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Summary
How cell-intrinsic regulation of the cell cycle and the extrinsic

influence of the niche converge to provide proliferative

quiescence, safeguard tissue integrity, and provide avenues

to stop stem cells from giving rise to tumors is a major

challenge in gene therapy and tissue engineering. We explore

this question in sumoylation-deficient mutants of Drosophila.

In wild type third instar larval lymph glands, a group of

hematopoietic stem/progenitor cells acquires quiescence; a

multicellular niche supports their undifferentiated state.

However, how proliferative quiescence is instilled in this

population is not understood. We show that Ubc9 protein is

nuclear in this population. Loss of the SUMO-activating E1

enzyme, Aos1/Uba2, the conjugating E2 enzyme, Ubc9, or the

E3 SUMO ligase, PIAS, results in a failure of progenitors to

quiesce; progenitors become hyperplastic, misdifferentiate,

and develop into microtumors that eventually detach from

the dorsal vessel. Significantly, dysplasia and lethality of Ubc9

mutants are rescued when Ubc9wt is provided specifically in

the progenitor populations, but not when it is provided in the

niche or in the differentiated cortex. While normal

progenitors express high levels of the Drosophila cyclin-

dependent kinase inhibitor p21 homolog, Dacapo, the

corresponding overgrown mutant population exhibits a

marked reduction in Dacapo. Forced expression of either

Dacapo or human p21 in progenitors shrinks this population.

The selective expression of either protein in mutant

progenitor cells, but not in other hematopoietic populations,

limits overgrowth, blocks tumorogenesis, and restores organ

integrity. We discuss an essential and complex role for

sumoylation in preserving the hematopoietic progenitor states

for stress response and in the context of normal development

of the fly.
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Introduction
Tissue and organ regeneration in patients with lesions from

disease or surgery, or due to ageing, is a primary challenge in

biomedical research. Tissue engineering requires understanding

how normal tissues arise, develop, renew themselves, and

maintain their proliferative quiescence and homeostasis. Stem

cells provide proliferative quiescence and tissue integrity over

time (Morrison and Spradling, 2008). Proliferative quiescence is

characteristic property of some stem cells, which, as compared to

their more differentiated progenitors, undergo infrequent

divisions (Moore and Lyle, 2011). Loss of proliferative

quiescence in pre-malignant cells frequently accompanies the

development of cancer.

Mammalian cancers are composed of heterogeneous cell

populations that include few stem/stem-like cells and many more

differentiated cells with limited proliferative potential (Morrison

and Spradling, 2008; Wang, 2010). The growth and development

of a tumor depends on the complex interplay of both, the cell-

intrinsic mechanisms and the microenvironment. Tumors are

further characterized by dormancy or metastasis, and the nature of

these processes in relation to their origin remains largely unclear

(Morrison and Spradling, 2008; Wang, 2010). The mechanism of

proliferative quiescence in normal stem and related cancer cells is

not well understood (Moore and Lyle, 2011).

Drosophila has served as an excellent model system for cancer

research. One approach to studying cancer in flies is to screen the

genome for mutations in larval cells that promote tumorogenesis

and metastasis. In this approach, mutations are induced

selectively in specific tissues, where genetically affected

mutant cells form tumors in an otherwise wild type larval

body. The effects of a known or new oncogenic or tumor-

suppressive mutation can be studied in such mosaic animals

(Potter et al., 2000; Vidal and Cagan, 2006). In an ‘‘inverse

mosaic’’ approach, germline mutants that develop tumors with

high spatial and temporal specificity are studied by genetically

manipulating specific regions of the tumor, or its environment, by

expressing either the missing protein, or another protein,

suspected to play a role in tumor development (Manfruelli et

al., 1996; Qiu et al., 1998; Chiu et al., 2005). In either case,

mosaic animals can be created with fly or human proteins.
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In this study, we examined the origin of hematopoietic

microtumors in Ubc9 mutants of Drosophila (Chiu et al., 2005;

Huang et al., 2005). Microtumors are structures of at least

10,000 mm2 in projection area, consisting of at least 50 cells, and

aggregates are structures,10,000 mm2 in projection area

(Kalamarz, 2010). Both classes of structures are found in more

than 80% of the Ubc9 mutants (Kalamarz, 2010). Microtumors

are composed mostly of blood cells (hemocytes), including

lamellocytes, and vary in the degree of melanization (Kalamarz,

2010). Ubc9 is the E2 SUMO-conjugating enzyme. Along with

the SUMO-activating E1 enzymes, Aos1 and Uba2, and the

SUMO E3 ligase, PIAS, Ubc9 participates in a highly-conserved

protein modification system (Mabb and Miyamoto, 2007;

Talamillo et al., 2008).

Blood cells in normal Drosophila larvae circulate freely in the

hemolymph. Groups of blood cells are also present within the

hematopoietic organ, called lymph gland. The predominant cell

type is the macrophage-like plasmatocyte (Kurucz et al., 2007b),

which phagocytoses microbes and dead cells. The remaining

lineages are crystal cells and lamellocytes, both of which

facilitate melanization reactions (Kurucz et al., 2007a; Nam et

al., 2008). Large, adhesive lamellocytes differentiate in response

to parasitic wasp infection in both, circulation and the lymph

gland (Rizki and Rizki, 1992; Lanot et al., 2001; Sorrentino et al.,

2002).

The lymph gland originates in the embryo (Mandal et al.,

2004) and develops through larval stages (Lanot et al., 2001;

Holz et al., 2003). The lobes are arranged bilaterally and flank the

dorsal vessel in the anterior body segments (Shrestha and Gateff,

1982; Lanot et al., 2001; Qiu et al., 1998; Jung et al., 2005) (also

see Fig. 1A,B). By the first instar, anterior lobes form compact

cell clusters and by third instar they develop three zones (Jung et

Fig. 1. Aberrant gene expression in progenitors of Ubc9 lymph glands. Labeling: AL – anterior lobe(s), PL1 – first set of posterior lobes, PL2 – second set of posterior
lobes; asterisk – dorsal vessel (DV). (A) Lymph glands in second (L2) and third (L3) larval instars. Medullary zone (MZ, light green), cortical zone (CZ, dark green); the
niche (N, orange); unclassified cells (navy blue, P); pericardial cells (PC, light blue). Pairs of lobes aligned along the antero-posterior axis; PL1, PL2 consist of smaller
lobes (2–3 pairs each) distinguishable at L2, but forming a continuous lobe at L3. (B–E) Dome.GFP (green) in lymph glands of 4-day L2: Ubc92/+ (B), Ubc92/2(C) and
6-day L3: Ubc92/+ (D), Ubc92/2 (E). Lobes outlined in dotted marking (D,E). (F–G1) ZCL2897 (green) and Dome.DsRed (red) in wild type L3: AL (F–F’’), PL

(G–G’’). Dome.DsRed (F’,G’) and ZCL2897 (F’’,G’’) shown separately; overlap of expressions (F,F1,G,G1). Regions of F,G (white rectangles) shown magnified in
F1,G1, respectively. Yellow dotted markings outline the lobes (F–F’’,G–G’’). (H–K’) ZCL2897 (green) expression in Ubc92/+ (H, AL; I, PL1) and Ubc92/2

(J, AL; K, PL1) lymph glands; note: lobes in J and K are representative examples from different lymph glands. Increased ZCL2897 expression in Ubc92/2 (J,K) produced
overexposure and samples were therefore re-imaged after reducing detector gain (J’,K’). K–K’ is a fragment of S2L. Brightness and contrast were slightly modified in
panels F–G1 for clarity in merged images. Confocal sections (B–K’). Scale bars: 50 mm, except F1,G1 – 10 mm.
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al., 2005; Mandal et al., 2007; Minakhina and Steward, 2010). A
small multicellular niche controls cell states in the other two
zones (Crozatier et al., 2004; Jung et al., 2005; Krzemien et al.,

2007; Mandal et al., 2007), which are located up to as many as 50
cell diameters away. Cells in medullary and cortical zone divide
actively until the third instar, when cells of the medullary zone

become proliferatively quiescent (Jung et al., 2005; Mandal et al.,
2007). The cell cycle mechanisms responsible for quiescence of
these multipotent hematopoietic stem cells and progenitors

remain largely unknown.

We show that Ubc9 microtumors derive from an initially

quiescent, heterogeneous, progenitor population of the medullary
zones of the anterior and posterior lobes. The largest microtumors
are likely derived from the highly enlarged posterior lobes, as

they abandon normal heterochronic development, and undergo
dysplasia, while still attached to the dorsal vessel, but then detach
from the dorsal vessel into the hemolymph as intact tumors.

Dysplastic growth is niche-independent. Other sumoylation
cascade enzymes, E1 subunits, and E3 ligase, PIAS, are also
needed for progenitor quiescence. Our studies suggest that the

cell cycle of this population is regulated, in part, by Dacapo/p21.
Of dozens of hematopoietic Drosophila mutants reported to date,
this is the first study where a clear cellular origin of microtumors
is defined. Changes in Ubc9 expression have been linked to

primary tumors in humans (Moschos et al., 2010). p21 is a known
drug target in cancer therapy. Its potential regulation via
sumoylation in Drosophila provides new insights into the

regulation of quiescence in an in vivo model system and into
the earliest steps in oncogenesis in humans.

Results
Loss of Ubc9 affects gene expression, and size and integrity of
third instar lymph gland

Post-embryonic wild type lymph gland development is
heterochronic (Fig. 1A,B). From the onset of the third instar,
the posterior lobes of wild type lymph glands expand and
coalesce so that the initially distinct four to six pairs of cell

clusters form two sets of posterior lobes (Fig. 1A,B,D). The
growth of posterior lobes is developmentally synchronous in that
the first set expands earlier than the second set (Fig. 1B,D,

supplementary material Fig. S1A,C). We call them posterior
lobes, first set (PL1), and posterior lobes, second set (PL2)
(Fig. 1A,B,D).

Mutant Ubc9 lymph glands are variably overgrown and exhibit

aberrant differentiation of hemocytes (Chiu et al., 2005). Careful
analysis of scores of mutant glands revealed differential effects
on anterior versus posterior lobes (Fig. 1D,E, supplementary
material Fig. S1C,D). In many glands of 6–7-day third instar

larvae, the anterior lobes are completely absent or are partially
dispersed where peripheral cells in the cortex are lost to the
hemolymph (see below). In contrast, most posterior lobes are

severely overgrown and either remain tethered to the dorsal
vessel or detach (Fig. 1, supplementary material Fig. S1D, and
see below). Loss of posterior lobes coincides with the appearance

of large compact tumors in the hemolymph. This trend suggests
that the lymph gland itself may be the direct source of the
microtumors.

To examine whether Ubc9 has one primary function in normal

hematopoiesis and probe if all four defects (overgrowth,
misdifferentiation, lobe dispersal, and lobe detachment) are
triggered from an initial disruption of this primary function, we

compared the expression patterns of Dome.GFP, Hml.GFP,

and 76B.GFP in developing heterozygous and Ubc9 lymph

glands. We found no striking difference in late second or even
early third instar (day 4 after egg lay) animals (Fig. 1B,C,
supplementary material Fig. S1A,B). Most cells of the posterior

lobes do not express mature hemocyte markers, but express
Dome.GFP, when the Dome promoter is active (Fig. 1B,D)
(Jung et al., 2005; Krzemien et al., 2007). Dome encodes the
receptor for JAK-STAT signaling (Brown et al., 2001). At mid to

late third instar (day 5 to 6), all heterozygous anterior lobes
remain relatively small and structurally intact, while anterior
lobes of the mutant glands are either larger than control, or they

disperse. Mutant posterior lobes expand dramatically, but remain
largely intact (Fig. 1D,E, supplementary material Fig. S1C,D,
Fig. 4B,C,E,F). We found that the overgrown lobes themselves

are displaced and begin to detach from the dorsal vessel
(supplementary material Fig. S1D, Fig. S2J,L, Fig. 4E,F).

The expression of Dome.GFP in heterozygous lymph glands

remains high, while in mutant glands, it gradually decreases
during third instar and is virtually absent by late 6 day
(Fig. 1D,E). Loss of Dome.GFP expression in mutant lobes

does not result from increased apoptosis, as only less than 1% of
cells in the lobes of either genetic background are positive for
cleaved pro-caspase 3.

Dome.GFP expression is undetectable in circulating
hemocytes of both, control and mutant animals. Single
Dome.GFP cells in circulation or within microtumors are rare

(supplementary material Fig. S2A–D). Surprisingly, while
Dome.GFP is expressed weakly in the dorsal vessel of control
animals, it is highly upregulated after the onset of anterior lobe
dispersal in the mutant background (Fig. 1D,E, Fig. 5A,B;

asterisk). Together, these results suggest that a primary
hematopoietic effect of Ubc9 loss is on the cells of the
medullary zone. Additionally, Ubc9-dependent gene regulation

in the dorsal vessel coincides with loss of lobe integrity.

The expression of Hml.GFP is limited largely to the periphery
in all 6 day control anterior lobes and in approximately 10% (n51/

8) of the first set of posterior lobes (supplementary material
Fig. S1C). In all examined mutant anterior lobes and about 40%
(n53/8) of first posterior lobes, Hml.GFP cells are scattered

throughout the body of the lobe (supplementary material Fig. S1D).
The expanded posterior lobes of mutant glands contain more
Hml.GFP-expressing cells than the control posterior lobes

(supplementary material Fig. S1D). That both, Dome.GFP and
Hml.GFP expression becomes more pronounced in the first
posterior lobes of control glands at third instar, supports the notion

that this capacity to acquire zonation is heterochronic; it emerges
only after the anterior lobes have matured. Second, at third instar
Dome expression decreases in Ubc9 lymph gland and Hml

expression increases slightly in posterior lobes compared to

controls. These changes in the expression patterns occur
simultaneously with lymph gland overgrowth.

The medullary zone exhibits heterogeneity

To understand the effects of the Ubc9 mutation on cells of the

medullary zone, we simultaneously expressed Dome.DsRed

with ZCL2897 (a GFP protein trap) (Morin et al., 2001) in wild
type glands. ZCL2897 is expressed in cells of the medullary zone

of control animals (Fig. 1F,H) (Jung et al., 2005). Despite
substantial overlap in the expression of Dome.DsRed and
ZCL2897, there is significant heterogeneity in gene expression
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(Fig. 1F–G1). At least three cell types are observed: those that

express both markers (Domehi ZCL2897hi, Fig. 1F1, cells with

yellow hue) and those that are strongly positive for one marker

(Domehi ZCL2897lo, red cells, or Domelo ZCL2897hi, green cells,

Fig. 1F1,G1). Among the doubly-positive cells, there is no

apparent correlation in signal intensity of the two markers,

suggesting that the medullary zone population consists of distinct

cell types.

We next monitored ZCL2897 expression in heterozygous and

Ubc9 third instar animals and found that, in contrast to

Dome.GFP, loss of Ubc9 activates ZCL2897 expression in

anterior and posterior lobes (Fig. 1H–K’). Unlike Dome.GFP,

high ZCL2897 expression is also found in mutant circulating

hemocytes, microtumors and overgrown lobes which are easily

spotted through the cuticle (supplementary material Fig. S2E–L).

Such overgrown, intact lobes, while still attached to the dorsal

vessel (Fig. 1E, supplementary material Fig. S2J,L; also see

Fig. 4E,F, Fig. 5B), correspond to the freely circulating

microtumors in size and shape (supplementary material

Fig. S2G,O; also see supplementary material Fig. S5B,H,

supplementary material Fig. S6C, supplementary material

Fig. S7H). This significant expansion of the ZCL2897hi cell

population suggests that Ubc9 restrains division, keeps

progenitors from entering an aberrant differentiation program,

and maintains organ integrity.

To test if ZCL2897 expression marks lamellocytes, we

examined relative expression of either MSNF9mo-mCherry

(MSNF9, supplementary material Fig. S3A–D), or Atilla

(supplementary material Fig. S3E,F) with ZCL2897. Both

methods revealed that while a significant number of mutant

ZCL2897-positive cells also express Atilla or MSNF9 (yellow

signal, supplementary material Fig. S3C,D,F; white arrowheads

in supplementary material Fig. S3G–R’), a number of ZCL2897hi

cells do not express either lamellocyte marker (supplementary

material Fig. S3G–R’, white arrows). We also identified rare

cells with low or absent ZCL2897 expression but positive for

MSNF9 (supplementary material Fig. S3O,O’, blue arrowheads)

or Atilla (M.K. and S.G., unpublished data). Thus, expansion of

ZCL2897 population in the mutant supports the idea that Ubc9

maintains proliferative quiescence in the progenitor population

and prevents their aberrant and lamellocyte differentiation.

Ubc9 affects cells of the transition zone

To probe the properties of the expanded population in mutant

glands with a Gal4 driver, whose expression is not downregulated

by the effects of the mutation, we examined the expression of the

76B.Gal4. This driver is expressed in few cells of the lymph

gland (Paddibhatla et al., 2010), although the identity of these cells

is not known. We found that at late third instar, many heterozygous

76B.GFP-expressing cells are located outside the Dome-MESO

boundary (i.e., they are negative for Dome-MESO; Fig. 2A, white

arrows) and do not express the Pro-PO (Fig. 2B–B1’’), Nim C

(Fig. 2C–C1’’), or MSNF9 (Fig. 2B–B1-), although rare

exceptions are observed (zoomed panels in Fig. 2A–C; yellow

arrows). Thus, 76B.GFP expression marks the cells that are

intermediate to the Dome-MESO-positive progenitors in the

medullary zone and the differentiated cells in the cortex.

Because most of the cells expressing 76B.GFP reside outside

the Dome-MESO boundary, interspersed in the cortex, and the

double positives with either Dome-MESO (Fig. 2A) or the Pro-PO/

Fig. 2. 76B-Gal4 characterization in

control and Ubc9 lymph glands.

(A–C10) L3 (6-day) Ubc92/+ anterior
lobes expressing 76B.GFP (green), co-
labeled with Dome-MESO (red; A–A20),

or Pro-Phenol Oxidase and misshapen
(PPO, red, and MSNF9, magenta,
respectively; B–B1-), or Nimrod C
(NimC, red; C–C10).
(D–E) 76B.GFP (green) expression in
6-day Ubc92/+ (D) and Ubc92/2

(E) lymph glands. (F–G1-) L3 (6-day)

Ubc92/2 anterior lobes expressing
76B.GFP (green), labeled with Nimrod
C and misshapen (NimC, red and
MSNF9, magenta, respectively);
presented are lower (F–F1-) and upper
(G–G1-) optical sections of two lymph

glands. Split-channel images show green
(9), red (0) or magenta (-). Selected
regions (white rectangles) are shown as
high magnifications (panels labeled with
numbers 1–2). White arrows – cells
expressing singly 76B.GFP, and
yellow arrows – two markers; star–DV.

Confocal sections (A–G1-). Scale bars:
50 mm (A–A0,B,C,D,E,F,G) and 10 mm
(remaining panels).
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Nim C (Fig. 2B,C) are rare, they most likely represent the

transitional precursors that are derived from the medullary zone

progenitors, but have not yet assumed a final differentiated

identity. The existence of this transition zone has been suggested in

recent studies (Krzemien et al., 2010).

Unlike Dome.GFP and Hml.GFP, 76B.GFP population is

significantly expanded in Ubc9 mutant glands (Fig. 2D,E). Some

mutant 76B.GFP cells are also positive for either MSNF9 or

Nim C (Fig. 2F–G1-; yellow arrows). [Ubc9 lymph glands have

very few crystal cells (Chiu et al., 2005) and these were therefore

not examined in mutant glands.] 76B.GFP expression is also

expanded in single cells in circulation or those in microtumors in

the hemolymph (supplementary material Fig. S2M–P). This

expanded expression of 76B.GFP parallels the expression

dynamics of ZCL2897 (supplementary material Fig. S2E–L) in

the mutants.

Ubc9 is expressed throughout the lymph glands

Ubc9 protein is ubiquitously expressed in the anterior and

posterior lobes of the control third instar animals, in both,

medulla (nuclear and cytoplasmic) and cortex (mainly nuclear;

supplementary material Fig. S4A–D’). In addition to the diffuse

nuclear signal (supplementary material Fig. S4B,B’,D,D’),

speckles are also present (supplementary material Fig. S4B,B’;

white arrows). Ubc9 is also expressed in the dorsal vessel

(supplementary material Fig. S4A,C,E,G; star). Ubc94-3/5

mutants exhibit significantly lower levels of the protein in the

entire organ (supplementary material Fig. S4E–H’). Both

hypomorphic alleles have been previously characterized

molecularly (Apionishev et al., 2001).

SUMO pathway components in hematopoiesis

If changes observed in Ubc9 mutant hematopoietic organ are due

to loss of sumoylation, then other enzymes of the sumoylation

cascade should be similarly required. To test this idea, we

examined larvae carrying loss-of-function mutations in E1

(Aos1c06048) and E3/PIAS (Su(var)2-101/Su(var)2-102) genes.

E1 is an activating heterodimer of Aos1 and Uba2 subunits, while

PIAS, encoded by Su(var)2-10, serves as the E3 ligase. Like

Ubc9 glands, Aos1 and PIAS glands exhibit significant activation

of ZCL2897 (Fig. 3A–C). Mutants in each background produce

hematopoietic tumors (Fig. 3D,E) marked by increased

expression of ZCL2897. Numerous lamellocytes appear in

dispersing anterior lobes and in circulation (Fig. 3A–E and

M.K. and S.G., unpublished data).

To test if Dome.GFP expression is compromised by loss of

sumoylation enzymes, we performed knockdown of E1 subunits

via RNAi. Knock-down of either Aos1 or Uba2 led to significant

reduction of the Dome.GFP expression, lamellocyte

differentiation, anterior lobe dispersal (Fig. 3F–H), and

tumorogenesis (Fig. 3I,J). These observations parallel those for

Ubc9 mutants and demonstrate that sumoylation is a fundamental

mechanism through which cell division and differentiation of

hematopoietic progenitors is simultaneously regulated.

Ubc9 microtumors arise from progenitor hyperplasia of anterior
and posterior lobes

To more directly study the role of Ubc9 in the cell cycle, we

stained lymph glands in late third instar stage (day 6.5–7) for

phospho-histone H3 (Fig. 4A–F). At this stage, most control

animals pupariated or are about to pupariate; their lymph gland

lobes are relatively large and mitotically active (Fig. 4A–C). In

mutants, the anterior lobes are dispersed with only few cells

remaining (Fig. 4D, outline). The enlarged posterior lobes have

numerous mitotically-active cells; these lobes show signs of

detachment from the dorsal vessel (e.g., in Fig. 4E–F, only single

partially detached posterior lobes are visible). Lobes of both PL1

and PL2 are severely affected (Fig. 4E–F, merged confocal Z

Fig. 3. Sumoylation enzymes in larval

hematopoiesis. (A–E) ZCL2897 (green) expression in
wild type (A), Aos12/2 (B) and PIAS2/2 (C) lymph
glands and in tumors of Aos12/2 (D) and PIAS2/2

(E) larvae. (F–H) Dome.GFP (green) in control
lymph gland (F, without RNAi constructs). Reduction
of Dome.GFP in lymph glands expressing

Dome.Aos1RNAi (G) and Dome.Uba2RNAi

(H). (I, J) Tumors form in animals expressing
Dome.Aos1RNAi (I) and Dome.Uba2RNAi (J). Parental
UAS-Aos1RNAi and UAS-Uba2RNAi classes do not
produce tumors. Confocal sections (A–C,F,H,J) and
fluorescent microscopy (D,E,G,I). Scale bars: 50 mm.
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sections) and the number of phospo-histone H3-positive cells

ranges between 200–800 per posterior lobe set, compared to 30–

80 phospho-histone H3-positive cells in the corresponding

control lobes.

To clarify the identity of mitotic cells and examine their

relation to Dome.GFP expression, we stained anterior lobes of

slightly younger early 6-day lymph glands (where Dome.GFP is

still detectable) and visualized differentiated plasmatocytes (anti-

Nimrod C antibody) or lamellocytes (anti-Atilla antibody) with

anti-phospho-histone H3 antibody. Most of the Dome.GFP cells

in control glands are phospho-histone H3-negative, confirming

proliferative quiescence of this cell population (Fig. 4G,G1,I,I1,

arrowheads indicate mitotic cells). Not surprisingly, markers for

mitosis and Nimrod C rarely colocalized in cells of either

genotype (Fig. 4G–H1, arrow). None of the lamellocytes were in

division (Fig. 4I–J1). Notably however, loss of Dome.GFP

precedes increase in proliferation, as phospho-histone H3

staining is observed in regions of mutant lobes with low

Dome.GFP signal, but only rarely among the Dome.GFP-

positive cells (Fig. 4H,H1,J,J1).

Collectively, these observations strongly suggest that the solid

compact large Ubc9 microtumors result primarily from the

excessive mitoses in the lymph gland lobes. The expanded lobes

are severed from the dorsal vessel to become free-floating

microtumors. Some small tumors and aggregates are likely

derived from clusters of cells dispersed from the anterior lobes.

These conclusions are supported by the following: (1) Extensive

mitoses and overgrowth in the anterior and posterior mutant lobes

of 6 to 7 day old organs and their partial dispersal (Figs 1, 3, 4, 5,

supplementary material Figs S1, S2). (2) Massive overgrowth of

the remaining posterior lobes with enhanced expression of

ZCL2897 (Figs 1K, supplementary material Fig. S2J,L,

supplementary material Fig. S3D,F) or 76B (Fig. 2E,

supplementary material Fig. S2O,P) in the lobes and

Fig. 4. Overproliferation of immature

cells in Ubc9 lymph gland.

(A–F) Phosphorylated histone H3 (PH3,
white) in 6.5–7-day L3 Ubc92/+ AL,
PL1, PL2 (A,B,C, respectively) and
Ubc92/2 AL (D; remaining cells
outlined), PL1, PL2 (E,F, respectively).
Star marks DV. Optical Z-sections

merged (A–C,E–F). Mutant PL1 and
PL2 (E,F) are partially detached from
the DV and misaligned; lobe orientation
(top – anterior, bottom – posterior) is
reverse of the DV. (G–J1) Dome.GFP

(green), PH3 (white; arrowheads) and
Nimrod C (red, G–H1), or Atilla (red, I–

J1) in 6-day AL in Ubc92/+

(G,G1,I,I1) and Ubc92/2

(H,H1,J,J1) animals. PH3/Nimrod C
localization in the same cell (G1, arrow).
Regions indicated in G,H,I,J magnified
in G1,H1,I1,J1, respectively. Confocal

sections (A–J1). Scale bars: 50 mm.
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microtumors. (3) The morphologies of overgrown ZCL2897hi and

76B.GFPhi lobes match those of the microtumors in the

hemolymph. (4) The time of microtumor appearance in the

hemolymph correlates with observed detachment of the

overgrown lobes from the dorsal vessel.

Ubc9 function is essential in hematopoietic progenitors

To delineate the spatio-temporal requirement of Ubc9 in

restraining division and differentiation of hematopoietic

progenitors, we provided wild type Ubc9 protein to these

populations via Dome-Gal4 and 76B-Gal4. The experimental

rescue class (Ubc9; Dome.Ubc9wt) animals exhibit

simultaneous and remarkable amelioration from the differential

effects of the mutation on the anterior and posterior lobes: (1)

The normal temporal and spatial regulation of the Dome

promoter is restored in both anterior and posterior lobes and

cells of the dorsal vessel (Fig. 5A–C). (2) The normal course of

lobe development is restored, i.e., not only are the rescued

posterior lobes comparable in size to control posterior lobes, they

remain tethered to the dorsal vessel. (3) Even though the cortical

zone of some rescue class glands shows differentiating

lamellocytes, the overall proportions of the medullary and

cortical zones return to normal. Overexpression of

Dome.Ubc9wt reduces the number of Dome.GFP cells very

slightly (Fig. 5D). (4) A stark reduction in tumorogenesis is noted

as reduction in the proportion of animals carrying free

microtumors (supplementary material Fig. S5D; microtumor

penetrance from 75% to 11%) or aggregates (clusters of 15–50

cells; supplementary material Fig. S5E; from 82% to 23%). Other

non-hematopoietic defects, i.e., delay in the onset of pupariation

and adult lethality, are also rescued. These rescued adults carry

no visible microtumors.

Significantly, like Dome.Ubc9wt, 76B.Ubc9wt also rescues

Ubc9 defects. Since its expression is high in mutant cells

(Fig. 2D,E), it is possible to visualize the remedial effects of

76B.Ubc9wt as it shrinks the GFP-positive cell population,

restores coherent lymph gland lobes (I.P. and S.G., unpublished

data), prevents posterior lobe detachment, and reduces the tumor

burden (supplementary material Fig. S5F–I).

In contrast to the full rescue with the Dome.Ubc9wt and

76B.Ubc9wt transgenes, we found that large microtumors

persisted with Collagen.Ubc9wt expression (supplementary

material Fig. S6A–D; Cg-Gal4 is expressed in the lymph gland

cortical zone, circulating hemocytes, and fat body) (Asha et al.,

2003). All together, these observations are consistent with the

interpretation that even though Ubc9 influences all hematopoietic

compartments and the integrity of the lymph gland, the primary

function of the protein is to maintain quiescence in hematopoietic

progenitors. Sumoylation appears to serve a critical tumor-

suppressive function by regulating the gene expression and the

cell cycle of hematopoietic progenitors of the third instar larval

lymph gland.

Ubc9 hyperplasia is niche-independent

To examine the requirement for Ubc9 in the niche, we compared

niche morphology and size, and the membranous projections

emanating from the niche into the medullary zone (Krzemien et

al., 2007; Mandal et al., 2007) in heterozygous and mutant

glands. We found no significant difference in the niche size,

measured either as the number of cells expressing Antennapedia

protein (supplementary material Fig. S7A–C, 5 day old animals)

or Antp.GFP (supplementary material Fig. S7D–F, 6 day old

animals). There was no difference in the niche projections, which

were sparse in both backgrounds (supplementary material

Fig. 5. Dome.Ubc9wt restores Ubc9 lymph gland size and

Dome.GFP expression. (A–D) Dome.GFP in Ubc92/+

(A); Ubc92/2 (B); Ubc92/2, Dome.Ubc9wt (C); Ubc92/+,
Dome.Ubc9wt (D). Asterisk (DV); dotted line outlines the lobes

(A–D). Confocal sections (A–D). Scale bars: 50 mm.
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Fig. S7D,E). Cells of the dorsal vessel immediately adjacent to

the niche express Antp (by both criteria), although we found no

difference in its expression between heterozygous and mutant

glands (supplementary material Fig. S7A,B,D,E; asterisks). An

occasional population of Antp.GFP cells is found in the

posterior lobes of the mutant or in microtumors (M.K. and

S.G., unpublished data).

To link Ubc9 function in the niche to overproliferation, we

examined Ubc92, Antp.Ubc9wt progeny. These rescue class

larvae did not experience relief from hematopoietic defects

(supplementary material Fig. S7G–K) and died during pupal

stages, just like their mutant siblings. Overexpression of Ubc9wt

in the niche (Antp-Gal4) did not modify the niche or lobe

morphology, nor did it induce lamellocytes (M.K. and S.G.,

unpublished data). Likewise, mutants were not rescued when

wild type protein was supplied in the niche by Collier-Gal4

(M.K. and S.G, unpublished data) (Crozatier et al., 2004). These

observations demonstrate that progenitor hyperplasia in mutants

is niche-independent and that its function is autonomous with

respect to the progenitor pool.

Loss of Ubc9 is linked to reduction of Dacapo levels

Protein interaction data suggested direct association of Ubc9 with

Drosophila CDK inhibitor Dacapo (Dap) (Stanyon et al., 2004).

To test if Dap levels are affected in Ubc9 cells, we stained lymph

glands with anti-Dap antibody (described in de Nooij et al.) (de

Nooij et al., 1996). In control glands, levels of Dap protein differ:

cytoplasmic Dap is somewhat higher in the compact region of the

medullary zone (dotted lines Fig. 6A,A’), than in the cytoplasm

of Dome.GFP-negative cells. This correlation is maintained in

Ubc9 glands, where cytoplasmic Dap signal is significantly

reduced in cells with lower Dome.GFP signal and loss of the

compact architecture (Fig. 6A–B’). The overall correlation

between high Dome.GFP and high Dap signals suggests that

sumoylation maintains quiescence by controlling cell cycle exit

by sustaining high levels of Dacapo. While in both, heterozygous

Fig. 6. Lymph gland cells respond to

cell cycle inhibitors Dacapo/p21 and

human p21 rescues Ubc9

tumorogenesis. (A–B’) Dacapo (red)
and Dome.GFP (green) expression in
L3 Ubc92/+ (A,A’) and Ubc92/2

(B,B’) lymph glands. Indicated regions
(A,A’) are magnified in the insets.
(A’,B’) show Dacapo staining only.
(C–F) Lymph glands with Dome.GFP

(C); Dome.Dap, GFP (D); Dome.p21,

GFP (E) expression; nuclei labeled in
white. Absolute cell numbers in
Dome.GFP; Dome.Dap, GFP;

Dome.p21, GFP (F; average 6 SE,
n>5 animals per genotype); p values

relative to control are shown on the
graph (for Dome.GFP populations with
green highlight, for remaining GFP2

cells with blue highlight). Dotted lines
outline MZ (white) and CZ (yellow).
(G–L) 76B.GFP (green) in Ubc92/+

AL (G), PL1 (H); Ubc92/2 AL (I), PL1

(J); Ubc92/2, 76B.p21, GFP AL
(K), PL1 (L). Outlines: compact tissue
(white line), lobe edges (yellow).
Confocal sections (A–L). Brightness of
images in A–B’ was slightly increased
for clarity without modifying the result.

Scale bars: 50 mm.
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and mutant glands, Dacapo levels are lower in cells outside the

medulla, in both backgrounds Dap protein is clearly detected

(Fig. 6A–B’).

Expression of human p21 relieves Ubc9 overproliferation

Dacapo shares structural and functional similarity with vertebrate

cyclin/cyclin-dependent kinase (CDK) inhibitors, p21/p27 (de

Nooij and Hariharan, 1995; de Nooij et al., 1996; Lane et al.,

1996). Like overexpression of Ubc9wt, both Dome.Dap and

Dome.p21 lead to reduction of the progenitor population

(Fig. 6C–F). The effect of Dome.p21 is stronger than that of

Dome.Dap [n520606384 cells in control (average 6 SD, per

both anterior lobes), to n515666449 in Dome.Dap, and

n59526301 in Dome.p21 (Fig. 6C–F)].

If the primary function of sumoylation is to maintain

quiescence in progenitors, expression of p21 in this population

may be sufficient to partially restore lymph gland homeostasis.

To test this hypothesis, we created Dome.p21; Ubc9 animals.

Unlike Dome.Ubc9wt, Dome.p21 resulted in only temporary

and weak rescue (supplementary material Fig. S8A) presumably

because in Dome.p21; Ubc9 glands, Dome.GFP levels

continue to remain low (M.K. and S.G., unpublished data).

In contrast to Dome.p21, both, 76B.Dap and 76B.p21

prevent overgrowth of the progenitor population in mutant

glands, restoring their normal compact morphology. There is a

decline in the 76B.GFP-positive cells (Fig. 6K,L), the lobes do

not disperse or dislocate, and microtumor penetrance is

significantly reduced (Fig. 6K,L, supplementary material

Fig. S8B). However, when p21 was provided in cells of the

cortical zone and circulating hemocytes (with SrpHemo, Hemese,

Hml, or Cg), we found no evidence of tumor rescue. Thus,

downregulation of Dap expression in Ubc9 mutant lymph gland

progenitors and Ubc9 rescue with 76B.Dap/p21 confirm the

tumor-suppressive function of Ubc9 in the hematopoietic

progenitors and suggest that cell cycle inhibition is likely

maintained through sumoylation.

Discussion
Mammalian cancer stem cells, characterized in many cancer

types, persist for a long time, and like their putative parental

cells, remain proliferatively quiescent. This phenotype is thought

to make them resistant to chemotherapy. Whether quiescence

plays a role in cancer stem cell biology and how these cells retain

proliferative quiescence, despite transitioning into a diseased

state, is not clearly understood (reviewed in Moore and Lyle,

2011). Our studies here provide an important avenue to

investigate the regulatory cell cycle mechanisms of normal and

quiescent cancer cells at the earliest stage of cancer development.

Tumorogenesis results from failure to quiesce, dysplasia of

heterogeneous progenitors, and dispersal and detachment

of lobes

In a quest to identify the source of microtumors in Ubc9 mutants,

we discovered that even though Ubc9 protein is ubiquitously

expressed, it plays a specific and essential, niche-independent

function in maintaining proliferative quiescence within

progenitors of the medullary and transition zones. Reduction of

sumoylation via knockdown of any of the other core enzymes of

the pathway also leads to progenitor dysplasia and

tumorogenesis. Once detached from the dorsal vessel, the

microtumors float in the hemolymph (Fig. 1, supplementary

material Figs S1, S2, Fig. 3, supplementary material Fig. S5).

The progenitor population that serves as the source of

microtumors is heterogeneous with respect to Dome.GFP and

ZCL2897 expression. One of the earliest detectable effects of the

mutation is on the differential expression of Dome.GFP and

ZCL2897 or 76B.GFP in the expanding population (Fig. 1,

supplementary material Fig. S2, Figs 3, 7). The onset of the

effects of Ubc9 mutation coincides with the period when the

progenitors in the medulla of the anterior lobes undergoes

proliferative restraint (Jung et al., 2005). At the same time, cells

of the posterior lobes lag behind; they continue to divide and

follow a defined heterochronic developmental pattern

(Fig. 1A,B,D, supplementary material Fig. S1A,C). It is

somewhat surprising that even though the Ubc9 mutation has

differential effects on cells of the anterior versus posterior lobes,

the overproliferation defects in both are largely rescued by

ectopic expression of p21/Dap. This observation suggests a

fundamental role for the enzyme in inhibiting cell cycle

progression and conferring quiescence to progenitors. Since the

decline in Dome.GFP expression precedes overproliferation in

mutant lobes (Fig. 4) and each defect can be rescued by the

expression of wild type Ubc9, it is possible that Dome.GFP

expression marks the quiescent cell state. The inability of p21 or

Dap to restore normal Dome.GFP expression attests to the

notion that the sequential series of events, even at the earliest

stages of tumorogenesis, can be genetically teased out in vivo.

While the changes in cell identities in mutant lobes are

complex, the discovery of heterogeneity in the medullary zone

populations of anterior and first posterior lobes is consistent with

recent reports that this population has distinct fate-restricted cell

populations (Krzemien et al., 2010; Minakhina and Steward,

Fig. 7. Sumoylation controls proliferation of progenitor cells along with

Dacapo. Hematopoietic progenitors express high level of either one or both,

ZCL2897 (green) and Dome.GFP (red). Some of these cells and cells in
transition zone express 76B-Gal4 (cyan). At third instar stage, progenitors enter
quiescence. Heterogeneity and absence of mature marker expression suggest
similarity to mammalian transit amplifying cells (Morrison and Spradling,
2008; Shaker and Rubin, 2010) or Drosophila testis progenitors (Shivdasani
and Ingham, 2003). We propose that sumoylation regulates multiple events
including maintenance of high levels of Dacapo protein in these cells. In the

absence of sumoylation enzymes Aos1/Uba2, Ubc9, and PIAS, these cells fail
to quiesce and progress into G2/M phase (cells with purple outline) and
misdifferentiate (dark green cells); dysplasia and tumorogenesis follow.
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2010). Our results suggest that lymph gland progenitors are
similar to mammalian transit amplifying cells (Morrison and

Spradling, 2008; Shaker and Rubin, 2010) or those in the
Drosophila testis (Shivdasani and Ingham, 2003), that have
limited proliferative capacity and possess a restricted

differentiation potential relative to their multipotent stem cells.
With an appropriate immune or developmental cue, Drosophila

hematopoietic progenitors may re-enter the cell cycle to produce
differentiated progeny.

What is the physiological significance of retaining some cells
in quiescence at this stage in larval life? One possibility is that

mitotic exit shelters progenitors from precocious development
and provides a mechanism that determines the number of times
they must divide before they differentiate. Additionally, a reserve
of progenitors, ready to divide and differentiate rapidly guards

larvae against natural enemies such as parasitic wasps that attack
them at this stage of the life cycle (Sorrentino et al., 2002). This
tactic parallels mitotic exit of hematopoietic stem cells (HSCs) in

mice about three weeks after birth, or in humans, at about four
years of age, when they become adult HSCs. The dormant adult
HSCs are activated as the organism recovers from injury

(Trumpp et al., 2010).

This similarity in strategies between flies and humans in
normal hematopoiesis is further reinforced even when the process

becomes aberrant. Like in dUbc9 mutants, uncontrolled
proliferation of progenitors in human leukemias can occur
independently of the signals from the niche (supplementary

material Fig. S7) (Passegue et al., 2003). It is intriguing that
Antp, a niche marker, is also expressed in the dorsal vessel
(supplementary material Fig. S7). Furthermore, Dome.GFP

expression, undetectable in normal cells, is strongly activated

in mutant cells of the dorsal vessel (Figs 1, 5). Thus, it is possible
that cues from the cells of the dorsal vessel influence the state of
the hematopoietic progenitors and integrity of the lobes.

Conversely, the status of the progenitors themselves may
determine the association of the lobes to the dorsal vessel.
Further analysis of Ubc9 mutants will clarify the role of the

microenvironment in supporting progenitor quiescence and
maintaining tissue integrity.

Dacapo/p21 contributes to progenitor quiescence

A key mechanism by which sumoylation maintains proliferative
quiescence in larval hematopoiesis is cell cycle regulation

through Dacapo/p21. In the embryo, Dap/p21 binds to cyclin
E/Cdk2 complexes to block the G1/S transition in cell cycle
(Lane et al., 1996). Furthermore, the human p21 protein can

block mitosis in the Drosophila eye (Tseng and Hariharan, 2002).
This function of Dap/p21 in larval hematopoiesis is similar to the
roles of p27KIP1 (Fero et al., 1996) or p21CIP1/WAF1 (Cheng et al.,

2000) in enforcing HSC quiescence.

We found that Dap is expressed in Dome.GFP progenitors in
wild type and mutant glands, and is reduced shortly after

Dome.GFP is downregulated in mutant glands (Fig. 6).
Overexpression of Dap/p21 in these cells leads to decrease in
progenitor number. It is noteworthy that dap mutants do not

exhibit apparent tumorous overgrowth (M.K. and S.G.,
unpublished data) (de Nooij et al., 1996; Lane et al., 1996), a
trait that is similar to young p21 null mice (Adnane et al., 2000;

Martin-Caballero et al., 2001). However, with age, or in the
presence of other mutations (e.g., oncogenic Ras), p21 null mice
are prone to developing tumors (Adnane et al., 2000; Martin-

Caballero et al., 2001; Jackson et al., 2002). It is therefore very

likely that tumorogenesis in Ubc9 mutants is supported not only

by loss of Dap/p21 but also by the activation of other oncogenic
and pro-inflammatory proteins (Fig. 7).

The mechanism by which Ubc9 controls Dap protein levels is

not known. dap transcription has been studied in embryonic
development where it regulates mitotic exit (de Nooij et al., 1996;

Lane et al., 1996; Liu et al., 2002). High dap transcript levels in

stage 16 embryonic central and peripheral nervous system, or in

differentiating postmitotic cells of a developing eye disc,

correlate with exit from mitosis (de Nooij et al., 1996; Lane et

al., 1996; Liu et al., 2002). These observations suggest that

regulation of dap transcription is coupled with mitotic exit, and it
is therefore possible that its transcription in the lymph gland

progenitors is similarly synchronized. Microarray experiments of

whole Ubc9 larvae compared to their heterozygous siblings

indicate dap transcript downregulation (S.G., unpublished data).

An intriguing possibility is that Dacapo itself, or another protein

in complex with Dap, is a sumoylation target. In high throughput
yeast two-hybrid assay, Dap was found to physically interact with

Ubc9 (Stanyon et al., 2004). Future experiments including

biochemical analyses of Dap and interacting proteins are

required to test this idea.

Unscrambling Ubc9 functions in cancer and inflammation

The causal relationship between cancer and inflammation is now

widely accepted, even though the mechanisms that establish and

sustain this relationship remain unresolved (Karin and Greten,
2005; Mantovani et al., 2008). Drosophila Toll-Dorsal pathway

not only manages immunity, but also governs hematopoietic

development (Qiu et al., 1998; Govind, 2008). Ubc9 microtumor

development requires Rel/NF-kappa B family transcription

factors Dorsal and Dif (Chiu et al., 2005; Huang et al., 2005).

Aberrant activation of NF-kappa B signaling in Ubc9 mutants
resembles hematopoieitic malignancies in vertebrates that arise

due to ectopic germline or somatic disruption of the pathway

(Courtois and Gilmore, 2006).

We recently discovered that sumoylation provides a

homeostatic mechanism to restrain systemic inflammation in

the fly larva, where it keeps the Toll/Dorsal-dependent immune

response in check. Ubc9 controls the ‘‘set point’’ by maintaining

normal levels of IkB/Cactus protein in immune tissues

(Paddibhatla et al., 2010). The Ubc9 cancer-inflammation
model offers novel opportunities to examine the dynamics of

tumor growth, its relationship to metastasis, and the links

between cancer and inflammation. Ubc9 tumors are sensitive to

aspirin (I.P. and S.G., unpublished results). This model is well-

suited for identifying and testing drugs that target highly-

conserved biochemical mechanisms, such as sumoylation, which

oversee self-renewal pathways in progenitor populations.

Material and Methods
Fly strains and culture
The following lines were obtained: y w; Ubc94-3 FRT40A/CyO y+ and y w; Ubc95

FRT40A/CyO y+ (Dr S. Tanda) (Chiu et al., 2005); w1118;

PBac{w+mC5PB}Aos1c06048/TM6B, Tb1 (17744) and y w; Smt3K06307/CyO, act-

GFP (10419; Drosophila Bloomington Stock Center); PIAS alleles Su(var)2-101/

CyO, act-GFP and Su(var)2-102/CyO, act-GFP (Dr G. Karpen) (Hari et al., 2001);
MSNF9mo-mCherry from Dr R. Schultz (Tokusumi et al., 2009), Dome-MESO

(Hombria et al., 2005; Krzemien et al., 2007). ZCL2897 was obtained from Yale
GFP Protein Trap Collection (Morin et al., 2001).

UAS lines: UAS-Aos1RNAi (Vienna Stock Center) and UAS-Uba2RNAi (TRiP,
Harvard Medical School); UAS-Ubc9wt (Dr S. Tanda) (Apionishev et al., 2001);
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UAS-p21 and UAS-Dap (Dr I. Hariharan) (Tseng and Hariharan, 2002); UAS-

mCD8-GFP (5137), UAS-DsRed (6280) and UAS-myr-mRFP (7119) from
Drosophila Bloomington Stock Center.

Gal4 lines: Domeless-Gal4 (Bourbon et al., 2002) and Collier-Gal4 (Krzemien
et al., 2007) from Dr M. Crozatier, Antennapedia-Gal4 (Dr S. Minakhina)
(Emerald and Cohen, 2004), HemolectinD-Gal4 (Sinenko and Mathey-Prevot,
2004) and Collagen-Gal4 (7011; Bloomington Stock Center) (Asha et al., 2003);
Hemese-Gal4 (Dr I. Ando) (Zettervall et al., 2004) and Serpent-Gal4 (Bruckner et
al., 2004) are expressed only in some lymph gland cells and circulating hemocytes;
76B-Gal4 (Harrison et al., 1995).

The ZCL2897, UAS and Gal4 transgenes were integrated into mutant
backgrounds by standard crosses. ZCL2897 and Dome.myr-mRFP combination
was lethal in the Ubc94-3/5 background.

Drosophila cultures were maintained on standard media. Six- or twelve-hour
egglays were cultured at 23.5 C̊. Ubc94-3/5 and Su(var)2-101/2 were studied.
Comparison of mutant and heterozygote was done on the same day, where
available. Heterozygotes pupate at day 6; some of the Ubc9 mutants remain in L3
at day 8.

Rescue experiments
The Gal4/UAS system (Brand and Perrimon, 1993) was used. Dome.Ubc9wt

rescue: y w UAS-Ubc9wt/Y; Ubc95, UAS-mCD8-GFP/CyO y+ and y w Dome-Gal4/
FM7c; Ubc94-3/CyO y+ flies were crossed; simultaneous cross: y w/Y; Ubc95,

UAS-mCD8-GFP/CyO y+ and y w Dome-Gal4/FM7c; Ubc94-3/CyO y+; F1:
heterozygote Dome-Gal4/y w; Ubc95, UAS-mCD8-GFP/CyO y+, mutant Dome-

Gal4/y w; Ubc95, UAS-mCD8-GFP/Ubc94-3, rescue Dome-Gal4/y w UAS-Ubc9wt;

Ubc95, UAS-mCD8-GFP/Ubc94-3 and overexpression Dome-Gal4/y w UAS-

Ubc9wt; Ubc95, UAS-mCD8-GFP/CyO y+ classes were scored.

Remaining rescues were similarly designed: UAS-Ubc9wt, UAS-Dap, or UAS-

p21-carrying flies in Ubc94-3 or Ubc95 background were crossed to those carrying
selected Gal4 (Dome, 76B, Hemolectin, Collagen, Hemese, Serpent, Antp) and
Ubc95 or Ubc94-3 allele; UAS-GFP or UAS-mCD8-GFP transgenes were carried
by either one, or both parents. The F1 Ubc94-3/5 mutant combination, rescue,
overexpression and heterozygous control were scored.

Tumor penetrance in larvae was scored after dissection (at a magnification of
200 x), except in 76B.Ubc9wt and 76B.p21 rescue experiments where tumors
were scored in intact animals. Since tumor penetrance is inherently variable, for
well-controlled conditions and comparable results, all control, mutant, rescue and
overexpression animals were grown and scored simultaneously under the same
conditions. All experiments were performed in duplicate or triplicate.

Immunohistochemistry
Standard antibody staining protocol was used (described in Paddibhatla et al.)
(Paddibhatla et al., 2010). Antibodies used: rabbit anti-phospho-histone H3 (1:200,
Molecular Probes), mouse anti-P1/Nimrod C1 and mouse anti-L1/Atilla (1:10)
(Vilmos et al., 2004; Kurucz et al., 2007a), mouse anti-Prophenol Oxidase (1:10,
Dr T. Trenczek, University of Giessen), rabbit anti-Ubc9 (1:1500, received from
Dr R. Tanguay) (Joanisse et al., 1998), anti-Antennapedia 8C11 (1:20,
Developmental Studies Hybridoma Bank, The University of Iowa), mouse anti-
Dacapo (1:4, received from Dr I. Hariharan (de Nooij and Hariharan, 1995), mouse
anti-beta-galactosidase 40-1a (1:10, Developmental Studies Hybridoma Bank, The
University of Iowa). Fluorescently-labeled secondary antibodies (Molecular
Probes and Jackson Immunological), Phalloidin (Invitrogen) and nuclear dye
Hoechst 33258 (Molecular Probes) were used.

Image acquisition and processing
Whole larvae were imaged in Leica stereomicroscope. Images of dissected and
stained tissues were acquired in a Zeiss Laser Scanning Confocal or Zeiss
Axioscope 2 Plus Fluorescence microscopes, and formatted in Zeiss LSM5 and
AxioVision LE 4.5 software, respectively. Figures were assembled in Adobe
Photoshop CS5. Cell counts were performed using Volocity software (Perkin
Elmer). Nuclear staining is represented in the figures in blue, unless stated
otherwise. Slight adjustments of brightness and contrast were applied equally to
images of both, control and mutant, where applicable, and are explicitly stated in
corresponding figure legend. None of these modifications affect or modify the
result in a significant way.
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