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Abstract

Reliability of the measure of precision of the estimate is crucial; a correct value of the
standard error of the point estimate entails that the resulting significance of the analy-
sis is correctly stated and that confidence intervals have correct coverage probabilities.
Stating an incorrect precision, on the contrary, can often result in biased and mislead-
ing results. In particular, in fixed-effects meta-analysis the overall estimator usually
used in practice tends to have a variance higher than the optimal one even though this
appears to be lower, just by chance.

In performing a fixed-effects meta-analysis, individual treatment estimates are weighted
proportionately to the precision of the study. Such weighting is optimal only under the
assumption that variances are known, which is never the case in practice. As a con-
sequence, the estimator is sub-optimal and the resulting meta-analysis overstates the
significance of the results: in particular, overstatements are dramatic when we sum-
marise studies with small number of patients. Focusing the attention to the fixed-effects
model, the main aim of this thesis is to investigate the behaviour of the precision of
the overall estimator under different circumstances in order to assess how biased and
incorrectly reported the overall variance of the commonly used estimator is and also to
highlight in which circumstances improved estimates are deemed necessary.

In fixed-effects meta-analysis, problems are related to poor estimates of the individual
2
i

(the overall variance estimator) depend upon them. Poorly estimated study variances

variances o; since these values are imprecise and both 6 (the point estimator) and V
can lead to the overall estimate of the variance of the treatment effect being badly
underestimated. In order to evaluate the circumstances in which the imprecision in
the estimates of o2 badly affects V, a number of simulations in different settings were
performed. Under both the assumption of common and uncommon variance of the
observations at the patients level, the average total number of patients per study plays
an important role and this appears to be more important than the total number of
each single study. Moreover, the allocation of patients per arm does not seem to be
decisive for the estimated overall variance of the estimator even though balanced allo-
cation as well as having roughly the same amount of patients per study yields better

results. Furthermore, true to form, the higher the average number of patients per arm,
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the closer the estimator is to the optimal one, i.e. the fewer the number of patients,
the less precise the estimates of 02-2 are and the greater the impact is on the results.

2

<, we may severely overstate the precision

Given the imprecision in the estimate of o
of 6. Better estimation of the variances are therefore investigated. Are there ways to

account for the imprecise estimates of the within-studies variances?

Shrunk variances were considered in order to assess whether borrowing information
across variances would produce an overall variance estimate whose ‘real’ and ‘average’
dispersion were both closer to the optimal value. Combining measurements minimises
the total ‘Mean Squared Error’. Therefore, particularly when the nature of the prob-
lem is not to estimate each expected return separately but rather to minimise the total
impact, shrinkage estimators represent a reasonable alternative to the classical estima-
tors. This approach seems reasonable since the goal of this thesis is to minimise the
real dispersion of the overall variance estimator. Moreover, shrinkage approaches (that
combine variance information across studies and are study-specific at the same time)
usually perform well under a wide range of assumptions about variance heterogeneity,
behaving well both when the variances were truly constant as well as when they varied
extensively from study to study. In particular, in this thesis the ‘modified CHQBC
estimator’ suggested by Tong and Wang is used (where CHQBC stands for the James-
type shrinkage estimator for variances initially proposed by Cui,Hwang,Qiu,Blades and
Churchill).

Results obtained via simulations (with different patterns for various variance schemes
and diverse average amounts of patients per study), emphasise that the estimator based
on the ‘shrunk variances’ performs better than the one based on the estimated sam-
ple variances. Regardless of the variance structure across studies (homoscedasticity
or uncommon variances), the estimator based on the shrunk variances performs op-
timally, even with an average small number of patients per trial, achieving almost
optimal results even when the variances are strongly heterogenous and without relying
on computational expensive procedures. Chapter 3 shows the results obtained if shrunk
variances are used instead of the declared ones; moreover, this new approach is applied
to some real data-sets showing how the declared variance tends to be higher in all cases
and presumably closer to the ‘real’ optimal value.

Finally, chapter 4 highlights the merits of this new approach to the problem of impre-
cise precision estimates in fixed-effects methods and also looks at the further work that
needs to be done in order to improve results for this and other meta-analytical settings;
this thesis, in fact, only considers the case of continuous normally distributed data ig-
noring binary, ordinal or survival data meta-analyses. Moreover, despite the fact that
the problem of estimating 02-2 is particularly urgent and dramatic in the fixed-effects

model, the estimation of o might also be expected to influence random effects coverage
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probabilities especially when all studies in the meta-analysis are small (Brockwell &
2001).
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Chapter 1

Introduction

Meta-analysis is intended to provide the statistical summary of a collection of results
from individual studies for the purpose of integrating the findings. Data-analysis is
only the last step of a long and complicated research synthesis procedure that involves
a problem formulation stage, a data collection stage and a data evaluation step all of
them necessary to evaluate and decide what reported studies to include in the analysis.
The outcome of a meta-analysis may therefore be a long awaited process.

During the last 20 years or so, literally thousands of meta-analytic papers primar-
ily covering applications in health and medical sciences have been published, making
meta-analysis have a very important role in diverse fields of applications. Moreover, the
essential character of meta-analysis is quantitative in nature and since this statistical
summary is applied to numerous diverse applications in many fields, it is essential that
misleading results are not produced. In fact, often, final decisions are based upon the
conclusions obtained through such a quantitative research synthesis; small variations
in the outputs can have an important impact and substantial consequences in public
and health planning policies, for instance. Given the length of a meta-analysis and the

impact results may have, precision of the estimates is a crucial point.

There is no empirical nor theoretical basis for preferring the fixed-effects model over
the random-effects model or viceversa. There are some arguments in favour of each
approach which depend on the purpose as well as conceptual difficulties linked to both
points of view. This thesis, however, will focus on fized-effects models, trying to in-
vestigate how reliable and accurate results are. The reason why we will concentrate
attention on fixed-effects meta-analysis is that weights, overall point estimate 6 as well
as the precision of the estimate depend entirely and solely upon the findings of many
empirical studies which are usually assumed to be known. The simplifying assumption
is that the sampling variances of the effect size estimates are known; however, this is

approximately true only when sample sizes are large. It is therefore essential to allow



for the imprecision of these estimates.

The ordinary method is too sensitive to individual study variances and is negatively
biased when sample sizes are too small. In particular, the precision of o2 has a dra-
matic influence on weights and therefore on V, the overall precision of the estimator
that describes how uncertain we are about the point estimate. Treating al-z’s as known
underestimates V and can lead to a loss of efficiency, especially for small trials. When
we consider small sizes, standard errors should not be considered as if they were known,

because this would overestimate precision, leading to unreliable results.

1.1 Aim

Fixed-effects models do not account nor allow for the sampling error in 62

; however, it
is known that sampling errors are present in practice. When we ignore this problem -
as it happens with the ordinary method — the usual variance estimator performs very
poorly in detecting the true variance of # and underestimates the true value. Moreover,
the actual variability of the variance estimator is always higher than both the declared
and optimal ones, with a consequent overstatement of the precision of the estimator and
misleading results in the form of too liberal significance tests and Confidence Intervals

without correct coverage properties, in particular with small size studies.

The aim of this thesis is therefore to illustrate via simulations - and calculations where
possible - what circumstances (variance structure across studies at the patient level,
number of studies, allocation per arm, study size) worsen the estimate of the variance of
the overall estimator. Moreover, and more importantly, it will be investigated whether
a different method, able to be accurate and flexible at the same time, exists. In partic-
ular, an estimator whose variance does not diverge substantially from the optimal value
both on average and in practice is highly wanted and warmly recommended. This would
guarantee both more accurate statements about the precision of the point estimate and

confidence intervals more likely to have the correct nominal coverage probabilities.



Chapter 2

Meta-Analysis is biased

2.1 Meta-Analysis

“Meta-analysis is a quantitative approach for systematically combining the results of
previous studies in order to arrive at summary conclusions about the body of research”
(Petitti, 1994} pg. 4,15). The need for such a quantitative review and synthesis of re-
sults of related but independent studies became particularly acute in the social sciences
in the mid-70s, when the narrative literature reviews were perceived selective in the
inclusion of studies and subjective in their weighting (Petitti, |1994)). Since then, uti-
lization of meta-analytic techniques to combine results and information from separate
quantitative investigations has become increasingly common, and statistical methods
for its application have been further explored and developed. “Over the past 20 years
the number of published meta-analyses and discussions on meta-analysis methodology
has dramatically increased. This has occurred particularly in the areas of medical
and epidemiological research” (Brockwell & Gordon| 2001, pg. 825). The popularity
of meta-analysis is due to its overall goal: integrated analysis has “more statistical
power to detect a treatment effect than an analysis based only on one study” (Nor-
mand}, 1999, pg. 321). Furthermore, “when several studies have conflicting conclusions
a meta-analysis can be used to estimate an average effect or to identify a subset of
studies associated with a beneficial effect” (Normand, 1999, pg.322). Meta-analysis
can be of great advantage in situations for which individual outcomes are difficult to
interpret or when treatment effects are small or not significant in each study alone.
“Owing to this rapid rise in the popularity of meta-analysis, it is becoming increasingly
important that the methodology and statistics used are sound” (Brockwell & Gordon,
2001, pg. 825).

Consider k separate studies looking at the same clinical question (as, for example,

a comparison between a new medication and placebo) in which each trial treatment is



estimated in terms of a difference in means of a quantitative variable. Meta-analysis
can be based on a fixed-effects model (where the inference is conditional on the studies
actually done) or on a random-effects model (where studies are considered a random
sample of some hypothetical population of studies). The two different assumptions ad-
dress to two different theoretical questions. “The random-effects model is appropriate
if the question is whether the treatment will, on average, have an effect. If the question
is whether the treatment has caused an effect in the studies that have been done, then
the fixed-effects model is more suitable” (Petitti, 1994 pg. 93). Evidently, these dis-
tinct assumptions entail distinct statistical methods; “the random-effects model uses
a two-stage sampling idea, as if we sampled from a superpopulation of studies that
might be carried out and then sampled patients within the studies. Of course, the
real situation is more like a selection of studies that can be carried out” (Mosteller &
Chalmers, |1992, pg. 232).

“The random-effects model in meta-analysis has actually been suggested as a way to
model known differences between studies such as study-design, different within-study
matching protocols, different treatment protocols” (treatment doses, lengths, exposures
or intensities, for example), interventions, outcomes studied “or perhaps even gender or
cultural differences between study participants” (Biggerstaft & Tweedie, 1997, pg. 753).
In practice, there are so many different approaches to conducting a study that there
are many different potential treatment effects that could arise. “Such diversity is com-
monly referred to as (methodological or clinical) heterogeneity (72) and may or may
not be responsible for observed discrepancies in the results of the studies. Addressing
such heterogeneity has been and still is one of the most troublesome aspects of many
systematic reviews” (Higgins & Thompson| |2002, pg. 1539,1540) as its magnitude can
influence the conclusions of the meta-analysis. Quantifying the amount of heterogene-

ity is therefore one of the most important aspects of systematic reviews.

Whether fixed-effects or random-effects models are more appropriate, the choice of
model is very important as this “can lead to noticeably different conclusions” (Mengersen
et al., (1995, pg. 38). The impact of the choice of method can be significant. Even small
absolute variations can have an important impact and “they may have substantial con-
sequences in arenas such as public policy, health planning and litigation” (Mengersen
et al., 1995, pg. 39). There are conceptual difficulties linked to both the fixed-effects
and random-effects points of view: “in both models, it may be difficult to characterize
precisely the universe to which we are inferring” (Normand} 1999, pg. 326). In partic-
ular, random-effects model assumes that the results from the trials are representative
of the results which would be obtained from the total population of centres while, in
reality, centres are not chosen at random. On the other hand, the fixed-effects model

makes the assumption that the characteristics of patients in meta-analytical studies are



the same as those in the total patient population.

There is no empirical nor theoretical basis for preferring the fixed-effects model over the
random-effects model or viceversa. Nonetheless, despite the long controversial debate
as to the choice of the appropriate model, statisticians’ attention has focused mainly
on the random-effects model that incorporates a parameter explicitly accounting for
the between-trial variability, producing results which can be considered more general-
isable. Mosteller and Chalmers, for instance, “fear that some investigators prefer the
fixed-effects approach because it gives narrower confidence limits rather than because
they want to apply their inferences to the particular population sampled” (Mosteller &
Chalmers, 1992} pg. 232). Biggerstaff and Tweedie remark that “the application of the
fixed-effects model in meta-analytic contexts has been called into question” (Biggerstaff:
& Tweedie, [1997, pg. 753). Moreover, it is believed that, although random-effects mod-
els are generally conservative since they typically widen confidence intervals and lead
to a lower chance of calling a difference ‘statistically’ different, they give a “much truer
picture of variability both in individual studies and across a set of studies and conse-
quently enable more informed inference” (Mengersen et al., (1995, pg. 41). Normand
notes that “it is almost always reasonable to believe that there is some between-study
variation and few reasons to believe it is zero”. Especially when studies conflict, “it
is difficult to ignore the between-study variation” (Normand} 1999 pg. 326). Further-
more, “the test for the heterogeneity for assessing the validity of the fixed effect model
is of limited use, particularly when the total information is low, or when the amount of
information available in each trial is very variable” (Hardy & Thompson} 1998, pg. 853).
Hardy and Thompson believe that “in practical medical research, clinical homogeneity
is rare owing to the nature of the studies and the many variables involved, and a degree
of a statistical heterogeneity may be anticipated” (Hardy & Thompsonl |1996] pg. 620).
The fixed-effects approach is “open to criticism and is generally discouraged. A truly
random effects approach estimating 72, which simplifies to a fixed effects model only if
72=0, may therefore be preferable” (Jackson) 2006} pg. 2689).

2.2 The models

In light of the above, attention and energies have focused mainly on random-effects
models and on the quantification of the heterogeneity 72. This thesis, nonetheless, will
focus on fixed-effects meta-analysis. The problem of estimating correct within-study
2

variances (o

) is important for both models: it is crucial for fixed-effects models but

it is also expected to have consequences on random-effect models as well. Fixed-effects
models will be preferred in order to simplify the presentation of the problem but the

potential strategies to handle with the imprecision of ¢?’s could be applied to both



models.

Fixed-effects and random-effects statistical methods are outlined briefly below. We
consider the problem of combining information from a series of k£ comparative clinical
trials, where the data from each trial consists of the number of patients in treatment
and control groups, ny and no. For simplicity, we assume a series of parallel group
trials. When means, X, in each treatment arm are known, the mean difference and
the associated measure of precision for each primary study can be calculated. Letting
i index the trials, a potential summary measure is the difference in means, Y; = X,
- Yci with standard error &;, calculated (under the assumption that the variances in

both groups are identical in each study) by

2 2
uar(n):agz(%+%):5§< LI > 2.1)

nrg neq nrq nei

where a common estimate of S? based on both 0:2” and O‘%«i is given by

(n7i —1)87; + (nci — 1)82,

S2 —
! nr; +ne; — 2

(2.2)

where §%z and §ch are the treatment and control group sample variances, respectively,

for the ith study and S? is the so called ‘pooled variance’.

2.2.1 The fixed-effects model

The fized-effects model assumes that each study summary statistic, Y;, is a realization
from a population of study estimates with common mean 0, i.e. every study evaluates
a common treatment effect. This means that the effect of treatment, allowing for the
play of chance, was the same in all studies and if all the studies were infinitely large
they would give identical results.

Let 0 - the average effect - be the central parameter of interest and assume there are i=
1,2,...,k studies. Assume that Y; is such that E(Y;) = 6 (implying that each study has
the same underlying effect) and let o = var(Y;) be the variance of the summary statistic
in the ith study. Even under a fixed effect model, in order to calculate confidence
intervals for the overall estimate of treatment effect, it is assumed that the observed
effects in each trial are normally distributed and approximately unbiased (which, for

moderately large study sizes, is guaranteed by the central limit theorem). Thus,

Y;~N(0,02) for i=1,2,..k

2

%

2

then 6 ~ N(0,1/ Zle w;) where w; = 1/62 which allows the calculation of confidence
intervals for 6 (Hardy & Thompson, [1998).

where o7 is assumed known and equal to &;. Making these additional assumptions,



2.2.2 The random-effects model

The random-effects model is an alternative approach to meta-analysis that does not
assume that a common (‘fixed’) treatment effect exists; on the contrary, the true treat-
ment effects in the individual studies may be different from each other. This means
there is no single number to estimate in the meta-analysis, but a distribution of num-
bers. The random-effects framework postulates that each study statistic, Y;, is a draw

from a distribution with a specific mean, 6;, and variance o7 :

Y; | 0,52 ~ N(6;,02) for i=1,2,...k

where 02 = 62-2. Furthermore, each study-specific mean, 6;, is assumed to be a draw from

2 =
some superpopulation of effects with mean 6 and variance 72, under the assumption

that these different true effects are normally distributed, i.e. with
0; | 977—2 ~ N(977_2)

This gives a two stage model:

Yi=0;+e
{91- =0+¢
where e; ~ N(0,0?) and ¢; ~ N(0,72). The error terms are assumed to be independent.
In this case, the true effect for study 4 is centred around the overall effect, allowing in-
dividual studies to vary both in estimated effect and true effect. # and 72 are referred to
as hyperparameters and represent, respectively, the average treatment effect and inter-
study variation. Given the hyperparameters, the distribution of each study summary
measure, Y;, after averaging over the study-specific effects, is Normal with mean 6 and
variance (02 + 72). As in the fixed-effects model, 6 is the parameter of central interest
as this represents the overall treatment effect (i.e. the average effect size in the popula-
tion); however, the between-study variation, 72 (often referred to as the heterogeneity
variance) plays an important role. The special case where 72 = 0 implies that the effect
sizes are homogeneous (0; = 6,7 = 1,2, ..., k) and the resulting model is the fixed-effects
one. The o7 values (the variance of the difference in means for the ith study) are esti-
mated by the sample variances 62-2 (see equation usually calculated from the data of
the ith observed sample and are treated as known constants. “In practice the variances
2

are not known so estimated variances & are used to estimate both 6 and its variance.

Any effect of this is generally ignored in practice” (Brockwell & Gordon, 2001}, pg. 826).



2.3 The Usual Meta-Analytical Estimators

In order to account for differences in sample size and study-level characteristics, a
weighted average differences of the estimates from each study is taken into account.

The parameter of interest 6 is estimated by

with w; = (72 4+ 637! (2.3)

where 72 i

is a suitable estimator of the heterogeneity parameter 72. When a fixed effect
model is considered, weights are equal to the reciprocal of the within-variability, i.e.
w; =1/ 62-2. “Any choice of weight will lead to an unbiased estimate of the common
treatment effect, but w; is generally taken to be the reciprocal of the variance for the
study 7. These particular weights provide the most precise estimate of the treatment
effect, that is they minimise the variance of 67 (Hardy & Thompsonl 1996, pg. 619,620),

V. Furthermore, assuming o2 known and equal to 62 for all 7 implies that

V = var(f) = _ (2.4)

k N
D iy Wi

where ; = 1/62.

2.4 The Heterogeneity Parameter and the different meth-
ods of estimation

In light of the above considerations, attention has been paid particularly to estima-
tion of the heterogeneity parameter. There exists an extensive literature about the
estimation of 72. This parameter can be estimated using different methods of estima-
tion: namely, the method of moments estimator by DerSimonian and Laird (DSL —
DerSimonian & Laird| (1986)), the variance-component type estimator by Hedges (VC
—|Hedges (1983))), the simple heterogeneity variance estimator by Sidik and Jonkman
(SH — Sidik & Jonkman| (2005)), the maximum likelihood estimator by Hardy and
Thompson (ML — |Hardy & Thompson (1996)) and the approximate restricted maxi-
mum likelihood estimator (REML — Thompson & Sharp, (1999)).

The DerSimonian and Laird method of moments estimator is based on the test statistic
of homogeneity originally proposed by Cochran (Cochran,|[1937) in 1937. Using the test

statistic

QC - sz efz:):

2

where w; = (6’?)‘1 for i = 1,2, ...k and where Gfix is the estimator of § when 7= is set

equal to zero in equation the DerSimonian and Laird estimator has the explicit form
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Qc — (k—1)
[Zf:l w; — (Zf:l wzz/ Zf:l u},)}

%%SL = mazx { 0;

The DSL estimator is unbiased if the study-specific JZ-Q are assumed known and equal

to 6?. The VC estimator is
2 1 -2 1 - ~9
Tve = maz O’HZ(YZ'_Y) - %Zai
i=1 i=1

where Y = Zle Y;/k. The SH estimator is based on weighted least squares, it is simple

to compute and always yields a non-negative estimate of 72. This is given by
&
~2 A1 i\2
TSH = H;Ui (Yi—05)"

where @ = 7 +1, 7 = 63/ |8 (Y = V)?/k] and 8y = S, 07 vi/ S8 o7
The ML and REML estimators are less simple computationally and require iterative

solutions. The ML estimator can be calculated by iterating the equation

Sk a2{(Yi - 6)° - A%}}

k ~
Dt w?

T3 = mazx {O,

until it converges, where 0 = Zle w;Y;/ Zle w; and w; = 1/(62 + 72,;), given an
initial estimate of 72. Similarly, the REML estimator is computed using the iterative

equation

k ~92
- “[(k/(k—1
%IQ%EML = max {07 lel w; [( /(
1

k
D i wi2

where 6 = Ele w;Y;/ Zf:l w; with w; = 1/(67 + Thpar)-

))(Y; — 0)2 — 62] } |

Despite the number of methods available to estimate 72, they usually yield similar
estimates of 8; “this may not be surprising because the weighted mean estimator 6 that
is given in equation for an overall effect is not particularly sensitive to the estimated
weights” (Sidik & Jonkman, 2005, pg. 374). It is believed that results “are nearly in-
variant with respect to the choice of the between-study variance estimator” (Hartung &
Knapp), 2001, pg. 3876). Moreover, in practice, the point estimates from the 2 methods
(fixed or random-effects) can even vary only slightly from each other. Estimates of 72
are important for the calculation of V, the variance of the overall estimate 6. In fact,
in addition to point estimates, reporting the overall variance of the estimator and a
confidence interval is usually considered a useful habit in order to indicate the precision
of the overall effect estimate and therefore to stress the level of uncertainty about the

point estimate.



2.5 Estimating the variance of the overall effect estimate

~

V: an ignored problem

In the random effects model for meta-analysis, an overall effect is usually estimated with
a weighted average of the single effect measurements. Weights are given by the preci-
sion, i.e. by the inverse of the sum of the within-study and between-study variances.
Such weighting is ‘optimal’ provided that the correct variances are used. Nevertheless,
these values are unknown and weights used in practice are obtained by substituting
estimated variances in place of the true ones. “Because of sampling error, however, the
precision will be estimated with some inaccuracy” (Senn, 2000, pg. 546). Hence such a
weighting is not optimal anymore. “Although such weights based on estimated values
are incorrect and stochastic, and may have large errors in some cases, approximate
inference about an overall effect typically ignores completely the errors associated with
estimation of the marginal variances” (Sidik & Jonkman, 2006 pg. 3682). Moreover,
the variance of é, V, is often estimated by equation obtained by using the estimated

1

weights w; = = 62 4+ 72 in place of the original ‘correct’ marginal variances, a practice

which fails to account for the error associated with estimated weights. Clearly, if 62-2

! would be a poor estimate of the variance of

and 72 have substantial errors, then w;
each study summary measure; as a consequence, V could be unreliable as an estimator
for the variance of 6. The accuracy of the estimated values of o2 and 72 is therefore
decisive: both the variance and the confidence intervals of # may be considerably af-
fected by using different methods of estimating 72.

In practice, the point estimates from the two methods (i.e. fixed and random effects
models) can even vary only slightly from each other, but the random-effects model
leads to wider confidence intervals for the overall treatment effect. However, in the
calculation of 6 and var(f), since both 72 and o2 are assumed known when in practice
they both are estimated, the confidence interval is still too narrow. The imprecision
of the estimates of both 72 and 01-2 should be considered. In general, random-effects
estimators tend to weight studies more equally, because of the presence of a common

variance 72

contributing to the weights. In the case where the relative weight of each
single trial is determined more by the value of 72, it may be acceptable to treat the
standard errors as if they were known. Nonetheless, when o2’s have a consistent in-
fluence on the weights, it is essential to allow for the imprecision of these estimates,
whether fixed or random-effects analyses are used. In particular, in fixed-effects mod-
els both the weights and the variance of the overall estimator depend solely upon the
within-study variances 01-2. Hence, the precision with which 0'1-278 are estimated will have
a dramatic influence on weights and therefore on the overall precision of the estimator.
Treating og’s as known particularly in fixed-effects analysis overestimates the precision

and can lead to a loss of efficiency, especially for small trials. This should not be simply
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ignored. As a consequence, this project will focus on the precision of estimates of 02-2

in fixed-effects meta-analysis.

Problems related to poor estimates of 012 have been addressed several times in the
literature and better estimates of var(Y;) have been advocated by a number of authors.
DerSimonian and Laird themselves warned the reader that in their work sampling vari-
ances were “assumed known even though in reality these were estimated from the data”
and exhorted to do “further research” in this area and to investigate different methods
of calculating the variances (DerSimonian & Laird, [1986|, pg. 187). Viechtbauer recalls
that all the methods briefly cited above concentrate on the study of 72 given the sim-
plifying assumption that the sampling variances of the effect size estimates are known.
“This is only approximately true when the within-study sample sizes are large (in this
case, &3 ~ af). On the other hand, when the within-study sample sizes are small, then
the error in the 5’1-2 values cannot be simply ignored. A meta-analysis of a large num-
ber of studies with small sample sizes yields coverage probabilities that deviate quite
substantially from the nominal level” (Viechtbauer, 2007, pg. 46, 47). Both random
and fixed-effects models do not account nor allow for the sampling error in &f which

is present in practice. “Inference is carried out ignoring the sampling errors in the
2

%

form of é, its variance or distribution” (Brockwell & Gordon, 2001, pg. 837). Given the

imprecision in the estimate of cri2, we may be severely overstating the precision of the

individual study variances. Estimated values &; are used without modification to the

estimated overall effect size. Confidence intervals for 012 could facilitate such sensitivity
analyses by suggesting a possible range of o2 values one should consider. Confidence
intervals may become anticonservative especially with increasing number of trials and
small sample sizes (Knapp et al., 2006]). In particular, the fewer the number of patients
the less precise will be the estimate of 01-2, and this additional uncertainty would there-
fore be expected to have a great impact on the results (Hardy & Thompson, 1996).
The problem of estimating ?’s is particularly urgent and dramatic in the fixed-effects
model, even though “the estimation of af might also be expected to influence random
effects coverage probabilities” especially when all studies in the meta-analysis are small
(Brockwell & Gordon, 2001}, pg. 837).

Consider the case where there are many but small, equally sized trials and homoscedas-
ticity applies (i.e. the variances of sampling errors are identical in each trial). The opti-
mal approach is to weight every single trial equally. Fixed-effects meta-analysis will de
facto weight inversely proportional to the observed variance. In so doing it will produce
an estimator whose true variance is higher than that produced by equal weighting (the
"correct one’) but which will appear to be lower, “claiming to have produced a lower

standard error for what is, in fact, a less precise estimate” (Senn| 2000}, pg. 547) . The
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real observed variances will vary and weighting by these values will produce a variance
estimate that is lower than that for the optimal estimator just by chance. However,
the estimator is sub-optimal because its ’true’ variance is higher. Unfortunately, the
resulting meta-analysis overstates the significance of the results (Senn, 2000). As a con-
sequence, significance tests associated with it are too liberal and confidence intervals
do not have correct coverage properties (cf. the simulation).

“The problem is not severe if individual trials are not small” (Senn, 2000, pg. 547).
On the other hand, when we consider a number of small trials, standard errors should
not be considered as if they were known because this would overestimate precision and
could also lead to unreliable results. Especially in these cases, investigation of better

estimation of the variances is highly recommended and warmly supported.

2.6 Simulations with common variance

2.6.1 Number of Patients per Arm Equal

“Simulation studies use computer intensive procedures to test particular hypotheses and
assess the appropriateness and accuracy of a variety of statistical methods in relation
of the known truth. These techniques provide empirical estimation of the sampling
distribution of the parameters of interest that could not be achieved from a single
study and enable estimation of accuracy measures, such as the bias in the estimates of
interest, as the truth is known” (Burton et al.| |2006, pg. 4279).

Consider a meta-analysis of k£ similar but independent studies. The observations consist
of two sets of independent random variables Xr7j1, X742, ... X1in,, and Xci1, Xcio, ...
XCing,; for i=1, 2, ..., k from the treatment and the control groups, respectively. Note
that np; and ng; are respectively the study specific sample sizes for the treatment and
the control groups in the ith study, so the total sample size is N; = np; +n¢;. Suppose
that these two sets of variables have independent normal distributions with different

means and equal variances as follows

2
Xrit, X1izs -+, Xting; ~ N(wri, 07;)

for i=1 k where o2, = o2,
2 PR T C
XCi17 XCiQ: cee 7XCinCi ~ N(MCZ'a UC’i) ’ ’ ! !

The parameter of interest is the overall mean difference, denoted by 6. The study
specific mean difference is defined as Y; = (ur; — pc;) and is estimated by Y; = Xp; —
X i, where Xp; = Z;@l Xrij/np; and X = Z;‘E’l Xcij/nci. We assume that Y is
such that E(Y;) = 6 (each study has the same underlying effect) and that the variance
of the difference between two independent means based on np; and ng; observations

respectively is equal to var(Y;) = o2 = U%,L-/nTZ- + U%i/nCi = Sf(l/nTi + 1/n¢;) given

2 =
the assumption that S? = a%i = O’%«i (i.e. the two groups in the treatment and control

arms have the same variance). For moderately large study sizes, each Y; should be
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asymptotically normal distributed. Thus,
Yi~N@,062) for i=1,2,..k

For the purpose of the simulation a fized-effects model is considered, that is each study
summary statistic Y; is thought as a realization from a population of study estimates

with common mean 6.

In addition to the point estimate, Confidence Intervals (Cls) for the overall mean dif-
ference (constructed based on the standard normal distribution) are calculated.

“ The coverage probability of a random interval (A,B) for 6 is defined as Pr(6 € (A, B))
which —for a nominal 95 per cent confidence interval— should be close to 0.95. The ex-
act coverage can actually only be found if the distribution of the interval is known”
(Brockwell & Gordon, [2001, pg. 831). However, as in this case, the distribution is un-
known; this implies that the coverage probability must be estimated using simulation.
“This is done by simulating a large number of meta-analyses and for each meta-analysis
calculating the appropriate confidence interval” (Brockwell & Gordon| 2001}, pg. 831).
The estimated coverage probability is then the proportion of times that the obtained
confidence interval contains the true specified parameter value . “The coverage should
be approximately equal to the nominal coverage rate, e.g. 95 per cent of samples for
the 95 per cent confidence intervals, to properly control the type I error rate for testing
a null hypothesis of no effect. Over-coverage suggests that the results are too conser-
vative as more simulations will not find a significant result when there is a true effect
thus leading to a loss of statistical power with too many type II errors. In contrast,
under-coverage (where the coverage rates are lower than 95%) is unacceptable as it
indicates over-confidence in the estimates since more simulations will incorrectly detect
a significant result, which leads to higher than expected type I errors” (Burton et al.,
2006l pg. 4287).

The coverage probability is usually dependent on the parameters of the model and so
the coverages presented are estimated for a range of values of S? and N;. The value
of 0 is nevertheless irrelevant as “the procedure is invariant with respect to a location
shift” (Brockwell & Gordon, 2001, pg. 831). For all simulations we use § = 3. The data
for each meta-analysis is simulated using the fixed-effects model described above (i.e.
Y; = 0+ e;), assuming normal errors e; with zero mean and variances 02-2. The coverage
probability is then estimated by simulating 10000 meta-analyses. The number of runs
was set to 10000 in order to reduce the standard error of the simulation process for the
nominal 95% coverage probability (cp) to 0.002179 (SE(cp)= +/cp(1 — cp)/M) without
being computationally expensive. “A possible criterion for acceptability of the coverage
is that the coverage should not fall outside of approximately two SEs of the nominal
coverage probability (cp)” (Burton et al., [2006, pg. 4287); therefore, in our simulations
between 9457 and 9543 of the 10000 confidence intervals should include the true value.
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The simulations are implemented using a programme in R, with each simulation gen-
erating np; and neo; observations from normal distributions with mean pp; and pe; =
pr; 40 respectively and variance SZ?. This procedure is repeated k times and the data is
then used to calculate the fixed-effects estimates for # and the corresponding confidence

interval.

In order to simplify the situation, let us assume that homoscedasticity applies, i.e.
51‘2 = S2 for all 4. Secondly, even if it is far from reality, we assume that all the studies
have exactly the same size (n = np; = ne;). This is just to give an indication of what
happens in the case we consider a number of studies all of them with few patients in-
volved; such assumption should therefore only be used as a rough guide of what would
happen in an unlikely but still possible situation (large numbers of big studies is not a

common occurrence in meta-analysis either).

Each estimated significance level is based on 10000 independent replications of the
same model and the significance level is « = 0.05. We discuss the meta-analytical
combination of the results of k= 10, 15, 20, 35 clinical trials and N; = 10, 16, 20, 30,
40, 60, 100 patients (i.e. as sample sizes we examine (np;, n¢;) = (5,5), (8,8), (10,10),
(15, 15), (20,20), (30,30) and (50, 50)). As regards the variances, we consider S? = 1.
With this choice of these patterns we are able to give an impression about the general
attitude of the fixed-effects meta-analysis when both the number of studies and the
sample size change. We will summarise the estimates once all simulations have been
performed. As in many published simulation studies, the average estimate of interest
(i.e. the overall variance of the estimator) over the M simulations performed will be
reported as a measure of the ‘declared’ estimate of interest. Similarly, as an assessment
of the uncertainty in the estimate of interest between simulations, the variance of the
estimates of the overall variance of the estimator from all simulations will be calculated.
Moreover, in order to evaluate the performance of the obtained results from the dif-
ferent scenarios and approaches being studied, the coverage of the confidence intervals
will be be considered as a measure of the performance and precision of the methods.
When judging the performance of different methods, some argue than having less bias
is more important than producing a valid estimate of sampling variance (Burton et
al., 2006). In our case, not only has the empirical estimated coverage probability to
correspond to the nominal value, but also- and in particular- the ‘declared’ precision
as well as the ‘real’” dispersion of the overall variance of the estimator should be close
to the theoretical ‘optimal’ one. The dispersion of the variances around the optimal
value will be a good way to assess the goodness of the methods used: both the average
declared variances and in particular the actual variances should be close to the optimal

‘real’ value.
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In particular, when we perform meta-analysis, we consider the estimator

0 — Zf:l wlm
Z§:1 w;

The variance of such estimator, V, is equal to

where w; = (02)7!

V =var() = ——

The demonstration is as follows

(Z?:l ini) _ Zf:l wfVar(Yi) Zf:l w?"z?
N Sk 2

V = war(0) =var

E (1\2 2
Zi:l(??) 9 Sk wi B 1
k k - k
(Xl wi)? (2imy wi)? i Wi
given that var(Y;) = o2 and that w; = 1/02. However, strictly speaking, var(f) is the
‘true’ variance of the ‘correct’ estimator only when Ul-z’s are known. When estimated
weights are used both to determine 6 and its variance, the equality is not valid anymore.

Furthermore, if we assume that weights are fixed constants as they should be in this

simulation scheme (i.e. w; = 1/k), we obtain

kowY; kw2 : k
V =wvar(0) = wvar <Zi:1wZYl> _ ZimwiVer(¥) iZ:Uar(yi)

and in our simulation, as both the sample sizes for the treatment and the control groups

are identical, it develops into

252
var() = — where n=np; =ne;
kn
where S? is the variance of each arm (i.e. S* = 02, = 02,), k is the number of trials
considered and n is the number of patients per arm. This is the ‘optimal’ value of the

variance of 6 provided that

1 1\ (np; — D)oZ, + (ngi — 1)02,
2 K Ci
o; =var(Y;) = +
(¥3) (n:m nm) (n7i — 1) + (nci — 1)
L () e

. 2 2 2
= iven n=np;, =ng;, S° =04 = 0p;
n) 2(n-—1) n & T o Ti—no

In practice, we use 5’22 (see equation ) and therefore 622 instead of the ‘true’ a?.
Therefore, all the relationships described above hold if and only if o2 is perfectly es-
timated by 61-2. This is hardly the case. As a consequence we usually end up considering

the estimator
koY,
Zi:l Wi Xy
k ~
Zi:1 wj

>
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and the variance of é, V, is estimated by

where

52 _ ( 1 N 1 )S2:< 1 N 1 >(nTi—1)§%i+(nCi—1)§%i
' nri - NCi ‘ nri nci (nTi + ne; — 2)

~9 A9 .
where 87, and 57, are sample variances.

Thanks to the simulations, it is possible in practice to calculate the ‘actual’ vari-
ance of the estimates § obtained with w; as well as the ‘declared’ variance of the
estimator. As at the end of 10000 runs we have él, ég, . ,éM with the respective vari-
ances Vl, Vg, ...,VM where M = 1,2,...,10000, we can calculate the real dispersion

of the estimates as

ZM o D)2 M 5
real () jzl(ej _ 9) F J
Vreat(9) a7 —1) where 6 ngl A7 (2.5)
and the expected variance E[V] as
M ¢
. V.
E[V] = 1 2.
VI=2>_ 71 (2.6)

=1

.

Finally, since when simulating data we have the privilege to know the correct values
for the treatment and control group variances, we can calculate the so called ‘opti-
mal’ variance, that is given by average of optimal variances calculated with the true

variances instead of with the sampled values, that is

M V. 1
VOpt = E MJ where V} = ﬂ with  w; = 1/0-1'2 (27)
=1 i=1 Wi

We give the results of the simulations if the fixed-effects model is the theoretically
correct one. In Table the estimated actual percentage of Cls is given, that is the
proportion of intervals containing the true overall effect # out of 10000 runs. We can
observe, not surprisingly, that for small sample sizes the fixed effect model is rather
liberal and that for increasing sample sizes in the studies the estimated coverage prob-
ability get closer to the nominal significance level (Bockenhoff & Hartungl 1998; [Li
et al., 1994). The proportion of intervals which contains 6 drops to 90% in the bal-
anced case np; = ng; = 8 regardless of the number of trials considered. It is worth
to note that with increasing sample sizes one observes a stabilization of the actual

coverage probability. Moreover, from Table it can be seen that the number of
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trials involved in the meta-analysis does not have a huge impact on the results. In
fact, turning to the coverage probabilities of the confidence intervals (Figure , we
observe that the empirical coverage probabilities are below 95% for all k, even for a
large number of studies taken into account. The empirical coverage probabilities are
closer to the nominal values of 95% when a total number of 30 patients per study is
considered. The four graphs show in fact the same pattern; with n < 8 the empirical
coverage probability is far below the nominal value while with more than 15 patients
per arm the figures tend to get closer to the nominal value of 95%. Therefore, the
number of patients seems to be the most relevant aspect (at least in the case where
only trials with the same dimension and with the same number of patients per arm

are considered). The smaller the number of patients, the lower the coverage probability.

Moreover, Table [2.1] clearly shows that
Vreal(é) > Vopt > E[V]

These relationships have a number of consequences. As we can only run I meta-
analysis, on average we tend to assert that the variance of the estimate obtained is
smaller that its ‘true’ optimal value. De facto, instead, the variability of such an esti-
mate is much larger than the true one. In practice, as the Table shows, there is the
tendency to produce a variance estimate that is lower than that for the optimal esti-
mator. Nevertheless, the estimator is sub-optimal since its ‘actual’ variance Vre“l(é) is
higher than VP!, We claim that we are performing better than the optimal estimator
while, if we could run a number of meta-analyses, we would notice that the variability
of the estimate considered is larger than the ‘true’ one. Fixed-effects meta-analyses pro-
duce an estimator whose true variance is higher than that produced by equal weighting
(the ‘correct one’) but which will appear to be lower. As a consequence, we tend to

overstate the significance of the results.
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Table 2.1: The Results of Simulations for different values of studies (k) under the
assumption of equal variances and equal study sizes

k=10 n | vreed(g) | vt | E[y] | Coverage
Probability

5 | 0.052044 | 0.040000 | 0.031227 0.8603

8 | 0.029666 | 0.025000 | 0.021792 0.9008

10 | 0.022188 | 0.020000 | 0.018039 0.9193

15 | 0.014338 | 0.013333 | 0.012490 0.9309

20 | 0.010618 | 0.010000 | 0.009534 0.9376

30 | 0.006858 | 0.006667 | 0.006457 0.9420

50 | 0.004087 | 0.004000 | 0.003928 0.9468
k=15 | n | yrea(g) | vert | gy [ Coverage
Probability

5 1 0.037335 | 0.026667 | 0.020577 0.8539

8 | 0.020113 | 0.016667 | 0.014495 0.9000

10 | 0.015149 | 0.013333 | 0.011969 0.9173

15 | 0.009435 | 0.008889 | 0.008297 0.9314

20 | 0.007051 | 0.006667 | 0.006343 0.9371

30 | 0.004589 | 0.004444 | 0.004302 0.9395

50 | 0.002692 | 0.002667 | 0.002618 0.9454
k=20 | n | vrea@g) | vt | gy [ Coverage
Probability

5 | 0.028918 | 0.020000 | 0.015329 0.8470

8 | 0.014785 | 0.012500 | 0.010826 0.9063

10 | 0.011415 | 0.010000 | 0.008959 0.9154

15 | 0.007203 | 0.006667 | 0.006224 0.9334

20 | 0.005288 | 0.005000 | 0.004746 0.9352

30 | 0.003516 | 0.003333 | 0.003223 0.9376

50 | 0.002057 | 0.002000 | 0.001961 0.9447
k=35 n | yrea(g) | yor E[V] Coverage
Probability

5 10.016244 | 0.011429 | 0.008684 0.8476

8 | 0.008535 | 0.007143 | 0.006152 0.9039

10 | 0.006467 | 0.005714 | 0.005098 0.9186

15 | 0.004160 | 0.003810 | 0.003546 0.9312

20 | 0.003104 | 0.002857 | 0.002710 0.9334

30 | 0.001997 | 0.001905 | 0.001841 0.9419

50 | 0.001190 | 0.001143 | 0.001120 0.9418

This Table shows the results of simulation for § = 3 and different values of n and £, given
S? = g2, = 0%, = 1 for all i. This simulation scheme considers for each simulation k parallel group
clinical trials each of whom with the same number of patients per arm (n = nr = n¢). Empirical
Statistics for E(V) and V"¢ (f) are based on 10000 simulation replicates as well as the Empirical
Coverage Probability.

18



Figure 2.1: Estimated Coverage Probabilities for the Fixed-Effects method under the
assumptions of Common Variances and Equal Number of Patients per Arm
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The figures show Estimated Coverage Probabilities of the Confidence Intervals based on 10000
simulation replicates. Different values of & —the number of trials — and n —the number of patients per
arm, with n = nc = np— are considered: (a) k = 10, (b) k = 15, (¢) k =25, (d) k = 35.
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2.6.2 Number of Patients per Arm not Equal

So far we have considered the case where the number of patients per each arm is equal.
We now take into account the cases where ny # ne. In particular, we consider the case
where on average all clinical trials have the same amount of patients per arm. This
implies that E(nr) = E(nc). Therefore, in order to consider clinical trial where each
arm has on average the same amount of patients, we sample the dimension of each arm
from a negative binomial distribution. The negative binomial distribution is a discrete
probability distribution,commonly parameterized by two real-valued parameters p and
r with 0 < p < 1 and r > 0. Under this parameterization, the probability mass function
of a random variable with a NegBin(r, p) distribution takes the following form:

D(r+k)

f(k;rp) = WP (1 —p)k

for k =1,2,3, ... and where I is the Gamma Function. The NegBin(r, p) distribution is
the probability distribution of a certain number of failures (r) in a series of independent
and identically distributed Bernoulli trials given p as the probability of success (Piccolo,
2000). Specifically, this is the probability distribution of the number of failures before
the K" success in a Bernoulli process, with probability p of success on each trial.
Formulae for the expectation and the variance for the negative binomial distribution
are given by
Bx)="1=P) Var(X) =
p p

Hence, if we impose the average number of patients per arm (with at least 2 patients

r(1—p)
2

per arm), we can obtain various negative binomial distributions each of which with
diverse variances. In our study, we decided to consider the cases where the variances of
the negative binomial distributions are equal to 5. Higher values of the variance were
not taken into account as this would have implied extremely high number of patients
per arm which are quite unrealistic. Given a variance equal to 5, the negative binomial
distribution whose mean is 5 assumes values ranging from 2 to 18. Similarly, as shown
in the following graphs, given a variance equal to 5 and an average value equal to 15,

the barplot of such a probability distribution has values varying from 2 to 37.
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Figure 2.2: Bar Plots of a Probability Distribution of a negative Binomial
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Bar Plots of a Probability Distribution of a negative Binomial with different expected values (5 and

15 respectively) and same variances in both cases equal to 5

We run 10000 meta-analyses assuming the fixed-effects model as the correct one.
Table shows the proportion of intervals containing the true overall effect 6 as well
as the ‘real’, the ‘optimal’ and the ‘declared’ variances of the estimates.

Once again, despite the fact we are now considering the case where ny and n¢ are the
same only on average, we can observe (Figure that the estimated coverage proba-
bility gets closer to the nominal level (i.e. 95 %) only when the sample sizes increases.
The proportion of intervals which does not contain the true 6 rises to 20% when we
consider only 5 patients per arm on average. Interestingly, under the assumption of
common variance, the number of clinical trials taken into account does not seem to
have an important impact on the output. The empirical coverage probabilities assume
roughly the same values regardless of k, the number of clinical trials. Again, looking at
both Figure and Table we can observe that the coverage probability is closer
to the nominal level when, on average, there are more than 15 people per arm, regard-
less of the number of studies. In fact, if we have a look at the ratio between the real

dispersion of the estimates and the mean of the variances of these estimates we can
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observe that, as the number of the average patients per arm increases, the ratio itself
tends to be roughly the same for all the four scenarios considered (k = 10, 15, 20 and
35). What really matters is the average total number of patients per trial: the less the

average amount of patients the lower is the coverage probability.

Figure 2.3: Estimated Coverage Probabilities for the Fixed-Effects method under the
assumptions of Common Variances and Different Number of Patients per Arm
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The figures show Estimated Coverage Probabilities of the Confidence Intervals based on 10000
simulation replicates. Different values of k£ and n (where n = nc = nr only on average) are taken into
account: (a) k=10, (b) k=15, (c) k = 25, (d) k = 35.
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Considering the same average number of patients per arm entails that not neces-
sarily every single trial has got the same allocation per arm and the same total number
of patients. For instance, in a meta-analysis where each study has an average total
number of 20 people it is likely to have clinical trials with more or less than 20 people
allocated in a more or less extreme unbalanced way. This has 2 consequences. First,
under the assumption of common variance, the average total number of patients ap-
pears to be more important than the amount of every single clinical trial. Second, the
allocation per arm of these people does not seem to be significant.

In the following paragraphs the irrelevance of both the allocation and the amount of
people per study is proven investigating the effect of random variation in variances
on meta-analysis. In order to simplify the calculation, in a first instance we will con-
sider only two clinical trials under the assumptions of (i) equal number of patients
per trial when proving the insignificancy of the allocation and of (ii) balanced alloca-
tion when verifying the importance of the average total amount of patients considered.
Subsequently, both the allocation and the total amount of patients will be taken into

consideration at the same time.
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Table 2.2: The Results of Simulations for different values of studies (k) under the
assumption of equal variances and equal study sizes on average

n k Vreal (é) Vort E[V] VTEEF‘;(]é) Coverage
Probability
5 || 10 || 0.13624 | 0.05532 | 0.03594 | 3.79055 0.7345
15 || 0.11109 | 0.03660 | 0.02307 || 4.81575 0.7026
20 || 0.09523 | 0.02726 | 0.01674 || 5.68843 0.6808
35 || 0.08067 | 0.01545 | 0.00911 || 8.85376 0.6267
8 || 10 || 0.03897 | 0.03024 | 0.02572 1.515 0.8929
15 || 0.02753 | 0.02000 | 0.01692 1.627 0.8793
20 || 0.02031 | 0.01495 | 0.01264 1.607 0.8874
35 || 0.01256 | 0.00850 | 0.00714 1.759 0.8756
10 || 10 || 0.02570 | 0.02280 | 0.02039 1.260 0.9166
15 || 0.01738 | 0.01513 | 0.01345 1.292 0.9151
20 || 0.01278 | 0.01130 | 0.01003 1.274 0.9153
35 || 0.00763 | 0.00645 | 0.00571 1.335 0.9104
15 || 10 || 0.01536 | 0.01417 | 0.01327 1.158 0.9329
15 || 0.01005 | 0.00941 | 0.00878 1.145 0.9315
20 || 0.00752 | 0.00707 | 0.00658 1.142 0.9317
35 || 0.00444 | 0.00403 | 0.00375 1.185 0.9268
20 || 10 || 0.01059 | 0.01034 | 0.00986 1.074 0.9413
15 || 0.00748 | 0.00690 | 0.00655 1.141 0.9280
20 || 0.00545 | 0.00517 | 0.00491 1.111 0.9351
35 || 0.00307 | 0.00295 | 0.00280 1.095 0.9395
30 || 10 || 0.00702 | 0.00680 | 0.00659 1.064 0.9423
15 || 0.00460 | 0.00453 | 0.00438 1.049 0.9430
20 || 0.00351 | 0.00339 | 0.00328 1.070 0.9432
35 || 0.00200 | 0.00194 | 0.00187 1.065 0.9425
50 || 10 || 0.00407 | 0.00406 | 0.00398 1.021 0.9484
15 || 0.00271 | 0.00271 | 0.00266 1.021 0.9473
20 || 0.00206 | 0.00203 | 0.00199 1.038 0.9468
35 || 0.00117 | 0.00116 | 0.00114 1.030 0.9479

This Table shows the results of simulation for = 3 and different values of n and k, given S2 = 1. This
simulation scheme considers for each simulation k parallel group clinical trials each of whom with the

same number of patients per arm on average(E(n) = E(nr) = E(nc)). Empirical Statistics for E(V)
and V”“”(G) are based on 10000 simulation replicates as well as the Empirical Coverage Probability.
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2.7 Effect of Allocation of Patients per Arm on Meta-
Analysis. 2 trials
We consider two clinical trials, each of which with the same total number of patients

(N = N1 = N3). Moreover, we suppose that the variances are equal to

2 _ _ (1 1 2 _ 1 2 _ a2
al_var(yl)_(a]\f—{_(l—a)]\f 51 = a(l —a)N ST =751

ot =)= (g + = ) %= (g ) % =05

where a and [ represent the proportion of patients allocated to each arm of the trial,
N is the total number of patient per clinical trial and S? = S3 = 1. The optimal weight

for trial 1 would be equal to

1 1 1
2 2 -
opt 0y _ 51 _ D 3 2 _ g2 _
wy = SR s W S vy given S7=955=1
Uf a% 'yS% 55% ~

~emp (ﬁJr(l*}l)N)S% _ @ _
wy = 1 n 1 1, 1~
(sh+oow)st  (Fvtaw)s 95T 0%
_L 752552 653
82 [083++487)  [653 ++57)
5 _ 53
= P given 5’722:

Therefore the optimal variance of the estimator will be equal to

552 17 552 17
Vopt _ eopt — 2 82 2 652 —
var () [553 To57| TN Gsr g 87 0
1 [y + 4] o 1
= 52 +~25) =~8 = =
[V+<5]2(7 T = b+ v+d S+
Similarly, the empirical overall variance will become.
&2 &2
Ve = par(0°"?) = | ——— 05 R S% ArYSl S35 =
St + 653 V57 + 053
2
or 2 2
= b= (0 6) =
[54—77’] 7+[5+7r] [5+7r]2( V)
(0 +97%)
(0 +~ym)?
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And the ratio of this to the optimal will be

(64~7%)
var(f°rt) % (0 +~yr)? '

where v and ¢ depend on the proportion of patients per arm and where r can assume
values theoretically in the range (0,00). Actually, such a proportion does not depend
on the total number of patients per clinical trials if we assume that both trials have

the same dimension. In fact,

(G1r) = @w%N+ﬁd%N)@wiw+¢w%N):

(auimv+ﬁume)2

N? <a(11—a) + ﬁ(lﬂﬂ) (a(ll—oc) + ﬁ(ll—ﬁ))

(6 +~17)
(6 +r)?

This means that the ratio T only depends on «, 8 and on r. In general, to give
an idea of the behaviour of the ratio we can plot it with different values of o and 5.
The following graphs (Figure give us a rough idea in the cases where a assumes
the values (0.1, 0.2, 0.3 and 0.5) while [ ranges from 0.1 to 0.9.
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Figure 2.4: Random Variation in Variances on a Meta-Analysis with 2 trials
Allocation of patients per arm.
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These Figures show the variance behaviour of the ratio of the real overall variance to the optimal
value as r increases and under the assumption of 2 studies each of which with the same total number

of patients N. The 5 lines represent different values of 8 (— = 0.9, 0.1,

0.6, 0.4,

— 0.8, 0.2,
= 0.5 ) while « is set equal to 0.1 (a), 0.2 (b), 0.3 (c) and 0.5(d).
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To have a better idea we can even plot them on a logarithmic base (Figure [2.5]).

Figure 2.5: Random Variation in Variances on a Meta-Analysis with 2 trials. Effect of
Allocation of patients per arm - Logarithm Scale.
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These Figures show the variance behaviour of the ratio of the real overall variance to the optimal
value as r increases and under the assumption of 2 studies each of which with the same total number
of patients N. Again, the 5 lines represent different values of 5 (... = 0.9, 0.1, = 0.8, 0.2, =

0.7,0.3,... =0.6, 0.4, = 0.5 ) while « is set equal to 0.1 (a), 0.2 (b), 0.3 (c¢) and 0.5(d). The
logarithm scale is considered.
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As r ranges from simulation to simulation, we can see the average behaviour of the
ratio of the empirical and the optimal variances YT calculating the mean. As we have
assumed an equal total number of patients per each clinical trial, i.e. N1 = Ny = N, it

32
follows that r = % ~ F(n_2),(n—2), where F'is the F" distribution with both degrees

of freedom equal to N-2. Given «, § and N, the expected value of the ratio is equal to

E(avﬂa N) :/0 T(Oé,ﬁ, ’l") *dF(T.?NfQ yN—2 )d’l"

where

dF(T7V1 %) ) = Bet(l(?l, %) ( ) 1/1;—1/2

given F{,, ,,) with v1 and v, representing the degrees of freedom. The following tables
show the expected value of the ratio between the variance of the optimal and empirical
estimator. Each table shows the expected values for the main possible combination of

the proportion of total number of patients per arm, i.e. « and (.

Table 2.3: Expected values of the ratio of the empirical overall variance to the optimal.
Effect of Allocation for N=30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 | 1.0345 1.0325 1.0304 1.0291 1.0287 1.0291 1.0304 1.0325 1.0345
0.2 | 1.0325 1.0345 1.034 1.0335 1.0333 1.0335 1.034 1.0345 1.0325
0.3 | 1.0304 1.034 1.0345 1.0344 1.0343 1.0344 1.0345 1.034 1.0304
0.4 | 1.0291 1.0335 1.0344 1.0345 1.0345 1.0345 1.0344 1.0335 1.0291
0.5 | 1.0287 1.0333 1.0343 1.0345 1.0345 1.0345 1.0343 1.0333 1.0287
0.6 | 1.0291 1.0335 1.0344 1.0345 1.0345 1.0345 1.0344 1.0335 1.0291
0.7 | 1.0304 1.034 1.0345 1.0344 1.0343 1.0344 1.0345 1.034 1.0304
0.8 | 1.0325 1.0345 1.034 1.0335 1.0333 1.0335 1.034 1.0345 1.0325
0.9 | 1.0345 1.0325 1.0304 1.0291 1.0287 1.0291 1.0304 1.0325 1.0345

This Table shows the expected means of the ratio of the real overall variance to the optimal value
when different allocations per arm per study are considered. The rows represent the allocation in
study 1 (i.e. «), while the columns represent possible values of 3, the allocation in the study 2. The
total number of patients in both studies (N1, N2) is set to 30.
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Table 2.4: Expected values of the ratio of the empirical overall variance to the optimal.
Effect of Allocation for N=80

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 | 1.0127 1.0118 1.0108 1.0103 1.0101 1.0103 1.0108 1.0118 1.0127
0.2 | 1.0118 1.0127 1.0125 1.0122 1.0121 1.0122 1.0125 1.0127 1.0118
0.3 | 1.0108 1.0125 1.0127 1.0126 1.0126 1.0126 1.0127 1.0125 1.0108
0.4 | 1.0103 1.0122 1.0126 1.0127 1.0127 1.0127 1.0126 1.0122 1.0103
0.5 | 1.0101 1.0121 1.0126 1.0127 1.0127 1.0127 1.0126 1.0121 1.0101
0.6 | 1.0103 1.0122 1.0126 1.0127 1.0127 1.0127 1.0126 1.0122 1.0103
0.7 | 1.0108 1.0125 1.0127 1.0126 1.0126 1.0126 1.0127 1.0125 1.0108
0.8 | 1.0118 1.0127 1.0125 1.0122 1.0121 1.0122 1.0125 1.0127 1.0118
0.9 | 1.0127 1.0118 1.0108 1.0103 1.0101 1.0103 1.0108 1.0118 1.0127

This Table shows the expected means of the ratio of the real overall variance to the optimal value
when different allocations per arm per study are considered. The rows represent the allocation in
study 1 (i.e. «), while the columns represent possible values of 3, the allocation in the study 2. The
total number of patients in both studies (N1, N2) is set to 80.

Regardless of the combination of the values o and (3, given N, it appears that our
function T tends to assume roughly the same values; this implies that the allocation per
arm does not affect the analysis. What really matters is the total number of patients
per clinical trial and not the way patients are allocated in each arm. In other words,
the crucial factor is the degrees of freedom available for estimating the within trial
variance. In fact, as the total number per clinical trial increases, the expected values
tend to be closer to 1 (cf. Tables and with N=30 and N=80 respectively).
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2.8 Effect of Number of patients per Trial on meta-analysis.
2 Trials Example

In this case we consider two clinical trials with a given total number of patients equal
to 2N. However, in this case, the number of patients per trial will vary. This means
that we can consider 2n; patients in trial 1 and 2n in trial 2, where 2n; + 2no = 2N.
As the allocation per arm does not really affect the meta-analysis in the case where
the variance is supposed to be equal in both clinical trials, we consider a balanced
allocation (i.e. mj patients per arm in the clinical trial 1 and ne patients per arm in
the clinical trial 2) in order to simplify the calculation. Moreover, we suppose that the

variances are equal to

1 1 2
o} =var(Yy) = (m + nl) 5% = (m) S?

1 1 2
o3 = var(Yy) = ( + > 52 = <n> S2

ng  ng
where S7 = 53 = 1.
In this case, the optimal scheme will be to weight the trials according to the numbers
of patients, that is to use weights equal to n1/N and to ny/N respectively. In fact, if

we consider only the trial 1, we have that the optimal weight is equal to

ni ni
ni na_ n1S5+ns S
257 + 253 199 1 ny + ng N

25252

given that in the optimal scenario S? and S2 are known and equal to 1 and where n; +
ny = N. Given the optimal weights, the optimal estimator will have an overall variance
equal to 2/N. In fact, recalling that when we perform meta-analysis, we consider the

estimator

k k
s wY .
0= 7271 = E ¢;Y; where ¢; = 7]:% with w; = 1/07?
D i1 Wi i=1 D i1 Wi

and that the overall variance of such estimator, V, is usually estimated by

V =wvar(f) =

with  w; = o7

2
D i Wi

the optimal overall variance becomes

E>23+(@>2 2 2ni+ng) 2
no N2 N

Voprt — ( - e e 2
N n1 N

However, the estimated weights as well as the estimated overall variance should take

into account the fact that the variance is unknown. De facto, we could impose and

presume to know the variance of each single trial when it comes to calculate the overall
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variance of the estimator. Nonetheless, the weights will inevitably depend on the

observed variances in each trial. Therefore, for trial 1 -for instance - the weight will be

equal to
RO O &2 &2
wEmP — 25% _ 25¢ _ 25753 _
% + nA22 n1585+n257 252 n15'2 + 71252
282 T 252 25252 1 2 i

n1522 n1

n1S3 +neS?  mi+ner

given r equal to the observed ratio of within trial variances for the trial 1 compared
to the trial 2 (i.e. 7= S$?/53 ). As a consequence, the overall observed variance, in
the case where we take into account the observed variances only when calculating the

weights of the trials, becomes

vemn = (”1)22+ (”2’")22 _ pma tnar)

ni+nar) mn ni+nar/) ns (ny + nor)?

The ratio of this variance to the optimal one will be equal

9 (n1+n27’2)

var(0°mP) (nitnan)? _ (n1 4 ner?)
f— = = 2.
var(6°Pt) % (n1 + ngr)2 (ma o) (29)

where n1 and no represent the total number of patients per arm in each clinical trial
and 7 (the ratio of the observed variances) assumes theoretically values € (0, 00). This
means that the ratio depends only on the average total number of patients and on .
In general, to give an idea of the behaviour of the ratio we can plot it with different
values of n; and ny. The following graphs (Figure give us a rough idea in the cases
where N assumes the value 50 with at least 5 people per clinical trial on a Normal (a)

and a Logarithmic scale (b).
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Figure 2.6: Random Variation in Variances on a Meta-analysis with 2 trials. Effect of

Number of patients per trial
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These figures show the variance inflation of the ratio of the real overall variance to the optimal overall

variance (¥) as r —the observed ratio of within trial variances for trial 1 compared to trial 2—

increases. Each line represents a possible combination of 2n; and 2ns under the constraint of a total

number of patients 2n; 4+ 2n2 = 50 and under the assumption of a balanced allocation in each trial.
Both the Normal Scale (a) and the Logarithmic Scale (b) are considered
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As r ranges from simulation to simulation, we can see the average behaviour of

the ratio of the empirical and the optimal variances calculating the mean. As we have
&2
assumed an average total number of patients equal to 2N, it follows that r = g; ~

2
Flon,—2),(2N-2n,—2), where F' is the F' distribution with degrees of freedom equal to

2n1 — 2 and to 2n9 — 2. The expected value of the ratio, given N, is then equal to
oo
E(ni,ng) = / U(n1,n2, ) * dF (720, -2 s2n,—2 )dT
0

where

dF(T7V1 7112) = Beta,(?l, %) ( )l/l;—VQ

given Fy,, ,,) with 11 and v, representing the degrees of freedom.

As a consequence, if we give the total number of patients 2N we can compute the
average of the ratio between the observed and the optimal overall variances for the
estimator for all possible combinations of n; and no. Imposing that each single trial
has at least 5 patients in total, we can see that the the ratio has on average values close
to 1. Moreover, as the average total number of patients increases, the figures tend to
be closer to 1 (i.e. the overall empirical and optimal variances of the estimator tend to

be the same).

Figure 2.7: Expected Variance Inflation for N=30 on a Meta-Analysis with 2 trials
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This figure shows the Expected Variance Inflation on a Meta-Analysis with only 2 trials for different
number of patients (perfectly balanced among arms) in each of the 2 studies; the x axis represents the

patients allocated in trial 1, given a total of 30 patients in the 2 trials
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Figure 2.8: Expected Variance Inflation for N=60 on a Meta-Analysis with 2 trials

Variance Behaviour
104
|
¢
e
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This figure shows the Expected Variance Inflation on a Meta-Analysis with only 2 trials for different
numbers of patients (perfectly balanced in the 2 arms) in 2 studies. The x axis represents the patients

allocated in trial 1, given that a total number of 60 patients in the 2 trials is considered

2.9 Effect of Patients and Allocation per Arm. 2 Trials
Example

Let the variances of responses for trial 1 and 2 be both equal to 1. However, in this
case, both the number of patients per trial and the allocation per arm in each trial will
vary. Suppose nj patients in trial 1 and nsg in trial two for a total number of N patients.
Moreover, let’s denote the allocation of patients in one arm as « and [ for trial 1 and

2 respectively. Hence,

2 _ (1 1 2 _ 1 2
o1 = var(Y1) = (anl + (1—a)n 51 = a(l —a)ng 5

, (1 1 o (1 Ve
o5 = var(Ys) = <Bn2 + {a —ﬁ)m) S5 = (5(1 —ﬁ)m) S5

The optimal scheme to weight the trials will therefore depend on both the allocation

and the number of people involved in each study. In fact, the optimal weight is equal

to
1

wopt . var(Y7) S%ZE%Zl a(l — a)nl
' var%Yl) + UGT%YQ) a(l —a)ny + B(1 — B)ng

These weights yields an estimator with an optimal overall variance given by
Vort = war(0) = (W) 2var(Y1) + (W) ?var(Ys) =
B [ a(l —a)ng } 2 S?
a1l —a)ng +B(1—B)na| ol —a)n

[ B(1— B)ns r $3 _
a(l —a)ny + B(1 = B)nz] B(1 - B)ng
1

= iven S?=52=1
a(l— o)y + B — B)ng & .
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Now, let us consider the observed variances. The empirical weight for trial 1 becomes

a(l—Aa)nl 82 &2
WP 52 _ a(l —a)ny " S5 _
! ”‘“g;“)’“ + 5“;5’"2 S2 S2a(l — a)ny + S26(1 — B)ne
1 2
a(l —a)ng

_ ; G2 /452
ol —a)ng + B(1 - B)nar given  Si/Sy =

and the overall empirical variance of the estimator becomes

a(l —a)ny >2 1
a(l —a)ny + B(1 — B)ner) a(l —a)ng

Verr = var(0) = ( +

( B(1 - B)nar )2 1
a(l —a)ny + B(1 — B)ner) B(1— B)ng
_ a(l = a)ni + B(1 = B)nar?

[@(1 = @)1 + B(1 = B)nar]®

The ratio of this variance to the optimal one will be equal to

var(é) a(l —a)ng + B(1 — B)ngr? "

—
— — —
—_—

var(0)  [a(l —a)ng + B(1 — 6)@7’]2 (a1 = ajny + (1 = f)ng]
= depends on «, 3, n1 and nsy. Just to give an idea of the behaviour of Z when r ranges
from 0 to 10, we can plot this function for different values of n; and ne, given « and
allowing for different values of 3 or viceversa. The following four plots (Figure , for
example, show the behaviour of = for all the possible combinations of n; and ngy given
N=30 and for four different values of « (0.1, 0.3, 0.6, 0.8) given (3 equal to 0.3 in all

four cases.
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Figure 2.9: Random Variation in Variances on a Meta-analysis with 2 trials

both Allocation and Number of patients per trial
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These 4 figures show the variance inflation of the ratio of the real overall variance to the optimal
overall variance as r —the observed ratio of within trial variances for trial 1 compared to trial 2—
increases. Each line represents the variance behaviour for a possible combination of n; and ns, given
n1 + n2 = 30. Unbalanced allocation is assumed: the allocation per arm in the trial 2 (3) is fixed and
set to 0.3 while the allocation per arm in trial 1 («) changes for every figure ( 0.1, 0.3, 0.6 and 0.8 for

figures from (a) to (d) respectively).
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Similarly, Figure 2.10] shows the same situation in the case where « is fixed equal
to 0.5 while § varies and assumes the values 0.1, 0.3, 0.6 and 0.8.

Figure 2.10: Random Variation in Variances on a Meta-analysis with 2 trials. Effect of
both Allocation and Number of patients per trial
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These 4 figures show the variance inflation of the ratio of the real overall variance to the optimal
overall variance as the observed ratio of within trial variances for trial 1 compared to trial 2 increases.
Each line represents the variance behaviour for each possible combination of n; and n2, given
n1 + ng = 30. While the allocation per arm in the trial 1 is balanced (o = 0.5), 3 changes for every
figure (0.1, 0.3, 0.6 and 0.8 for figures from (a) to (d) respectively).

In order to have a better idea of the average behaviour of the function, we can
calculate the expected value of = under the assumption that = ~ Fj,, _2 ,,—2. Results
are given in Table for N=30, (3 fixed and equal to 0.8 (in Table a), 0.4 (in Table
b) and 0.1 (in Table c) while o assumes values ranging from 0.1 to 0.9. Each
row represents different values of o (from 0.1 to 0.9) while each column represents the
number of patients in trial 1 given a total number of patients of 30 patients and under

the assumption that there are at least 5 patients in each study (i.e., if N=30, n; ranges
from 5 to 25).
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All these matrices may not be easy to interpret, especially when N increases. A
3D visualization may better show the pattern of the calculated expected values of the
ratio of the variances. Once again, we fix the value 3 for each single 3D representation
( 0.8, 0.6, 0.3 and 0.1) and we set N, the combined number of subjects in the 2 trials,
equal to 40. The = axis represents the number of patients in trial 1 (and consequently
we can determine the patients in the second trial) while the y axis shows the different
values of «, i.e. the allocation per arm in trial 1 (while patients in trials 2 will always
have the same allocation (3). The 4 graphs have roughly the same pattern and the same
values for every possible combination of the four variables taken into account. It can
be seen from the three-dimensional plots that the distribution of the ratio between the
empirical and the optimal variances is, as expected, symmetric (as we only considered
2 trials). Patterns and values change slightly with different values of 3. The ratio E
tends to assume values distant from 1 when we consider the extreme cases with only
few patients allocated in one trial, regardless of the allocation per arm. In all other
cases, differences are, on average, undetectable; the ratio calculations change by only
0.03 in the region covering most of the cases and combinations (from 10 to 30 subjects
in trial 1). Therefore, the distribution of the combined number of patients (i.e. the
total subjects in each single study) as well as the allocation per arm per study does not
have much influence on V.

Nonetheless, if we observe the profiles of the expected values it can be seen that the
minimum of the calculated ratio is reached when both the trials have the same number
of patients as well as when the allocation is balanced (both arm in the trial have the
same number of patients). Under these circumstances, the ratio is closer to 1; this means
that, on average, the overall variance of the estimator is almost perfectly estimated.
Just so almost, though. The expected ratio never reaches the value 1. Therefore,
the overall variance of the estimator is on average higher than the optimal one. As
proven via simulations, the ‘real’ dispersion of the estimator is de facto higher than
that of the optimal one even though we tend to declare that the estimate has a smaller
overall variance. On the average, the estimate of the variance of the overall effect by
using the variance weighted method in meta-analysis underestimates the true pooled
variance (i.e. the significance level is overestimated). There is a tendency to produce
variance estimate lower than the optimal true one even though the ‘real’ variance of
the estimator used is higher. The estimate of the overall variance should then consider
both the effect of the sample size and the variation of sample variances in order to

produce more reliable figures.
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Figure 2.11: 3-D Visualisation of the Expected Variance Inflation for N=40 on a Meta-
Analysis with 2 trials
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These 4 figures show the Expected variance inflation of the ratio of the real overall variance to the
optimal overall variance for different values of patients and allocation in both trials 1 and 2. Each
figure represents the expected values for a fixed value of § while n; and « varies. In particular, «
ranges from 0.1 to 0.9 while the number of patients in trial 1 ranges from 5 to 35 given a total
number of 40 patients among the 2 studies. [ for each single 3D representation is set to (a) 0.8, (b)
0.6, (c) 0.3 and (d) 0.1

2.10 Precision of the overall estimator: a recap

Even though “the simulated data sets should have some resemblance to reality for the
results to be generalizable to real situations and have any credibility”
pg. 4283), so far we have investigated the behaviour of the precision of the overall
estimator (paying attention particularly to the individual within-study variances) under
the assumption of homoscedasticity where all studies have exactly the same nominal
value of the internal variance (i.e. S? = 0%, = 02, for all i). We simulated different
scenarios in order to evaluate both the importance of the total patients present in each
study and the significance of the allocation of patients in each arm of each study. At
least under the assumption of common variance, the average number of patients per
trial is more important than the total number of each single study. Moreover, the

allocation of patients per arm does not seem to be decisive for the estimated overall
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variance of the estimator. Nonetheless, having a perfect balanced allocation as well as
having roughly the same amount of patients per study yield better results. Further-
more, true to form, the higher the average number of patients considered in each arm,
the closer the estimator is to the optimal one, i.e. the fewer the number of patients
the less precise the estimates of Siz’s are and the greater the impact is on the results.
These conclusions were obtained not only via simulations but they even were math-
ematically demonstrated, at least for the case including only two studies. Moreover,
coverage probabilities (obtained by simulating 10000 meta-analyses and considering
different patterns and scenarios) show that wrongly reported values of the variance
can badly underestimate the overall variance of the estimator. This happens especially
when trials with few patients are taken into consideration. Unsurprisingly, when we
consider a number of small trials we generally overestimate precision and this leads to
unreliable results, as we tend to overstate the significance of the results. In particular
when the meta-analysis is dominated by very small studies, caution needs to be ex-
ercised. In fact, “the estimated weight w; has expectation E(w;) = (n;)w;/(n; — 3),
where n; = npinei/(nr; + ne;) rather than E(w;) = w;. This bias in the estimation of
the weights not only affects the power of the test, but also the estimate of the variance
of the overall effect and the estimate of the between-study variance 7. Hence, when
numbers are very small, results should be interpreted cautiously” (Hardy & Thompson,
1998, pg. 853).

“The bias of the estimate of the variance of the overall effect synthesised from in-
dividual studies by using the variance weighted method is proven to be negative” (Li
et al., (1994, pg. 1063). Furthermore, such an estimate of the variance of the estimator
is also too sensitive to the minimum of the estimates of the variances in the k studies.
“If the 62

i happens to be wrongly reported to have a very small value, the influence

~

on var(0) by this estimate would be over-emphasized” (Li et al., 1994, pg. 1065) and

V would badly underestimate the true overall variance.

As we have shown via calculation (for two trials, without loss of generality) and sim-
ulations, on average, the estimate of the overall variance (V) underestimates the true
value. “If there is an outlier or measurement error which gives an extremely small
sample variance, the pooled variance will badly underestimate the true variance by the
ordinary method and the weight of this individual sample for the combined mean will
be too high” (Li et al., (1994, pg. 1083). “The ordinary method is too sensitive to the
variation of the sample variances and biased if the sample size is not large” (Li et al.
1994, pg. 1082). As a consequence, an adjusted method that considers both the effect
of small sample and the variation of the variances and which is not too sensitive to any

individual result is necessary.
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Especially when we consider small trials, are there better estimations of the variances?
As the estimation of the variance and the number of patients are highly correlated (the
larger the sample size the closer the estimate of the the variance is to the real value), are
there methods capable to shrink the variances and account for their random variation
in order to have an estimator which does not depend so badly on the sizes of clinical
trials?

How can we produce less biased estimate? Can we adjust the weight method in order
to consider the effect of small sample sizes? Is there a robust weight method with
regard to the variation of the sample variances and sample sizes not too sensitive to

any individual result?
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Chapter 3

Shrinkage Estimators and a more

Realistic Scenario

3.1 Acting in a more Realistic Scenario

So far we have considered the assumption of common variances, however, such an
assumption may be unrealistic. Therefore, in this chapter we consider the case where
the population variances of the observation at the patient level differ from study to
study, by analysing two different simulation schemes. The first one will arbitrarily
impose the values of the variances, and the second one will draw the values from a
Gamma distribution. In both designs we will consider a perfect balance because in
most of the trials the sample sizes n; for the control and the treatment groups are
generally similar. Nonetheless, instead of considering k studies all of which have the

same size, we will impose the sample size to be equal only on average.

First Simulation Design

Following the example of the simulation study conducted by Knapp et al. (2006), the
first simulation study considers equal allocation (i.e. n; = ng; = np;) and different
values for the S? (where S? = U%Z- = cr(zji). As in the paper by Knapp et al., we
“arbitrarily choose the base value of Si2 to be equal to 100 and deviations from this value
for a few of the S? are made to reflect patterns of imbalance possible in application.”
The first pattern has roughly half of the SZ-2 = 100 while the second one - the most
imbalanced - has roughly 80-90% of the S? = 100. When S? is not equal to 100, the
value chosen is Si2 = 10. As mentioned above, the sample sizes, varying from 5 to 50
people per arm, are balanced. This means that for SZ-2 = 100 the within-trial variability
ranges (on average) from 40 to 4 as n increases from 5 to 50, respectively.

The aim of such a simulation design is to evaluate how important the effect on the overall
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variance is when a few estimates from a few clinical trials carry a disproportionate
amount of weight, that is when a few of the within trial variances o? = var(Y;) =
(1/nci + 1/nri) S? are much smaller than the others.

Second Simulation Design

In this case, as suggested by Tong and Wang (2007), SZ-Q’S for i=1,...,k, are simulated
from a Gamma distribution with shape parameter v and scale parameter 3. ( is set at
1 "because it has little impact on the comparative performance” (Tong & Wang), 2007,
pg. 116). In order to evaluate the performance of the estimator under different levels of
variance heterogeneity, three different shape parameters are considered, v = 0.25, 1 and
4, which correspond to three different coefficients of variation (CV = /y62/(y8) =
V7/7) at levels 2, 1, and 0.5 respectively. These three different settings represent
commonly encountered cases; for example, v=0.25 corresponds to the case with different

variances across studies whereas v = 4 corresponds to highly similar values of SZ-2.

3.2 Simulations with uncommon variances

We design the simulation study to roughly follow the characteristic of a more realistic
meta-analysis. We consider two different schemes for the variance of the observations
at the patients level and for each pattern we discuss the meta-analytical combination
of the results of k clinical trials, where k = 10, 15, 20, 35. The true overall effect 0 is
set at 3. The error probability « is restricted to the common value 0.05 in constructing

the approximate 100(1 — «) confidence interval for 6.

As in the previous simulation designs, we consider a meta-analysis of & similar but inde-
pendent studies. The observations consist of two sets of independent random variables
X7i1, X1325 - XTing, and Xcit, Xcio, ... Xcing, for i=1, 2, ..., k from the treatment
and the control groups, respectively. These two sets of variables have independent

normal distributions with different means and equal variances, SZ-2 , as follows

Xrits X1i2s - oy XTing; ~ N(pri, 0%;)
2
XCilu XCi?? B XCincw; ~ N(/’LCi7UCi)

for i=1,...,k where 0% =02, =5?

The parameter of interest, denoted by 6, is the overall mean difference. The study
specific mean difference is defined as Y; = (ur; — pc;) and is estimated by Y; = Xp; —
X i, where Xp; = Z;@l Xrij/nri and X = Z;‘E’l Xcij/nci. We assume that Y is
such that E(Y;) = 0 and that the variance of the difference between two independent
means based on np; and ng; observations respectively is equal to var(Y;) = O‘Z-Q =
a%i /nr; + O'%«Z- /noi = 51‘2 (1/np; + 1/ne;) given that the two groups in the treatment

and control arms have the same variance. For moderately large study sizes, each Y;
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should be asymptotically normally distributed. Thus,

Y;~N(9,0?) for i=1,2,...k

2

where o7 varies from study to study accordingly to the values assumed by S?. Once S?
is set for each study, the study specific mean difference is computed. For each single
study, we use equal sample sizes (n; = ng; = np;) for the control and the treatment
groups since these values tend to be similar in parallel trials; n;’s are sampled from
a Negative Binomial Distribution in order for the k clinical trials to have on average
the same amount of patients per arm and per study, where E(n;)’s are equal to 5, 8,
10, 15, 20, 30 and 50. The simulations are implemented using the software package R,
with each simulation generating nr; and n¢; observations from normal distributions
with mean pp; and pe; = pr; + 60 respectively and variance S?. This procedure is repli-

cated k times for each of the 10000 independent simulations run. At each replicate, the
2

study specific mean differences (Y;) as well as their variances &; are computed. These
estimates allow us to obtain the estimated weights w; for each study and therefore
to calculate the overall effect estimate 6 and its overall variance estimate V for each
replicate.

As done in the previous simulations, we summarise the estimates once all simulations
have been performed. In particular, we report the ‘declared’ estimate of the overall
variance as well as the ‘optimal’ and the ‘real’ variance of the point estimates (see
equations - . Furthermore, in order to evaluate the performance and the preci-
sion of the results obtained from the different scenarios and approaches being studied,
the coverage of the confidence intervals is shown. Again, a possible criterion for ac-
ceptability of the coverage is that the coverage should not fall outside of approximately
two SEs of the nominal coverage probability.

In general our goal is to obtain not only an empirical estimated coverage probability
corresponding to the nominal value but also, and more importantly, both the ‘declared’
precision and the ‘actual’” dispersion of the overall variance of the estimator close to the

theoretical ‘optimal’ one.

3.3 The simulation results

We give the results if no heterogeneity in the treatment effect is present, that is assum-
ing the fized-effects model is the theoretically correct one. The ‘actual’, ‘optimal’ and
‘declared’ variances are given in Tables — for the 5 different scenarios (i.e. differ-
ent values of k and S2). Also, the empirical coverage probabilities of the approximate
95% confidence intervals based on the ‘empirical’” weights and variances are shown in
Figs - From the Tables - it should be first noted that the ‘empiri-

cal’ variances are reasonably close to the true ‘optimal’ value only for high values of n
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(where n = E(n;) for all i), regardless of the number of trials and of the S? pattern con-
sidered. As n decreases, the ‘declared’ variance is less accurate and precise. In all cases,
however, the ‘optimal’ variance is badly underestimated. In particular, as the average
number of patients per arm decreases, the estimated ‘declared’ overall variances start
to deviate from the ‘optimal’ value with negative and increasingly large bias. Thus,
we can assume that the method currently used leads to large error in the estimated
weights, both when common or uncommon SZ-Q’S are assumed. Moreover, considering
the column of the ‘actual’ variance of the estimator, Vreal(zﬁ)), we note that, once
again, these values are always observed to be higher than both the ‘optimal” and the
‘declared’ ones, in particular when n decreases. Again, even without the assumption of
common S? for all studies, there is the tendency to produce an overall variance estimate
V that is lower than that produced by the ‘optimal’ estimator, whereas the ‘actual’
variance of the estimator is higher. Fixed-effects meta-analysis uses an estimator whose
true variance is higher than the ‘correct’ one but which will appear to be lower. As a
consequence, the ordinary method tends to overstate the significance and the precision
of the results; in particular, this tendency is even more marked under the assumption
of uncommon Si2 .

As regards the Empirical Coverage Probabilities for the Confidence Intervals, the pro-
portion of intervals containing 6 falls for decreasing sample sizes. Note that the coverage
probabilities for the confidence intervals in Figs. - are also very similar, excep-
tion made for small values of n. Under different levels of variance heterogeneity and
under different schemes of simulation, patterns are about the same regardless the num-
ber of studies taken into account. The coverage probabilities based on the ‘declared’
overall variances are generally below 95%, although they do increase when n increases.
However, for an average number of patients per arm per study less than 10, the cov-
erage probability falls to 55%. For small sample sizes, the coverage probability is far
from the nominal level whether we consider the slightly imbalanced scenario or the
most imbalanced one. The different choices of within-trial variances (S?) do not have
an impact on the simulation results. As regards the number of trials, if the latter are
“large enough” then no matter how many studies we include we get roughly the same
results. On the contrary, if sizes are small, the more studies we consider the lower the

coverage probability is.

In short, the usual variance estimator performs very poorly in detecting the true vari-
ance of # and underestimates the true value for all values of n and k. Moreover, the
‘actual’ variability of the variance estimator is always higher than both the ‘declared’
and ‘optimal’ ones, with a consequent overstatement of the precision of the estimator
and misleading results in the form of too liberal significance tests and Confidence In-

tervals without correct coverage properties. In particular, these problems arise when
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a small average number of patients per arm per study is considered: the smaller the
number of patients, the lower the coverage probability and the higher the overestima-

tion of the precision of the estimate.

When we perform fixed-effects meta-analysis, inference is based on the assumption
that weights are perfectly estimated, whereas since the variances are poorly estimated
the inferences drawn may be in error. In practice, no matter whether the true variances
are assumed to be equal or whether they vary from trial to trial, in both cases there is
the tendency to badly estimate V, the overall variance of the point estimate. Moreover,
regardless of the true values of SZ-Q, the fewer the average number of subjects per arm
the higher the underestimation of V. In fact, under the assumption of both equal S?’s
(see Fig 2.3 and Table 2.2) and unequal S?’s (see Tables 3.1 and 3.2), the empirical
coverage probabilities are generally below 95% and figures get closer to the nominal
level only for high values of n. For instance, referring to the empirical coverage proba-
bilities, we see that if n=8 and Si2 ’s are assumed to be equal, the coverage probabilities
are roughly between 87 and 89% (depending on the number of trials involved) whereas
under the assumption of unequal S?’s these values may vary between 82 and 88%.

Since when performing a single meta-analysis the real values of the study variances
are unknown, little can be said about the assumptions on the variances. However,
regardless of the assumption made, a lot can be said about the expected outcome: if
small-sized studies are considered, the overall variance will be underestimated quite

badly and inferences based on these values are likely to be wrong.
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Table 3.1: The Results of Simulation for different values of studies (k) under the
assumption of Unequal 5’12 and Study sizes - First Simulation Scheme (A)

k = 10 n V’real(é) Vopt E[V] Coverage
Probability
5 | 5.787174 | 1.724529 | 1.090686 0.7069
8 | 1.716196 | 0.985787 | 0.822931 0.8691
10 | 0.951359 | 0.763757 | 0.681596 0.9041
15 | 0.537592 | 0.490154 | 0.462380 0.9274
20 | 0.380268 | 0.363268 | 0.348901 0.9400
30 | 0.245991 | 0.240309 | 0.233714 0.9439
50 | 0.144902 | 0.143970 | 0.141717 0.9471
k=15 | n | yrea@g) | yert | gy | Coverage
Probability
5 |4.947632 | 1.087694 | 0.656184 0.6625
8 | 1.418933 | 0.631846 | 0.522482 0.8620
10 | 0.631725 | 0.496492 | 0.440474 0.8984
15 | 0.334990 | 0.323049 | 0.302369 0.9361
20 | 0.251068 | 0.240756 | 0.230016 0.9377
30 | 0.165133 | 0.159585 | 0.155199 0.9418
50 | 0.095679 | 0.095648 | 0.094113 0.9499
k=20 n |yread@) | yor E[V] Coverage
Probability
5 | 4.892815 | 0.796330 | 0.467671 0.6373
8 | 1.258493 | 0.467765 | 0.386032 0.8506
10 | 0.492900 | 0.368996 | 0.326740 0.8989
15 | 0.257675 | 0.241634 | 0.225962 0.9319
20 | 0.191488 | 0.179803 | 0.171074 0.9346
30 | 0.122043 | 0.119628 | 0.116054 0.9473
50 | 0.073591 | 0.071738 | 0.070481 0.9428
k=35 n | yread@) | yor E[V] Coverage
Probability
5 | 4.098463 | 0.436752 | 0.245839 0.5698
8 | 0.845240 | 0.262924 | 0.212878 0.8319
10 | 0.403127 | 0.207927 | 0.182103 0.8869
15 | 0.146905 | 0.137120 | 0.127746 0.9319
20 | 0.111066 | 0.102539 | 0.097383 0.9344
30 | 0.069944 | 0.068164 | 0.065977 0.9443
50 | 0.042369 | 0.040884 | 0.040116 0.9444

This Table shows the results of simulation for @ = 3 and different values of n, k and S?. This
simulation scheme considers for each simulation k parallel group clinical trials each of whom with the
same number of patients per arm only on average (n = E[n;] = nri = ncs). As regards the
within-study variances, the most imbalanced scenario is shown, i.e. 80% of the studies has S? set to
100 while the remaining 20% are set equal to 10. Empirical Statistics for E[V] and V"¢ (f) are based
on 10000 simulation replicates as well as the Empirical Coverage Probability.
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Table 3.2: The Results of Simulation for different values of studies (k) under the
assumption of Unequal 5’12 and Study sizes - First Simulation Scheme (B)

k = 10 n V’real(é) Vopt E[V] Coverage
Probability
5 | 2.917085 | 0.844070 | 0.519157 0.6988
8 | 0.822160 | 0.486116 | 0.401863 0.8652
10 | 0.496175 | 0.378410 | 0.335633 0.9046
15 | 0.261349 | 0.247350 | 0.231493 0.9344
20 | 0.197728 | 0.183608 | 0.175550 0.9333
30 | 0.125123 | 0.121904 | 0.118438 0.9419
50 | 0.075708 | 0.073157 | 0.071895 0.9423
k=15 | n | yrea@g) | yert | gy | Coverage
Probability
5 | 2.515061 | 0.567343 | 0.341732 0.6644
8 | 0.608366 | 0.335919 | 0.275871 0.8487
10 | 0.361150 | 0.263301 | 0.232215 0.8970
15 | 0.187226 | 0.172940 | 0.161681 0.9307
20 | 0.134901 | 0.129138 | 0.123035 0.9367
30 | 0.087392 | 0.085815 | 0.083122 0.9449
50 | 0.051520 | 0.051463 | 0.050523 0.9479
k=20 n |yread@) | yor E[V] Coverage
Probability
5 | 2.050539 | 0.393981 | 0.231733 0.6381
8 [ 0.599061 | 0.234913 | 0.191897 0.8494
10 | 0.271898 | 0.185648 | 0.162671 0.8943
15 | 0.132802 | 0.122398 | 0.114006 0.9269
20 | 0.097786 | 0.091385 | 0.086845 0.9353
30 | 0.062851 | 0.060831 | 0.058860 0.9422
50 | 0.036432 | 0.036428 | 0.035755 0.9480
k=35 n | yread@) | yor E[V] Coverage
Probability
5 | 2.019225 | 0.222689 | 0.124061 0.5592
8 | 0.441426 | 0.135820 | 0.109607 0.8233
10 | 0.163837 | 0.107798 | 0.094237 0.8911
15 | 0.076543 | 0.071281 | 0.066329 0.9329
20 | 0.055763 | 0.053325 | 0.050581 0.9398
30 | 0.037028 | 0.035547 | 0.034353 0.9416
50 | 0.021329 | 0.021306 | 0.020883 0.9484

This Table shows the results of simulation for @ = 3 and different values of n, k and S?. This
simulation scheme considers for each simulation k parallel group clinical trials each of whom with the
same number of patients per arm only on average (n = E[n;] = nri = ncs). As regards the
within-study variances, a slight imbalanced scenario is shown, i.e. 50% of the studies had S? set to
100 while the remaining 50% were set equal to 10. Empirical Statistics for E[V] and V"¢ (6) are
based on 10000 simulation replicates as well as the Empirical Coverage Probability.
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Table 3.3: The Results of Simulation for different values of studies (k) under the

assumption of Unequal 5’12 and Study sizes - Second Simulation Scheme (A)

k=10 n | yrel() yort E[V] Coverage
Probability
5 | 4.81074E-04 | 1.53915E-04 | 1.08749E-04 0.8079
8 | 1.62910E-04 | 9.29367E-05 | 7.92131E-05 0.8982
10 | 8.81519E-05 | 7.32187E-05 | 6.63829E-05 0.9166
15 | 4.73614E-05 | 4.41435E-05 | 4.21259E-05 0.9340
20 | 3.37472E-05 | 3.30902E-05 | 3.18899E-05 0.9401
30 | 2.45493E-05 | 2.23964E-05 | 2.19227E-05 0.9460
50 | 1.37721E-05 | 1.37271E-05 | 1.35344E-05 0.9467
k=15 | n | yrea(g yvort E[V] Coverage
Probability
5 | 1.55977E-04 | 3.99302E-05 | 2.74604E-05 0.8110
8 | 4.02419E-05 | 2.20131E-05 | 1.87943E-05 0.8924
10 | 2.36055E-05 | 1.80732E-05 | 1.64116E-05 0.9186
15 | 1.09118E-05 | 1.08852E-05 | 1.04165E-05 0.9363
20 | 8.53535E-06 | 8.35436E-06 | 8.01270E-06 0.9409
30 | 5.53268E-06 | 5.49154E-06 | 5.34444E-06 0.9469
50 | 3.13219E-06 | 3.05720E-06 | 3.02327E-06 0.9435
k=20 n | vrea@ Vot E[V] Coverage
Probability
5 | 7.25774E-05 | 1.43276E-05 | 9.27051E-06 0.8038
8 | 1.81251E-05 | 8.17075E-06 | 7.04632E-06 0.8961
10 | 8.29189E-06 | 6.33262E-06 | 5.79714E-06 0.9168
15 | 4.08453E-06 | 4.01735E-06 | 3.81904E-06 0.9387
20 | 3.49810E-06 | 2.87931E-06 | 2.81890E-06 0.9416
30 | 1.98370E-06 | 1.96991E-06 | 1.92363E-06 0.9424
50 | 1.26418E-06 | 1.25725E-06 | 1.23345E-06 0.9469
k=35 | n | yre(g) Vort E[V] Coverage
Probability
5 | 1.25921E-05 | 1.79404E-06 | 1.17625E-06 0.8040
8 | 1.51794E-06 | 1.07902E-06 | 9.32548E-07 0.8943
10 | 1.19789E-06 | 7.97212E-07 | 7.20237E-07 0.9135
15 | 5.48354E-07 | 5.05667E-07 | 4.79389E-07 0.9365
20 | 3.33613E-07 | 3.52159E-07 | 3.37293E-07 0.9423
30 | 2.92712E-07 | 2.67102E-07 | 2.61131E-07 0.9437
50 | 1.57857E-07 | 1.57786E-07 | 1.55980E-07 0.9486

This Table shows the results of simulation for @ = 3 and different values of n, k and S?. This
simulation scheme considers for each simulation k parallel group clinical trials each of whom with the
same number of patients per arm only on average (n = E[n;] = nri = ne;). In this simulation
scheme, within-study variances S? are drawn from a T' distribution with shape parameter v = 0.25.
Empirical Statistics for E[V] and V"% (6) are based on 10000 simulation replicates as well as the
Empirical Coverage Probability.
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Table 3.4: The Results of Simulation for different values of studies (k) under the
assumption of Unequal 5’12 and Study sizes - Second Simulation Scheme (B)

k = 10 n Vreal(é) Vopt E[V] Coverage
Probability
5 | 0.0515724 | 0.0155874 | 0.0098259 0.7165
8 | 0.0154709 | 0.0089368 | 0.0074546 0.8733
10 | 0.0085677 | 0.0069199 | 0.0061864 0.9128
15 | 0.0047821 | 0.0045230 | 0.0042589 0.9328
20 | 0.0034570 | 0.0032938 | 0.0031601 0.9386
30 | 0.0022969 | 0.0022170 | 0.0021583 0.9419
50 | 0.0013495 | 0.0013065 | 0.0012880 0.9441
k = 15 n Vreal(é) Vopt E[V] Coverage
Probability
5 | 0.0409151 | 0.0088253 | 0.0053688 0.6775
8 | 0.0090774 | 0.0050160 | 0.0041460 0.8650
10 | 0.0059114 | 0.0039948 | 0.0035261 0.9031
15 | 0.0028288 | 0.0026268 | 0.0024566 0.9294
20 | 0.0020033 | 0.0019289 | 0.0018477 0.9389
30 | 0.0013050 | 0.0012869 | 0.0012500 0.9456
50 | 0.0007744 | 0.0007619 | 0.0007493 0.9491
k = 20 n Vreal(é) Vopt E[V] Coverage
Probability
5 | 0.0357162 | 0.0059225 | 0.0035595 0.6558
8 1 0.0076422 | 0.0034974 | 0.0028850 0.8514
10 | 0.0036417 | 0.0027604 | 0.0024472 0.9059
15 | 0.0019467 | 0.0017814 | 0.0016727 0.9335
20 | 0.0013540 | 0.0013215 | 0.0012625 0.9374
30 | 0.0008975 | 0.0008707 | 0.0008459 0.9413
50 | 0.0005269 | 0.0005250 | 0.0005160 0.9447
k = 35 n Vreal(é) Vopt E[V] Coverage
Probability
5 | 0.0242387 | 0.0028335 | 0.0016546 0.6036
8 1 0.0062553 | 0.0016724 | 0.0013653 0.8411
10 | 0.0019950 | 0.0013180 | 0.0011652 0.9047
15 | 0.0009610 | 0.0008661 | 0.0008112 0.9285
20 | 0.0006909 | 0.0006430 | 0.0006125 0.9327
30 | 0.0004454 | 0.0004323 | 0.0004194 0.9430
50 | 0.0002613 | 0.0002531 | 0.0002485 0.9468

This Table shows the results of simulation for @ = 3 and different values of n, k and S?. This
simulation scheme considers for each simulation k parallel group clinical trials each of whom with the
same number of patients per arm on average (n = E[n;] = nr; = nc;). In this simulation scheme,
within-study variances S? are drawn from a I' distribution with shape parameter v = 1. Empirical
Statistics for E[V] and V"% (f) are based on 10000 simulation replicates as well as the Empirical
Coverage Probability.
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Table 3.5: The Results of Simulation for different values of studies (k) under the
assumption of Unequal S? and Study sizes - Second Simulation Scheme (C)

k=10 | n | yrea@g) | yor g[y) | Coverage
Probability

5 | 0.4561987 | 0.1399444 | 0.0849630 0.6901

8 | 0.1471794 | 0.0825180 | 0.0680434 0.8585

10 | 0.0846646 | 0.0644753 | 0.0569307 0.9009

15 | 0.0469084 | 0.0425057 | 0.0397063 0.9262

20 | 0.0333541 | 0.0316287 | 0.0301946 0.9319

30 | 0.0220455 | 0.0210269 | 0.0203818 0.9401

50 | 0.0128987 | 0.0125241 | 0.0123001 0.9414
k=15 n | yrea(g) | yort E[V] | Coverage
Probability

5 | 0.3793491 | 0.0894609 | 0.0525835 0.6501

8 | 0.1129277 | 0.0532958 | 0.0435367 0.8497

10 | 0.0592798 | 0.0422414 | 0.0371362 0.8974

15 | 0.0303040 | 0.0276316 | 0.0257761 0.9297

20 | 0.0222863 | 0.0208020 | 0.0198107 0.9350

30 | 0.0142411 | 0.0138214 | 0.0133774 0.9419

50 | 0.0086080 | 0.0082729 | 0.0081168 0.9428
k=20 | n| yrea@) | yer g[y] || Coverase
Probability

5 | 0.3520310 | 0.0653238 | 0.0374189 0.6112

8 | 0.0927032 | 0.0393147 | 0.0319142 0.8361

10 | 0.0445698 | 0.0312078 | 0.0274058 0.8933

15 | 0.0225143 | 0.0206696 | 0.0192208 0.9306

20 | 0.0162632 | 0.0153991 | 0.0146369 0.9386

30 | 0.0104935 | 0.0102330 | 0.0098997 0.9436

50 | 0.0063069 | 0.0061575 | 0.0060413 0.9475
k=35 n | yrea(g) | yort E[V] Coverage
Probability

5 | 0.3044838 | 0.0361784 | 0.0197527 0.5428

8 1 0.0714990 | 0.0220422 | 0.0178129 0.8166

10 | 0.0264298 | 0.0175457 | 0.0153523 0.8938

15 | 0.0125205 | 0.0116370 | 0.0108208 0.9316

20 | 0.0092827 | 0.0087110 | 0.0082593 0.9357

30 | 0.0059134 | 0.0058103 | 0.0056140 0.9399

50 | 0.0035171 | 0.0034782 | 0.0034116 0.9478

This Table shows the results of simulation for # = 3 and different values of n, k and S2. This
simulation scheme considers for each simulation k parallel group clinical trials each of whom with the
same number of patients per arm only on average (n = E[n;] = nr; = nc;). In this simulation
scheme, S? are drawn from a T distribution with shape parameter v = 4. Empirical Statistics for E[V}
and Vreal(é) are based on 10000 simulation replicates as well as the Empirical Coverage Probability.
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Under the assumptions of both common and uncommon Si2 , the average number of
patients per arm per clinical trial plays an important role since for small values of n
there is the tendency to badly underestimate V', the overall variance of the estimator.
Specifically, we have pointed out that the usual variance estimator commonly used in
meta-analytical inference is not robust to the estimated weights, and that in fact it may
not be a good estimator for the correct variance of an overall effect estimate when esti-
mated weights are used, as in practice. Hence, the weights used in practice are not the
correct ones and a new method to better estimate the variances 67 (and the weights)
in order to have a more precise and accurate overall variance is desperately needed.
For instance, should there be some random variation in the treatment or control group
sample variances that causes an extremely small pooled variance, the variance of the
mean difference 6? will badly underestimate the true one and the weight of this in-
dividual sample will be too high. Since the ordinary method is too sensitive to the
variation of the sample variances and biased if the sample size is not large “enough”
(being small variances more suspicious for small studies), is there a robust method to
adjust weights with regard to the variation of S? and sample sizes and not too sensitive

to any individual result?

In order to minimise the overall variance estimation error and to have better weights
a shrinkage estimator for within trials variances Si2 will be taken into account. This
should guarantee enough robustness in order to provide protection against errors in the
estimated weights (i.e. random variation in sample variances); this way, the ‘declared’
estimated variance should be closer to the optimal one, more importantly, the ‘actual’
variability of the overall effect estimator computed with the new weights should be
closer to both the ‘optimal’ and the ‘declared’ values. The dispersion of the variances

around the optimal value will be an indicator of the goodness of the method used.
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3.4 Shrinkage Estimators

3.4.1 Basic Logic

The ‘Shrinkage Estimators’ are commonly considered consistent with Bayesian logic
since their main idea is that, when estimating a parameter, one should not simply use
the information coming from the sample, but also some ‘extra-sample’ information.
In fact, combining measurements (i.e. estimating single parameters using some sort of
overall information) minimises the total ’Mean Squared Error’ (MSE). When the nature
of the problem is not to estimate each expected return separately but rather minimise
the total impact, shrinkage estimators represent an efficient and reasonable alternative
to the classical estimators. In this study it is therefore reasonable to combine variance
measurements since the goal is to minimise the total variance estimation error.
Considering both the informative prior and the information obtained through the sam-
ple, the shrinkage estimators compress the general values of each single study towards
an identical common value (usually referred to as the ‘common mean’ or informative
prior) (Braga,|2004). In fact, the general logic of a shrinkage estimator is similar to the
weighted mean of a ‘common value’ and a ‘sample mean’ where weights determine how
close the expected value is to the common one that functions as a target. There are
several approaches to shrinking least squares estimators towards a common mean; all
of which suggest that in general shrinking “produces estimators with greater predictive
power than classical pooling techniques” (Smith| 1997, pg. 359).

The ‘shrinking factor’ is the element that determines the intensity of the ‘shrinking’
towards the ‘mean value’ and therefore this is the element that tells us the proximity
of the informative prior to the sample information at disposal. The shrinking factor
is quantified accordingly to the informative prior used, that is the value of the ‘com-
mon mean’ assumed. Usually the ‘common mean’ depends on the sampled values;
that is the reason why the shrinkage estimators have similarities with the empirical
Bayes approach. In general, the ‘shrinking factor’ is influenced by the dimension of the
study, the total number of studies included as well as the dispersion of the single values
around the common mean (Braga, 2004)). The effect of the empirical Bayes approach
is to smooth estimates based on small numbers of events more heavily than estimates

based on large numbers of events (Cox & Solomon, |1997).

3.4.2 An introduction to Stein-Estimators

“Stein (1956) obtained the surprising result that for estimating p independent normal
means simultaneously, the sample mean was inadmissible under squared error loss when
p > 3”7(Ghosh et al., |1983, pg. 351). In this case (p > 3), “the cost of estimating the
shrinkage intensity is already (and always!) offset by the savings in total risk” (Opgen-
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Rhein & Strimmer} 2007, pg. 4).

Stein’s paradox (or phenomenon or problem) mainly demonstrated that when 3 or
more parameters are estimated simultaneously, their combined estimator is more accu-
rate than any other method which handles the parameters separately, even when the
measurements and the parameters are totally unrelated. In fact, the combined estima-
tor achieves a lower MSE and — even if not necessarily better estimates for the single
variable alone are obtained — a better estimate (which has a reduced total risk) for the
means of all of the random variables is produced. Surprisingly, the cost of a bad esti-
mate in one component can be compensated by a better estimate in another component.
When multiple observations are present (no matter whether those observations are sta-
tistically independent), the simultaneous measurement of several parameters reduces
the total error of the parameters. Such a correction to the reduced mean squared error
can be obtained by shrinking the ordinary estimator. For example the MSE of the MLE
of the variance of the normal distribution can be reduced by shrinking the estimates
toward zero. (Hedges & Olkin, [1985). Furthermore, recent studies have demonstrated
that in many cases “shrinking towards a data-based point yields more reduction in
risk than shrinking towards the origin” (Ghosh et al., (1983, pg. 353). In general, it
is sensible to use a shrinkage estimator when it is reasonable to expect the values to
be quite close together and the possibility of an overall improvement in the estimates
at the expense of a worsening of individual ones is considered acceptable or desirable
(Cox & Hinkleyl, [1974)). Shrinkage technique has been used in different problems and
under different assumptions and settings, both in simultaneous estimation problems
for normal, exponential or non-normal distributions (Ghosh et al., [1983). In practice,
in fact, there are several situations where it is a requirement to shrink the usual plain
estimators in order to obtain a uniformly smaller risk than the usual plain estima-
tor. Surprising results have been shown in the estimation problems of the variance; in
particular, in small sample problems the concept of shrinkage has been recognised as
beneficial. (Kubokawal 1999).

3.4.3 Properties of the Shrinkage Estimators

While the Bayes estimators make use of the prior knowledge, the usual procedures such
as UMVUE and MLE neglect such a knowledge. The empirical Bayes estimator, on
the contrary, can be interpreted as an intermediate of the Bayes and usual ones as this
incorporates parts of the prior information (guessed or taken from the sample) even if
one cannot suppose any exact prior information.

The empirical Bayesian approach to shrinking naturally allows for information sharing
across studies, which can be important especially when the number and sizes of studies
considered are small. In fact, even though “analytic shrinkage estimators combine

properties that render them attractive for analyzing large-dimensional studies” (Opgen-
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Rhein & Strimmer} 2007, pg. 2), these can be used for small-dimensional studies as
well. Moreover, shrinkage estimators are generally fully analytic and usually require no

computer-intensive procedures and only little distributional assumptions.

3.5 Why draw on Bioinformatics?

In this research, we use an estimator of the error variance that can borrow information
across studies using the James-Stein shrinkage concept. Tong et al. (Tong & Wang;,
2007), in particular, employed James-Stein Estimation, further developing the estima-
tor by |Cui et al.| (2005]), to obtain shrinkage estimates of the gene-specific variances,
making only weak prior assumptions about the distribution of the variance components
(the sampling distribution of the logarithm of the variance estimators is assumed to be
normal) and achieving an estimator with an explicit expression that is computationally
simple. Such an estimator was originally used for microarray experiments. In the
original paper, a new test statistic was developed based and constructed on this shrink-
age estimator and this provided “a powerful and robust approach to test the differential
expressions of genes that utilises information not available in individual gene testing
approaches and does not suffer from biases of the pooled variance approach” (Cui et
al., 2005| pg. 59).

Similarly to the meta-analysis, combining information across genes in the statistical
analysis of microarray data is desirable because of the relatively small number of data
points obtained for each individual gene. Small number of freedom due to few repli-
cates is a common situation for microarray experiments (Lin et al.; n.d.). In fact, since
microarrays are expensive, experiments are typically performed with a limited number
of replicates. When this is the case, the use of within-gene estimates of variability
provides unreliable results (Jain et all [2003). Specifically, if variance heterogeneity is
assumed, individual gene-specific tests are used even though the standard gene-specific
estimators of variances are unreliable due to the relatively small number of replica-
tions (Cui et al., |2005). On the other hand, more powerful tests can be used assuming
common variance; nevertheless, this assumption is unlikely to be true. “Thus, tests
based on a pooled common variance estimator for all genes are at the risk of generating
misleading results” (Tong & Wang), 2007, pg. 113).

“A number of approaches to improving estimates for variability and statistical tests
of differential expression have thus recently emerged. Several variance function meth-
ods have been proposed” (Jain et al. 2003, 1945). In particular, over the last few
years, shrinkage approaches that combine variance information across genes have been

developed. Tests based on variance estimates that are gene specific but combine in-
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formation across many genes are nowadays considered better approaches in microarray
experiments in order to increase power by utilizing more information in the data and
also to avoid bias (Cui et al., [2005)). These approaches were usually proposed to handle
better “the situation where a gene with low expression may have very low variance by
chance” (Jain et al., [2003, pg. 1946).

Meta-analysis, i.e. a combination of results and information from independent quanti-
tative investigations, shares somehow the same problems with microarray experiments.
Also in meta-analysis, both the sample size within individual studies and the number of
studies are typically relatively small. This is the reason why the treatment and control
group sample variances as well as the 62 may be unreliable and, as a consequence, the
reported overall variance is less than the optimal value. Tests based on the common
overall variance estimator for all studies are at risk of generating misleading results in
meta-analyses as well (too liberal significance tests and Confidence Intervals without
correct coverage properties). As in meta-analysis one is usually interested in the possi-

bility of an overall gain (i.e. a better estimate of the overall variance of the estimator
2

rather than merely better individual estimates ;) and as the setting and problems
faced are similar to those which crop up in Bioinformatics, we decided to borrow the
shrinkage estimator (originally developed for microarray problems) to evaluate whether
this would be useful in a meta-analysis context as well. Moreover, the specific modified
shrinkage estimator used in our simulations usually require little assumptions and is
therefore easily adaptable to diverse and numerous frameworks. “Even though moti-
vated and applied to microarray data, the optimal shrinkage variance estimator [...]
can have a wide range of applications”. Tong and Wang “methodology and theory
extend Stein’s landmark results from shrinkage estimation of means to shrinkage esti-
mation of variance, and from shrinkage estimation of a single variance to the shrinkage

estimation of multiple variances” (Tong & Wang, 2007, pg. 121).

3.6 Shrinkage Statistic of Variance Vector: method used

A shrinkage estimator for gene-specific variance components based on the James-Stein
estimator was proposed by Cui et al in 2005 (Cui et al. 2005). Their estimator made
no prior assumptions about the distribution of variances across genes. The test based
on such an estimator performed well under a wide range of assumptions about vari-
ance heterogeneity, behaving well both when the variances were truly constant as well
as when they varied extensively from gene to gene. How did they obtain a shrinkage
estimator of variance components that provided a gene-specific variance also using in-
formation across all of the genes in the data in order to improve estimation?

Stein discovered that the standard sample variance is improved by a shrinkage esti-
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mator using information contained in the sample mean. Much research has been done
since then. Nevertheless, most research concerned with a single variance, assumption
not applicable to microarray data analysis since the homogeneity of the variances is
unlikely to be true. Cui et al. focused on heterogenous variances and, instead of using
information in the sample mean, extended Stein’s theory for multiple means to multi-
ple variances. This way they obtained variance estimates that were gene-specific but
combined at the same time information across many genes, improving power but also
avoiding bias. Cui et al. method was recently further developed and improved by Tong
and Wang who presented their methods in the framework of microarray data analysis,
stressing however that both their methods and theory are general may be implemented

in a much wider range of scenarios (Tong & Wang, [2007)).

3.6.1 CHQBC Estimator

As initially suggested by |Cui et al.| (2005)), an improved estimator of variance from an
ensemble of individual variance estimators (herein referred to as the CHQBC estima-
tor) can be constructed by shrinking them towards their common corrected geometric
mean. “The amount of shrinkage depends on the variability of the individual variance
estimators. When individual variance estimates are similar, indicating homogeneity,
the shrinkage estimator effectively pools these estimates. When individual variance
estimates are widely dispersed, indicating heterogeneity, the shrinkage estimator gives
greater weight” to the study specific contributions (Cui et al., 2005, pg. 61).
For g =1, ..., G (G > 3 with G equal to the number of studies), let X, be the residual
sum of squared errors and 03 be the true variance of g. Assuming that X, /ag’s are
mutually independent (each having a Chi-squared distribution Y2 with v degrees of
freedom) we have X, ~ agxlz,. Considering the natural logarithm transformation of X,
we then have )
ln& ~ lnag + v
v v
Therefore, if we denote the mean of lnx—j as m, by subtracting m from both sides we

could write the following equation
/ 2
Xg~lnog+¢€,

where X} = In(X,/v)—m and €, = In(x}/v) —m. Applying the James-Stein shrinkage

method to X ; and then transforming back to the original scale gives the shrinkage

2

estimator for o,

G
5.2: Vl/G % ex . (G—3)V « (In _T
9 g(Xg/ ) B p[(l Z(ang—mxg)2>+ (InX, —1 Xg)] (3.1)

where V is the variance of €, InX, = %Zleln(Xg) and B = exp(—m) is a bias
correction (all the details are provided by |Cui et al| (2005)). “Note that multiplying
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the geometric mean (H?Zl(Xg Jv)Y/ G) by B gives an unbiased estimator of ¢? when

03 = ¢2 for all g. The values of B (and also V) depend on v. They can be simulated
easily and values are given in Table Note that B is always larger than 1, hence,
the geometric mean without B underestimates o when all 03 are equal to o2 (Cui et

al., 2005} pg. 61).

Table 3.6: Values of B (bias correction) and V/(2/v) as a function of v.

v B V/(2/v) ‘ ‘ v B V/(2/v)
1 3.53 2.45 13 1.08 1.08
2 1.77 1.64 14 1.08 1.08
3 144 1.39 15  1.07 1.07
4 1.31 1.27 16 1.07 1.06
5 1.24 1.22 17 1.06 1.06
6 1.19 1.18 18 1.06 1.06
7 1.16 1.15 19 1.06 1.05
8 1.14 1.13 20 1.05 1.05
9 1.12 1.12 25 1.04 1.04
10 1.11 1.11 30 1.04 1.03
11 1.10 1.10 40 1.03 1.03
12 1.09 1.09 50+ 1.02 1.02

These values are used in equation to construct the estimates that shrink the unbiased estimators
of variances to their corrected geometric mean. When v is greater than 50, B and V/(2/v) are
effectively 1.

3.6.2 Improvements on the CHQBC Estimator

Even though the CHQBC estimator may work well as an estimator of variance, Tong
and Wang (2007) suggested an improvement to such an estimator (for full details,
refer to the article). Let Z;, = Xg/v, Zpoot = H;;:l Zgl/G and &g = 1 — (1 — (G —
3)V/ 3 (InX, — InX,4)?)4. It is easy to check that the CHQBC estimator can be
rewritten as

5o = B(Zpoot)“(Zg)' ™% with = éy.

Note that when 052, = o2 for all g, E(Zpoo1) = 0%/B. That is, BZ,s0 is an unbiased
estimator of 02 when 03 = o2 for all g. On the other hand, Zg4 is an unbiased estimator
of 03. Therefore, it is reasonable to consider the following combination of two unbiased

estimators
02T = (BZpoot)* (Zg) 17, 0<ac<l. (3.2)

Referring to 02" (o) as the modified CHQBC estimator, o} (dp) in the simulations
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shown always performs better than the original CHQBC estimator &2 (clp) for estimating
2

og. “The estimator aé* has a very simple structure; it borrows information across
studies by shrinking each specific variance towards the bias corrected geometric mean
of variances for all studies. The amount of shrinkage depends on the variability of the
individual variances. In particular, the shrinkage parameter & was obtained by applying
the James-Stein method to the logarithm of sample variances which do not follow
the normal distribution” (Tong & Wang, 2007, pg. 114). “Although the James-Stein
shrinkage estimator was developed in a context of a normal model, it is the sampling
distribution of the logarithm of the variance estimators, not the values themselves,
that are assumed to be normal” (Cui et al., 2005, pg. 73). On the logarithm scale, the
modified CHQBC estimator is a weighted average of the study-specific variance and the
bias corrected geometric mean. If the empirical variances can be reliably determined
from the data, and consequently exhibit only a small variance themselves, there will be
little shrinkage, whereas if the empirical variance is comparatively large pooling across
studies will take place.

According to Tong and Wang simulations, “the modified CHQBC estimator aé*(o?o)
has smaller risk than the original CHQBC estimator &3(020) in all settings” (Tong &
Wang, 2007, pg. 117), in particular when the variance heterogeneity and v are both

small.

3.7 Comparison of methods by Simulations

We perform simulation studies to compare V, the usual overall variance estimator which
uses the estimated within variances, with V*, the estimator that takes into account the

‘shrunk’ variances. We then consider the ordinary estimators # and V as in equations

2.3 and [2.4| with @w; = 1/62 where
;
A 1 1 N
52 = G2 ( + ) with S? =

nri  Ncq
When ‘shrunk’ variances are considered, we denote the ‘new’ point and overall variance

(nTz‘ - 1)§2Tz + (nCi - 1)‘%’1
nr; +noi — 2

estimators as follows

k ~ %
R WY 1
o* = 22;1 wf*z and V* = T (3.3)
> i W i=1W;
where . ) .
b = ith 62 =52 (— 3.4
w; 551' Wil Ois shr.i (nTi + nCi) ( )

where thm’s are obtained with the shrinkage estimator (see eqn ) applied on S’ZZ’S.
The empirical coverage probabilities of the two Confidence Intervals based on V and

V* are computed and compared as well.
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Since it is known that errors are present in the estimated sample variances, the objec-
tive of this study is to evaluate whether the ‘improved’ CHQBC estimator improves the
behaviour of the overall variance estimates, i.e. to establish whether V* performs in
general better than V. More specifically, we want to evaluate the robustness, precision
and accuracy of the overall variance estimator used in fixed-effects meta-analysis when
‘shrunk’ estimates of the pooled variances are used. Theoretically, the shrinkage esti-
mators for the pooled variances should better handle the situation when a single study
carry a disproportionate amount of weight and has few subjects and a very low sample
variances just by chance; moreover, ‘shrunk’ variances should take into consideration
the effect of study sizes as well. V* should therefore be less sensitive to any individual
results.

In order to assess and evaluate the goodness of the estimator whose weights are based
on the ‘shrunk’ variances, the dispersion around the optimal value will be computed.
In particular, non only V* should yield values on average closer to the optimal levels,
but also the ‘real’ dispersion should not be too imprecise nor be too far from both the

‘declared’ and the ‘optimal’ values.

Simulation settings are as specified in section 3.2. In addition, the common variance
scenario is considered, i.e. the case where S7 = 100 for all i. Results are given in
tables - for the different S? settings. Each table shows the Confidence Inter-
vals based on both V and V*. Moreover, since when we simulate studies we have the
privilege to know the ‘real’ values of each single within study variances, the average
(over 10000 replicates) ‘optimal’ overall variance of the estimator is calculated. The
‘declared’ and ‘actual’ dispersion for both methods are also given. Furthermore, in
order to make comparisons between the two methods easier, ratio index numbers are
shown in columns 10-15. Ratio Index numbers measure changes or differences and are
used in a variety of contexts to compare series of numbers of different size in a standard-
ised and directly comparable way. An index number is generally formed by the ratio
between the ‘current value’ of an indicator and its ‘base value’, against which all the
observations are measured and compared. The ratio itself has no units and expresses
the changes around the base. In Tables 3.7] - columns 10 and 11 are the ratio
between the ‘real’ dispersion of the estimator and its ‘declared’ value, for V and V*
respectively. Values in these columns indicate how much larger the ‘real’ dispersion is
compared to the ‘declared’ one; the bigger the value, the wider the absolute difference
between the two numbers. Columns 12 - 15 show the ratio between either the ‘real’ or
the ‘declared’ variances (for both v, V*) and the ‘optimal’ value which is the base for
all four columns. Values less than 1 mean that there is a negative bias in the estimate
while values greater than 1 indicate the opposite. The ideal situation would be to have

both the ratio of the ‘declared’ and the ‘real’ dispersion to the ‘optimal’ equal to 1,
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indicating perfect estimation of the overall variance of the estimator.

From the results in Tables - we note that V* always perform better than
V. Observing the absolute values, the estimator that uses weights based on the vari-
ance shrinkage estimator has values closer to the ‘optimal’ ones. In particular, not
only is the ‘declared’ variance closer to the ‘optimal’, but the ‘real’ dispersion is also
not badly estimated. This means that the new method tends to underestimate the
‘optimal’ value less severely, on average and in all cases. In practice, when performing
a single meta-analysis, with the new method we tend to declare on average a variability
of the point estimate closer to the correct one; moreover, the ‘real’ dispersion of the
new method is smaller than the one obtained with the ordinary estimator, meaning
that the new method yields less liberal results because of the slight difference between
the ‘real’ and the ‘declared’ dispersion of V*. As a consequence, in general we still
tend to overstate the precision of the estimator, but less badly. In fact, observing the

absolute values, we can note that the following relationship always hold
Vreal(é) > Vreal(é*) > Vopt

As regards the ‘declared’ variances, in general we have

Vort > E[V*] > E[V]

Nevertheless, it may happen that the ‘average’ declared variance obtained using the new
method is slightly larger than the ‘optimal’ value. Again, if we consider the absolute
difference between the ‘optimal’ and the ‘declared’ variances obtained with the usual
and the new methods, such a difference is always smaller when the new method is taken
into account. For instance, when n > 10, the new method may declare a variance 1%
greater than the ‘optimal’ instead of underestimating it by between 3 and 12%. In
the worse scenario (Table , when n=>5 and k=35, the new method overstates the
variance by 10% whereas the usual method underestimates it by 35%.

In general, however, the following relationship holds

Vreal(é) > Vreal(é*) > port > E[V*] > E[V]
This relationship is confirmed even when ratio index numbers are taken into consider-
ation. The ratio V"¢ (6*)/E[V*] is always smaller than V"¢ (9)/E[V], entailing that
the variability (and range) of the new method is smaller than the one obtained with the
usual method. In addition, from columns 12 to 15 we note that, given 1 as the optimal
value, both V"¢ (6*) and E[V*] are closer to the target 1. If the difference between
the two methods is almost imperceptible when n is large, this becomes dramatically
important when small studies are combined. For instance, Table shows that for

n = 5 the ‘optimal’ variance is underestimated on average by only around 15% with
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the new method instead of 40% or more with the ordinary method. It is worth to
noting that even when n increases, both V" (0*) and E[V*] are more accurate and

less dispersed around the ‘optimal’ value.

As a consequence, turning to the empirical coverage probabilities of the the 95% Con-
fidence Intervals for the two methods, we note that with the new method values are
always closer to the nominal value (and only in few occasions above the nominal level).
Especially when n is small, the coverage probabilities for the interval based on V* are
much better than the usual ones. They still suffer from inadequate coverage; never-
theless, the estimated Coverage probabilities of the Cls based on V fall well below the

ones obtained with the new method whose weights were shrunk.

These results generally emphasise that the estimator based on the ‘shrunk variances’
rather than the estimated ones performs better. Regardless of the variance structure
across studies (homoscedasticity or uncommon variances), the ordinary method shows
values close to the optimal only if large sized studies are summarised. The new method,
on the other hand, performs optimally even with an average small number of patients
per trial. V* shows a certain accuracy and flexibility since better results are achieved
even when variances are strongly heterogenous. It is quite remarkable that the new
method based on the shrinkage estimators proposed by Tong and Wang performs well,
providing highly accurate overall variances for simulated data for all considered scenar-

ios without relying on computational expensive procedures.
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3.8 Real Data Examples

In this section, as examples to illustrate the two methods compared and discussed in the
previous sections 4 data sets are taken into consideration. In particular, meta-analyses
and data sets given in Rees et al.| (2004), Thompson & Pope| (2005), Whitehead, (2002
and [Salpeter et al| (2002) are presented in Figs - (For full details on trials,
heterogeneity tests, response variables and protocols for inclusion of studies, refer to
the full articles). These data-sets were considered as reasonable real examples on which
to apply the meta-analytical ‘shrunk’ estimator since the fixed-effects method was orig-
inally used to combine these data. Moreover, the variable of interest is in all cases
a continuous variable, assumed to be normally distributed, and summarised with a
weighted absolute mean difference (as in our simulations). Furthermore, what made
these data-sets particularly appealing to our study was the average number of patients
per arm as well as the different number of studies combined together. For instance,
in the exercise duration studies (Rees et al.| (2004))) we can observe a total of 510 ran-
domised participants measured in 15 studies with an average of 17 patients per arm
(cf. Fig. [3.5)). Fifteen trials involving 22 patients per arm on average (cf. Fig. [3.6))
were selected to compare the frequency of Raynaud’s Phenomenon (RP) attacks over a
1-week period in those taking calcium channel blockers vs. placebo (Thompson & Pope
(2005)). A multicentre study with 9 centres (cf. Fig. considered as being from
separate studies each of which with an average of 10 patients per arm were included
in a fixed-effects meta-analysis comparing two anaesthetic agents in patients undergo-
ing short surgical procedures (Whitehead (2002)). Finally, twenty-five studies each of
which including an average of 13 patients per arm were included to compare single-dose
of cardioselective (3-blockers with placebo (cf. Fig. [3.8]). The latter data-set, however,
could not be used for our purpose of illustrating and comparing results from the two
methods; in fact, an error in the printed table was present and, despite the access
to the original article (Chatterjee, 1986) the reproducibility of the same output as in
Salpeter et al.| (2002) was not possible. Therefore, analysis was performed (using again

the statistical package R) only on the remaining data-sets.

Recall that the parameter of interest is the overall effect, denoted by 6. The fixed-
effects model is assumed to be the correct one for our analysis, i.e. §; =0 for i = 1,2,
... k. This implies that the estimated effect size Y; is normally distributed with mean
¢ and variance o?. The estimator of 6 is generally a simple weighted average of the Y;,

with the optimal weights proportional to w; = 1/var(Y;). In practice, the variances
2

are not known so estimated variances &; are used to estimate both § and V=var(0).

Hence we define w; = 1/62 giving

0 = ZwA and V =wvar(f) = =
D W D W
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with

1 1 -
var(Y;) = 6% = <n + - ) 52
Ti ci

where, generally, 5’12 is equal to the within-study pooled variance calculated by

(npi — 1)8%; + (nci — 1)8%,

§2 —
nr; +ne; — 2

1

This is the ordinary method usually used in fixed-effects meta-analysis. However, re-
sults will be given also when within-study variances are estimated via the modified
shrinkage CHQBC estimator (see equation . Both the formulae to compute the
point estimate 6 and its overall variance V are the same but S?, . instead of S? is used
to calculate var(Y;), where S?, s are obtained with the shrinkage estimator (see eqn
applied on S?s (as thoroughly described in section 3.6), i.e.

SZ = (BZpool)a(Zg)(lia% 0<a<l.

shr.i

This estimator borrows information across studies by shrinking each specific variance
towards the bias corrected geometric mean of variances for all studies, where the amount
of shrinkage depends on the variability of the individual variances.

Moreover, these results will be given even under the assumption of a common within-
treatment group variance across all studies. This entails that not every study has its
own variance term and the common group variance across studies is estimated by Sg

where

g Z%(nﬂ +nci —2)57

> i1 (nri +noi — 2)
Usually the decision to assume a common variance can be based upon Bartlett’s test,
even though strict adherence to a specific level for this test is not advisable and this

test is extremely sensitive to non-normality of data (Whitehead, [2002).

Therefore, 3 different methods to calculate var(Y;) = S%(1/ny 4 1/n¢) are consid-

ered; 52 can be replaced by the overall pooled variance 5‘5, by the usual within-study

2

i leading to 3 different estimates

pooled variances 5? or by the shrunk variances S

of the variance of the mean difference, i.e. &zi,

would expect the change in the weights due to different ways to calculate the variances

&ZZ and &gi respectively. In general, we
to lead to a change in the overall fixed-effect estimate of treatment difference and in

particular a change in the estimate of the variance of the overall effect. In particular,

we expect V to be higher and more reliable when shrunk estimates are used.
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Randomised controlled trials were used in the Cochrane meta-analysis (Table
to determine the effectiveness of exercise based interventions. In the meta-analysis
performed with the pooled variances, significant improvements were seen for exercise
duration which increased by 2.38 minutes. Roughly the same point estimate is ob-
tained when ‘shrunk’ variances are taken into consideration;furthermore, as expected,
the variance of the overall estimator increases with the new proposed method. As illus-
trated through simulations we expect ‘shrunk’ variances to produce an overall variance
estimate whose ‘real’ and ‘average’ dispersion are both closer to the optimal value;
therefore, the bigger standard error of 6* should be closer to and less negatively biased
than the true value. Similarly, the 95% Confidence Interval [-1.912 ; -2.864] is supposed

to have coverage properties more likely to be correct.

Looking at table [3.14] 15 studies were used in a fixed-effects meta-analysis to detect
whether calcium channel blockers would significantly reduce, compared to the placebo,
the frequency of ischemic attacks in a 1-week period of time. Again, both the point
estimate and the overall variance differ slightly depending on the method we are ap-
plying to the data-set. In fact, whilst the reduction between CCB and placebo has a
weighted difference mean of -2.802 if the pooled variances are considered, the reduction
is equal to -2.759 when ‘shrunk’ variances are taken into account. Moreover, the overall
variance estimate increases from 0.313 to 0.327 with the new method: this means that
the confidence intervals for the new estimate obtained with ‘shrunk variances’ are wider
(95% CI [ -3.88 ; -1.64]). Again, we believe that the ClIs obtained considering ‘shrunk’
variances are more likely to have correct coverage properties and that the declared
precision of the overall estimate should underestimate less remarkably the true value.
In this real-data example, it is interesting to note that Rodeheffer and Kahan-DILT
studies (i.e. 1 and 4) decrease their relative weights as expected. The original control
and treatment sample variances are extremely small compared to the other studies.
Not necessarily one has to expect these values similar to the other studies with the
same number of subjects but, at the same time, it is reasonable to suspect that these
values might be unreliable. Therefore, with the shrunk variances, the relative weight
of these 2 studies decreases, accounting this way for the possible imprecision of the
measures due to the small number of subjects; in particular, Rodeheffer’s weight drops
to 15.3% from the initial 17.8% while Kahan-DILT’s weight goes from 11.5% down to
10.7%.

Table [3.15] gives the estimates from the the log-recovery time meta-analysis, present-
ing details for different methods to calculate the within-study variances. Interestingly,
we can observe that all centres have approximately the same weights regardless of the

method used. Nevertheless, centres 1, 3, 4 and 9 have, with the new shrunk estimates, a
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slightly higher weight in the fixed-effects meta-analysis. The change in the weights due
to the use of shrunk variances has led to a decrease in the overall fixed-effects estimate
of treatment difference. In particular, the new overall point estimate (i.e. difference
in mean log-recovery time after anaesthesia between treatment A and treatment B)
is equal to 0.611, showing that the recovery time (minutes from when the anaesthetic
gases are turned off until the patient opens their eyes) is longer on anaesthetic A than
on B. Not only has the point estimate changed but also has the overall variance V;
in fact, the standard error of 6% is equal to 0.101 and this should, according to the
simulations done, better represent the real variability of the estimator. This gives even
wider confidence intervals which are supposed to have a coverage probability closer to

the nominal value of 95%.

83



(CTzT- ¢ L16°¢) (216°1- * $98°2") (1T6°1- * G¥8°C) ID %S6

[ze€ 0] 998°2- [evzo] 88¢C- [8€2°0] 8L£°C" [(9)2s] ¢

'€l G160 | 10z TS0 €I6F | G61T  8ec0 WY | vee- | L9 | 98ueyD - 6661 “eSusporpy
€T GI60 | L8 9280 W6ETIT | €8  Lg80 WIHIL | 80C- | L9 8661 “eSuapaIp
¢y TSI | FL 0680 FHGT 9L G980 L6TT | 2€T- | €¢C 6661 “Uelme)
9G  L6ET| €9 9960 ¥69°9 9 9960 19G°9 | LT0- | 6C L66T ‘T{SMONITIOJ
TL T 8% GOT'T 1660T| 9%  SOT'T 9S0°TT | 6°0- | 9¢ 0002 ‘&0
'S S9VT | ¥e 6081 SPU'IT| €€  GIET GRCIL | 8% | 92 000 “eueIorely
TS GVVT | 90  6FCE 98€0L| 90 €eve ISP6L | 96 | LT 9661 ‘LIONAR[ITY]
LS T6€T| €6  86L0 GI9F €6  T8L0 LTVY | €T | 6¢ 9661 ‘UeIa1oy]
97T 9860 | 9 €960 608FT || 09 8960 L96FT || cTF- | ¥9 000 ‘YodIqUIRH
¢ FILT| 09 0660 SIPT €9 0960 F90F | 10°€- | ST 66T “MRIqUIRH
87  80GT | ©e€  T9eT E€EFIT|  0€  0L8T 09STT | T'G- | T 6661 ‘AOI1109)
67  S6VT | TT OVl T6L9T | 0T  TL9T 6IFLI | ¢61- | GT “Te 90 oeaU(Y
L9 ¥8TT || €T GI9T 991Te || 1T 9¥9T OF0'€C || 9C | 7€ 66T ‘sye0D)
6'¢  TLOT | ¥T  €9GT 8S0TI | €T L99T €Tl | 9% | 0T 0661 ‘Sye0))
6¢  FLOT| OLT 0650 SE€LT | 061 9¥¢0 68V'T | €T | 07 2661 ‘TMPPIe[g
(%) (%) (%) TR0k ‘Apryg
wsopy Mo [ wSepn o g | uSem o 28 v | N

1 UYS

uowrwoo © pue (* 17

uBowW 9In[osqe 9} syusesordol puodss oy} Apnjs yoes ur syusrjed Jo IoqUINU [BJ0} O SJUSsaIdol UWN[OD 94SIT O T,
pose( 9sIDI0Xe 10] (oIe)) [eNS() S SUOIJUIAIOIUI OSIDIOXO [[Y) 9OUSIOJIP UeOW 9INJOsqe oY) JO SISA[RUY-RID]N SIOOPH-POXI]

SPOT19W JURISYIP 9911} YY) I0] §)DALIU] 20UIPLYUO0,) ST} St [[oM se G Surpuodseriod a3y ‘spoaffa §jp.ia00
PoIDWASH OU) MOUS SMOI OM] SB[ OUJ, 'Poje[no[es are sjysom pue (*{)gg OAIR[DI O} UOIYM UO poseq — A[oA1300dsal @mv Iegourered adueLIeA pojood
') SeOURLIRA UNIYS ‘( MMV sooueLIeA PA[00d S[ULS — -G JO SAN[RA JUAIDHIP oY) JUASAIADT SUUWN0D IDTH0 AT, APNIS [Ded 0] ADUDISYIP
"aIN[IR] 1Iea( I0J UOIPeII[Iqrysal

‘€1°€ 9l9®8L

84



(66570~ + ¢60'7-) (8€9'T-: 088°¢) (F0L1- * 006°€-) 1D %S6

[z68°0] L¥€ T- [2LG°0] 6GL°T- [09¢°0] Z08'T- [(9)2s] @
L61 110 | 6C  ceee 82009¢ | 8T  ehe'e ese9e | €9°0- | 0€T 000% ‘ISIM
60c 0961 | $T¢ GIOT GESSE | S0&  PIOT GOFCE | L8°0- | €l T66T ‘dD youorg
L9 eere || 0¢  9VST  Gae1L 8% 6¥9T  SSYIL | ove | v 6861 ‘Ioud[ey)
60  0S€6 | 90  TETL L60'GS €0 88G°L  69€98 || 009- | 9 L86T ‘ueyey]
60T  669C| 9G LIFE €EIC0T| €9  gebe T1SSG0T | 180~ | 2L L86T ‘Toud[rer))
88 L00€ | T9  0CET LSO'SL 8'G  €CET  68T8L || 09T | 8¢ 9861 ‘To[[eA\
8%  LS0F | ©T1  TIE€C T08FEE || T'T  0LE'S 008°6CT || 18T | TE 9861 ‘1ZOSIeS
8¢ GILEe| TS €€ 0609 67  €€S5T 63609 || 08T | S€ q9861 ‘dnioln
79 peSEe || ¥S  8¢FT  02hE9 TS 8SYT  THPE9 || 69L- | ob v9g6T ‘dnioln
L9 esrel|l 99 18T €hee 79 615C  COTTS || STF- | ¥ 9861 ‘UIqI0D)
LT 86EC| 9T  T0ST 99116 ¢T 8¢SV 06T'T6 || 0£°9- | ST 9861 ‘1100pP[Y
8T  ¢I99 | L0T TSLT 206 SIT $S9T  01e'8 || 06'€- | &I | G861 ‘LTI~ ueyey
¢T  eveL| €T 900G ¥59°T9 €T 0667 152°C9 || 0F¥I-| O1 G861 Ueyey]
60  0S€'6 | L0 2369 9L8TL L0 9989 TIL0L | €80~ | 9 86T 1081y
ST epel | €ST I9VT  GEES 8.1 8¢€1  TIyv || oLe | o1 €861 ' TOgOYPpOY
(%) (%) (%) Teox ‘Apunjg

e Mo S Fo o Te [l B o ¢S | N

SPOT[}9WI JURIDYIP 9911} 91} I0] §)DALIU] 2UIPLU0,) O Sk [[oM se 7 Surpuodseliod o) ‘spoaffa )pia00 pajpulssy
9T} MOT[S SMOI 0M]) SB[ O], "PoIR[IO[RD oIk S)YSom pue (“1)Fg OAIIR[AI o) YOIYM UO poseq — AoArioodsol @mv Iojourered aoueLIRA PRjOOd TOMIUIOD B PUR
(e ) seoueLrea sunIys ‘( mrwv sooueLIeA PI[00d S[FULS — G JO SONRA JUSIPIP O} JuasoIdor SUWM[0d 1YI0 OY T, "APNIS UDEI 10] 9DUGIDIJIP ol N[OS(e
91} SMOTS PUOD3S Y} S[IYM APNIS [ora Ul §309((Ns Jo Iaquunu [810} oY) spueserdel UWN[Od 9s1Y Y], ‘Spoyjol jo suosiredwo)) :poriod yoom-] € I9A0

syoe)ye J Jo Aouenbaly ur (0qooe[J §4 I9YO0[( [PUURY)) WNIO[R))) OUSIOPIP URSUL dJN[OSAR 1]} JO SISA[RUY -RIOIN SI0OPH-POXI] :F'€ 9[qR],

85



(evL0 ¢ L2€0) (808°0 ¢ FI¥°0) (0280 ¢ €€7°0) 1D %S6
[90T°0] g€5°0 [ToT°0] TT9°0 [660°0] 229°0 [(9)os] o

68°LT 0920 STVl GLG'0 8090 ¢S9cl 6,LC°0 LC90 || ¥LCO- | €¢
67 LL70 Ly 9,70 7090 197 0970 6970 | €IC'T 6
TT°CT 70€°0 9¢°G1 860 ¢9¢°0 T19°GT 062’0 T1¥¢0 || 6080 | ¢¢G
€O'TT TTI€0 7661 G¢c'0 9920 66°1¢ TI¢0 ¢TEZ0 || 6180 | 1T
716 09¢°0 G811 €660 €9¢0 19°CT 8LC°0 8IS0 || 898°0 | AT
076 97¢ 0 689 ¥8¢'0 €¢90 919 86¢°0 0L9°0 | 9160 | AT
L8'ST  ¥¥¢°0 €C'eT  LLC0 1990 raq) ¢8¢'0 9L90 | ¢Lc'0 | V¢
OT'TT ST1S°0 GO'TT €0¢'0 0970 9L°0T T0E'0 €SV'0 || 9790 | OC
€6’ LLV0 76°C L09°0 GLSO 6V'¢ 8¢G°0 0¢9°0 || ¥98°0 | 6 T

(%) (%) (%) oTyuR)

TAYS 7

WA Mo | B e oS | s o g 9 | N

AN N F 10 O - 0D

SPOY39W JUSISHIP 991} oYY IOJ S)PALIIUT 22UIPLYUO0,) O} Se [[oM Se G Surpuodsarrod
o) ‘§709(f2 101200 PIDWISH O) MOYS SMOI OM] Jse] S, "POIR[NOTRD oIe sjySrom pue (L{)FG OAIIR[I oY) YDIYM UO paseq — AJoArpoadsal @mv Iojeurered
soueLIeA pajood UOWWIOD © pue Q.émmv seouRLIRA YUNIYS ( mmv seowreLres pajood JSUIs — ¢ JO SAN[A JUSIDHIP O} JUssAIdAT SUWN[OD 19110 ST, APNYs [ed
J10] 90USISJJIP URAWI SIN[OSAR O} SMOYS PUOIDS JT[} SBAIAYM 9IJUAD [ord UT sJualjed Jo Ioquunu (8107 oY) sjuasaidel uwIN[od 1s1Y o], ‘S9Inpadold [esrdins

1107s Suro8ropun sjusljed 10J (g so ) SIUeSe OI1o1[}SoRUR OM] JO 9OUSISHIP URSOW 9JN[OSqR ) JO SISA[RUY-RIOIN SIOOPH-POXI] :GT'¢ 9[qR],

86



Chapter 4

Conclusions and Discussion

Meta-analysis is the statistical summary of a collection of analytic results from indi-
vidual studies for the purpose of integrating the findings. Data-analysis is only the last
step of a long and complicated research synthesis procedure; the outcome of a meta-
analysis may therefore be a long awaited process. Furthermore, conclusions obtained
through such a quantitative research synthesis can have an important impact and sub-
stantial consequences in public and health planning policies. Clearly, “an estimate of
the overall effect size should be accompanied by a confidence interval to indicate the
precision with which the overall effect size has been estimated” (Viechtbauer, 2007,
pg. 50). As a consequence, reliability of the output and in particular of the measure of
precision of the point estimate is crucial; a correct value of the standard error of the
point estimate ensures that the resulting significance of the analysis is correctly stated
and that confidence intervals have correct coverage probabilities. On the contrary, sta-

ting an incorrect precision can often result in biased and misleading results.

In this thesis, reliability of the overall variance of the point estimate was investigated
in fized-effects meta-analyses since, in this case, the weights, the overall point estimate
0, as well as its variance V' depend entirely and solely upon the within-study variances,
usually assumed to be known. Nonetheless, this assumption is approximately true only
when sample sizes are large enough. Imprecision of the within-study variances should
not be simply ignored: in fact, when sampling errors are not taken into account, the
usual variance estimator performs very poorly in detecting the true variance of # and
underestimates the true value. Additionally, the actual variability of the variance esti-
mator is always higher than both the optimal and declared values, with a consequent
overstatement of the precision of the estimator and misleading results in the form of
Confidence Intervals without correct coverage properties, in particular with small sam-

ple size studies.

The aim of this thesis was not only to illustrate via simulations what circumstances
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worsen the estimate of the variance of the overall estimator (variance structure across
studies at the patient level, number of studies, allocation per arm, study size) but also,
and more importantly, to investigate whether a different method, which can be accu-
rate and flexible at the same time, existed. In particular, an estimator whose variance
does not diverge substantially from the optimal value, both on average and in practice,
was sought and found to provide both more accurate statements about the precision of
the point estimate and confidence intervals which are more likely to have the correct

nominal coverage probabilities.

The overall average number of patients per study plays an important role which appears
to be more important than the total number of patients in each single study. Moreover,
the allocation of patients per arm does not seem to be decisive for the estimated overall
variance of the estimator even though balanced allocation, as well as having roughly
the same amount of patients per study, yields better results. Furthermore, true to
form, the higher the average number of patients per arm, the closer the variance esti-
mator is to the optimal one. However, when small studies are combined, the a?’s are
less precise and this leads to severely unreliable results. The ordinary method is too

sensitive to individual study variances and is negatively biased when sizes are too small.

In order to overcome this problem, we decided to shrink the individual pooled estimates
towards a common value before calculating the variances. The shrinkage estimators for
the pooled variances prove to be particularly advantageous compared with conventional
approaches when a single study carries a disproportionate amount of weight and has
few subjects, which may indicate a very low sample variance just by chance. Borrowing
information across variances through the “modified CHQBC estimator” produced an
overall variance estimate whose ‘real’ and ‘average’ dispersion were both closer to the
optimal value, representing a reasonable alternative to the ordinary method. Results
obtained via simulations (with different patterns for various variance schemes and di-
verse average numbers of patients per study), emphasised that the estimator of the
overall variance based on the ‘shrunk variances’ (V*), performed better than the one
based on the estimated sample variances (V), minimising the real dispersion of the
overall variance estimator. Moreover, regardless of the variance structure across stud-
es, V* (calculated with the new proposed weighting scheme) performs optimally even
with a small average number of patients per trial, achieving almost optimal results

without relying on computationally expensive procedures.
As a consequence, since the overall variance of the point estimator was better esti-

mated with the proposed technique, the coverage probabilities of the approximate 95%

confidence intervals based on V* were found to be generally accurate, in that they were

88



approximately equal to the nominal coverage value. The proposed weighting scheme
yields confidence intervals with higher coverage probability than the commonly used
interval based on pooled variances, particularly when the number of studies is moderate
and the average number of patients per arm is small. In light of these results, V* is
strongly recommended, since this appears to perform better than (or at least as well
as) the usual variance estimator across the range of cases, and this provides additional
protection against large errors in the estimated sample variances and hence in impre-

cisely estimated weights.

In this thesis we have shown the consequences of using the estimated weights in the cal-
culation of the overall variance of the common effect estimator in combining estimates
from independent studies. We have pointed out that (V) is not a good estimator for
the correct variance of the overall effect estimate when the weights are merely based
on sample variances, as in practice. Protection against errors in the estimated weights
should therefore be provided. We recommend the use of the proposed weighting scheme
to achieve more reliable estimates of the overall variance and better approximations of
the nominal significance level, which has the added advantage of simplicity. Due to its
easy application and its good performance in the simulation study, the proposed shrink-
age estimator for the pooled variances is a good alternative to the ordinary method.
The use of shrunk variances for the variance of an overall effect estimate is advocated
in making inference for the fixed-effects meta-analysis, particularly when the studies
considered have, on average, a small number of subjects because of its more accurate

estimate of the overall variance.

Finally, it should be noted that this thesis has only considered the weighted mean
difference for continuous data. Many other outcome variables are possible when deal-
ing with the comparison of two treatments, control and experimental, in an effort to
find out whether there is a significant difference between the two. Standardised mean
difference for continuous variables as well as odds ratio, difference or ratio of propor-
tions in the case of qualitative attributes play an important role to detect the effect size
and measure such a difference. Nevertheless, no attempt has been made to assess the
precision of the estimators and to evaluate whether shrinkage estimators might improve
overall variance estimates in these cases as well. Further investigation and research are
needed in this area to evaluate whether shrinking the pooled variances before calcu-
lating the variances would be a superior method than the ordinary one for categorical

variables as well.

Another possible step would be to try an extension of the considered method to the

case of random-effects models where we could observe the same deficiencies as in the
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the fixed-effects models considered above. Despite the fact that the problem of estimat-
ing o7 is particularly urgent and dramatic in the fixed-effects model, the estimation of
01-2 might also be expected to influence random effects coverage probabilities especially

when all studies in the meta-analysis are small (Brockwell & Gordonl 2001)).

90



Bibliography

Biggerstaff, B. & Tweedie, R. (1997), ‘Incorporating variability in estimates of hetero-
geneity in the random effects model in meta-analysis’, Statistics in Medicine 16, 753~

768.

Bockenhoff, A. & Hartung, J. (1998), ‘Some Corrections of the Significance Level in
Meta-Analysis’, Biometrical Journal 40(8), 937-947.

Braga, M. (2004), Mean-Variance Efficiency: da Markowitz ... ad oggi, L'innovazione

finanziaria. Osservatorio Newfin, Bancaria Editrice, chapter 17.

Brockwell, S. & Gordon, I. (2001), ‘A comparison of statistical methods for meta-
analysis’, Statistics in Medicine 20, 825-840.

Burton, A., Altman, D., Royston, P. & Holder, R. (2006), ‘The design of simulation
studies in medical statistics’, Statistics in Medicine 25, 4279-4292.

Chatterjee, S. (1986), ‘The Cardioselective and Hypotensive Effects of Bisoprolol
in Hypertensive Asthmatics’, Journal of Cardiovascular Pharmacology 8((Suppl.
11)), S74-S77.

Cochran, W. (1937), ‘Problems arising in the analysis of a series of similar experiments’,
Journal of the Royal Statistical Society 4(Supplement), 102-118.

Cox, D. & Hinkley, D. (1974), Theoretical Statistics, London : Chapman and Hall.

Cox, D. & Solomon, P. (1997), Statistical Ilinference, Monographs on statistics and
applied probability, Boca Raton, FL; London: Chapman & Hall/CRC.

Cui, X., Hwang, J., Qiu, J., Blades, N. & Churchill, G. (2005), ‘Improved statistical
tests for differential gene expression by shrinking variance components estimates’,
Biostatistics 6, 59-75.

DerSimonian, R. & Laird, N. (1986), ‘Meta-Analysis in Clinical Trials’, Controlled
Clinical Trials 7, 177-188.

Ghosh, M., Hwang, J. & Tsui, K. (1983), ‘Construction of Improved Estimators in Mul-
tiparameter Estimation for Discrete Exponential Families’, The Annals of Statistics
11(2), 351-367.

91



Hardy, R. & Thompson, S. (1996), ‘A likelihood approach to meta-analysis with random
effects’, Statistics in Medicine 15, 619-629.

Hardy, R. & Thompson, S. (1998), ‘Detecting and describing heterogeneity in meta-
analysis’, Statistics in Medicine 17, 841-856.

Hartung, J. & Knapp, G. (2001), ‘A refined method for the meta-analysis of controlled
clinical trials with binary outcome’; Statistics in Medicine 20, 3875-3889.

Hedges, L. (1983), ‘A random effects model for effect sizes’, Psychological Bulletin
93(2), 388-395.

Hedges, L. & Olkin, 1. (1985), Statistical Methods for Meta-Analysis, Orlando ; London

: Academic Press.

Higgins, J. & Thompson, S. (2002), ‘Quantifying heterogeneity in a meta-analysis’,
Statistics in Medicine 21, 1539-1558.

Jackson, D. (2006), ‘The power of the standard test for the presence of heterogeneity
in meta-analysis’, Statistics in Medicine 25, 2688—-2699.

Jain, N., Thatte, J., Braciale, T., Ley, K., O’Connell, M. & Lee, J. (2003), ‘Local-
pooled-error test for identifying differentially expressed genes with a small number
of replicated microarrays’, Biolnformatics 19(15), 1945-1951.

Knapp, G., Biggerstaff, B. & Hartung, J. (2006), ‘Assessing the Amount of Hetero-
geneity in Random-Effects Meta-Analysis’, Biometrical Journal 48(2), 271-285.

Kubokawa, T. (1999), ‘Shrinkage and Modification Techniques in Estimation of Vari-
ance and the Related Problems: A Review’, Communications in Statistics: Theory
and Methods 28(3/4), 613-650.

Li, Y., Shi, L. & Roth, H. (1994), ‘The bias of the commonly-used estimate of variance
in meta-analysis’, Communications in Statistics — Theory and Methods 23, 1063—
1085.

Lin, Y., Nadler, S., Lan, H., Attie, A. & Yandell, B. (n.d.), Adaptive Gene Picking
with Microarray Data: Detecting Important Low Abundance Signals, The Analysis
of Gene Expression Data: Methods and Software,, Springer, NY.

Mengersen, K., Tweedie, R. & Biggerstaff, B. (1995), ‘The impact of method choice on
meta-analysis’, Australian Journal of Statistics 37(1), 19-44.

Mosteller, F. & Chalmers, T. (1992), ‘Some Progress and Problems in Meta-Analysis
of Clinical Trials’, Statistical Science 7(2), 227-236.

92



Normand, S. (1999), ‘Tutorial in Biostatistics. Meta-Analysis: Formulating, Evaluat-
ing, Combining and Reporting’, Statistics in Medicine 18, 321-359.

Opgen-Rhein, R. & Strimmer, K. (2007), ‘Accurate Ranking of Differentially Expressed
Genes by a Distribution-Free Shrinkage Approach’, Statistical Applications in Ge-
netics and Molecular Biology 6(1), Article 9.

Petitti, D. (1994), Meta-analysis, decision analysis, and cost-effectiveness analysis :
methods for quantitative synthesis in medicine, New York; Oxford: Oxford University

Press.
Piccolo, D. (2000), Statistica, Bologna; 11 Mulino.

Rees, K., Taylor, R., Singh, S., Coats, A. & Ebrahim, S. (2004), ‘Exercise based reha-
bilitation for heart failure’, Cochrane Database of Systematic Reviews Issue 3, Art.
No.: CD003331.

Salpeter, S., Ormiston, T. & Salpeter, E. (2002), ‘Cardioselective (3-Blockers in Pa-
tients with Reactive Airway Disease: A Meta-Analysis’, Annals of Internal Medicine
137(9), 715-725.

Senn, S. (2000), ‘The many modes of meta’, Drug Information Journal 34, 535-549.

Sidik, K. & Jonkman, J. (2005), ‘Simple heterogeneity variance estimation for meta-
analysis’, Applied Statistics 54(2), 367-384.

Sidik, K. & Jonkman, J. (2006), ‘Robust variance estimation for random effects meta-
analysis’, Computational Statistics & Data Analysis 50, 235-246.

Smith, K. (1997), ‘Explaining Variation in State-Level Homicide Rates: Does Crime
Pay?’, The Journal of Politics 59(2), 350-367.

Thompson, A. & Pope, J. (2005), ‘Calcium channel blockers for primary Raynaud’s
phenomenon: a meta-analysis’, Rheumatology 44(2), 145-150.

Thompson, S. & Sharp, S. (1999), ‘Explaining heterogeneity in meta-analysis: a com-
parison of methods’, Statistics in Medicine 18, 2693-2708.

Tong, T. & Wang, Y. (2007), ‘Optimal Shrinkage Estimation of Variance with Applica-
tions to Microarray data Analysis’, Journal of the American Statistical Association
102 (477): 102 (477), 113-122.

Viechtbauer, W. (2007), ‘Confidence intervals for the amount of heterogeneity in meta-
analysis’, Statistics in Medicine 26, 37-52.

Whitehead, A. (2002), Meta-Analysis of Controlled Clinical Trials — Statistics in Prac-
tice, Chichester: John Wiley & Sons Ltd.

93



	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Aim

	Meta-Analysis is biased
	Meta-Analysis
	The models
	The fixed-effects model
	The random-effects model

	The Usual Meta-Analytical Estimators
	The Heterogeneity Parameter and the different methods of estimation
	Estimating the variance of the overall effect estimate : an ignored problem
	Simulations with common variance
	Number of Patients per Arm Equal
	Number of Patients per Arm not Equal

	Effect of Allocation of Patients per Arm on Meta-Analysis. 2 trials
	Effect of Number of patients per Trial on meta-analysis. 2 Trials Example
	Effect of Patients and Allocation per Arm. 2 Trials Example
	Precision of the overall estimator: a recap

	Shrinkage Estimators and a more Realistic Scenario
	Acting in a more Realistic Scenario
	Simulations with uncommon variances
	The simulation results
	Shrinkage Estimators
	Basic Logic
	An introduction to Stein-Estimators
	Properties of the Shrinkage Estimators

	Why draw on Bioinformatics?
	Shrinkage Statistic of Variance Vector: method used
	CHQBC Estimator
	Improvements on the CHQBC Estimator

	Comparison of methods by Simulations
	Real Data Examples

	Conclusions and Discussion
	Bibliography

