.5 - 3.8 (For full details on trials,

heterogeneity tests, response variables and protocols for inclusion of studies, refer to

the full articles). These data-sets were considered as reasonable real examples on which

to apply the meta-analytical ‘shrunk’ estimator since the fixed-effects method was orig-

inally used to combine these data. Moreover, the variable of interest is in all cases

a continuous variable, assumed to be normally distributed, and summarised with a

weighted absolute mean difference (as in our simulations). Furthermore, what made

these data-sets particularly appealing to our study was the average number of patients

per arm as well as the different number of studies combined together. For instance,

in the exercise duration studies (Rees et al. (2004)) we can observe a total of 510 ran-

domised participants measured in 15 studies with an average of 17 patients per arm

(cf. Fig. 3.5). Fifteen trials involving 22 patients per arm on average (cf. Fig. 3.6)

were selected to compare the frequency of Raynaud’s Phenomenon (RP) attacks over a

1-week period in those taking calcium channel blockers vs. placebo (Thompson & Pope

(2005)). A multicentre study with 9 centres (cf. Fig. 3.7) considered as being from

separate studies each of which with an average of 10 patients per arm were included

in a fixed-effects meta-analysis comparing two anaesthetic agents in patients undergo-

ing short surgical procedures (Whitehead (2002)). Finally, twenty-five studies each of

which including an average of 13 patients per arm were included to compare single-dose

of cardioselective β-blockers with placebo (cf. Fig. 3.8). The latter data-set, however,

could not be used for our purpose of illustrating and comparing results from the two

methods; in fact, an error in the printed table was present and, despite the access

to the original article (Chatterjee, 1986) the reproducibility of the same output as in

Salpeter et al. (2002) was not possible. Therefore, analysis was performed (using again

the statistical package R) only on the remaining data-sets.

Recall that the parameter of interest is the overall effect, denoted by θ. The fixed-

effects model is assumed to be the correct one for our analysis, i.e. θi = θ for i = 1,2,

. . . k. This implies that the estimated effect size Yi is normally distributed with mean

θ and variance σ2
i . The estimator of θ is generally a simple weighted average of the Yi,

with the optimal weights proportional to wi = 1/var(Yi). In practice, the variances

are not known so estimated variances σ̂2
i are used to estimate both θ and V=var(θ).

Hence we define ŵi = 1/σ̂2
i giving

θ̂ =
∑

ŵiYi∑
ŵi

and V̂ = var(θ) =
1∑
ŵi
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with

var(Yi) = σ̂2
i =

(
1

nTi
+

1
nCi

)
Ŝ2

i

where, generally, Ŝ2
i is equal to the within-study pooled variance calculated by

Ŝ2
i =

(nTi − 1)ŝ2
Ti + (nCi − 1)ŝ2

Ci

nTi + nCi − 2

This is the ordinary method usually used in fixed-effects meta-analysis. However, re-

sults will be given also when within-study variances are estimated via the modified

shrinkage CHQBC estimator (see equation 3.2). Both the formulae to compute the

point estimate θ and its overall variance V are the same but S2
shr.i instead of S2

i is used

to calculate var(Yi), where S2
shr.is are obtained with the shrinkage estimator (see eqn

3.2) applied on S2
i s (as thoroughly described in section 3.6), i.e.

Ŝ2
shr.i = (BZpool)α(Zg)(1−α), 0 ≤ α ≤ 1.

This estimator borrows information across studies by shrinking each specific variance

towards the bias corrected geometric mean of variances for all studies, where the amount

of shrinkage depends on the variability of the individual variances.

Moreover, these results will be given even under the assumption of a common within-

treatment group variance across all studies. This entails that not every study has its

own variance term and the common group variance across studies is estimated by S2
p

where

Ŝ2
p =

∑k
i=1(nTi + nCi − 2)Ŝ2

i∑k
i=1(nTi + nCi − 2)

Usually the decision to assume a common variance can be based upon Bartlett’s test,

even though strict adherence to a specific level for this test is not advisable and this

test is extremely sensitive to non-normality of data (Whitehead, 2002).

Therefore, 3 different methods to calculate var(Yi) = Ŝ2 (1/nT + 1/nC) are consid-

ered; Ŝ2 can be replaced by the overall pooled variance Ŝ2
p , by the usual within-study

pooled variances Ŝ2
i or by the shrunk variances Ŝ2

shr.i leading to 3 different estimates

of the variance of the mean difference, i.e. σ̂2
pi, σ̂2

i and σ̂2
si respectively. In general, we

would expect the change in the weights due to different ways to calculate the variances

to lead to a change in the overall fixed-effect estimate of treatment difference and in

particular a change in the estimate of the variance of the overall effect. In particular,

we expect V to be higher and more reliable when shrunk estimates are used.
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Randomised controlled trials were used in the Cochrane meta-analysis (Table 3.13)

to determine the effectiveness of exercise based interventions. In the meta-analysis

performed with the pooled variances, significant improvements were seen for exercise

duration which increased by 2.38 minutes. Roughly the same point estimate is ob-

tained when ‘shrunk’ variances are taken into consideration;furthermore, as expected,

the variance of the overall estimator increases with the new proposed method. As illus-

trated through simulations we expect ‘shrunk’ variances to produce an overall variance

estimate whose ‘real’ and ‘average’ dispersion are both closer to the optimal value;

therefore, the bigger standard error of θ̂∗ should be closer to and less negatively biased

than the true value. Similarly, the 95% Confidence Interval [-1.912 ; -2.864] is supposed

to have coverage properties more likely to be correct.

Looking at table 3.14, 15 studies were used in a fixed-effects meta-analysis to detect

whether calcium channel blockers would significantly reduce, compared to the placebo,

the frequency of ischemic attacks in a 1-week period of time. Again, both the point

estimate and the overall variance differ slightly depending on the method we are ap-

plying to the data-set. In fact, whilst the reduction between CCB and placebo has a

weighted difference mean of -2.802 if the pooled variances are considered, the reduction

is equal to -2.759 when ‘shrunk’ variances are taken into account. Moreover, the overall

variance estimate increases from 0.313 to 0.327 with the new method: this means that

the confidence intervals for the new estimate obtained with ‘shrunk variances’ are wider

(95% CI [ -3.88 ; -1.64]). Again, we believe that the CIs obtained considering ‘shrunk’

variances are more likely to have correct coverage properties and that the declared

precision of the overall estimate should underestimate less remarkably the true value.

In this real-data example, it is interesting to note that Rodeheffer and Kahan-DILT

studies (i.e. 1 and 4) decrease their relative weights as expected. The original control

and treatment sample variances are extremely small compared to the other studies.

Not necessarily one has to expect these values similar to the other studies with the

same number of subjects but, at the same time, it is reasonable to suspect that these

values might be unreliable. Therefore, with the shrunk variances, the relative weight

of these 2 studies decreases, accounting this way for the possible imprecision of the

measures due to the small number of subjects; in particular, Rodeheffer’s weight drops

to 15.3% from the initial 17.8% while Kahan-DILT’s weight goes from 11.5% down to

10.7%.

Table 3.15 gives the estimates from the the log-recovery time meta-analysis, present-

ing details for different methods to calculate the within-study variances. Interestingly,

we can observe that all centres have approximately the same weights regardless of the

method used. Nevertheless, centres 1, 3, 4 and 9 have, with the new shrunk estimates, a
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slightly higher weight in the fixed-effects meta-analysis. The change in the weights due

to the use of shrunk variances has led to a decrease in the overall fixed-effects estimate

of treatment difference. In particular, the new overall point estimate (i.e. difference

in mean log-recovery time after anaesthesia between treatment A and treatment B)

is equal to 0.611, showing that the recovery time (minutes from when the anaesthetic

gases are turned off until the patient opens their eyes) is longer on anaesthetic A than

on B. Not only has the point estimate changed but also has the overall variance V;

in fact, the standard error of θ̂∗ is equal to 0.101 and this should, according to the

simulations done, better represent the real variability of the estimator. This gives even

wider confidence intervals which are supposed to have a coverage probability closer to

the nominal value of 95%.
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(Ŝ

2 i
),

sh
ru

nk
va

ri
an

ce
s

(Ŝ
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Chapter 4

Conclusions and Discussion

Meta-analysis is the statistical summary of a collection of analytic results from indi-

vidual studies for the purpose of integrating the findings. Data-analysis is only the last

step of a long and complicated research synthesis procedure; the outcome of a meta-

analysis may therefore be a long awaited process. Furthermore, conclusions obtained

through such a quantitative research synthesis can have an important impact and sub-

stantial consequences in public and health planning policies. Clearly, “an estimate of

the overall effect size should be accompanied by a confidence interval to indicate the

precision with which the overall effect size has been estimated” (Viechtbauer, 2007,

pg. 50). As a consequence, reliability of the output and in particular of the measure of

precision of the point estimate is crucial; a correct value of the standard error of the

point estimate ensures that the resulting significance of the analysis is correctly stated

and that confidence intervals have correct coverage probabilities. On the contrary, sta-

ting an incorrect precision can often result in biased and misleading results.

In this thesis, reliability of the overall variance of the point estimate was investigated

in fixed-effects meta-analyses since, in this case, the weights, the overall point estimate

θ, as well as its variance V depend entirely and solely upon the within-study variances,

usually assumed to be known. Nonetheless, this assumption is approximately true only

when sample sizes are large enough. Imprecision of the within-study variances should

not be simply ignored: in fact, when sampling errors are not taken into account, the

usual variance estimator performs very poorly in detecting the true variance of θ and

underestimates the true value. Additionally, the actual variability of the variance esti-

mator is always higher than both the optimal and declared values, with a consequent

overstatement of the precision of the estimator and misleading results in the form of

Confidence Intervals without correct coverage properties, in particular with small sam-

ple size studies.

The aim of this thesis was not only to illustrate via simulations what circumstances
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worsen the estimate of the variance of the overall estimator (variance structure across

studies at the patient level, number of studies, allocation per arm, study size) but also,

and more importantly, to investigate whether a different method, which can be accu-

rate and flexible at the same time, existed. In particular, an estimator whose variance

does not diverge substantially from the optimal value, both on average and in practice,

was sought and found to provide both more accurate statements about the precision of

the point estimate and confidence intervals which are more likely to have the correct

nominal coverage probabilities.

The overall average number of patients per study plays an important role which appears

to be more important than the total number of patients in each single study. Moreover,

the allocation of patients per arm does not seem to be decisive for the estimated overall

variance of the estimator even though balanced allocation, as well as having roughly

the same amount of patients per study, yields better results. Furthermore, true to

form, the higher the average number of patients per arm, the closer the variance esti-

mator is to the optimal one. However, when small studies are combined, the σ2
i ’s are

less precise and this leads to severely unreliable results. The ordinary method is too

sensitive to individual study variances and is negatively biased when sizes are too small.

In order to overcome this problem, we decided to shrink the individual pooled estimates

towards a common value before calculating the variances. The shrinkage estimators for

the pooled variances prove to be particularly advantageous compared with conventional

approaches when a single study carries a disproportionate amount of weight and has

few subjects, which may indicate a very low sample variance just by chance. Borrowing

information across variances through the “modified CHQBC estimator” produced an

overall variance estimate whose ‘real’ and ‘average’ dispersion were both closer to the

optimal value, representing a reasonable alternative to the ordinary method. Results

obtained via simulations (with different patterns for various variance schemes and di-

verse average numbers of patients per study), emphasised that the estimator of the

overall variance based on the ‘shrunk variances’ (V̂ ∗), performed better than the one

based on the estimated sample variances (V̂ ), minimising the real dispersion of the

overall variance estimator. Moreover, regardless of the variance structure across stud-

ies, V̂ ∗ (calculated with the new proposed weighting scheme) performs optimally even

with a small average number of patients per trial, achieving almost optimal results

without relying on computationally expensive procedures.

As a consequence, since the overall variance of the point estimator was better esti-

mated with the proposed technique, the coverage probabilities of the approximate 95%

confidence intervals based on V̂ ∗ were found to be generally accurate, in that they were
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approximately equal to the nominal coverage value. The proposed weighting scheme

yields confidence intervals with higher coverage probability than the commonly used

interval based on pooled variances, particularly when the number of studies is moderate

and the average number of patients per arm is small. In light of these results, V̂ ∗ is

strongly recommended, since this appears to perform better than (or at least as well

as) the usual variance estimator across the range of cases, and this provides additional

protection against large errors in the estimated sample variances and hence in impre-

cisely estimated weights.

In this thesis we have shown the consequences of using the estimated weights in the cal-

culation of the overall variance of the common effect estimator in combining estimates

from independent studies. We have pointed out that (V̂ ) is not a good estimator for

the correct variance of the overall effect estimate when the weights are merely based

on sample variances, as in practice. Protection against errors in the estimated weights

should therefore be provided. We recommend the use of the proposed weighting scheme

to achieve more reliable estimates of the overall variance and better approximations of

the nominal significance level, which has the added advantage of simplicity. Due to its

easy application and its good performance in the simulation study, the proposed shrink-

age estimator for the pooled variances is a good alternative to the ordinary method.

The use of shrunk variances for the variance of an overall effect estimate is advocated

in making inference for the fixed-effects meta-analysis, particularly when the studies

considered have, on average, a small number of subjects because of its more accurate

estimate of the overall variance.

Finally, it should be noted that this thesis has only considered the weighted mean

difference for continuous data. Many other outcome variables are possible when deal-

ing with the comparison of two treatments, control and experimental, in an effort to

find out whether there is a significant difference between the two. Standardised mean

difference for continuous variables as well as odds ratio, difference or ratio of propor-

tions in the case of qualitative attributes play an important role to detect the effect size

and measure such a difference. Nevertheless, no attempt has been made to assess the

precision of the estimators and to evaluate whether shrinkage estimators might improve

overall variance estimates in these cases as well. Further investigation and research are

needed in this area to evaluate whether shrinking the pooled variances before calcu-

lating the variances would be a superior method than the ordinary one for categorical

variables as well.

Another possible step would be to try an extension of the considered method to the

case of random-effects models where we could observe the same deficiencies as in the
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the fixed-effects models considered above. Despite the fact that the problem of estimat-

ing σ2
i is particularly urgent and dramatic in the fixed-effects model, the estimation of

σ2
i might also be expected to influence random effects coverage probabilities especially

when all studies in the meta-analysis are small (Brockwell & Gordon, 2001).
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Böckenhoff, A. & Hartung, J. (1998), ‘Some Corrections of the Significance Level in

Meta-Analysis’, Biometrical Journal 40(8), 937–947.

Braga, M. (2004), Mean-Variance Efficiency: da Markowitz . . . ad oggi, L’innovazione

finanziaria. Osservatorio Newfin, Bancaria Editrice, chapter 17.

Brockwell, S. & Gordon, I. (2001), ‘A comparison of statistical methods for meta-

analysis’, Statistics in Medicine 20, 825–840.

Burton, A., Altman, D., Royston, P. & Holder, R. (2006), ‘The design of simulation

studies in medical statistics’, Statistics in Medicine 25, 4279–4292.

Chatterjee, S. (1986), ‘The Cardioselective and Hypotensive Effects of Bisoprolol

in Hypertensive Asthmatics’, Journal of Cardiovascular Pharmacology 8((Suppl.

11)), S74–S77.

Cochran, W. (1937), ‘Problems arising in the analysis of a series of similar experiments’,

Journal of the Royal Statistical Society 4(Supplement), 102–118.

Cox, D. & Hinkley, D. (1974), Theoretical Statistics, London : Chapman and Hall.

Cox, D. & Solomon, P. (1997), Statistical Iinference, Monographs on statistics and

applied probability, Boca Raton, FL; London: Chapman & Hall/CRC.

Cui, X., Hwang, J., Qiu, J., Blades, N. & Churchill, G. (2005), ‘Improved statistical

tests for differential gene expression by shrinking variance components estimates’,

Biostatistics 6, 59–75.

DerSimonian, R. & Laird, N. (1986), ‘Meta-Analysis in Clinical Trials’, Controlled

Clinical Trials 7, 177–188.

Ghosh, M., Hwang, J. & Tsui, K. (1983), ‘Construction of Improved Estimators in Mul-

tiparameter Estimation for Discrete Exponential Families’, The Annals of Statistics

11(2), 351–367.

91



Hardy, R. & Thompson, S. (1996), ‘A likelihood approach to meta-analysis with random

effects’, Statistics in Medicine 15, 619–629.

Hardy, R. & Thompson, S. (1998), ‘Detecting and describing heterogeneity in meta-

analysis’, Statistics in Medicine 17, 841–856.

Hartung, J. & Knapp, G. (2001), ‘A refined method for the meta-analysis of controlled

clinical trials with binary outcome’, Statistics in Medicine 20, 3875–3889.

Hedges, L. (1983), ‘A random effects model for effect sizes’, Psychological Bulletin

93(2), 388–395.

Hedges, L. & Olkin, I. (1985), Statistical Methods for Meta-Analysis, Orlando ; London

: Academic Press.

Higgins, J. & Thompson, S. (2002), ‘Quantifying heterogeneity in a meta-analysis’,

Statistics in Medicine 21, 1539–1558.

Jackson, D. (2006), ‘The power of the standard test for the presence of heterogeneity

in meta-analysis’, Statistics in Medicine 25, 2688–2699.

Jain, N., Thatte, J., Braciale, T., Ley, K., O’Connell, M. & Lee, J. (2003), ‘Local-

pooled-error test for identifying differentially expressed genes with a small number

of replicated microarrays’, BioInformatics 19(15), 1945–1951.

Knapp, G., Biggerstaff, B. & Hartung, J. (2006), ‘Assessing the Amount of Hetero-

geneity in Random-Effects Meta-Analysis’, Biometrical Journal 48(2), 271–285.

Kubokawa, T. (1999), ‘Shrinkage and Modification Techniques in Estimation of Vari-

ance and the Related Problems: A Review’, Communications in Statistics: Theory

and Methods 28(3/4), 613–650.

Li, Y., Shi, L. & Roth, H. (1994), ‘The bias of the commonly-used estimate of variance

in meta-analysis’, Communications in Statistics – Theory and Methods 23, 1063–

1085.

Lin, Y., Nadler, S., Lan, H., Attie, A. & Yandell, B. (n.d.), Adaptive Gene Picking

with Microarray Data: Detecting Important Low Abundance Signals, The Analysis

of Gene Expression Data: Methods and Software,, Springer, NY.

Mengersen, K., Tweedie, R. & Biggerstaff, B. (1995), ‘The impact of method choice on

meta-analysis’, Australian Journal of Statistics 37(1), 19–44.

Mosteller, F. & Chalmers, T. (1992), ‘Some Progress and Problems in Meta-Analysis

of Clinical Trials’, Statistical Science 7(2), 227–236.

92



Normand, S. (1999), ‘Tutorial in Biostatistics. Meta-Analysis: Formulating, Evaluat-

ing, Combining and Reporting’, Statistics in Medicine 18, 321–359.

Opgen-Rhein, R. & Strimmer, K. (2007), ‘Accurate Ranking of Differentially Expressed

Genes by a Distribution-Free Shrinkage Approach’, Statistical Applications in Ge-

netics and Molecular Biology 6(1), Article 9.

Petitti, D. (1994), Meta-analysis, decision analysis, and cost-effectiveness analysis :

methods for quantitative synthesis in medicine, New York; Oxford: Oxford University

Press.

Piccolo, D. (2000), Statistica, Bologna; Il Mulino.

Rees, K., Taylor, R., Singh, S., Coats, A. & Ebrahim, S. (2004), ‘Exercise based reha-

bilitation for heart failure’, Cochrane Database of Systematic Reviews Issue 3, Art.

No.: CD003331.

Salpeter, S., Ormiston, T. & Salpeter, E. (2002), ‘Cardioselective β-Blockers in Pa-

tients with Reactive Airway Disease: A Meta-Analysis’, Annals of Internal Medicine

137(9), 715–725.

Senn, S. (2000), ‘The many modes of meta’, Drug Information Journal 34, 535–549.

Sidik, K. & Jonkman, J. (2005), ‘Simple heterogeneity variance estimation for meta-

analysis’, Applied Statistics 54(2), 367–384.

Sidik, K. & Jonkman, J. (2006), ‘Robust variance estimation for random effects meta-

analysis’, Computational Statistics & Data Analysis 50, 235–246.

Smith, K. (1997), ‘Explaining Variation in State-Level Homicide Rates: Does Crime

Pay?’, The Journal of Politics 59(2), 350–367.

Thompson, A. & Pope, J. (2005), ‘Calcium channel blockers for primary Raynaud’s

phenomenon: a meta-analysis’, Rheumatology 44(2), 145–150.

Thompson, S. & Sharp, S. (1999), ‘Explaining heterogeneity in meta-analysis: a com-

parison of methods’, Statistics in Medicine 18, 2693–2708.

Tong, T. & Wang, Y. (2007), ‘Optimal Shrinkage Estimation of Variance with Applica-

tions to Microarray data Analysis’, Journal of the American Statistical Association

102 (477): 102 (477), 113–122.

Viechtbauer, W. (2007), ‘Confidence intervals for the amount of heterogeneity in meta-

analysis’, Statistics in Medicine 26, 37–52.

Whitehead, A. (2002), Meta-Analysis of Controlled Clinical Trials – Statistics in Prac-

tice, Chichester: John Wiley & Sons Ltd.

93


	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Aim

	Meta-Analysis is biased
	Meta-Analysis
	The models
	The fixed-effects model
	The random-effects model

	The Usual Meta-Analytical Estimators
	The Heterogeneity Parameter and the different methods of estimation
	Estimating the variance of the overall effect estimate : an ignored problem
	Simulations with common variance
	Number of Patients per Arm Equal
	Number of Patients per Arm not Equal

	Effect of Allocation of Patients per Arm on Meta-Analysis. 2 trials
	Effect of Number of patients per Trial on meta-analysis. 2 Trials Example
	Effect of Patients and Allocation per Arm. 2 Trials Example
	Precision of the overall estimator: a recap

	Shrinkage Estimators and a more Realistic Scenario
	Acting in a more Realistic Scenario
	Simulations with uncommon variances
	The simulation results
	Shrinkage Estimators
	Basic Logic
	An introduction to Stein-Estimators
	Properties of the Shrinkage Estimators

	Why draw on Bioinformatics?
	Shrinkage Statistic of Variance Vector: method used
	CHQBC Estimator
	Improvements on the CHQBC Estimator

	Comparison of methods by Simulations
	Real Data Examples

	Conclusions and Discussion
	Bibliography

