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Abstract

In this thesis we consider several questions on harmonic and analytic functions spaces and

some of their operators. These questions deal with Carleson-type measures in the unit

ball, bi-parameter paraproducts and multipliers problem on the bitorus, boundedness of

the Bergman projection and analytic Besov spaces in tube domains over symmetric cones.

In part I of this thesis, we show how to generate Carleson measures from a class of

weighted Carleson measures in the unit ball. The results are used to obtain bounded-

ness criteria of the multiplication operators and Cesàro integral-type operators between

weighted spaces of functions of bounded mean oscillation in the unit ball.

In part II of this thesis, we introduce a notion of functions of logarithmic oscillation

on the bitorus. We prove using Cotlar’s lemma that the dyadic version of the set of

such functions is the exact range of symbols of bounded bi-parameter paraproducts on the

space of functions of dyadic bounded mean oscillation. We also introduce the little space of

functions of logarithmic mean oscillation in the same spirit as the little space of functions of

bounded mean oscillation of Cotlar and Sadosky. We obtain that the intersection of these

two spaces of functions of logarithmic mean oscillation and L∞ is the set of multipliers of

the space of functions of bounded mean oscillation in the bitorus.

In part III of this thesis, in the setting of the tube domains over irreducible symmetric

cones, we prove that the Bergman projection P is bounded on the Lebesgue space Lp if

and only if the natural mapping of the Bergman space Ap
′

to the dual space (Ap)∗ of

the Bergman space Ap, where 1
p + 1

p′ = 1, is onto. On the other hand, we prove that for

p > 2, the boundedness of the Bergman projection is also equivalent to the validity of an

Hardy-type inequality. We then develop a theory of analytic Besov spaces in this setting

defined by using the corresponding Hardy’s inequality. We prove that these Besov spaces

are the exact range of symbols of Schatten classes of Hankel operators on the Bergman

space A2.
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friendship.

ii



Statement

This thesis is submitted in accordance with the regulations for the degree of Doctor of
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Chapter 1 cover some basic properties of the unit ball. They are taken essentially

from [117]. Chapter 5 is an introduction to the Analysis of symmetric cones and it follows

the lines of the book [40].

Chapter 2 except Theorem 2.2.17, Chapter 6, Chapter 8, section 3.1.3 and 7.4.7 are

original work of the author with the exception of instances indicated within the text.

Chapter 3 and 4 are from the joint works with Doctor S. Pott [85] and [86]. Theorem

2.2.17 is from the published joint work with Professors A. Bonami and S. Grellier [23].
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G. Garrigös and F. Ricci [15]; a work to appear.

Chapter 2 except Theorem 2.2.17 is from the work to appear [95]. Chapter 6 is from

the published work [93]; Chapter 8 is from the published work [94]. Lemma 3.2.5 is from

the preprint [96].
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Introduction

In this thesis, we are concerned with several problems related to the boundedness of various

linear operators on some harmonic and holomorphic function spaces. We partially consider

problems of the same type related to holomorphic function spaces in domains with different

geometric structures. If in the unit ball (Part I) all the ingredients of real analysis are

available, the case of the bidisc required the development of more elaborated techniques

(see Part II). The case of tubular domains over irreducible symmetric cones of rank greater

than 1 (see Part II) is even much more difficult and its study has been at the origin of some

famous counter-examples such as the fact that the characteristic function in the disk is

not a Fourier multiplier for Lebesgue spaces of exponent not equal to 2 [42] (this allows to

prove that the Szegö projection is not bounded on Lp for p 6= 2) or some counter-examples

to maximal inequalities proved using Kakeya sets (see the survey paper [70]).

0.1 Carleson-type measures in the unit ball of Cn

Let Ω be a region in Cn and X a Banach space of continuous functions in Ω. A positive

measure µ in Ω is called a p-Carleson measure for X, if there exists a positive constant

C = C(µ) with the property that∫
Ω
|f(z)|pdµ(z) ≤ C‖f‖pX

for all f ∈ X.

For Y another Banach space of continuous functions in Ω, we pose the following prob-

lem: Characterize those positive measures µ in Ω such that given 0 ≤ q <∞, the measures

|f(z)|qdµ(z) are p-Carleson measures for X for all f ∈ Y . In the first part of this thesis, we

study such measures when Y is the space of functions of bounded mean oscillation or of

logarithmic mean ascillation (respectively the Bloch space or the logarithmic Bloch space)

and X is a Hardy space (respectively a weighted Bergman space).
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0.1.1 Overview and motivation

When q = 0 and Y = X = Hp where Hp is the usual Hardy space, these measures are

known as Carleson measures. Carleson [27] was the first to study such measures in the

case of the unit disc D of C. The Hardy space Hp(D) consists of holomorphic functions f

in D = {z ∈ C : |z| < 1} with the property that:

sup
0≤r<1

∫ π

−π
|f(reiθ)|pdθ <∞.

Carleson measures have been shown to be very useful in many questions in Analysis.

One question where they appear is the problem of pointwise multipliers of function spaces.

i.e. the characterization of those functions f for which the mapping :

Mf : X → X

g 7→ f · g

is a continuous mapping in the Banach space X. We can mention as well their role in the

solution of various questions such as the Corona problem [27] and the characterization of

the dual space ofH1 [41,44]. Carleson measures also play an important role in interpolation

problems with application to control theory (see e.g. [63]).

The extension of Carleson measures (for Hardy spaces) to the unit ball of Cn

Bn = {z ∈ Cn : |z| < 1}

is due to Hörmander [60]. In 1982, Cima and Wogen [32] characterized Carleson measures

for weighted Bergman spaces Apα(Bn) (α > −1) in the unit ball of Cn. The weighted

Bergman space Apα (α > −1) consists of holomorphic functions f in Bn such that∫
Bn

|f(z)|p(1− |z|2)αdV (z) <∞.

The space of functions of bounded mean oscillation in the unit disc D of C, denoted

BMOA, consists of holomorphic functions f in D such that

sup
I⊂T

1
|I|

∫
I
|f(t)−mIf |dt <∞. (0.1.1)

Here T is the unit circle, I an interval in T with length |I| and mIf = 1
|I|
∫
I f(t)dt is the

mean of f over I. The Bloch space B of the unit disc consists of the holomorphic functions

f in D such that

sup
z∈D

(1− |z|2)|f ′(z)| <∞.
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In 2003, Ruhan Zhao [111] gave a characterization in the unit disc of those measures µ

such that |f(z)|pdµ(z) is a Carleson measure for Hardy space (respectively for weighted

Bergman spaces) for all f ∈ BMOA (respectively f ∈ B).

Given an interval I, we denote by |I| the normalized length of I so that |∂D| = |T| = 1.

Let S(I) be the subset of T defined as follows

S(I) = {z ∈ C : 1− |I| < |z| < 1,
z

|z|
∈ I}.

The above set is also called Carleson square or region. R. Zhao [111] proved that the

measure |f(z)|pdµ(z) is a Carleson measure for Hardy spaces (respectively, for the weighted

Bergman spaces Aqs−2(D), s > 1) for any f ∈ BMOA (respectively f ∈ B) if and only if

there exists a constant C > 0 such that for any arc I ⊂ T,

µ(S(I)) ≤ C
|I|

(log 2
|I|)

p

(respectively µ(S(I)) ≤ C |I|s
(log 2

|I| )
p ). As applications of his result, he was able to charac-

terize pointwise mutipliers of BMOA and B in terms of these measures. He also obtained

boundedness conditions of integral operator Jf with holomorphic symbol f defined on

holomorphic functions by

Jfg(z) =
∫ z

0
g(ζ)f ′(ζ)dζ. (0.1.2)

0.1.2 On some equivalent definitions of ρ- Carleson measures on the unit

ball

Recall that for α > −1 the weighted Lebesgue measure dVα is defined by

dVα(z) = cα(1− |z|2)αdV (z), (0.1.3)

where

cα =
Γ(n+ α+ 1)
n!Γ(α+ 1)

(0.1.4)

is a normalizing constant so that Vα(Bn) = 1.

Definition 0.1.1. For α > −1 and 0 < p < ∞, the weighted Bergman space Apα(Bn)

consists of holomorphic functions f in Lp(Bn, dVα), that is

Apα(Bn) = Lp(Bn, dVα)
⋂
H(Bn). (0.1.5)
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We use the notation

||f ||pp,α :=
∫

Bn

|f(z)|pdVα(z) (0.1.6)

for f ∈ Lp(Bn, dVα).

Definition 0.1.2. For 0 < p <∞ the Hardy space Hp(Bn) is the space of all f ∈ H(Bn)

such that

||f ||pp := sup
0<r<1

∫
Sn

|f(rξ)|pdσ(ξ) <∞. (0.1.7)

The space of all bounded holomorphic functions in Bn will be denoted H∞(Bn).

For any ξ ∈ Sn and δ > 0, let

Bδ(ξ) = {w ∈ Sn : |1− 〈w, ξ〉| < δ},

and

Qδ(ξ) = {z ∈ Bn : |1− 〈z, ξ〉| < δ}.

These last ones are the higher dimension analogues of Carleson regions. For f ∈ H1(Bn),

we still denote by f(ξ), for ξ ∈ Sn, the admissible limit at the boundary, which exists a.e.

The space of functions of bounded mean oscillation BMOA is the space of all f ∈ H1(Bn)

for which there exists a constant C > 0 so that

sup
B=Bδ(ξ),

δ∈]0,1[,ξ∈Sn

1
σ(B)

∫
B
|f − fB|dσ ≤ C.

Here and anywhere else, fB denotes the mean value of f on B.

The space BMOA is a Banach space when equipped with the norm

||f ||BMOA = |f(0)|+ sup
B=Bδ(ξ),

δ∈]0,1[,ξ∈Sn

1
σ(B)

∫
B
|f − fB|dσ.

We now define the space of functions of logarithmic mean oscillation LMOA. An

analytic function f belongs to LMOA if f ∈ H1(Bn) and there exists a constant C > 0 so

that

sup
B=Bδ(ξ),

δ∈]0,1[,ξ∈Sn

log 4
δ

σ(B)

∫
B
|f − fB|dσ ≤ C.

The space LMOA is a Banach space when equipped with the norm

||f ||LMOA = |f(0)|+ sup
B=Bδ(ξ),

δ∈]0,1[,ξ∈Sn

log 4
δ

σ(B)

∫
B
|f − fB|dσ.
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The radial derivative Rf of a holomorphic function f is given by

Rf(z) =
n∑
j=1

zj
∂f

∂zj
(z).

The Bloch space B consists of all f ∈ H(Bn) such that

||f ||B = |f(0)|+ sup
z∈Bn

|Rf(z)|(1− |z|2) <∞. (0.1.8)

We also recall the following definition of the logarithmic (weighted) Bloch space LB.

An analytic function f belongs to LB if

sup
z∈Bn

|Rf(z)|(1− |z|2) log
4

1− |z|2
<∞. (0.1.9)

The natural norm on LB(Bn) is given by

||f ||LB = |f(0)|+ sup
z∈Bn

|Rf(z)|(1− |z|2) log
4

1− |z|2
<∞. (0.1.10)

Both B and LB are also Banach when equipped with the norms || · ||B and || · ||LB, respec-

tively.

Now we consider generalized Carleson type measures with additional logarithmic terms.

Definition 0.1.3. Let µ be a positive Borel measure on Bn and 0 < s < ∞. For ρ a

positive function defined on (0, 1), we say µ is a (ρ, s)- Carleson measure if there is a

constant C > 0 such that for any ξ ∈ Sn and 0 < δ < 1,

µ(Qδ(ξ)) ≤ C
(σ(Bδ(ξ)))s

ρ(δ)
. (0.1.11)

When s = 1, µ is called a ρ-Carleson measure and if moreover ρ is a constant function,

then such measures are exactly Carleson measures. In Chapter 2, we consider the particular

case ρ(t) = ρp,q(t) = (log(4/t))p(log log(e4/t))q with 0 ≤ p, q <∞. As seen above,the case

ρ(t) = (log(4/t))p has been studied in [111]. To characterize such measures, we adapt and

extend ideas of [111] to the unit ball of Cn. Our main results are a series of criteria of

these measures. In particular, we prove:

Theorem 0.1.4. Let 0 ≤ p, q < ∞ and let µ be a positive Borel measure on Bn. Then

the following conditions are equivalent.

i) There is C1 > 0 such that for any ξ ∈ Sn and 0 < δ < 1,

µ(Qδ(ξ)) ≤ C1
σ(Bδ(ξ))

(log 4
δ )
p(log log e4

δ )q
.
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ii) For any f ∈ BMOA and any g ∈ LMOA, the measure |f(z)|p|g(z)|qdµ(z) is a

Carleson measure.

Theorem 0.1.5. Let 0 ≤ p, q <∞, 1 < s <∞. Let µ be a positive Borel measure on Bn.

Then the following conditions are equivalent.

i) There is C1 > 0 such that for any ξ ∈ Sn and 0 < δ < 1,

µ(Qδ(ξ)) ≤ C1
(σ(Bδ(ξ)))s

(log 4
δ )
p(log log e4

δ )q
.

ii) For 0 < r < ∞ and for any f ∈ B and any g ∈ LB,the measure |f(z)|p|g(z)|qdµ(z)

is a Carleson measure for Arns−(n+1)(B
n).

Among the consequences of our characterization, are boundedness criteria of the higher

dimensional version of the operator (0.1.2) on LMOA and between LMOA and BMOA.

It is a result of D. Stegenga [100] and independently of S. Janson [64] that the space of

pointwise multipliers of BMOA in the unit disc of C is exactly the intersection L∞ ∩

LMOA. This result has been extended to weighted BMOA by Janson [64]. With our

characterization, we also describe the set of pointwise multipliers of LMOA and from this

space to BMOA, extending partially to the unit ball the results of [64].

0.2 Logarithmic mean oscillation in the bidisc

Given z = reiθ ∈ D, let us denote by Iz the arc

Iz = {eiω : |ω − θ| < 1− r}.

The Carleson squares defined in the previous section can be also written as follows

S(I) = {z ∈ D : Iz ⊂ I}.

Given f ∈ L2(T) (T is the unit circle), we denote by F its Poisson extension to D. It is

well-known that a measure µ is such that there exists a constant C > 0 with∫
D
|F (z)|2dµ(z) ≤ C

∫
T
|f(eiθ)|2dθ for all f ∈ L2(T) (0.2.1)

if and only if there is a constant K with

µ(S(I)) ≤ K|I|
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for all intervals I. One could expect that in two dimension, the Carleson Embedding

(0.2.1) holds exactly for those measures µ in D×D for which there exists a constant C > 0

such that

µ(S(I × J)) ≤ C|I||J |

for all product of Carleson squares S(I × J) = S(I)× S(J) over rectangles I × J . In fact

this is not the case, as proved by Carleson by constructing a counter-example [28].

In 1979, S-Y. A. Chang proved in [29] that a measure µ satisfies the embedding (0.2.1)

in the case of the bidisc D2 if and only if there exists a constant C > 0 such that

S(Ω) ≤ C|Ω| (0.2.2)

for all connected open set Ω ⊂ T2, where

S(Ω) = {(z1, z2) ∈ D2 : S(Iz1)× S(Iz2) ⊂ Ω.}

This show how far the situation in the product spaces can be different and even compli-

cated. In 1980, S-Y. A. Chang and R. Fefferman [30] characterized the dual space of the

real Hardy space H1
Re of the bidisc defined by

H1
Re(T2) = {f ∈ L1 : H1f ∈ L1,H2f ∈ L1,H1H2f ∈ L1},

where H1 and H2 are Hilbert transforms in the first and the second variable, respectively

and the Hilbert transform is defined on L1(T) by

Hf(x) := p.v.
1
π

∫ 1

0

f(y)
tan(π(x− y))

dy. (0.2.3)

They proved that this dual space is the space of functions of bounded mean oscillation

BMO corresponding to the characterization (0.2.2) of Carleson measures in the bidisc

in the following sense: A function f belongs to BMO(T2) if and only if the measure

|∇F (z1, z2)|2 log 1
z1

log 1
z2
dz1dz1dz2dz2 is a Carleson measure on the bidisc, F being the

bi-harmonic extension of f to D2 and

|∇F (z1, z2)|2 =

(∣∣∣∣ ∂2F

∂z1∂z2

∣∣∣∣2 +
∣∣∣∣ ∂2F

∂z1∂z2

∣∣∣∣2 +
∣∣∣∣ ∂2F

∂z1∂z2

∣∣∣∣2 +
∣∣∣∣ ∂2F

∂z1∂z2

∣∣∣∣2
)

(z1, z2).

The Chang-Fefferman BMO(T2) space has been the subject of several works. Its dyadic

version for example is the right range of symbol of some bounded paraproducts between

Lebesgue spaces in product domains [21,71,84].
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Pointwise multipliers of the space of functions of bounded mean oscillation BMO(T)

are well understood. In [100], D. Stegenga proved that they correspond exactly to those

bounded functions with logarithmic mean oscillation, that is, L∞ ∩ LMO is exactly the

algebra of functions f such that the multiplication operator by f is bounded on BMO(T).

Thus, it is a natural question to ask what the pointwise multipliers of BMO(T2) are.

Our approach uses essentially dyadic techniques. Let us identify the unit circle T with

the interval [0, 1]. A dyadic interval is any interval of the form [k2−j , (k+ 1)2−j) with j, k

integers. Let hI denote the Haar wavelet adapted to the dyadic interval I,

hI = |I|−1/2(χI+ − χI−),

where I+ and I− are the right and left halves of I, respectively and χI is the characteristic

function of I. The set of functions {hI : I ∈ D} ∪ {χ[0,1]} forms an orthonormal basis for

L2([0, 1]) (see [81]). We denote by D the set of dyadic intervals in T and we denote by

R the set of all dyadic rectangles R = I × J , I and J in D. The product Haar wavelet

adapted to R = I × J is defined by hR(t, s) = hI(t)hJ(s). For f ∈ L2(T2) with mean zero

over T2 we have the representation:

f =
∑
R∈R

〈f, hR〉hR =
∑
R∈R

fRhR.

We will be writing mRf for the mean of f ∈ L2(T2) over the dyadic rectangle R.

The space of functions of dyadic bounded mean oscillation in T2, BMOd(T2), is the

space of all function f ∈ L2(T2) such that

||f ||2BMOd := sup
Ω⊂T2

1
|Ω|

∑
R∈Ω

|fR|2 = sup
Ω⊂T2

1
|Ω|

||PΩf ||22 <∞, (0.2.4)

where the supremum is taken over all open sets Ω ⊂ T2 and PΩ the orthogonal projection

on the subspace spanned by Haar functions hR, R ∈ R and R ∈ Ω. It is well-known

(see [30]) that BMOd(T2) is the dual space of the dyadic product Hardy space H1
d(T2)

defined in terms of the dyadic square function

S(f)(t, s) = (
∑

(t,s)∈R∈R

|〈f, hR〉|2

|R|
)1/2.

That is,

H1
d(T2) = {f ∈ L1(T2) : Sf ∈ L1(T2)}.

Given two function f and g in L2(T2) with finite Haar expansion, the pointwise product

f · g can be written as the following

fg = ππgf + ∆gf + π∆gf + ∆πgf +R∆gf + ∆Rgf +Rπgf + πRgf +RRgf. (0.2.5)
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The nine terms correspond to the matrix elements 〈MϕhI(s)hJ(t), hI′(s)hJ ′(t)〉 for I ′ ⊂ I,

I ′ = I, I ′ ⊂ I, I ′ ⊃ I, J ′ ⊂ J , J ′ = J , J ′ ⊃ J . The first four operators above are non

diagonal terms of the matrix, we call them “paraproducts”.

Remark 0.2.1. In one dimension, for f and b with finite Haar expansion, we have

fb = πb(f) + (πb)
∗(f) + πf (b),

where πb is the dyadic paraproduct with symbol b defined on L2(T) by

πb(f) =
∑
I∈D

bImIfhI

and its adjoint (πb)∗ = ∆b is given by

∆b(f) =
∑
I∈D

bIfI
χI
|I|
.

Thus the terms in (0.2.5) can be viewed as composition of the one dimensional operators

π, ∆ and R. We have in particular

ππϕ(f) =
∑
R∈R

hRϕRmRf.

Continuous versions of Paraproducts first appeared in the work of Bony [26] in relation

with non linear differential equations. Since then they have appeared as important tool in

Harmonic Analysis and have been extensively studied [21, 54, 71–73, 75, 76, 78, 87]. Their

importance can be illustrated from the T (1) theorem of David and Journé [69] which claims

that many singular integral operators T can be written as T = S + πb + (πb)∗, where S is

an almost translation invariant (or convolution) operator.

In Chapter 3, we study the boundedness of the four paraproducts in (0.2.5) onBMOd(T2).

For this, we introduce some notions of functions of logarithmic mean oscillation in T2 that

generalize the one dimensional one.

Definition 0.2.2. Let ϕ ∈ L2(T2). Then ϕ ∈ LMOd(T2), if and only if there exists C > 0

such that for each dyadic rectangle R = I × J and each open set Ω ⊆ R,

log( 4
|I|)

2 log( 4
|J |)

2

|Ω|
∑

Q∈R,Q⊆Ω

|ϕQ|2 ≤ C.

As a key result, we obtain the following.

Theorem 0.2.3. Let ϕ ∈ L2(T2). Then ϕ ∈ LMOd(T2), if and only if ππϕ : BMOd(T2) →

BMOd(T2) is bounded, and ‖ππϕ‖BMOd→BMOd ≈ ‖ϕ‖LMOd.
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Given two positive quantities A and B which depend on parameters α1, α2, · · · , the

notation A ≈ B means that

cB ≤ A ≤ CB

where c and C are independent of some or all of the parameters α1, α2, · · · . Although not

normally stated explicitly, it is usually clear from the context which parameters c and C

are independent of. There are analogous definitions for the notation ∼, . and & which

are used later. The proofs in this chapter use a decomposition of the operators as a sum

of localized operators satisfying some good estimates, and Cotlar’s lemma.

In Chapter 4, using the results of Chapter 3, we characterize the algebra of pointwise

multipliers of BMO(T2). Let LMO(T2) be the intersection of all dyadic LMO(T2) obtained

by translating the original dyadic grid R, and let lmo(T2) be the set defined as follows:

lmo(T2) = {b ∈ L2(T2) : ∃C > 0 such that ‖m(1)
I b‖LMO(T) ≤ C,

‖m(2)
J b‖LMO(T) ≤ C for all intervals I, J ⊂ T}.

We prove exactly the following result.

Theorem 0.2.4. The set of pointwise multipliers of BMO(T2) is the intersection lmo(T2)∩

LMO(T2) ∩ L∞(T2).

0.3 Hardy-type inequalities and Analytic Besov spaces in

tubular domains over symmetric cones

Let D be a domain in Cn and denote by dV the Lebesgue measure in Cn. The Bergman

space A2(D) is the closed subspace of the Lebesgue space L2(D, dV ) consisting of holo-

morphic functions in D. Let us denote by P the orthogonal projection from L2(D, dV )

onto A2(D). P is given by

Pf(z) =
∫
D
B(z, w)f(w)dV (w), f ∈ L2(D, dV ) (0.3.1)

where B(., .) is the Bergman kernel of D.

A main concern in the kind of analysis we are interested in is the characterization of

those p ∈ [1,∞[ for which P extends as a bounded operator from Lp(D, dV ) into itself.

The answer to this question is completely known in one dimension. Indeed, in the case

of unit disc D or the upper-half plane C+ of C, it is well-known that P is bounded on
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Lp(D, dV ) if and only if 1 < p < ∞ (see [12, 59, 88]). The one dimensional result has

been extended to the unit ball of Cn by F. Forelli and W. Rudin [48] in 1974. For general

domains, the question is still open. The case of pseudo-convex and bounded domains

of Cn has been considered in [39, 43, 82]. Partial results have been obtained by various

authors in various settings specially for Siegel domains of type II and tubular domains

over homogeneous cones [9, 10,12,14,17,18,38,56,77].

The interest of the above question can be illustrated by some of its consequences among

which is the fact that if P extends as a bounded operator on Lp(D, dV ), p > 1, then the

dual space of the Bergman space Ap(D) identifies with the Bergman space Ap
′
(D) where

1
p + 1

p′ = 1. Consequently, denoting by (Ap(D))∗ the dual of the Bergman space Ap(D),

we raise the following question: Is there any equivalence between the boundedness of P

and the surjectivity of the natural mapping between (Ap(D))∗ and Ap
′
?

In one dimension, it is well-known that a function f belongs to the Bergman space Ap

if and only if the function (1− |z|2)f ′(z) is in Lp(D, dV ) and there are constants c, C > 0

such that

c

∫
D
|f(z)|pdV (z) ≤

∫
D

[
(1− |z|2)|f ′(z)|

]p
dV (z) ≤ C

∫
D
|f(z)|pdV (z). (0.3.2)

If the second inequality can be extended to higher dimension using the mean value in-

equality, the first one (Hardy inequality) is not so natural for all exponents p and for

more general domains in Cn. Thus, we pose our second question, which is to know if the

boundedness of P is equivalent to the validity of the corresponding Hardy inequality in

such domains.

Note that if the equivalent formulation in the domain D of the first inequality in

(0.3.2) does not hold for some p, this implies that the Bergman space Ap(D) differs from

the space of those analytic functions f for which the corresponding weighted derivative

(corresponding to (1 − |z|2)f ′(z) in one dimension) belongs to Lp(D, dV ). These spaces

are known as Besov spaces and have been studied in the case of bounded domains by

several authors [1, 109,110,116]. We also raise the problem of understanding their theory

in general unbounded domains of Cn.

We consider the above three questions in this part of the thesis in the setting of tube

domains over symmetric cones where some related work has been carried out in [13,14,22].
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0.3.1 Bergman-type operators on tube domains over symmetric cones

Let V be a real vector space of dimension n, endowed with the structure of a simple

Euclidean Jordan algebra. We consider an irreducible symmetric cone Ω inside V = Rn

and denote by TΩ = V + iΩ the corresponding tube domain in the complexification of V .

Here, V is endowed with an inner product (·|·) for which the cone Ω is self-dual. These

domains can be seen as multidimensional analogues of the upper half plane in C. A typical

example arises when Ω is the forward light-cone of Rn, n ≥ 3,

Λn =
{
y ∈ Rn : y2

1 − y2
2 − . . .− y2

n > 0, y1 > 0
}
.

Other examples correspond to the cones Sym+(r,R) of positive definite symmetric r × r-

matrices. We refer to the text [40] for a general description of symmetric cones. Following

the notation in [40] we write r for the rank of Ω and ∆(x) for the associated determinant

function. In the above examples, light-cones have rank 2 and determinant equal to the

Lorentz form ∆(y) = y2
1 − y2

2 − . . .− y2
n, while the cones Sym+(r,R) have rank r and the

determinant is the usual determinant of r × r matrices. We shall denote by H(TΩ) the

space of holomorphic functions on TΩ.

Given 1 ≤ p, q <∞ and ν ∈ R, the mixed norm Lebesgue space Lp,qν (TΩ) is defined by

the integrability condition

||f ||Lp,q
ν

:=

[∫
Ω

(∫
Rn

|f(x+ iy)|pdx
) q

p

∆ν−n
r (y)dy

] 1
q

<∞. (0.3.3)

The mixed norm weighted Bergman space Ap,qν (TΩ) is then the closed subspace of Lp,qν (TΩ)

consisting of holomorphic functions on the tube TΩ. These spaces are nontrivial only when

ν > n
r − 1 (see [12]). When p = q we shall simply write Ap,pν = Apν . The usual Bergman

space Ap then corresponds to the case ν = n
r .

The weighted Bergman projection Pν is the orthogonal projection from the Hilbert

space L2
ν(TΩ) onto its closed subspace A2

ν(TΩ) and it is given by the integral formula

Pνf(z) =
∫
TΩ

Bν(z, w)f(w)∆ν−n
r (=w)dV (w) (0.3.4)

where

Bν(z, w) = dν∆−ν−n
r (
z − w

i
) (0.3.5)

is the weighted Bergman kernel, dν = 2rν

(2π)n

ΓΩ(ν+n
r
)

ΓΩ(ν) and dV is the Lebesgue measure on

Cn(see [12]).
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The Lp,qν -boundedness of the Bergman projection Pν is still an open problem and has

attracted a lot of attention in recent years (see [14], [10], [9], [13]). To date, it is only

known that this projection extends as a bounded operator on Lp,qν for general symmetric

cones for the range 1 ≤ p <∞ and q′ν,p < q < qν,p, with qν,p = min{p, p′}qν , qν = 1 + ν
n
r
−1

and 1
p + 1

p′ = 1 (see for example [13]) with slight improvements over this range in the case

of light-cones (see [52]).

In this chapter, we consider the Lp,qν -boundedness of a family of operators generalizing

the Bergman projection . This family is given by the integral operators T = Tα,β,γ and

T+ = T+
α,β,γ defined on C∞c (TΩ) by the formulas

Tf(z) = ∆α(=z)
∫
TΩ

Bγ(z, w)f(w)∆β(=w)dV (w),

and

T+f(z) = ∆α(=z)
∫
TΩ

|Bγ(z, w)|f(w)∆β(=w)dV (w).

Remark 0.3.1. The boundedness of T+ on Lp,qν (TΩ) implies the boundedness of T , al-

though the boundedness of T is typically expected in a larger range than T+.

The boundedness of this family of operators on Lp,qν (TΩ) has been considered in [14]

for the case Pµ = T0,µ−n
r
,µ and in [10] for T0,µ−n

r
,µ+m. Both works deal with the case

of the light cone. Here, we consider the problem of the boundedness of the operator T+

for general symmetric cones and obtain optimal results for this operator. For this, we

systematically make use of the methods of [14] and [10]. We mention that the case p = q

for general symmetric cones was implicit in [17]. Our results can be stated in the following

way.

Theorem 0.3.2. Suppose ν ∈ R and 1 ≤ p, q < ∞. Then the following conditions are

equivalent:

(a) The operator T+
α,β,γ is bounded on Lp,qν (TΩ).

(b) The parameters satisfy γ = α+ β + n
r , α+ β > −1 and

max{−qα+
n

r
−1, q(−α+

n

r
−1)−n

r
+1} < ν < min{q(β+1)+

n

r
−1, q(β+

n

r
)−n

r
+1}.

Theorem 0.3.3. The operator T+
α,β,γ is bounded on L∞(TΩ) if and only if α > n

r − 1,

β > −1 and γ = α+ β + n
r .

As application, we characterize the dual space of Bergman spaces in some cases where

the Bergman projection is not necessarily bounded.
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0.3.2 Analytic Besov spaces in tubular domains over symmetric cones

We still denote by TΩ the symmetric domain of tube type TΩ = Rn + iΩ where Ω is an

irreducible symmetric cone in Rn.

A major open question in these domains concerns the Lp boundedness of the Bergman

projection [9, 13, 14]. Let Apν(TΩ) denote the subspace of holomorphic functions in Lpν =

Lp(TΩ,∆(y)ν−n/rdx dy). These spaces are non trivial (i.e. Apν 6= {0}) only if ν > n
r − 1

(see [38]). The usual (unweighted) Bergman spaces Ap(TΩ) correspond to ν = n
r . Let Pν

be the orthogonal projection mapping L2
ν(TΩ) into A2

ν(TΩ). Let us write

(1− x)+ =

1− x if 1− x > 0

0 otherwise

CONJECTURE 1. Let ν > n
r − 1. Then the Bergman projection Pν admits a bounded

extension to Lpν(TΩ) if and only if

p′ν < p < pν :=
ν + 2n

r − 1
n
r − 1

− (1− ν)+
n
r − 1

.

The necessity of the condition above was proved in [13]. The conjecture concerns the

sufficiency. Note that the summand involving (1− ν)+ in the second term only occurs in

the three dimensional forward light-cone (n = 3 and r = 2), where ν is allowed to take

values below 1.

The problem of Lp-continuity of the Bergman projection has been studied in the papers

[9, 11, 13, 14], and completely settled for large ν in the case of light cones in [13]. Let us

write

p̃ν :=
ν + 2n

r − 1
n
r − 1

.

Then the necessary condition p < p̃ν is given by the fact that by duality, the Bergman

kernel has to belong to the dual space Lp
′
ν (TΩ) . As far as sufficient conditions are con-

cerned, we refer to [52,53] for the best sufficient conditions that are known, up to now, in

the case of light cones. In general, it is proved in [13,14] that the Bergman projection Pν

is bounded in Lpν(TΩ) for

p̄′ν < p < p̄ν :=
ν + 2n

r − 2
n
r − 1

.

Let 2 = ∆(1
i
∂
∂x) denote the differential operator of degree r defined by the equality:

2 [ei(x|ξ)] = ∆(ξ)ei(x|ξ), ξ ∈ Rn. (0.3.6)



xviii

In cones of rank 1 and 2 this corresponds to −i∂x (when TΩ is the upper-half-plane) and

−(∂2
x1
− ∂2

x2
− . . . − ∂2

xn
)/4 (when TΩ is the forward light cone), which justifies the name

of “wave operator” given to ∆. We denote by 2z the extension of the operator 2 to Cn

given by 2z = ∆(1
i
∂
∂x). When there is no ambiguity, we write 2 instead of 2z.

In this chapter, instead of improving the above results, we will be concerned with

equivalent formulations of Conjecture 1 and some consequences in the formulation of the

theory of analytic Besov spaces in these settings. Our first result is the answer to the

question of the equivalence between the boundedness of the Bergman projection and the

validity of a Hardy inequality.

Theorem 0.3.4. Let ν > n
r − 1. Then, for p ≥ 2, the Bergman projection Pν admits

a bounded extension to Lpν(TΩ) if and only if there exists a constant C such that, for all

F ∈ Apν we have∫ ∫
TΩ

|F (x+ iy)|p ∆ν−n
r (y) dx dy ≤ C

∫ ∫
TΩ

∣∣∆(y)2F (x+ iy)
∣∣p ∆ν−n

r (y) dx dy. (0.3.7)

Such an inequality is called a Hardy Inequality by reference to the one dimensional

case.

We note that the reverse inequality always holds and that (0.3.7) is always valid when

1 ≤ p ≤ 2, as it can be proved, for instance, from an explicit formula for F in terms

of 2F involving the fundamental solution of the Box operator (see [22]). However, in

this range (7.1.3) has no implications in terms of boundedness of Bergman projections.

Hardy’s inequalities have been also considered in [22]. In [14], for forward light cones,

Hardy’s inequalities were used as a key argument for proving the continuity of the Bergman

projection.

The second equivalent formulation of Conjecture 1 concerns duality.

Theorem 0.3.5. Let ν > n
r − 1 and 1 < p <∞. Then Pν admits a bounded extension to

Lpν(TΩ) if and only if the natural mapping of Ap
′
ν into (Apν)∗ is an isomorphism.

Remark 0.3.6. If p > p̃′ν , then the inclusion Φ : Ap
′
ν ↪→ (Apν)∗ is injective, and hence

boundedness of Pν is actually equivalent to surjectivity of Φ. When p ≥ p̃ν these two

properties fail, and (Apν)∗ is a space strictly larger than Ap
′
ν which we do not know how to

identify.

The two theorems above give two equivalent formulations of the boundedness of the

Bergman projection for p > 2. They are proved in Section 3. When 1 ≤ p < 2 is such
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that the projection Pν is not bounded, then we can still describe the dual space of Apν

in terms of equivalence classes of holomorphic functions, and more precisely in terms of

Besov spaces. We define analytic Besov spaces Bpν , for ν ∈ R and 1 ≤ p <∞, by

Bpν := {F : ∆m(=·)2mF ∈ Lpν}

for m large enough. The smallest possible value for m in the above definition is related

to the validity of the Hardy inequality for some other weight, and one has to deal with

equivalence classes modulo holomorphic functions that are annihilated by powers of the

Box operator when m cannot be taken equal to 0. For the one dimensional case and

bounded symmetric domains, we refer to [47, 115, 116]. Here, compared to the case of

bounded symmetric domains, it is more difficult to deal with equivalence classes.

Let us mention the following special family of Besov spaces corresponding to the weight

ν = −n/r in the above definition that is,

Bp =
{
F ∈ H(TΩ) : ∆m(=·)2mF ∈ Lp(dλ)

}
.

Here dλ = ∆− 2n
r (y)dx dy denotes the invariant measure under conformal transformations

of TΩ. These are the analogue for TΩ of the Besov spaces introduced by Arazy and Yan

in bounded symmetric domains [1,109,110]. The space Bp is the right range of symbols of

Hankel operators in the Schatten class Sp [24,115]. For p = ∞, the Besov space is known

as the Bloch space (see e.g. [7, 8]).

In Section 4, we study several properties of these spaces such as duality, integral

representation, complex interpolation, and real analysis characterization in a point of

view provided by [13]. We also discuss the problem of the minimum number of derivatives

in the definition of Besov spaces.

0.3.3 Hankel operators on Bergman spaces of tube domains over sym-

metric cones

Let b ∈ L2(TΩ) = L2(TΩ, dV ). The small Hankel operator hb with symbol b is defined as

hb(f) = P (bf) (0.3.8)

for f ∈ H∞(TΩ).

The aim of this chapter is to give criteria for Schatten class (Sp) membership of Hankel

operators on the Bergman space A2(TΩ). This problem has been considered in [2], [65] for
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the case of the unit disc of the complex plane, and in [116] and [115] for bounded symmetric

domains. Some earlier works were done in [1], [35], [61], [80] and [90] in various domains

including the upper half plane. It is shown in those cases that the small Hankel operator

is in the Schatten class Sp if and only if its symbol belongs to the corresponding Besov

space Bp. Let us mention that the same problem for Hardy space of tube domains over

symmetric cones was considered in [24] where it is stated that classical result extends to

this case at least for 1 ≤ p ≤ 2. Combining techniques of [24,115], we prove that classical

results (see [115] for example) extend to the tube domains over symmetric cones for the

range 1 ≤ p ≤ ∞. When the symbol is analytic and 1 ≤ p ≤ ∞, we also obtain criteria

in terms of the action of the operator on the reproducing kernel, here, “the reproducing

kernel thesis”. This last characterization appears in [98] for the same problem in the case

of Hardy space of the unit disc.
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Part I

Carleson-type measures in the

unit ball of Cn

1



Chapter 1

Preliminaries

In this chapter we introduce some basic properties of the unit ball. Results of this chapter

will be used in the next chapter.

1.1 Basic properties of the unit ball

Let n be a positive integer and let

Cn = C× · · · × C

denote the n dimensional complex Euclidean space.

For z = (z1, . . . , zn) and w = (w1, . . . , wn) in Cn, we write

〈z, w〉 = z1w1 + · · ·+ znwn

and

|z| =
√
|z1|2 + · · ·+ |zn|2.

The open unit ball in Cn is the set

Bn = {z ∈ Cn : |z| < 1}.

The boundary of Bn will be denoted by Sn and is called the unit sphere in Cn. Thus

Sn = {z ∈ Cn : |z| = 1}.

Remark 1.1.1. In one dimension (when n = 1) one speaks of the unit disc that is the set

D = {z ∈ C : |z| < 1}.

2
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Its boundary is the unit circle T defined as

T = {z ∈ C : |z| = 1}.

A function f : Bn → C is said to be holomorphic in Bn if

f(z) =
∑
m

c(m)zm, z ∈ Bn. (1.1.1)

Here the summation is over all multi-indexes

m = (m1, . . . ,mn),

where each mk is a nonnegative integer and

zm = zm1
1 · · · zmn

n .

The series in (1.1.1) is called the Taylor expansion of f at the origin; it converges absolutely

and uniformly on each of the sets

rBn = {z ∈ Cn; |z| ≤ r}, 0 < r < 1.

If we let

fk(z) =
∑
|m|=k

c(m)zm

for each k ≥ 0, where

|m| = m1 + · · ·+mn,

then the Taylor series of f can be rewritten as

f(z) =
∞∑
k=0

fk(z).

This is called the homogeneous expansion of f ; each fk is a homogeneous polynomial of

degree k. Both the Taylor and the homogeneous expansion of f are uniquely determined

by f .

For a multi-index m = (m1, . . . ,mn) we will employ the notation

m! = m1! · · ·mn!.

In particular, we have the multinomial formula

(z1 + · · ·+ zn)N =
∑
|m|=N

N !
m!
zm.

We will denoted by H (Bn) the space of all holomorphic functions in Bn.
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1.1.1 The automorphism group

A mapping F : Bn → CN , where N is a positive integer, is given by N functions as follows:

F (z) = (f1(z), . . . , fN (z)), z ∈ Bn.

We say that F is a holomorphic mapping if each fk is holomorphic in Bn.

A mapping F : Bn → Bn is said to be bi-holomorphic if F is one-to-one and onto and

F and its inverse, F−1, are holomorphic.

The automorphism group of Bn, denoted by Aut(Bn), consists of all biholomorphic

mappings of Bn. If ϕ ∈ Aut(Bn) with ϕ(a) = 0 (a 6= 0), then there is a linear fractional

map ϕa on Bn and a unitary transformation of Cn such that ϕ = Uϕa. The fractional

linear map ϕa is given by

ϕa(z) =
a− Paz − (1− |a|2)1/2Qaz

1− 〈z, a〉
, z ∈ Bn, (1.1.2)

where Pa is the orthogonal projection from Cn onto the one dimensional subspace [a]

generated by a, and Qa = I − Pa. We clearly have

Pa = 〈·, a〉a/‖a‖2.

When a = 0, we simply take ϕa(z) = −z.

Lemma 1.1.2. For each a ∈ Bn the mapping ϕa satisfies

1− 〈ϕa(z), ϕa(w)〉 =
(1− 〈a, a〉)(1− 〈z, w〉)
(1− 〈z, a〉)(1− 〈a,w〉)

(1.1.3)

for all z and w in the closed unit ball Bn = Bn ∪ Sn.

Moreover, for each a ∈ Bn,

ϕa ◦ ϕa(z) = z , z ∈ Bn.

In particular, each ϕa is an automorphism of Bn that interchanges the points 0 and a.

Observe that in (1.1.3), if we take z = w, we obtain the useful relation

1− |ϕa(z)|2 =
(1− |a|2)(1− |z|2)

|1− 〈z, a〉|2
. (1.1.4)
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1.1.2 Lebesgue spaces

Most spaces considered in of the thesis will be defined in terms of Lp integrals of a function

or its derivatives. The measures we use in these integrals for this part of the thesis are

based on the volume measure on the unit ball or the surface measure on the unit sphere.

We refer to [117] for the results in this section.

We let dV denote the volume measure on Bn, normalized such that V (Bn) = 1. The

surface measure on Sn will be denoted by dσ. Once again, we normalize σ such that

σ(Sn) = 1. The next lemma gives an integration formula in polar coordinates.

Lemma 1.1.3. The measures m and σ are related by∫
Bn

f(z)dV (z) = 2n
∫ 1

0
r2n−1dr

∫
Sn

f(rξ)dσ(ξ).

dV and dσ are invariant under unitary transformations. For α > −1, we define the

finite measure

dVα(z) = cα(1− |z|2)αdV (z),

where cα is a normalizing constant such that Vα(Bn) = 1. Using polar coordinates, we can

show that

cα =
Γ(n+ α+ 1)
n!Γ(α+ 1)

.

When α ≤ −1, we simply write

dVα(z) = (1− |z|2)αdm(z).

All the measures dVα, α ∈ R, are also unitary invariant (or rotation invariant), that is,

∫
Bn

f(Uz)dVα(z) =
∫

Bn

f(z)dVα(z)

for all f ∈ L1(Bn, dVα) and all unitary transformations U of Cn. As a consequence, we

obtain that ∫
Sn

ξmξldσ(ξ) = 0,
∫

Bn

zmzldVα(z) = 0,

if m and l are multi-indexes of nonnegative integers with m 6= l. When m = l, we have

the following formulas.

Lemma 1.1.4. Suppose m = (m1, . . . ,mn) is a multi-index of nonnegative integers and

α > −1. Then ∫
Sn

|ξm|2dσ(ξ) =
(n− 1)!m!

(n− 1 + |m|)!
,
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and ∫
Bn

|zm|2dVα(z) =
m!Γ(n+ α+ 1)

Γ(n+ |m|+ α+ 1)
.

As a consequence of the above lemma and Stirling’s formula, one obtain the following

asymptotic estimates for certain important integrals on the ball and the sphere.

Theorem 1.1.5. Suppose s is real and t > −1. Then the integrals

Is(z) =
∫

Sn

dσ(ξ)
|1− 〈z, ξ〉|n+s

, z ∈ Bn,

and

Js,t(z) =
∫

Bn

(1− |w|2)tdV (w)
|1− 〈z, w〉|n+1+t+s

, z ∈ Bn,

have the following asymptotic properties.

(1) If s < 0, then Is and Js,t are both bounded in Bn.

(2) If s = 0, then

Is(z) ∼ Js,t(z) ∼ log
1

1− |z|2

as |z| → 1−.

(3) If s > 0, then

Is(z) ∼ Js,t(z) ∼ (1− |z|2)−s.

as |z| → 1−.

The notation A ∼ B means that one can find a positive constant M such that

1
M
B ≤ A ≤MB.

1.2 Various derivatives of a holomorphic function

In this section we introduce some notions of differentiation on Bn that we will need in the

next chapter. The most basic one is the standard partial differentiation, that is ∂f
∂z . We

also give a well-known integration formula. We first introduce the very important notion

of the radial derivative in the unit ball.

The radial derivative Rf of a holomorphic function f is given by

Rf(z) =
n∑
j=1

zj
∂f

∂zj
(z).
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For a holomorphic function f in Bn we write

∇f(z) =
(
∂f

∂z1
(z), · · · , ∂f

∂zk
(z)
)

(1.2.1)

and call |∇f(z)| the (holomorphic) gradient of f at z. We also define

∇̃f(z) = ∇(f ◦ ϕz)(0) (1.2.2)

where ϕz is the biholomorphic mapping of Bn that interchanges 0 and z, and call |∇̃f(z)|

the invariant gradient of f at z.

Lemma 1.2.1. If f is holomorphic in Bn, then

|∇̃f(z)|2 = (1− |z|2)(|∇f(z)|2 − |Rf(z)|2)

for all z ∈ Bn.

The proof of the above lemma which uses the notion of the invariant Laplacian can be

found in [117].

Lemma 1.2.2. If f is holomorphic in Bn, then

(1− |z|2)|Rf(z)| ≤ (1− |z|2)|∇f(z)| ≤ |∇̃f(z)|

for all z ∈ Bn.

Proof. By the Cauchy-Schwarz inequality for Cn,

|Rf(z)| ≤ |z||∇f(z)| ≤ |∇f(z)|.

This gives the first inequality. Now, using the inequality |Rf(z)| ≤ |z||∇f(z)|, we obtain

from Lemma 1.2.1:

|∇̃f(z)|2 ≥ (1− |z|2)(|∇f(z)|2 − |z|2|∇f(z)|2) = (1− |z|2)2|∇f(z)|2.

The proof is complete.

The following lemma can be proved using integration by parts (see [92]) .

Lemma 1.2.3. Let f, g be holomorphic polynomials on Bn. Then the following identity

holds∫
Sn

f(ξ)g(ξ)dσ(ξ) = C1

∫
Bn

f(z)g(z)dV (z) + C2

∫
Bn

Rf(z)g(z)(1− |z|2)dV (z) +

C3

∫
Bn

f(z)Rg(z)(1− |z|2)dV (z)

C1, C2 and C3 being constants independent of f and g.
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1.3 The Bergman Metric

The function

K(z, w) =
1

(1− 〈z, w〉)n+1

is called the Bergman kernel of Bn. The Bergman matrix is the n × n complex matrix

B(z) = (bij(z)) with entries

bij(z) =
∂2

∂zi∂zj
logK(z, z).

The Bergman matrix is positive and invertible. Moreover, it is invariant under automor-

phisms of Bn, that is,

B(z) = (ϕ′(z))∗B(ϕ(z))ϕ′(z)

for all z ∈ Bn and ϕ ∈ Aut(Bn).

For a smooth curve γ : [0, 1] → Bn we define

`(γ) =
∫ 1

0

 n∑
i,j=1

bij(γ(t))γ̇i(t)γ̇j(t)

1/2

dt

=
∫ 1

0
〈B(γ(t))γ′(t), γ′(t)〉1/2dt.

This definition generalizes to the case of piecewise smooth curves. Thus we can define

metric β : Bn × Bn → [0,∞) as follows: for any two points z and w in Bn, let β(z, w) be

the infimum of the set consisting of all `(γ), where γ is a piecewise smooth curve in Bn

from z to w. That β is a metric follows easily from the positivity of B(z). β is called the

Bergman metric on Bn. The following proposition is a consequence of the invariance of

the Bergman matrix under automorphism.

Proposition 1.3.1. The Bergman metric is invariant under automorphisms, that is,

β(ϕ(z), ϕ(w)) = β(z, w)

for all z, w ∈ Bn and ϕ ∈ Aut(Bn).

Using invariance again and other easy properties of the Bergman matrix, one proves

the following.

Proposition 1.3.2. If z and w are points in Bn, then

β(z, w) =
1
2

log
1 + ϕz(w)
1− ϕz(w)

,

where ϕz is the involutive automorphism of Bn that interchanges 0 and z.
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For a ∈ Bn and r > 0 we let D(a, r) denote the Bergman metric ball centered at a

with radius r. Thus

D(a, r) = {z ∈ Bn : β(a, z) < r}.

For any ξ ∈ Sn and δ > 0, let

Qδ(ξ) = {z ∈ Bn : |1− 〈z, ξ〉| < δ}.

These are the higher dimension analogues of Carleson regions. We have the follow-

ing asymptotic estimates of the volumes Vα(D(a, r)) =
∫
D(a,r) dVα(z) and Vα(Qδ(ξ)) =∫

Qδ(ξ) dVα(z).

Lemma 1.3.3. For any real α ∈ R and r > 0 there exist constants Cα,r > 0 and cα,r > 0

such that

cα,r(1− |a|2)n+1+α ≤ Vα(D(a, r)) ≤ Cα,r(1− |a|2)n+1+α

for all a ∈ Bn.

Lemma 1.3.4. For any α > −1 there exist constants Cα > 0 and cα > 0 such that

cαδ
n+1+α ≤ Vα(Qδ(ξ)) ≤ Cαδ

n+1+α

for all ξ ∈ Sn and 0 ≤ δ ≤ 1.

Remark 1.3.5. We refer to [117] for the proof of results of this section.



Chapter 2

On some equivalent definitions of

ρ- Carleson measures on the unit

ball

We give in this chapter some equivalent definitions of the so called ρ-Carleson measures

when ρ(t) = (log(4/t))p(log log(e4/t))q, 0 ≤ p, q <∞. As applications, we characterize the

pointwise multipliers on LMOA(Sn) and from this space to BMOA(Sn). Boundedness of

the Cesàro type integral operators on LMOA(Sn) and from LMOA(Sn) to BMOA(Sn) is

considered as well. The case ρ(t) = (log(4/t))p was considered in [111] which also inspired

this work.

2.1 Holomorphic function spaces and Carleson measures in

the unit ball

2.1.1 Some holomorphic function spaces in the unit ball of Cn

We define here various holomorphic function spaces appearing in this chapter. We refer

to the book [117] for the proof of different assertions stated below.

Recall that for α > −1 the weighted Lebesgue measure dVα is defined by

dVα(z) = cα(1− |z|2)αdV (z), (2.1.1)

where

cα =
Γ(n+ α+ 1)
n!Γ(α+ 1)

(2.1.2)

10
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is a normalizing constant so that Vα(Bn) = 1.

Definition 2.1.1. For α > −1 and 0 < p < ∞, the weighted Bergman space Apα(Bn)

consists of the holomorphic functions f in Lp(Bn, dVα), that is

Apα(Bn) = Lp(Bn, dVα)
⋂
H(Bn). (2.1.3)

We use the notation

||f ||pp,α :=
∫

Bn

|f(z)|pdVα(z) (2.1.4)

for f ∈ Lp(Bn, dVα).

Definition 2.1.2. For 0 < p <∞ the Hardy space Hp(Bn) is the space of all f ∈ H(Bn)

such that

||f ||pp := sup
0<r<1

∫
Sn

|f(rξ)|pdσ(ξ) <∞. (2.1.5)

The space of all bounded holomorphic functions in Bn will be denoted H∞(Bn).

For any ξ ∈ Sn and δ > 0, let

Bδ(ξ) = {w ∈ Sn : |1− 〈w, ξ〉| < δ},

and

Qδ(ξ) = {z ∈ Bn : |1− 〈z, ξ〉| < δ}.

These are the higher dimension analogues of Carleson regions. For f ∈ H1(Bn), we still

denote f(ξ), for ξ ∈ Sn, the admissible limit at the boundary, which exists a.e (see e.g. [92]).

We recall that the space of functions of bounded mean oscillation in Bn BMOA(Sn)

is the space of all f ∈ H1(Bn) such that

sup
B=Bδ(ξ),

δ∈(0,1),ξ∈Sn

1
σ(B)

∫
B
|f − fB|dσ ≤ C.

Here and anywhere else, fB denotes the mean-value of f on B.

The space BMOA is Banach space when equipped with the norm

||f ||BMOA = |f(0)|+ sup
B=Bδ(ξ),

δ∈(0,1),ξ∈Sn

1
σ(B)

∫
B
|f − fB|dσ.

We now define the space of functions of logarithmic mean oscillation LMOA.

Definition 2.1.3. A function f belongs to LMOA if f ∈ H1(Bn) and there exists a

constant C > 0 so that

sup
B=Bδ(ξ),

δ∈]0,1[,ξ∈Sn

log 4
δ

σ(B)

∫
B
|f − fB|dσ ≤ C.
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The space LMOA is Banach space when equipped with the norm

||f ||LMOA = |f(0)|+ sup
B=Bδ(ξ),

δ∈]0,1[,ξ∈Sn

log 4
δ

σ(B)

∫
B
|f − fB|dσ.

The spaces BMOA and LMOA belong both to a more general class of holomorphic

functions.

Definition 2.1.4. Let ρ be a positive non-increasing function defined on (0, 1). The

space of functions of ρ-bounded mean oscillation BMOAρ is the space of all f ∈ H1(Bn)

for which there exists a constant C > 0 so that

sup
B=Bδ(ξ),

δ∈(0,1),ξ∈Sn

ρ(δ)
σ(B)

∫
B
|f − fB|dσ ≤ C.

Here and anywhere else, fB denotes the mean-value of f on B.

The space BMOAρ is Banach space when equipped with the norm

||f ||BMOAρ = |f(0)|+ sup
B=Bδ(ξ),

δ∈]0,1[,ξ∈Sn

ρ(δ)
σ(B)

∫
B
|f − fB|dσ

(see [99, 117]). When ρ is a constant function, the above space is the usual space of

functions of bounded mean oscillation BMOA and for ρ(t) = log(1
t ) this corresponds to

the space of functions of logarithmic mean oscillation LMOA

Let us recall the following definition of the Bloch space of the unit ball of Cn.

Definition 2.1.5. The Bloch space B consists of all f ∈ H(Bn) such that

||f ||B = |f(0)|+ sup
z∈Bn

|Rf(z)|(1− |z|2) <∞ (2.1.6)

where Rf is the radial derivative of f defined in the previous chapter.

We now introduce the following generalized α-logarithmic-type Bloch spaces.

Definition 2.1.6. For 0 ≤ p, q <∞ and α > 0. Let Bp,qα denote the space of holomorphic

functions f such that

sup
z∈Bn

(1− |z|2)α|Rf(z)|(log
4

1− |z|2
)p(log log

e4

1− |z|2
)q <∞.

These can be seen as special case of the so called µ-Bloch spaces (see for example [62])

and one has that Bp,qα are Banach spaces with the norm

||f ||Bp,q
α

= |f(0)|+ sup
z∈Bn

(1− |z|2)α|Rf(z)|(log
4

1− |z|2
)p(log log

e4

1− |z|2
)q <∞.
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The usual Bloch space B then corresponds to the case α = 1 and p = q = 0 while

B0,0
α = Bα are the so called α- Bloch spaces (see [117] ) and B1,1

1 = LB is the so-called

logarithmic Bloch space. Moreover, BMOA continuously embeds in B and LMOA embeds

continuously in LB (see [117]).

2.1.2 Carleson measures on the unit ball of Cn

We recall here the definition of Carleson measures and their equivalent characterizations

in the unit ball. We also introduce Carleson measures with weight.

Definition 2.1.7. Let µ denote a positive Borel measure on Bn. Then for 0 < s < ∞,

the measure µ is called a s-Carleson measure, if there is a finite constant C > 0 such that

for any ξ ∈ Sn and any 0 < δ < 1,

µ(Qδ(ξ)) ≤ C(σ(Bδ(ξ)))s. (2.1.7)

When s = 1, µ is just called Carleson measure. The infinimum of all these constants C

will be denoted by ||µ||s. We will also use ||µ|| to denote ||µ||1. The following theorem is

the higher dimension version of the theorem of L.Carleson [27] and its reproducing kernel

formulation.

Theorem 2.1.8. For a positive Borel measure µ on Bn, and 0 < p < ∞, the following

are equivalent

i) The measure µ is a Carleson measure

ii) There is a constant C1 > 0 such that for all f ∈ Hp(Bn),∫
Bn

|f(z)|pdµ(z) ≤ C1||f ||pp.

iii) There is a constant C2 > 0 such that for all a ∈ Bn,∫
Bn

(1− |a|2)n

|1− 〈a,w〉|2n
dµ(w) < C2.

We say two positive constant K1 and K2 are comparable, denoted by K1 ≈ K2, if there

is an absolute positive constant M such that

M−1 ≤ K1

K2
≤M.

We note that the constants C1, C2 in Theorem 2.1.8 are both comparable to ||µ||. Assertion

ii) in Theorem 2.1.8 is the usual definition of Carleson measures (for Hardy spaces). The
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characterization of these measures in the unit disc is due to Carleson [27] and its extension

to the unit ball is due to Hörmander [60]. The proof of the above theorem can be found

in [117].

The characterization of Carleson measures for Bergman spaces in the unit ball of Cn

is due to Cima and Wogen [32]. We have the following theorem in [117] and [113].

Theorem 2.1.9. For a positive Borel measure µ on Bn, s > 1 and 0 < p < ∞, the

following are equivalent

i) The measure µ is a s-Carleson measure

ii) There is a constant K1 > 0 such that, for all f ∈ Apns−(n+1),∫
Bn

|f(z)|pdµ(z) ≤ K1||f ||pp,ns−(n+1).

iii) There is a constant K2 > 0 such that, for all a ∈ Bn,∫
Bn

(1− |a|2)ns

|1− 〈a,w〉|2ns
dµ(w) < K2.

Here both K1 and K2 are comparable to ||µ||s. We consider here generalized Carleson

type measures with additional logarithmic terms.

Definition 2.1.10. Let µ be a positive Borel measure on Bn and 0 < s < ∞. For ρ a

positive function defined on (0, 1), we say that µ is a (ρ, s)- Carleson measure if there is a

constant C > 0 such that for any ξ ∈ Sn and 0 < δ < 1,

µ(Qδ(ξ)) ≤ C
(σ(Bδ(ξ)))s

ρ(δ)
. (2.1.8)

When s = 1, µ is called a ρ-Carleson measure. There is a close relation between

ρ-Carleson measures and BMOAρ space. The following is proved in [99].

Proposition 2.1.11. A holomorphic function f belongs to BMOAρ if and only if the

measure (1− |z|2)|∇f(z)|2dV (z) is a ρ2-Carleson measure.

We are interested in this chapter in the particular case

ρ(t) = ρp,q(t) = (log(4/t))p(log log(e4/t))q

with 0 ≤ p, q < ∞. We remark that the case ρ(t) = (log(4/t))p has been studied in [111]

for the unit disc of the complex plane C. The corresponding measures in the latter are
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called p-logarithmic s-Carleson measures. When s = 1 we call them p-logarithmic Carleson

measures and when p = 2 and s = 1 we call them logarithmic Carleson measures, using

the vocabulary of [111].

Let ϕz be the involutive automorphism of Bn that interchanges 0 and z. We recall that

the Bergman metric of Bn is given by

β(z, w) :=
1
2

log
1 + |ϕz(w)|
1− |ϕz(w)|

,

for all z, w ∈ Bn. For any R > 0 and any a ∈ Bn, we write

D(a,R) = {z ∈ Bn : β(z, a) < R}

for the Bergman ball centered at a with radius R. We have the following characterization

of elements of Bp,qα in terms of weighted Carleson measures.

Lemma 2.1.12. Let 0 ≤ p, q < ∞ and α > 0. A function f ∈ H(Bn) is in Bp,qα if and

only if (1 − |z|2)n(s−1)+2α−1|Rf(z)|2dV (z) is a (ρp,q, s)-Carleson measure for any s > 1,

where ρp,q(t) = (log 4
t )

2p(log log e4

t )2q.

Proof. We first suppose that f belongs to Bp,qα and show that there exists a constant C > 0

such that for any ξ ∈ Sn, 0 < δ < 1 and any s > 1, the following inequality holds

If (δ) ≤ Cσ(Bδ(ξ))s,

where

If (δ) = (log
4
δ
)2p(log log

e4

δ
)2q
∫
Qδ(ξ)

|Rf(z)|2(1− |z|2)n(s−1)+2α−1dV (z).

Let h(x) = (log 4
x)2p(log log e4

x )2q. Then h is decreasing on (0, 1) and moreover, for any

z ∈ Qδ(ξ), 1−|z|2 < |1−〈ξ, z〉| < δ. It follows using the definition of Bp,qα that there exists

a constant C > 0 such that for all f ∈ Bp,qα ,

If (δ) ≤ C

∫
Qδ(ξ)

h(δ)
h(1− |z|2)

(1− |z|2)n(s−1)−1dV (z)

≤ C

∫
Qδ(ξ)

(1− |z|2)n(s−1)−1dV (z)

≤ Cσ(Bδ(ξ))s.

This shows the necessary part.

Conversely, let us suppose that the analytic function f has the property that there

exists C > 0 such that for any ξ ∈ Sn, 0 < δ < 1 and any s > 1,

If (δ) ≤ C(σ(Bδ(ξ)))s
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and show that in this case f belongs to Bp,qα . We recall that for a ∈ Bn − {0} and

R > 0; letting δ = 1− |a|, there exists λ ∈ (0, 1) (depending on R but not on δ)such that

D(a,R) ⊂ Qδ(ξ) with a = (1− λδ)ξ (see [117, Lemma 5.23]). Now, using the mean value

property, we obtain that for any a ∈ Bn,

|Rf(a)|2 ≤ C

(1− |a|2)ns+2α

∫
D(a,R)

|Rf(z)|2(1− |z|2)n(s−1)+2α−1dV (z).

It follows from the above inclusion and the hypotheses on the measure

|Rf(z)|2(1− |z|2)n(s−1)+2α−1dV (z) that

(1− |a|2)2α|Rf(a)|2(log
4

1− |a|2
)2p(log log

e4

1− |a|2
)2q ≤ C

δns
If (δ) ≤ C <∞.

The proof is complete.

2.2 The case of ρp,q- Carleson measures

2.2.1 Some useful results

We give in this subsection some useful results for the characterizations of ρp,q- Carleson

measures in the unit ball.

Lemma 2.2.1. Let 1 < N <∞ and 0 < α <∞. The following assertions hold.

i) For any 0 ≤ p <∞, there exists a positive constant C1 not depending on N so that

IN,α,p =
∫ N

1

e−αtdt

(N − t+ 2)p
≤ C1

(N + 2)p
.

ii) If ε1 and ε2 are real with log(2 + ε1) + ε2 > 1, then for any 0 ≤ p <∞, there exists

a positive constant C2 not depending on N so that

JN,α,p =
∫ N

1

e−αtdt

(log(N − t+ 2 + ε1) + ε2)p
≤ C2

(log(N + 2 + ε1) + ε2)p
.

Proof. i). A simple change of variables gives the following equalities

IN,α,p =
∫ N+1

2

e−α(N+2−x)dx

xp
= e−α(N+2)

∫ N+1

2
x−peαxdx.

Thus i) can be written as∫ N+1

2
x−peαxdx ≤ C1(N + 2)−peα(N+2). (2.2.1)
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Let f(x) = x−peαx. Then f ′(x) = x−p−1eαx(αx− p) > 0 if x > p
α . Since f(x) is obviously

continuous on [2,∞) and increasing as x > p
α , there is a positive constant K such that for

any x ∈ [2, N + 1],

f(x) ≤ Kf(N + 1) = K(N + 1)−peα(N+1).

Integrating by parts gives∫ N+1

2
x−peαxdx =

1
α
x−peαx

∣∣∣∣N+1

2

+
p

α

∫ N+1

2
x−p−1eαxdx

≤ K

α
(N + 1)−peα(N+1) +

Kp

α
(N + 1)−p−1eα(N+1)

∫ N+1

2
dx

≤ K(1 + p)
α

(N + 1)−peα(N+1)

≤ K ′(1 + p)
α

(N + 2)−peα(N+2),

where K ′ is another positive constant, independent of N . Thus (2.2.1) is true, hence (i)

is true.

ii). The proof is similar to the proof of i). Let x = N+2+ε1−t. Then t = N+2+ε1−x,

and dt = −dx. Thus

JN,α,p =
∫ N+1+ε1

2+ε1

e−α(N+2+ε1−x)dx

(ε2 + log x)p
= e−α(N+2+ε1)

∫ N+1+ε1

2+ε1

(ε2 + log x)−peαxdx.

Thus ii) can be written as∫ N+1+ε1

2+ε1

(ε2 + log x)−peαxdx ≤ C2[ε2 + log(N + 2 + ε1)]−peα(N+2+ε1). (2.2.2)

Let g(x) = (ε2 + log x)−peαx. Then

g′(x) = (ε2 + log x)−p−1eαx
[
α(ε2 + log x)− p

x

]
.

Since

lim
x→∞

[
α(ε2 + log x)− p

x

]
= ∞,

we know that there exists a positive constant M such that g′(x) > 0 for all x > M . Thus g

is continuous on [2 + ε1,∞) and increasing whenever x > M . Therefore there is a positive

constant K1 such that for any x ∈ [2 + ε1, N + 1 + ε1],

g(x) ≤ K1g(N + 1 + ε1) = K1[ε2 + log(N + 1 + ε1)]−peα(N+1+ε1).
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Integrating by parts gives∫ N+1+ε1

2+ε1

(ε2 + log x)−peαxdx =
1
α

(ε2 + log x)−peαx
∣∣∣∣N+1+ε1

2+ε1

+
p

α

∫ N+1+ε1

2+ε1

(ε2 + log x)−p−1eαxx−1dx

≤ K1

α
[ε2 + log(N + 1 + ε1)]−peα(N+1+ε1)

+
K1p

α
[ε2 + log(N + 1 + ε1)]−p−1eα(N+1+ε1)

∫ N+1+ε1

2+ε1

x−1dx

≤ K1(1 + p)
α

[ε2 + log(N + 1 + ε1)]−peα(N+1+ε1)

≤ K2(1 + p)
α

[ε2 + log(N + 2 + ε1)]−peα(N+2+ε1),

where K2 is another positive constant, independent of N . Thus (2.2.2) is true, hence ii)

is true. The proof is complete.

Let

Ka(z) =
(1− |a|2)n

|1− 〈a, z〉|2n
.

We have the following general characterizing of (ρp,q, s)-Carleson measures in the unit ball.

Theorem 2.2.2. Let 0 ≤ p, q < ∞ and 0 < s < ∞. Let µ be a positive Borel measure

on Bn. Then µ is a (ρp,q, s)-Carleson measure with ρp,q(t) = (log(4/t))p(log log(e4/t))q, if

and only if

sup
a∈Bn

(log
4

1− |a|
)p(log log

e4

1− |a|
)q
∫

Bn

Ks
a(z)dµ(z) ≤ C <∞. (2.2.3)

Proof. We first suppose that µ is a (ρp,q, s)-Carleson measure and prove (2.2.3). For

|a| ≤ 3
4 , (2.2.3) is obvious since the measure is necessarily finite. Let 3

4 < |a| < 1 and

choose ξ = a/|a|. For any nonnegative integer k, let rk = 2k−1(1 − |a|), k = 1, 2, · · · , N

and N the smallest integer such that 2N−2(1− |a|) ≥ 1. Thus

log2

4
1− |a|

≤ N ≤ 1 + log2

4
1− |a|

. (2.2.4)

Let E1 = Qr1(ξ) and Ek = Qrk(ξ)−Qrk−1
(ξ), k ≥ 2. We have

µ(Ek) ≤ µ(Qrk(ξ)) ≤ C2(k−1)ns(1− |a|)ns

(log 4
2k−1(1−|a|))

p(log log e4

2k−1(1−|a|))
q
.

Moreover, if k ≥ 2 and z ∈ Ek, then

|1− 〈a, z〉| = |1− |a|+ |a|(1− 〈ξ, z〉)|

≥ −(1− |a|) + |a||1− 〈ξ, z〉|

≥ 3
4
2k−1(1− |a|)− (1− |a|)

≥ 2k−2(1− |a|).
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We also have for z ∈ E1,

|1− 〈z, a〉| ≥ 1− |a| > 1
2
(1− |a|).

Using the above estimates, Hölder’s inequality, the equivalence (2.2.4) and Lemma 2.2.1,

we obtain∫
Bn

Ks
a(z)dµ(z) ≤ C

(1− |a|)ns
N∑
k=1

1
22nks

rnsk
(log 4

rk
)p(log log e4

rk
)q

.
N∑
k=1

1
2kns

1
(log 4

2k−1(1−|a|))
p(log log e4

2k−1(1−|a|))
q

.
N∑
k=1

1
2ks

1
(log 4

2k−1(1−|a|))
p(log log e4

2k−1(1−|a|))
q

.
∫ N

1

1
2ts

1
(log 4

2t−1(1−|a|))
p(log log e4

2t−1(1−|a|))
q
dt

.

(∫ N

1

1
2ts

1
(log 4

2t−1(1−|a|))
p+q

dt

) p
p+q
(∫ N

1

1
2ts

1
(log log e4

2t−1(1−|a|))
p+q

dt

) q
p+q

≤ C

(log 4
1−|a|)

p(log log e4

1−|a|)
q
.

This proves that (2.2.3) holds.

Now, suppose that (2.2.3) holds. For any ξ ∈ Sn and 0 < δ < 1, let a = (1− δ)ξ. Then

1− |a| = δ and for z ∈ Qδ(ξ), we have Ka(z) ≥ C
σ(Bδ(ξ)) . Thus, we obtain easily that

∞ > C & (log
4

1− |a|
)p(log log

e4

1− |a|
)q
∫

Bn

Ks
a(z)dµ(z)

& (log
4
δ
)p(log log

e4

δ
)q
∫
Qδ(ξ)

Ks
a(z)dµ(z)

&
(log 4

δ )
p(log log e4

δ )q

(σ(Bδ(ξ)))s
µ(Qδ(ξ)).

We conclude that µ is a (ρp,q, s)-Carleson measure. The proof is complete.

The notation A . B (resp. A & B) means that there is a positive constant C such

that A ≤ CB (resp. A ≥ CB). The following is well-known (see also Lemma 2.2.4 below).

Lemma 2.2.3. The following assertions hold.

i) There exists a contant C > 0 such that for any f ∈ BMOA,

|f(z)| ≤ C log(
4

1− |z|
)||f ||BMOA, z ∈ Bn.
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ii) The functions fa(z) = log( 4
1−〈z,a〉), a ∈ Bn are in BMOA with uniformly bounded

norm.

Lemma 2.2.4. The following assertions hold.

i) There exists a contant C > 0 such that for any f ∈ LMOA,

|f(z)| ≤ C log log(
e4

1− |z|
)||f ||LMOA, z ∈ Bn.

ii) The functions fa(z) = log log( e4

1−〈z,a〉), a ∈ Bn are in LMOA with uniformly bounded

norm.

Proof. It is not hard to see that LMOA is a subspace of LB with ||f ||LB ≤ C||f ||LMOA

(see [117]). Thus, we only need to show that i) holds for any f ∈ LB.

For any analytic function f in Bn, one easily has that

f(z)− f(0) =
∫ 1

0

Rf(tz)
t

dt

for all z ∈ Bn. It follows that there exists a contant C > 0 such that for any f ∈ LB and

any z ∈ Bn,

|f(z)− f(0)| = |
∫ 1

0

Rf(tz)
t

dt|

≤ C||f ||LB
∫ 1

0

|z|
(1− |z|t) log( e4

1−|z|t)
dt

= C||f ||LB(log log(
e4

1− |z|
)− log 4).

This prove the pointwise estimate for all f ∈ LMOA.

Let us now prove that the functions fa(z) = log log( e4

1−〈z,a〉) are uniformly in LMOA

or equivalently, by the characterization of [99], that the measures dµa(z) = |∇fa(z)|2(1−

|z|2)dV (z) are logarithmic-Carleson measures (that is a ρ-Carleson measures with ρ(t) =

log2(4/t)) with uniform bound. For any ξ ∈ Sn and 0 < δ < 1, we set

I =
∫
|1−〈z,ξ〉|<δ

1− |z|2

|1− 〈a, z〉|2| log( e4

1−〈z,a〉)|2
dV (z).

We have to show that I ≤ C σ(Bδ(ξ))

(log 4
δ
)2

, where the constant C > 0 does not depend on the

given a ∈ Bn.

If |1− 〈a, ξ〉| ≥ 2δ, then for any z ∈ Bn with |1− 〈z, ξ〉| < δ, |1− 〈a, z〉| ≥ δ. Thus,

I ≤ δ−2(log
e4

δ
)−2

∫
|1−〈z,ξ〉|<δ

(1− |z|2)dV (z) .
σ(Bδ(ξ))
(log e4

δ )2
.
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If |1− 〈a, ξ〉| ≤ 2δ, we obtain

I .
∫
|1−〈a,z〉|<3δ

(1− |z|2)
|1− 〈z, a〉|2 log2 e4

|1−〈z,a〉|
dV (z)

.
∞∑
j=0

∫
3δ2−j−1≤|1−〈z,a〉|≤3δ2−j

(1− |z|2)
|1− 〈z, a〉|2 log2 e4

|1−〈z,a〉|
dV (z)

.
∞∑
j=0

22(j+1)δ−2(log 2j
e4

δ
)−2

∫
|1−〈z,a〉|≤3δ2−j

(1− |z|2)dV (z)

.
δn

(log e4

δ )2

∞∑
j=0

22(j+1)2−j(n+2) .
σ(Bδ(ξ))
(log 4

δ )
2
.

The proof is complete.

2.2.2 ρp,q- Carleson measures

In this subsection, we give and prove several equivalent definitions of ρp,q- Carleson mea-

sures. We first establish a useful lemma. Let ϕz be the involutive automorphism of Bn

such that ϕz(0) = z and ϕz(z) = 0. We remark that for any a, b, and z ∈ Bn,

Ka(z) ·Kb(ϕa(z)) = Kϕa(b)(z)

and

Ka(ϕa(z)) ·Ka(z) = 1.

Lemma 2.2.5. Let 0 < s <∞ and let µ be a positive Borel measure on Bn. Let

dµa(z) =
dµ(ϕa(z))
Ks
a(z)

.

Then

sup
a∈Bn

||µa||s ≈ ||µ||s.

PROOF: Using the previous remark, we obtain that∫
Bn

Ks
b (z)

dµ(ϕa(z))
Ks
a(z)

=
∫

Bn

Ks
b (ϕa(w))

dµ(w)
Ks
a(ϕa(w))

=
∫

Bn

Ks
a(w)Ks

b (ϕa(w))dµ(w)

=
∫

Bn

Ks
ϕa(b)(w)dµ(w).

The conclusion follows by taking the supremum over b ∈ Bn and applying Theorem 2.2.2.
2
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Let us now recall the following equivalence for the norm of elements of BMOA space:

||f ||BMOA ≈ sup
a∈Bn

||f ◦ ϕa − f(a)||p

for any 0 < p <∞ (see [117]).

Lemma 2.2.6. Let 0 ≤ p, q < ∞ and let µ be a positive Borel measure on Bn. Then the

following conditions are equivalent.

i) There exists a positive constant C1 such that for any 0 < δ < 1 and any ξ ∈ Sn,

µ(Qδ(ξ)) ≤ C1
σ(Bδ(ξ))

(log 4
δ )
p(log log e4

δ )q
.

ii) There exists a positive constant C2 such that

sup
a∈Bn

(log
4

1− |a|
)p(log log

e4

1− |a|
)q
∫

Bn

Ka(z)dµ(z) ≤ C2 <∞.

iii) There exists a positive constant C3 such that for any f ∈ BMOA,

sup
a∈Bn

(log log
e4

1− |a|
)q
∫

Bn

|f(z)|pKa(z)dµ(z) ≤ C3||f ||pBMOA.

iv) There exists a constant C4 > 0 such that for any f ∈ BMOA and any g ∈ LMOA,

sup
a∈Bn

∫
Bn

|f(z)|p|g(z)|qKa(z)dµ(z) ≤ C4||f ||pBMOA||g||
q
LMOA.

Proof. The equivalence i) ⇔ ii) follows from Theorem 2.2.2. We show that ii) ⇒ iii) ⇒

iv) ⇒ i).

ii) ⇒ iii): We first remark that ii) implies that µ is a Carleson measure and so is
dµ(ϕa(z))
Ka(z) for any fixed a ∈ Bn by Lemma 2.2.5.

Now, for any f ∈ BMOA, using Hölder’s inequality we obtain∫
Bn

|f(z)− f(a)|pKa(z)dµ(z) ≤
(∫

Bn

|f(z)− f(a)|p+qKa(z)dµ(z)
) p

p+q
(∫

Bn

Ka(z)dµ(z)
) q

p+q

≈
(∫

Bn

|foϕa(z)− f(a)|p+q dµ(ϕa(z))
Ka(z)

) p
p+q
(∫

Bn

Ka(z)dµ(z)
) q

p+q

≤ C||µ||p/(p+q)||foϕa − f(a)||pp+q
(∫

Bn

Ka(z)dµ(z)
) q

p+q

≤ C||µ||p/(p+q)||f ||pBMOA

(∫
Bn

Ka(z)dµ(z)
) q

p+q

.

It follows that

I1 ≤ C||µ||p/(p+q)||f ||pBMOA

(
(log log

e4

1− |a|
)p+q

∫
Bn

Ka(z)dµ(z)
) q

p+q

,
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where

I1 = (log log
e4

1− |a|
)q
∫

Bn

|f(z)− f(a)|pKa(z)dµ(z).

It is also clear that ii) implies that µ is a ρ-Carleson measure with

ρ(t) = (log log
e4

t
)p+q, t ∈ (0, 1),

which is equivalent to saying there exists a constant C > 0 so that

(log log
e4

1− |a|
)p+q

∫
Bn

Ka(z)dµ(z) ≤ C <∞.

We conclude that

I1 = (log log
e4

1− |a|2
)q
∫

Bn

|f(z)− f(a)|pKa(z)dµ(z) ≤ C||f ||pBMOA. (2.2.5)

Since f ∈ BMOA, we already know that there exists C > 0 so that

|f(a)| ≤ C log
4

1− |a|
||f ||BMOA.

Thus, setting

I2 = (log log
e4

1− |a|
)q
∫

Bn

|f(a)|pKa(z)dµ(z),

we obtain

I2 ≤ C(log
4

1− |a|
)p(log log

e4

1− |a|
)q||f ||pBMOA

∫
Bn

Ka(z)dµ(z).

We conclude using Theorem 2.2.2 that

I2 = (log log
e4

1− |a|
)q
∫

Bn

|f(a)|pKa(z)dµ(z) ≤ C||f ||pBMOA, (2.2.6)

where C is a constant independent of a. Finally, we obtain combining (2.2.5) and (2.2.6)

that for any a ∈ Bn,

(log log
e4

1− |a|
)q
∫

Bn

|f(z)|pKa(z)dµ(z) ≤ 2p(I1 + I2)

≤ C2||f ||pBMOA.

iii) ⇒ iv): For any f ∈ BMOA, let dµf (z) = |f(z)|p
||f ||pBMOA

dµ(z). We would like to show

that iii) implies that there exists a positive constant C4 such that for any f ∈ BMOA

and any g ∈ LMOA,

sup
a∈Bn

∫
Bn

|g(z)|qKa(z)dµf (z) ≤ C4||g||qLMOA.
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We remark that iii) implies in particular that for any f ∈ BMOA, the measure dµf is a

Carleson measure with ||µf || ≈ ||µ||. It follows easily as before that∫
Bn

|g(z)− g(a)|qKa(z)dµf (z) ≤ C||µ|| × ||g||qBMOA ≤ C||µ|| × ||g||qLMOA. (2.2.7)

Now, using the pointwise estimate for g ∈ LMOA, we obtain∫
Bn

|g(a)|qKa(z)dµf (z) ≤ C||g||qLMOA(log log
e4

1− |a|
)q
∫

Bn

Ka(z)dµf (z).

It follows using iii) that there exists C > 0 so that∫
Bn

|g(a)|qKa(z)dµf (z) ≤ C||g||qLMOA. (2.2.8)

Finally, using inequalities (2.2.7) and (2.2.8), we conclude that for any a ∈ Bn,∫
Bn

|f(z)|p|g(z)|qKa(z)dµ(z) ≤ 2q
∫

Bn

|f(z)|p(|g(z)− g(a)|q + |g(a)|q)Ka(z)dµ(z)

≤ C2||f ||pBMOA||g(z)||
q
LMOA,

which is iv).

iv) ⇒ i): For any 0 < δ < 1 and ξ ∈ Sn, let a = (1 − δ)ξ. From iv), we have in

particular that there exists C > 0 so that for any f ∈ BMOA and any g ∈ LMOA,∫
Qδ(ξ)

|f(z)|p|g(z)|qKa(z)dµ(z) ≤ C||f ||pBMOA||g(z)||
q
LMOA.

We test the above inequality with f(z) = fa(z) = log 4
1−〈a,z〉 and g(z) = ga(z) =

log log e4

1−〈a,z〉 which are uniformly in BMOA and LMOA respectively. Remarking that

for z ∈ Qδ(ξ), Ka(z) ≥ C
σ(Bδ(ξ)) , log 4

δ ≤ |fa(z)| and log log e4

δ ≤ |ga(z)|, we obtain

C

σ(Bδ(ξ))
(log

4
1− |a|

)p(log log
e4

1− |a|
)q
∫
Qδ(ξ)

dµ(z) ≤
∫
Qδ(ξ)

|fa(z)|p|ga(z)|qKa(z)dµ(z)

≤ C ′ <∞.

That is

µ(Qδ(ξ)) ≤ C
σ(Bδ(ξ))

(log 4
δ )
p(log log e4

δ )q
.

The proof is complete.

Taking q = 0 in the above lemma, we obtain the following corollary (see also [111]).

Corollary 2.2.7. Let 0 ≤ p <∞ and let µ be a positive Borel measure on Bn. Then the

following conditions are equivalent.
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i) There exists a positive constant C1 such that for any 0 < δ < 1 and any ξ ∈ Sn

µ(Qδ(ξ)) ≤ C1
σ(Bδ(ξ))
(log 4

δ )
p
.

ii) There exists a positive constant C2 such that for any f ∈ BMOA,

sup
a∈Bn

∫
Bn

|f(z)|pKa(z)dµ(z) ≤ C2||f ||pBMOA.

Lemma 2.2.8. Let 0 ≤ p, q < ∞ and let µ be a positive Borel measure on Bn. Then the

following conditions are equivalent.

i) There exists a positive constant C1 such that for any 0 < δ < 1 and any ξ ∈ Sn,

µ(Qδ(ξ)) ≤ C1
σ(Bδ(ξ))

(log 4
δ )
p(log log e4

δ )q
.

ii) There exists a positive constant C2 such that for any g ∈ LMOA,

sup
a∈Bn

(log
4

1− |a|
)p
∫

Bn

|g(z)|qKa(z)dµ(z) ≤ C2||g||qLMOA.

Proof. By Lemma 2.2.6, the assertion i) is equivalent to saying there exists a constant

C > 0 such that for any f ∈ BMOA and any g ∈ LMOA,

sup
a∈Bn

∫
Bn

|f(z)|p|g(z)|qKa(z)dµ(z) ≤ C||f ||pBMOA||g(z)||
q
LMOA.

It follows from Corollary 2.2.7 that the latter is equivalent to saying that there exists a

positive constant C such that

sup
a∈Bn

(log
4

1− |a|
)p
∫

Bn

Ka(z)dµg(z) ≤ C <∞,

where dµg(z) = |g(z)|q
||g(z)||qLMOA

dµ(z). This proves ii). The proof is complete.

Theorem 2.2.9. Let 0 ≤ p, q < ∞ and let µ be a positive Borel measure on Bn. Then

the following conditions are equivalent.

i) There is C1 > 0 such that for any ξ ∈ Sn and 0 < δ < 1,

µ(Qδ(ξ)) ≤ C1
σ(Bδ(ξ))

(log 4
δ )
p(log log e4

δ )q
.

ii) There is C2 > 0 such that

sup
a∈Bn

(log
4

1− |a|
)p(log log

e4

1− |a|
)q
∫

Bn

Ka(z)dµ(z) ≤ C2 <∞.
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iii) There is C3 > 0 such that for any f ∈ BMOA,

sup
a∈Bn

(log log
e4

1− |a|
)q
∫
Bn

|f(z)|pKa(z)dµ(z) ≤ C3||f ||pBMOA.

iv) There is C4 > 0 such that for any g ∈ LMOA,

sup
a∈Bn

(log
4

1− |a|
)p
∫
Bn

|g(z)|qKa(z)dµ(z) ≤ C4||g||qLMOA.

v) There is C5 > 0 such that for any f ∈ BMOA and any g ∈ LMOA,

sup
a∈Bn

∫
Bn

|f(z)|p|g(z)|qKa(z)dµ(z) ≤ C5||f ||pBMOA||g||
q
LMOA.

vi) For 0 < r <∞, there is C6 > 0 such that for any f ∈ BMOA and any g ∈ LMOA

and any h ∈ Hr(Bn),∫
Bn

|f(z)|p|g(z)|q|h(z)|rdµ(z) ≤ C6||f ||pBMOA||g||
q
LMOA||h||

r
r.

Proof. We already have from Lemma 2.2.6 and Lemma 2.2.8 that i) ⇔ ii) ⇔ iii) ⇔ iv) ⇔

v). Let

dµf,g(z) =
|f(z)|p|g(z)|q

||f(z)||pBMOA||g(z)||
q
LMOA

dµ(z).

Then v) is equivalent to saying that

sup
a∈Bn

∫
Bn

Ka(z)dµf,g < C5.

By Theorem 2.1.8, this is equivalent to vi). The proof is complete.

2.2.3 Some applications of ρp,q- Carleson measures

As first application of Theorem 2.2.9, we consider the Cesàro-type integral operator Tb

defined by

Tb(f)(z) =
∫ 1

0
f(tz)Rb(tz)

dt

t
, b, f ∈ H(Bn).

The characterization of the boundedness properties of Tb has been considered in [4], [5], [97]

and [111] for the case of the unit disc and [103] for the case of the unit ball for some analytic

function spaces. We first prove the following result on the boundedness of Tb on LMOA.

Corollary 2.2.10. For b ∈ H(Bn), Tb is bounded on LMOA if and only if

sup
a∈Bn

(log
4

1− |a|
)2(log log

e4

1− |a|
)2
∫

Bn

|Rb(z)|2(1− |z|2)Ka(z)dV (z) <∞. (2.2.9)
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Proof. We know from [99] that an analytic function b is in LMOA if and only if (1 −

|z|2)|Rb(z)|2dV (z) is a ρ-Carleson measure with ρ(t) = (log(4/t))2, which by Lemma 2.2.2

is equivalent to

sup
a∈Bn

(log
4

1− |a|
)2
∫

Bn

|Rb(z)|2(1− |z|2)Ka(z)dV (z) <∞.

It is not hard to see that

R[Tb(f)](z) = f(z)Rb(z).

It follows that Tb is bounded on LMOA if and only if for any f ∈ LMOA,

sup
a∈ Bn

(log
4

1− |a|
)2
∫

Bn

|f(z)|2|Rb(z)|2(1− |z|2)Ka(z)dV (z) < C||f ||2LMOA,

which by Theorem 2.2.9 is equivalent to saying that the measure |Rb(z)|2(1 − |z|2)dV (z)

satisfies

sup
a∈Bn

(log
2

1− |a|
)2(log log

e4

1− |a|
)2
∫

Bn

|Rb(z)|2(1− |z|2)Ka(z)dV (z) <∞.

The proof is complete.

Corollary 2.2.11. For b ∈ H(Bn), Tb is bounded from LMOA to BMOA if and only if

sup
a∈Bn

(log log
e4

1− |a|
)2
∫

Bn

|Rb(z)|2(1− |z|2)Ka(z)dV (z) <∞. (2.2.10)

Proof. We have already seen that an analytic b is inBMOA if and only if (1−|z|2)|Rb(z)|2dV (z)

is a Carleson measure, that is

sup
a∈Bn

∫
Bn

|Rb(z)|2(1− |z|2)Ka(z)dV (z) <∞.

It follows that Tb is bounded from LMOA to BMOA if and only if for any f ∈ LMOA,

sup
a∈ Bn

∫
Bn

|f(z)|2|Rb(z)|2(1− |z|2)Ka(z)dV (z) < C||f ||2LMOA

which by Theorem 2.2.9 is equivalent to saying that the measure |Rb(z)|2(1 − |z|2)dV (z)

satisfies

sup
a∈Bn

(log log
e4

1− |a|
)2
∫

Bn

|Rb(z)|2(1− |z|2)Ka(z)dV (z) <∞.

The proof is complete.

We also obtain in the same way the following result.

Corollary 2.2.12. For b ∈ H(Bn), Tb is bounded on BMOA if and only if

sup
a∈Bn

(log
4

1− |a|
)2
∫

Bn

|Rb(z)|2(1− |z|2)Ka(z)dV (z) <∞. (2.2.11)
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Our next application is about the pointwise multipliers on LMOA. Given two Banach

spaces of analytic functions X and Y , we denote by M(X,Y ) the space of multipliers from

X to Y , that is

M(X,Y ) = {f ∈ H(Bn) : f · g ∈ Y for any g ∈ X}.

When X = Y , we just write M(X,X) = M(X). The following lemma is an easy adapta-

tion of [117, Lemma 3.20].

Lemma 2.2.13. Suppose that X and Y are two Banach spaces of holomorphic functions.

If X contains constant functions and each point evaluation is a bounded linear functional

on both X and Y , then every pointwise multiplier from X to Y is in H∞(Bn).

We have the following characterization of M(LMOA) for the unit ball of Cn

Corollary 2.2.14. An analytic function f on Bn belongs to M(LMOA) if and only if

f ∈ H∞(Bn) and satisfies (2.2.9).

Proof. Instead of using Lemma 2.2.13, we give a direct proof of the fact that any element

in M(LMOA) is necessarily bounded. For this, we recall that for any f ∈ LMOA,

|f(z)| ≤ C||f ||LMOA log log
e4

1− |z|2
.

Now, for any a ∈ Bn, let fa(z) = log log( e4

1−〈z,a〉). fa ∈ LMOA and ||fa||LMOA ≤ C <∞.

It follows from these two facts that, if f ∈ M(LMOA), then f · fa ∈ LMOA and for

any z ∈ Bn,

|f(z)fa(z)| ≤ C||f · fa||LMOA log log
e4

1− |z|2
.

Taking z = a in the above inequality, we obtain

|f(a)| ≤ C||f · fa||LMOA < C

where the constant C does not depend on a ∈ Bn. That is f ∈ H∞(Bn).

If f ∈ M(LMOA), then for any g ∈ LMOA, the measure |R(fg)(z)|2(1− |z|2)dV (z)

is a logarithmic Carleson measure, or equivalently

If (g) ≤ C||g||2LMOA, (2.2.12)

where

If (g) = sup
a∈Bn

(log
4

1− |a|
)2
∫

Bn

|g(z)Rf(z) + f(z)Rg(z)|2(1− |z|2)Ka(z)dV (z).
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Since f ∈ H∞(Bn) and |Rg(z)|2(1− |z|2)dV (z) is a logarithmic Carleson measure,

sup
a∈Bn

(log
4

1− |a|
)2
∫

Bn

|f(z)Rg(z)|2(1− |z|2)Ka(z)dV (z) ≤ C||f ||2∞||g||2LMOA.

We deduce that if f ∈ H∞(Bn), then (2.2.12) is equivalent to

sup
a∈Bn

(log
4

1− |a|
)2
∫

Bn

|g(z)|2|Rf(z)|2(1− |z|2)Ka(z)dV (z) ≤ C||g||2LMOA,

which by Theorem 2.2.9 is equivalent to saying that |Rf(z)|2(1− |z|2)dV (z) satisfies

sup
a∈Bn

(log
2

1− |a|
)2(log log

e4

1− |a|
)2
∫

Bn

|Rb(z)|2(1− |z|2)Ka(z)dV (z) <∞.

The proof is complete.

Similarly, we can prove the following results.

Corollary 2.2.15. An analytic function f on Bn belongs to M(LMOA,BMOA) if and

only if f ∈ H∞(Bn) and satisfies (2.2.10).

Corollary 2.2.16. An analytic function f on Bn belongs to

M(BMOA) if and only if f ∈ H∞(Bn) and satisfies (2.2.11).

The orthogonal projection of L2(∂Bn) onto H2(Bn) is called the Szegö projection and

is denoted by P . It is given by

P (f)(z) =
∫
∂Bn

S(z, ξ)f(ξ)dσ(ξ), (2.2.13)

where S(z, ξ) = 1
(1−〈z,ξ〉)n is the Szegö kernel on ∂Bn. We denote as well by P its extension

to L1(∂Bn).

For b ∈ H2(Bn), the small Hankel operator with symbol b is defined for f a bounded

holomorphic function by

hb(f) := P (bf). (2.2.14)

As last application, we prove that if b ∈ LMOA, then the Hankel operator hb is

bounded on H1(Bn). This extends the one dimensional result of [66] and [105].

Theorem 2.2.17. The Hankel operator hb extends into a bounded operator on H1(Bn) if

b ∈ LMOA.

Proof. Let b ∈ LMOA or equivalently, such that (1− |z|2)|∇b(z)|2dV (z) is a logarithmic

Carleson measure. For f ∈ H1(Bn) and g ∈ BMOA, we want to estimate |〈hb(f), g〉| =
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|〈b, fg〉|. Applying Lemma 1.2.3 to 〈b, fg〉, it follows that we only need to estimate the

following three integrals:

I1 :=
∫

Bn

|f(z)||g(z)||b(z)|dV (z),

I2 :=
∫

Bn

|f(z)| (|g(z)|+ |∇g(z)|) |∇b(z)|(1− |z|2)dV (z),

and

I3 :=
∫

Bn

|g(z)||∇f(z)||∇b(z)|(1− |z|2)dV (z).

For the first one, we observe that since g and b are in all Hp(Bn), the estimate

|g(z)b(z)| ≤ C(1− |z|2)−1/2

holds. It follows using the fact that the measure (1−|z|2)−1/2dV (z) is a Carleson measure

that

I1 ≤ C

∫
Bn

|f(z)|(1− |z|2)−1/2dV (z) ≤ C||f ||1.

For I2, we use Cauchy-Schwarz inequality to obtain

I2
2 ≤ C

∫
Bn

|f(z)|
(
|g(z)|2 + |∇g(z)|2

)
|(1− |z|2)dV (z)×

∫
Bn

|f(z)||∇b(z)|2(1− |z|2)dV (z).

We conclude by using the fact that |∇g(z)|2(1 − |z|2)dV (z), |∇b(z)|2(1 − |z|2)dV (z) and

|g(z)|2(1− |z|2)dV (z) are Carleson measures.

The main point is the estimate of I3. We first recall that, by the weak factorization

theorem (see [36,92]), any f ∈ H1(Bn) can be written as

f =
∑
j

hjlj with
∑
j

||hj ||2||lj ||2 ≤ C||f ||1.

Replacing f by this weak factorization, we are led to estimate a sum of terms as

J :=
∫

Bn

|g(z)||l(z)||∇h(z)||∇b(z)|(1− |z|2)dV (z)

for l and h in H2(Bn). We recall that, for h ∈ H2(Bn),∫
Bn

|∇h(z)|2(1− |z|2)dV (z) ≤ C||h||2.

Using this last inequality, Schwarz Inequality and Theorem 2.2.9, we obtain

J ≤
(∫

Bn

|∇h(z)|2(1− |z|2)dV (z)
)1/2(∫

Bn

|g(z)|2|l(z)|2|∇b(z)|2(1− |z|2)dV (z)
)1/2

≤ C||g||BMOA||l||2||h||2.

This completes the proof of the theorem.
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Remark 2.2.18. The condition on the symbols of Hankel operators in Theorem 2.2.17 is

also necessary (see [23]).

2.3 (ρ, s)-Carleson measures with s > 1

We consider in this section the case of (ρ, s)-Carleson measures when s > 1. Using Theorem

2.1.9 and the following equivalence for the norm of elements of the Bloch space B:

||f ||B ≈ ||f ◦ ϕa − f(a)||p,α, 0 < p <∞ and α > −1

(see [117]). We recall that the logarithmic Bloch space LB consists of holomorphic func-

tions f such that

‖f‖LB = |f(0)|+ sup
z∈Bn

(1− |z|2)|Rf(z)| log
4

1− |z|2
<∞.

We can prove in the same way as Theorem 2.2.9, the following theorem.

Theorem 2.3.1. Let 0 ≤ p, q <∞, 1 < s <∞. Let µ be a positive Borel measure on Bn.

Then the following conditions are equivalent.

i) There is C1 > 0 such that for any ξ ∈ Sn and 0 < δ < 1,

µ(Qδ(ξ)) ≤ C1
(σ(Bδ(ξ)))s

(log 4
δ )
p(log log e4

δ )q
.

ii) There is C2 > 0 such that

sup
a∈Bn

(log
4

1− |a|
)p(log log

e4

1− |a|
)q
∫

Bn

Ka(z)sdµ(z) ≤ C2 <∞.

iii) There is C3 > 0 such that for any f ∈ B,

sup
a∈Bn

(log log
e4

1− |a|
)q
∫
Bn

|f(z)|pKs
a(z)dµ(z) ≤ C3||f ||pB.

iv) There is C4 > 0 such that for any g ∈ LB,

sup
a∈Bn

(log
4

1− |a|
)p
∫

Bn

|g(z)|qKs
a(z)dµ(z) ≤ C4||g||qLB.

v) There is C5 > 0 such that for any f ∈ B and any g ∈ LB,

sup
a∈Bn

∫
Bn

|f(z)|p|g(z)|qKa(z)sdµ(z) ≤ C5||f ||pB||g||
q
LB.
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vi) For 0 < r < ∞, there is C6 > 0 such that for any f ∈ B and any g ∈ LB and any

h ∈ Arns−(n+1)(B
n),∫

Bn

|f(z)|p|g(z)|q|h(z)|rdµ(z) ≤ C6||f ||pB||g||
q
LB||h||

r
ns−(n+1),r.

We now move to applications of Theorem 2.3.1. We begin by considering the bound-

edness of the operator Tb on the logarithmic Bloch space LB. We already know by Lemma

2.1.12 that a function f ∈ H(Bn) is in LB if and only if for any s > 1 the measure

(1−|z|2)n(s−1)+1|Rf(z)|2dV (z) is (ρ, s)-Carleson measure with ρ(t) = (log(4/t))2, or equiv-

alently that

sup
a∈Bn

(log
4

1− |a|
)2
∫

Bn

Ks
a(z)(1− |z|2)n(s−1)+1|Rf(z)|2dV (z) <∞.

We have the following corollary.

Corollary 2.3.2. For b ∈ H(Bn), the operator Tb is bounded on LB if and only for any

s > 1,

sup
a∈Bn

(log
4

1− |a|
)2(log log

e4

1− |a|
)2
∫

Bn

|Rb(z)|2(1−|z|2)n(s−1)+1Ks
a(z)dV (z) <∞. (2.3.1)

Proof. Let

Jb(f) = sup
a∈Bn

(log
4

1− |a|
)2
∫

Bn

Ks
a(z)(1− |z|2)n(s−1)+1|f(z)|2|Rb(z)|2dV (z).

That Tb is bounded on LB is equivalent to saying there exists a constant C > 0 such that

for any s > 1 and any f ∈ LB,

Jb(f) < C||f ||2LB

which by Theorem 2.3.1 is equivalent to (2.3.1).

Using Theorem 2.3.1 and the fact that any holomorphic function f belongs to B if and

only if the measure |Rf(z)|2(1− |z|2)n(s−1)+1dV (z) is a s-Carleson measure for any s > 1,

we can prove the following result in the same way.

Corollary 2.3.3. For b ∈ H(Bn), the operator Tb is bounded from LB to B if and only

for s > 1

sup
a∈Bn

(log log
e4

1− |a|
)2
∫

Bn

|Rb(z)|2(1− |z|2)n(s−1)+1Ks
a(z)dV (z) <∞. (2.3.2)

The following well-known result (see for example [103]) follows in the same way.
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Corollary 2.3.4. For b ∈ H(Bn), the operator Tb is bounded on B if and only for s > 1

sup
a∈Bn

(log
4

1− |a|
)2
∫

Bn

|Rb(z)|2(1− |z|2)n(s−1)+1Ks
a(z)dV (z) <∞. (2.3.3)

We also obtain as in the previous section the following characterization of multipliers

of Bloch-type spaces.

Corollary 2.3.5. An analytic function f on Bn belongs to M(LB) if and only if f ∈

H∞(Bn) and satisfies (2.3.1).

Corollary 2.3.6. An analytic function f on Bn belongs to

M(LB,B) if and only if f ∈ H∞(Bn) and satisfies (2.3.2).

Corollary 2.3.7. An analytic function f on Bn belongs to

M(B) if and only if f ∈ H∞(Bn) and satisfies (2.3.3).

2.4 Some generalizations

We give some generalizations and their applications. The proofs here follow the same steps

as in the two previous sections.

Theorem 2.4.1. Let 0 ≤ p1, p2, q1, q2 <∞ and let µ be a positive Borel meaasure on Bn.

Then the following conditions are equivalent.

i) There is C1 > 0 such that for any ξ ∈ Sn and 0 < δ < 1,

µ(Qδ(ξ)) ≤ C1
σ(Bδ(ξ))

(log 4
δ )
p1+p2(log log e4

δ )q1+q2
.

ii) There is C2 > 0 such that for any f ∈ BMOA and any g ∈ LMOA

I(f, g) ≤ C2||f ||p1BMOA||g||
q1
LMOA,

where

I(f, g) = sup
a∈Bn

(log
4

1− |a|
)p2(log log

e4

1− |a|
)q2
∫

Bn

|f1(z)|p1 |g1(z)|q1Ka(z)dµ(z).

iii) There is C3 > 0 such that for any g ∈ LMOA

I(g) ≤ C3||g||q1LMOA,

where

I(g) = sup
a∈Bn

(log
4

1− |a|
)p1+p2(log log

e4

1− |a|
)q2
∫

Bn

|g(z)|q1Ka(z)dµ(z).
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iv) There is C4 > 0 such that for any f ∈ BMOA

I(f) ≤ C4||f ||p1BMOA,

where

I(f) = sup
a∈Bn

(log
4

1− |a|
)p2(log log

e4

1− |a|
)q1+q2

∫
Bn

|f(z)|p1Ka(z)dµ(z).

Theorem 2.4.2. Let 0 ≤ p1, p2, q1, q2 < ∞, let 1 < s < ∞ and µ be a positive Borel

measure on Bn. Then the following conditions are equivalent.

i) There is C1 > 0 such that for any ξ ∈ Sn and 0 < δ < 1,

µ(Qδ(ξ)) ≤ C1
(σ(Bδ(ξ)))s

(log 4
δ )
p1+p2(log log e4

δ )q1+q2
.

ii) There is C2 > 0 such that for any f ∈ B and any g ∈ LB,

J(f, g) ≤ C2||f ||p1B ||g||
q1
LB,

where

J(f, g) = sup
a∈Bn

(log
4

1− |a|
)p2(log log

e4

1− |a|
)q2
∫

Bn

|f1(z)|p1 |g1(z)|q1Ks
a(z)dµ(z).

iii) There is C3 > 0 such that for any g ∈ LB,

sup
a∈Bn

(log
4

1− |a|
)p1+p2(log log

e4

1− |a|
)q2
∫

Bn

|g(z)|q1Ks
a(z)dµ(z) ≤ C3||g||q1LB.

iv) There is C4 > 0 such that for any f ∈ B

sup
a∈Bn

(log
4

1− |a|
)p2(log log

e4

1− |a|
)q1+q2

∫
Bn

|f(z)|p1Ks
a(z)dµ(z) ≤ C4||f ||p1B .

Let 0 ≤ p, q < ∞. A function f ∈ H(Bn) belongs to BMOAρp,q with ρp,q(t) =

(log(4/t))p(log log(e4/t))q if f ∈ H1(Bn) and there exists a constant C > 0 so that

sup
B=Bδ(ξ)

δ∈]0,1[,ξ∈Sn

(log(4/δ))p(log log(e4/δ))q

σ(B)

∫
B
|f − fB|dσ ≤ C.

By [99], a function f belongs to BMOAρp,q if and only if dµ(z) = (1− |z|2)|∇f(z)|2dV (z)

is a ρ2
p,q- Carleson measure. The following corollaries can be proved as in the previous

sections.
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Corollary 2.4.3. Let 0 ≤ p, q < ∞. Given an analytic function b, the operator Tb is

bounded from LMOA to BMOAρp,q if and only if

sup
a∈Bn

(log
4

1− |a|
)2p(log log

e4

1− |a|
)2q+2

∫
Bn

|Rb(z)|2(1− |z|2)Ka(z)dV (z) <∞. (2.4.1)

Corollary 2.4.4. Let 0 ≤ p, q < ∞. Given an analytic function b, the operator Tb is

bounded from BMOA to BMOAρp,q if and only if

sup
a∈Bn

(log
4

1− |a|
)2p+2(log log

e4

1− |a|
)2q
∫

Bn

|Rb(z)|2(1− |z|2)Ka(z)dV (z) <∞. (2.4.2)

In particular, we have the following.

Corollary 2.4.5. Given an analytic function b, the operator Tb is bounded from BMOA

to LMOA if and only if

sup
a∈Bn

(log
4

1− |a|
)4
∫

Bn

|Rb(z)|2(1− |z|2)Ka(z)dV (z) <∞.

Let us now move to applications of Theorem 2.4.2. The following two corollaries can

be proved exactly as before.

Corollary 2.4.6. Let 0 ≤ p, q <∞, α > 0 and b ∈ H(Bn). Then the following conditions

are equivalent.

(a) Tb is bounded from LB to Bp,qα .

(b) For any s > 1,

sup
a∈Bn

(log
4

1− |a|
)2p(log log

e4

1− |a|
)2q+2

∫
Bn

|Rb(z)|2(1−|z|2)n(s−1)+2α−1Ks
a(z)dV (z) <∞.

(2.4.3)

Corollary 2.4.7. Let 0 ≤ p, q <∞, α > 0 and b ∈ H(Bn). Then the following conditions

are equivalent.

(a) Tb is bounded from B to Bp,qα .

(b) For any s > 1,

sup
a∈Bn

(log
4

1− |a|
)2p+2(log log

e4

1− |a|
)2q
∫

Bn

|Rb(z)|2(1−|z|2)n(s−1)+2α−1Ks
a(z)dV (z) <∞.

(2.4.4)

In particular, we have the following.

Corollary 2.4.8. Given b ∈ H(Bn), the operator Tb is bounded from B to LB if and only

if for any s > 1,

sup
a∈Bn

(log
4

1− |a|
)4
∫

Bn

|Rb(z)|2(1− |z|2)n(s−1)+2α−1Ks
a(z)dV (z) <∞.
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Chapter 3

Bi-parameter paraproducts on the

bidisc

We introduce the space of functions of dyadic logarithmic mean oscillation on the bidisc

and use it to characterize boundedness of dyadic bi-parameter paraproducts on the product

space of function of bounded dyadic mean oscillation, BMOd(T2). The idea of our proof

consists in writing our operators as a sum of localized operators satisfying some good

estimates and then applying Cotlar’s lemma.

3.1 Introduction

The paraproducts π(f, b) are bilinear (multilinear) operators representing a class of op-

erators which can be view in some sense as “half product” or “renormalized product”

( [71]). They first appeared in the work of Bony ( [26]) in relation with nonlinear differen-

tial equations. Since then they have appeared as important tools in Harmonic Analysis.

Their importance can be illustrated from the T (1) theorem of David and Journé [69] which

claims that many singular integral operators T can be written as T = S+π+ (π)∗, where

S is an almost translation invariant (or convolution) operator.

The study of one parameter and multi-parameter paraproducts has attracted a lot of

attention in very recent years [21, 54, 68, 71–73, 75, 76, 78, 84] with application to various

problems in Analysis. In [75, 76], their characterization appears as an important step in

the study of of a multi-parameter version the Coifman-Meyer theorem ( [33, 34]). In [87]

the authors also used the properties of paraproducts to characterize the Hankel operators

37
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of Schatten class while in [72], they are used in the study of boundedness of commutators

with Riesz potentials. The study of composition of (Haar) paraproducts in [20] is applied

to the two weights problem, i.e for which pair of weights (u, v) is the Hilbert transform

bounded from L2(du) to L2(dv)?

One of the situations considered in [73] is the boundedness of the following multilinear

map:

π : Lp1 × · · · × Lpn → Lr, 1 < pj ≤ ∞
n∑
j=1

1
pj

=
1
r
.

It is understood that for some appropriate paraproducts π and in the limit case, i.e when

for example p1 is 1 or ∞, the space Lp1 can be replaced by the real Hardy space H1
Re

(p1 = 1) or its dual space BMO ( p1 = ∞). Let us remark that paraproducts have been

used in [21] to provided alternative characterizations of the Chang-Fefferman BMO space.

Restricting ourself to the bi-parameter case, an interesting situation which is still open for

general paraproducts is the following

π : BMO × L2 → L2.

In this chapter, this last case is considered for some special Haar dyadic paraproduts in the

bitorus. The motivation for considering this case in the product setting is related to the

study of some other operators, such as the multiplication operators for BMO considered

in the next chapter or, as we expect Hankel operators in the limit case H1
Re.

3.2 Settings and definitions

3.2.1 The one dimensional case

We recall in this subsection some basic facts about dyadic Harmonic Analysis in the unit

circle. Most of our statements are from [81].

Let T denote the unit circle which we identify with the interval [0, 1). We recall that

for 1 ≤ p <∞, a function f belongs to the Lebesgue space Lp(T) = Lp(T, dt), if f satisfies

the following integrability condition:

||f ||pp :=
∫

T
|f(t)|pdt <∞.

The inner product on the Hilbert space L2(T) is given by

〈f, g〉 :=
∫

T
f(t)g(t)dt.
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A dyadic interval is any interval of the form [k2−j , (k + 1)2−j) with j, k integers. We

write D for the set of dyadic intervals in T. Given an integer k, the k-th generation of

dyadic intervals is defined by

Dk = {I ∈ D : |I| = 2−k}.

Remark 3.2.1. Let us remark that

• Given two intervals I and J in D, they are either disjoint or one is contained in the

other.

• Each interval is in a unique generation Dk and there are exactly two subintervals of

I in the next generation Dk+1 called the children of I: the right half I+ and the left

half I−. Moreover, I = I+
⋃
I−.

• For every interval I in Dk there exists exactly one interval Ĩ in Dk−1 such that I ⊂ Ĩ.

Ĩ is called the parent interval of I

Let hI denote the Haar wavelet adapted to the dyadic interval I,

hI = |I|−1/2(χI+ − χI−)

where I+ and I− are the right and left halves of I, respectively and χI is the characteristic

function of I:

χI(t) =

1 if t ∈ I

0 otherwise

The set of functions {hI : I ∈ D} ∪ {χ[0,1]} forms an orthonormal basis for L2([0, 1]).

Remark 3.2.2. Because of the application we have in mind and for simplicity, we suppose

in this chapter that our functions have mean zero over [0, 1]. This has the advantage of

reducing the set of constant functions to {0}. We denote by L2
0(T) the subset of L2(T)

corresponding to such functions. Then any f in L2
0(T) has the expansion:

f =
∑
I∈D

〈f, hI〉hI =
∑
I∈D

fIhI

(see for example [81]).
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We will be writing mIf = 1
|I|
∫
I f(t)dt for the mean of the function f over the dyadic

interval I.

The space of function of dyadic bounded mean oscillation in T, BMOd(T), is the space

of all functions f ∈ L2(T) such that

||f ||2∗ := sup
I∈D

1
|I|

∫
I
|f −mIf |2dt <∞. (3.2.1)

A norm on BMOd(T) is given by

||f ||2BMOd := ||f ||22 + ||f ||2∗.

It follows using the Haar expansion that

||f ||2∗ := sup
J∈D

1
|J |
∑
I⊆J

|fI |2 = sup
J⊂T

1
|J |
||PJf ||22 <∞, (3.2.2)

where the supremum is taken over all dyadic interval J ⊂ T and PJ is the orthogonal

projection on the subspace spanned by Haar functions hI , I ∈ D and I ⊆ J , i.e.

PJ(f) =
∑

I⊆J, I∈D
fIhI .

Remark 3.2.3. The usual definition of the space of function of bounded mean oscillation

in the unit circle uses the power 1 in (3.2.1). The John-Nirenberg’s theorem then allows

us to use any power 1 ≤ p <∞ (see [49,67]).

The space BMOd(T) is the dual space of the dyadic Hardy space H1
d(T) defined in

terms of the dyadic square function

S(f)(x) = (
∑

x∈I∈D

|〈f, hI〉|2

|I|
)1/2.

That means,

H1
d(T) = {f ∈ L1(T) : Sf ∈ L1(T)}

(see [81]).

Given f , g with finite Haar expansion, we have

fg = πg(f) + (πg)∗(f) + πf (g),

where πb is the dyadic paraproduct with symbol b defined on L2(T) by

πb(f) =
∑
I∈D

bImIfhI
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and its adjoint (πb)∗ = ∆b is given by

∆b(f) =
∑
I∈D

bIfI
χI
|I|
.

It is well-known that πb is bounded on Lp(T) if and only b ∈ BMOd(T) (see [81]).

3.2.2 The product setting case

Let T2 denote the product of the unit circle by itself. We recall that D is the set of dyadic

intervals in T and we denote by R the set of all dyadic rectangles R = I × J , I and J in

D. For any rectangle R ∈ R, the product Haar wavelet adapted to R = I × J is defined

by hR(t, s) = hI(t)hJ(s). These wavelets form an orthonormal basis of L2
0(T2):

f =
∑
R∈R

〈f, hR〉hR =
∑
R∈R

fRhR.

We will be writing mRf for the mean of f ∈ L2(T2) over the dyadic rectangle R. We also

use the notation fI(s) = 〈f(., s), hI〉, mIf(s) = 1
|I|
∫
I f(t, s)dt, fI(t) = 〈f(t, .), hJ〉 and

mJf(t) = 1
|J |
∫
J f(t, s)ds.

For any f ∈ L2(T2), we use the notations

PIf =
∑

R′=I′×J ′∈R,I′⊆I
hR′fR′

and

PJf =
∑

R′=I′×J ′∈R,J ′⊆J
hR′fR′ .

This means that given I ∈ D, PI is the orthogonal projection on the subspace spanned by

the Haar functions hR′ = hI′,J ′ , R′ = I ′ × J ′ ∈ R, I ′ ⊆ I.

There are several notions of bounded mean oscillation in the product setting. We are

interested here only in the Chang-Fefferman version of [30] . The space of functions of

dyadic bounded mean oscillation in T2, BMOd(T2), is the space of all function f ∈ L2(T2)

such that

||f ||2BMOd := sup
Ω⊂T2

1
|Ω|

∑
R⊆Ω

|fR|2 = sup
Ω⊂T2

1
|Ω|

||PΩf ||22 <∞, (3.2.3)

where the supremum is taken over all open sets Ω ⊂ T2 and PΩ the orthogonal projection

on the subspace spanned by Haar functions hR, R ∈ R and R ⊆ Ω. It is well-known
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(see [30]) that BMOd(T2) is the dual space of the dyadic product Hardy space H1
d(T2)

defined in terms of the dyadic square function

S(f)(t, s) = (
∑

(t,s)∈R∈R

|〈f, hR〉|2

|R|
)1/2.

That is,

H1
d(T2) = {f ∈ L1(T2) : Sf ∈ L1(T2)}.

As usual, we define the (i, j)th generation of dyadic rectangles,

Ri,j = {I × J ∈ R : |I| = 2−i, |J | = 2−j},

the product Haar martingale difference,

∆i,jf =
∑

R∈Ri,j

〈f, hR〉hR,

the expectations

Ei,jf =
∑

k<i,l<j

∆k,lf,

E
(1)
i f =

∑
k<i,l,k∈N0

∆k,lf,

E
(2)
j f =

∑
l,k∈N0,l<j

∆k,lf,

for f ∈ L2(T), i, j ∈ N. We will need also need the operators on L2(T2) given by

Qi,jf =
∑

k≥i,l≥j
∆k,lf

Q
(1)
i f =

∑
k≥i,l,k∈N0

∆k,lf

Q
(2)
j f =

∑
l,k∈N0,l≥j

∆k,lf.

Note that Qi,j is not the orthogonal complement of the expectation Ei,j . In fact we have

the decomposition

f = Ei,jf + E
(1)
i Q

(2)
j f + E

(2)
i Q

(1)
j f +Qi,jf. (3.2.4)

The one dimensional paraproduct π and its adjoint ∆ can be combined to obtain

various two dimension paraproducts. In particular, we write for ϕ, f ∈ L2(T2),

ππϕf = π(1,2)
ϕ f =

∑
i,j≥0

(∆i,jϕ)(Ei,jf) =
∑
R∈R

hRϕRmRf.

We study below boundedness criteria of such operators on the product space BMOd(T2).
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3.2.3 An example of a function in BMOd(T2)

We show how to obtain for each rectangle R = I × J ⊂ T2, a function fR ∈ BMOd(T2)

such that

fR ≥ C log
4
|I|

log
4
|J |

χIχJ . (3.2.5)

Here the constant C > 0 does not depend on R. In fact, we have the following lemma

in [21].

Lemma 3.2.4. BMOd(T)
⊗

BMOd(T) ⊆ BMOd(T2).

The above lemma says that given f and g in BMOd(T), their tensor product defined by

b(t, s) := f(t)b(s) is in BMOd(T2). Thus, to obtain an example of element of BMOd(T2)

satisfying (3.2.5), we only need to find for any interval J a function fJ in the one dimen-

sional space BMOd(T) which satisfies the estimate

fJ ≥ C log
4
|J |

where the constant C > 0 does not depend on J .

Let J be a fixed interval in T. Let J0 = J and Jk be the intervals in T with the same

center as J and such that |Jk| = 2k|J |, here k = 1, 2, · · · , N − 1 and N is the smallest

integer such that 2N |J | ≥ 1. We define JN = T. Thus,

N + 2 ≥ log2

4
|J |

.

Remark that the intervals Jk are not necessarily dyadic. We define U0 = J0 = J , Uk =

Jk \ Jk−1, for k = 1, · · · , N . Now consider the function fJ defined on T by

fJ =
N∑
k=0

(N + 2− k)χUk
. (3.2.6)

Clearly,

fJ(t) ≥ N + 2 ≥ log2

4
|J |

for all t ∈ J.

Lemma 3.2.5. For each interval J ⊂ T, the function fJ defined by (3.2.6) belongs to

BMO(T).
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Proof. We first estimate the L2-norm of fJ . We have

||fJ ||22 =
N∑
k=0

(N + 2− k)2|Uk| =
N+2∑
k=2

k2|JN+2−k| ≤
N+2∑
k=1

k22N+2−k|J |

≤
N+2∑
k=1

k22N+2−k21−N

= 8
N+2∑
k=1

k22−k.

It is clear that the last sum in the above equalities is finite and so fJ ∈ L2(T).

For any interval I ∈ T, let m ∈ 0, · · · , N + 1 be minimal such that I ∩ Um 6= ∅, and

l ∈ 0, · · · , N + 1 be maximal such that I ∩Um+l 6= ∅. Let us estimate the length of I ∩Uj

for any m ≤ j ≤ m + l. If l = 0 then I ∩ Um = I and there is nothing to say. If l = 1

then |I ∩ Um| ≤ |I| and |I ∩ Um+1| ≤ |I|. Next, we consider the case l ≥ 2. We remark

that in this case, at least half of Uj is contained in I for any m < j < m+ l, thus we have

|I ∩ Uj | ≤ 2 1
2m+l−j−1 |I|. Finally, we have |I ∩ Um| ≤ |I|. Thus,

1
|I|

∫
I
|fJ − (N + 2−m− l)|dt =

1
|I|

∫
I
|
m+l∑
k=m

(m+ l − k)χUk
|dt

≤ 1
|I|

m+l∑
k=m

(m+ l − k)|I ∩ Uk|

≤ 4
1
|I|

m+l∑
k=m

(m+ l − k)2−m−l+k|I|

= 4
k=l∑
k=0

k

2k
≤ 8.

Thus, for each interval J ∈ D, the function fJ given by (3.2.6) belongs to BMO(T) and

there exists a positive constant C independent of J such that ||fJ ||BMO ≤ C. The proof

is complete.

3.3 Boundedness of paraproducts on BMOd(T2)

Given two function f and g in L2
0(T2) with finite Haar expansion, the pointwise product

f · g can be written as the following

fg = ππgf + ∆∆gf + π∆gf + ∆πgf +R∆gf + ∆Rgf +Rπgf + πRgf +RRgf.

The nine terms correspond to the products 〈MϕhI(s)hJ(t), hI′(s)hJ ′(t)〉 for I ′ ⊂ I, I ′ = I,

I ′ ⊃ I, J ′ ⊂ J , J ′ = J , J ′ ⊃ J . The first four operators above can be seen as compositions



CHAPTER 3. BI-PARAMETER PARAPRODUCTS ON THE BIDISC 45

of the one dimensional paraproduct π and its adjoint ∆. They are defined on L2(T2) by

the following formulas.

ππϕf = πϕf =
∑
i,j≥0

(∆i,jϕ)(Ei,jf) =
∑
R∈R

hRϕRmRf,

∆∆ϕf =
∑
R∈R

χR
|R|

ϕRfR,

∆πϕf =
∑

I×J∈R

χI(s)
|I|

hJ(t)ϕI×JmJfI ,

π∆ϕf =
∑

I×J∈R
hI(s)

χJ(t)
|J |

ϕI×JmIfJ .

We refer to the next chapter for the definition of the remaining five terms.

It is a consequence of the Chang’s generalization of Carleson Embedding Theorem

(see [29]) that ππϕ is bounded on L2(T2) if and only if ϕ ∈ BMOd(T2). The boundedness

of the operators π∆ϕ and ∆πϕ has been studied in [21] and [84]. The following results can

be found in [21,71].

Proposition 3.3.1. Let ϕ ∈ L2(T2). Then the following assertions hold.

a) The operators ππϕ and ∆∆ϕ are bounded on L2(T2) if and only if ϕ ∈ BMOd(T2).

Moreover,

‖ππϕ‖L2→L2 ≈ ‖ϕ‖BMOd .

b) If ϕ ∈ BMOd(T2), then both π∆ϕ and ∆πϕ are bounded on L2(T2).

In this section, we characterize those symbols for which they above operators extend as

bounded operators on BMOd(T2). For this, we introduce the following notions of function

of dyadic logarithmic oscillation in product setting.

Definition 3.3.2. Let ϕ ∈ L2(T2).

• We say that ϕ ∈ LMOd(T2), if there exists C > 0 with

‖Qi,jϕ‖BMOd(T2) ≤ C
1
ij

for all i, j.

• We say that ϕ ∈ LMOd
1(T2), if there exists C > 0 with

‖Q(1)
i ϕ‖BMOd ≤ C

1
i

for all i ∈ N.
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• We say that ϕ ∈ LMOd
2(T2), if there exists C > 0 with

‖Q(2)
j ϕ‖BMOd ≤ C

1
j

for all j ∈ N.

The infimum of such constants is denoted by ‖ϕ‖LMOd ,‖ϕ‖LMOd
1
, ‖ϕ‖LMOd

2
, respectively.

Remark 3.3.3. An alternative characterization of LMOd(T2), which is closer in spirit to

the one-parameter case, is the following: Let ϕ ∈ L2(T2). Then

ϕ ∈ LMOd(T2), if and only if there exists C > 0 such that for each dyadic rectangle

R = I × J and each open set Ω ⊆ R,

log( 4
|I|)

2 log( 4
|J |)

2

|Ω|
∑

Q∈R,Q⊆Ω

|ϕQ|2 ≤ C.

3.3.1 The main paraproduct

Let ϕ ∈ L2(T2). The paraproduct ππϕ = π
(1,2)
ϕ is defined by

π(1,2)
ϕ f =

∑
i,j≥0

(∆i,jϕ)(Ei,jf) =
∑
R∈R

hRϕRmRf

on functions with finite Haar expansion. We will sometimes write πϕ or π[ϕ] to avoid

ambiguities with complicated symbols. In this section, we show that πϕ extends as a

bounded operator on BMOd(T2) if and only if ϕ ∈ LMOd(T2). For this, we first provide

the reader with some useful lemmas.

Lemma 3.3.4.

|mRb| . kn‖b‖BMOd(T2) (R ∈ Rn,k);

‖χRb‖2
2 . k2n2|R|‖b‖2

BMOd(T2)
(R ∈ Rk,n);

‖mIb‖BMOd(T) . k‖b‖BMOd(T2) (I ∈ Dk);

and this is sharp.

Proof. Let R = I × J . For the first inequality, consider

sup
b∈BMOd,‖b‖

BMOd=1

|mRb| = sup
b∈BMOd,‖b‖

BMOd=1

|〈b, χR
|R|

〉|

. ‖χR
|R|

‖H1
d(T2)

= ‖χI
|J |
‖H1

d(T)‖
χJ
|J |
‖H1

d(T)

. log(
4
|I|

) log(
4
|J |

) ≈ kn,
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where we use the H1
d(T2)- BMOd(T2) duality in the first line and the known one-variable

results in the last line.

For the second inequality, note that χRb(s, t) = PRb(s, t)+χR(s, t)mIb(t)+χR(s, t)mJb(s)−

χR(s, t)mRb (see [21]).

Clearly ‖PRb‖2
2 ≤ |R|‖b‖2

BMOd and ‖χRmRb‖2
2 = |mRb|2|R| . n2k2|R|‖b‖2

BMOd by

the first inequality. The results for the remaining terms follow from the one-dimensional

John-Nirenberg inequality, since e. g.

‖χR(s, t)mIb(t)‖2 = sup
f∈L2(T),‖f‖2≤1

|I|1/2|
∫

T

∫
T

1
|I|
χR(s, t)f(t)b(s, t)dsdt|

≤ |I|1/2‖b‖BMOd sup
f∈L2(T),‖f‖2≤1

‖ 1
|I|
χR(s, t)f(t)‖H1

d(T2)

= |I|1/2‖b‖BMOd sup
f∈L2(T),‖f‖2≤1

‖ 1
|I|
χI(s)‖H1

d(T)‖χJ(t)f(t)‖H1
d(T)

. k|I|1/2‖b‖BMOd sup
ψ∈BMOd(T)

‖χJψ‖2 . kn|I|1/2|J |1/2‖b‖BMOd .

The last inequality follows in a very similar way:

‖mIb‖BMO(T) ≈ sup
f∈H1

d(T),‖f‖
H1

d
≤1

|
∫

T

∫
T

1
|I|
χI(s)f(t)b(s, t)dsdt|

. ‖b‖BMOd(T2) sup
f∈H1

d(T),‖f‖
H1

d
≤1

‖ 1
|I|
χI(s)f(t)‖H1

d(T2)

= ‖b‖BMOd(T2)‖
1
|I|
χI(s)‖H1

d(T) . k‖b‖BMOd(T2).

For the sharpness in the two first inequalities, it suffices to test with b(s, t) = f I(s)fJ(t)

when R = I × J and f I is the BMOd(T)-function given by (3.2.6 ). It follows easily that

|mRb| & log
4
|I|

log
4
|J |

& kn;

and

||χRb||22 & k2n2||χR||22 = k2n2|R|.

For the last inequality, we take for I fixed, b(s, t) = f I(s)g(t) where f I is theBMOd(T)-

function given by (3.2.6 ) and g ∈ BMOd(T) with ||g||BMOd(T) = 1. Recalling that f I & k

on I, we obtain easily that

||mIb||BMOd(T) & k||g||BMOd(T) = k.
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We also have the following useful lemma, in the same vein, which will be also of use in

the next chapter.

Lemma 3.3.5. For any open set U ⊂ T,

‖χIPUb‖2
2 . k2|I||U|‖b‖2

BMOd(T2)
(I ∈ Dk).

Proof. Let us first remark that any open subset of T can be written as a disjoint union of

countably many dyadic intervals. Let write U as the countable union of its maximal dyadic

subintervals. Thus PU is the sum of the mutually orthogonal projections corresponding to

these maximal subintervals. Consequently, we only need to prove the lemma for the case

where Ω = J is a dyadic interval. For this, we recall that χIPJb = PI×J −χImI(PJb) and

that ‖PI×Jb‖2
2 ≤ |I||J |‖b‖2

BMOd . Thus, we only have to estimate the second term. Using

the one dimensional version of the first inequality in the previous lemma we obtain

‖χI(t)mI(PJb)(s)‖2
2 . |I|‖PJ(mIb)‖2

L2(T)

. |I|k2‖‖PJb‖BMOd(T)‖2
L2(T)

. |I||J |‖mIb‖2
BMOd(T)

. |I||J |k2‖b‖2
BMOd .

The next lemma provides an important identity for our study.

Lemma 3.3.6. Let b ∈ L2(T2) and let k, l ∈ N. Then

‖πbEk,l‖L2→L2 = ‖πb̃‖

where

b̃I,J =



bI,J if |I| > 2−k, |J | > 2−l

(
∑

J ′⊆J |bI,J ′ |2)1/2 if |I| > 2−k, |J | = 2−l

(
∑

I′⊆I |bI′,J |2)1/2 if |I| = 2−k, |J | > 2−l

(
∑

I′⊆I,J ′⊆J |bI′,J ′ |2)1/2 if |I| = 2−k, |J | = 2−l

0 otherwise.
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Proof. Let f ∈ L2(T2). Then

‖πbEk,lf‖2
2 = ‖

∑
i,j

(∆i,jb)Ei,jEk,lf‖2

=
∑

i≥k,j≥l
‖(∆i,jb)Ek,lf‖2 +

∑
i≥k,j<l

‖(∆i,jb)E
(2)
j Ek,lf‖2

+
∑

i<k,j≥l
‖(∆i,jb)E

(1)
i Ek,lf‖2 +

∑
i<k,j<l

‖(∆i,jb)Ei,jEk,lf‖2

= ‖(
∑

i≥k,j≥l
|∆i,jb|2)1/2Ek,lf‖2

2 +
∑
j<l

‖(
∑
i≥k

|∆i,jb|2)1/2Ek,jf‖2

+
∑
i<k

‖(
∑
j≥l

|∆i,jb|2)1/2Ei,lf‖2 +
∑

i<k,j<l

‖(∆i,jb)Ei,jf‖2

= ‖
∑

i≤k,j≤l
(∆i,j b̃)Ei,jf‖2 = ‖πb̃f‖

2.

Here is our main technical lemma.

Lemma 3.3.7. Let ϕ ∈ LMOd(T2) and b ∈ BMOd(T2). Then

‖π
[
π[Qi,jϕ]b

]
Ek,l‖L2→L2 = ‖π[

πQi,jϕb
]Ek,l‖L2→L2 .

kl

ij
‖ϕ‖LMOd‖b‖BMOd .

Proof. We can assume that ϕ = Qijϕ. By Lemma 3.3.6, we have to estimate the BMOd

norm of π̃Qi,jϕb. Clearly

π̃ϕb = Ẽk,lπϕb+
˜

E
(1)
k Q

(2)
l πϕb+

˜
E

(2)
l Q

(1)
k πϕb+

˜
Q

(1)
k Q

(2)
l πϕb

= Ek,lπϕb+
˜

E
(1)
k Q

(2)
l πϕb+

˜
E

(2)
l Q

(1)
k πϕb+

˜
Q

(1)
k Q

(2)
l πϕb = I + II + III + IV.

(indeed, this is the decomposition given by formula (3.2.4) and the definition of b̃ in Lemma

3.3.6).

We start with term I. For any open set Ω ⊆ T2,

1
|Ω|

‖PΩEk,lπϕb‖2 =
1
|Ω|

∑
R=I×J,|I|>2−k,|J |>2−l,R⊂Ω

|ϕR|2|mRb|2

.
k2l2

|Ω|
∑

R=I×J,|I|>2−k,|J |>2−l,R⊂Ω

|ϕR|2‖b‖2
BMOd

. k2l2‖ϕ‖2
BMOd‖b‖2

BMOd .
k2l2

i2j2
‖ϕ‖2

LMOd‖b‖2
BMOd .

by the definition of LMOd and by Lemma 3.3.4.

For term II, note that since
˜

E
(1)
k Q

(2)
l πϕb has only nontrivial Haar coefficients for those

R = I × J with |J | = 2−l and |I| > 2−k (note that this corresponds to the second term in
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the definition of b̃ in Lemma 3.3.6), it is sufficient to check the BMO norm on rectangles

R = I × J with |J | = 2−l and |I| > 2−k. Then

1
|R|

‖PR(
˜

E
(1)
k Q

(2)
l πϕb)‖2

2 =
1
|R|

∑
I′⊆I

|( ˜
E

(1)
k Q

(2)
l πϕb)I′,J |2

=
1
|R|

∑
I′⊆I,J ′⊆J,I′×J ′∈R

|ϕI′×J ′ |2|mI′×J ′b|2

=
1
|R|

‖πϕχRb‖2
2 . ‖ϕ‖2

BMOd

1
|R|

‖χRb‖2
2 .

k2l2

i2j2
‖ϕ‖2

LMOd‖b‖2
BMOd .

Term III is dealt with analogously. For term IV, note that since
˜

Q
(1)
k Q

(2)
l πϕb has only

nontrivial Haar coefficient for R ∈ Rk,l, it is enough to check the BMO norm on rectangles

of this type, and we obtain for R = I × J ∈ Rk,l:

1
|R|

∫
R
|PR(

˜
Q

(1)
k Q

(2)
l πϕb)|2dsdt =

1
|I||J |

∑
I′⊆I,J ′⊆J

|ϕI′,J ′ |2|mI′,J ′b|2

=
1
|R|

‖πϕχRb‖2
2

.
1
|R|

‖ϕ‖2
BMOd‖χRb‖2

2

.
k2l2

i2j2
‖ϕ‖2

LMOd‖b‖2
BMOd

by Lemma 3.3.4.

Let us now recall the following Cotlar’s lemma (see [101]).

Lemma 3.3.8. Suppose {Tj} is a finite collection of bounded operators on L2. We denote

the adjoint Tj by T ∗j . We assume that we are given a sequence of positive constants

{α(j)}∞j=−∞, with

A =
∞∑

j=−∞
α(j) <∞,

and

||T ∗i Tj ||L2→L2 ≤
[
α(i− j)

]2
,

||TiT ∗j ||L2→L2 ≤
[
α(i− j)

]2
.

Then the operator

T =
∑
j

Tj

satisfies

||T ||L2→L2 ≤ A.
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Theorem 3.3.9. Let ϕ ∈ L2(T2). Then ϕ ∈ LMOd(T2), if and only if πϕ : BMOd(T2) →

BMOd(T2) is bounded, and ‖πϕ‖BMOd→BMOd ≈ ‖ϕ‖LMOd.

Proof. We begin by proving necessity. Suppose that πϕ : BMOd(T2) → BMOd(T2) is

bounded. Let R = I × J be a dyadic rectangle, with |I| = 2−k and |J | = 2−l, and

let Ω ⊆ R be open. From Lemma 3.2.5, it is easy to see that there exists a function

b ∈ BMOd with b|R ≡ kl and ‖b‖BMOd ≤ C, where C is a constant independent of R.

Such a function is obtained as a tensor product of two one-variable functions b1, b2 in the

variables s, t respectively, which have the corresponding properties for the intervals I and

J , respectively and are given by (3.2.6). Then(
log( 4

|I|)
)2 (

log( 4
|J |)
)2

|Ω|
∑

Q∈R,Q⊆Ω

|ϕQ|2 ≈
kl

|Ω|
∑

Q∈R,Q⊆Ω

|ϕQ|2

=
1
|Ω|

∑
Q∈R,Q⊆Ω

|ϕQ|2|mQb|2 ≤ ‖πϕb‖2
BMOd ≤ C2‖πϕ‖2

BMOd→BMOd .

Thus ϕ ∈ LMOd(T2) by Remark 3.3.3, with the appropriate norm estimate.

To prove sufficiency of the LMOd(T2) condition for boundedness of the paraproduct

on BMOd(T2), let ϕ ∈ LMOd(T2) and b ∈ BMOd(T2). Assume that b has a finite Haar

expansion. We will estimate ‖πϕb‖BMOd ≈ ‖π[πϕb]‖L2→L2 by means of Cotlar’s Lemma.

For N,K ∈ N, let

PN,K =
2N+1−1∑
i=2N

2K+1−1∑
j=2K

∆i,j ,

PN,K =
∞∑

i=2N

∞∑
j=2K

∆i,j ,

(3.3.1)

and

TN,K = π[πϕb]PN,K .

That means, we wish to estimate the L2−L2 operator norm of π[πϕb] =
∑∞

N,K=0 TN,K .

In fact since we suppose that b has a finite Haar expansion, and in the aim of applying

Cotlar’s Lemma, we only need to consider a finite family of the operators {TN,K}N,K≥0.

The result for the paraproduct π[πϕb] will follow by taking the limits.

Clearly TN,KT ∗N ′,K′ = 0 for N 6= N ′ or K 6= K ′. Therefore, we only have to estimate

the norm of T ∗N,KTN ′,K′ forN,N ′,K,K ′ ∈ N. LettingN = max{N,N ′}, N = min{N,N ′},
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K = max{K,K ′}, K = min{K,K ′}, we obtain

‖T ∗N,KTN ′,K′‖ = ‖PN,K (π[πϕb])
∗ (π[πϕb])PN ′,K′‖

= ‖PN,K
(
π[PN,Kπϕb]

)∗ (
π[PN

′,K′
πϕb]

)
PN ′,K′‖

= ‖PN,K
(
π[PN,Kπϕb]

)∗ (
π[PN,Kπϕb]

)
PN ′,K′‖

≤ ‖π[PN,Kπϕb]PN,K‖‖π[PN,Kπϕb]PN ′,K′‖

= ‖π[π[PN,Kϕ]b]PN,K‖‖π[π[PN,Kϕ]b]PN ′,K′‖

.
2N+12K+1

2N2K
2N+12K+1

2N2K
‖ϕ‖2

LMOd‖b‖2
BMOd

. 2−|N−N
′|2−|K−K

′|‖ϕ‖2
LMOd‖b‖2

BMOd

by Lemma 3.3.7. Thus, by Cotlar’s Lemma, T = π[πϕb] is bounded on L2(T2), and there

exists an absolute constant C > 0 with

‖π[πϕb]‖ ≤ C‖ϕ‖LMOd‖b‖BMOd .

Consequently,

‖πϕb‖BMOd . ‖ϕ‖LMOd‖b‖BMOd .

3.3.2 The other paraproducts

There are four “good” dyadic paraproducts in two variables, namely the paraproduct π

discussed above, its adjoint defined by

∆ϕf = ∆∆ϕf =
∑
R∈R

χR
|R|

ϕRfR,

and the mixed paraproducts ∆π and π∆, given by

∆π[ϕ]f = ∆πϕf =
∑

I×J∈R

χI(s)
|I|

hJ(t)ϕI×JmJfI ,

π∆[ϕ]f = Π∆ϕf =
∑

I×J∈R
hI(s)

χJ(t)
|J |

ϕI×JmIfJ ,

see [21].

Interestingly, all four paraproducts have a different boundedness behaviour on BMOd(T2).

Theorem 3.3.10. Let ϕ ∈ L2(T2). Then

(1) ∆ϕ : BMOd(T2) → BMOd(T2) is bounded, if and only if ϕ ∈ BMOd.

Moreover, ‖∆ϕ‖BMOd→BMOd ≈ ‖ϕ‖BMOd.
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(2) π∆[ϕ] : BMOd(T2) → BMOd(T2) is bounded, if ϕ ∈ LMOd
1(T2).

Moreover, ‖π∆[ϕ]‖BMOd(T2)→BMOd(T2) . ‖ϕ‖LMOd
1(T2).

(3) ∆π[ϕ] : BMOd(T2) → BMOd(T2) is bounded, if ϕ ∈ LMOd
2(T2).

Moreover, ‖∆π[ϕ]‖BMOd(T2)→BMOd(T2) . ‖ϕ‖LMOd
2(T2).

Proof. (1) was shown in [21]. To show (2), we will follow a simplified version of the ideas

of the proof of Theorem 3.3.9.

Lemma 3.3.11. Let b ∈ L2(T2) and let k ∈ N. Then

‖πbE
(1)
k ‖L2→L2 = ‖πb̃‖

where

b̃I,J =


bI,J if |I| > 2−k

(
∑

I′⊆I |bI′,J |2)1/2 if |I| = 2−k

0 otherwise.

Proof. As in Lemma 3.3.6.

Lemma 3.3.12. Let ϕ ∈ LMOd
1(T2) and b ∈ BMOd(T2), i, k ∈ N. Then

‖π
[
π∆[Q(1)

i ϕ]b
]
E

(1)
k ‖L2→L2 .

k

i
‖ϕ‖LMOd

1
‖b‖BMOd .

Proof. We write Q for Q(1) and E for E(1). We can assume that ϕ = Qiϕ. Following the

results in Lemma 3.3.11, we estimate

‖π̃∆ϕb‖BMOd ≤ ‖π̃∆Ekϕb‖BMOd + ‖π̃∆Qkϕb‖BMOd .

We start with the second term and remember that still QiQkϕ = Qkϕ. Since π∆[Qkϕ]b

has no nontrivial Haar terms in the first variable for intervals I with |I| > 2−k,

˜π∆[Qkϕ]b =
∑
J∈D

∑
|I|=2−k

hI(s)(
∑
I′⊆I

|ϕI′J |2|mI′bJ |2)1/2
χJ
|J |

(t),

and this has only nontrivial Haar terms in the first variable for intervals I with |I| = 2−k.

The computation of the BMOd norm is therefore very easy: instead of considering general

open sets, one only has to consider rectangles of the form R = I × J , |I| = 2−k. Thus,
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using Lemma 3.3.5 we obtain

‖PR( ˜π∆[Qkϕ]b)‖2
2 = ‖PR( ˜π∆[Qkϕ]b)‖2

2

≤ ‖ ˜π∆[PRQkϕ]b‖2
2

= ‖π∆[PRQkϕ]b‖2
2

= ‖
∑
J ′⊆J

∑
I′⊆I

hI′
χJ ′

|J ′|
(t)ϕI′J ′mI′bJ ′‖2

2

= ‖π∆PRϕχI(s)PJb‖
2
2

. ‖PRϕ‖BMOd‖χIPJb‖2
2 .

k2

i2
‖ϕ‖2

LMOd‖b‖2
BMOd .

Now we have to deal with the first term ‖π̃∆Ekϕb‖BMOd . Again, we recall that still

Ekϕ = QiEkϕ with this notation. Let Ω ⊆ T2 be open and write

JI = ∪J∈D,I×J⊆ΩJ for I ∈ D. (3.3.2)

Then

‖PΩ(π̃∆Ekϕb)‖
2
2 = ‖PΩ

(
π∆[Ẽkϕ]

)
‖2
2

= ‖PΩ

∑
I,J∈D,|I|>2−k

hI(s)
χJ
|J |

(t)ϕIJmIbJ‖2
2

≤ ‖
∑

I∈D,|I|>2−k

∑
J∈D:I×J⊆Ω

hI(s)
χJ
|J |

(t)ϕIJmIbJ‖2
2

=
∑

I∈D,|I|>2−k

‖
∑
J⊆JI

χJ
|J |

(t)ϕIJmIbJ‖2
2

=
∑

I∈D,|I|>2−k

‖∆mIbPJI
ϕI‖2

2 .
∑

I∈D,|I|>2−k

‖mIb‖2
BMOd‖PJI

ϕI‖2
2

. k2‖b‖2
BMOd

∑
I∈D

‖PJI
ϕI‖2

2

. k2‖b‖2
BMOd‖PΩϕ‖2

2 .
k2

i2
‖b‖2

BMOd‖ϕ‖2
LMOd |Ω|

by Lemma 3.3.4.

The remainder of the proof of (2) is now exactly analogous to the proof of Therem

3.3.9, defining TN = π
[
π∆[ϕ]

]
PN , where PN =

∑2N+1−1
i=2N ∆(1)

i , and using Cotlar’s Lemma

in one parameter. Finally, (3) follows by simply switching variables.



Chapter 4

Pointwise multipliers of product

BMO

We characterize in this chapter the set of pointwise multipliers of the product space of

functions of bounded mean oscillation. This work is motivated by the one dimensional

result of [100] on the algebra of pointwise multipliers of this space.

4.1 Functions of bounded mean oscillation

In this section, we recall various notions of functions of bounded mean oscillation first

in the torus and then in the bitorus. In the product setting, we also recall equivalent

definitions of the little (small) BMO space denoted bmo and introduce the little LMO

space denoted by lmo.

4.1.1 Bounded mean oscillation in one dimension

Originally, we say a function f is in the space of functions of bounded mean oscillation

BMO if

||f ||∗ := sup
I

1
|I|

∫
I
|b(t)−mIb|dt <∞,

where mIf = 1
|I|
∫
I f(t)dt is the mean of the function f over the interval I. Because of the

John-Nirenberg’s inequality:

f ∈ BMO if and only if there exist C, c > 0 such that

|{t ∈ I : |f(t)−mIf | > λ}| ≤ C|I|e−cλ/||f ||∗ ,

55
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we observe that the following equivalence holds

||f ||∗ ≈
(

sup
I

1
|I|

∫
I
|b(t)−mIb|pdt

)1/p

. (4.1.1)

Remark 4.1.1. The equivalence (4.1.1) explains the choice of the exponent 2 in the defi-

nition of BMOd(T) in previous chapter.

The Hilbert transform is defined on L1(T) by

Hf(x) := p.v.
1
π

∫ 1

0

f(y)
tan(π(x− y))

dy. (4.1.2)

A second characterization of BMO is in terms of duality with the real Hardy space (see

[41]):

BMO(T) =
(
H1
Re(T)

)∗
where

(
H1
Re(T)

)∗ is the dual space with respect to the (L2, L2) duality, of the real Hardy

space H1
Re(T) defined as

H1
Re(T) = {f ∈ L1(T) : Hf ∈ L1(T)}.

Let us now introduce the useful notion of function of logarithmic mean oscillation. We

say a function f has logarithmic mean oscillation if

‖f‖∗,log := sup
I⊂T

(
log 4

|I|

)2

|I|

∫
I
|f(t)−mIf |2dt <∞. (4.1.3)

The space of functions of logarithmic mean oscillation is denoted LMO(T). Taking only

dyadic intervals in the definitions of BMO(T) and LMO(T), we obtain their dyadic counter-

parts already introduced in Chapter 3 BMOd(T) and LMOd(T) respectively. The following

one dimensional version of Theorem 3.3.9 is easily obtained.

Proposition 4.1.2. For a function ϕ in L2(T), we have the equivalence

‖πϕ‖BMOd→BMOd ' ‖ϕ‖∗,log.

4.1.2 Product space of functions of bounded mean oscillation

The product BMO(T2) of S-Y. A. Chang and R. Fefferman [29–31] is the dual of the real

product Hardy space H1
Re(T2) defined by

H1
Re(T2) = {f ∈ L1 : H1f ∈ L1,H2f ∈ L1,H1H2f ∈ L1},
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where H1 and H2 are Hilbert transforms in the first and the second variable. Keeping in

mind the equivalent definitions in one dimension, we also recall the definition of the small

BMO space bmo(T2) introduced by Cotlar and Sadosky [37]. A function f belongs to the

space of functions of bounded mean oscillation on rectangles, bmo(T2), if

sup
R⊂T2 rectangle

1
|R|

∫
R
|b(s, t)−mRb|dsdt <∞.

In the one dimensional case, bmo(T) = BMO(T). In higher dimension, this is far from

being the case. In fact we have bmo(T2) ⊂ BMO(T2) in the strict sense (see [37, 46]).

Nevertheless, equivalent definitions of product BMO(T2) are obtained as in one dimension

in terms of range of symbols of bounded Hankel operators or commutators (see [30,45,46]).

The little BMO space on the bitorus bmo(T2) can also be characterised as

bmo(T2) = {b ∈ L2(T2) : ∃C > 0 such that ‖b(·, t)‖BMO(T) ≤ C,

‖b(s, ·)‖BMO(T) ≤ C for a.e. t, s ∈ T} (4.1.4)

and as

bmo(T2) = {b ∈ L2(T2) : ∃C > 0 such that ‖m(1)
I b‖BMO(T) ≤ C,

‖m(2)
J b‖BMO(T) ≤ C for all intervals I, J ⊂ T} (4.1.5)

(see [37, 46]). Here and in the following, we think of I as an interval in the first variable

and J as an interval in the second variable, meaning that m(1)
I b is a function in the second

variable and m(2)
J b is a function in the first variable. In the same spirit, we introduce the

little LMO space in the bitorus lmo(T2) as follows:

lmo(T2) = {b ∈ L2(T2) : ∃C > 0 such that ‖m(1)
I b‖LMO(T) ≤ C,

‖m(2)
J b‖LMO(T) ≤ C for all intervals I, J ⊂ T}. (4.1.6)

Replacing rectangles by dyadic rectangles and intervals by dyadic intervals in any of

the characterizations above, we obtain the dyadic BMOd(T2), the small dyadic BMO space

bmod(T2) and the small dyadic LMO space lmod(T2).

4.1.3 Dyadic grids and averaging

For α ∈ [0, 1], let Dα denote the translated dyadic grid on T, that is the set of all interval

of the following form

[α+ k2−j , α+ (k + 1)2−j), k, j ∈ Z
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when we identify T with [0, 1). Here D0 = D the standard dyadic grid on T. For I ∈ Dα,

we denote by hαI the corresponding Haar function, normalized in L2(T). Thus the notation

BMOd,α will always means that we are defining our space of functions of bounded mean

oscillation with respect to the dyadic grid Dα or the product dyadic grid Rα = Dα1 ×Dα2

when we are in product settings, in which case α = (α1, α2).

In one dimension, the theorem of Garnett and Jones [Theorem 2, [83]] relates the space

BMO of functions of bounded mean oscillation to its dyadic counterpart, the dyadicBMO.

Its extension to the product space is due to J. Pipher and L. A. Ward [83].

Theorem 4.1.3. Suppose that ϕα ∈ BMOd(T2) for each α = (α1, α2) ∈ [0, 1]× [0, 1], that

α 7→ ϕα is measurable, and that the BMOd(T2) norms of the functions ϕα are uniformly

bounded, i.e there is a constant Cd > 0 such that

||ϕα||BMOd ≤ Cd

for all α ∈ [0, 1]× [0, 1]. Let x = (x1, x2). Suppose also that∫
ϕα(x)dx = 0 for all α ∈ [0, 1]× [0, 1].

Then the translation-average

ϕ(x) =
∫ 1

0

∫ 1

0
ϕα(x+ α)dα

is in BMO(T2), where we identify T2 with [0, 1)× [0, 1).

It is a duality consequence of the inclusionH1
d(T2) ⊂ H1

Re(T2) (see [104]) that BMO(T2) ⊂

BMOd,α(T2) for all α = (α1, α2) ∈ [0, 1]× [0, 1]. Adding this fact to the averaging results

of Theorem 4.1.3, we obtain the following identification.

Corollary 4.1.4. BMO(T2) =
⋂
α∈[0,1]×[0,1] BMOd,α(T2).

Following the above identification of product BMO space as the intersection of all

dyadic BMO spaces obtained from translated dyadic grids, we introduce the following

notion of the product space of functions of logarithmic mean oscillation.

Definition 4.1.5. The space of functions of logarithmic mean oscillation on T2, LMO(T2),

is the intersection of all spaces of functions of dyadic logarithmic mean oscillation LMOd,α(T2).

LMO(T2) =
⋂
α

LMOd,α(T2) (4.1.7)

where α = (α1, α2) ∈ [0, 1]× [0, 1]. Here LMOd,α(T2) is defined as in the previous chapter

taking rectangles in the product dyadic grid Rα = Dα1 ×Dα1 .
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Remark 4.1.6. We also have the identification lmo(T2) =
⋂
α lmod,α(T2), α = (α1, α2) ∈

[0, 1]× [0, 1]. Indeed this is a direct consequence of the one dimensional identification

LMO(T) =
⋂

α∈[0,1]

LMOd,α(T).

Proof. It is clear that LMO(T) ⊂
⋂
α∈[0,1] LMOd,α(T). Now, let f ∈

⋂
α∈[0,1] LMOd,α(T)

and suppose that there exists a constant M > 0 such that for any dyadic interval J ⊂ T

in any dyadic grid Dα (α ∈ [0, 1]),(
log 4

|J |

)2

|J |

∫
J
|f(t)−mJf |2dt < M.

Let I be an interval in T. Then I can be covered by a dyadic interval J in a suitable grid

with length |J | ≤ 2|I|. It follows that(
log 4

|I|

)2

|I|

∫
I
|f(t)−mIf |2dt ≤ 8

(
log 4

|J |

)2

|J |

∫
J
|f(t)−mIf |2dt

≤ 16
(

log
4
|J |

)2( 1
|J |

∫
J
|f(t)−mJf |2dt+ |mJf −mIf |2

)

≤ 80

(
log 4

|J |

)2

|J |

∫
J
|f(t)−mJf |2dt < 80M.

This proves that f belongs to LMO(T).

4.2 Pointwise multipliers of BMO and of its dyadic counter-

part

We are interested in this section to those functions g ∈ L2(T2) such that the pointwise

product f · g belongs to BMO(T2) for all f ∈ BMO(T2). We use here the notations

introduced in Chapter 2 for the multipliers spaces: M(X,Y ) and M(X) (when X = Y ).

We recall that in one dimensional case, we have M(BMO(T)) = L∞(T) ∩ LMO(T).

Theorem 4.2.1. Let ϕ ∈ M(BMO(T2),BMOd,α(T2)), α ∈ [0, 1] × [0, 1]. Then ϕ ∈

lmod,α(T2) ∩ LMOd,α(T2) ∩ L∞(T2).

Proof. For simplcity, we restrict ourself to the case α = (0, 0). To show that ϕ ∈ L∞, note

that for each dyadic rectangle R, the function χR belongs to BMOd(T2) and consequently

ϕχR ∈ BMOd(T2). It follows from the the definition of BMOd(T2) that we have

‖ϕ‖M(BMO(T2),BMOd(T2)) ≥ ‖ϕχR‖BMOd ≥
1

|R̃|1/2
|〈ϕχR, hR̃〉| =

1
4
|mRϕ|.
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where R̃ is the parent rectangle (with respect to both dimensions) of R. Thus ‖ϕ‖∞ ≤

4‖ϕ‖M(BMO(T2),BMOd(T2)).

Given a dyadic rectangle R = I×J with |I| = 2−n and |J | = 2−k, we already know that

we can construct a ”dyadic logarithm” ` with the property that ` ∈ BMO(T2), `|R ≡ nk

and ‖`‖BMO ≤ C, where C is an absolute constant independent of R.

For any open set Ω ⊂ R, we obtain

‖PΩ(ϕ`)‖2
2 = n2k2‖PΩϕ‖2

2.

It follows that for each rectangle R = I × J ∈ R and for all open set Ω ⊂ R,(
log 4

|I|

)2 (
log 4

|J |

)2

|Ω|
‖PΩϕ‖2

2 ≤ ‖ϕ`‖2
BMOd .

Consequently, using the equivalent definition of LMOd(T2) in Proposition 3.3.3, we con-

clude that ‖ϕ‖2
LMOd ≤ C‖ϕ‖2

M(BMO,BMOd)
.

Now, suppose that ϕ has a finite Haar expansion. As in the previous chapter we break

up the multiplication operator Mϕ : BMO(T2) → BMOd(T2) into the 9 dyadic operators

as in Chapter 3:

Mϕ = πϕ + ∆ϕ + π∆ϕ + ∆πϕ +R∆ϕ + ∆Rϕ +Rπϕ + πRϕ +RRϕ

The first 4 terms are the dyadic paraproducts and it follows from the results of

Chapter 3 that they are bounded BMO(T2) → BMOd(T2) since ϕ ∈ LMOd(T2). The

remaining five operators are defined as follows.

R∆ϕb(s, t) =
∑
I,J

mI(ϕJ)bI,JhI(s)h2
J(t),

∆Rϕb(s, t) =
∑
I,J

mJ(ϕI)bI,Jh2
I(s)hJ(t),

πRϕb(s, t) =
∑
I,J

mJ(ϕI)mI(bJ)hI(s)hJ(t),

Rπϕb(s, t) =
∑
I,J

mI(ϕJ)mJ(bI)hI(s)hJ(t),

and

RRϕb(s, t) =
∑
I,J

bIJmIJ(ϕ)hI(s)hJ(t).

The operator RR is clearly bounded on BMOd(T2), since ϕ ∈ L∞(T2). For term 5 and

6, note that
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Lemma 4.2.2. Let ϕ ∈ L∞(T2). Then R∆ϕ, ∆Rϕ are bounded on BMOd(T2) and in

particular bounded from BMO(T2) to BMOd(T2).

Proof. Because of the symmetry of variables, we only prove the lemma for the operator

∆Rϕ . We first remark that for ϕ ∈ L∞(T2) we have for any interval I, ‖mIϕ‖BMOd(T) ≤

2‖ϕ‖∞.

Recall that

∆Rϕb(t, s) =
∑
I,J

mJ(ϕI)bI,Jh2
I(t)hJ(s).

For any open set Ω ∈ T2, define the subset JJ for J ∈ D as in (3.3.2). For any b ∈

BMOd(T2), we obtain

‖PΩ∆Rϕb(s, t)‖2
2 = ‖PΩ

∑
I,J

mJ(ϕI)bI,Jh2
I(t)hJ(s)‖2

2

= ‖PΩ

(∑
J∈D

(∆mJϕbJ)hJ(s)

)
‖2
2

= ‖PΩ

(∑
J∈D

(∆mJϕPJJ
bJ)hJ(s)

)
‖2
2

≤
∑
J∈D

‖∆mJϕ(PJJ
bJ)‖2

L2(T)

≤
∑
J∈D

‖mJϕ‖2
BMOd(T)‖PJJ

bJ‖2
L2(T)

≤ 2‖ϕ‖2
∞
∑
J∈D

‖PJJ
bJ‖2

L2(T) = 2‖ϕ‖2
∞‖PΩb‖2

2

≤ 2‖ϕ‖2
∞|Ω|‖b‖2

BMOd .

Thus
1
Ω
‖PΩ∆Rϕb(s, t)‖2

2 ≤ 2‖ϕ‖2
∞‖b‖2

BMOd .

The proof is complete.

The conclusion of the theorem now follows from the final lemma:

Lemma 4.2.3. Rπϕ +πRϕ defines a bounded linear operator from BMO(T2) to BMOd(T2),

if and only if ϕ ∈ lmod(T2).

Proof. Suppose that Rπϕ +πRϕ is bounded on BMO(T2) → BMOd(T2). Let I be a dyadic

interval and let b1 ∈ BMOd(T), ‖b1‖BMO(T) = 1. Define b(s, t) = hI |I|1/2b1(t), so

bI′,J ′ =

|I|1/2b1J ′ if I = I ′

0 otherwise,
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and ‖b‖BMO(T2) ≈ ‖b1‖BMO(T). Then

(Rπϕ + πRϕ)b =
∑
J ′

hI(s)hJ ′(t)mIϕJ ′mJ ′bI +
∑

J ′,I′(I
hI′(s)hJ ′(t)mJ ′ϕI′mI′bJ ′

=
∑
J ′

hI(s)hJ ′(t)|I|1/2mIϕJmJb1 +
∑

J ′,I′(I
hI′(s)hJ ′(t)mJ ′ϕI′mI′bJ ′

Since the Haar supports of the two terms are disjoint, we know that both terms are in

BMOd(T2), with norm controlled by a constant C ≤ ‖Rπϕ + πRϕ‖BMO→BMOd . Let us

consider the first term and fix a dyadic interval J ∈ T. We obtain

C2|I||J | ≥ ‖PI×J

(∑
J ′

hI(s)hJ ′(t)|I|1/2mIϕJmJb1

)
‖2
2

= ‖
∑
J ′⊆J

hI(s)hJ ′(t)|I|1/2mIϕJmJb1‖2
2

= |I|‖
∑
J ′⊆J

(mIϕ)JmJb1hJ ′(t)‖2
2 = |I|‖PJπmIϕb1‖

2.

Since this estimate holds for each b1 ∈ BMO(T) and each dyadic interval J , it follows that

πmIϕ : BMO(T) → BMOd(T) is bounded, and by Proposition 4.1.2

‖m(1)
I ϕ‖LMOd(T) . ‖πmIϕ‖BMO(T)→BMOd(T) ≤ C.

Similarly, one shows that

‖m(2)
J ϕ‖LMOd(T) . ‖πmJϕ‖BMO(T)→BMOd(T) ≤ C.

Since this estimate holds uniformly for all dyadic intervals I, J , it follows that ϕ ∈

lmod(T2).

Now, let us suppose that ϕ ∈ lmod(T2) and prove that both πRϕ and Rπϕ are bounded.

Because of the symmetry of variables, it suffices to prove this for Rπϕ . We recall that

πRϕb(s, t) =
∑
I,J

mJ(ϕI)mI(bJ)hI(s)hJ(t).

Following the ideas of Theorem 3.3.9, it suffices to prove the following lemma.

Lemma 4.2.4. Let ϕ ∈ lmod(T2) and b ∈ BMOd(T2), i, k ∈ N. Then

‖π
[
πR[Q(1)

i ϕ]b
]
E

(1)
k ‖L2→L2 .

k

i
‖ϕ‖lmod‖b‖BMOd .

Proof. We write Q for Q(1) and E for E(1). Let ϕ̃ be defined by

ϕ̃I,J =


ϕI,J if |I| > 2−k

(
∑

I′⊆I |ϕI′,J |2)1/2 if |I| = 2−k

0 otherwise.
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Then it follows as in the proof of Lemma 3.3.11 that

‖πϕE(1)
k ‖L2→L2 = ‖πϕ̃‖.

We can assume that ϕ = Qiϕ. Following the above remark, we estimate

‖π̃Rϕb‖BMOd ≤ ‖π̃REkϕb‖BMOd + ‖π̃RQkϕb‖BMOd .

We first consider the second term and remember that still QiQkϕ = Qkϕ. Since

πR[Qkϕ]b has no nontrivial Haar terms in the first variable for intervals I with |I| > 2−k,

π̃R[ϕ]b =
∑
J∈D

∑
|I|=2−k

hI(s)(
∑
I′⊆I

|mI′ϕJ |2|mJbI′ |2)1/2hJ(t),

and this has only nontrivial Haar terms in the first variable for intervals I with |I| =

2−k. The computation of the BMOd norm can therefore be done by only considering

rectangles of the form S = I × J , |I| = 2−k. Thus, using the one dimensional result on

the boundedness of the paraproduct π on L2(T), the definition of lmod(T2) and Lemma

3.3.5, we obtain

‖PS( ˜πR[Qkϕ]b)‖2
2 = ‖

∑
J ′⊆J

∑
I′⊆I

hI′(s)hJ ′(t)mI′bJ ′mJ ′ϕI′‖2
2

=
∑
J ′⊆J

‖
∑
I′⊆I

hI′(s)mI′bJ ′mJ ′ϕI′‖2
L2(T)

=
∑
J ′⊆J

‖πPImJ′ϕ(χI(s)bJ ′(s))‖2
L2(T)

.
∑
J ′⊆J

‖PImJ ′ϕ‖BMOd(T)‖χI(s)bJ ′(s)‖
2
L2(T)

.
1
i2
‖ϕ‖2

lmod

∑
J ′⊆J

‖χI(s)bJ ′(s)‖2
L2(T).

.
1
i2
‖ϕ‖2

lmod‖χI(s)PJb(s, t)‖2
L2(T2) .

k2

i2
‖ϕ‖2

lmod‖b‖2
BMOd(T2)

.

Let us now move to the first term ‖π̃REkϕb‖BMOd(T2). Again, for we recall that still

Ekϕ = QiEkϕ with this notation. Let Ω ⊆ T2 be open and write JI = ∪J∈D,I×J⊆ΩJ

for I ∈ D. We also write ΩJ = ∪I∈D,|I|>2−k,I×J⊆ΩI. Then using the one dimensional

boundedness result of the paraproduct π on L2(T), the definition of lmod(T2) and Lemma
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3.3.5, we obtain

‖PΩ(π̃Rϕb)‖2
2 = ‖PΩ

∑
I∈D,|I|>2−k

∑
J∈D

hI(s)hJ(t)mJϕImIbJ‖2
2

=
∑
J∈D

‖
∑

I∈D,|I|>2−k,I×J∈Ω

hI(s)mJϕImIbJ‖2
2

=
∑
J∈D

‖PΩJ
π
E

(1)
k mJϕ

(∑
I∈D

hI(s)bI×J

)
‖2
2

=
∑
J∈D

‖PΩJ
π
E

(1)
k mJϕ

(bJ)‖2
2

=
∑
J∈D

‖PΩJ
π
E

(1)
k mJϕ

(χΩJ
bJ)‖2

2

=
∑
J∈D

‖PΩJ
π
E

(1)
k mJϕ

(
∑

|I|=2−k

χI(s)χΩJ
(s)bJ(s))‖2

2

=
∑
J∈D

‖PΩJ
π
E

(1)
k mJϕ

(
∑

|I|=2−k,I×J∈Ω

χIbJ)‖2
2

≤
∑
J∈D

‖E(1)
k mJϕ‖2

BMOd(T)
‖

∑
|I|=2−k,I×J∈Ω

χIbJ‖2
2

≤ 1
i2
‖ϕ‖2

lmod

∑
J∈D

‖
∑

I∈D,|I|=2−k,I×J∈Ω

χIbJ‖2
2

=
1
i2
‖ϕ‖2

lmod‖
∑

I∈D,|I|=2−k,I×J∈Ω

χI(s)
∑
J∈D

bJ(s)hJ(t)‖2
2

=
1
i2
‖ϕ‖2

lmod

∑
I∈D,|I|=2−k

‖χIPJI
b‖2

2

.
k2

i2
‖ϕ‖2

lmod‖b‖2
BMOd

∑
I∈D,|I|=2−k

|I||JI | .
k2

i2
‖ϕ‖2

lmod‖b‖2
BMOd |Ω|

This finishes the proof of the Theorem.

We obtain in the same way the following result.

Theorem 4.2.5. Let ϕ ∈ L2(T2) and α ∈ [0, 1] × [0, 1]. Then ϕ ∈ M(BMOd,α(T2)) if

and only if ϕ ∈ lmod,α(T2) ∩ LMOd,α(T2) ∩ L∞(T2).

Corollary 4.2.6. M(BMO(T2)) = lmo(T2) ∩ LMO(T2) ∩ L∞(T2).

Proof. If ϕ ∈ M(BMO(T2),BMO(T2)), then ϕ ∈ M(BMO(T2),BMOd,α(T2)) for each

product dyadic gridRα, the standard dyadic grid translated by α = (α1, α2) ∈ [0, 1]×[0, 1].

It follows from Theorem 4.2.1 that ϕ ∈ lmod,α(T2)∩LMOd,α(T2)∩L∞(T2) with uniformly

bounded norms for all α = (α1, α2) ∈ [0, 1]×[0, 1] , and therefore ϕ ∈ lmo(T2)∩LMO(T2)∩

L∞(T2).
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Conversely, suppose that ϕ ∈ lmo(T2) ∩ LMO(T2) ∩ L∞(T2). Thus, ϕ ∈ lmod,α(T2) ∩

LMOd,α(T2) ∩ L∞(T2) with uniformly bounded norms for all α = (α1, α2) ∈ [0, 1]× [0, 1].

It follows from Theorem 4.2.1 that for any b ∈ BMO(T2), the pointwise product function

ϕ · b is in BMOd,α(T2) for all α = (α1, α2) ∈ [0, 1]× [0, 1]. Thus,

ϕ · b ∈
⋂

α∈[0,1]×[0,1]

BMOd,α = BMO(T2).

The proof is complete.
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Chapter 5

Introduction to symmetric cones

This chapter introduces symmetric cones and their analysis. We give here different notions

and objects useful in this part of the thesis. Our setting is an Euclidean vector space V

of finite dimension n endowed with an inner product (·|·). Materials of this chapter are

essentially from the text [40].

5.1 Convex cones

We first recall the definition of a cone.

Definition 5.1.1. A subset Ω of V is said to be a cone if, for every x ∈ Ω and λ > 0, we

have λx ∈ Ω.

A subset Ω of V is a convex cone if and only if for x, y ∈ Ω and λ, µ > 0 we have

λx+ µy ∈ Ω.

Let us now move to the definition of the dual cone of a convex cone.

Definition 5.1.2. Let Ω ∈ V be an open convex cone. The open dual cone of Ω is defined

by

Ω∗ = {y ∈ V : (y|x) > 0,∀x ∈ Ω \ {0}}. (5.1.1)

We say that Ω is self-dual whenever Ω∗ = Ω.

Example 5.1.1. (1) The octant Ω = (0,∞)n in V = Rn (endowed with the canonical

inner product);

(2) The Lorentz cone in V = Rn, when n ≥ 3

Λn =
{
y ∈ Rn : y2

1 − y2
2 − . . .− y2

n > 0, y1 > 0
}
.

67
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is a self-dual cone (see [40, pp. 7-10]).

5.2 Symmetric cones and Euclidean Jordan Algebras

5.2.1 Jordan algebras

We recall that a vector space V is called an algebra over R if a bilinear mapping (x, y) 7→ xy

from V × V into V is defined. For an element x ∈ V let L(x) be the linear map of V

defined by

L(x)y = xy.

An algebra V over R is said to be a Jordan algebra if for all elements x and y in V :

xy = yx, (5.2.1)

x(x2y) = x2(xy). (5.2.2)

Property (5.2.2) is called power associativity because if we suppose that V has an identity

element e then (5.2.2) implies that the algebra R[x] generated by an element x and e is

associative. Here,

R[x] = {p(x) : p ∈ R[X]},

where R[X] denotes the algebra over R of polynomials in one variable with coefficients in

R. Given x ∈ V we have

R[x] ∼ R[X]/I(x),

where I(x) is the ideal defined by

I(x) = {p ∈ R[X] : p(x) = 0}.

Example 5.2.1. Let M(m,R) be the algebra of m ×m matrices with entries in R and

V = Sym(m,R) its subspace of symmetric matrices. Then V equipped with the Jordan

product

x ◦ y =
1
2
(xy + yx) (5.2.3)

is a Jordan algebra.

Note that the powers of x cannot all be linearly independent and consequently, I(x) 6=

∅. Since R[X] is a principal ring, I(x) is generated by a monic polynomial f which we call

the minimal polynomial of x.
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For an element x ∈ V let m(x) be the degree of the minimal polynomial of x. We have

m(x) = min{k > 0 : (e, x, x2, · · · , xk) are linearly dependent}

(see [40, Ch. II, pp. 28]). We have 1 ≤ m(x) ≤ dim V . We define the rank r of V as

r = max{m(x) : x ∈ V },

and an element x is said to be regular if m(x) = r.

Let L0(x) be the restriction of L(x) to R[x]. For x regular, we denote by M0(x) the

matrix of L0(x) with respect to the basis e, x, · · · , xr−1. The determinant of x, det(x) and

trace of x, tr(x) are defined by

det(x) = DetM0(x)

and

tr(x) = TrM0(x).

Example 5.2.2. Let V be the space of m×m matrices with the Jordan product (5.2.3).

The rank of V is m, the trace and determinant are the usual ones.

Recall that c ∈ V is said to be an idempotent if c2 = c. Two idempotents c and d are

said to be orthogonal if cd = 0. We say that an idempotent is primitive if it is non-zero

and cannot be written as the sum of two non-zero idempotents. We say that c1, · · · , cm is

a complete system of orthogonal idempotents if

• c2i = ci,

• cicj = 0 if i 6= j,

•
∑m

j=1 cj = e (here e is the identity of V ).

A complete system of idempotents is a Jordan frame if each of these idempotents is prim-

itive. The following spectral decomposition theorem is from [40, Th. III.1.2].

Theorem 5.2.1. (Spectral theorem). Suppose that V has rank r. Then for x in V there

exists a Jordan frame c1, · · · , cr and real numbers λ1, · · · , λr such that

x =
r∑
j=1

λjcj .

The numbers λj (with their multiplicities) are uniquely determined by x. Furthermore,

det(x) =
r∏
j=1

λj , tr(x) =
r∑
j=1

λj .
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Remark 5.2.2. The numbers λj in the above theorem are also called eigenvalues of x.

We end this subsection with the following definition of an Euclidean Jordan algebra.

Definition 5.2.3. A Jordan algebra V over R is said to be Euclidean if there exists a

positive definite symmetric bilinear form on V which is associative; that is there exists on

V an inner product denoted by (u|v) such that (L(x)u|v) = (u|L(x)v) for all x, u, v in V .

Example 5.2.3. The algebra Sym(m,R) of m × m real symmetric matrices with the

Jordan product (5.2.3) is Euclidean. In fact the bilinear form tr(xy) is positive definite

and associative (see [40, Ch. III]).

5.2.2 Structure of symmetric cones

Let Ω be a fixed open convex cone in V . Let Gl(V ) denotes the group of all linear invertible

transformations of Rn. The automorphism group G(Ω) of Ω is defined by

G(Ω) = {g ∈ Gl(V ) : gΩ = Ω}.

This leads to the following definition.

Definition 5.2.4. An open convex cone Ω is said to be homogeneous if the group G(Ω)

acts transitively on Ω, i.e. for all x, y ∈ Ω, there exists g ∈ G(Ω) such that y = gx. An

open convex cone is said to be symmetric if it is homogeneous and self-dual.

Definition 5.2.5. A symmetric cone Ω in a Euclidean space V is said to be irreducible

if there do not exist non-trivial subspaces V1, V2, and symmetric cones Ω1 ⊂ V1, Ω2 ⊂ V2,

such that V is the direct sum of V1 and V2, and Ω = Ω1 + Ω2.

We denote by G the connected component of the identity in G(Ω). G is a closed

subgroup of G(Ω). If V has rank r, the determinant function satisfies the following relation

det(gx) = (Detg)
r
ndet(x), x ∈ V, g ∈ G

(see [40, Ch. III, pp. 56]).

Let K be the subgroup of G defined by

K := G ∩ O(V )

where O(V ) is the orthogonal group of V . We refer to [40, Ch. I and VI] for the following

result.
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Theorem 5.2.6. Let Ω be a symmetric cone in V . Then the following are satisfied.

(i) The identity component G of G(Ω) acts transitively on Ω.

(ii) There exists a point e ∈ Ω such that

{g ∈ G : ge = e} = K = G(Ω) ∩ O(V ).

(iii) There exists a subgroup H of G which acts simply transitively on Ω; i.e., for all

y ∈ Ω we can find a unique h ∈ H such that y = he. Moreover, G = HK.

5.2.3 The Jordan algebra associated with a symmetric cone

Let Ω be a symmetric cone in a Euclidean space V . Let e be a point in Ω whose stabilizer

is K = G∩O(V ). We write g for the Lie algebra of G. Then, following [40, Ch. III], there

exists a Lie subalgebra p of g such that the mapping from p into V defined by

X 7→ X · e (5.2.4)

is a bijection. We denote by L its inverse: for x ∈ V , L(x) is the unique element in p such

that L(x)e = x.

Theorem 5.2.7. Let Ω be a symmetric cone in a Euclidean vector space V . Defining on

V the product

xy = L(x)y,

V is a Euclidean Jordan algebra with identity element e and

Ω = {x2 : x ∈ V }.

A Jordan algebra is said to be simple if it does not contain any non-trivial ideal. In a

simple Jordan algebra V every associative symmetric bilinear form is a scalar multiple of

tr(xy).

Definition 5.2.8. Let V be a simple Euclidean Jordan algebra with rank r. The rank

rk(x) of an element x ∈ V is the number of non-zero eigenvalues in its spectral decompo-

sition (with multiplicities counted).

We observe with [40, Ch. IV] that for all x ∈ Ω, we have rk(x) = r. Consequently, we

also call r the rank of the cone Ω.
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Let us fix a Jordan frame {c1, · · · , cr} in V = Rn. This induces a Peirce decomposition:

V =
⊕

1≤i≤j≤r
Vi,j ,

which formally lets us regard V as a space of symmetric matrices (with Vi,j as (i, j)-entry;

see [40, Ch.IV]). More precisely, the subspaces in the above decomposition are given by

Vi,i = R · ci and Vi,j = V (ci, 1
2) ∩ V (cj , 1

2) = {x ∈ V : cix = cjx = x
2} for i < j. For

each i < j, the dimension of Vi,j is the constant integer d = 2n/r−1
r−1 (see [40, pp. 71] ). We

denote by Pij the orthogonal projection of V onto Vij for i ≤ j.

We choose as H the subgroup of matrices h ∈ G which are lower triangular with respect

to the Peirce decomposition of Rn. More precisely, H is formed by the elements h ∈ G

which satisfy the following two conditions:

(a) h(Vij) ⊆ ⊕(k,l)≥(i,j)Vkl,

(b) There exist strictly positive real numbers λij , 1 ≤ i ≤ j ≤ r, such that PijhPij =

λijPij .

In assertion (a) above, (k, l) ≥ (i, j) denotes the lexicographic order. Then by Theorem

VI.3.6 of [40], H acts simply transitively on Ω. Furthermore, one can write H = NA =

AN , where N denotes the strictly triangular subgroup of H (i.e., matrices such that

λij = 1), and A is the diagonal subgroup. It is known from [40] that

A = {P (a) : a =
∑

1≤i≤r
aici, ai > 0},

where P is the quadratic representation of V given by

P (x) = 2(L(x))2 − L(x2), x ∈ V.

It follows that

G = NAK = KAN.

We shall denote by ∆1(x), · · · ,∆r(x) the principal minors of x ∈ V , with respect to

the fixed Jordan frame {c1, · · · , cr}. That is, ∆k(x) is the determinant of the projection

Pkx of x in the Jordan subalgebra V (k) = ⊕1≤i≤j≤kVi,j . It is well-known that

Ω = {x ∈ V : ∆k(x) > 0, k = 1, · · · , r}

(see [38, Ch. I])
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Remark 5.2.9. Let us make the following observations (see [40]).

• We have the following homogeneity of the polynomials ∆k:

∆k(mx) = ∆k(x)

for x in V and for any positive integer m.

• Let x ∈ Ω, h = nP (a) ∈ H, j ∈ {1, · · · , r}. Then

∆j(hx) = ∆j(he)∆j(x) = a2
1 · · · a2

j∆j(x).

In particular, ∆j is invariant under N .

•

∆r(gy) = ∆r(ge)∆r(y) = Det(g)
r
n ∆r(y)

where Det(g) is the determinant of g ∈ G(Ω).

• ∆r(ky) = ∆r(y) for all k ∈ K.

5.3 Integrals over Ω

We suppose in this section that Ω is an irreducible cone of rank r in Rn. Let us introduce

some standard notations on multi-indices:

1. If t = (t1, · · · , tr) we denote by t∗ the vector t∗ = (tr, · · · , t1),

2. For t = (t1, · · · , tr) and a ∈ R, by convention a + t denotes the multi-index defined

by (t1 + a, · · · , tr + a),

3. For t ∈ Rr and k ∈ Rr, we write that t < k if tj < kj for j = 1, · · · , r.

We also introduce the particular multi-index

g0 :=
(

(j − 1)
d

2

)
1≤j≤r

with (r − 1)
d

2
=
n

r
− 1.

The generalized power function on Ω is defined as

∆s(x) = ∆s1−s2
1 (x)∆s2−s3

2 (x) · · ·∆sr
r (x), x ∈ Ω; s ∈ Cr.

Remark 5.3.1. Let s = (s1, · · · , sr) ∈ Cr. Then,
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• ∆s(a1c1 + · · · + arcr) = as11 · · · asr
r for strictly positive a1, · · · , ar, whence the name

of generalized power;

• |∆s| = ∆<s

We now recall the definition of generalized gamma function on Ω:

ΓΩ(s) =
∫

Ω
e−(e|ξ)∆s(ξ)∆−n/r(ξ)dξ s = (s1, · · · , sr) ∈ Cr.

This integral converges if and only if <sj > (j − 1)n/r−1
r−1 = (j − 1)d2

for all j = 1, · · · , r, being in this case equal to:

ΓΩ(s) = (2π)
n−r

2

r∏
j=1

Γ(sj − (j − 1)
d

2
),

where Γ is the usual gamma function on the positive half real line R+ (see Chapter VII

of [40]). For s ∈ R, we write ΓΩ((s, · · · , s)) = ΓΩ(s). We have the following result

on the Laplace transform of the generalized power function (see Proposition VII.1.2 and

Proposition VII.1.6 in [40]).

Lemma 5.3.2. Let s = (s1, · · · , sj) ∈ Cr with <sj > (j − 1)d2 , j = 1, · · · , r. Then for all

y ∈ Ω we have ∫
Ω
e−(y/ξ)∆s(ξ)∆−n/r(ξ)dξ = ΓΩ(s)∆s(y−1).

Here, y = he if and only if y−1 = h∗−1e with h ∈ H.

Let us remark that the power function ∆s(y−1) in the above lemma can also be ex-

pressed in terms of the rotated Jordan frame {cr, · · · , c1}. If we denote by ∆∗
j , j = 1, · · · , r,

the principal minors with respect to this new frame then

∆s(y−1) = [∆∗
s∗(y)]

−1 ∀s = (s1, · · · , sr) ∈ Cr.

The general power function can be extended to TΩ = V + iΩ via the Fourier-Laplace

transform. We refer to [51] for the following.

Lemma 5.3.3. The following assertions holds.

(1) Let s1, · · · , sr ≥ 0 and s = (s1, · · · , sr). Then

∆s(y + u) ≥ ∆s(y), ∀y, u ∈ Ω.
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(2) For s = (s1, · · · , sr) > g0, the integral

1
ΓΩ(s)

∫
Ω
ei(z|ξ)∆∗

s(ξ)
dξ

∆
n
r (ξ)

is absolutely convergent and defines a holomorphic function on V + iΩ. It is denoted

by
[
∆s( zi )

]−1.

By Corollary 2.18 and Corollary 2.19 of [38] (see also [55]) we have the following lemma.

Proposition 5.3.4. Let t ∈ Cr and y ∈ Ω.

(1) The integral

Jt(y) =
∫

Rn

∣∣∣∣∆−t(
x+ iy

i
)
∣∣∣∣ dx

converges if and only if <t > g∗0 + n
r . In this case, Jt(y) = Ct|∆−t(y)|∆

n
r (y), where

Ct =
(2π)2n2n−<(

∑r
j=1 tj)ΓΩ(<t∗ − n

r )
|Γ( t∗2 )|2

.

(2) For multi-indices s and t and for any u ∈ Ω, the functions y 7→ ∆t(y + u)∆s(y)

belongs to L1(Ω, dy
∆n/r(y)

) if and only if <s > g0 and <(s + t) < −g∗0. In this case,

we have

∫
Ω

∆t(y + u)∆s(y)
dy

∆n/r(y)
=

ΓΩ(s)ΓΩ(−(s+ t)∗)
Γ(−t∗)

∆s+t(u).



Chapter 6

Boundedness of Bergman-type

operators

In this chapter, we study here boundedness properties of Rudin-Forelli-type operators

associated to tubular domains over symmetric cones. As an application, we give a charac-

terization of the topological dual space of the weighted Bergman space Ap,qν . We essentially

make use of the methods in [10,14].

6.1 Introduction

Let V be a real vector space of dimension n, endowed with the structure of a simple

Euclidean Jordan algebra. We consider an irreducible symmetric cone Ω inside V = Rn

and denote by TΩ = V + iΩ the corresponding tube domain in the complexification of V .

Here, V is endowed with an inner product (.|.) for which the cone Ω is self-dual. We recall

that as an example of a symmetric cone in Rn, we have the forward light cone given for

n ≥ 3 by

Γn = {y ∈ Rn : y2
1 − y2

2 − · · · − y2
n > 0, y1 > 0}.

Again, we write r for the rank of Ω and ∆(x) for the associated determinant function.

Light cones have rank 2 and determinant function given by the Lorentz form

∆(y) = y2
1 − y2

2 − · · · − y2
n, for y = (y1, y2, · · · , yn).

We recall that given 1 ≤ p, q <∞ and ν ∈ R, the mixed norm Lebesgue space Lp,qν (TΩ)

76
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is defined by the integrability condition

||f ||Lp,q
ν

:=

[∫
Ω

(∫
Rn

|f(x+ iy)|pdx
) q

p

∆ν−n
r (y)dy

] 1
q

<∞. (6.1.1)

The mixed norm weighted Bergman space Ap,qν (TΩ) is then the closed subspace of Lp,qν (TΩ)

consisting of holomorphic functions on the tube TΩ. These spaces are nontrivial only when

ν > n
r − 1 (see [12]). When p = q we shall simply write Ap,pν = Apν . The usual Bergman

space Ap then corresponds to the case ν = n
r .

The weighted Bergman projection Pν is the orthogonal projection from the Hilbert

space L2
ν(TΩ) onto its closed subspace A2

ν(TΩ) and it is given by the integral formula

Pνf(z) =
∫
TΩ

Bν(z, w)f(w)∆ν−n
r (=w)dV (w), (6.1.2)

where

Bν(z, w) = dν∆−ν−n
r (
z − w

i
) (6.1.3)

is the weighted Bergman kernel, dν = 2rν

(2π)n

ΓΩ(ν+n
r
)

ΓΩ(ν) and dV is the Lebesgue measure on

Cn(see [12]). Let us recall that the Bergman kernel is a reproducing kernel on A2
ν(TΩ),

that is for any f ∈ A2
ν(TΩ), z ∈ TΩ,

f(z) = c

∫
TΩ

Bν(z, w)f(w)∆ν−n
r (=w)dV (w). (6.1.4)

The Lp,qν -boundedness of the Bergman projection Pν is still an open problem and has

attracted a lot of attention in recent years (see [14], [10], [9], [13]). To date, it is only

known that this projection extends to a bounded operator on Lp,qν for general symmetric

cones for the range 1 ≤ p <∞ and q′ν,p < q < qν,p, with qν,p = min{p, p′}qν , qν = 1 + ν
n
r
−1

and 1
p + 1

p′ = 1 (see for example [13]) with slight improvements over this range in the case

of light cones (see [52]).

The importance of the boundedness of the Bergman projection can be expressed in

terms of its consequences, among which the following is a well-known one: If Pν extends

to a bounded operator on Lp,qν , then the topological dual space (Ap,qν )∗ of the Bergman

space Ap,qν identifies with Ap
′,q′
ν under the integral pairing

〈f, g〉ν =
∫
TΩ

f(z)g(z)∆ν−n/r(=z)dV (z),

f ∈ Ap,qν and g ∈ Ap
′,q′
ν (see [12]). So, since the range of boundedness of Pν on Lp,qν is far

from being completely known, a natural question is: is there any way of characterizing
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the dual space of Ap,qν for values of the parameters p, q, ν for which Pν is not necessarily

bounded? To answer this type of question, it seems natural to consider the problem

of Lp,qν -boundedness of a family of operators generalizing the Bergman projection. This

family is given by the integral operators T = Tα,β,γ and T+ = T+
α,β,γ defined on C∞c (TΩ)

by the formulas

Tf(z) = ∆α(=z)
∫
TΩ

Bγ(z, w)f(w)∆β(=w)dV (w) (6.1.5)

and

T+f(z) = ∆α(=z)
∫
TΩ

|Bγ(z, w)|f(w)∆β(=w)dV (w). (6.1.6)

Remark 6.1.1. The boundedness of T+ on Lp,qν (TΩ) implies the boundedness of T , al-

though the boundedness of T is typically expected on a larger range than T+.

The boundedness of this family of operators on Lp,qν (TΩ) has been considered in [14]

for the case Pµ = T0,µ−n
r
,µ and in [10] for T0,µ−n

r
,µ+m. Both works deal with the case

of the light cone. Here, we consider the problem of the boundedness of the operator

T+ for general symmetric cones and obtain optimal results for this operator. For this, we

systematically make use of the methods of [14] and [10] which seem to be appropriate here.

Since we are considering general symmetric cones, the general power function defined in

the text is also useful in this case. We mention that the case p = q for general symmetric

cones was implicit in [17].

As an application, we characterize the dual space of Bergman spaces in some cases

where the Bergman projection is not necessarily bounded, answering partially the question

mentioned above.

6.2 Integral operators on the cone

The aim of this section is to give Lqν-continuity properties of a family of operators on the

cone Ω which are closely related to the operators Tα,β,γ . Considering V = Rn as a Jordan

algebra, we denote its identity element by e (this correspond to the point (1,0,...,0) in the

forward light cone). We recall that a generalized power in the symmetric cone Ω of rank

r is defined by

∆s(x) = ∆s1−s2
1 (x)∆s2−s3

2 (x) · · ·∆sr
r (x), s = (s1, s2, · · · , sr) ∈ Cr,

where x ∈ Ω and ∆k(x) are the principal minors of x as defined in the previous chapter.
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We now recall Schur’s lemma.

Lemma 6.2.1 (Schur’s Lemma). Let µ be a positive measure on a measure space X,

let H(x, y) be a positive measurable function on X ×X, and let q > 1, with 1
q + 1

q′ = 1.

If there exists a positive measurable function h(x) on X and a positive constant C such

that ∫
X
H(x, y)hq(x)dµ(x) ≤ Chq(y)

and ∫
X
H(x, y)hq

′
(y)dµ(y) ≤ Chq

′
(x)

for all x and y in X, then the integral operator

Hf(x) =
∫
X
H(x, y)f(y)dµ(y)

is bounded on Lq(X,µ) with ||H|| ≤ C.

Proof. See [114] Theorem 3.2.2.

For real parameters α, β, γ, we now consider the integral operators S = Sα,β,γ which

are defined on the cone Ω by

Sg(y) =
∫

Ω
∆α(y)∆−γ(y + v)g(v)∆β(v)dv. (6.2.1)

The following lemmas give continuity properties of the operators Sα,β,γ on

Lqν(Ω) = Lq(Ω,∆ν−n
r (y)dy), ν ∈ R.

Lemma 6.2.2. Let ν ∈ R, 1 < q <∞, γ = α+ β + n
r with

max{−qα+
n

r
−1, q(−α+

n

r
−1)− n

r
+1} < ν < min{q(β+1)+

n

r
−1, q(β+

n

r
)− n

r
+1}.

Then the operator S = Sα,β,γ is bounded on Lq(Ω,∆ν−n
r (y)dy).

Proof. We can write the integral S as

Sg(y) =
∫

Ω
H(y, v)g(v)∆ν−n

r (v)dv,

where H(y, v) = ∆α(y)∆−γ(y + v)∆β−ν+n
r (v) is a positive kernel with respect to the

measure ∆ν−n
r (v)dv. By Schur’s lemma, it is sufficient to find a positive function h on Ω

such that ∫
Ω
H(x, y)hq

′
(y)dµ(y) ≤ Chq

′
(x)
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and ∫
Ω
H(x, y)hq(x)dµ(x) ≤ Chq(y)

for q > 1 and dµ(y) = ∆ν−n
r (y)dy. We take h(y) = ∆s(y), where s = (s1, · · · , sr) and

sj , j = 1, · · · , r, are real numbers to be determined.

Straightforward computations with the use of the given choice of h and Proposition 5.3.4

yield
−α− ν + (j − 1)d2

q′
< sj <

−α− ν + γ − n
r + 1 + (j − 1)d2
q′

and
−β − n

r + (j − 1)d2
q

< sj <
−β + γ + (j − 1)d2 − 2nr + 1

q
.

Thus, each sj must belong to an intersection of two intervals. This intersection is not

empty by the hypotheses, since the condition

max{−qα+
n

r
− 1, q(−α+

n

r
− 1)− n

r
+1} < ν < min{q(β+1)+

n

r
− 1, q(β+

n

r
)− n

r
+1}

is equivalent to

max
1≤j≤r

{q(−α+
n

r
−1−(j−1)

d

2
)+(j−1)d−n

r
+1} < ν < min

1≤j≤r
{q(β+

n

r
−(j−1)

d

2
)−n

r
+1+(j−1)d}.

It follows that S is bounded on Lqν(Ω) for every q > 1 and the proof is complete.

Lemma 6.2.3. Suppose 1 < q <∞, ν ∈ R and S = Sα,β,γ is bounded on Lq(Ω,∆ν−n
r (y)dy).

Then

max{−qα+ n
r −1, q(β−γ+2nr −1)− n

r +1} < ν < min{q(γ−α)− n
r +1, q(β+1)+ n

r −1}.

Proof. Let us take the characteristic function of the Euclidean ball b1(e) of radius 1 cen-

tered at e as a test function and denote this by g. By continuity, ∆(v) is almost constant

on the support of g. Let us estimate ∆(v + y) on the support of g(v) for y ∈ Ω fixed. For

that, we remark that for all y and t in the cone Ω and λ > n
r − 1 we can write

∆−λ(y + v) = c

∫
Ω
e−(y+v|ξ)∆λ−n

r (ξ)dξ (6.2.2)

( see Chapter VII of [40]). By Theorem 2.45 of [12] there exists a constant C = C(Ω) ≥ 1

such that for all ξ ∈ Ω,

1
C
≤ (v|ξ)

(e|ξ)
≤ C whenever v ∈ b1(e). (6.2.3)

Remarking that for C > 1, 1
C (y + v|ξ) ≤ 1

C (v|ξ) + (y|ξ) ≤ (y + v|ξ) ≤ C(v|ξ) + (y|ξ) ≤

C(y + v|ξ), we obtain using the estimates (6.2.3), formula (6.2.2) and the fact that the
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determinant function is homogeneous of degree r (see [40]) that for v in the support of g

and y ∈ Ω, the following hold:

(
1
C

)r∆(e + y) = ∆(
1
C

(e + y)) ≤ ∆(
1
C

e + y)

≤ ∆(v + y) ≤ ∆(Ce + y) ≤ ∆(C(e + y)) = Cr∆(e + y).

We conclude that there exists a constant C = C(Ω) ≥ 1 such that, for all y ∈ Ω,

1
C

∆(e + y) ≤ ∆(v + y) ≤ C∆(e + y), for all v ∈ b1(e).

It follows that Sg(y) = Sχb1(e)(y) ≈ C∆α(y)∆−γ(y+e). So if S is bounded on Lq(Ω,∆ν−n
r (y)dy),

then the function ∆α(y)∆−γ(y + e) is in Lq(Ω,∆ν−n
r (y)dy), which means that∫

Ω
∆qα+ν−n

r (y)∆−qγ(y + e)dy <∞.

By Proposition 5.3.4 we necessarily have qα+ν− n
r > −1 and −qγ+qα+ν− n

r < −2nr +1,

which is equivalent to ν > −qα+ n
r − 1 and ν < q(γ − α)− n

r + 1 with 1 ≤ q <∞. This

gives half of the conditions.

By duality, the boundedness of S on Lq(Ω,∆ν−n
r (y)dy) implies the boundedness of its

adjoint S∗ on Lq
′
(Ω,∆ν−n

r (y)dy), where 1
q + 1

q′ = 1. It is easy to see that

S∗g(y) =
∫

Ω
∆β−ν+n

r (y)∆−γ(y + v)g(v)∆α+ν−n
r (v)dv

Using the same reasoning as before, we obtain that the function ∆β−ν+n
r (y)∆−γ(y + e)

must belong to Lq
′
(Ω,∆ν−n

r (y)dy). Again by Proposition 5.3.4, we must have (β − ν +
n
r )q

′ + ν − n
r > −1 and −q′γ + (β − ν + n

r )q
′ + ν − n

r < −2nr + 1, which is equivalent to

ν < q(β + 1) + n
r − 1 and ν > q(β − γ + 2nr − 1)− n

r + 1. This completes the proof of the

lemma.

Lemma 6.2.4. For ν ∈ R, the operator S = Sα,β,γ is bounded on L1(Ω,∆ν−n
r (y)dy) if

and only if γ = α+ β + n
r and −α+ n

r − 1 < ν < β + 1.

Proof. We first show the sufficient condition. For any function g in L1
ν(Ω), using Fubini’s

theorem, we have that∫
Ω
|Sg(y)|∆ν−n

r (y)dy ≤
∫

Ω

(∫
Ω

∆α(y)∆−γ(y + v)|g(v)|∆β(v)dv
)

∆ν−n
r (y)dy

=
∫

Ω
|g(v)|

(∫
Ω

∆−γ(y + v)∆α+ν−n
r (y)dy

)
∆β(v)dv

= C

∫
Ω
|g(v)|∆ν−n

r (v)dv,
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where the last equality follows from Proposition 5.3.4, since γ = α+β+ n
r and −α+ n

r −1 <

ν < β + 1.

To prove the necessary condition, we proceed as in the proof of Lemma 6.2.3. That means,

the operator

S∗g(y) =
∫

Ω
∆β−ν+n

r (y)∆−γ(y + v)g(v)∆α+ν−n
r (v)dv

must be bounded on L∞(Ω). As test function, we take g = 1. Then

|S∗g(y)| =
∫

Ω
∆β−ν+n

r (y)∆−γ(y + v)∆α+ν−n
r (v)dv.

It follows from Lemma 8.2.1 that we must necessarily have α+ ν − n
r > −1 and

−γ + α+ ν − n
r < −2nr + 1. In this case, |S∗g(y)| = C∆β−γ+α+n

r (y) for all y ∈ Ω. Thus,

S∗g belongs to L∞(Ω) if and only if β − γ + α + n
r = 0. This completes the proof of the

lemma.

6.3 Positive integral operators on the tube TΩ = V + iΩ

In this section, we give some boundedness conditions for the family of integral operators

Tα,β,γ defined on the tube TΩ . We begin by recalling some results.

Lemma 6.3.1. ( [12], Lemma 4.11) For ν ∈ R, there are constants Cν > 0 and δ > 0

such that for all z = x+ iy ∈ TΩ, v ∈ Ω with |x| ≤ 1
2 , |v|, |y| < δ,∫

|u|≤1
|Bν(z, u+ iv)|du ≥ Cν∆−ν(y + v).

Lemma 6.3.2. Let α be real. Then the function f(z) = ∆−α( z+iti ) with t ∈ Ω, belongs to

Ap,qν (TΩ) if and only if ν > n
r − 1 and α > max

(
2n

r
−1

p , nrp + ν+n
r
−1

q

)
. In this case,

||f ||q
Ap,q

ν
= Cα,p,q∆

−qα+nq
rp

+ν(t).

Proof. See [12], Lemma 3.20.

Theorem 6.3.3. Suppose ν ∈ R and 1 ≤ p, q < ∞. Then the following conditions are

equivalent.

(a) The operator T+ defined by (6.1.6) is bounded on Lp,qν (TΩ).

(b) The parameters satisfy γ = α+ β + n
r , α+ β > −1 and

max{−qα+
n

r
−1, q(−α+

n

r
−1)−n

r
+1} < ν < min{q(β+1)+

n

r
−1, q(β+

n

r
)−n

r
+1}.
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Proof. The ideas of the proof are the same as in [10] and [12]. Let us first prove the

sufficient condition. For f : TΩ → C, we write fy(x) = f(x+ iy). Then

T+f(x+ iy) = (T+f)y(x) = dγ∆α(y)
(∫

Ω

∫
Rn

|∆−(γ+n
r
)

y+v (x− u)|fv(u)du
)

∆β(v)dv

= dγ∆α(y)
∫

Ω
(|∆−(γ+n

r
)

y+v | ∗ fv)(x)∆β(v)dv.

Without loss of generality, we may assume that f is non-negative. By the Minkowski

inequality, the Young inequality and part (1) of Proposition 5.3.4, we obtain

||(T+f)y||Lp(Rn) =
(∫

Rn

|(T+f)y(x)|pdx
) 1

p

= dγ∆α(y)
(∫

Rn

(∫
Ω
(|∆−(γ+n

r
)

y+v | ∗ fv)(x)∆β(v)dv
)p

dx

) 1
p

≤ dγ∆α(y)
∫

Ω
||∆−(γ+n

r
)

y+v | ∗ fv||p∆β(v)dv

≤ dγ∆α(y)
∫

Ω
||∆−(γ+n

r
)

y+v ||1||fv||p∆β(v)dv

= Cα

∫
Ω

∆α(y)∆−γ(y + v)||fv||p∆β(v)dv

= CαS(||fv||p)(y),

where ||∆−(γ+n
r
)

y+v ||1 is given by part (1) of Proposition 5.3.4. The sufficient condition then

follows from Lemma 6.2.2 and Lemma 6.2.4.

We now prove the necessary condition. We first show that if the operator T+ is

bounded on Lp,qν (TΩ), then the equality γ = α + β + n
r necessarily holds. We recall that

the determinant function is homogeneous of degree r (see [40]). For f ∈ Lp,qν (TΩ), we

define fR, R > 0, by fR(z) = f(Rz) for any z ∈ TΩ. The function fR belongs to Lp,qν (TΩ).

Using the homogeneity of the determinant function, we obtain

||fR||qLp,q
ν

= R
−r(ν−n

r
)−n q

p
−n||f ||q

Lp,q
ν

and

||T+(fR)||q
Lp,q

ν
= R

r(γ+n
r
)q−rαq−r(ν−n

r
)−n q

p
−n−q(rβ+2n)||Tf ||q

Lp,q
ν
.

It follows from the hypotheses that there exists a positive constant C such that ||T+(fR)||Lp,q
ν
≤

C||fR||Lp,q
ν

. This is equivalent to Rr(γ−α−β)−n||T+f ||Lp,q
ν
≤ C||f ||Lp,q

ν
for all R > 0, which

necessarily implies that γ = α+ β + n
r . The condition α+ β > −1 is naturally necessary

since if it does not hold, the range of ν is be empty. To obtain the other necessary con-

ditions, we test T+ on the functions f(x+ iy) = χ|x|<1(x)g(y), with g a positive function
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compactly supported in the intersection of the cone with the Euclidean ball of radius δ

centered at 0. Using Lemma 6.3.1, it follows that for x,y with |x| < 1
4 , |y| < δ, the

following inequality holds:

T+f(x+ iy) ≥ C∆α(y)
∫

Ω
∆−γ(y + v)g(v)∆β(v)dv.

Then, by assumption, there exists a constant C independent of g such that∫
y∈Ω,|y|<δ

(
∆α(y)

∫
Ω

∆−γ(y + v)g(v)∆β(v)dv
)q

∆ν−n
r (y)dy ≤ C

∫
Ω
gq(v)∆ν−n

r (v)dv.

By homogeneity of the kernel, we can replace the constant δ by an arbitrary positive

constant K. It follows that for every positive function g on Ω, we have the inequality∫
y∈Ω,|y|<K

(∆α(y)
∫

Ω
∆−γ(y+v)g(v)∆β(v)dv)q∆ν−n

r (y)dy ≤ C

∫
v∈Ω,|v|<K

gq(v)∆ν−n
r (v)dv

Then by density of compactly supported functions, we have the same inequality without

any bound on the integrals. The other necessary condition of the theorem is then a

consequence of the necessary conditions in Lemma 6.2.3 and Lemma 6.2.4 and the relation

obtained previously, γ = α+ β + n
r . This completes the proof of the theorem.

Corollary 6.3.4. Let 1 ≤ p, q <∞ and ν ∈ R . If γ = α+ β + n
r , α+ β > −1 and

max{−qα+
n

r
−1, q(−α+

n

r
−1)− n

r
+1} < ν < min{q(β+1)+

n

r
−1, q(β+

n

r
)− n

r
+1},

then the operator Tα,β,γ is bounded on Lp,qν (TΩ).

We define the Berezin transform on TΩ as the operator defined on L1(TΩ) by the pairing

〈fB̃z, B̃z〉, z ∈ TΩ,

where B̃z = ∆
n
r (=z)Bn

r
(., z) is the normalized reproducing kernel of A2(TΩ) (see for

example [114] for more on the Berezin transform).

Corollary 6.3.5. Let 1 ≤ p, q <∞. Then the Berezin transform defined on TΩ by

B(f)(z) = ∆2n
r (=z)

∫
TΩ

|B3n
r
(z, w)|f(w)dV (w), z ∈ TΩ

is bounded on Lp,q(TΩ, dV (z)), if and only if q > 2− r
n .

Remark 6.3.6. Let us remark that the above corollary was proved in [50] in the setting

of light cones and for p = q.
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Corollary 6.3.7. Let 1 ≤ p, q <∞. If ν and m are real numbers such that ν+m > n
r −1,

then the positive operator Q+ defined by

Q+f(z) =
∫
TΩ

|Bν+m(z, w)|f(w)∆ν−n
r (=w)dV (w)

is bounded from Lp,qν (TΩ) to Lp,qν+mq(TΩ) if and only if the following conditions are satisfied:

max{−mq+
n

r
− 1, q(−m+

n

r
− 1)− n

r
+1} < ν < min{q(ν− n

r
+1)+

n

r
− 1, qν− n

r
+1}.

Proof. The operator K defined by K(f)(z) = ∆−m(=z)f(z) is an isometric isomorphism

of Lp,qν (TΩ) to Lp,qν+mq(TΩ). Since for every f in Lp,qν (TΩ),

Q+f(z) =
∫
TΩ

|Bν+m(z, w)|∆−m(=w)f(w)∆ν+m−n
r (=w)dV (w) = T+

0,ν+m−n
r
,ν+m(Kf)(z),

the corollary follows from Theorem 6.3.3.

Remark 6.3.8. The above corollary in the case r = 2 is Proposition 3.5 of [10].

We recall that P+
µ = T+

0,µ−n
r
,µ. The boundedness of P+

µ has been obtained in [14] for

the case of the light cone. The following corollary is its generalization.

Corollary 6.3.9. Let µ, ν ∈ R and 1 ≤ p, q <∞. Then P+
µ is bounded in Lp,qν (TΩ) if and

only if µ, ν > n
r − 1 and

max{
ν − (nr − 1)
µ− (nr − 1)

,
ν + n

r − 1
µ

} < q <
ν + n

r − 1
n
r − 1

.

Recall that the Bergman projection Pµ is defined for f ∈ L2
µ(TΩ) by

Pµf(z) =
∫
TΩ

Bµ(z, w)f(w)∆µ−n/r(=w)dV (w),

where the Bergman kernel Bµ is given by (6.1.3). Pµf(z) defines a holomorphic function

in TΩ whenever the above integral is absolutely convergent. This is also the case if we

consider Pµf(z) with f ∈ Lp,qν (TΩ). Using the notation q̃ν,p = ν+n
r
−1

( n
rp′−1)+

with q̃ν,p = ∞

if n/r ≤ p′, we have the following proposition (see also Lemma 4.23 in [13] for the case

µ = ν).

Proposition 6.3.10. Let µ, ν ∈ R and 1 ≤ p, q <∞. If Pµ extends to a bounded operator

on Lp,qν (TΩ), then Bµ(z, ie) ∈ Lp,qν and ∆µ−ν(=z)Bµ(z, ie) ∈ Lp
′,q′
ν . The latter is equivalent

to the following conditions: ν > n
r − 1 and p(nr − 1− µ) < 2nr − 1 < p(nr + µ),

max{
ν − n

r + 1
(µ− n

r + 1)+
,
ν + n

r − 1
(µ+ n

rp′ )+
} < q < q̃ν,p.
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Proof. Let P ∗µ be the adjoint operator of Pµ with respect to the pairing <,>ν . We have

P ∗µf(z) = ∆µ−ν(=z)
∫
TΩ

Bµ(z, w)f(w)∆ν−n/r(=w)dV (w), f ∈ Lp′,q′ν .

Testing Pµ with f1(z) = χB1(ie)(z)∆−µ+n
r (=z) and P ∗µ with f2(z) = χB1(ie)(z)∆−ν+n

r (=z)

where B1(ie) is the Euclidean ball of radius 1 centered at ie, it follows from the mean value

property that Pµf1(z) = CBµ(z, ie) and P ∗µf2(z) = C∆µ−ν(=z)Bµ(z, ie). Consequently,

we have Bµ(z, ie) ∈ Lp,qν and ∆µ−ν(=z)Bµ(z, ie) ∈ Lp
′,q′
ν . Thus, by Lemma 6.3.2 this is

equivalent to ν + (µ− ν)q′ > n
r − 1, ν > n

r − 1, µ+ n
r > (2nr − 1) max( 1

p′ ,
1
p) and µ+ n

r >

max{ n
rp′ + ν+(µ−ν)q′+n

r
−1

q′ , nrp + ν+n
r
−1

q }. That is, ν > n
r − 1, µ+ n

r > (2nr − 1) max( 1
p′ ,

1
p),

and max{ ν−n
r
+1

(µ−n
r
+1)+

,
ν+n

r
−1

(µ+ n
rp′ )+

} < q < q̃ν,p.

Theorem 6.3.11. The operator T+ is bounded on L∞(TΩ) if and only if α > n
r − 1,

β > −1 and γ = α+ β + n
r .

Proof. We first prove the sufficiency. For any f ∈ L∞(TΩ), we have

|T+f(x+ iy)| ≤ ∆α(y)
∫
TΩ

|Bγ(x+ iy, u+ iv)||f(u+ iv)|∆β(v)dudv

≤ ||f ||∞∆α(y)
∫
TΩ

|∆−(γ+n
r
)(
x− u+ i(y + v)

i
)|∆(β+n

r
)−n

r (v)dudv

≤ C||f ||∞∆α−γ+β+n
r (y)

= C||f ||∞,

where the third inequality follows from Lemma 6.3.2 under the hypotheses.

We now prove the necessary condition. First, we show that if T+ is bounded on

L∞(TΩ), then the equality γ = α+ β + n
r holds. For f ∈ L∞(TΩ), we define the function

fR, R > 0, by fR(z) = f(Rz) for any z ∈ TΩ. The function fR belongs to L∞(TΩ) and we

have ||fR||∞ ≤ ||f ||∞. Using the homogeneity of the determinant function, we obtain

||T+(fR)||∞ = Rr(γ+
n
r
)−rα−rβ−2n||T+f ||∞.

It follows from the hypotheses that there exists a positive constant C such that ||T+(fR)||∞ ≤

C||fR||∞. This implies thatRr(γ+
n
r
)−rα−rβ−2n||T+f ||∞ ≤ C||f ||∞ for allR > 0, which nec-

essarily implies that γ = α+β+ n
r . Now, we test T+ on the function f(x+iy) = χ|x|<1g(y),

where g is a positive function compactly supported on the intersection of the cone with

the Euclidean ball of radius δ centered at 0. From Lemma 6.3.1, we have that for x, y with

|x| < 1
4 , |y| < δ, the following inequality holds:

∆α(y)
∫
v∈Ω,|v|<δ

∆−γ(y + v)g(v)∆β(v)dv ≤ CT+f(x+ iy) ≤ C||f ||∞.
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We already know that by homogeneity of the kernel, we can replace δ by an arbitrary

positive constant K. Thus by density of compactly supported functions, we can just write

the left hand side of the above inequality without any bound on the integral. Taking

g(v) = 1, it follows that we should have

∆α(y)
∫

Ω
∆−γ(y + v)∆β(v)dv <∞.

It follows easily from Proposition 5.3.4 that we should have β > −1 and −γ+β < −2nr +1.

Thus, using the equality previously obtained, we deduce that α > n
r − 1. This completes

the proof of the theorem.

Although the conditions for the boundedness of T+ are generally only sufficient for the

boundedness of T , in the case of L∞(TΩ) they are also necessary, as we show in the next

result.

Theorem 6.3.12. The operator T is bounded on L∞(TΩ) if and only if α > n
r −1, β > −1

and γ = α+ β + n
r .

Proof. We only have to prove necessity. Let T be bounded on L∞(TΩ). The condition

γ = α+β+ n
r follows on the same way as in the proof of the previous theorem. Let w = ξ+

it ∈ TΩ be fixed and consider the function fw given by fw(x+iy) = |Bγ(ξ+it,x+iy)|
Bγ(ξ+it,x+iy) χ|x|<1g(y);

where g is a positive function compactly supported on the intersection of the cone with

the Euclidean ball of radius δ centered at 0. Testing T with fw and taking x + iy = w,

we obtain with the same reasoning as in the proof of Theorem 6.3.3 that we have β > −1,

−γ + β < −2nr + 1 and consequently α > n
r − 1.

6.4 The topological dual of Ap,q
ν (TΩ), 1 < q < qν

We recall the following notations:

q̃ν,p =
ν + n

r − 1
( n
rp′ − 1)+

, qν,p = min{p, p′}qν , and qν = 1 +
ν

n
r − 1

with q̃ν,p = ∞ if n/r ≤ p′. It is clear that 1 < qν < qν,p < q̃ν,p. By density of the

intersection Ap,qν ∩A2
µ in Ap,qν (see [12]), we have the following reproducing formula for all

α > n
r − 1 and f ∈ Ap,qν with 1 ≤ p <∞ and 1 ≤ q < q̃ν,p:

f(z) =
∫
TΩ

Bα(z, w)f(w)∆α−n
r (=w)dV (w), z ∈ TΩ. (6.4.1)



CHAPTER 6. BOUNDEDNESS OF BERGMAN-TYPE OPERATORS 88

Remark 6.4.1. In fact, formula (6.4.1) holds for all f ∈ A2
µ and then by density for all

f ∈ Ap,qν . We will give more comments about this in the next chapter.

The following theorem characterizes the topological dual space of the Bergman space

Ap,qν (TΩ) for some values of p, q and ν for which the Bergman projection is not necessarily

bounded.

Theorem 6.4.2. Let ν > n
r − 1 be real, 1 < p <∞ and 1 < q < qν . If µ is a sufficiently

large real number so that µ > n
r −1 and 1 < q′ < qµ, then the topological dual space (Ap,qν )∗

of the Bergman space Ap,qν identifies with Ap
′,q′
µ under the integral pairing

〈f, g〉α =
∫
TΩ

f(w)g(w)∆α−n
r (=w)dV (w),

where α = ν
q + µ

q′ ,
1
p + 1

p′ = 1
q + 1

q′ = 1.

Proof. We have the equality∫
TΩ

f(z)g(z)∆α−n
r (=z)dV (z) =

∫
TΩ

(∆
ν−n

r
q (=z)f(z))(∆

µ−n
r

q′ (=z)g(z))dV (z).

Since for every f ∈ Ap,qν , the function ∆
ν−n

r
q (=z)f(z) is in Lp,q(TΩ, dz) and for every

g ∈ Ap
′,q′
µ , the function ∆

µ−n
r

q′ (=z)g(z) is in Lp
′,q′(TΩ, dz), it follows that the given form

is well-defined and every g ∈ Ap
′,q′
µ defines an element of (Ap,qν )∗ given by the above

integral pairing. The injectivity of the mapping g ∈ Ap
′,q′
µ 7→ 〈., g〉α follows by testing with

f = Bα(., w). Indeed, f = Bα(., w) belongs to Ap,qν by Lemma 6.3.2 since α > n
r − 1 and

q > q′µ >
µ+n

r
−1

µ+ n
rp′

. Now using the reproducing formula (6.4.1) we obtain that if g ∈ Ap
′,q′
µ

is such that 〈h, g〉 = 0 for all h ∈ Ap,qν , then in particular 0 = 〈Bα(., w), g〉 = g(w) for all

w ∈ D and so g ≡ 0.

Now let us show that every element M of (Ap,qν )∗ can be represented by an element

g of Ap
′,q′
µ . By the Hahn-Banach theorem, there exists a function h ∈ Lp

′,q′
ν satisfying

||h||
Lp′,q′

ν
= ||M|| such that for any f ∈ Ap,qν ,

M(f) =
∫
TΩ

F (z)h(z)∆ν−n
r (=z)dV (z).

Let us set k(z) = ∆
ν−µ

q′ (=z)h(z). Then k ∈ Lp
′,q′
µ and we have∫

TΩ

f(z)h(z)∆ν−n
r (=z)dV (z) =

∫
TΩ

f(z)k(z)∆α−n
r (=z)dV (z).
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It is easy to see that µ < min{q′(α− n
r + 1) + n

r − 1, q′α− n
r + 1}

and ν < min{q(α − n
r + 1) + n

r − 1, qα − n
r + 1}. Thus, Pα is bounded on Lp

′,q′
µ and on

Lp,qν . If we set g = Pα(k), g belongs to Ap
′,q′
µ and we clearly have

M(f) = 〈f, k〉α = 〈Pαf, k〉α = 〈f, Pαk〉α = 〈f, g〉α.

We have used the fact that since Pα is bounded on Lp,qν , it reproduces functions of Ap,qν .

The proof is complete.



Chapter 7

Analytic Besov spaces on tube

domains

We give various equivalent formulations to the (partially) open problem about Lp-boundedness

of Bergman projections in tubes over cones. Namely, we show that such boundedness is

equivalent to the duality identity between Bergman spaces, Ap
′

= (Ap)∗, and also to a

Hardy type inequality related to the wave operator. We introduce analytic Besov spaces

in tubes over cones, for which such Hardy inequalities play an important role. For p ≥ 2

we identify as a Besov space the range of the Bergman projection acting on Lp, and also

the dual of Ap
′
. For the Bloch space B∞ we give in addition new necessary conditions on

the number of derivatives required in its definition.

7.1 Introduction

Let TΩ be a symmetric domain of tube type in Cn, that is TΩ = Rn + iΩ, where Ω is an

irreducible symmetric cone in Rn. We still write r for the rank of Ω and ∆(x) for the

associated determinant function as in the previous chapter. We shall denote by H(TΩ) the

space of holomorphic functions on TΩ.

A major open question in these domains concerns the Lp boundedness of the Bergman

projection [9, 13, 14]. Let Apν(TΩ) denote the subspace of holomorphic functions in Lpν =

Lp(TΩ,∆(y)ν−n/rdx dy). These spaces are nontrivial (i.e. Apν 6= {0}) only if ν > n
r − 1

(see [38]). The usual (unweighted) Bergman spaces Ap(TΩ) correspond to ν = n
r . Let Pν

be the orthogonal projection mapping L2
ν(TΩ) into A2

ν(TΩ).

90
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CONJECTURE 2. Let ν > n
r − 1. Then the Bergman projection Pν admits a bounded

extension to Lpν(TΩ) if and only if

p′ν < p < pν :=
ν + 2n

r − 1
n
r − 1

− (1− ν)+
n
r − 1

.

The necessity of the condition above was proved in [13]. The conjecture concerns the

sufficiency. Note that the summand involving (1− ν)+ in the second term may only occur

in the three dimensional forward light-cone (n = 3 and r = 2), where ν is allowed to take

values below 1.

The problem of Lp-continuity of the Bergman projection has been studied in the papers

[9,13,14], and completely settled for large ν in the case of light cones in [13]. Let us note

p̃ν :=
ν + 2n

r − 1
n
r − 1

.

Then the necessary condition p < p̃ν is given by the fact that by duality, the Bergman

kernel has to belong to the dual space Lp
′
ν (TΩ) (see also Proposition 6.3.10). As far as

sufficient conditions are concerned, we refer to [52, 53] for the best sufficient conditions

that are known, up to now, in the case of light cones. In general, it is proved in [13, 14]

that the Bergman projection Pν is bounded in Lpν(TΩ) for

p̄′ν < p < p̄ν :=
ν + 2n

r − 2
n
r − 1

.

Let 2 = ∆(1
i
∂
∂x) denote the differential operator of degree r defined by the equality:

2 [ei(x|ξ)] = ∆(ξ)ei(x|ξ), ξ ∈ Rn. (7.1.1)

In cones of rank 1 and 2 this corresponds to −i∂x (when TΩ is the upper-half-plane) and

−(∂2
x1
− ∂2

x2
− . . . − ∂2

xn
)/4 (when TΩ is the forward light cone), which justifies the name

of “wave operator” given to ∆. We denote by 2z the extension of the operator 2 to Cn

given by 2z = ∆(1
i
∂
∂x). When there is no ambiguity, we write 2 instead of 2z.

Let us first recall the following result of [14] which is a consequence of the mean value

inequality for holomorphic functions.

Lemma 7.1.1. Let 0 < p ≤ ∞ and ν ∈ R. Then

∥∥∆(=m ·)2F
∥∥
Lp

ν
≤ C

∥∥F∥∥
Lp

ν
(7.1.2)

for F ∈ H(TΩ).
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In this chapter, we will be concerned with equivalent formulations of Conjecture 2

and some consequences in the formulation of the theory of analytic Besov spaces in these

settings. We first prove that for p ≥ 2, the validity of the reverse inequality of (7.1.2) is

equivalent to the boundedness of Pν on Lpν when ν > n
r −1. Clearly, we prove the following

result.

Theorem 7.1.2. Let ν > n
r − 1. Then, for p ≥ 2, the Bergman projection Pν admits

a bounded extension to Lpν(TΩ) if and only if there exists a constant C such that, for all

F ∈ Apν we have∫ ∫
TΩ

|F (x+ iy)|p ∆ν−n
r (y) dx dy ≤ C

∫ ∫
TΩ

∣∣∆(y)2F (x+ iy)
∣∣p ∆ν−n

r (y) dx dy. (7.1.3)

Such an inequality is called Hardy Inequality by reference to the one dimensional

case. More comments on Hardy inequalities for holomorphic functions have been done

in [22], where a weaker statement has been announced.

Remark 7.1.3. • We remark that (7.1.3) is always valid when 1 ≤ p ≤ 2, as it can

be proved, for instance, from an explicit formula for F in terms of 2F involving the

fundamental solution of the Box operator (see [22]). However, in this range (7.1.3)

has no implications in terms of boundedness of Bergman projections.

• Let us mention that a weak form of Theorem 7.1.2 for forward light cones had also

already been given in [14], where it was the key argument for proving the continuity

of the Bergman projection.

• We will refer to (7.1.3) as Hardy’s inequality for the parameters (p, ν).

We will prove Theorem 7.1.2 in Section 3, and add more comments on Hardy inequal-

ities.

The second equivalent formulation of Conjecture 2 concerns duality.

Theorem 7.1.4. Let ν > n
r − 1 and 1 < p <∞. Then Pν admits a bounded extension to

Lpν(TΩ) if and only if the natural mapping of Ap
′
ν into (Apν)∗ is an isomorphism.

Remark 7.1.5. If p > p̃′ν , then the inclusion Φ : Ap
′
ν ↪→ (Apν)∗ is injective (see the proof of

duality result in the previous chapter), and hence boundedness of Pν is actually equivalent

to surjectivity of Φ. When p ≥ p̃ν these two properties fail, and (Apν)∗ is a space strictly

larger than Ap
′
ν which we do not know how to identify.
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The two theorems above give two equivalent formulations of the boundedness of the

Bergman projection for p > 2. When 1 ≤ p < 2 is such that the projection Pν is not

bounded, then we can still describe the dual space of Apν in terms of equivalence classes

of holomorphic functions, and more precisely in terms of Besov spaces that we study in

Section 4. Equivalence classes appear naturally in this setting since the injectivity of Φ

(or equivalently of 2|
Ap′

ν
) fails when p < p̃′ν . We define analytic Besov spaces Bpν , for ν ∈ R

and 1 ≤ p <∞, by

Bpν := {F : ∆m(=·)2mF ∈ Lpν}

for m large enough. The smallest possible value for m in the above definition is related

to the validity of the Hardy inequality for some other weight, and one has to deal with

equivalence classes modulo holomorphic functions that are annihilated by powers of the

Box operator when m cannot be taken equal to 0. For the one dimensional case and

bounded symmetric domains, we refer to [47, 115, 116]. Here, compared to the case of

bounded symmetric domains, it is more difficult to deal with equivalence classes.

Let us mention the following special family of Besov spaces corresponding to the weight

ν = −n/r in the above definition that is,

Bp =
{
F ∈ H(TΩ) : ∆m(=·)2mF ∈ Lp(dλ)

}
.

Here dλ = ∆− 2n
r (y)dx dy denotes the invariant measure under conformal transformations

of TΩ. These are the analog for TΩ of the Besov spaces introduced by Arazy and Yan in

bounded symmetric domains [1, 109, 110]. The space Bp is the right range of symbols of

Hankel operators in the Schatten class Sp [24,115] (see also the next chapter). For p = ∞,

the Besov space is known as the Bloch space (see e.g. [7, 8]).

Among our results we shall prove the following. Let P (k)
ν (f) denotes the equivalence

class Pν(f) + ker2k (defined at least for f in the dense set L2
ν ∩ L

p
µ).

Theorem 7.1.6. Let ν > n
r − 1, 2 ≤ p ≤ ∞ and k ≥ k0(p, ν). Then

1.- For every real µ ≤ ν, the operator P (k)
ν extends continuously from Lpµ onto Bpµ.

2.- The dual space (Ap
′
ν )∗ identifies with Bpν , under the pairing

〈F,G〉ν,k =
∫
TΩ

F (z) ∆k(=m z) 2kG(z) dVν(z), F ∈ Ap′ν , G ∈ Bpν .

Boundary values of Besov spaces can be defined via a Littlewood-Paley decomposition

of the cone Ω, seen as supporting the function g, if the Laplace transform of g is the
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function under consideration. This allows to choose a representative holomorphic function

in the equivalence class for much smaller values of ν. In order to do this, we shall go back

to the definition of Besov spaces as Fourier-Laplace transforms of the Besov spaces at the

boundary, as in [13].

7.2 Bergman kernels and reproduction formulas

7.2.1 Some prerequisites

Below we shall use some invariance properties of determinants and Box operators. To

introduce them we need to recall some basic facts about symmetric cones introduced in

Chapter 5.

Considering V = Rn as a Jordan algebra, we still denote its unit element by e (think

of the identity matrix in the cone of positive definite symmetric matrices, or the point

e = (1,0) in the forward light cone). We recall that G is the identity component of

the group of invertible linear transformations which leave the cone Ω invariant. We have

already seen that G acts transitively on Ω. The determinant function is also preserved by

G, in such a way that

∆(gy) = ∆(ge)∆(y) = Det(g)
r
n ∆(y), ∀ g ∈ G, y ∈ Ω. (7.2.1)

It follows from this formula that an invariant measure in Ω is given by ∆(y)−
n
r dy. More

precisely, we have the following result which follows by a change of variable and formula

(7.2.1) (see [12]).

Proposition 7.2.1. Let Ω be a symmetric cone. Consider in Ω the measure :

µ(E) =
∫
E

dy

∆(y)
n
r

, E ⊂ Ω.

Then µ is G-invariant, i.e., µ(g · E) = µ(E) for all g ∈ G.

The invariance of the Box operator under the action of G is an easy consequence of its

definition and the invariance of the determinant function (see [14]), namely

2
[
F (g·)

]
= ∆(ge)

[
2F
]
(g·) = Det(g)

r
n
[
2F
]
(g·), ∀ g ∈ G. (7.2.2)

Another fundamental property is the following [40, p. 125]: for every α ∈ R one has the

identity in Ω

2∆α = b(α)∆α−1 (7.2.3)
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where

b(α) = α(α+
d

2
) · · · (α+ (r − 1)

d

2
),

d

2
=

n
r − 1
r − 1

.

The polynomial b is called the Bernstein polynomial of the determinant.

Remark 7.2.2. The polynomial b vanishes for the r values 0, α0, · · · (r − 1)α0, where

α0 = −
n
r
−1

r−1 . Consequently, we have for example,

2∆−n
r
+1(y) = 0, y ∈ Ω. (7.2.4)

7.2.2 Bergman kernels and Determinant function

Recall that the (weighted) Bergman projection Pν is defined by

PνF (z) =
∫
TΩ

Bν(z, w)F (w)dVν(w),

where Bν(z, w) = cν ∆−(ν+n
r
)((z − w)/i) is the reproducing kernel of A2

ν , called Bergman

kernel (see [40]). For simplicity, we have written dVν(w) := ∆ν−n
r (v)du dv, where w =

u+ iv is an element of TΩ. Observe from (7.2.3) that

2m
z [Bν(z − w̄)] = cν,mBν+m(z − w̄) (7.2.5)

for a suitable constant cν,m, and all m ∈ N. We will need the integrability properties of

the determinants and Bergman kernels provided by Proposition 5.3.4 and Lemma 6.3.2.

Remark 7.2.3. Lemma 6.3.2 means in particular, using (7.2.4), that for p > p̃ν the

function F (z) = ∆−n
r
+1(z + ie) ∈ Apν and is annihilated by 2; so, there is no Hardy

inequality for such values of p. In this range of p, as mentioned in the introduction, the

Bergman projection Pν is not bounded in Lpν , so we have proved easily Theorem 7.1.2 for

p > p̃ν . We shall concentrate on the other values of p later on.

Let us now recall the following density properties (see eg [14,51]).

Lemma 7.2.4. Let 1 ≤ p <∞ and ν > n
r −1. Then, for all 1 ≤ q ≤ ∞ and µ > n

r −1, the

subspace Apν∩Aqµ is dense in Apν . Moreover, A∞∩Aqµ is dense in A∞ for the weak∗-(L∞, L1)

topology.

PROOF: Let us consider the case p = ∞, which is the only new part. If F ∈ A∞ then

by part (1) of Lemma 5.3.3 the functions ∆−α((εz + ie)/i)F (z) are in Apµ ∩ A∞ for large

values of α, and we clearly have the required property when ε tends to 0 by Lebesgue

dominated convergence theorem.
2
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7.2.3 Integral operators

For the characterizations of Besov spaces, we shall need some integral estimates involving

Bergman kernel functions. We will heavily make use of the following particular case of

integral operators T and T+ studied in the previous chapter.

Tν,αF (z) = ∆α(=m z)
∫
TΩ

Bν+α(z, w)F (w)dVν(w), (7.2.6)

and

T+
ν,αF (z) = ∆α(=m z)

∫
TΩ

|Bν+α(z, w)|F (w)dVν(w), (7.2.7)

when these integrals make sense. Observe that Pν = Tν,0. We recall the corresponding

boundedness conditions of T+
ν,α on Lpµ(TΩ).

Proposition 7.2.5. Let α, ν, µ ∈ R and 1 ≤ p < ∞. Then the following conditions are

equivalent:

(a) The operator T+
ν,α is well defined and bounded on Lpµ(TΩ).

(b) The parameters satisfy ν + α > n
r − 1 and the inequalities

νp− µ > (nr − 1) max{1, p− 1}, αp+ µ > (nr − 1) max{1, p− 1}.

In particular, when ν = µ > n
r − 1 and when p > (µ + n

r − 1)/µ, the condition is

satisfied for α large enough.

Proposition 7.2.6. Let α, ν ∈ R, with ν > n
r − 1. Then the operator Tν,α (resp. T+

ν,α) is

bounded in L∞ if and only if α > n
r − 1.

7.2.4 Reproducing formulas

We will make an extensive use of the following “integration by parts”.

Proposition 7.2.7. For ν > n
r −1, 1 ≤ p ≤ ∞ and F ∈ Apν , G ∈ Ap

′
ν , we have the formula∫

TΩ

F (z)G(z)dVν(z) = cν,m

∫
TΩ

F (z)2mG(z)∆m(=m z)dVν(z). (7.2.8)

Proof. We only need to show the identity (7.2.8) for p = 2 since the general case follows

by density.Using the reproducing formula (6.1.4), derivation under the integral, Lemma

6.3.2 and Fubini’s theorem we easily obtain for any G ∈ A2
ν and for all z ∈ TΩ,∫

TΩ

Bν(z, w)G(w)dVν(w) =
∫
TΩ

Bν+m(z, w)G(w)∆m(=mw)dVν(w). (7.2.9)
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That is the formula holds for G = Bν(., w) and all F ∈ A2
ν . Using the reproducing

formula (6.1.4) Fubini’s theorem and the identity (7.2.9), and setting

I(F,G) =
∫
TΩ

F (z)2mG(z)∆m(=m z)dVν(z),

we obtain

I(F,G) =
∫
TΩ

F (z)
(
cν,m

∫
TΩ

Bν+m(w, z)G(w)dVν(w)
)

∆m(=m z)dVν(z)

= cν,m

∫
TΩ

G(w)
(∫

TΩ

Bν+m(w, z)F (z)∆m(=m z)dVν(z)
)
dVν(w)

= cν,m

∫
TΩ

F (w)G(w)dVν(w).

We can now write the following general reproducing formula. In the next proposition,

we write c for some constant that depends on the parameters involved.

Proposition 7.2.8. Let ν > n
r − 1 and 1 ≤ p ≤ ∞. For all F ∈ Apν we have the formula

2`F (z) = c

∫
TΩ

Bν+`(z, w)2mF (w)∆m(=mw)dVν(w) (7.2.10)

for m ≥ 0 and ` large enough such that Bν+`(z, ·) is in Lp
′
ν . In particular, when 1 ≤ p < p̃ν ,

the formula is valid with ` = 0.

PROOF: We can assume that m = 0. If not, we use (7.2.8). It is true for p = 2 and

` = 0 because of the reproducing property of the Bergman projection. Derivation under

the integral and (7.2.5) gives also the case ` > 0. We then use density for the general case.
2

Corollary 7.2.9. Let 1 ≤ p < p̃ν and ν > n
r − 1. Then every F ∈ Apν can be written as

F (z) =
∫
TΩ

Bν(z, w)F (w)dVν(w). (7.2.11)

We shall state two more results which can be similarly proved by density and absolute

convergence of the involved integrals (together with Lemma 6.3.2 to verify the statements

about the Bergman kernels).

Proposition 7.2.10. Let ν > n
r − 1 and α > n

r − 1. Then Bν+α(·, ie) ∈ L1
ν , and for all

holomorphic F with ∆α(=m z)F (z) ∈ L∞ and all m ≥ 0 we have

F (z) = c

∫
TΩ

Bν+α(z, w) 2mF (w) ∆α+m(=mw) dVν(w). (7.2.12)
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Proposition 7.2.11. Let µ, ν, α ∈ R and 1 ≤ p <∞ satisfying

ν + α > n
r − 1, νp− µ > (p− 1)(nr − 1) and µ+ αp > (p− 1)(nr − 1)− n

r .

Then, ∆ν−µ(=m z)Bν+α(z, ie) ∈ Lp
′
µ , and for all holomorphic F with ∆α(=m z)F (z) ∈ Lpµ

we have

F (z) =
∫
TΩ

Bν+α(z, w)F (w) ∆α(=mw) dVν(w). (7.2.13)

7.3 Hardy-type inequality and duality

We consider in this section, the proofs of equivalent formulations of boundedness of

Bergman projection.

7.3.1 Equivalence between boundedness and Hardy’s inequality

We prove in this subsection the equivalence between the validity of the Hardy inequality

(7.1.3) and the boundedness of the Bergman projection. Let us first prove the following

lemma.

Lemma 7.3.1. Let ν > n
r − 1 and 2 ≤ p ≤ p̃ν . Then,

∥∥2F∥∥
Lp

ν+p
≤ C

∥∥2m+1F
∥∥
Lp

ν+(m+1)p

, ∀ F ∈ Apν , ∀ m ≥ 1. (7.3.1)

Proof. Using (7.2.8) we can write

2F (z) = c

∫
TΩ

Bν+p(z, w)2m (2F (w))∆m(=mw)dVν+p(w),

since 2F ∈ Apν+p and Bν+p(·, z) ∈ Ap
′

ν+p. So the inequality (7.3.1) follows from the fact

that the projector Pν+p is bounded on Lpν+p (since the condition on p implies p < p̄ν+p).

Theorem 7.3.2. Let ν > n
r − 1. Then for p ≥ 2, the Bergman projection Pν admits

a bounded extension to Lpν(TΩ) if and only if there exists a constant C such that for all

F ∈ Apν , we have ∥∥F∥∥
Lp

ν
≤ C

∥∥∆(=.)2F
∥∥
Lp

ν
. (7.3.2)

Proof. Let us first assume that Pν is bounded, which implies in particular that p < p̃ν ,

that is, Bν(z, ·) is in Ap
′
ν . Then the formula

F (z) = c

∫
TΩ

Bν(z, w)2F (w)∆(=mw)dVν(w)



CHAPTER 7. ANALYTIC BESOV SPACES ON TUBE DOMAINS 99

implies that F is the projection of the function 2F (w)∆(=w) ∈ Lpν . Thus, it follows from

the continuity of the projection that∥∥F∥∥
Lp

ν
= c
∥∥Pν(∆(=.)2F )

∥∥
Lp

ν
≤ C

∥∥∆(=.)2F
∥∥
Lp

ν
.

Next, consider 2 < p <∞ and assume that the inequality (7.3.2) holds. We can restrict

to the range 2 < p ≤ p̃ν , since for larger values p > p̃ν , as we have seen above, the Box

operator is not injective in Apν , and hence Hardy’s inequality does not hold.

Our proof uses Hardy’s inequality (7.3.2), not only for the Box operator, but for its

power 2m with m large enough. It follows from Lemma 7.3.1 that our assumption that

Hardy’s inequality (7.3.2) holds implies that for all F ∈ Apν and all positive integer m, we

have the inequality∫ ∫
TΩ

|F (x+ iy)|p ∆ν−n
r (y) dx dy ≤ C

∫ ∫
TΩ

∣∣∆m(y)2mF (x+ iy)
∣∣p ∆ν−n

r (y) dx dy.

(7.3.3)

We want to prove the existence of some constant C such that for f ∈ Lpν ∩ L2
ν , we have

the inequality

‖Pνf‖Ap
ν
≤ C‖f‖Lp

ν
.

Consider such an f with ‖f‖Lp
ν

= 1. Call F := Pνf . By Fatou’s Lemma, it is sufficient to

prove that the functions Fε(z) := F (z+ iεe), which belong to Apν , have uniformly bounded

norms. So, using (7.3.3), it is sufficient to prove that 2mFε is uniformly in Lpν+pm for

some m, which is a consequence of the fact that 2mF itself is in Lpν+pm for some m (see

eg [51, Corol. 3.9]). To prove this, we use the identity

2mF (z) = c

∫
TΩ

Bν+m(z, w)f(w)dVν(w),

so that ‖2mF‖Lp
ν+pm

= c ‖Tν,mf‖Lp
ν
, and if m is sufficient large we conclude from Theorem

6.3.3 This finishes the proof.

7.3.2 Boundedness of Bergman projection and duality

We prove the following equivalence between the boundedness of the Bergman projection

Pν on Lpν(TΩ) and the isomorphism of the natural mapping of Ap
′
ν into (Apν)∗.

Theorem 7.3.3. Let ν > n
r − 1 and 1 < p <∞. Then Pν admits a bounded extension to

Lpν(TΩ) if and only if the natural mapping of Ap
′
ν into (Apν)∗ is an isomorphism.
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Proof. We first consider the case p̃ν ′ < p < ∞, for which the Bergman kernel Bν(·, w)

belongs to Apν . So, if F is in Ap
′
ν and if the associated linear form Φ(F ), given by

〈Φ(F ), G〉ν =
∫
TΩ

G(z)F (z)dVν(z)

vanishes on Apν , Corollary 7.2.9 implies that F = 0. Thus, Ap
′
ν is embedded into the

dual of Apν . Assume that this embedding is onto, and hence by the closed graph theorem

that it has a continuous inverse. Since every f ∈ Lp
′
ν defines an element of (Apν)∗ by

G 7→
∫
TΩ
G(z)f(z)dVν(z), by assumption there exists F ∈ Ap

′
ν such that∫

TΩ

G(z)f(z)dVν(z) =
∫
TΩ

G(z)F (z)dVν(z), ∀ G ∈ Apν

with ‖F‖
Ap′

ν
≤ c‖f‖

Lp′
ν

. Taking for G the Bergman kernel, we see that F is the projection

Pνf , so that Pν maps Lpν continuously into itself.

Conversely, assume that Pν is bounded in Lpν (and, by duality, on Lp
′
ν ). Then we have

the identity ∫
TΩ

G(z)f(z)dVν(z) =
∫
TΩ

G(z)Pνf(z)dVν(z)

for all f ∈ Lp
′
ν and G ∈ Apν . Indeed, use the fact that this equality is valid in L2

ν ,

and density. Since every functional γ ∈ (Apν)∗ can be expressed by Hahn-Banach as

G 7→ 〈G, f〉ν for some f ∈ Lp
′
ν (with ‖f‖

Lp′
ν

= ‖γ‖), the above identity shows that the

functional can be obtained from Pνf ∈ Ap
′
ν . So, under the assumption that Pν is bounded

in Lpν , the embedding Φ : Ap
′
ν → (Apν)∗ is an isomorphism.

It remains to consider the case when 1 ≤ p ≤ p̃′ν , where we know that the Bergman

projection is not bounded, and hence we want to show that Φ is not an isomorphism.

First, it is easy to see that Φ is not injective when 1 ≤ p < p̃′ν . Indeed, in that range we

may find a (non-null) function F ∈ Ap
′
ν with 2F = 0 (see Remark 7.2.3). Now, it follows

from (7.2.8) that∫
TΩ

G(z)F (z)dVν(z) = c

∫
TΩ

G(z) 2F (z)∆(=m z)dVν(z), G ∈ Apν , (7.3.4)

which implies Φ(F ) ≡ 0.

Let us now consider the end-point, p = p̃′ν . If F is in Ap
′
ν then 2F is in Ap

′

ν+p′ and, by

(7.3.4), the norm of Φ(F ) is bounded by the norm of 2F in this space. So, if Φ was an

isomorphism, we would have some constant C independent of F such that

‖F‖
Ap′

ν
≤ C‖2F‖

Ap′
ν+p′

.



CHAPTER 7. ANALYTIC BESOV SPACES ON TUBE DOMAINS 101

This is exactly Hardy’s inequality, which is not valid for p′ = p̃ν , concluding the proof of

the theorem.

The next corollary, which is implicitly contained in the previous proofs, will be used

later on.

Corollary 7.3.4. Let ν > n
r − 1 and 1 ≤ p < p̃ν , and assume that the Hardy inequality

(7.1.3) holds for (p, ν). Then for every positive integer m, the mapping 2m : Apν → Apν+mp

is an isomorphism. In particular, for all G ∈ Apν+mp the equation 2mF = G has a unique

solution in Apν . Moreover,

‖F‖Ap
ν
≤ C ‖G‖Ap

ν+mp
,

for some constant C > 0.

Proof. When 2 ≤ p < p̃ν , by the assumption and Lemma 7.3.1 we have the estimate

‖F‖Ap
ν
≤ C ‖2mF‖Ap

ν+mp
, for all F ∈ Apν , so we only need to establish the surjectivity of

2m. Since by assumption and Theorem 7.3.2 the Bergman projection Pν is bounded in

Lpν , given any G ∈ Apν+mp, the function F = Pν(∆m(=m ·)G) belongs to Apν . Moreover, by

the reproducing formula (7.2.13) we have

2mF (z) =
∫
TΩ

Bν+m(z, w)G(w) ∆(=mw)m dVν(w) = cG(z),

which proves the surjectivity.

For 1 ≤ p ≤ 2, injectivity follows directly from Proposition 7.2.8 (with ` = 0). For

surjectivity, we first remark that the conditions of Proposition 7.2.11 are satisfied (with

ν = µ and α = m). Thus, formula (7.2.13) holds for all G ∈ Apν+mp, i.e.,

G(z) =
∫
TΩ

Bν+m(z, w)G(w) ∆(=mw)m dVν(w).

For G ∈ Apν+mp let

F (z) =
∫
TΩ

Bν(z, w)G(w) ∆(=mw)m dVν(w).

Since p′ ≥ 2, F is well-defined and satisfies 2mF = cG. To conclude, it suffices to show

that F ∈ Apν or equivalently that

T−m,ν+m−n
r
,νG(x+ iy) = ∆(y)−m

∫
TΩ

Bν(z, w)G(w) ∆(=mw)m dVν(w)

is in Lpν+mp. This is an easy consequence of the boundedness of the operator T−m,ν+m−n
r
,ν

on Lpν+mp given by Theorem 6.3.3. The proof is complete.
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Remark 7.3.5. An alternative proof of surjectivity in the case 1 ≤ p ≤ 2 using the

explicit formula involving the fundamental solution of 2 can be found in [22, Prop. 3.1].

7.4 Besov spaces of holomorphic functions and duality

Throughout this section, given m ∈ N, we shall denote

Nm := {F ∈ H(TΩ) : 2mF = 0}

and set

Hm(TΩ) = H(TΩ)/Nm.

For simplicity, we use the following notation for the normalized Box operator: We write

∆m2mF (z) := ∆m(=m z)2mF (z), z ∈ TΩ. (7.4.1)

For convenience, we shall use the same notations for holomorphic functions and for equiv-

alence classes in Hm. Remark that for F ∈ Hm(TΩ), we can speak of the function 2mF .

Sometimes we shall write 2−m
z G for the class in Hm(TΩ) of all F ∈ H(TΩ) with 2mF = G.

When G ∈ H(TΩ) this class is non-empty by the standard theory of PDEs with constant

coefficients (see eg [106]).

7.4.1 Definition of Bp
µ(TΩ)

Given µ ∈ R and 1 ≤ p < ∞, we wish to define a Besov space Bpµ(TΩ) consisting of

holomorphic F so that ∆m2mF ∈ Lpµ for sufficiently large m. The following proposition

clarifies the dependence of such spaces on the parameter m.

Proposition 7.4.1. Let µ ∈ R and 1 ≤ p <∞, and let k,m ∈ Z, 0 ≤ k ≤ m.

(i) If ∆k2kF is in Lpµ, then ∆m2mF is in Lpµ and ‖∆m2mF‖Lp
µ
≤ C‖∆k2kF‖Lp

µ
.

(ii) If µ + kp > n
r − 1 and Hardy’s inequality (7.1.3) holds for (p, ν = µ + kp), then

∆m2mF ∈ Lpµ implies the existence of F̃ ∈ H(TΩ) so that 2mF̃ = 2mF and ‖∆k2kF̃‖Lp
µ
≤

C‖∆m2mF‖Lp
µ
. Moreover the function F̃ is uniquely determined modulo Nk.

Proof. Assertion (i) follows from (7.1.2). We focus on assertion (ii). The assumption on

Hardy’s inequality implies that 2m−k : Apµ+kp → Apµ+mp is an isomorphism, by Proposition

7.3.4. Thus since 2mF ∈ Apµ+mp, there is a unique H ∈ Apµ+kp with 2m−kH = 2mF . Now

we take for F̃ any holomorphic solution of 2kF̃ = H.
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Given µ ∈ R, 1 ≤ p <∞ and m ∈ N, we define the space

Bp,(m)
µ :=

{
F ∈ Hm(TΩ) : ∆m2mF ∈ Lpµ

}
endowed with the norm ‖F‖Bp

µ
= ‖∆m2mF‖Lp

µ
. Observe that each element of Bp,(m)

µ is the

equivalence class of all analytic solutions of the equation 2mF = g, for some g ∈ Apµ+mp.

Thus, the spaces are null when µ + mp ≤ n
r − 1. By the previous proposition, when

0 ≤ k ≤ m and µ+ kp > n
r − 1, the natural projection

Bp,(k)µ −→ Bp,(m)
µ

F +Nk 7−→ F +Nm

(7.4.2)

is an isomorphism of Banach spaces, provided Hardy’s inequality (7.1.3) holds for the

indices (p, ν = µ+ pk). This leads us to the following definition.

Definition 7.4.2. Given µ ∈ R and 1 ≤ p < ∞, we define Bpµ := Bp,(k0)
µ where k0 =

k0(p, µ) is fixed by

k0(p, µ) := min
{
k ≥ 0 : µ+ kp > n

r − 1 and Hardy inequality holds for (p, µ+ pk)
}
.

(7.4.3)

Observe that Bpµ = Apµ if and only if k0(p, µ) = 0. When 1 ≤ p ≤ 2 we have k0(p, µ) =

min{k ≥ 0 : µ + kp > n
r − 1}. For p > 2, however, the exact value of k0(p, µ) depends

on Conjecture 2, and we only have the estimate

k1(p, µ) ≤ k0(p, µ) ≤ k2(p, µ)

where
k1(p, µ) = min

{
k ≥ 0 : µ+ kp > n

r − 1 and p < pµ+kp

}
k2(p, µ) = min

{
k ≥ 0 : µ+ kp > n

r − 1 and p < p̄µ+kp

}
A simple arithmetic manipulation shows that k1 ≤ k2 ≤ k1+1, and hence k0 ∈ {k1, k1+1}.

Of course, the conjecture should be k0(p, µ) = k1(p, µ), and hence we are at most one unit

above the best possible integer in the definition of Bpµ. Observe also that k1(p, µ) and

k2(p, µ) can also be written as

k1 = min
{
k ≥ 0 : k + µ

p > max
{
(nr − 1)1

p , (nr − 1)(1− 2
p)−

1
p , (nr − 1)(1

2 −
1
p)
}}

,

k2 = min
{
k ≥ 0 : k + µ

p > max
{
(nr − 1)1

p , (nr − 1)(1− 2
p)
}}

.

Thus, we have k0 = k1 = k2 when 1 ≤ p ≤ 3.

In all cases, we can summarize part of the discussion above in the following proposition.
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Proposition 7.4.3. Let 1 ≤ p <∞, µ ∈ R and k ≥ k0(p, µ). Then

2k : Bpµ → Apµ+kp

is an isomorphism of Banach spaces. In particular, Bpµ is an isomorphic copy of Apµ+k0p
,

and when µ > n
r − 1 then Bpµ = Apµ for all 1 ≤ p < p̄µ.

Finally we define separately the special family

Bp := Bp−n/r =
{
F ∈ H(TΩ) : ∆k2kF ∈ Lp(TΩ, dλ)

}
,

where k is sufficiently large and dλ(z) = ∆− 2n
r (=m z)dV (z), that is the invariant measure

under conformal transformations of TΩ. When n = r = 1, Bp is the analog in the upper

half plane of the analytic Besov space studied by Arazy-Fisher-Peetre, Zhu and others

[2, 3, 89, 114]. These spaces have also been considered in bounded symmetric domains by

Yan (for p = 2), Arazy and Zhu [1,110,116].

7.4.2 Properties of Bp
µ: image of the Bergman operator and duality

Let ν > n
r − 1, 1 ≤ p < ∞ and µ ∈ R. When m is large we extend the definition of the

Bergman projection Pν to functions f ∈ Lpµ, by letting P (m)
ν (f) be the equivalence class

(in Hm) of all holomorphic solutions of

2mF = cν,m

∫
TΩ

Bν+m(·, w)f(w) dVν(w).

The constant cν,m is as in (7.2.5), so that if f ∈ L2
ν ∩ L

p
µ then P

(m)
ν (f) = Pν(f) + Nm,

and in this sense we say that P (m)
ν is an extension of the Bergman projection. Observe

that P (m)
ν is well defined and bounded from Lpµ into Bp,(m)

µ if and only if Tν,m is bounded

in Lpµ, and in particular, by Lemma 7.2.5, when pν − µ > max(1, p − 1)(nr − 1) and m is

sufficiently large. Moreover, it follows from the reproducing formulas that the operator is

onto. Indeed, by Proposition 7.2.11, every F ∈ Bp,(m)
µ satisfies

2mF (z) =
∫
TΩ

Bν+m(z, w) 2mF (w) ∆(=mw)m dVν(w)

provided m is sufficiently large, from which it follows F = cP
(m)
ν (∆m2mF ). Therefore we

have shown the following result, which partially establishes part 1 of Theorem 7.1.6.
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Proposition 7.4.4. Let ν > n
r − 1, µ ∈ R and 1 ≤ p <∞ so that

pν − µ > max(1, p− 1)(nr − 1). (7.4.4)

If m is sufficiently large (depending only on p and µ) then P
(m)
ν maps Lpµ boundedly onto

Bp,(m)
µ .

Remark 7.4.5. In this proposition it is enough to consider integers m so that mp+ µ >

max{1, p − 1}(nr − 1), since in this case T+
ν,m is bounded in Lpµ (by Lemma 7.2.5). The

result continues to hold as long as Tν,m is bounded in Lpµ, for which we give a better range

of m and p in Proposition 7.4.22 below. Remark that 2kP
(m)
ν = P

(m+k)
ν . We could as well

speak of the projection Pν from Lpµ onto Bpµ.

Turning to duality one has the following result.

Proposition 7.4.6. Let µ ∈ R and 1 < p < ∞. For any integers m1 ≥ k0(p, µ) and

m2 ≥ k0(p′, µ), the dual space (Bpµ)∗ identifies with Bp
′
µ under the integral pairing

〈F,G〉µ,m1,m2 =
∫
TΩ

∆m12m1F (z)∆m22m2G(z) dVµ(z), F ∈ Bpµ, G ∈ Bp
′
µ . (7.4.5)

Moreover, modulo a multiplicative constant, the pairing 〈·, ·〉µ,m1,m2 is independent of m1

and m2 satisfying these inequalities.

Proof. The last statement of the theorem follows from the formula of integration by parts

in (7.2.8). Thus, we can assume in (7.4.5) that m1 = m2 = m, for m as large as desired.

If we denote ΦG(F ) = 〈F,G〉µ,m,m, then it is clear that ΦG defines an element of (Bpµ)∗

and that the correspondence G ∈ Bp
′
µ 7→ ΦG is linear and bounded. To see the injectivity,

consider for each w ∈ TΩ the function Fw = Bµ+m(· − w̄), which belongs to Bpµ if m is

sufficiently large (by Lemma 6.3.2). Then Proposition 7.2.10 gives, for every G ∈ Bp
′
µ , the

identity

ΦG(Fw) = c

∫
TΩ

Bµ+2m(z − w̄)2mG(z) ∆m(=m z) dVµ+m(z) = c2mG(w),

(for large m), from which the injectivity follows easily.

To see the surjectivity, consider γ ∈ (Bpµ)∗. Using the isomorphism 2m : Bpµ → Apµ+mp

(in Proposition 7.4.3) we can define an element γ̃ ∈ (Apµ+mp)
∗ by γ̃(H) = γ(2−mH). The

functional γ̃ can be extended to (Lpµ+mp)
∗ by Hahn-Banach, and therefore there exists a

function g ∈ Lp
′
µ so that we can write

γ̃(H) =
∫
H(z) g(z) dVµ+m(z), H ∈ Apµ+mp.
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Consequently for every F ∈ Bpµ

γ(F ) = γ̃(2mF ) =
∫

2mF (z) g(z) dVµ+m(z).

Next, let G = P
(m)
µ+m(g) which for large m defines an element of Bp

′
µ (by Proposition 7.4.4).

We claim that γ = ΦG. Indeed, when F ∈ Bpµ

〈F,G〉µ,m,m =
∫

2mF (z) 2mG(z) dVµ+2m(z)

= c

∫
2mF (z)

[∫
Bµ+2m(w, z)g(w) dVµ+m(w)

]
dVµ+2m(z)

= c

∫ [∫
Bµ+2m(w, z) 2mF (z) ∆(=m z)m dVµ+m(z)

]
g(w) dVµ+m(w)

(by Proposition 7.2.11) = c

∫
2mF (z) g(w) dVµ+m(w) = c γ(F ),

where Fubini’s theorem is justified by the boundedness of the operator T+
µ+m,m in Lp

′
µ

when m is sufficiently large. This establishes the claim and completes the proof of the

proposition.

As a special case we obtain the following, which establishes part 2 of Theorem 7.1.6.

Corollary 7.4.7. Let ν > n
r − 1 and 1 < p ≤ 2. Then, (Apν)∗ identifies with Bp

′
ν under the

integral pairing

〈F,G〉ν,m =
∫
TΩ

F (z)∆m2mG(z) dVν(z), F ∈ Apν , G ∈ Bp
′
ν , (7.4.6)

for any integer m ≥ k0(p′, ν).

Proof. Just observe that in this range k0(p, ν) = 0 and Bpν = Apν (see Proposition 7.4.3).

Remark 7.4.8. We observe that the duality of Bergman spaces is still open for values of

p for which the Hardy inequality is not valid; that is, we do not know any (non trivial)

description of the spaces (Apν)∗ for p ≥ pν .

7.4.3 The Bloch space B∞(TΩ)

The definition of analytic Besov space and the properties in previous sections extend in

an analogous way to the case p = ∞, for which B∞ is called Bloch space. In fact, the

Bloch space in TΩ was already introduced in [7, 8] and shown to be the dual of A1(TΩ).

Here we recall these results, together with some new facts about the required number of

equivalence classes.
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The following inequality is elementary, and can be obtained from the mean value

property of holomorphic functions exactly as in [14, Prop. 6.1], so we omit the proof here.

Lemma 7.4.9. Let ν ∈ R. Then

∥∥∆(=m ·)ν+12F
∥∥
L∞

≤ C
∥∥∆(=m ·)νF

∥∥
L∞
, ∀ F ∈ H(TΩ). (7.4.7)

For every integer m we define a Bloch type space

B∞,(m) :=
{
F ∈ Hm(TΩ) : ∆m2mF ∈ L∞

}
,

endowed with the norm ‖F‖B∞,(m) = ‖∆m2mF‖∞. We simply write B∞(TΩ) for the space

B∞,(m) with m = dnr − 1e, the smallest integer greater than n
r − 1. We have the following

property:

Proposition 7.4.10. For all integers m ≥ k > n
r − 1, the natural inclusion of B∞,(k) into

B∞,(m) is an isomorphism of Banach spaces.

Proof. We may assume m = k + 1. By Lemma 7.4.9

∥∥∆k+12k+1f
∥∥
L∞

≤ C
∥∥∆k2kf

∥∥
L∞
, f ∈ B∞,(k).

We want to prove the converse inequality, which is the analogue of Hardy’s inequality for

p = ∞, that is,

‖∆k2kf‖∞ ≤ C‖∆k+12k+1f‖∞ (7.4.8)

for all k > n
r − 1 and all f ∈ H(TΩ) for which the left hand side is finite. Choosing

ν > n
r − 1, we may use Proposition 7.2.10 to write

2kf = c

∫
TΩ

Bν+k(· − w̄)2k+1f(w) ∆k+1(=mw) dVν(w). (7.4.9)

The inequality (7.4.8) follows from the fact that
∫
TΩ
|Bν+k(z − w̄)|dVν(w) ≤ C∆−k(=m z)

by Lemma 6.3.2.

This implies the injectivity of the mapping. Let us finally prove that the mapping is

onto. Let f ∈ H(TΩ) be such that ∆k+12k+1f is bounded. Then the right hand side of

(7.4.9) defines a holomorphic function, which may be written as 2kg. We prove as before

that ∆k2kg is bounded. Moreover, 2k+1g = 2k+1f , which proves the surjectivity of the

mapping.
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Remark 7.4.11. Observe that when k ≤ n
r − 1, the injectivity of B∞,(k) → B∞,(m) fails.

Indeed, the function F (z) = ∆k+1−n
r (z + ie) belongs to B∞,(k) and is typically not null

in Hk. However, F is zero in Hm for all m > k since by (7.2.3) and (7.2.4), we have

2k+1F (z) = c2∆1−n
r (z + ie) = 0.

Remark 7.4.12. We do not know whether for some k ≤ n
r−1 the correspondence B∞,(k) →

B∞,(m) may be surjective. This question can also be formulated as follows: Is it possible

that every element f of B∞ possesses a representative g such that ∆k2kg is bounded, with

k ≤ n
r − 1?. We shall answer partially this question in Section 7.4.6. It seems that this

problem has never been considered before in the literature.

We now turn to the boundedness of Bergman operators in L∞. As we did in Subsection

7.4.2, when ν > n
r − 1 we may extend the definition of the Bergman projection Pν to L∞

functions by letting P (m)
ν f be the equivalence class (in Hm) of all holomorphic solutions

of

2mF = cν,m

∫
TΩ

Bν+m(· − w̄)f(w) dVν(w).

To do this, it suffices to consider m > n
r − 1, since by Lemma 7.2.6 the above integral is

always absolutely convergent and moreover

‖P (m)
ν f‖B∞,(m) = ‖Tν,mf‖∞ . ‖f‖∞.

Thus P (m)
ν maps L∞ → B∞ boundedly. The mapping is surjective, as every F ∈ B∞

satisfies (by Proposition 7.2.10)

2mF (z) =
∫
TΩ

Bν+m(z, w) 2mF (w) ∆(=mw)m dVν(w)

and therefore F = cP
(m)
ν (f) with f = ∆m2mF ∈ L∞. Hence we have established the

following result.

Proposition 7.4.13. When ν,m > n
r − 1, the Bergman projection P

(m)
ν maps L∞(TΩ)

continuously onto B∞.

Concerning duality, we recall the identification of the Bloch space with the dual of the

Bergman space A1
ν .

Theorem 7.4.14 (Békollé, [8]). Let ν,m > n
r − 1. Then the dual space (A1

ν)
∗ identifies

with the Bloch space B∞ under the integral pairing

〈F,G〉ν,m =
∫
TΩ

F (z)∆(=m z)m2mG(z)dVν(z), F ∈ A1
ν , G ∈ B∞. (7.4.10)
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Moreover, the pairing 〈·, ·〉ν,m is independent of m > n
r − 1.

The proof is entirely analogous to the one presented in Proposition 7.4.6, so we omit

it. Let now µ ∈ R. Since 2m : B1
µ → A1

µ+m is an isomorphism when µ +m > n
r − 1 (by

Proposition 7.4.3), we obtain as a corollary the following duality statement.

Corollary 7.4.15. Let µ ∈ R and let m1,m2 be two integers such that µ + m1 >
n
r − 1

and m2 >
n
r − 1. Then (B1

µ)
∗ identifies with the Bloch space B∞ under the integral pairing

〈F,G〉µ,m1,m2 =
∫
TΩ

Lm1F (z)Lm2G(z)∆µ−n
r (=z)dz, F ∈ B1

µ, G ∈ B∞,

where LmH(z) = ∆m(Imz)2m
z H(z). Again, the pairing 〈·, ·〉µ,m1,m2 is independent of

m1,m2 (modulo a multiplicative constant).

7.4.4 A real analysis characterization of Bp
µ

We briefly recall the real variable theory of Besov spaces adapted to the cone that was

developed in [13].

Following [13, Section 3], we consider a lattice {ξj} in Ω and a sequence {ψj} of

Schwartz functions in Rn such that ψ̂j is supported in an invariant ball centered at ξj

and
∑

j ψ̂j = χΩ. In particular, the sets Supp ψ̂j have the finite intersection property

and the norms ‖ψj‖L1(Rn) are uniformly bounded. Below we denote by S ′∂Ω the space of

tempered distributions with Fourier transform supported in ∂Ω. Observe that 2u = 0 (in

S ′) implies Supp û ⊂ ∂Ω ∪ (−∂Ω).

Definition 7.4.16. Given ν ∈ R and 1 ≤ p <∞, we define

Bp
ν :=

{
f ∈ S ′(Rn) : Supp f̂ ⊂ Ω and ||f ||Bp

ν
<∞

}
/S ′∂Ω,

where the seminorm is given by

||f ||Bp
ν

:=
(∑

j

∆−ν(ξj) ||f ∗ ψj ||pp
) 1

p .

It can be shown that Bp
ν is a Banach space and the definition is independent on the

choice of {ξj , ψj} (see [13]). In the 1-dimensional setting Bp
ν coincides with the classical

homogeneous Besov space Ḃ−ν/pp,p (R) (of distributions with spectrum in [0,∞), modulo

polynomials).

In certain cases one can avoid equivalence classes in Definition 7.4.16, and this will

turn into a representation of Bpν as a holomorphic function space. We denote by Lg(z) =
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(g, ei(z|.)), z ∈ TΩ, the Fourier-Laplace transform of a distribution g compactly supported

in Ω (which defines an analytic function in TΩ). For convenience, we write Υ for the set

of indices (p, ν) such that

ν > −n
r and 1 ≤ p < p̃ν , or ν = −n

r and p = p̃ν = 1. (7.4.11)

Then, in [13, Lemmas 3.38 and 3.43] the following result is shown.

Lemma 7.4.17. Let (p, ν) ∈ Υ. Then if f ∈ Bp
ν

(i) the series
∑

j f ∗ ψj converges in S ′(Rn) to a distribution f ];

(ii) the series
∑

j L(f̂ ψ̂j)(z) converges uniformly on compact sets to a holomorphic

function in TΩ, denoted by E(f)(z), which satisfies

∆(=m z)(ν+
n
r
)/p |E(f)(z)| ≤ C ‖f‖Bp

ν
, z ∈ TΩ.

In addition, the mappings

f ∈ Bp
ν −→ f ] ∈ S ′(Rn) and f ∈ Bp

ν −→ E(f) ∈ H(TΩ)

are continuous and injective, and for every f ∈ Bp
ν we have

lim
y→0
y∈Ω

E(f)(·+ iy) = f ] in S ′(Rn) and in ‖ · ‖Bp
ν
.

Remark 7.4.18. The results in [13] are stated only for ν > 0, but remain valid as long

as (p, ν) ∈ Υ.

From this lemma we can define an isometric copy of Bp
ν (and hence of Bpν) as a holo-

morphic function space in H(TΩ):

Definition 7.4.19. For (p, ν) ∈ Υ we define the holomorphic function space

Bpν := {F = Ef : f ∈ Bp
ν} ,

endowed with the norm ||F ||Bp
ν

= ||f ||Bp
ν
.

The following properties hold

(a) Bpν = Apν when Hardy’s inequality holds for (p, ν), and in particular when ν > n
r − 1

and 1 ≤ p < p̄ν (see [13, p. 351]).

(b) Apν ↪→ Bpν when ν > n
r −1 and 1 ≤ p < p̃ν . The inclusion is strict in the 3-dimensional

light-cone when ν < 1 and pν ≤ p < p̃ν .
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(c) B2
0 = H2(TΩ) (Hardy space). Moreover,

{
B2
ν = L

(
L2(Ω; ∆−ν(ξ) dξ)

)}
ν>−1

is the

family of spaces introduced by Vergne and Rossi in the study of irreducible repre-

sentations of the group of conformal transformations of TΩ (see [107] or [40, Ch.

XIII]).

(d) If (p, ν) ∈ Υ then 2 : Bpν → Bpν+p is an isomorphism of Banach spaces. This is

inherited from the corresponding property in the scale Bp
ν (see [13, Th. 1.4]).

(e) If (p, ν) ∈ Υ then Bpν can be identified with Bpν , in the sense that every F ∈ Bpν has

a (unique) representative F̃ in Bpν , and moreover ‖F‖Bp
ν
≈ ‖F̃‖Bp

ν
. To show this, let

m = k0(p, ν) so that 2mF ∈ Apν+mp = Bpν+mp (by (a)). Then use (d) to define the

unique F̃ ∈ Bpν such that 2mF̃ = 2mF .

The assertion in (e) above gives a representation of Bpν as a holomorphic function space

with no equivalence classes involved. For example, when ν = −n/r, the space B1 can be

represented by the holomorphic function space B1
−n/r, even in the one-dimensional setting.

Using the box operator, this procedure can be easily extended to all indices (p, ν) (not

necessarily in Υ), to represent Bpν with less equivalence classes than k0(p, ν). Namely, given

ν ∈ R and 1 ≤ p <∞, define

k∗ = k∗(p, ν) = min
{
k ∈ N : (p, ν + kp) ∈ Υ

}
. (7.4.12)

Observe that k∗(p, ν) ≤ k0(p, ν), and the inequality is often strict. In fact,

k∗(p, ν) = min
{
k : k + ν

p > (nr − 1)(1− 2
p)−

1
p}

(and k∗(1, ν) = min{k : k + ν ≥ −n
r }). Then we have the following result.

Proposition 7.4.20. Let ν ∈ R, 1 ≤ p < ∞ and k∗(p, ν) defined as in (7.4.12). Then

every F ∈ Bpν has a unique representative F̃ , modulo Nk∗, such that 2k∗F̃ ∈ Bpν+k∗p, and

moreover ‖F‖Bp
ν
≈ ‖2k∗F̃‖Bp

ν+k∗p
. In particular, Bpν identifies with the space

{G ∈ Hk∗ : 2k∗G ∈ Bpν+k∗p}. (7.4.13)

PROOF: Combine the fact that Bpν+k∗p identifies with Bpν+k∗p (by property (e) above),

with the trivial isomorphism 2k∗ : Bpν → Bpν+k∗p.
2
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We turn now to the identification between the spaces Bpν and Bp
ν via boundary values,

as asserted in the introduction. When (p, ν) ∈ Υ the result is immediate from (e) above.

Corollary 7.4.21. Let (p, ν) ∈ Υ. Then

(i) if F ∈ Bpν , there exists lim y→0
y∈Ω

F̃ (·+ iy) = f in Bp
ν (and S ′), for some representative

F̃ of F .

(ii) if f ∈ Bp
ν , there exists a unique F ∈ Bpν such that lim y→0

y∈Ω
F (·+ iy) = f in Bp

ν .

In either case
1
c ‖f‖Bp

ν
≤ ‖F‖Bp

ν
≤ c ‖f‖Bp

ν
.

The inverse mapping in (ii) is defined by the operator f 7→ F = E(f). For general

parameters p and ν, Ef is no longer defined when f ∈ Bp
ν , but E(2k∗f) is well-defined

and belongs to Bpν+k∗p. Thus, using Proposition 7.4.20, we may consider a new operator E

from Bp
ν into Bpν by

2k∗Ef := E(2k∗f).

It is easily seen that E : Bp
ν → Bpν is an isomorphism, which commutes with the Box

operator

2`
z ◦ E = E ◦2`

x, ∀ ` ∈ N.

Moreover, duality can be expressed through this isomorphism. Recall first that (see [13])

(Bp
ν)
∗ = Bp′

ν

whenever the definition of the duality pairing is given by

[f, g]ν :=
∑
j

〈f,2−νg ∗ ψj〉, f ∈ Bp
ν , g ∈ Bp′

ν . (7.4.14)

On the right hand side the brackets stand for the action of the distribution f on the

conjugate of the given test function, while 2−ν is defined on the Fourier side by the mul-

tiplication by ∆(ξ)−ν . Then, the duality result in Proposition 7.4.6 can also be obtained

from the above discussion, since when F = Ef ∈ Bpµ, G = Eg ∈ Bp
′
µ and m is large we have

〈F,G〉µ,m,m = cm,µ [f, g]µ.

Finally, using real variable techniques we are able to improve on the results in Propo-

sition 7.4.4 concerning the range of p and number m for which there is boundedness of

P
(m)
ν from Lpµ into Bpµ. Below we consider Pν as a densely defined operator in Lpµ ∩ L2

ν .
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Proposition 7.4.22. Let ν > n
r − 1, µ ∈ R and 1 ≤ p <∞ so that

pν − µ > max{p− 1, 2− p} (nr − 1). (7.4.15)

If k∗ = k∗(p, µ) is as in (7.4.12), then 2k∗ ◦ Pν extends as a bounded surjective mapping

from Lpµ onto Bpµ+k∗p
.

Remark 7.4.23. As a special case we obtain that, in the range in (7.4.15), P (k0)
ν maps Lpµ

continuously onto Bpµ, which in particular establishes part 1 of Theorem 7.1.6. Equivalently,

the operator Tν,m given by (7.2.6) is bounded in Lpµ for all m ≥ k0(p, µ); see the discussion

preceeding Proposition 7.4.4.

When µ = −n/r the condition (7.4.15) produces no restriction in p, and we obtain the

following.

Corollary 7.4.24. For all ν > n
r − 1 and 1 ≤ p <∞, the operator P (k0)

ν maps Lp(TΩ, dλ)

onto Bp. Moreover, Pν extends boundedly from L1(dλ) onto B1.

PROOF of Proposition 7.4.22: The continuity follows from a similar reasoning as

in [13, Prop. 4.28], where the case µ = ν was proved. For completeness, we sketch here

the modifications of the general case. Given f ∈ Lpµ ∩ L2
ν , since Pνf ∈ A2

ν we can write

it, by the Paley-Wiener theorem, as Pνf = Lg, for some g ∈ L2(Ω,∆−ν(ξ)dξ). We must

show that 2k∗Pνf = L(∆k∗g) belongs to Bpµ+k∗p
, or equivalently that the inverse Fourier

transform of the distribution ∆k∗g belongs to the real space Bp
µ+k∗p

. Arguing by duality

as in (7.4.14), this is equivalent to showing that for all smooth ϕ with compact spectrum

in Ω ∣∣∣ 〈∆k∗g,∆−µ−k∗pϕ̂〉
∣∣∣ ≤ C ‖f‖Lp

µ
‖ϕ‖

Bp′
µ+k∗p

.

By the Paley-Wiener theorem for Bergman spaces (see eg [40, p.260])

LHS =
∫

Ω
g(ξ) ∆−µ−k∗(p−1)(ξ) ϕ̂(ξ) ∆ν(ξ)

∆ν(ξ) dξ

=
∫ ∫

TΩ

Pνf(w) E(2ν−µ−k∗(p−1)ϕ)(w) dVν(w)

(since P ∗
ν = Pν) = 〈f, E(2ν−µ−k∗(p−1)ϕ)〉dVν ≤ ‖f‖Lp

µ
‖∆ν−µE(2ν−µ−k∗(p−1)ϕ)‖

Lp′
µ
.

If p > 1 the last norm equals

‖E(2ν−µ−k∗(p−1)ϕ)‖
Lp′

(ν−µ)p′+µ

.



CHAPTER 7. ANALYTIC BESOV SPACES ON TUBE DOMAINS 114

Under the conditions (7.4.15) we have Ap
′

(ν−µ)p′+µ = Bp
′

(ν−µ)p′+µ, since Hardy’s inequality

holds for the corresponding indices. Thus,

‖E(2ν−µ−k∗(p−1)ϕ)‖
Ap′

(ν−µ)p′+µ

≈ ‖2ν−µ−k∗(p−1)ϕ‖
Bp′

(ν−µ)p′+µ

. ‖ϕ‖
Bp′

µ+k∗p

,

as we wished to prove. When p = 1 one must use instead

‖∆ν−µE(2ν−µϕ)‖L∞ . ‖2ν−µϕ‖B∞ν−µ
≈ ‖ϕ‖B∞0

(see Lemma 7.4.26 below), and conclude again by duality. The surjectivity of 2k∗ ◦ Pν

follows from the surjectivity of the operator P (m)
ν : Lpµ → Bp,(m)

µ for large m in Proposition

7.4.4, since the spaces Bpµ+k∗p
and Bp,(m)

µ are related by isomorphisms.
2

7.4.5 A real variable characterization of B∞

For completeness, we give here the real variable characterization of the Bloch space B∞,

starting with the definition of the distribution spaces B∞ν introduced in [13].

Definition 7.4.25. For ν ∈ R we let

||f ||B∞ν = sup
j

∆(ξj)−ν ||f ∗ ψj ||∞, f ∈ S′(Rn),

and define the space B∞ν by

B∞ν :=
{
f ∈ S ′(Rn) : Supp f̂ ⊂ Ω and ||f ||B∞ν <∞

}
/S ′∂Ω.

The following result is the analogue of Lemma 7.4.17 for p = ∞. The result was not

stated in [13], so we sketch the proof for completeness.

Lemma 7.4.26. Let ν > n
r − 1 and f ∈ B∞ν . Then

(i)
∑

j f ∗ ψj converges in S ′(Rn) to a distribution f ];

(ii)
∑

j L(f̂ ψ̂j)(z) converges uniformly on compact sets of TΩ to a holomorphic function

E(f)(z), which satisfies

∆(=m z)ν |E(f)(z)| ≤ C ‖f‖B∞ν , z ∈ TΩ.

Proof. By duality, (i) is equivalent to S(Rn) ↪→ B1
−ν , which in view of [13, Prop 3.16]

happens if and only if ν > n
r − 1. Concerning (ii) and reasoning as in the proof of [13,

Prop 3.43], it suffices to see that F−1(e−(e|·)χΩ) belongs to the space B1
−ν . Using the

isomorphism 22ν and the identity B1
ν = A1

ν this is equivalent to L(∆2νe−(e|·)χΩ)(z) =

c∆(z + ie)−2ν−n
r ∈ A1

ν , which by Lemma 6.3.2 happens if and only if ν > n
r − 1.
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For simplicity we denote B∞ = B∞0 , which can be identified with the Bloch space B∞

as follows.

Proposition 7.4.27. For all k > n
r − 1, the correspondence

f ∈ B∞ 7−→ 2−k
z

[
E(2kf)

]
∈ B∞

is an isomorphism of Banach spaces.

Proof. Since 2kf ∈ B∞k , by the previous lemma the function G := E(2kf) is holomorphic

in TΩ and ∆k(=m z)G(z) is bounded. Thus the equivalence class of all F such that 2k
zF =

G belongs to B∞, and the correspondence f 7→ F +Nk defines a bounded operator from

B∞ to B∞.

On the other hand, whenever ν > n
r − 1 and H := E(h) is in A1

ν , so that h belongs to

B1
ν , one has ∫

TΩ

H(z)2kF (z)∆k(=z)dVν(z) = [h, f ]ν .

Using the duality identities B∞ = (A1
ν)
∗ (with the above pairing) and B∞ = (B1

ν)
∗ (with

the pairing [·, ·]ν), it follows that the mapping f 7→ F is an isomorphism, like the mapping

h 7→ H.

7.4.6 Minimum number of equivalence classes: partial results

Related with the question of the smallest number of derivatives in the definition of Bpν ,

one can also consider a weaker property than Hardy’s inequality; namely

Question: Given 1 ≤ p ≤ ∞ and ν ∈ R, find the smallest ` = `(p, ν) ∈ N so that, for all

m ≥ 1,

inf
H∈H(TΩ) : 2`+mH=0

∥∥∆`2`(F +H)
∥∥
Lp

ν
.
∥∥∆`+m2`+mF

∥∥
Lp

ν
, (7.4.16)

for all holomorphic F for which the right hand side is finite.

We look first at p = ∞ and its equivalent formulation raised in Remark 7.4.12, namely

the surjectivity of the mapping B∞,(k) → B∞ for k ≤ n
r − 1. We prove that it cannot

happen at least when k ≤ (nr − 1)/2.

Proposition 7.4.28. Let k be a non negative integer. If, for every F ∈ B∞, there exists

F̃ such that ∆k2kF̃ is bounded and 2mF̃ = 2mF for some m > n
r − 1, then necessarily

k > 1
2(nr − 1).
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Proof. Let m > n
r − 1. By the open mapping theorem, if this property is valid, the

natural mapping of B∞,(k) into B∞,(m), which is surjective, defines an isomorphism from

the quotient space B∞,(k)/Nm onto B∞,(m). So there is some constant C such that, for

each F ∈ B∞,(m), there exists some G with 2mG = 0 and

‖F +G‖B∞,(k) ≤ C‖F‖B∞,(m) .

In particular,

|2kF (x+ ie) + 2kG(x+ ie)| ≤ C‖F‖B∞,(m) .

Consider now F = Ef with f̂ ∈ C∞c (Ω), so that ‖F‖B∞,(m) ≤ C‖f‖B∞ . Since 2kF (x+ ie)

is bounded, the same is valid for 2kG(x+ ie). So we can speak of the Fourier transform

of 2kG(x+ ie), whose support is in the boundary of Ω. Let ϕ be a smooth function whose

Fourier transform is compactly supported in Ω, and consider its scalar product, in the x

variable, with the function 2kF (x+ ie)+2kG(x+ ie). By the support condition on ϕ̂ we

must have 〈2kG(x+ ie), ϕ〉 = 0. So, the following inequality, valid for all such F , holds∣∣∣∣∫
Rn

2kF (x+ ie)ϕ(x)dx
∣∣∣∣ ≤ C‖f‖B∞ × ‖ϕ‖1.

The last inequality can as well be written as∣∣∣∣∫
Rn

f(x)Tϕ(x)dx
∣∣∣∣ ≤ C‖f‖B∞ × ‖ϕ‖1,

where (̂Tϕ)(ξ) = ∆(ξ)ke−(e|ξ)ϕ̂(ξ). In view of the duality (B1
0)∗ = B∞, it is easily seen

that this implies the inequality

‖Tϕ‖B1
0
≤ C‖ϕ‖1. (7.4.17)

We want to find a contradiction by choosing specific functions ϕ. Assume that ϕ := ϕt

may be written as

ϕt(x) =
∑
j∈J

rj(t)ajei(x|ξj)η(x),

where J is a finite set of indices, and η is a smooth function whose Fourier transform

is supported in a small ball centered at 0, in such a way that the functions ψj can be

assumed to be equal to 1 on the support of η̂(· − ξj), for all j ∈ J . Here rk(t) stands for

the Rademacher function and the parameter t varies in (0, 1). Integrating in t and using

Khintchine’s Inequality, we have

∫ 1

0
‖Tϕt‖B1dt ≤ C

∫ 1

0
‖ϕt‖1dt ≤ C ′

∑
j∈J

|aj |2
1/2

‖η‖1. (7.4.18)
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Let us find a minorant for the left hand side of (7.4.18). For every choice of t, we have

‖Tϕt‖B1 =
∑
j∈J

|aj |
∥∥T (ei(·|ξj)η)

∥∥
1
.

Let us take for granted the existence of some uniform constants c1, c2 > 0 such that

∥∥T (ei(·|ξj)η)
∥∥

1
=
∥∥∥F−1[∆ke−(e|·)η̂(· − ξj)]

∥∥∥
1
≥ 1

c1
∆(ξj)k e−c2(e|ξj) ‖η‖1. (7.4.19)

Then, (7.4.18) leads to the existence of some (different) constant C such that

∑
j∈J

|aj |∆(ξj)ke−c2(e|ξj) ≤ C

∑
j∈J

|aj |2
1/2

.

We choose aj = ∆(ξj)ke−c2(e|ξj) and find that

∑
j∈J

∆(ξj)2ke−2c2(e|ξj) ≤ C2

uniformly when J varies among finite sets of indices. This allows to have the same estimate

for the sum over all indices j, that is

∑
j

∆(ξj)2ke−2c2(e|ξj) <∞.

By [13, Prop. 2.13] this sum behaves as the integral∫
Ω

∆(ξ)2ke−(e|ξ) dξ

∆(ξ)n/r
,

which is finite for 2k > n
r − 1.

It remains to prove our claim (7.4.19), which we do by using group action as in [13,

(3.47)]. Write ξj = gje with gj = g∗j ∈ G, and let χj(ξ) = χ(g−1
j ξ) for some χ ∈ C∞c (Ω)

with the property that χj ≡ 1 in Supp η̂(· − ξj), ∀ j ∈ J (which we can do by our choice

of η). Consider the function γj whose Fourier transform is defined by

γ̂j(ξ) := e(e|ξ)∆(ξ)−kχj(ξ),

so that we can write

ei(·|ξj)η = γj ∗ T
(
ei(·|ξj)η

)
, ∀ j ∈ J.

Thus, it suffices to show that

‖γj‖1 ≤ c1∆(ξj)−kec2(e|ξj). (7.4.20)
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Now, a change of variables gives

‖γj‖1 =
∥∥F−1

[
e(e|gjξ)∆(gjξ)−kχ(ξ)

] ∥∥
1

= ∆(ξj)−k
∥∥F−1

[
e(ξj |·)∆−kχ

] ∥∥
1
,

where in the last equality we have used (7.2.1) and g∗j = gj . The L1-norm on the right

hand side can be controlled by a Schwartz norm of e(ξj |·)∆−kχ, which leads to (7.4.20)

using the fact that e(ξj |ξ) ≤ ec2(ξj |e) when ξ ∈ Supp χ (see eg [13, Lemma 2.9]).

We consider now the same problem for Bpν , namely the surjectivity of Bp,(k)µ → Bp,(m)
µ

for some k < k0(p, µ). Again, this cannot happen at least if k is small.

Proposition 7.4.29. Let µ ∈ R and k be a non negative integer. If, for every F ∈ Bpµ,

there exists F̃ such that ∆k2kF̃ ∈ Lpµ and 2mF̃ = 2mF for some m ≥ k0(p, µ), then

necessarily

k + µ
p > max

{
(nr − 1)1

p , (nr − 1) (1
2 −

1
p)
}
. (7.4.21)

Proof. We must clearly have µ+ kp > n
r − 1, since otherwise 2kF̃ ∈ Apµ+kp = {0}, which

implies F = 0 (mod Nm). We may also assume that k < k0(p, µ), since otherwise (7.4.21)

is trivial. In particular, we only need to consider p > 2.

The proof is similar to Proposition 7.4.28 with some small changes. Under the condition

in the statement, the inclusion Bp,(k)µ /Nm → Bp,(m)
µ is an isomorphism of Banach spaces.

Hence, for every smooth f with Fourier transform compactly supported in Ω, the function

F = E(f) belongs to Bp,(m)
µ and there exists some G ∈ H(TΩ) with 2mG = 0 so that

‖∆k2k(F +G)‖Lp
µ

. ‖∆m2mF‖Lp
µ
. (7.4.22)

As before, 2kG is the Fourier-Laplace transform of some distribution supported in ∂Ω.

Thus, for all ϕ̂ ∈ C∞c (Ω) we have∣∣∣∫
Rn

2kF (x+ ie)ϕ(−x) dx
∣∣∣ =

∣∣2k(F +G)(·+ ie) ∗ ϕ(0)
∣∣

≤ ‖ϕ‖p′
∥∥2k(F +G)(·+ ie)

∥∥
Lp(Rn)

. (7.4.23)

Since µ + kp > n
r − 1 we have

∥∥2k(F + G)(· + ie)
∥∥
Lp(Rn)

.
∥∥2k(F + G)

∥∥
Ap

µ+kp(TΩ)
(see

e.g. [13, Prop. 4.3]). By (7.4.22) and the results in Σ4.4, this last quantity is controlled

by

‖2mF‖Ap
µ+mp

. ‖2mf‖Bp
µ+mp

≈ ‖f‖Bp
µ
,
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since m ≥ k0(p, µ). Thus, going back to (7.4.23) we see that∣∣∣∣∫
Rn

f(x)Tϕ(x)dx
∣∣∣∣ ≤ C‖f‖Bp

µ
× ‖ϕ‖p′ ,

where as before T̂ϕ(ξ) = ∆k(ξ)e−(e|ξ)ϕ̂(ξ). The left hand side can be written as a duality

bracket [f, Tµϕ]µ by letting T̂µϕ(ξ) = ∆(ξ)k+µe−(e|ξ)ϕ̂(ξ), and hence we conclude that

‖Tµϕ‖Bp′
µ
≤ C‖ϕ‖p′ . (7.4.24)

As before, we choose ϕ := ϕt with

ϕt(x) =
∑
j∈J

rj(t)ajei(x|ξj)η(x),

where J is a finite set of indices and η is a smooth function with Fourier transform sup-

ported in a small ball centered at 0 so that ψj can be assumed to be equal to 1 on the

support of η̂(· − ξj), for all j ∈ J . Integrating in t and using Khintchine’s inequality we

find that ∫ 1

0
‖Tµϕt‖p

′

Bp′
µ

dt ≤ C

∫ 1

0
‖ϕt‖p

′

p′ dt ≤ C ′
(∑

|aj |2
)p′/2

‖η‖p
′

p′ , (7.4.25)

where the left hand side equals∑
j∈J

∆(ξj)−µ|aj |p
′‖Tµ(ei(·|ξj)η)‖p

′

p′ .

Arguing as in the proof of (7.4.19) one finds two constants c1, c2 such that

c1‖Tµ(ei(·|ξj)η)‖p′ ≥ ∆(ξj)k+µe−c2(e|ξj)‖η‖p′ .

So, (7.4.25) links to the existence of some constant C such that

∑
j∈J

|aj |p
′
∆(ξj)kp

′+µp′−µe−c2(e|ξj) ≤ C

∑
j∈J

|aj |2
p′/2

.

By the duality `r, `r
′
with r = 2/p′ (since we assume p > 2), we conclude that∑

j

∆(ξj)r
′(kp′+µ(p′−1))e−c3(e|ξj) <∞,

since its partial sums are uniformly bounded. As in the previous proof, we conclude by

a comparison with the corresponding integral, and find the constraint on parameters in

(7.4.21).
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Remark 7.4.30. In the special case k = 0 we obtain, for ν > n
r − 1 and m ≥ k0(p, ν),

that a necessary condition for the operator 2m : Apν → Apν+mp to be surjective is

1 ≤ p <
2(ν + n

r − 1)
n
r − 1

= p̃ν +
ν − 1
n
r − 1

. (7.4.26)

When ν ≤ 1 (in the three dimensional light-cone), (7.4.26) is the same necessary condition

given in Conjecture 2. When ν > 1, however, it is a weaker condition.

7.4.7 Complex interpolation

The Interpolation of Banach spaces is a powerful tool in Analysis. In this subsection we

define and characterize the complex interpolation space of two Besov spaces. We first

recall briefly the complex interpolation method.

The complex interpolation method

Two Banach spaces X0 and X1 are called compatible if there exists a Hausdorff topological

linear space X containing both of them. In this case, we form two subspaces of X, X0∩X1

and X0 +X1, and they become Banach spaces with the following norms:

||x||X0∩X1 = max(||x||X0 , ||x||X1),

and

||x||X0+X1 = inf{||x||X0 + ||x||X1 : x = x0 + x1 , x0 ∈ X0 , x1 ∈ X1}.

Let S = {z ∈ C : 0 < <z < 1} denote the open strip and S its closure. If X0 and X1

are compatible Banach spaces, and if θ ∈ (0, 1), we define a Banach space Xθ as follows.

As a vector space, Xθ consists of vectors x ∈ X0 +X1 with the following property: there

exists a function f : S → X0 +X1 such that

(a) f is bounded and continuous on S.

(b) f is analytic in S.

(c) f(θ) = x

(d) f(iy) ∈ X0 for every real y.

(e) f(1 + iy) ∈ X1 for every real y.
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For every f satisfying the above conditions we write

||f || = max

(
sup
y∈R

||f(iy)||X0 , sup
y∈R

||f(1 + iy)||X1

)
.

The norm of x ∈ Xθ is then defined as the infimum of all such ||f ||.

To emphasize the dependence of Xθ on X0 and X1, we write

Xθ = [X0, X1]θ,

and call it a complex interpolation space between X0 and X1. The construction of complex

interpolation spaces is functorial in the following sense (see [19]).

Theorem 7.4.31. Suppose X0 and X1 are compatible, Y0 and Y1 are compatible, and

θ ∈ (0, 1). If a linear operator T : X0 +X1 → Y0 + Y1 maps X0 boundedly into Y0 (with

norm M0) and X1 boundedly into Y1 (with norm M1), then T maps [X0, X1]θ boundedly

into [Y0, Y1]θ (with norm not to exceed M1−θ
0 M θ

1 ).

One of the most important example of complex interpolation spaces is the following

result concerning Lp spaces (see [19]).

Theorem 7.4.32. If (X,µ) is a measurable space and 1 ≤ p0 < p1 ≤ ∞, then

[Lp0(X), Lp1(X)]θ = Lp(X)

with equal norms, where 0 < θ < 1 and

1
p

=
1− θ

p0
+

θ

p1
.

Complex interpolation of analytic Besov spaces

We first consider the complex interpolation of two Bergman spaces. Following the complex

method, if θ ∈ (0, 1), we define the complex interpolation space [Ap0ν0 , A
p1
ν1 ]θ of two Bergman

spaces Ap0ν0 and Ap1ν1 as the space of holomorphic functions F in TΩ such that there exists

a function z 7→ f(z) = Fz from S into the Banach space Ap0ν0 + Ap1ν1 such that properties

(a) through (e) hold.

Theorem 7.4.33. Suppose ν0 >
n
r − 1 and ν1 >

n
r − 1 . If 1 ≤ p0 < p̃ν0, 1 ≤ p1 < p̃ν1,

1 ≤ p0 < p1 <∞ and Hardy’s inequality holds for both (p0, ν0) and (p1, ν1), and

1
p

=
1− θ

p0
+

θ

p1
,
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for some θ ∈ (0, 1), then

[Ap0ν0 , A
p1
ν1 ]θ = Apν

with equivalent norms, where ν is determined by

ν

p
=

1− θ

p0
ν0 +

θ

p1
ν1.

Proof. We naturally have 1 ≤ p < ∞. We first consider the case where 1 ≤ p0 < qν0 and

1 ≤ p1 < qν1 , where qα = 1 + α
n
r
−1 . Now we fix a real µ sufficiently large. By Corollary

6.3.9, the integral operator Pµ defined by

Pµf(z) =
∫
TΩ

Bµ(z, w)f(w)∆µ−n
r (Imw)dw

maps Lpν boundedly onto Apν , it maps Lp0ν0 boundedly onto Ap0ν0 , and it maps Lp1ν1 boundedly

onto Ap1ν1 . It follows from the properties of complex interpolation and the settings above

that Pµ maps [Lp0ν0 , L
p1
ν1 ]θ = Lpν boundedly onto [Ap0ν0 , A

p1
ν1 ]θ. Since 1 ≤ p < qν , by Lemma

5.1 of [14], Pµ(L
p
ν) = Apν . We conclude that

Apν ⊂ [Ap0ν0 , A
p1
ν1 ]θ

and the inclusion is continuous.

Now if m is a positive integer, then the operator defined by

L(f)(z) = ∆m(=z)2(m)
z f(z), f ∈ H(TΩ)

maps Ap0ν0 boundedly into Lp0ν0 , it maps Ap1ν1 boundedly into Lp1ν1 . It follows from the proper-

ties of complex interpolation and the same settings above that L maps [Ap0ν0 , A
p1
ν1 ]θ bound-

edly into [Lp0ν0 , L
p1
ν1 ]θ = Lpν . So, if f ∈ [Ap0ν0 , A

p1
ν1 ]θ, then, the function z 7→ ∆m(=z)2m

z f(z)

belongs to Lpν which because of 1 ≤ p < qν is equivalent to f ∈ Apν . We conclude that

[Ap0ν0 , A
p1
ν1 ]θ ⊂ Apν

and the inclusion is continuous. This completes the proof of the theorem when 1 ≤ p0 < qν0

and 1 ≤ p1 < qν1 .

Next we consider the case where 2 < p0 < p1 <∞ and both Pν0 and Pν1 are bounded

respectively on Lp0ν0 and Lp1ν1 . For any integer m such that p0 < qν0+mp0 and p1 < qν1+mp1 ,

using the fact that the 2m is a bicontinuous isomorphism from A
pj
νj onto Apj

νj+mpj
, j = 0, 1

and the first part of the proof, we conclude that

[Ap0ν0 , A
p1
ν1 ]θ = Apν .
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We conclude easily for the proof of theorem using the Wolff’s abstract reiteration theorem

(see [108]).

We recall that Apν = Bpν , when 1 ≤ p < pν and ν > n
r − 1. Using the isomorphism of

2m : Bpν → Bpν+mp and the above theorem, we easily obtain the following.

Proposition 7.4.34. Suppose both (p0, ν0) and (p1, ν1) are in Υ. If p0 < p1 and

1
p

=
1− θ

p0
+

θ

p1
,

for some θ ∈ (0, 1), then

[Bp0ν0 ,B
p1
ν1 ]θ = Bpν

with equivalent norms, where ν is determined by

ν

p
=

1− θ

p0
ν0 +

θ

p1
ν1.

Remark 7.4.35. The complex interpolate of two Bergman spaces with the same weight

has been characterized in [16] using among other techniques, the Wolff’s abstract reitera-

tion theorem (see also [56]).

Let us now define the complex interpolate of two analytic Besov spaces. We recall the

definition of

Bp,(m)
ν := {F ∈ Hm : 2mF ∈ Apν+mp}.

Let us now introduce a notion of sum and intersection of Banach spaces (Besov spaces) of

equivalence classes.

Let m be an integer such that νj +mpj >
n
r − 1 and the Hardy’s inequality holds for

(pj , νj +mpj), j = 0, 1. We define the sum of two Besov spaces as follows:

Bp0,(m)
ν0 + Bp1,(m)

ν1 := {F ∈ Hm(TΩ) : 2mF ∈ Ap0ν0+mp0 +Ap1ν1+mp1}.

Endowed with the norm

||F ||Bp0,(m)
ν0

+Bp1,(m)
ν1

:= ||2mF ||Ap0
ν0+mp0

+A
p1
ν1+mp1

,

Bp0,(m)
ν0 + Bp1,(m)

ν1 is a Banach space. We also define their intersection as follows:

Bp0,(m)
ν0

⋂
Bp1,(m)
ν1 := {F ∈ Hm(TΩ) : 2mF ∈ Ap0ν0+mp0

⋂
Ap1ν1+mp1}.

Endowed with the norm

||F ||Bp0,(m)
ν0

⋂
Bp1,(m)

ν1

:= ||2mF ||Ap0
ν0+mp0

⋂
A

p1
ν1+mp1

,

Bp0,(m)
ν0

⋂
Bp1,(m)
ν1 is a Banach space.



CHAPTER 7. ANALYTIC BESOV SPACES ON TUBE DOMAINS 124

Definition 7.4.36. If θ ∈ (0, 1), the complex interpolation space [Bp0,(m)
ν0 ,Bp1,(m)

ν1 ]θ consists

of functions F ∈ Hm(TΩ) such that there exists a function z 7→ f(z) = Fz from S into the

Banach space Bp0,(m)
ν0 + Bp1,(m)

ν1 so that properties (a) through (e) hold.

From the isomorphism property of the Box operator and the definition of Bp,(m)
ν , we

clearly have that

Bp0,(m)
ν0

⋂
Bp1,(m)
ν1 ⊂ [Bp0,(m)

ν0 ,Bp1,(m)
ν1 ]θ ⊂ Bp0,(m)

ν0 + Bp1,(m)
ν1 .

Moreover, we can always use the following equivalent norm for the interpolation space

||F ||
[Bp0,(m)

ν0
,Bp1,(m)

ν1
]θ

:= ||2mF ||[Ap0
ν0+mp0

,A
p1
ν1+mp1

]θ
.

Theorem 7.4.37. Let ν0, ν1 ∈ R and 1 ≤ p0 < p1 < ∞. Let m be an integer so that

νj +mpj >
n
r − 1 and Hardy’s inequality holds for (pj , νj +mpj), j = 0, 1. If, moreover,

1
p

=
1− θ

p0
+

θ

p1
,

for some θ ∈ (0, 1), then

[Bp0,(m)
ν0 ,Bp1,(m)

ν1 ]θ = Bp,(m)
ν

with equivalent norms, where ν is determined by

ν

p
=

1− θ

p0
ν0 +

θ

p1
ν1.

Proof. We first remark that if Hardy’s inequality holds for both (p0, ν0+mp0) and (p1, ν1+

mp1), then it also holds for (p, ν +mp) where

1
p

=
1− θ

p0
+

θ

p1

and
ν

p
=

1− θ

p0
ν0 +

θ

p1
ν1.

Clearly, the isomorphism of 2m gives that for any F ∈ [Bp0,(m)
ν0 ,Bp1,(m)

ν1 ]θ,

2mF ∈ [Ap0ν0+mp0 , A
p1
ν1+mp1 ]θ = Apν+mp.

Thus, by definition, F ∈ Bp,(m)
ν .

Conversely, if we denote by I the application which associates to every F ∈ Aqµ+mq

the equivalence class of all solutions of 2mG = F , then I maps Ap0ν0+mp0 boundedly

into Bp0,(m)
ν0 , it maps Ap1ν1+mp1 boundedly into Bp1,(m)

ν1 . It follows from the properties of

complex interpolation and the previous observations that I maps [Ap0ν0+mp0 , A
p1
ν1+mp1 ]θ =

Apν+mp boundedly into [Bp0,(m)
ν0 ,Bp1,(m)

ν1 ]θ. Thus, since by definition I(Apν+mp) = Bp,(m)
ν , we

conclude that Bp,(m)
ν ⊂ [Bp0,(m)

ν0 ,Bp1,(m)
ν1 ]θ.
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As a consequence of the above theorem, we have that when 0 ≤ k ≤ m and νj + kpj >

n
r − 1, j = 0, 1, the natural projection

[Bp0,(k)ν0 ,Bp1,(k)ν1 ]θ −→ [Bp0,(m)
ν0 ,Bp1,(m)

ν1 ]θ

F +Nk 7−→ F +Nm

(7.4.27)

is an isomorphism of Banach spaces, provided Hardy’s inequality (7.1.3) holds for the

indices (pj , νj + pjk), j = 0, 1.

7.5 Open Questions

In this section we pose some questions left open in this topic, in addition to Conjecture 2.

Most questions concern the spaces Apν for p ≥ p̃ν , about which we know very little.

(I) Is the operator 2m : Apν → Apν+mp onto for some p ≥ p̃ν and m ≥ k0(p, ν)?

Equivalently, given a function G ∈ Apν+mp, does the equation

2mF = G

have some solution F belonging to the space Apν(TΩ)?

From Remark 7.4.30 we only have a negative answer when p ≥ p̃ν + (ν − 1)/(nr − 1).

(II) Is the operator Φ : Aq
′
ν → (Aqν)∗ onto for some q ≤ p̃′ν?

This question is equivalent to (I) for p = q′, using the duality property (Aqν)∗ = Bpν in

Corollary 7.4.7.

(III) Is the Box operator injective on Apν when p = p̃ν?

Injectivity holds when 1 ≤ p < p̃ν (by Proposition 7.2.8), and fails when p > p̃ν (by the

explicit example ∆(z + ie)−
n
r
+1). We do not have a conjecture for the endpoint p = p̃ν .

(IV ) Is the mapping Φ: Aq
′
ν → (Aqν)∗ injective when q = p̃′ν?

This is equivalent to (III). In fact, from (7.3.4) it easily seen that Ker Φ|
Ap̃ν

ν
=

Ker2|
Ap̃ν

ν
.

Our next question stresses further the differences between the spaces Apν , depending

on whether p < p̃ν are p ≥ p̃ν :

(V ) Is the space Apν isomorphic to `p for some p ≥ p̃ν?

Recall here that the Bergman spaces Apν are isomorphic to `p in the one dimensional

setting. This can be proved as a consequence of the atomic decomposition (see [89]).

In [10], atomic decompositions for Apν are derived when Hardy’s inequality holds.
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(V I) Is it span {Bµ(·, w) : w ∈ TΩ} dense in Apν(TΩ) for p ≥ p̃ν and µ sufficiently

large?

The validity of this result was wrongly stated in [14, Corollary 5.4] in the light-cone

setting. As we show below (see also [14, Lemma 5.1]), the density holds when the projection

Pµ is bounded in Lpν , but this restricts p to be smaller than p̃ν (since P ∗µ = Tν,µ−ν must

also be bounded in Lp
′
ν ).

Proposition 7.5.1. Let ν > n
r − 1. Assume that p and µ are so that Pµ extends as a

bounded operator in Lpν . Then Apν is the closed linear span of the set {Bµ(·, w), w ∈ TΩ}.

Proof. The boundedness of Pµ in Lpν already implies that Bµ(·, ie) ∈ Apν . We take for

granted the fact that P ∗µ = Tν, µ−ν (with respect to 〈·, ·〉dVν ). To establish the proposition

it suffices to prove that for f ∈ Lp
′
ν such that

〈f,Bµ(·, w)〉ν = 0 ∀ w ∈ TΩ, (7.5.1)

we have also 〈f, F 〉ν = 0 for all F in a dense subset of Apν . Now (7.5.1) is the same as

Tν, µ−ν(f)(w) = 0, by definition of this operator. Thus, if F ∈ Apν ∩ A2
µ, using the claim

above we have

〈f, F 〉ν = 〈f, PµF 〉ν = 〈P ∗µ(f), F 〉ν = 0.

Finally, we establish the claim, that is P ∗µ = Tν, µ−ν . For f, g ∈ Cc(TΩ) we have to justify

the exchange of order of integration in

〈Pµ(g), f〉ν =
∫
TΩ

[∫
TΩ

Bµ(z, w)g(w)dVµ(w)
]
f(z) dVν(z)

=
∫
TΩ

g(w)
[∫

TΩ

Bµ(w, z)f(z)dVν(z)
]
dVµ(w) = 〈g, Tν, µ−νf〉ν .

but this follows from∫
TΩ

∫
TΩ

|Bµ(z, w)||g(w)| dVµ(w)|f(z)| dVν(z) ≤
∥∥T+

µ,0|g|
∥∥
L2

µ

∥∥∆ν−µ|f |
∥∥
L2

µ
<∞,

using the fact that the operator T+
µ,0 with kernel |Bµ(z, w)| is bounded on L2

µ.



Chapter 8

Hankel operators on Bergman

spaces

We present here some criteria for Schatten-Von Neumann class membership for the small

Hankel operator on the Bergman space A2
ν(TΩ), when TΩ = Rn + iΩ is the tube over the

symmetric cone Ω. For simplicity, we restrict ourself to the unweighted case since the

general result is proved in the same way.

8.1 Introduction

Let Ω be an irreducible symmetric cone in the Euclidean vector space Rn of dimension n,

endowed with an inner product (·|·) for which the cone Ω is self-dual. We denote by

TΩ = Rn + iΩ the corresponding tube domain in Cn. Again, we write the rank and

determinant associated with the cone by

r = rank Ω, and ∆(x) = det x, x ∈ Rn.

For more simplicity, we modify our definition of Bergman space by translating the

weight. This has no effect on the results. Given 1 ≤ p <∞ and ν > 2nr − 1, the weighted

Bergman space Apν(TΩ) of the tube TΩ is the space of analytic functions f on TΩ satisfying

the integrability condition

||f ||Ap
ν

:=
(∫

TΩ

|f(x+ iy)|p∆ν−2n
r (y)dxdy

) 1
p

<∞. (8.1.1)

When ν = 2nr , we write A2(TΩ) = A2
2n

r
(TΩ).

127
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For 1 ≤ p < ∞, the Besov space Bp(TΩ) of the tube TΩ is the space of holomorphic

functions f ∈ Hn(TΩ) such that

∫
TΩ

|2nf(x+ iy)|p∆(y)np−2n/rdxdy <∞.

In other words, f belongs to Bp(TΩ) if and only if 2nf belongs to Apnp(TΩ). When p = ∞,

we denote the Bloch space of TΩ by B = B∞, which is the space of analytic functions f

satisfying

sup
z∈TΩ

∆n(=z)|2nf(z)| <∞.

Remark 8.1.1. In our notations in the previous chapter, the Bp here corresponds to Bp,(n)

in the previous chapter while B corresponds to B∞,(n).

The weighted Bergman projection Pν is given by the integral formula

Pνf(z) =
∫
TΩ

Bν(z, w)f(w)∆ν−2n
r (=w)dV (w) (8.1.2)

where

Bν(z, w) = dν∆−ν(
z − w

i
) (8.1.3)

is the weighted Bergman kernel (see [12]) and dV is the Lebesgue measure on TΩ. Let us

recall that Bν is a reproducing kernel on A2
ν(TΩ), that is for every f ∈ A2

ν(TΩ) we have

the formula:

f(z) = c

∫
TΩ

Bν(z, w)f(w)∆ν−2n
r (=w)dV (w). (8.1.4)

In fact, formula (7.2.13) gives that for any µ > 2nr − 1, and any f ∈ A2
ν(TΩ) we still have

f(z) = c

∫
TΩ

Bµ(z, w)f(w)∆µ−2n
r (=w)dV (w). (8.1.5)

Again, when ν = 2nr , we write P = Pν and B = Bν .

Let b ∈ L2(TΩ) = L2(TΩ, dV ). The small Hankel operator hb with symbol b is defined

as

hb(f) = P (bf) (8.1.6)

for f ∈ H∞(TΩ).

The aim of this chapter is to give criteria for Schatten class (Sp) membership of Hankel

operators on the Bergman space A2(TΩ). This problem has been considered in [2], [65]

for the case of the unit disc of the complex plane, and in [116] and [115] for bounded

symmetric domains. Some earlier works were done in [1], [35], [61], [80] and [90] in various
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domains including the upper half plane. It is shown in those cases that the small Hankel

operator is in the Schatten class Sp if and only if its symbol belongs to the corresponding

Besov space Bp. The idea of the proof in [115] is the use of an appropriate integral operator

which carries a lot of information on the small Hankel operator. This idea seems to be

the appropriate one in our case also. Let us mention that the same problem for Hardy

space of tube domains over symmetric cones was considered in [24] where it is stated that

classical result extends to this case at least for 1 ≤ p ≤ 2.The main tool in the proof

of the necessity in [24] is the use of the sampling theorem related to a lattice in TΩ for

functions in a Bergman space. We will also take advantage of this idea. We show specially

that classical results (see [115] for example) extend to the tube domains over symmetric

cones for the range 1 ≤ p ≤ ∞. When the symbol is analytic and 1 ≤ p ≤ ∞, we also

obtain criteria in terms of the action of the operator on the reproducing kernel, here, “the

reproducing kernel thesis”. This last characterization appears in [98] for the same problem

in the case of Hardy space of the unit disc. The main result of this chapter can be stated

in the following way.

Theorem 8.1.2. Suppose b is analytic in TΩ and 1 ≤ p ≤ ∞. Then the following condi-

tions are equivalent

(i) hb ∈ Sp.

(ii) b ∈ Bp.

(iii) For all integer k > n
r − 1,∫

TΩ

||hb(2kB)(., z)||p∆(k+n/r)p−2n/r(=z)dV (z) <∞.

Here the norm || || is the norm of the Hilbert space on which the operator acts, that

is A2(TΩ).

Remark 8.1.3. • Condition (iii) is still valid when b is not analytic since it only

depends on the operator. One can weaken the conditions on k. We will see, in

particular, that it is sufficient to consider k ≥ 0 when p ≥ 2.

• The operator as defined above does not depend on the choice of the representative

of a class. This is an easy consequence of the formula (7.2.8).

• The choice of the unweighted case is only for simplicity of our presentation. The

results easily generalize to the weighted case.
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8.2 Preliminaries

8.2.1 Determinant function, Schatten-Von Neumann classes

We adopt the following notation

Bz(.) = B(., z) = d∆−2n
r (
.− z

i
).

We recall that A2(TΩ) is a Hilbert space with reproducing kernel Bz, that is for every

f ∈ A2(TΩ), 〈f,Bz〉 = f(z) with the pairing

〈f, g〉 =
∫
TΩ

f(z)g(z)dV (z).

With our new notations, Lemma 6.3.2 (for p = q) takes the following form.

Lemma 8.2.1. Let α be real.Then the function f(z) = ∆−α( z+iti ), with t ∈ Ω, belongs to

Apν(TΩ) if and only if

α > max(
2nr − 1
p

,
ν + n

r − 1
p

)

In this case,

||f ||Ap
ν

= Cα,p∆−pα+ν(t).

It follows easily that ||Bz||A2 = C∆−(n
r
)(=z).

Let us recall that the wave operator acts on the reproducing kernel in the following

way:

2k
zBα(., z) = Cn,α,kBα+k(., z)

with Bα given by the formula (8.1.3). As in the previous chapter, we have that for any

f ∈ A2(TΩ),

〈f,2m
z Bz〉 = Cm2mf(z).

In particular,

||2m
z Bz||A2 = |〈2m

z Bz,2
m
z Bz〉|1/2 = Cm∆−(m+n

r
)(=z).

For any f ∈ A2(TΩ) (f 6= 0), we denote by f̃ , the normalization of f , that is

f̃ = f/||f ||A2(TΩ). (8.2.1)

Let H1 and H2 be two Hilbert spaces. Let B(H1,H2) and K(H1,H2) denote the spaces

of bounded and compact linear operators from H1 to H2 , respectively. It is well known
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(see for example [114]) that any operator T ∈ K(H1,H2) has a Schmidt decomposition,

that is there exist orthonormal bases {ej} and {σj} of H1 and H2 respectively and a

sequence {λj} of complex numbers with λj → 0, such that

Tf =
∞∑
j=0

λj〈f, ej〉σj , f ∈ H1. (8.2.2)

For 1 ≤ p <∞, a compact operator T with such a decomposition belongs to the Schatten-

Von Neumann p-class Sp(H1,H2), if and only if

||T ||Sp = (
∞∑
j=0

|λj |p)
1
p <∞.

When T ∈ Sp = Sp(H,H), for any image {ej} of an orthonormal sequence by a bounded

operator in H,
∞∑
j=0

|〈Tej , ej〉|p . ||T ||pSp

(see [91]). For p = 1, S1 = S1(H,H) is the trace class and for T ∈ S1, the trace of T is

defined by

Tr(T ) =
∞∑
j=0

〈Tej , ej〉

where {ej} is any orthonormal basis of the Hilbert space H. We will denote by S∞(H)

the set of all bounded linear operators on H.

8.2.2 Bergman distance, Sampling and Covering results

We first recall the definition of the Bergman distance on the tube TΩ. Let {gj,k}1≤j,k≤n

be the matrix function defined on TΩ by

gj,k(z) =
∂2

∂zj∂zk
logB(z, z).

The mapping z ∈ TΩ 7→ Hz where

Hz(u, v) =
∑

1≤j,k≤n
gj,k(z)ujvk (u = (u1, · · · , un), v = (v1, · · · , vn) ∈ Cn) ,

defines a Hermitian metric on Cn, called the Bergman metric. The length of a smooth

path γ : [0, 1] → TΩ is given by

`(γ) =
∫ 1

0
{Hγ(t)(γ̇(t), γ̇(t))}

1
2dt

and the Bergman distance between two points z1, z2 of TΩ is

dBerg(z1, z2) = inf
γ
`(γ)
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where the infinimum is taken over all smooth paths γ : [0, 1] → TΩ such that γ(0) = z1

and γ(1) = z2.

Remark 8.2.2. We refer to the text [58] for the following observations:

(a) The Bergman distance dBerg is equivalent to the Euclidean distance on the compact

sets of Cn contained in TΩ.

(b) The Bergman balls in TΩ are relatively compact.

(c) Let Rn be the group of translations by vectors and let again H be the simply tran-

sitive group of automorphisms of the symmetric cone Ω defined in Chapter 5. The

group Rn ×H acts simply transitively on TΩ and the Bergman distance is invariant

under the automorphisms of Rn ×H.

Let us denote by Bη(z) the Bergman ball centered at z with radius η. We have the

following covering lemma in [24].

Lemma 8.2.3. Given δ ∈ (0, 1), there exists a sequence of points {zj} in TΩ called δ-

lattice such that, calling Bj and B′j the Bergman balls with center zj and radius δ and δ/2

respectively, then

(i) the balls B′j are pairwise disjoint;

(ii) the balls Bj cover TΩ with finite overlapping, i.e. there is an integer N such that

each point of TΩ belongs to at most N of these balls.

We observe with [12] the following.

Lemma 8.2.4. For all δ ∈]0, 1], there exists a constant C > 1 such that if dBerg(z, w) < δ

for some z, w ∈ TΩ, then 1
C < ∆(=z)

∆(=w) < C.

The above balls have the following properties:∫
Bj

dV (z) ≈
∫
B′j

dV (z) ≈ Cδ∆2n/r(=zj).

We recall that the measure dλ(z) = ∆−2n/r(=z)dV (z) is an invariant measure under the

automorphism of TΩ ( [12]).

The proof of the following sampling result heavily uses Lemma 8.2.4.

Lemma 8.2.5. (Theorem 5.6 in [12]) Let {zj} be a δ-lattice in TΩ, δ ∈ (0, 1).
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(i) There exists a positive constant Cδ such that every f ∈ Apν(TΩ) satisfies

∑
j

|f(zj)|p∆ν(=zj) ≤ Cδ||f ||pAp
ν
.

(ii) Conversely, if δ is small, there is a positive constant Cδ such that every f ∈ Apν(TΩ)

satisfies

||f ||p
Ap

ν
≤ Cδ

∑
j

|f(zj)|p∆ν(=zj).

8.3 Sp criteria for arbitrary operators on A2(TΩ)

8.3.1 Hilbert-Schmidt operators

These are operators in S2. The following result is established for an arbitrary operator

defined on A2(TΩ) with values in a Hilbert space H.

Theorem 8.3.1. If T ∈ B(A2(TΩ),H) then

||T ||2S2(A2(TΩ),H) = Cn,k

∫
TΩ

||T (2̃k
zBz)||

2dλ(z),

for every integer k ≥ 0, where dλ(z) = ∆−2n
r (=z)dV (z) is the invariant measure on TΩ .

Proof. If {ej} is an orthonormal basis of H, then∫
TΩ

||T (2k
zBz)||2∆2k(=z)dV (z) =

∫
TΩ

∞∑
j=0

|〈T (2k
zBz), ej〉|2∆2k(=z)dV (z)

=
∞∑
j=0

∫
TΩ

|〈2k
zBz, T

∗ej〉|2∆2k(=z)dV (z)

=
∞∑
j=0

∫
TΩ

|2kT ∗ej(z)|2∆2k(=z)dV (z)

= Cn,k

∞∑
j=0

∫
TΩ

|T ∗ej(z)|2dV (z)

= Cn,k

∞∑
j=0

||T ∗ej ||2A2

= Cn,k||T ∗||2S2
= Cn,k||T ||2S2

.

The fourth equality follows from the fact that 2k is an isometric (up to constant Cn,k)

isomorphism from A2(TΩ) onto A2
2k+2n/r(TΩ).
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8.3.2 Sp(A2(TΩ),H) for p 6= 2

Lemma 8.3.2. Suppose that T ∈ B(A2(TΩ),H) for any Hilbert space H and k = 0, 1, · · · .

Then,

i) if T ∈ Sp for 2 < p <∞ then,∫
TΩ

||T (2̃k
zBz)||

pdλ(z) ≤ Cn,k||T ||pSp
.

ii) If for 1 ≤ p < 2, ∫
TΩ

||T (2̃k
zBz)||

pdλ(z) <∞

then T ∈ Sp. Moreover,

||T ||pSp
≤ Cn,k

∫
TΩ

||T (2̃k
zBz)||

pdλ(z).

Proof. First of all, we have by Theorem 8.3.1 that if T ∈ S1(A2(TΩ), A2(TΩ)) is a positive

operator, then

Tr(T ) = ||T 1/2||2S2
= Cn,k

∫
TΩ

〈T (2k
zBz),2

k
zBz〉∆2k(=z)dV (z).

The result follows since ||T ||pSp
= Tr((T ∗T )p/2) and for any unit vector(see [114]) in L2(D),

we have

〈T ∗Tf, f〉p/2 ≤ 〈(T ∗T )p/2f, f〉, if p > 2

and

〈(T ∗T )p/2f, f〉 ≤ 〈T ∗Tf, f〉p/2 if 1 ≤ p ≤ 2.

8.4 The case of the small Hankel operators

We give in this section some Schatten classes membership criteria for the small Hankel

operator on the Bergman space A2(TΩ). Let Vk and L be the operators defined on L2(TΩ)

by

Vkf(z) = ∆2k+2n
r (=z)

∫
TΩ

B(2k+4n
r
)(z, w)f(w)dV (w), z ∈ TΩ,

and

Lf(z) = ∆n(=z)
∫
TΩ

Bn+2n
r
(z, w)f(w)dV (w), z ∈ TΩ.

We set τz = B(n
2
+n

r
)(., z). We have the following lemma.
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Lemma 8.4.1. Let 〈, 〉 be the inner product in L2(TΩ). For f ∈ L2(TΩ), we have

1) Vkf(z) = Cn〈hf (2̃k
zBz), 2̃

k
zBz〉 and Lf(z) = Cn〈hf τ̃z, τ̃z〉.

2) PVkf = PLf = Pf .

3) hf = hPf = hVkf = hLf on A2(TΩ).

Proof. 1) follows from the definition of Vk and L, Fubini’s theorem and reproducing for-

mulas.

Let us show 2). It is not hard to see that the operators Vk and L are bounded on

L2(TΩ) as it follows from Theorem 6.3.3. We consider the following function:

Fz(ξ, w) = ∆−2n/r(
z − ξ

i
)∆−(n+2n/r)(

ξ − w

i
)f(w)∆n(=ξ), f ∈ L2(TΩ),

and z ∈ TΩ. Using the reproducing formula, we obtain that∫
TΩ

F (ξ, w)dV (w) = ∆−2n/r(
z − ξ

i
)Lf(ξ) := Gz(ξ),

and ∫
TΩ

F (ξ, w)dV (ξ) = ∆−2n/r(
z − w

i
)f(w) := Hz(w).

It is clear that Hz is integrable and so is Gz since the operator L is bounded on L2(TΩ).

Applying Fubini’s theorem, we obtain

PLf(z) =
∫
TΩ

Gz(ξ)dV (ξ) =
∫
TΩ

Hz(w)dV (w) = Pf(z).

The equality PVkf = Pf follows in the same way. The first equality in 3) follows from

the definition of the little Hankel operator, Fubini’s theorem and reproducing formulas,

the second and the third equalities follow from the first one and 2).

Lemma 8.4.2. If 1 ≤ p ≤ ∞ and b ∈ Lp(TΩ, dλ), then the Hankel operator hb is in the

Schatten class Sp.

Proof. The case p = ∞ is obvious, it suffices then to show the case p = 1 since the result

then follows by interpolation. An easy computation shows that

hb =
∫
TΩ

b(w)hfwdλ(w),

where fw(z) = ∆2n
r (=z)∆2n

r (=w)∆−4n
r ( z−wi ) and hfw is the rank 1 Hankel operator given

by

hfwg = ∆2n
r (=w)∆−2n

r (
.− w

i
)g(w)



CHAPTER 8. HANKEL OPERATORS ON BERGMAN SPACES 136

with ||hfw ||S1 = ||hfw || = C <∞. It follows that

||hb||S1 ≤
∫
TΩ

||hfw ||S1 |b(w)|dλ(w) ≤ C

∫
TΩ

|b(w)|dλ(w).

The proof is complete.

Theorem 8.4.3. Suppose 1 ≤ p ≤ ∞, and b ∈ L2(TΩ). Then the following assertions are

equivalent

i) hb is in Sp.

ii) For every integer k ≥ 0, Vkb ∈ Lp(TΩ, dλ).

Proof. ii) ⇒ i) follows from Lemma 8.4.2 and the equality hb = hVkb. Let us show that

for

1 ≤ p <∞, i) ⇒ ii). Let {zj} be a δ-lattice in TΩ. Using the equality

Vkb(z) = Cn,k〈hb(2̃k
zBz), 2̃

k
zBz〉 and Lemma 8.2.5, we obtain

||Vkb||pLp(TΩ,dλ) = Cn,k

∫
TΩ

|〈hb(2̃k
zBz), 2̃

k
zBz〉|

pdλ(z)

= Cn,k

∫
TΩ

|〈hb(2k
zBz),2

k
zBz〉|p∆2k(=z)dV (z)

≈ Cn,k
∑
j

|〈hb(2k
zBzj ),2

k
zBzj 〉|p∆2k+2n

r (=zj)

= Cn,k
∑
j

|〈hb(2̃k
zBzj ), 2̃k

zBzj 〉|p

.

To conclude, it suffices to show that 2̃k
zBzj = Ck∆k+n/r(=zj)∆−(k+2n/r)( .−zj

i ) is the image

of an orthonormal sequence ψj in L2(TΩ) through a bounded linear map Tk : L2(TΩ) 7→

L2(TΩ).

Define Tk : L2(TΩ) 7→ L2(TΩ) by setting

Tkψ(z) = Cn,k

∫
TΩ

∆−(k+2n
r
)(z − ξ)ψ(ξ)∆k(=ξ)dV (ξ), z ∈ TΩ

and ψj(z) = Cn,k∆−n/r(=z)χB′j (z). Then Tkψj = 2̃k
zBzj , ||ψj ||L2(TΩ) = 1 with an ap-

propriate choice of Cn,k. The operator Tk = CkPk+2n
r

is clearly bounded on L2(TΩ) by

Corollary 6.3.9.

For p = ∞, we take as test functions fz = gz = 2̃k
zBz. It follows that if hb is bounded

on A2(TΩ), then

|Vkb(z)| = Cn,k|〈hb(2̃k
zBz), 2̃

k
zBz〉| = Cn,k|〈hb(fz), gz〉| <∞.

So Vkb ∈ Lp(TΩ, dλ) for any 1 ≤ p ≤ ∞. The proof is complete.
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Theorem 8.4.4. Suppose 1 ≤ p ≤ ∞, and b ∈ L2(TΩ) is analytic. Then the following

assertions are equivalent

i) hb is in Sp.

ii) b ∈ Bp.

Proof. ii) ⇒ i) follows from Lemma 8.4.2 and the equalities Lb(z) = ∆n(=z)2nb(z) and

hb = hLb. Let show that i) ⇒ ii) for 1 ≤ p < ∞. Let {zj} be a δ-lattice in D. Using the

equality Lb(z) = Cn〈hbτ̃z, τ̃z〉 and Lemma 8.2.5, we have

||2nb||p
Ap

np
= ||Lb||pLp(D,dλ) = Cn

∫
TΩ

|〈hbτ̃z, τ̃z〉|pdλ(z)

= Cn
∑
j

∫
Bj

|〈hb(τz), τz〉|p∆np−2n
r (=z)dV (z)

≈ C
∑
j

|〈hb(τzj ), τzj 〉|p∆np(=zj)

= C
∑
j

|〈hbτ̃zj , τ̃zj 〉|p.

To conclude, it suffices to show that τ̃zj is the image of an orthonormal sequence ϕj in

L2(TΩ) trough a bounded linear map T : L2(TΩ) 7→ L2(TΩ).

Define T : L2(TΩ) 7→ L2(TΩ) by setting

Tϕ(z) = Cn

∫
TΩ

∆−(n
2
+n

r
)(z − ξ)ϕ(ξ)∆(n

2
−n

r
)(=ξ)dV (ξ), z ∈ TΩ

and ϕj(z) = Cn∆−n/r(=z)χB′j (z). Then Tϕj = τ̃zj , ||ϕj ||L2(TΩ) = 1 with an appropriate

choice of Cn. The operator T = CnP(n
2
+n

r
) is bounded on L2(TΩ) by Corollary 6.3.9. The

case p = ∞ can be handled easily as in Theorem 8.4.3 taking as test functions fz = gz = τ̃z.

The proof is complete.

8.5 The reproducing kernel thesis

In this section, we give Schatten class criteria for the little Hankel operator on the Bergman

space A2(TΩ) in terms of the action of the operator on the reproducing kernel. We refer

the reader to [6, 25,57] where some previous works have been considered.

Theorem 8.5.1. Let b ∈ A2(TΩ). Then the following conditions are equivalent

i) hb is bounded on A2(TΩ).
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ii) For every integer k ≥ 0,

sup
z∈TΩ

||hb(2̃k
zBz)||A2(TΩ) <∞.

Proof. That i) ⇒ ii) is obvious. Let show that ii) ⇒ i). For that, it suffices by Theorem

8.4.3 to show that ii) implies that supz∈TΩ
|Vkb(z)| <∞. But, we already know that

Vkb(z) = Cn,k〈hb(2̃k
zBz), 2̃

k
zBz〉.

The result follows now since

|Vkb(z)| ≤ Cn,k||hb(2̃k
zBz)||A2 ||2̃k

zBz||A2 = Cn,k||hb(2̃k
zBz)||A2 .

The proof is complete.

Theorem 8.5.2. Let b ∈ L2(TΩ) be analytic and 1 ≤ p < ∞. The following conditions

are equivalent

i) hb ∈ Sp.

ii) For every integer k > n
r − 1,∫

TΩ

||hb(2̃k
zBz)||

pdλ(z) <∞.

Proof. To show that ii) ⇒ i), it suffices by Theorem 8.4.3 to prove that ii) implies that

Vkb ∈ Lp(TΩ, dλ) and this follows easily from the inequality

|Vkb(z)| = Cn,k|〈hb(2̃k
zBz), 2̃

k
zBz〉|

≤ Cn,k||hb(2̃k
zBz)||A2 ||2̃k

zBz||A2

= Cn,k||hb(2̃k
zBz)||A2 .

That i) ⇒ ii) for 2 ≤ p <∞, follows from part i) of Lemma 8.3.2.

It remains to prove that i) ⇒ ii) for the range 1 ≤ p < 2. Let us first show the

implication for p = 1. By Theorem 8.4.3, it suffices to show that if Vkb ∈ L1(TΩ, dλ) then

ii) holds. We recall that hb = hVkb and that the following representation holds:

hVkb =
∫
TΩ

Vkb(w)hfwdλ(w),

where fw(z) = ∆2n
r (=z)∆2n

r (=w)∆−4n
r ( z−wi ) and hfw is the rank 1 Hankel operator given

by

hfwg = ∆2n
r (=w)∆−2n

r (
.− w

i
)g(w).
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It follows that

hfw(2̃k
zBz) = ∆2n

r (=w)∆−2n
r (
.− w

i
)∆k+n

r (=z)∆−(k+2n/r)(
z − w

i
).

Using Lemma 8.2.1, we obtain

||hfw(2̃k
zBz)|| = C∆n/r(=w)∆k+n/r(=z)|∆−(k+2n/r)(

z − w

i
)|.

It follows using Lemma 8.2.1 again that∫
TΩ

||hfw(2̃k
zBz)||dλ(z) = C∆n/r(=w)

∫
D
|∆−(k+2n/r)(

z − w

i
)|∆(k+n/r)−2n/r(=z)dV (z)

= Cn,k <∞.

We obtain finally that∫
TΩ

||hb(2̃k
zBz)||dλ(z) ≤

∫
TΩ

|Vkb(w)|(
∫
D
||hfw(2̃k

zBz)||dλ(z))dλ(w)

≤ C

∫
TΩ

|Vkb(w)|dλ(w).

Now, considering the sublinear operator H : b 7→ ||hb2̃k
. B.||, we have by the previous

and Theorem 8.4.3 and Theorem 8.4.4 that H is bounded from B1 to L1(D, dλ). We also

have by Theorem 8.3.1 and Theorem 8.4.4 that H is bounded from B2 to L2(TΩ, dλ). We

deduce by interpolation that H is bounded from Bp to Lp(TΩ, dλ), whenever 1 ≤ p ≤ 2.

It follows that we have i) ⇒ b ∈ Bp ⇒ ii). The proof is complete.

From the first part of the proof of the above theorem, we have the following.

Theorem 8.5.3. Let b ∈ L2(TΩ) and 2 ≤ p <∞. The following conditions are equivalent

i) hb ∈ Sp.

ii) For every integer k ≥ 0, ∫
TΩ

||hb(2̃k
zBz)||

pdλ(z) <∞.
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