
Parallel Programming

using
Functional Languages

Paul Roe, M. Eng. (York)

A thesis submitted for the degree of Doctor of Philosophy

Department of Computing Science,
University of Glasgow.

February 1991

© Paul Roe 1991

Acknowledgements

I am greatly indebted to Simon Peyton Jones, my supervisor, for his encouragement and technical

assistance. His overwhelming enthusiasm was of great support to me. I particularly want to
thank Simon and Geoff Burn for commenting on earlier drafts of this thesis. Through his

excellent lecturing Cohn Runciman initiated my interest in functional programming. I am
grateful to Phil Trinder for his simulator, on which mine is based, and Will Partain for his help

with LaTex and graphs. I would like to thank the Science and Engineering Research Council of
Great Britain for their financial support. Finally, I would like to thank Michelle, whose culinary
skills supported me whilst I was writing-up.

The Imagination

the only nation worth defending
a nation without alienation
a nation whose flag is invisible
and whose borders are forever beyond the horizon
a nation whose motto is why have one or the other
when you can have one the other and both
a nation whose badge is a chrysanthemum of sweet wrappings
maybe
a nation whose laws are magnificent
whose customs are not barriers
whose uniform is multiform
whose anthem is improvised
whose hour is imminent
and whose poetry does not have many laughs

John Hegley, 1990

ii

Contents

1 Introduction 1

1.1 Functional programming
1

1.2 Parallel programming
4

1.3 Parallel functional programming 5

1.4 This thesis 8

2 Parallel machines 12

2.1 Parallel computer architecture 12

2.2 Managing parallelism
13

2.3 Conservative versus speculative parallelism
14

2.4 Distributed machines: task and data placement
15

2.5 Shared memory machines: GRIP 16

2.6 Scheduling: Dag&'s result 17

2.7 The target machine
18

3 Parallel functional programming 19

3.1 A parallel functional language
....

20

3.2 Implicit expression of parallelism
24

3.3 Explicit expression of parallelism
31

3.4 Algorithm classes and programming paradigms
32

3.5 Conclusions
.......................................

40

4 The experimental set-up 42

4.1 The simulators
42

iii

CONTENTS
iv

4.2 The LABIL interpreter versus the Pascal interpreter
44

4.3 The information collected and graphs
45

5 Squigol 46

5.1 Introduction
46

5.2 Basics ..
46

5.3 Parallel Squigolling 51

5.4 Example: all shortest paths
56

5.5 Example: n-queens
63

5.6 Example: A parallel greedy algorithm 73

5.7 Summary
..

83

5.8 Conclusions
. 83

6 Parallelism control 85

6.1 Introduction
.

85

6.2 What should be controlled?
86

6.3 A survey of parallelism control methods
87

6.4 The goals of experiments
92

6.5 Data parallelism
93

6.6 Divide and conquer algorithms
108

6.7 Summary
..

146

6.8 Conclusions
.......................................

147

7 Bags 148

7.1 Survey
..

149

7.2 A bag abstract data type 150

7.3 Bag comprehensions
152

7.4 Some useful bag functions
. 153

7.5 Bag laws and semantics
154

7.6 Bag implementation
..................................

158

7.7 Parallel bags performance
169

CONTENTS V

7.8 Sets ...
171

7.9 Examples of bags use
173

7.10 Summary 176

7.11 Conclusions
177

8 Performance analysis and debugging 178

8.1 Introduction
178

8.2 Simple analysis
181

8.3 Formal performance analysis
192

8.4 Using the semantics
203

8.5 Abstract simulation
213

8.6 Debugging 227

8.7 Summary
234

8.8 Conclusions 235

9 Further work 237

9.1 Expressing parallelism and parallel algorithms
237

9.2 Parallelism control
244

9.3 Performance
...........................

'.
247

10 Conclusions 249

10.1 A parallel functional language 249

10.2 Squigol
...... 250

10.3 Parallelism control
250

10.4 Bags 251

10.5 Performance 251

10.6 A final comment
252

Summary

It has been argued for many years that functional programs are well suited to parallel evalua-
tion. This thesis investigates this claim from a. programming perspective; that is, it investigates

parallel programming using functional languages. The approach taken has been to determine

the minimum programming which is necessary in order to write efficient parallel programs. This
has been attempted without the aid of clever compile-time analyses. It is argued that parallel
evaluation should be explicitly expressed, by the programmer, in programs. To do achieve this

a lazy functional language is extended with parallel and sequential combinators.

The mathematical nature of functional languages means that programs can be formally derived
by program transformation. To date, most work on program derivation has concerned sequential
programs. In this thesis Squigol has been used to derive three parallel algorithms. Squigol is a
functional calculus for program derivation, which is becoming increasingly popular. It is shown
that some aspects of Squigol are suitable for parallel program derivation, while others aspects
are specifically orientated towards sequential algorithm derivation.

In order to write efficient parallel programs, parallelism must be controlled. Parallelism must
be controlled in order to limit storage usage, the number of tasks and the minimum size of
tasks. In particular over-eager evaluation or generating excessive numbers of tasks can consume
too much storage. Also, tasks can be too small to be worth evaluating in parallel. Several

program techniques for parallelism control were tried. These were compared with a run-time
system heuristic for parallelism control. It was discovered that the best control was effected by

a combination of run-time system and programmer control of parallelism.

One of the problems with parallel programming using functional languages is that non-
deterministic algorithms cannot be expressed. A bag (niultiset) data type is proposed to allow a
limited form of non-determinism to be expressed. Bags can be given a non-deterministic parallel
implementation. However, providing the operations used to combine bag elements are associa-
tive and commutative, the result of bag operations will be deterministic. The onus is on the
programmer to prove this, but usually this is not difficult. Also bags' insensitivity to ordering
means that more transformations are directly applicable than if, say, lists were used instead.

It is necessary to be able to reason about and measure the performance of parallel programs.
For example, sometimes algorithms which seem intuitively to be good parallel ones, are not.
For some higher order functions it is possible to devise parameterised formulae describing their
performance. This is done for divide and conquer functions, which enables constraints to be
formulated which guarantee that they have a good performance. Pipelined parallelism is difficult
to analyse. Therefore a formal semantics for calculating the performance of pipelined programs
is devised. This is used to analyse the performance of a pipelined Quicksort. By treating the

VI

SUMMARY

performance semantics as a set of transformation rules, the

may be achieved by transforming programs. Some parallel
programming errors. A pragmatic method of debugging such
by some examples.

vi'

simulation of parallel programs
programs perform poorly due to
programming errors is illustrated

Chapter 1

Introduction

1.1 Functional programming

This thesis contributes some ideas for programming parallel computers using functional lan-

guages. This chapter separately discusses the advantages of functional programming and the
problems of parallel programming. Subsequently the benefits of parallel programming with func-
tional languages are described. Lastly the content of the whole thesis is outlined, along with the
contributions which have been made.

1.1.1 Why functional languages?

Functional languages are programming languages which express computation in terms of pure
functions. A program is expressed as a function from its input to its output. These languages

are radically different from imperative languages and they are currently the subject of much
research. Functional languages have several important advantages over conventional imperative
ones. Many have advocated functional programming and the following references are recom-
mended [1,7,56,110].

Perhaps the most important advantage they have, as described by John Hughes [56], are their

powerful facilities for modular design. In particular higher order functions enable common pat-
terns of computation to be captured. This may be at a relatively low level such as a function
for applying another function element-wise across a data structure or it may be the abstraction
of a whole algorithm, for example a generic branch and bound algorithm. Conventional imper-

ative languages do not include such powerful abstraction facilities. It is not that conventional
languages have fewer abstraction facilities; it is that their facilities are less general. For example
in languages like Pascal it is not possible to write generic list processing functions. This is
due to limitations of the type system and limitations of procedural abstraction. Conventional
languages are much more limited in the kind of abstractions which may be defined and used.
The better the abstraction facilities a language offers, the more ways there are of breaking up
(and hence solving) a problem. Abstraction facilities are the key to modularisation and hence
to programming in the large. Thus functional languages are good for programming in the large.

There are at least two other benefits of functional programming languages. The first is that

1

CHAPTER 1. INTRODUCTION 2

they are mathematically tractable and hence they can be reasoned about more easily than

conventional languages. This also makes program derivation much easier. The second benefit is

that functional programs are amenable to parallel evaluation. This is the subject of this thesis;

the basis for this is discussed in Section 1.3.

1.1.2 The language

The language used throughout this thesis to express program's is based on Miranda'; Bird and
Wadler's book provides an excellent introduction to functional programming in this style of
language [11]. The examples used in this thesis are all quite simple and they should be easily
understood with a little knowledge of a modern functional language. The key aspects of the
functional language are:

" it is purely functional; there are no side effects, such as assignment

" it is polymorphically typed

" it is lazy

" it is curried

Some features of the language are now sketched. The language uses layout to indicate the

scoping of identifiers and all valid program lines commence with a chevron, for example:

> power4 x=y*y
> where
>y=x*x

The function power4 raises a number to the fourth power. The definition of y is local to the

expression y*y; the layout expresses this.

Lists are a commonly used data type. The empty list is represented by [] and the infix function
for appending a single element onto the front of a list is represented by :. Lists may be written
thus [1,2,3] which is a shorthand for 1: (2: (3: C])). Functions on lists may be defined by

cases. For example the higher order function map, which applies a function to each element in a
list, may be written thus:

> map :: (*->**) -> [*] -> [**]
>mapf Q= [3
> map f (x: xs) =fx: map f xs

The first line shows the type of map; it is optional and indicates that map takes a function from
* to ** and a list of *s and produces a list of **s. The type variables * and ** are universally
quantified: they range over all types. Patterns such as [] and x: xs are matched against the list

'Miranda is a trademark of Research Software Limited.

CHAPTER 1. INTRODUCTION 3

argument of map. If x: xs matches the list argument, then x will be bound to the head of the list

and xs will be bound to the tail of the list. An example use of map is: to raise all the numbers
in the list [1,2,3,4] to the power four, the expression map power4 [1,2,3,4] could be used.

Function composition is denoted by the infix . combinator. For example a function to calculate
sine to the power four is: power4 . sin.

Two useful list operators are # and !. The # operator determines the length of a list, for

example # [99,100,1011 is 3. The ! operator is an infix operator for indexing lists, for example
[33,34,35,36] !1 is 34 (list indexing starts from 0).

Equations may be guarded. For example a function, filter. An application such as filter p1
returns a list of all the elements from 1 which satisfy the predicate p:

> filter :: (*->bool) -> [*] -> [*]
> filter p [] = []
> filter p (x: xs) = x: filter p xs, px
>= filter p xs, otherwise

The expression px is a guard; the expression it guards (x: filter p xs) is only returned if the
guard is true. Patterns and guards are tested sequentially from the top equation downwards,
until a match and true guard are found. The otherwise guard represents a default guard, taken
if none of the other guards are true.

List comprehensions are also available (these are analogous to set comprehensions in Zermelo-
Frankel set theory). For example the filter function could have been defined thus:

> filter p1= [xi x<-1; p x]

The list comprehension [xI x<-1; p x] may be read as: the list of x's such that each x is
drawn from 1 and px is true. The expressions x<-1 and px are qualifiers; x<-1 is a generator
and px is a filter.

Algebraic data structures like lists and trees can be defined. Binary trees may be defined thus:

> bintree * :: = Node (bintree *) (bintree *)
> Leaf *

The Node and Leaf values are constructors like cons (:) and nil ([]) are for lists. Notice that the
type variable * means that bintree's may be defined of any type, for example trees of numbers,
trees of lists etc. However each instance of a. bintree must be homogeneous.

A function to suns a tree of numbers may be written thus:

> treesum bintree num -> num
> treesum = treereduce (+)

CHAPTER 1. INTRODUCTION 4

Notice how this function is only valid for bintree's of numbers (num). The reduction function

on bintrees, treereduce, is defined as:

> treereduce :: (*->*->*) -> bintree * ->
> treereduce f (Leaf x) =x
> treereduce f (Node 1 r) =f (treereduce f 1) (treereduce f r)

This higher order function is useful for defining reductions over binary trees.

A$ symbol may be used to show that a function or constructor is being used as an infix operator,
for example: (Leaf 1) $Node (Leaf 2).

1.2 Parallel programming

There are good reasons why parallel machines are becoming common and hence parallel program-
ming is becoming necessary. Parallel machines can be built which are cheaper than sequential
machines offering the same raw performance. Also the highest absolute performance can only be

achieved with parallel machines. Unfortunately programming parallel machines is much more
difficult than programming sequential ones.

To write a parallel program a programmer must organise a parallel computation [10,68,95].
This involves: partitioning a program into tasks; mapping tasks onto a parallel machine, possibly
dynamically; and arranging for tasks to safely communicate. All but the last issue are discussed
in Chapter 2. However, the biggest problem associated with parallel programming is that of
correctness.

Difficulties arise due to the asynchronous nature of many parallel machines; such machines
are usually programmed with non-deterministic parallel languages. For example networks of
transputers may be programmed using the occam programming language [75]. Deterministic
parallel languages may be reasoned about in the same way as sequential languages. This is
because there is a sequential execution order for a deterministic parallel program, which always
gives the same result as its parallel execution. However for non-deterministic languages this is
not true; in particular all possible execution orders of a program must be considered. Reasoning
about non-deterministic parallel programs is often couched in terms of two program properties:
safety and liveness. Safety properties are analogous to partial correctness issues. They state the
answers a program should produce, if it terminates. Liveness properties state that if something
is supposed to happen, then eventually it will. For example a task wishing to communicate
eventually will do so. These are similar to total correctness issues; a program should eventually
terminate and produce the correct result. The worst breach of liveness is deadlock. Informally,
deadlock arises when a collection of tasks hold resources, a cycle of demands for resources exists
and no preemption occurs. In such a situation no machine progress can be made and the machine
becomes locked up.

Parallel programs' non-determinism also means that testing them is even less useful than testing
sequential programs. Deadlock may not be revealed by testing and deadlock may occur on
some program runs and not on others, with identical data. Debugging in general becomes
very difficult since program results may not be duplicable. For these reasons many formal

CIIAPTER 1. INTRODUCTION 5

methods for reasoning about and deriving parallel programs have been developed [45,72,82,102].

Unfortunately these are all complex reflecting the inherent complexity of these kinds of parallel
languages.

1.3 Parallel functional programming

1.3.1 Parallel evaluation

Functional programs may be evaluated in parallel [91]. Parallelism is achieved by evaluating
function applications and their arguments in parallel. As mentioned in the previous section, the

asynchronous behaviour of parallel machines means that they are usually programmed using non-
deterministic languages. This makes programs' correctness difficult to prove. What of functional
languages? A superficial answer is that the parallel evaluation of functional languages must be
determinate since functions are determinate. However the non-deterministic evaluation of a
functional language will result in a non-deterministic reduction order and this could in theory
yield incorrect or indeterminate results.

A theorem is needed which states that the order in which reductions are performed always yields

equivalent results. A suitable theorem exists for the untyped lambda calculus:

Church-Rosser (I) theorem:

if E may be reduced to Al
and if E may be reduced to N

then there exists an expression T such that
Al may be reduced to T and
N may be reduced to T

A corollary of this means that all sequences of reductions which reduce an expression to a
normal form, will result in the same value (some renaming may be necessary). Any parallel
reduction may be viewed as a particular sequence of reductions: a particular interleaving of
several concurrent reductions. Thus providing a parallel reduction terminates it will always
yield the same value; that is the parallel reduction will be determinate. Furthermore the value
will be the same as if sequential lazy (normal order) reduction had been employed. Unfortunately
the untyped lambda calculus is not a good basis for the functional language being used here.
The functional language used here is typed, has delta rules, uses combinator reduction (not beta
reduction) and reduces expressions to NVIINF. Burn [20] has gone some way to extending the
classical lambda calculus results in order to prove the safety of evaluating functional languages
in parallel.

Certainly, it is necessary to ensure that a parallel reduction terminates if a sequential normal
order reduction would do so. This may be achieved by only evaluating expressions in parallel
whose results will definitely be required. Chapter 3 discusses this issue further.

What about deadlock? Although terminating parallel reduction is deterministic, the reduction
order itself is still non-deterministic. As previously stated deadlock can only arise when there
are a set of tasks holding resources and a cycle of resource demands exists. To understand how
this may arise parallel graph reduction must be understood.

CHAPTER 1. INTRODUCTION

c.

Z
C

n

/ `ý 2

Figure 1.1: A program graph

1.3.2 Parallel graph reduction

6

Parallel graph reduction is the abstract execution mechanism which the functional language is

presumed to use. A functional expression may be represented as a graph. For example consider
the contrived expression bound to res:

>res =x+y
> where
>x=1+2
>y=x+3

The graphical representation of this is shown in Figure 1.1. The (symbols represent function

applications, left sub-graphs are functions and right sub-graphs are arguments. Notice how
shared expressions are represented by shared graph nodes. Recursive expressions are represented
by cyclic graphs. Evaluation proceeds by reducing graphs; for example + reduces both of its
arguments to numbers, then the reflex (node) is overwritten with the result of the addition, see
Figure 1.2.

Graph reduction is the process of locating redexes and reducing them by overwriting them
with their values. Parallel graph reduction involves multiple tasks performing concurrent graph
reduction. To prevent several tasks from reducing the same redex (node) a mutual exclusion
mechanism is needed. This is achieved by tasks marking redexes. Thus in the previous example
(Figure 1.1) the outermost + may reduce its arguments in parallel. (There is not much achieved
by doing this here but it illustrates parallel graph reduction.) Therefore tasks will be created to
evaluate the graphs corresponding to the arguments of + (x and y). The process of creating a
task will be referred to as sparking. Each task will mark redexes it encounters to prevent other
tasks from reducing them. Any task encountering a marked redex will block until the redex

CIIAPTER 1. INTRODUCTION

Reduces to
ný3

-ý 1

Figure 1.2: A reduction

C

!ýc
ý3

'+

1

Figure 1.3: Concurrent reduction

7

becomes unmarked; once unmarked the task will resume. Tasks unmark redexes (nodes) when
they reduce (overwrite) them and they release any tasks blocked on that reden.

In the example, the task evaluating y may block if the task evaluating x has not completed before
it tries to access x. This is shown in Figure 1.3. Node marking has been shown by subscripting
the appropriate node with X or I' to indicate which task is reducing which redex. Once the X
task has evaluated x the @x node will be overwritten with 3 and unmarked; then the Y task
can resume and perform its reduction.

Now the deadlock question can be addressed. In parallel programming terms marking redexes
corresponds to holding resources (mutual exclusion). Trying to evaluate redexes corresponds to
demanding resources. Thus deadlock corresponds to a cycle of demands for redexes. However
such a cycle is meaningless. It means that a value is dependent upon itself, for example:

>a=a+1

CHAPTER 1. INTRODUCTION 8

This equation has no solution; the value of a is dependent upon a and it is therefore undefined.
In a parallel interpreter this may give rise to deadlock, if the arguments to + are evaluated
in parallel. A sequential implementation may loop indefinitely or some implementations may
detect such self dependencies. Crucially, cyclic dependencies are the only way deadlock may
arise. Thus deadlock can only arise in a parallel functional language for a program whose value
is undefined.

1.3.3 The advantages of parallel functional programming

The advantages of parallel programming with functional languages are summarised below. These

are in addition to the general advantages of functional programming, previously mentioned.

" Functional programs designed for parallel evaluation may be reasoned about in the same
way as sequential functional programs.

" Parallel functional programs, unlike other parallel programs, need no communication, syn-
chronisation or mutual exclusion to be specified explicitly. This all occurs implicitly in the
program graph.

" Deadlock can only arise when the result of a program is undefined.

The determinacy of parallel functional programs means that all the techniques applicable to
sequential functional programming are applicable to parallel functional programming. In par-
ticular parallel functional programs are amenable to transformation just as sequential functional

programs are.

1.4 This thesis

This section is a summary of the main results and contributions of this thesis. The basis of this
work is a particular approach to parallel functional programming. This assumes an underlying
machine model which is described in Chapter 2, along with various other proposed models.
Essentially this is a shared memory MIMID machine: a generalisation of the locally available
machine, GRIP [92]. The model uses a dynamic scheduling discipline; results by Eager give
conditions necessary for good program performance, using such a scheduling discipline.

The functional language used for expressing parallel algorithms is described in Chapter 3. It
uses a parallel combinator for explicitly expressing parallel evaluation; it is argued that this is
both necessary and desirable. Furthermore, it is argued that implicit detection of parallelism,
via strictness analysis, in functional programs is extremely difficult to do and indeed undesir-
able. The parallel functional language, and its assumed underlying machine model, are used
throughout this thesis. Chapter 3 also discusses how different parallel programming paradigms
may be used with language. It is shown that several classes of algorithms may be expressed
using the language, except for non-deterministic algorithms.

To determine the effectiveness of example programs, written in the parallel language, a simulator
was used. This is described in Chapter 4.

CHAPTER 1. INTRODUCTION 9

One of the nicest features of functional programs are their amenability to transformation. Squigol

is an impressive algebraic style of program derivation and transformation. Chapter 5 investigates

the suitability of Squigol for parallel program derivation; previously it has mainly been used for

sequential algorithm derivation. It was discovered that some aspects of Squigol are specifically
orientated towards deriving sequential algorithms. However other aspects were found to be

naturally suited to parallel algorithm derivation. This is discussed and it is demonstrated by

three derivations of parallel algorithms: an all shortest paths graph algorithm, an n-queens
algorithm and a greedy algorithm.

Since the assumed machine is a shared memory one, task placement is unimportant; hence it is

performed at run-time. However task size (granularity), the number of tasks in the machine and
storage use are important issues. The target machine (an idealisation of GRIP) tries to control
task granularity by using run-time heuristics. It is shown in Chapter 6 that to some extent
this works; however for effective control this should be combined with various programmed
techniques for controlling tasks granularity.

As previously mentioned it is impossible to express non-deterministic algorithms in standard
functional languages; even if their results are deterministic. Chapter 7 considers the introduction

of bags (multisets) into functional languages. These admit a non-deterministic implementation
but put an onus on the programmer to prove that they are used determinately. Usually such
proofs are straightforward. Bags make some algorithms easier to write and more efficient than
would otherwise be possible. An implementation is sketched together with a proof that an
intermediate implementation (a rewriting system) is correct.

Chapter 8 considers the performance of parallel functional programs. It is shown by analysing
some simple algorithms that writing efficient parallel programs is more difficult than it first

appears. For corroboration, the results of analyses are compared with simulation results. The

analysis of algorithms which use pipelined parallelism is shown to be considerably more difficult,

and hence error prone, than analysis of other parallel algorithms. To this end, a formal semantics
is developed for reasoning about pipelined parallelism. This may be used to generate recurrence
relations and hence to analyse pipelined programs, as is demonstrated.

The penultimate chapter (9) discusses further work. In particular some ideas on speculative
parallelism, non-determinism, hybrid parallel and sequential algorithms and reasoning about
parallel performance are discussed.

1.4.1 Thesis contributions

The following contributions have been made by this thesis:

Parallel programming

Contrary to some authors expectations I argue that parallelism should be explicitly expressed.
In support of this I propose a, simple parallel functional language. Extensive examples of par-
allel functional programs are given throughout this thesis. In particular the use of parallelism
abstractions is expounded, especially divide and conquer ones.

CHAPTER 1. INTRODUCTION

Squigol

10

A considerable amount of work exists on the Squigol methodology for program derivation. I
develop and extend this work to parallel algorithms. In particular I demonstrate that homo-

morphisms are divide and conquer algorithms, that some Squigol optimisations are inherently

sequential and I illustrate the use of parallel operators and rules via three example derivations.

Control of parallelism

There have been many different proposals in the literature for controlling parallelism. I show
that for good control of parallelism (task numbers, storage use and task sizes) explicit control
of parallelism is necessary, see Chapter 6. I propose various techniques for controlling data

parallelism and divide and conquer parallelism. Experiments have been performed to measure
the effectiveness of these techniques and to compare the best of them with a simple run-time
heuristic for controlling parallelism.

Non-determinism

Pure functional languages are insufficiently expressive to implement many useful parallel al-
gorithms. I have explained one way to extend a pure functional language: by adding non-
deterministic bag structures, see Chapter 7. This proved effective; in particular bags enabled
some algorithms proposed by Arvind [G] to be expressed which cannot be expressed in a pure
functional language. The implementation of bags' non-determinism is difficult; hence this was
semi-formally developed via non-deterministic rewriting systems.

The performance of parallel programs

The performance of parallel programs is nearly as important as their semantic correctness.
There is a vast literature on the latter topic but very little on the former. I address the former
in Chapter 8. I propose that to debug the performance of parallel programs different levels of
abstraction are required; this is demonstrated via several examples. In particular some programs
are analysed at an abstract level and some others are simulated.

To reason about programs performance at a very abstract level, analysis is required. There have
been several proposals for analysing the performance of parallel strict programs. However such
programs do not admit pipelined parallelism, an important form of evaluation. I have, therefore,
developed a non-standard semantics for calculating the performance of pipelined programs.

Hybrid algorithms

The goal of writing parallel programs for AIIMD machines is not simply to obtain a program
with maximal parallelism. In particular some parallel algorithms are not efficient sequential
ones. Thus, hybrid parallel and sequential algorithms are sometimes needed. The scan function

analysed in Section 8.2.3, the greedy algorithm derived in Section 5.6 and the dc5 combinator
used in Section 6.6 demonstrate this.

CHAPTER 1. INTRODUCTION

Non-determinism and proof obligations

11

A general principle used to aid algorithm expression is the introduction of non-deterministic
combinators into the language which may easily be proven deterministic. For example the par
combinator of Section 3.1, the bhom function of Chapter 7, the choose function of Section 9.1.3
and the bb function of Section 9.1.1.

Chapter 2

Parallel machines

This chapter surveys some parallel machines and discusses the parallelism issues which arise
from them. In particular this chapter describes the machine to be used throughout the rest
of this thesis. It is necessary to describe the target machine since any parallel programming
language must be based on certain assumptions about the underlying machine. This is basically

a generalisation of a locally-available multiprocessor: GRIP [92].

2.1 Parallel computer architecture

The architecture of parallel computers was a `hot' research area a few years ago. Now its pop-
ularity has diminished as parallel machines are becoming commercially available. Nevertheless

there are fundamental differences between the two major classes of parallel computer architec-
ture. These classes are SIMD (Single Instruction stream, Multiple Data stream) and MIIAMD
(Multiple Instruction stream, Multiple Data stream) architectures. The architectures have the

same power and may simulate one another. However their differences mean that they are best

suited to different kinds of algorithm. Also they differ in how parallelism must be organised for
them to work efficiently; thus different approaches to programming them are needed.

SIMD machines are array processors. They typically consist of a large collection of small pro-
cessing elements. The same instruction is performed by all processing elements in synchrony.
This means that the evaluation of programs on SIMD machines is usually deterministic, and
hence programs may be reasoned about in the same way as sequential ones. SIMD machines are
well suited to regular problems operating on large data sets. An example of a SIMD machine is
the Connection Machine [46]. This was developed at MIT and it is intended to be programmed
in Lisp. Iludak and Mohr have shown how graph reduction may be performed on SIMD ma-
chines by using a fixed set of combinators [53); however in practice this is very inefficient. Also,
O'Donnell has investigated the programming of SIMD machines using functional languages [85].

MIMD machines consist of cooperating processors each executing their own programs. These
programs need not be the same and they are usually executed asynchronously. The non-
deterministic evaluation of programs means that MIMD machines are harder to program than
SIMD or sequential machines. However, as stated in the previous chapter, this is not trite
for functional languages. This thesis only considers MIMD implementations of functional lan-

12

CHAPTER 2. PARALLEL MACHINES 13

guages, of which there have been many proposals. MINID machines may be sub-divided into
two classes: shared memory (tightly coupled) machines and distributed (loosely coupled) ma-
chines. The essential difference between these two types of MIMD machines is that, memory
access (communications cost) is constant for shared memory machines whereas for distributed

machines the processor network topology affects memory access. Examples of shared memory
functional language implementations are: ALICE, Buckwheat, Flagship, GRIP and the v-G-
machine [31,38,92,63,118]. Examples of distributed machines are Alfalfa, the IIDG-machine
the Nijmegen group's machine and ZAPP [38,71,111,25]. For the purpose of this thesis the
assumed target machine is a shared memory N1IMD one.

This thesis does not concern itself with any particular execution model for functional languages;

other than the assumptions made about parallel graph reduction in Section 1.3.2. For more
information on implementation details [881 is recommended.

2.2 Managing parallelism

Managing parallelism is important in order to make a parallel program run efficiently on an
MIMD machine. Control may be effected by the program or via heuristics incorporated into
the run-time system. The following issues have important efficiency implications (for MIMD
machines):

task and data placement: tasks and data, should be arranged so as to minimise communica-
tion costs whilst maintaining parallelism. The placement of tasks and data should preserve
task and data locality. The communication characteristics for shared memory machines
mean that locality is less important than it is for distributed machines.

scheduling: this is the task of assigning tasks to idle processors. If there are more tasks than
idle processors, a choice must be made to determine which tasks to schedule (run) on the
idle processors; this is almost always performed by the run-time system. The difficulty
with scheduling is that different schedules (orders of task execution) may result in different
execution times.

task granularity and the number of tasks: these are related. Task overheads, such as
communication costs, mean that there is a minimum size of task which is suitable for

parallel evaluation. One measure of task size is the ratio of communications cost to execu-
tion cost. Also since tasks consume storage it is undesirable to generate many more tasks
than there are processors.

The first two issues are described in this section, whilst the latter issue is investigated in Chapter
6, where several different methods for programmer control of task granularity and the number of
tasks are considered. Before describing strategies for task and data placement, and scheduling,
two important types of parallelism are discussed.

CHAPTER 2. PARALLEL MACHINES 14

2.3 Conservative versus speculative parallelism

Conservative parallelism is the term given to parallel evaluation where the results of all tasks are
required. Conversely, speculative parallelism may produce tasks whose results are not required.
Speculative parallelism is useful, and more general than conservative parallelism; however it is

considerably harder to manage.

In particular, parallel search algorithms often require speculative evaluation. Typically, a search
space is concurrently searched until a desired element is found. Once the element has been found

all other search tasks become redundant; however it is not known a priori which task will discover
the element. Thus the parallel evaluation is speculative. For example to calculate in parallel
the first n prime numbers, using the' sieve of Eratosthenes, many numbers are speculatively
sieved in parallel. Another example is the n-queens problem. To calculate a single solution to
this, in parallel, many different partial solutions must be generated in parallel. Burton discusses

speculative searching algorithms in [23].

The implementation difficulties of speculative parallelism arise because conservative tasks (those

whose results are required) must be given priority over speculative tasks, or at least a fair

scheduling discipline must be used. Otherwise the situation can arise where all a machines

processors are evaluating speculative tasks, none of which terminate. Thus no progress will be

made, although a result may exist. Further complications arise because speculative tasks may
become conservative tasks or speculative tasks may need to be garbage collected (killed). In

contrast the situation is far simpler if all parallelism is conservative because then any schedule
will produce the same result from a program, if it exists.

Hudak describes a sophisticated scheme to manage speculative parallelism [49]. It is a graph-
based scheme which executes in a distributed fashion, concurrently with parallel graph reduction.
However it has not been implemented and it appears to be quite complicated and costly.

A similar scheme to lludak's has been advocated by Partridge [87]. This manages speculative
parallelism on a distributed machine. His scheme uses a storage garbage collector to collect
garbage tasks. A priority system is used to ensure that normal order reduction is simulated and
to ensure that the amount of redundant computation is minimised. Once again there is a lack

of empirical evidence to support the scheme.

An alternative and simpler approach has been proposed by many researchers, for example
[43,121]. This uses a notion of fuel; fuel corresponds to a quantity of evaluation which may
be performed on a task, after which it is pre-empted. Some, known, conservative tasks may be
given an infinite amount of fuel. This seems an interesting approach but again there is a lack of
empirical evidence to support it.

The implementation difficulties of speculative parallelism are so great that few functional lan-

guage implementations support it. Therefore no programs are described in this thesis which
require speculative parallelism, unless specifically stated otherwise. Managing general specula-
tive parallelism is not a problem which is specific to functional languages (compare speculative
parallelism with garbage collection for instance).

CHAPTER 2. PARALLEL MACHINES 15

2.4 Distributed machines: task and data placement

The dominant parallelism management issues for distributed machines are task and data place-
ment. Although such machines are not the subject of this thesis, several interesting ideas, which
have been proposed, are discussed in this section.

2.4.1 ZAPP

The ZAPP project focussed on divide and conquer algorithms [25]. This restriction meant that
a run-time heuristic was sufficient to effectively control task and data placement. Initially a
program was loaded onto a single processor. Tasks were produced and these were subsequently
stolen by neighbouring processors. Thus tasks diffused from the original root processor. This

ensured a reasonable degree of locality for divide and conquer algorithms' tasks.

2.4.2 Sarkar's system

Sarkar [100] has investigated the automatic partitioning and scheduling of programs at compile-
time. This was performed with SISAL programs from which static networks of tasks were
extracted. Thus, the programmer has no control over locality or granularity. SISAL is a first

order single assignment language. The actual partitioning and scheduling is performed on GR,

a graphical representation of SISAL or any other first order language. Gß, does not express a
program's semantics, instead it contains estimates of a program's performance characteristics.
These estimates include the program's parallelism, execution time, communications costs and
synchronisation points. GR is limited in the kind of parallelism it can express since it is intended
for compile-time analysis.

Complementing GR is a performance model of the target machine. This contains information on
processor execution times, scheduling and coin inunications overheads. Algorithms are used for
partitioning (splitting a program into tasks) and scheduling at compile-time. These algorithms
try to optimise the mapping of a GR program representation onto particular machine model.

Sarkar's system performs well for static programs where computation does not vary much for
different inputs. It is unsuitable for programs whose computation is very input dependent. Since
static analysis of higher order languages is much harder than for first order languages; it is also
unsuitable for these.

2.4.3 Caliban

Paul Kelly has proposed an extension to Miranda to support the explicit mapping of tasks
to processors, called Caliban [70]. The programmer specifies a static network of tasks which
are mapped onto a distributed machine, rather like occam [75]. In Caliban, function definitions
may be augmented with clauses specifying task placements, where tasks correspond to functions.
Networks of stream-processing functions may be constructed which are statically mapped onto
a loosely-coupled architecture. These connection specifications are written in a functional style;
however a formal semantics for them has yet to be defined. Thus task sizes and task locality are
completely determined by the programmer.

CHAPTER 2. PARALLEL MACHINES

2.4.4 Para-functional programming

16

Para-functional programming has been devised by Iludak [54]. Essentially, a dynamic network of
tasks is specified by the programmer. This is dynamically mapped onto a computer's architecture
at run-time. Annotations in a program are used to specify that certain expressions constitute
tasks and that they should be evaluated in parallel. They also are used to specify particular
processors on which expressions (tasks) should be evaluated. This processor addressing may be

absolute or relative, for example: exp $on left($self) means that exp should be evaluated
on the processor to the left of the current processor. A semantics for IIudak's para-functional
language is described in [51] (the original semantics as given in [54] is erroneous).

Just as with Caliban, locality and task granularity is completely determined by the programmer.
This strategy encompasses all programs which can be written in Caliban. It is well suited to

problems with a regular structure. However for problems with an irregular task distribution,

an adaptive run-time heuristic may be better. For example it is difficult to efficiently map an
irregular tree of tasks (unknown at compile-time) onto an architecture, using explicit task place-
ment instructions. This scheine has not yet been implemented and there are many remaining
questions; for example what happens if multiple tasks are mapped onto the same processor?

2.4.5 Concurrent CLEAN

The Nijmegen group are investigating the distributed implementation of a functional language,
based on graph rewriting [111]. The intermediate language they use, Concurrent CLEAN, has

annotations to denote sequential and parallel evaluation. The novel part of their approach is
language annotations to control graph copying. \Vhen a task is created, its graph must be copied
onto another processor. Copying is the norm and annotations determine how much graph should
be copied by preventing the copying of graph they annotate. As a general rule only graph in
WHNF should be copied. These annotations do not strictly prevent copying, rather they defer

copying until the graph becomes evaluated. Once evaluated, graph whose copying has been
deferred, is copied. These annotations allow the creation of arbitrary process network topologies
and they support synchronous and asynchronous process communication. They claim that such
copying control is necessary for efficient distributed implementation.

2.5 Shared memory machines: GRIP

GRIP is a shared memory MIMD machine [92]. As previously mentioned task and data place-
ment on shared memory machines are not as important as on distributed machines. Thus
task and data placement on shared memory machines, such as GRIP, are usually performed by

run-time heuristics.

An important feature of GRIP is that it uses an evaluate-and-die task model [91]. This means
that sparking an expression does not reserve the expression for evaluation by the new task;
the expression will be evaluated by the first task requiring its value. This mechanism tends to
coalesce tasks and hence it can increase the granularity of parallelism. This is discussed further
in Section 6.3.1.

CHAPTER 2. PARALLEL MACHINES 17

In addition GRIP discards sparks once it becomes loaded beyond a certain limit; this prevents
the machine from becoming flooded with tasks.

2.6 Scheduling: Eager's result

For run-time scheduling to work well a program's performance must not be too dependent upon
scheduling. This section describes some work which determines conditions under which this
holds.

Eager et al. [36] have analysed the performance of parallel programs running on a machine with
run-time scheduling. Their results are quite abstract; they provide bounds on the performance
of a parallel program using only a few simple measures.

Some terms are now defined. Speedup is defined to be the ratio of sequential execution time to
parallel execution time for a program run on an n-processor machine. Thus the best possible
speedup for a program run on an n-processor machine is n (linear speedup). The measure used to
characterise parallel programs is their average parallelism; this has several equivalent definitions,
including: the speedup given an unbounded number of processors, and the average number of
processors that are busy during the execution of a parallel program, with an unbounded number
of processors available. The former measure is used in some performance analyses in Chapter
8. The latter measure is used in the experimental simulator, Chapter 4.

The following result has been used a great deal in this thesis:

2.6.1 Eager's speedup theorem

Let A be the average parallelism of a program and let S(n) be the speedup with n processors.
Then for any work-conserving scheduling discipline:

S(n) > it xA
n+A-1

A work-conserving scheduling discipline is one that never leaves idle a task that is eligible for
execution when there is a. processor available. The assumed target machine does have a work-
conserving scheduling discipline; however GRIP does not, since it may discard sparks (tasks).

A simple corollary of this is that if : l>n then a good speedup will result. Thus a program
is well suited to run on an n-processor machine with run-time scheduling if A> n. If it is not
the case that A> n then scheduling becomes much more important and an explicit scheduling
discipline is desirable. In general explicit scheduling is not practical, except in the extreme case
when no scheduling needs to be performed. That is, when a static network of tasks are statically
mapped one-to-one onto a, machine's processors. When this occurs the following usually holds:
Awn. However as previously mentioned the subject of this thesis is mainly 1IIAID machines
with run-time scheduling; therefore it is required that A> n. Notice that to obtain a good
speed-up there must be many more tasks than processors. This contends with the parallelism
management issue of not swamping the machine with tasks.

CHAPTER 2. PARALLEL MACHINES

2.7 The target machine

18

The assumed target machine for all programs in this thesis is a MIMD shared memory one,

an idealisation of GRIP [92]. It is assumed that task and data placement are performed by

the machine's run-time system. Thus no task or data placement information is specified by

programs. Most importantly it is assumed that an evaluate-and-die task model is used; however

unlike GRIP no sparks are discarded. Therefore all that programs need to specify is: what
to spark? Throughout this thesis, unless otherwise stated, this will be the target machine.
However, remarks will also be made on the implications of discarding sparks, like GRIP does.

Chapter 3

Parallel functional programming

This chapter describes a particular approach to parallel functional programming. Any parallel
programming language must be based on certain assumptions about the underlying machine.
The intended target machine for programs in this thesis is described in the previous chapter.

The philosophy behind my approach to parallel programming with functional languages has
been to find the minimum necessary to write efficient parallel functional programs for the target

machine. In particular it was desired to relieve the programmer from as much parallelism
organisation as possible, whilst not relying on any as yet unproven compile-time analyses. The

underlying assumptions of my approach to parallel functional programming may be summarised
thus:

" The programmer must devise a parallel program and annotate it to indicate which expres-
sions are suitable for parallel evaluation.

" The target machine is assumed to be an MIMD one with a shared memory. Task and data

placement are performed by its run-time system. Thus the programmer is responsible for

addressing the question what to spark? but not where or when to execute tasks.

" No automatic partitioning, scheduling, parallelisation or task placement is performed by
the compiler. Rather the programmer and run-time system are responsible for performing
these tasks.

It is argued that automatic detection of parallelism using strictness analysis is not sufficient alone
to produce efficient parallel programs. Furthermore it is argued that the explicit expression of
parallelism is in any case very desirable.

After describing the parallel functional language and arguing for the explicit expression of par-
allelism, parallel algorithms and programming paradigms are discussed. It is shown that func-
tional languages are well suited to implementing some algorithms but not others. In particular
functional languages cannot express non-deterministic algorithms.

19

CHAPTER 3. PARALLEL FUNCTIONAL PROGRAMMING 20

3.1 A parallel functional language

This section describes how the functional language is extended so it can express parallel al-
gorithms. To achieve this a parallel and sequential combinator are used. The semantics and
operational behaviour of these combinators are discussed. Lastly, an algebraic technique for

removing some redundant sparks is presented.

3.1.1 A parallel combinator

It is necessary to express in programs what to spark. New syntax, such as annotations, could be

added to the language, but for simplicity and economy of concepts a parallel combinator (par)
is used:

> par :: * -> ** -> *

b par ab=

Informally, par sparks its first argument and returns its second argument. It is the only source
of parallelism in the language. Tasks are only evaluated to WW'IINF; greater evaluation may be

achieved by using multiple pars to evaluate the components of data structures. A benefit of
having a parallel combinator is that no changes to the front end of a compiler are necessary,
since par may be treated as a function syntactically and semantically. (An alternative method
for expressing parallelism, due to Burn, is described in Section 3.2.3.)

A typical parallel expression might have the form: (par el . par e2 .""". par en) exp.
The meaning and evaluation of the expression have been separated: the meaning is exp and all
the expressions el through to en are sparked. Other combinators could have been chosen, for

example a parallel apply combinator; however par was found to be. the easiest to use.

What should the semantics and operational behaviour of par be? There are several alternatives:

1. The par combinator could be strict in its first argument: par Ix=I. Operationally

par xy sparks x and then evaluates y. The application par xy is only overwritten with
the value of y when x has completed. This is necessary to ensure strictness. The problem
with this behaviour is that it is overly-synchronous and it does not permit pipelined par-
allelism. For pipelined parallelism with lists, an expression like par h (par t (h: t)) is

required to return the cons value before the evaluation of h and t have completed. This

cannot happen with this particular version of par.

2. The par combinator could be non-strict in its first argument: par Ix=x. Opera-
tionally par xy must spark x and then return y. However since x may not terminate,
parallelism may be speculative. As previously mentioned speculative parallelism is very
general but very difficult to implement, see Section 2.3.

3. The meaning of par could be non-deterministic; that is par Ix may be I or x. This
behaviour arises from most practical implementations of par because scheduling is not
usually fair. In such cases, if x blocks then it is possible for non-terminating tasks to

prevent x from ever being resumed, especially if I creates many non-terminating tasks.

CHAPTER 3. PARALLEL FUNCTIONAL PROGRAMMING 21

The second option is chosen for the meaning of par, that is par xy=y. However par will be
implemented non-deterministically, as per the third option. This implementation of par is not
generally valid for all uses of par, but it does mean that par may be efficiently implemented,

and it will not needlessly constrain parallelism.

Two operationally different pars are discussed, both of which behave non-deterministically. It
is assumed that unless otherwise stated all programs and results in this thesis use a. par which
always sparks its first argument. In addition the GRIP implementation of par, which may
or may not spark its first argument is discussed. When the GRIP implementation of par is
discussed it will be referred to by phrases such as "if a GRIP-like spark discarding strategy is

used".

In order for the non-deterministic implementations of par to respect the semantics of par, the
way in which par is used must be constrained. In particular it must be ensured that the first

argument of par is defined, unless the result, the second argument, is undefined. This par
constraint may be formulated thus:

For all applications of par x y, the following must hold: x=1y=I.

The latter condition is just a reformulation of strictness; this is explained in Section 3.2.1.
This represents a constraint on how par may be used. If this constraint is met then the non-
deterministic implementations of par will respect par's semantics.

The constraint on how par may be used can either be a proof obligation for programmers using
par, or it can be verified mechanically using, for example, a strictness analysis (see Section
3.2.1). Alternatively if pars are automatically placed then this constraint must always be met.
For example the pars in the following two programs do not satisfy the constraint:

> funnyl =f0
> where fn= par (f (n+l)) n

In order for funnyl to be a valid program the par in it must satisfy the constraint. However
the expression f (n+1) does not satisfy the par constraint. Thus the par in funnyl does not
satisfy the constraint and hence funnyl is not a. valid program.

> funny2 = par (error "FAIL") "OK"

The error function is similar to bottom: it causes the program to be aborted, and its first

argument to be output. Thus since "OK" definitely terminates, this par also does not satisfy the
constraint.

In [40] it was recognised that two forms of parallelism annotation are required: one for function
definitions and one for function applications. These may both be expressed using par. For,
example a function fx= exp which should spark its argument may be written:

>fx =parxexp

CHAPTER 3. PARALLEL FUNCTIOJNTAL PROGRAMMING 22

An application app =g exp whose argument exp should be sparked may be written:

> app = pare (g e)
> where e= exp

In both cases the par constraint must be satisfied.

3.1.2 A sequential combinator

In addition to par a sequential combinator, seq, is needed. The seq combinator is strict in both

arguments; operationally, it evaluates its first argument to NVIINF, then discards it and returns
its second argument.

> seq :: * -> ** -> **

segxy=y, ifx54

=1, ifx=1

At first it seems curious that a sequential combinator is needed for expressing parallel evaluation.
There are three reasons for needing seq. Firstly for strict operators whose order of argument
evaluation must be changed. For example (assuming left to right argument evaluation) consider:

par x (if cond then seq y (x+y) else seq z (x-z))...

The un-sparked variables in the arithmetic expressions must be evaluated before trying to eval-
uate the sparked variables. Otherwise evaluation might block on the sparked variables and
parallelism will be lost. If the evaluation order of strict operators is specified then some, but
not all, seq combinators may be removed; for example with left to right evaluation, the example
above may be rewritten:

par x (if cond then y+x else seq z (x-z))...

Secondly, seq may be used for evaluating data structures `further' than NVIINF. The par combi-
nator can be used in place of seq but sometimes this is not desirable because the tasks produced
are too small to be useful. For example a parallel map for binary trees:

> bintree * .. = Node (bintree *) (bintree *)
> Leaf *

> treemap f (Leaf x) = seq res (Leaf res) where res =fx
> treemap f (Node 1 r) = par ml (par mr (Node ml mr))
> where
> ml = treemap f1
> mr = treemap fr

CHAPTER 3. PARALLEL FUNCTIONAL PROGRAMMING 23

The seq ensures that the application fx is performed before it is required (demanded). If the

seq was omitted evaluation of treemap would stop at Leafs. The seq could be changed to a

par; this might improve performance by allowing pipelined parallelism to occur. However it

could also be detrimental, since it could create many small tasks. Depending upon the context
in which treemap was used it might not be necessary to spark both ml and mr.

Thirdly, sometimes it is desirable to guarantee evaluation. This can be useful for a GRIP-style

system where pars may not spark their first arguments. For example consider the treemap
function above, a likely behaviour for GRIP is this: initially GRIP will not discard sparks,
then once it becomes loaded with tasks, it will discard sparks. When sparks are discarded then

the results of previously sparked tasks will be (Node ml mr) where ml and mr are unevaluated

closures. It would be far better for ml and mr to be evaluated albeit sequentially.

This can be achieved by using a, new form of par, defined using par and seq, newpar:

> newpar xy= par y (seq x y)

The newpar corabinator is strict in both arguments. It has the advantage over par that there
is no constraint on how it may be used. This is because the par in newpar always satisfies the

par constraint because the first argument to par, y, is always evaluated by seq.

The treemap function may be rewritten:

> treemap f (Leaf x) = seq res (Leaf res) where res =fx
> treemap f (Node 1 r) = newpar ml (newpar mr (Node ml mr))
> where
> ml = treemap f1
> mr = treemap fr

The problem with using newpar, or putting seqs directly into treemap, is that pipelined paral-
lelism is prevented. Each Node constructor is not built until both ml and mr have been evaluated.
Thus, none of the result of treemap will be returned until the whole result has been evaluated.
For this reason newpar is not used. In Section 9.1 this and some other drawbacks of using par
and seq combinators to explicitly express parallelism are discussed.

The seq combinator is not a new idea. It has been used in sequential functional languages for
controlling evaluation order, for example to control functions' input and output behaviour.

3.1.3 Removing redundant parallelism

Sometimes it is possible to remove redundant sparks, which may have been inadvertently in-
serted into programs. This may be performed by using algebraic reasoning, which ensures only
redundant pars are removed. As an example consider Quicksort:

> qsort [] = []
> qsort (e: r) = (par qlo . par qhi) (qlo ++ (e: qhi))
> where

CHAPTER 3. PARALLEL FUNCTIONAL PROGRAMMING 24

> qlo = qsort [xi x<-r; x<e]
> qhi = qsort [x) x<-r; x>=e]

All par applications in qsort satisfy the par constraint; since if either q1o or qhi is undefined
then the whole result must also be undefined.

There is some redundant sparking in this function since only one task need be sparked per
recursion. This can be removed, and it can be guaranteed that it is safe to do so, by using some
algebraic reasoning.

The following rules preserve meaning and operation, providing the pars satisfy the par con-
straint. Idempotency and the append rule reduce the number of tasks which are sparked, whilst
maintaining the same parallel performance.

par x (par y. par z) = (par x. par y) . par z associativity
par x par y = par y. par x commutativity
par x par x = par x idempotency
par 1 (1 ++ m) =1 ++ in ++ rule

These rules may be proved using the techniques outlined in Section 8.3. Note that, these rules
do not preserve operational behaviour if par is given a GRIP-like implementation which may
discard sparks.

The second qsort equation may be simplified thus:

(par qlo , par qhi) (qlo ++ (e: qhi))
= (par qhi . par qlo) (qlo ++ (e : qhi)) by par commutativity
= par qhi (par qlo (qlo ++ (e: qhi))) composition def. (preserves parallelism)
= par qhi (qlo ++ (e: qhi)) by ++ rule

Hence qsort maybe rewritten:

> qsort [] = []
> qsort (e: r) = par qhi (qlo ++ (e: qhi))
> where
> qlo = qsort [x(x<-r; x<e]
> qhi = qsort [xl x<-r; x>=e]

3.2 Implicit expression of parallelism

Programming languages used for programming parallel computers may roughly be divided into
two types, depending upon whether they express parallelism explicitly or not. Languages without
explicit parallelism expression either were not intended for parallel evaluation, or they were
designed to have implicit parallelism extracted from them. The best example of the former are
the so-called `dusty-deck' Fortran programs. These are Fortran programs which were originally
Written for a sequential computer and which subsequently have been mechanically analysed to
extract parallelism. Although there has been some success with extracting parallelism from

CIIAPTER 3. PARALLEL FUNCTIONAL PROGRAMMING 25

'dusty-deck' programs mostly this has only been fine-grained parallelism resulting from local

`innermost' computations. In particular DO loops operating element-wise over arrays; such

computations are common in scientific programs. This is reasonable for SIMD machines such

as vector processors, but for MIMD machines a much larger grain of parallelism is required.
This needs a more sophisticated global analysis of programs which is much more difficult to do.
Often such large-grain parallelism simply is not present.

Most declarative languages contain no explicit expression of parallelism even if they are in-

tended for parallel evaluation. The intention is that implicit parallelism should be mechanically
extracted from programs. However, almost all imperative languages designed for programming
parallel machines do have explicit parallelism expression, for example Ada and occam. This is
because it is generally much more difficult to identify parallelism in programs written in these
languages.

It has been said that: functional programs are 'inherently" parallel, for example in [44]. How-

ever, this is blatantly untrue! Parallelism is inherent in an algorithm not in the language in

which an algorithm is expressed. Sequential and parallel algorithms may be written in both
functional and imperative languages. A simple example of a sequential algorithm in a functional
language is:

>fn1=foldl (-) n1

The function f subtracts all the elements of 1 from n. The functional dependencies are such that
each subtraction must occur in sequence. A parallel algorithm may be obtained by transforming
this one.

>fn1=n-fold (+) 1

The elements of 1 are added together and then they are subtracted from n. The fold function

need not specify any sequencing of additions. In reality a special representation of lists may be

required, for example balanced trees. This parallelism relies on the associativity and commuta-
tivity of plus (minus has neither property). Reductions and parallelism are discussed further in
Section 5.3.

A common belief is that strictness analysis may be used to parallelise functional programs. The
idea is to evaluate a function's strict arguments in parallel. In the following sections strictness
analysis will be described and it will be explained why it is not sufficient to produce efficient
parallel programs. In the last section, Burn's evaluation transformers will be discussed; these
are an attempt to alleviate some of the problems which result from using strictness analysis to
determine parallelism. Of great importance is the desired goal; this is not to produce parallel
programs. The goal is to produce efficient fast programs; parallelism is not sought for its own
sake!

3.2.1 Strictness analysis

Strictness analysis is a mechanical procedure for determining whether a function is strict or not.
A function f is strict if and only if:

CHAPTER 3. PARALLEL FUNCTIONAL PROGRAMMING 26

f1=1

The relevance of strictness analysis to parallel evaluation' is that if only functions' strict ar-
guments are evaluated in parallel then the resulting parallelism will be conservative. This is
because strict functions require their arguments values2. Strictness also satisfies the par con-
straint (see Section 3.1.1). There are two basic forms of analysis suitable for strictness analysis:
forwards analysis, usually an abstract interpretation [21,62], and backwards analysis [59,117].
Davis surveys the area strictness analysis in [33]. Strictness analysis using these two techniques
will now be briefly described.

Abstract interpretation involves the abstraction of a language's standard values to abstract ones.
Abstract values approximate standard ones. Evaluation may be performed with abstract values
to yield approximate results. These approximation are arranged to be safe (under approxima-
tions) to the standard results. Thus a function will only be determined strict if it really is

strict. This safety is proven via a formalisation of the relationship between standard and ab-
stract values. Abstract interpretation is a forwards analysis because it is performed in the usual
evaluation direction using abstract functions and values.

For example, all ground values might be represented by the abstract values 1 and 0, representing
possibly defined and definitely undefined values respectively. Then the abstraction of operators
like plus, which is strict in both arguments, will be the and function. That is, the result of plus
is only defined if both of its arguments are defined. To determine whether a function is strict,
its abstract value is applied to 0. If the result of the application is 0 then the function is strict;
this is the same as the definition of strictness given above.

Backwards analysis uses contexts which represent the amount of information needed by an
expression. Essentially backwards analysis involves the propagation of a context for an expression
into its sub-expressions. For strictness analysis, backwards analysis addresses the question: if
an expression occurs in a strict context then in what context do its sub-expressions occur? For
example if el+e2 occurs in a, strict context, then both ei and e2 also occur in strict contexts.
Thus the analysis proceeds backwards into expressions sub-components.

Both abstract interpretation and backwards analysis have some problems coping with certain
features of functional languages. These are summarised below:

higher order: forwards analysis works for higher order functions [21]. However backwards

analysis has really only been applied to first order functions, though a possible extension
is given in [59].

polymorphism: there has been some progress on both abstract interpretation and backwards

analysis of polymorphic functions [3,60,61]; however there are still some remaining prob-
lems.

data structures: forwards analysis cannot analyse all the patterns of data structure strictness
that backwards analysis can.

'Strictness analysis can also be used to improve the efficiency of sequential programs.
2Except in degenerate cases like f=)r. l which fail to terminate anyway.

CIIAPTER 3. PARALLEL FUNCTIONAL PROGRAMMING 27

In general, when it can be used, backwards analysis gives more information than forwards

analysis. Perhaps the biggest problem with both analyses is that of cost. Both forwards and
backwards analyses generate recursive functions which must be solved (fixpoints found). At

present calculating fixpoints is very costly [28].

3.2.2 Strictness analysis and parallelism

It is true that strictness analysis may find some expressions in a functional program which can
be evaluated in parallel. However there are several problems involved with trying to do this.
Firstly, strictness analysis is only approximate and therefore it will not always be able to detect

expressions which may be evaluated in parallel. This is particularly true for data structures, for

which many complex patterns of strictness are possible.

Secondly, some expressions may be too small to be worth evaluating in parallel. Furthermore

evaluating small expressions in parallel may be detrimental to programs' performance. To

analyse this automatically some form of complexity analysis is needed. This can be used to
determine the complexity of an expression and Bence whether it is large enough to be a task.
The complexity of an expression is likely to be dependent on its input data; in this case a
run-time test for task candidacy must be made. In general this is extremely difficult to do.

Thirdly, some shared expressions may be sparked more than once. The re-sparking of expres-
sions can consume machine resources and hence be detrimental to performance. Evaluation
transformers (described in the next section) or an evaluation analysis, such as [1G), can prevent
some re-sparking; however, these both have costs associated with them.

Some of these efficiency issues, such as task size, are investigated in Chapter G. Thus strictness
analysis must be combined with several other analyses in order for it to extract useful parallelism
from functional programs. To illustrate these and other potential problems consider Quicksort:

> qsort :: [num] -> [num]

> qsort Q= []
> qsort (e: r) = qsort (fillo r) ++ (e: qsort (filhi r))
> where
> fillo = filter (<e)
> filhi = filter (>=e)

This function will be used as an example to show the information given by strictness analysis.
For simplicity only the top level expression of the second equation will be analysed, which
consists of monotyped first order function applications.

The following contexts will be used to describe strictness: L and S will represent lazy and strict
contexts for integers. A lazy context means that an expression may or may not be evaluated to
WIINF. A strict context is one in which an integer expression will be evaluated to NVIINF. For
lists of integers, the contexts IIT, T, S, and L will represent: head and tail strict, tail (spine)
strict, strict (to WIINF) and lazy, respectively. Below are tables representing how contexts may
be propagated. These tables show the degree to which a function's arguments may be evaluated,
given that the function application occurs in a certain context.

CIIAPTER 3. PARALLEL FUNCTIONAL PROGRAMMING 28

qsort
context argl
L L
S HT
T HT
HT HT

fillo/filhi
context argl
L L
S S
T lIT
HT IIT

++
context argl arg2
L L L

s s L
T T T
IIT IIT IIT

context argl arg2
L L L
S L L
T L T
HT S HT

For example in a tail strict context (T) an application of fillo will be head and tail strict (IIT)
in its argument.

Assuming that an application of qsort occurs in at least a strict context (L), the top level

applications of the second qsort equation can be labelled thus:

@IIT (BHT ++ (BHT qsort (@IIT fillo r))) (ýýJIT (VS : e) (©HT qsort (@HT filhi r)))

Notice how small the original expression is and how many annotations have been generated (the
filter functions have not been shown!). Norse still, in general functions will have many different

annotations according to the context in which they occur. Thus many function versions may be

required.

The problem with these annotations is that many of them are redundant with regards to paral-
lelism, and different operational interpretations may be given to them. The annotations could be
interpreted as indicating the amount of parallel evaluation possible; for example HT could mean
that all a lists elements may be evaluated in parallel. Equally, annotations could be interpreted

as meaning the amount of sequential evaluation possible (call by value evaluation). For example
the parallel interpretations of @HT and (is are shown below:

@HTfl = htfl
©sfx = sfx

>htf 1 =par (p 1) (f1)
> where
>pQ= ()
>p (x: xs) = par x (p xs)

>sfa= par a (f a)

Thus the qsort expression could be validly transformed to:

ht (ht (++) (ht qsort (ht fillo r))) (ht (s (:) e) (ht qsort (ht filhi r)))

However this expression generates many redundant tasks; that is many tasks are generated which
do little or no evaluation. Producing redundant tasks may greatly impede a machine. Tasks
consume storage and they require communication resources if evaluated on another processor.
A GRIP-like machine which employs dynamic control of task numbers, will discard tasks once
it becomes heavily loaded. If a machine becomes loaded with redundant tasks crucial parallel
tasks may be discarded. A more operationally efficient transformation would be:

CHAPTER 3. PARALLEL FUNCTIONAL PROGRAMMING 29

s ((++) (qsort (fillo r))) ((ss (:) e) (qsort (filhi r)))

Where:

> ss fa= seq a (f a)

This does not generate redundant tasks, although it still does generate some very small tasks for

example qsort 0. This problem is discussed further in Chapter 6. Producing too many tasks

and producing too small tasks is a real problem, for example see [391. This demonstrates that
transforming an expression into an operationally efficient parallel one requires much more than
just strictness information. Either additional complex analyses or manual help are required.

As a further example consider the filter expressions in qsort; since filter is used in a head and
tail strict context (lIT), these filterings could be performed in parallel:

> parfilter :: (*->bool) -> [*]
> parfilter p [] = []
> parfilter p (x: xs) = par re
> where
>1

> rest

-> 1*)

st 1

= x: rest, px
= rest, otherwise
= part ilter p xs

However, for most MIAID machines this granularity of parallelism (the size of tasks which
are produced) will be too small. The tasks which are produced will not be worth evaluating
in parallel. Nevertheless they will consume storage and communication resources, and for a
GRIP-like machine which discards tasks, they may prevent other more worthy tasks from being

evaluated.

3.2.3 Evaluation transformers

Burn has proposed evaluation transformers to solve some of the problems with using strictness
analysis to determine parallelism [18,19,20,11]. Evaluation transformers solve the problem
that different amounts of evaluation may be possible in different contexts. For example in the
context of sum exp all the elements of the list exp may be evaluated in parallel. In the context
of # exp only the spine of the list may be safely evaluated; this yields no parallelism and hence

should be done sequentially. For a first order language the different contexts in which expressions
occur may be statically determined. However for a higher order language, the contexts in which
expressions occur may be data dependent and hence not statically determinable. For example
consider the apply function:

> apply fa=fa

The context in which the second argument to apply occurs, that is the amount of evaluation
which may be performed on the second argument, depends on the first argument. In general
this can only be determined dynamically; if this is not done parallelism may be lost.

CHAPTER 3. PARALLEL FUNCTIONAL PROGRAMMING 30

Evaluation transformers propagate evaluators. Evaluators are similar to the strictness contexts

and parallel functions (ht and s) of the previous section. Evaluators and rules for propa-

gating (transforming) them are derived by an abstract interpretation. Some evaluators may
be statically determinable, whilst others may need to be dynamically determined at run-time.
Propagating evaluators dynamically at run-time gives more information and hence potentially

more parallelism than only utilising statically determinable evaluators. However there is an
implementation overhead associated with propagating evaluators at run-time. Only utilising

statically determinable evaluators yields less information and hence potentially less parallelism
than propagating them at run-time. However there is no implementation overhead associated

with static evaluators. In addition, if evaluators are propagated at run-time and program graph

nodes are marked with evaluators, some re-sparking may be prevented.

A similar effect to evaluation transformers may be achieved by just using par and seq. Functions

may be given an extra parameter which corresponds to an evaluator. These evaluator arguments

can be passed between functions and transformed as necessary. For example the papply function

below is parameterised so that in different contexts it may evaluate its second argument to
different degrees:

> papply fea= par (e a) (f a)

>p1C7 =()
> pi (x: xs) = par x (p1 xs)

Thus if apply was applied to a hyper-strict function on lists of integers, f, the following apply
function could be used: papply f pl exp. This would evaluate all the elements of the list
exp in parallel. It seems difficult to implement evaluation transformers, in their full general-
ity, using this method. If evaluation contexts were expressed in this way then those such as
papply f pl exp which are statically determinable, could be specialised using partial evalua-
tion. This would remove the need, in some expressions, to propagate evaluators, just as occurs
with Burn's statically determinable evaluation contexts.

The prevention of re-sparking cannot be efficiently achieved using par and seq since this requires
graph nodes to be marked with evaluators. These node markings must be updated when a node
is evaluated by an evaluator. However it may be possible to achieve this effect at compile time by
performing some manipulation of expressions; see for example Section 3.1.3, where an algebraic
method for removing some redundant pars is presented.

Evaluation transformers are unproven. It is unclear whether evaluators are capable of capturing
enough forms of parallel evaluation, especially for different data structures, to be useful. In
order to use evaluation transformers in their full generality an implementation such as described
by Burn in [19] is probably necessary. However for a more limited use of evaluation transformers
seq and par may be sufficient.

If evaluation transformers are incorporated into a run-time system, then they can prevent some
re-sparking, which could not be prevented by using just par and seq. However, neither evalua-
tion transformers nor par and seq can prevent the creation of all small tasks.

Evaluation transformers were originally designed to be used with programs containing implicit
parallelism. It maybe possible to use evaluators for explicitly expressing parallelism in a similar
way to par and seq. However this thesis investigates how well a simpler approach works.

CHAPTER 3. PARALLEL FUNCTIONAL PROGRAMMING 31

3.3 Explicit expression of parallelism

The previous section has argued that just using strictness analysis to determine the parallelism
in programs, is unlikely to produce efficient parallel programs. This section argues that it is
in any case positively desirable to express parallelism explicitly. In the context of the parallel
functional language previously presented, the explicit expression of parallelism means that pars
and seqs should be inserted into programs by the programmer. The onus is on the programmer
to prove that applications of par satisfy the par constraint (the par proof obligation).

Notice that by requiring parallelism to be expressed explicitly the original advantages of using
functional languages generally, and specifically for programming parallel computers, have been

retained: there is still no need to specify conununications, and deadlock is not a problem.

Burton, Hudak and the Nijmegen group have also proposed explicit parallelism expression [22,

54,111]. However their main aim was to program distributed machines and thus to address
locality issues, rather than what to spark, which this thesis addresses. Hughes has also suggested

explicit concurrency; however his main aim was to reduce the space usage of functional programs
[58). His II combinator is an infix version of the par combinator used here.

3.3.1 A scenario

There are are compelling reasons to believe that explicit parallelism expression is desirable.
Programming in all its forms, from conventional programming through to sophisticated program
derivation, consists of refining a high level problem specification (possibly in the programmers
head) to an executable algorithm. The parallel programmer must ultimately produce a parallel
program and this is, not surprisingly, a major consideration in the programs design.

Without explicit parallelism expression one can imagine the following programming scenario: a
programmer designs a parallel functional program for a parallel machine. Throughout the algo-
rithms development, parallelism has been uppermost in the programmers mind. The resulting
program is fed into a compiler. The compiler then carefully analyses the program to re-discover
the programmers parallelism. It is evident from this that the programmer should know where
the parallelism is in their program but cannot communicate this to the compiler. Most likely
the programmer will comment various parts of the program with their intentions like "evaluate

elements of the list xyz in parallel". Unfortunately the programmer can but hope that the
compiler will discover this parallelism.

Of course a compiler may discover more parallelism than a programmer intended, but this is

sheer luck and I do not believe in programming by lick! When writing parallel programs, parallel
evaluation is not just a desirable optimisation that a compiler may discover; it is a fundamental

property of programs.

3.3.2 Parallelism declaration

Lack of parallelism documentation or lack of explicit parallelism expression could result in
a programmer (or compiler) unwittingly removing parallelism. This may arise because of-
ten much more efficiency is achievable with a sequential algorithm on a sequential machine

CHAPTER 3. PARALLEL FUNCTIONAL PROGRAMMING 32

than with a parallel algorithm on a sequential machine. For example for accumulate (also
known as scan or parallel prefix), an algorithm exists which on a parallel machine with n pro-
cessors has 0(1n n) time complexity. The same algorithm if run sequentially has has com-
plexity O(n In n). However a simple 0(n) purely sequential algorithm does exist. Thus,

a programmer or a compiler might inadvertently transform the parallel algorithm to the se-
quential algorithm. This would result in a much more sequentially efficient algorithm at the

expense of removing all parallelism. The performance of accumulate is discussed further in
Section 8.2.3.

This destroys the idea that a computer may be regarded as a black box which a programmer
knows nothing about. The programmer and compiler must both know what is in the box, at
least whether it is a parallel or sequential machine, and the program must express this too.

Another example illustrating this point is sorting. On a sequential machine the two main issues
in choosing a sorting algorithm are the input size and its distribution (how sorted the input is
likely to be). For a parallel machine these are important too, but also the number of processors
compared to the input size is important. If the number of processors is large then a parallel
sort like bitonic merge sort (see for example [93]) may be appropriate. However, each individual

processor should execute a. more efficient sequential sorting algorithm since bitonic merge sort is

not an efficient sequential algorithm. The parallel algorithm should be used to distribute work
across processors, each of which does efficient sequential sorting. Again this is discussed further
in Section 8.2.3.

A further point supporting the case for explicit parallelism expression is related to a more
general functional language problem. When functional languages are said to be `declarative'
what is really meant is that they are declarative in meaning; that is programs declare the values
which they compute. One could argue that imperative languages are declarative too. They are
declarative operationally, because they declare how to compute values (not what the values are).

There have been two approaches to functional languages' lack of operational specification, which
leads to inefficient implementation and makes reasoning about their operation difficult. The first

approach is to develop analyses to extract the required operational information automatically,
for example strictness analysis and in-place-update analysis. The second approach is to augment
functional languages with explicit operational information. One horrible extreme of this is having
assignment, like in AIL. The other extreme are extensions to functional languages which do not
compromise them: for example Wadler's linear type system [116]. The parallelism extensions I
propose, par and seq, do not unduly compromise functional languages.

3.4 Algorithm classes and programming paradigms

This section describes parallel algorithm classes and parallel programming paradigms. In par-
ticular the suitability of the parallel functional language to these classes and algorithms, is
discussed. Quinn's classification of algorithms is explained and the difficulty of expressing cer-
tain algorithms is highlighted. The last two sections discus two parallel programming paradigms;
both are suited to parallel functional programming.

CHAPTER 3. PARALLEL FUNCTIONAL PROGRAMMING 33

3.4.1 Quinn's algorithm classification

Quinn in his book [93] describes a useful classification of parallel algorithms for MIMD machines:

partitioned: these algorithms divide a problem up into sub-problems which are solved in par-
allel. All sub-problems are solved using the same procedure. The sub-problem solutions
are combined to form the problem solution; divide and conquer algorithms are typical
partitioned algorithms. In general partitioned algorithms are very synchronous and hence
they are sometimes termed synchronous algorithms.

pipelined: these algorithms consist of a sequence of tasks, each of which solves a different
problem. The task are connected so that the output of one task feeds the input of another
task. This type of parallel algorithm gives an increased throughput over a sequential
algorithm. An example of a pipelined algorithm is a parallel compiler where all the phases
are performed in parallel: lexinb, parsing, code generation and code optimisation are all
separate tasks. Synchronisation in a pipelined algorithm is implicit and arises between
producers and consumers of data.

relaxation: these algorithms are also termed asynchronous or non-deterministic algorithms.
They are characterised by being able to work with the most recently available data. Thus
task synchronisation is minimised. Relaxation algorithms may be similar to partitioned
or pipelined algorithms; the key point is their ability to work with different amounts of
information about the problem being solved. Many relaxation algorithms require some
form of speculative parallelism. An example of a relaxation algorithm is the parallel
union-find algorithm, described in [93]; this may be used to solve many graph problems.
Banätre et al. have a discipline of programming based on relaxation algorithms [8]. These
are specified as non-deterministic rewriting systems.

Often algorithms contain parts from different classes of parallel algorithms. For example, the
top level an algorithm may be expressed as a pipelined algorithm; however, individual tasks in
the pipeline may be partitioned algorithms. A signal processing algorithm may typically have
this structure.

Any functional language may naturally express partitioned parallel algorithms, such as divide
and conquer algorithms. For example a function for summing the leaves of a binary tree
(treesum) may be written thus:

> bintree * .: = Node (bintree *) (bintree *)
> Leaf *

> treereduce f (Leaf x) =x
> treereduce f (Node 1 r) = par 11 (par rr (f 11 rr))
> where
> 11 = treereduce f1
> rr = treereduce fr

> treesum = treereduce (+)

CHAPTER 3. PARALLEL FUNCTIONAL PROGRAMMING 34

The proof obligation associated with par means that treereduce is valid program if f is strict
in both arguments or if f is total and the input tree is completely defined.

To express pipelined algorithms a functional language must have non-strict data structures, for

example streams. (This is a rarely-mentioned advantage of lazy languages over strict ones.)
Pipelined algorithms rely on evaluation with only partial information. A consumer task (func-

tion) must be able to do some evaluation with only partial information (for example part of a
list) produced by some producer task.

The sieve of Eratosthenes for generating all the prime numbers less than one thousand is an
example of a pipelined algorithm:

> primes = par (forcespine sp) sp
> where
> sp = sieve [2.. 1000]

> sieve []

> sieve (p: nos)

> forcespine []
> forcespine (x: xs)

11

par (forcespine filtnos) (p: sieve filtnos)

where
filtnos = filter pred nos
pred n=n mod p -= 0

11
forcespine xs

Since sp in primes is completely defined, the par in primes satisfies the par constraint. The

sieve function occurs in at least a, tail strict context, hence the par in sieve also satisfies the
par constraint.

This program uses sieve to successively filter multiples of prime numbers from a list of the
first thousand numbers. Each prime number filtering is performed in parallel. Thus consecutive
sieve operations form a pipeline. The program is expressed so that it may form part of a
pipeline; primes become available as they are generated. Notice how forcespine is used to
force each'filtering; this is required because par only evaluates its first argument to WIINF.
This is another example of where sequential evaluation is needed in a parallel program. (A

parallel filter would have produced too small tasks.) This algorithm is quite complex; often
pipelined algorithms are more complex than partitioned ones. A simulator/debugger is useful
for debugging the performance of such algorithms (see Section 8.6).

Relaxation algorithms are inherently problematical for functional languages due to their non-
determinism. Functional languages are inherently deterministic because expressions denote
unique values. The theoretical implications to programming language semantics of non-
determinism have been widely studied, for example [102. Some interesting practical solutions
to the problem have been proposed by: Burton (improving values), John Hughes (sets) and
LeMetayer (gamma model). Chapter 7 discusses these proposals and a limited form of non-
deterministic construct is proposed for functional languages. Section 9.1.1 also discusses some
more ideas concerning non-determinism.

The implementation difficulty of algoritlun classes correlates with their amount of synchronisa-
tion. Partitioned algorithms are easy to implement in any language; pipelined algorithms are a

CHAPTER 3. PARALLEL FUNCTIONAL PROGRAMMING 35

little harder to implement. Relaxation algorithms, assuming they can be expressed, are hard to
implement; in particular detection of termination can be non-trivial, see Section 7.6.2 and [8].

Also in correlation with the synchronisation of the various algorithm classes, is the difficulty

of reasoning about algorithms performance. The performance of partitioned algorithms is rela-
tively easy to reason about. Pipelined algorithms are harder to reason about. In Section 8.3 a
semantics to formalise reasoning about pipelined parallelism is presented. The performance of
relaxation algorithms is notoriously hard to reason about; often this is because the performance
of relaxation algorithms is unpredicatable!

3.4.2 Carriero and Gelernter's paradigm

Carriero and Gelernter in [26] present three parallel programming methods based on three
conceptual classes of parallelism. These classes of parallelism roughly correspond to the three
classes of algorithm previously described. The conceptual classes are:

result parallelism: with this class of parallelism each task produces one piece of the result.
This corresponds closely to the class of partitioned algorithms.

specialist parallelism: here each task performs one specific kind of activity. This corresponds
closely to the class of pipelined algorithms.

agenda parallelism: a global agenda is kept and each task performs an operation according to
the current agenda. This paradigm has similarities with the relaxation class of algorithms.

With each of the above conceptual classes of parallelism there are three associated parallel
programming methods:

live data structures: here data structures are transformed by tasks into a result data struc-
ture.

message passing: this style involves the splitting of a problem into its logical parts; resulting
tasks communicate using message passing. Thus tasks are specialised.

distributed data structures: this lies between the extremes of live data structures and mes-
sage passing. A group of data objects and tasks exist. Tasks can perform many activities
on data objects. Tasks actively look for data objects on which to perform a given activity.
Data objects may be shared, which is how tasks communicate.

To explain these three methods of parallel programming, an example is used (taken from [26]).
Consider a naive n-body simulator. On each iteration of the simulation, forces between all
objects are calculated and the new object positions are determined. The live data structure
solution to the problem consists of a, matrix representing objects and their positions. A function
to calculate a new matrix of positions is defined. This function implicitly creates tasks to
determine the new position of each object from the old matrix of object positions.

The message passing approach entails simulating each object with a task. Thus there is a logical
connection between tasks and the problem being solved. Each task computes a single object's

CHAPTER 3. PARALLEL FUNCTIONAL PROGRAMMING 36

current position throughout the simulation. At the start of each iteration, processes inform each
other of their current object positions. Effectively each task models an object.

The distributed data structure approach concentrates on an agenda of activities to be performed.
Each task computes the new position of an object. Thus tasks repeatedly look for objects and
calculate their new positions. A master task can be used to ensure that tasks calculate new
positions in the correct order.

The methodology is to determine which conceptual class of parallelism is naturally suited to the
problem being solved. Then an algorithm is written using the associated programming method.
If the algorithm is inefficient or not suited to the architecture being used, it is transformed to a
better one. This transformation may change the algorithm to use a different style of parallelism.
The paper [26] discusses the relationships between the three programming styles in terms of
data and tasks; with this information transformation of an algorithm between styles is possible.

To demonstrate that this methodology can be used for functional programs, the problem of
generating all the primes less than it will be considered. There are two natural ways to solve this
problem. The first way is to use message passing. This solution uses the sieve of Eratosthenes,
see Section 3.4. A pipeline of sieves are used to generate the primes; each sieve specialises in
one prime. The second natural way to solve this problem is with live data structures. This
paradigm involves each task transforming a data structure into a result data structure. Starting
with an initial list of numbers from 2 to n each number may be tested in parallel to determine
primality. A number is prime if no prime less than or equal to its root divides it exactly. This
algorithm may be encoded thus:

> prim ((p, sqrp): ps) x= [], x mod p=0
>_ [(n, n*n)], sqrp >n
>= prim ps n, otherwise

> pflatmap f [] _ []

> pflatmap f (x: xs) = par rest (f x ++ rest)
> where
> rest = pflatmap f xs

> primes' = (2,4) : pflatmap (prim primes') [3.. n]
> primes = map fst primes'

Using the semantics of par it can be proven that for the the context in which pflatmap occurs in
primes', the rest value in pf latmap is completely defined. Thus the par in pflatmap satisfies
the par constraint.

In [26] a distributed data. structure algorithm is developed from a Linda version of the above
algorithm. Rather than just testing a single number for primality each task tests the primality
of numbers within an interval. This increases the granularity of parallelism; similar techniques
are described in Chapter 6. A shared pointer indicates the next interval of numbers which
must be tested. Tasks non-deterministically access this pointer to get an interval of numbers to
test. Each task increments the pointer to the next block of numbers to be tested. This is quite
a low level algorithm and is difficult to implement in a functional language, due to the non-
determinism. A simple way is to change the definition of parflatmap to increase the granularity

CHAPTER 3. PARALLEL FUNCTIONAL PROGRAMMING 37

of tasks which are generated.

In general distributed data structure algorithms can only be written in functional languages such
that tasks have a deterministic schedules of operations to perform. For example in a functional

version of this distributed data structure algorithm, it would be necessary to specify which task
would test which interval of numbers. Sometimes this is acceptable but it can often mean that
an algorithm is considerably slower than a comparable non-deterministic algorithm.

3.4.3 Cole's algoritlunic skeletons

Murray Cole has proposed the use of algorithmic skeletons for expressing parallel algorithms [29].
Essentially these are abstractions representing generic parallel algorithms. lie describes several
skeletons which may be used to express a, variety of parallel algorithms. In a functional language
the algorithmic part of a skeleton corresponds to a higher order function [30]. Some example
higher order functions which express algorithmic skeletons are shown later. The skeletons Cole
describes express a selection of algorithms fron all the previously mentioned algorithm classes.

There are three reasons why algorithmic skeletons aid programming; all these stem from param-
eterised design. Firstly a library of skeletons means less work for a programmer. If a skeleton
can be used, only bits of a program relevant to the particular instance of the algorithm need
be written: the parameters of the algorithm skeletons. Secondly if static task placement is

performed a general placement scheme may be devised for skeletons; thus placement only need
be calculated once. For complicated algorithms a parameterised placement scheme may be re-
quired. Thirdly for some algorithmic skeletons their complexity (performance) may only require
analysing once. Thus a formula may be constructed which expresses an algorithm's parallel
complexity as a function of its parameterised parts' complexities, for example see Section 8.2.2.

Algorithmic skeletons are useful for all types of programming; however given the additional
problems of designing parallel algorithms they seem particularly useful.

Another advantage of parallelism abstractions (algorithmic skeletons) is that they factor out
parallelism; thus preventing programs from becoming cluttered with pars. Lots of pars dis-
tributed throughout a program can obscure its meaning and operation. This is no new problem
specific to par and its standard solution is abstraction. Thus function abstractions may be used
to express common patterns of parallel computation; just as they are used to express common
patterns of sequential computation.

As previously mentioned the implementation of par is not fully general; thus par can only be used
in certain contexts. This must be ensured by the programmer via the proof obligation associated
with par. When parallelism abstractions are constructed using pars, par proof obligations carry
over to the abstractions. Thus parallelism abstractions usually have proof obligations associated
with them.

For example a combinator to evaluate the elements of a list in parallel:

> parlist :: (*->**) -> [*] -> [*]
> parlist f1= par (p 1) 1
> where
>pQ =()

CIIAPTER 3. PARALLEL FUNCTIONAL PROGRAMMING 38

p (x: xs) = par (f x) (p xs)

The first argument to parlist f1 is a function which is used to force the evaluation of each
element of the list. The proof obligation associated with parlist is: f must always be total

and in addition either the elements of 1 must be defined as far as f will evaluate them, or the

strictness context in which parlist occurs must be at least that implied by f on list elements.
For example a list of lists of integers (exp) could be fully evaluated in parallel by:

>1:: [[num]]
>1= parlist (parlist id) exp
> idx=x

The proof obligation amounts to: either exp must be totally defined or 1 must be used in a
hyper-strict context.

A selection of other parallelism abstractions which have been found useful is shown below.
Parallel apply:

> pap :: (*->**) -> * -> **
> pap fa= par a (f a)

The proof obligation is: either a must not be undefined or f must be strict.

A conditional parallel combinator:

> condpar :: bool -> * -> ** -> **
> condpar c= par, c
>= seq, otherwise

The proof obligation is the same as par, either the second argument to condpar must not be
bottom or if the second argument is bottom then so must be the third argument.

A parallel filter:

> parfilter :: (*->bool) -> [*]
> parfilter p [] _ []
> parfilter p (x: xs) = par re
> where
>1

> rest

-> 1*1

st 1

= (x: rest), px
= rest, otherwise
= parfilter p xs

The proof obligation for parfilter is: either p must be total and all the list elements must be
defined as far as p evaluates them, or the strictness of the context in which parfilter is used
must be at least as great as that implied by p.

A general parallel map:

CHAPTER 3. PARALLEL FUNCTIONAL PROGRAMMING 39

> parmap :: (*->**) -> (***->*) -> [***] -> [*]

> parmap ff f1= parlist ff (map f 1)

The proof obligation for parmap is: ff must be total, and either all the list elements must be

defined as far as ff evaluates them, or the strictness of the context in which parmap is used

must be at least as great as that implied by ff.

A general parallel flatmap:

> parflatmap :: ([*] ->**) -> (***->[*]) -> [***] -> [*]
> parflatmap ff f [] = []
> parflatmap ff f (x: xs) = par rs (par (ff r) (r ++ rs))
> where
>r=fx
> rs = parflatmap ff f xs

The proof obligation for parflatmap is: ff must be total, and either all the list elements must
be defined as far as ff evaluates them, or the strictness of the context in which parflatmap is

used must be at least as great as that implied by ff.

Although many of these abstractions operate on lists similar abstractions may be defined for

trees and other data structures. If parallelism abstractions are used extensively then there is

a danger of re-sparking. One solution to this is for an implementation to mark program graph
nodes with the degree to which they have been evaluated, as mentioned in Section 3.2.3.

A more general and more complex parallelism abstraction is a, divide and conquer combinator:

> divconq :: (*->(*, *)) -> (**->**->**) -> (*->bool) -> (*->**) -> * -> **
> divconq div comb isleaf solve =
>f where
>fx= solve x, isleaf x
>= par sprobi (par sprob2 (comb sprobi sprob2)), otherwise
> where
> (pl, p2) = div x
> sprobi =f p1
> sprob2 =f p2

The div function divides a problem into two smaller sub-problems. The results of sub-problems
are combined using comb. The isleaf function tests whether a problem can be solved directly
and solve solves a small problem directly.

The proof obligation for divconq is: either comb must be strict in both arguments or all functions
must be total and the input must be completely defined.

For example the treesum function in Section 3.4 may be written thus:

> treesum = divconq div (+) leaf solve

CHAPTER 3. PARALLEL FUNCTIONAL PROGRAMMING 40

> where
> div (Node 1 r) _ (l, r)
> leaf (Leaf x) = True

> leaf (Node 1 r) = False

> solve (Leaf x) =x

This satisfies the proof obligation since + is strict in both of its arguments.

Sequential abstractions can be useful too, for example:

> seqlist fQ_ ()

> seqlist f (x: xs) = seq (f x) (seglist xs)

This sequentially forces the evaluation of a list; the degree to which elements are evaluated is
determined by the function f.

Using parallel abstractions also means that sophisticated abstractions for certain architectures
may be designed. For example efficiency issues relevant to a particular architecture may be
incorporated into the abstractions; this is discussed in Chapter 6. Thus abstractions also make
programs more portable and free the programmer from knowing some architectural details.

Cole used algorithmic skeletons to express (non-functionally) some relaxation algorithms. One

approach to the problem of expressing such algorithms in a functional language is to provide
the programmer with several relaxation algorithm skeletons as primitives. These abstractions
could be implemented non-deterministically, and there would be proof obligations associated
with them to ensure that their results were deterministic. This is discussed further in Section
9.1.1.

3.5 Conclusions

It has been said that functional languages are inherently parallel; however, it has been shown
here that this is not the case. This is further supported by the results of Chapter 8.

Many people have proposed strictness analysis as a method of parallelising functional programs.
Here it has been argued that strictness analysis is not sufficient for producing efficient parallel
programs, and this has been demonstrated by an example. The results of Chapter 6 also support
this claim. Furthermore it has been argued that it is highly desirable to explicitly express
parallelism in programs. To accomplish this a simple parallel functional language has been
developed. Usually parallel evaluation need only be specified in a few places within a program.

For efficiency it is desirable to remove redundant sparks from programs. This may be achieved
by using algebraic reasoning. In particular laws are used which preserve programs operational
behaviour and meaning. This has been demonstrated by an example.

Several paradigms for writing parallel programs have been proposed by others. It has been shown
how these paradigms are suitable for use with the parallel functional language. In particular the
use of parallelism abstractions is advocated, and throughout this thesis they are used. Although

CHAPTER 3. PARALLEL FUNCTIONAL PROGRAMMING 41

the functional language may express several different forms of parallel algorithm it cannot express
non-deterministic algorithms.

Chapter 4

The experimental set-up

A simulator was used to test, verify and experiment with parallel functional programs. This gave
information on a program's runtime behaviour, including: the execution time and the average
parallelism.

An alternative to using a simulator would have been to use a real implementation, which would
have given `real' results. However, apart from the locally-available machine, GRIP, not being `up
and running' at that time, there were two reasons for favouring a simulator. Firstly, a simulator
can yield more abstract results than a real machine. Results from a simulator will be less likely
to be affected by specific aspects of a particular implementation and hence they will be more
applicable to a variety of implementations. Also abstract results are easier to interpret than
those from a real machine. Secondly, generating runtime statistics from a simulator is much
easier than extracting them from a real implementation.

4.1 The simulators

Two simulators were written; the first was written in LAIL, a functional language, and the second
was written -iii Pascals. The simulators both work in the same way; which is now described.

The simulators use concurrent interpreters to simulate parallel evaluation. They both operate
on FLIC programs [90]. FLIC is essentially a sugared lambda calculus, with local definitions
and efficient data structure operations. FLIC programs are produced from LML programs via
an LML compiler. Thus although programs are shown in a Miranda style throughout this thesis,
they were translated into LAIL in order to run them. (LML was not used for exposition due
to its verbosity.) The evaluation mechanism used by the interpreters is supercombinator graph
reduction. This is performed on lambda lifted FLIC, produced from the LAIL compiler. For an
excellent description of supercombinator graph reduction see [88].

What of parallelism? The interpreters simulate the parallel graph reduction which is described
in Section 1.3.2. It was desired to have as abstract results as possible; therefore it is assumed
that only reductions take any time to perform and that every reduction takes unit time, despite
reductions having different sizes in reality. No overheads which would occur on a real machine,

'This was based on a simulator written by Phil Trinder, to whom I am grateful.

42

CHAPTER 4. THE EXPERIMENTAL SET- UP 43

such as communications, blocking and resuming, were simulated: the sole activities of interest
were reductions.

Parallel graph reduction was simulated by interleaving concurrent reductions. To implement this
the interpreters maintained a, queue of tasks. During every machine cycle (time unit) each task
performed a single reduction. By limiting the task queue size different numbers of processors
could be simulated.

4.1.1 The LML interpreter

The first version of the interpreter was written, purely functionally, in LML; unfortunately this
had to be abandoned for reasons of efficiency, which will become apparent. The basic part of the
interpreter, an evaluation function, was written in a continuation passing style. Each task was
represented as an evaluation continuation. Applying a task to the program graph resulted in a
new graph and a new continuation. These represented the change in state of the graph and task,
after performing one reduction. Single reductions, performed by each task, were interleaved to
simulate concurrency. The graph was essentially a store which was implemented by a binary
tree. This lead to the following inefficiencies:

" slow access time to graph nodes. This was due to inefficient node addressing and tree
traversal overheads.

" part of a new tree (graph) had to be constructed after each reduction: no destructive
update could really be implemented

" space-leakage caused by laziness; for an explanation of this phenomena see [89].

The last problem was partially cured by enforcing the strictness of the binary tree graph repre-
sentation. This would have been much easier if strict data structures could have been defined.
The latter two problems meant that the interpreter used too much space to be practical. Nev-

ertheless writing the LAM program was very enjoyable. Also, in retrospect, debugging the LML

simulator of correctness errors proved much easier than debugging the Pascal program. This

was despite not having any debugging tools for the LML program and having used a window
based debugger (dbx) for the Pascal program.

The LML program would have been viable if the following facilities had been available:

1. tools were available for locating space leaks and for generally examining the storage use of
programs.

2. some kind of linear data structures (preferably arrays) were available, which were imple-
mented using destructive updating. For example the linear logic extensions to functional
languages proposed by Wadler [116].

A curious result of writing the interpreter is that I can claim to be one of the few people to
have written a garbage collector in a purely functional language! Also curious is the fact that
the concurrent interpreter is very sequential. This is due to the sequential threading of the
graph through the evaluation function, and the exact interleaving of tasks' reductions which is
specified.

CHAPTER 4. THE EXPERIMENTAL SET- UP

4.1.2 The Pascal interpreter

44

The Pascal interpreter was used to generate all the experimental results shown in this thesis.
It is quite inefficient, but it can, of course, perform destructive updating of the program graph.
The important design decisions made for the interpreter, which affect the experimental results,
are described below. These are in addition to the basic policy of only measuring concurrent
graph reductions.

Two new terms are used: useless tasks are defined to be those which when run, discover that
their graph is either already in \VIINF or that another tasks is evaluating their graph. In either
case such tasks are redundant and may be discarded. Active tasks are those tasks which actually
run, that is they are not blocked, during a specified time unit.

" Task scheduling from the global task queue is always performed FIFO. This is only relevant
when there are more tasks which can be run than there are processors.

" Tasks are always sparked by par, they are never discarded (unlike GRIP).

" Before running each newly-sparked task, they are checked to see if they are in WHNF or
whether another task is already evaluating their graph. Any tasks for which this is true
(useless tasks), are discarded. This checking takes one time unit.

" Tasks only mark graph nodes once they start to reduce them (like GRIP); in particular
when tasks are initially sparked they do not mark nodes. This corresponds to an evaluate-
and-die evaluation model. Essentially any task can reduce any reflex not already evaluated
or being evaluated, see Section 2.5 and [91].

" Storage is allocated in nodes and hence store statistics are measured in terms of node
numbers. Nodes correspond to applies, numbers, supercombinators, constructors etc.

" The output of each constructor or atone takes one time unit.

" No cost is associated with scheduling.

" FLIC is augmented with, primitive, par functions. Like all other primitive functions these
require one time unit to reduce; thus sparking, evaluating a par, requires on time unit.

In Chapter 7a bag data structure is proposed and an implementation is sketched. Bags were
implemented in the Pascal simulator to test some of the proposed ideas. The implementation
closely follows that described in Chapter 7.

4.2 The LML interpreter versus the Pascal interpreter

The interpreters are roughly of the same size, the AIL interpreter is approximately 2500 lines
long and the Pascal interpreter is approximately 3000 lines long. The Pascal interpreter is
approximately an order of magnitude quicker and more space efficient than the LML one. Much
of the time spent running the LML interpreter is spent garbage collecting. Overall the LML
interpreter is more modular and more sophisticated than the Pascal one.

CHAPTER 4. THE EXPERIMENTAL SET- UP 45

4.3 The information collected and graphs

Two forms of information are produced from program results: tabular information and graphs.
Unless otherwise stated all results shown in this thesis are for simulations using an unbounded
number of processors. This is because such results are easy to interpret, there are no scheduling
issues, and Eager's result can be used (see Section 2.6).

The following tabular information is collected (note that all experimental results shown in this
thesis include any time spent outputting any results, unless stated otherwise):

execution time: this represents the execution time with the specified number of processors.

average parallelism: this measurement indicates the average number of tasks which were
active. When an infinite number of processors are simulated, Eager's result can be used
with this result.

work done: this is the total number of reductions which were performed. If a parallel program
is run on a single processor this would be equal to the execution time.

maximum no. of tasks: this is the maximum number of tasks which were concurrently active
(including the main task and checking useless tasks).

total number of tasks: this is the total number of tasks which were executed (not including
the main task or useless tasks).

average task length: a task's length is the total amount of time for which it was active, not
including any time for which it was blocked. Thus the average sparked task length is
the average total time for which tasks were active (not including the main task or useless
tasks).

the number of useless tasks: the total number of useless tasks was recorded.

Three types of graph have been plotted:

parallelism profiles: these are plots of the number of active tasks against time (machine cy-
cles). For some results these graphs contain a long output `tail' during which the result
was output. Where necessary such details are taken into consideration.

store profiles: these are plots of the number of nodes in use against time. To determine the
number of nodes in use a garbage collection was forced before each sampling. Sometimes
these profiles are plotted on the same axes as parallelism profiles.

task length distributions: these are bar charts showing the distribution of task lengths. The

right-most bar shows all tasks longer than the labelled length. The main task and useless
tasks do not appear in these statistics.

Typically experimental programs were less than 100 lines long and data sets consisted of ap-
proximately 1000 elements. This generally yielded an average parallelism of 10 to 500. It was
usually assumed that tasks with lengths of approximately 100 reductions were small tasks. Task
length distribution graphs were plotted for the range of tasks lengths 0 to X100 in intervals of 50.

Chapter 5

S quigol

5.1 Introduction

Squigol is the popular name given to the Bird-Meertens formalism, a concise mathematical
methodology for program derivation. In essence, Squigol is a functional calculus based on
map and reduce. This chapter explores how Squigol may be used to derive parallel functional

programs. Much of this chapter applies existing Squigol work to the derivation of parallel algo-
rithms. Previously Squigol has only been used for deriving sequential algorithms and hardware
descriptions.

In some respects Squigol is similar to Backus's FP [7]; they are both algebraic approaches to
program transformation. However, unlike FP, Squigol is typed and it is in general more flexible
than FP. Bird and Meertens jointly developed Squigol and the following references are highly

recommended: [14,80]. Many people are currently working on Squigol and although there is a
consensus on most of Squigol, some aspects are treated differently by different people: notably
non-determinism. Thus Squigol should not be regarded as a standardised calculus; usually it is

customised to suit the particular class of problems being solved. Here Bird's flavour of Squigol
from [14] will be used.

The next section describes some basic Squigol; the following section looks at the parallel aspects
of Squigol and finally three examples are developed: a parallel shortest paths algorithm, a
parallel n-queens algorithm and a parallel greedy algorithm.

It should be noted that it is unclear just how general Squigol is for sequential or parallel program
derivation. However, certainly a large class of optimisation algorithms are amenable to derivation

using Squigol.

5.2 Basics

This section describes some basic Squigol concepts. Much of what is described is general to
sequential and parallel program derivation.

A Squigol derivation starts with an inefficient specification. The specification is repeatedly

46

CHAPTER 5. SQ UIGOL 47

transformed by applying algebraic identities and theorems, until an efficient algorithm is derived.
Often the initial specification and final program are quite simple, and the derivation is quite
complex. Since programs are derived using algebraic identities and theorems, programs will be

correct with respect to the specification from which they were derived. One of the Squigol goals
is to calculate algorithms without using induction.

Like FP, the language used for Squigolling is based on combinators. Thus, it is rather like

functional programming using combinators as much as possible. Unlike functional programming,
functions are assumed to be total, to facilitate algebraic manipulation. A consequence of this is

that data structures are finite. Despite this the language does not specify any evaluation order.
A drawback of this approach is that the language does not have a formal semantics, unlike
functional programming or FP. In particular derivations only guarantee partial correctness.

Squigol is not even necessarily constructive; in particular function inverses may be used to specify
other functions. Also fictitious values may be used, for example oo and -oo.

The notation used is similar to that of a curried functional language; functions are curried and
composition is denoted by an infix (lot for example f"g. Function application binds more
tightly than other operators; thus fa®b is (f a) ® b. Expressions' types may be written in a
straightforward way, for example: if f :: 13 - -y and g :: a-0 then f"g:: a y.

5.2.1 Data structures and homomorphisms

Rather than developing rides for several different data structures, generic binary structures will
be considered instead: the Boom hierarchy [80]. This is a family of finite binary structures
(Struct) with the following operations, for a type a:

empty :: Struct a
unit :: a- Struct a
join :: Struct a -: Struct a Struct a

For all such structures empty is the identity element of join. According to the laws bestowed

upon join, different data structures result:

join laws

associative commutative ideenpotent
resulting data

structure
x x x binary tree
� x x list

� � x bag (multiset)
� � � set

In algebraic terms the above operations and laws (lo not fully characterise these data structures.
Many algebras satisfy these operations and laws. For example for sets the following operations
work: empty = false, unit = . x. true and join = or. A full characterisation is that each instance

of Struct (for example lists) must be initial in that class of algebras. This means that there
exists a homomorphism from the data structure to all other algebras in the same class.

Homomorphisms may be defined on these data. structures, Struct, thus:

CHAPTER 5. SQUIGOL

It empty
h (unit a)
h (join x y)

= 1®

=fa
= hx®hy

for a function f and an operator Q. The identity element of 0 is denoted by 10.

48

In order to make sense ® must have at least the algebraic richness of join and 10 must be
the identity element of ®. For example the number of elements in a tree, list or bag may be

calculated by taking: 10 = 0, fa=1 and ®=+. However the size (cardinality) of a set
cannot be calculated in this way since + is not idempotent, that is: JA U BI 0 JAI + IBI.

By having a generic view of the previous data structures general rules applicable to all of them
may be developed. However to ease reading the conventional notations for trees, lists, bags and
sets will be used, for example: (], ["] and -I-I- will be used for lists, and {}, {"} and U will be used
for sets; in place of empty, unit and join. In particular notice that ["] and {"} are functions for

constructing singleton lists and sets. Much of the Squigol work has concentrated on lists and
these will feature most in the forthcoming text.

Homomorphism are not used directly, rather they serve as a basis for the calculus of map and
reduce. Map (*) is defined thus (for any Struct):

f* empty
f* (unit a)
f* (loin y)

= empty
= unit (f a)
= join (f*x)(f*J)

Reduce (/) is defined thus (for any Struct):

p/empty
®/(unit (I)
®/(join x y)

= ýp

= l1

= (®/z) ® (®/y)

An important, property is that every homomorphism on Struct may be factored into a composi-
tion of map and reduce, and vice versa. A homomlorphism It:

la empty = le
la (unit a) =fa
h (join x y) =hx0hy

is equal to: h= ®/ -f*.

For example:

STIM = +/ for trees, lists and bags

all p=&p for trees, lists, bags and sets
#= +/ (Ii 1)* for trees, lists and bags
Ii cx=c

CHAPTER 5. SQUIGOL 49

The function K is used for constructing constant functions and the function # is the size
function, for example the length function on lists.

There are many laws and rules concerning map and reduce. The most important rules are called
promotion rules. Promotion rules allow functions to be transformed without using induction;

which is a goal of using Squigol. For example:

1 map promotion reduce promotion

f*"-++/ = ++/"(f*)* ®/"++/ = ®/-(®/)*

These rules hold for all data structures in the family Struct. A general rule for promotion of
operators into binary structures can be formulated although it is not done so here, see [81]. Re-

cent work by Malcolm has extended the ideas of homomorphism and promotion to any arbitrary
data structure [76].

5.2.2 Other operators

This section briefly describes some other common operators, which will be used later in the
examples. There are many rules which relate these operators and some of these rules will be
described here.

Notice that for lists reduce does not specify any direction of reduction. Nevertheless, directed

reductions can be useful for lists. Two directions are possible: left to right reduction (foldl in
functional programming) has the following form: ®4-e and is defined informally:

®-ýe (a,
a a2e ... an] = l(e ® a1) (D a2) ®... ® a.

and right to left reduction (foldr), which is defined thus:

®/e (a,, a2, ... , a.] _ (t1 ®((l2 ®... ®(a,, (D C))

Directed reductions may also be defined without seed starting values. Also, they may be defined

on bags and sets, but this is not often very useful.

Specialisation lemmas exist which allow hornomorphisms to be rewritten as directed reductions,
for example:

Left reduction specialisation lemma:

01-f* = ®+ where a0b=apfb and e= 1®

Accumulations may be defined on lists. These are usually referred to as scan or prefix in the
functional programming world. Accumulations are generally directed. They exists with and
without seed starting values, as do directed list reductions. Left accumulate without a seed is
denoted ®-{ and defined as:

CHAPTER 5. SQUIGOL

®4 [a,, a2, ..., an] = [a,, ai ® a2, ...,
((a, ® ßc2) (D a3) ® ... ®a.]

Right accumulate without a seed is denoted ®f and defined as:

E D4 [al, a2, ..., an] = [al ® (a2 ®... ® (an-1 ® an)),..., an-1 ® an, an]

The McCarthy conditional form is used when manipulation of conditionals. is required:

It = (v - .
f, 9)

This is equivalent to:

hx = fx, px
g x, otherwise

Filtering is achieved by filter denoted by pa, for example for lists:

pi= ++1. (p, [.], E [])*

This may be defined on trees, lists, bags and sets.

Selection is denoted by ff and If:

aIf b=a, fa<fb

= b, fa>fb

50

The If function is similar. When I or .1
have no function subscript it is assumed that they

operate directly on numeric arguments, and they then denote max and min. Fictitious identity
elements for if and If may be used. In an program these values often correspond to exceptions.
Notice also the cjeliberate underspecification of J. f in the case that fa=fb. Non-determinism
in specifications is a big issue in Squigol, see [14,34,80]. It is discussed no further here.

Another useful operator is cross product xq, infornmally:

[a, b}x®[c, d, e]=[a®c, b®c, a®d, b®d, aED e, bED el

It is defined on lists thus:

xx®[] _ []
1 x(D [a] = f* x where fz z® a
x x(T 19 (y -}-I- z) = (x xt, y) -H- (x x(D z)

This may be defined on any Struct. In particular Xpa, r, where pair ab= (a, b), is the cartesian
product function. Cross product is often used where in a functional program list comprehensions
would be used.

CHAPTER 5. SQUIGOL

5.3 Parallel Squigolling

51

The previous section described basic Squigolling which has been predominantly used for deriv-
ing sequential algorithms. However much of the Squigol methodology applies equally well to
parallel algorithm derivation. This section discusses aspects of parallel Squigolling, including
those aspects suited and unsuited to parallel algorithm derivation, an important parallel algo-
rithm (parallel prefix) and a way of annotating expressions to make their intended operational
behaviour explicit.

5.3.1 Survey

Some Squigol researchers have used Squigol for producing hardware descriptions (circuits). Cir-

cuits are inherently parallel and thus the techniques employed are also suitable for parallel
algorithm derivation. For example Geraint Jones has produced an impressive derivation of the
fast Fourier transform from a Fourier transform specification [64]. Sheeran has a relational
version of Squigol which is used for transforming circuit descriptions [104]. By using a rela-
tional Squigol, manipulation of component connections is simplified, since directionality is not
specified.

However, much of this work is concentrated on VLSI design where connectivity issues dominate.
The hardware descriptions which are produced consist of component (process) networks. This is
fine for situations where a static mapping of tasks to processors (circuit elements) is considered.
However for the kind of system under consideration here, this is not the case. The static process
networks produced for hardware purposes are more akin to Kelly's Caliban [70] and occam than
parallel algorithms designed for dynamic scheduling machines.

5.3.2 Deriving parallel algorithms

Parallel algorithms may be derived in the same way as sequential algorithms. Thus parallel algo-
rithm derivation consists of a sequence of steps during which an inefficient problem specification
is transformed into an efficient algorithm. In general the specifications used as the starting point
for all derivations are parallel. This is because specifications should be as abstract as possible
and therefore they should not specify particular evaluation orders; they should admit many
different evaluation orders. This is certainly true of non-constructive specifications!

Each step in a derivation consists of applications of algebraic identities and theorems. Some
identities and theorems used for sequential algorithm derivation preserve or improve parallel
performance, while others do not. The most important rules, promotion rules, do preserve
parallel performance. (This could be proved using the performance semantics of Section 8.3.)
Sometimes parallel algorithms can be derived from parallel specifications by a sequence of steps
each of which successively improve the algorithms' parallel performance. Very rarely are parallel
algorithms derived via sequential algorithms.

However as explained in Chapter 8 maximal parallelism is not always sought from algorithms.
An extreme example would be to solve an NP complete problem using an exhaustive search
algorithm; with an infinite number of processors this would have polynomial complexity. In

practice machines only have finite numbers of processors and therefore sequential costs of parallel

CHAPTER 5. SQUIGOL 52

algorithms become important too. Since if the number of concurrently active tasks a program
produces exceeds the number of processors a machine has, then effectively the parallel algorithm
will be run sequentially on individual processors. Thus it is necessary to assess a parallel
algorithms sequential performance in addition to its parallel performance.

One way to approach this is: if a parallel algorithms performance differs greatly from an optimal
sequential algorithm then a hybrid algorithm should be used. A parallel algorithm should
solve the problem `across' processors and sequential algorithm should be used on individual

processors. For example see the performance analysis of parallel prefix in Section 8.2.3. The

parallel and sequential parts of a hybrid algorithm may be independently derived and then
combined together. hybrid algorithms often appear as parallel programming paradigms where
interpreters for a problem are run on each processor of a MIMD machine, for example the
agenda parallelism of Linda [26]. For many problems this hybrid approach is not required since
a parallel algorithm is quite efficient when run sequentially.

5.3.3 Homomorphisms and divide and conquer algorithms

An important aspect of Squigol with respect to parallel algorithms, is its emphasis on homo-

morphisms. Ilomomorphisms are often good parallel algorithms because they correspond to a
limited class of divide and conquer algorithms. If a divide and conquer algorithm is described
by the following scheme:

D&C p= solve p, leaf p
= combine (D&C x) (D&C y), otherwise

(x, y) = divide p

The applications (D&C x) and (D& C y) can be evaluated in parallel.

For a homomorphism 01-f * roughly speaking f is the solve function, join-' is the divide function

and ® is the combine function. A similar observation has been made by Mou and Hudak [831.
They investigated divide and conquer algorithms by taking an algebraic view, considering general
morphisms between algebras. They were interested in discovering how general D&C algorithms
were and looking at their performance and communication properties. As shown in Section 8.2.2

not all D&C algorithms are good parallel algorithms. Nevertheless DEC is a very useful parallel
programming paradigm.

5.3.4 Representation of data structures

Much of the work on Squigol has concentrated on list data structures. In a parallel setting the
implementation of lists, and other data structures, is important. In particular the conventional
cons cell representation of lists only allows sequential access to lists' elements, which can prevent
parallelism. An exception to this is if an expensive function is to be mapped in parallel over a
list.

List homomorphisms are described thus:

CHAPTER 5. SQ UIGOL

h [] = io
h [a] =fa
h (x -I+ y) =h x® hy

53

In order to evaluate a function like length (f = Ii 1 and ®= +) in parallel, lists should be rep-
resented as balanced binary trees or arrays. If the combining function f is sufficiently expensive
then a list representation may be translated to one more suitable for parallel evaluation, before

application of the homomorphism. Similar representation considerations apply to bags and sets.

5.3.5 Directed reductions are sequential

Not all of the work on Squigol is applicable to parallel algorithm derivation. Much of the
work on Squigol has concentrated on lists and sequential list optimisations. In particular the
directed reduction operators are sequential. Directed reductions are often used to optimise
homomorphisms by making use of their directionality: for example the Greedy algorithm in
[13].

Any parallelism which may be possible with directed reductions may be factored out as a map
thus:

®e=pe "f * where apb=a0 (f b)

(This assumes no parallelism can result from evaluating the input list; this may not be the case
if expressions are evaluated lazily.)

As previously mentioned, often homomorphisms are good parallel algorithms. However not
all functions on lists are homomorphisms, and directed reductions can express more functions
than homomorphisms can. (The specialisation lemma, previously mentioned, states that all
homomorphisms can be expressed as directed reductions.) For example the function prefix
which takes the longest initial segment of a list satisfying a predicate p; for example:

prefix even [2,4,1,6,8] = [2,4]

Note this prefix is not the same as parallel prefix (scan/accumulate). A sequential prefix function

may be defined thus:

Prefix p= ®7L[l
where

a ®x = [a] -H- x, pa
11, otherwise

However prefix cannot be defined as a homomorphism on lists and hence parallelised in the
obvious divide and conquer way. The following lemma allows some directed reductions to be
expressed as parallel algorithms by generalising them:

CHAPTER 5. SQUIGOL

Parallel directed reduction lemma:
if. Va, e :: ß --, a -+ a

f:: a-ß(a, 7)
g:: ß-#a
®:: (a, 7) -' (a, 7) - (a, -j)

(a ®L) = fst (f (g a) ®f b)
10 _ (e,?)
? denotes any value and ® is associative

Then: ®+}-e = fst " 0/ - (f " 9)*

54

This lemma may be used to parallelise prefix. Although it has been previously stated that it is

rare to derive parallel algorithms from sequential algorithms; there are many existing algorithms
and derivations involving directed reductions, hence this lemma allows some degree of algorithm,
and derivation, re-use.

A parallel version of the above prefix function may be formulated thus:

(x, xb) 0 (y, JG) = (x ' y, yb), xb
= (x, false), -, xb

10 = ([], true)

fx= (x, all p) x)

Jx = [x], 1) x
= [], -, px

IL = 1"9

The h function may be simplified to yield the following program:

It x= ((x], true), px
((], false), -, p x

prefix p= fst " 0/ " la*

The function ®/ " h* is a generalisation of prefix. The first component of this expression is equal
to prefix; the second component is a boolean indicating whether all elements of the list satisfy p
that is snd " ®/ " h* _ &/ " p*. Thus the definition of (x, xb) ® (y, yb) concatenates the prefixes
of the two lists x and y if p holds for all elements of x, that is xL is true.

It is interesting to note that (?, false), that is any pair whose second component is false, is a left
zero of ®. The value z is a left zero of an operator p if and only if for all x, zQx=z. This

means that parallel evaluation of ®/ can be cut short when a list element is encountered which
does not satisfy p; since no list elements to the right of the element need be tested. This is a
form of speculative evaluation, see Section 2.3.

CHAPTER 5. SQUIGOL 55

From this it may be concluded that some of Squigol is orientated towards using sequential
optimisations, such as directed reductions. Hence some new rules and theorems, like the one
above, are needed for coping with these kinds of situations.

5.3.6 Parallel prefix (scan)

An important algorithm is parallel prefix (also known as accumulate and scan) [47]. In this

section a parallel and sequential prefix function (. 4) are defined. If ® is associative then ®#

may be defined by the homomorphism h below:

®-k = 0/-[-]* where a (D b=a -l+((last a) ®) *b

The function last selects the last element of a list; note, for this to work, last [] must equal 10. For

a list of length n on an n processor machine this may be evaluated in O(In n) time, assuming the
list is represented as a balanced binary tree. With one processor this has complexity 0(n In n).
However a more efficient sequential algorithm may be derived:

o/ ["]*

= using the left reduction specialisation lemma
®-f4ii where a®b = aQ[L]

Simplifying aQ [b]

= using Q def.
a -I-i-((last a) (D) * [b]

= using map defi

a --{- [last a ®b]

Thus, left accumulate may be expressed as:

where
1®x=1-H-[last 10 x]

This is an optimal sequential algorithm which has complexity 0(n). Thus to implement left

accumulate efficiently on a XIIMD machine a hybrid parallel and sequential algorithm is required.
These complexities are calculated and discussed in Section 8.2.3.

5.3.7 Parallel annotations

Sometimes it is desirable to be explicit about the sequential or parallel evaluation of expressions.
This is to make explicit to the reader the intended evaluation of an algoritlun. One way to

CHAPTER 5. SQUIGOL 56

achieve this is to annotate expressions. This is useful for monitoring the parallelism throughout
a derivation and to ensure that the derivation results in a performance improvement. Further-

more it may be possible to construct a semantics to enable a formal complexity analysis to be

performed, like that in Section 8.3. This would require the identification of expressions parallel
or sequential evaluation.

Parallel annotations are very useful in situations where the parallel evaluation of an expression
is not obvious. Often many expressions may be evaluated in parallel but the parallel evaluation
of some expressions are more important than others, with respect to the overall performance.
Hence expressions whose parallel evaluation is crucial to the performance of an algorithm should
be annotated.

To this end two forms of parallel annotations are introduced: 01, and f *111. The former is used
to annotate a binary operator. For example if it is desired to indicate that plus should evaluate
it operands in parallel then +11 should be used be used; parallel sum may be denoted thus: -f-II/.
The latter annotation (*11) denotes a parallel map; f is applied to all the elements of 1 in parallel.
It is assumed that parallel map causes the evaluation of all f applications to weak normal form.

Rules can be formulated which equate the operational behaviour of the two annotations, for

example:

ý"IIý'f* - ý"ý'f*II

This assumes a lazy evaluation strategy (parallel evaluation is propagated) and that no benefit

arises from performing just appends in parallel. It states that concatenating a list of lists
together in parallel, which is formed from a map operation, is operationally and semantically
equivalent to performing the map in parallel. This is because performing each concatenation in

parallel causes the evaluation of each f application in parallel. Of course the correctness of rules
such as these may only be proven within an operational semantics, which assumes some kind of
operational behaviour, for example the semantics described in Section 8.3.

These annotations and assumptions about evaluation assign an explicit operational meaning to
operators in the language. This is necessary in order to express algorithms intended for MIMD

machines; where the differentiation between sequential and parallel evaluation is important.

5.4 Example: all shortest paths

In this section a parallel algorithm for calculating the shortest paths between all vertices in a
directed graph is derived. In common with most Squigol derivations some theory is initially
developed. This is used in the derivation of an algorithm to solve the problem. The theory is

general to all problems in the same class as the problem being solved. The algorithm appears,
without derivation or proof, in [4].

The crucial decision for graph problems is how to represent the graph. The method chosen here is

to represent graphs as adjacency matrices. Adjacency matrices are in turn represented by quad-
trees [120]. This provides a uniform representation for highly connected and sparsely connected
graphs. Also quad-tree matrix representation is easily implemented and parallelisable in a

CHAPTER 5. SQUIGOL 57

functional programming language. The derivation is independent of the matrix representation.
It just relies on certain properties of matrix operations.

The next section discusses matrices in general, some matrix operations and some laws concerning
these operations.

5.4.1 Matrices

Three operations will be required on matrices:

map: which will be denoted by * as before. This maps a function pointwise across all elements
of a matrix.

zip: this will be denoted p®, meaning zip with ®. This produces a matrix whose elements are
the pointwise combination with of the two operand matrices. For example V+ is matrix
addition. (Zip may be usefully defined on lists too.)

multiply: this is a generalised matrix multiply denoted by ((D, ®)a (a binary operator which
takes two parameters in addition to its operands). Rather than clot products being formed
by multiplication and addition they are formed by ® and ®. Thus the dot product of
(al,..., an) and (bl,..., bn) is (a, (D b1) E) ... ® (a® @ bn). For example (x, +)[x] is the
standard matrix multiplication.

All of these three matrix operations are highly parallel and throughout the derivation it will be

assumed that they are evaluated in parallel. Since this parallel evaluation is fairly obvious no
parallel annotations will be shown. However parallel annotations could have been added to the
definitions.

The implementation of matrices using quad-trees is now described; this has been proposed by
`'eise [120]. Matrices will be represented as quad-trees. These are a variation on the binary
trees previously discussed (binary trees could be used to represent vectors). Quad-trees may be
defined, in a similar manner to algebraic data types in functional programs:

matrix a= Scalar a+ Quad (matrix a) (matrix a) (matrix a) (matrix a)

There are no laws associated with these operations, the algebra is free as with all functional

programming data structures. However it will be assumed that all quad-trees have the same
shape. This constraint may be relaxed so that sparse matrices may be efficiently represented.
Sparse graphs may then be represented by sparse adjacency matrices. To do this the matrix
data type may be augmented with a nil value. The nil value acts as an identity and zero element
in an analogous way to zero for numeric matrix addition and multiplication. Where a whole
sub-tree contains only zero values, the whole sub-tree may be represented by a single nil value.

The matrix operations are defined thus, map: * :: (a ; Q) -> matrix a --, matrix 8

f* (Scalar b) = Scalar (f a)
f* (Quad abc d) = Quad (f * a) (f * b) (f * c) (f * d)

CHAPTER 5. SQUIGOL

Zip: if ® :: a-ß --} 7 then Ve :: matrix a- matrix ß-* matrix ry

(Scalar a) p® (Scalar b) = Scalar (a ® b)
(Quad abc d) p® (Quad wxy z) = Quad (a V(D w) (b 0® x) (c V® y) (d 0® z)

Multiply: if 0 :: a -+ a6 and ® :: /3 --+ 6 --> 3 then (®, E) :: matrix a --; matrix /3

(Scalar a) (®, ®)iJ (Scalar b)
(Quad abc d) (®, ®)F] (Quad wxy z)

= Scalar (a ®b)

=Quad pgrs
where
p= (a (®, ®) x w)
q= (a (®, (D) x x)
r= (c (®, ®) x w)
s= (c (®, (D) x x)

Ve (b (®, (D)x ? I)
V® (b (®, (D) x z)
Ve (d(®, (D)x y)
V (d (®, (D) x z)

58

There are some useful properties that p® and (0,6))H obey. The p® operator is associative,
commutative and idempotcnt if ® is. The (0, ®)ax operator is associative if ® and ® are;
like numeric matrix multiplication it is not in general commutative. Also similarly to numeric
matrices zero and identity matrices may be defined.

Several rules will be required concerning multiply:

Multiply-map rule:
(f*A) (®, ®)Q(f*B)=A (o, ®)QB
where
e (Db = (f a) ®(f b)

Proof, by induction on A and B:

case A= Scalar a and B= Scalar b

* and (®, ®)[x def. s
LHS = Scalar ((f a) (D (f b)) = RIIS

case A= Quad abcd and 13 =Scalar zvx? /z

LHS=Quad pgrs and THIS=Quad ij k1

where
p= ((f * a) (®, (D)Q (f * w)) 0® ((f * b) (©, ®)Q (f * y))
= by the induction hypothesis
(a (®, ®)Hx tu) v® (b (0, (D)Q v)
=i for the MIS

q= etc. Q

CHAPTER 5. SQUIGOL

Map-multiply rule (I):

If a®b= f (a©b)

a®b= f (a®b)
then:

A (®, ®)a B=f* (A(0,6)Q B)

where
aeb=(f a) (D (f b)

Map-multiply rule (II):

(with the above definitions from rule (I))

If:
.f

(a0b)=f((f a)0(f b))
then: A (®, ®)a I3 =f* (t1(O, (D)Qx 13)

Proof of Map-multiply rule (I):

A (®, ®)H B=f* (A(0, (D)0 B)
a®b= f (aob)
a®b= f (a®b)
aeb=(f a)®(f b)

by induction on A and B:

case A= Scalar a and B= Scalar b

* and (®, (D}[x] def. s
LHS = Scalar (f (a 0 b)) = RHS

case A= Quad abcdand B=Quad iv xyz

MIS = Quad pqrs and R. IIS = Quad ijkI

where
1ý _ ((f * a) (®, ®)n (f * w)) 0® ((f * b) (®, ®)J (f * y))
= by the induction hypothesis
(f * (a (0, e)Q w)) 0® (f * (b (0, B)Q y))
=* distributes into p® and e def.
f* ((a (0, e)Q w) 7e (b (0, e)Q y))
=ifortheMIS

q= etc. O

5.4.2 Graphs, relations and paths

59

Rather than starting with the shortest paths problem a simpler, related, problem will be solved
first: the connected components problem. This can then be used as a basis for solving the all
shortest paths problem The connected components problem is to find between which vertices of
a graph there are paths (of any length). If a graph is viewed as a relation between vertices R
and vl R v2 if and only if there is an edge between vl and v2. Then the problem of finding the

CHAPTER 5. SQUIGOL 60

connected components is equivalent to finding the reflexive transitive closure of R. Assuming
that R is reflexive this is equal to R" where it is the order of the relation.

An adjacency matrix implementation of a graph is related to the relational view of a graph thus,
if R is the relation and 1l7 is the matrix: Vi, j: iRja M[i, j] = 1. Thus if relation composition
can be defined on matrices (which may be viewed as an implementation of a relation) then the
connected components problem may be solved by calculating the transitive closure, using the
formula above.

Relation composition, using a matrix representation of relations, is equal to (and, or)x. If
matrices (relations) are used to represent graphs then the connected components of a graph
may be calculated thus:

power nf= f'
con = power (In n) (sqr ((and, or)[x))
sqr px =xOx

(The function In is logarithin to the base two and n is the order of the relation, a power of two.)
The function sqr ((and, or)j) composes a relation with itself. Thus con composes a relation
with itself in n times to compute R', where it is the order of the relation.

By adapting this algorithm all the paths between pairs of vertices may be enumerated. This
may be used as the basis for a specification for the shortest paths problem; by enumerating all
the possible paths between pairs of vertices and then selecting the shortest of those paths:

(lshortest /) *" power (ln n) (sqr (X*, U)HX) " {"}*

The value n is the number of vertices in the graph: the width of the matrix, a power of four.
The operator Ishortest gives the shortest of two paths. Paths are represented as lists of edges.
To represent unconnected nodes a special list representing infinite paths is required: oo. The
value oo behaves as a zero with respect to * and as an identity element for Ishortest"

00 + 1) = 00 P -[shortest 00 _ 7)

P 1" 00 = 00 00 1shortest P=P

The operator x* takes two sets of paths and forms the cartesian product of the two; thus
generating all possible combinations of paths. If AB is the set of all paths from A to B and BC
is the set of all paths from B to C then AB x-[. BC is the set of all paths from A to C.

The basic idea is to promote (Ishortes! /)* into power. In addition to the multiply rules the
following properties of power will be required (note that composition binds less than application):

Power rule 1:

Ifn>0then

fg=f"g"f=f" power 71 g= power 71 (f " g)

Power rule 2:
f'g=g"h = 1)oWaern f "g=g"power ish

CHAPTER 5. SQUIGOL

5.4.3 The derivation

61

In this section the all shortest paths algorithm is derived. The rules concerning power and
(and, or)Q are used to progressively transform the specification into an efficient parallel algo-
rithm. The function the is only defined on singletons; it the inverse of {"}, the singleton set
constructor.

The specification
(. shortest /) *" power (ln it) (sqr (x*, U)ax) " {"}*

= since the* " {"}* = id
the* " ({"}" (, shortest /) *" power (lit n) (sqr (x.., U)E) " {"}*

= power rule 1 since it >0
the* " power (In n) (({"}" jshortest /) * sqr (x*, U)a) " {"}*

= map-multiply rule (II)
the* " power (In n) (sqr (0, ®)x) " {"}*

where
a@ b ({'}'

shortest
ý) (a x b)

a®b= ({'} .
shortest

I) (a U b)

It is desired to use power rule 2 to simplify the previous expression. The following sub-derivation
concerns the precondition of power rule 2: f"y=g- li. For the previous expression f-g is

sqr (®, (D)Hx " {"}*. From this an expression analogous to g-h is derived.

(sqr (®, (D)x " {"}*) A

({"} * A) (®, ®)ax ({. } * A)

= multiply-map rule
A (O, ®)Q A

a®b= ({'}' .
shortest

/) ({a} X-te {b}) _ ({'}' j
shortest

/) (ja +}' b}) _ {. }(a +} b)

= map-multiply rule (I)

where
aeb= {a} ® {b} = . shortest /({a} U {b}) =a jshortest b

lýJ
* sqr (*) Ishorlest)H) ýý

Nov using the result of the sub-derivation:

sqr (0, (D)ax " {"}* = {"} *" sqr (*{ 1shortest)EJ

power rule 2 can be applied to the previous expression:

CHAPTER 5. SQUIGOL

the* " power (In n) (sqr (®, (D)ax) " {"}*

where
a& b= ({"}" l

shortest /)
(a x* b)

a (D b= ({"}"
. shortest

/) (a U b)

= using power rule 2 and the sub-derivation result
the* " {"} *" power (In n) (sqr (-}{-i ,

shortest)O

= using the* " {"}* = i(1

power (lea n) (sqr (-f}-,
.
Ishorlest)a)

62

Intuitively to find the shortest path from a to b, for each x the shortest path from a to x is
found and concatenated with the shortest path from x to b. This yields a set of paths from a to
b; the shortest of these is the shortest path from a to b.

Although this is a simple algorithm, which appears very similar to the specification, it is not
obvious that it is correct with respect to the specification. By formally deriving the algorithm
it is guaranteed that the algorithm is correct, and also some useful theory concerning (®, (D)rx
has been developed, which may be useful for deriving other algorithms.

5.4.4 The functional program

The Squigol algorithm may be translated into a parallel functional program, as shown. An

additional optimisation of memoising path lengths has been used to avoid their recalculation.
Thus a path is represented as a list of edges and the overall path length.

> matrix *= Scalar *I
> Quad (matrix *) (matrix *) (matrix *) (matrix *)

> multiply fg
> =h
> where'
> h (Scalar a) (Scalar b) = seq r (Scalar r) where r= (f a b)
> h (Quad abc d) (Quad wxy z) =
> par ri (par r2 (par r3 (seq r4 (Quad rl r2 r3 r4))))
> where
> rl = mzip' g (h a w) (h b y)
> r2 = mzip' g (h a x) (h b z)
> r3 = mzip' g (h c w) (h d y)
> r4 = mzip' g (h c x) (h d z)

> mzip' fxy= par x (seq y (mzip fx y))

> mzip f (Scalar a) (Scalar b) = seq r (Scalar r) where r= (f a b)
> mzip f (Quad abc d) (Quad wxy z) =
> par ri (par r2 (par r3 (seq r4 (Quad rl r2 r3 r4))))

CHAPTER 5. SQUIGOL

>
>
>
>
>

where
rl = mzip faw

r2 = mzip fbx

r3 = mzip fcy

r4 = mzip fdz

> weight == num
> vertex == num
> edge (vertex, vertex)
> path .. = Uncon I Con weight [edge]

> shortest Uncon y=y
> shortest x Uncon =x
> shortest (Con wa a) (Con wb b) = Con a, wa <= wb
>= Con b, otherwise

> join Uncon x= Uncon
> join x Uncon = Uncon

> join (Con wx x) (Con wy y) = Con (wx+wy)(x++y)

> power 0f= id

> power nf=f. power (n-1) f

>sgrfx =fxx

> shortestpaths = power (log2 num_vertices) (sqr (multiply join shortest))

63

In order for the pars in multiply, mzip and mzip' to satisfy the par constraint, it is sufficient for
these functions to occur in contexts where all of their result matrix is required. The application
of multiply in shortestpaths occurs in such a context.

5.4.5 Experimental results

Using the experimental set-up described in Chapter 4; the following results were obtained from

running the shortestpaths program. These results sliow that the algorithm is highly parallel.

Input size (number of vertices) 48 16
Speed-up (average parallelism) 13 54 215

5.5 Example: n-queens

This derivation is of a parallel algorithm for the n-queens problem. This problem is a little more
artificial than the other problems. However there are some useful applications for this algorithm,
it is a good example derivation and some useful theory is generated `along the way'.

CHAPTER 5. SQUIGOL 64

5.5.1 Road map

This derivation of a parallel n-queens algorithm essentially consists of four parts:

" The high level parallel specification: the specification consists of a search space enumer-
ation and the subsequent filtering of that search space to find solutions to the n-queens
problem.

"A refinement of the specification: the specification enumerates a large search space; this
step refines the specification by reducing the size of the search space.

"A lemma about pa perms 1: the major step in the derivation of the parallel algorithm is
the application of the perms-filter lemma. This lemma allows the filtering of permutations
to be combined with their generation. It is a general lemma, not specific to the problem
being solved.

Application of the lemma to the refined specification: this enables the generation of the

n-queens search space and the subsequent searching (filtering) of that search space to be

combined.

5.5.2 The specification

A parallel specification for the n-queens problem is shown below:

queens n= safe a comb n all-pos
safes =(all "-(-f. 11/"sps*)s

where
sp pos = ((-i " check pros)*Il) (s - [pos])

check (i, j) (in, n) =(i=m)V(j=n)V(i+j=m+n)V(i-j=m-n)

all = &/

all = &/

The specification generates the set representing all possible placements of n queens on a board:

comb n all pos. This set of placements is filtered to remove all placements containing mutually
attacking queens. The safe function determines whether a set of queen positions (a placement
of n queens) are mutually safe. The comb it s function produces the set of all combinations of n
elements from s. The value all_pos is a set of pairs of integers representing all the positions on
an nxn chess board. A position is represented as a row number by column number pair. Notice
that "-" has been overloaded; it represents subtraction of numbers and lists. List subtraction
is defined thus:

CHAPTER 5. SQUIGOL

x- [l

x-([b] ++y)

remove b []

remove b ([a] +{- x)

all-pos
pair ab

The operator Xpair is cartesian product.

=x

_ (remove b x) -y

= [l
= x,

= [a] 4+ remove b a,

if a=b
otherwise

_ {1.. 71} Xpatr {1.. 72}

_ (a, b)

65

This is a highly parallel specification; both the combinations generation and the filtering may
be evaluated in parallel. Since there are several expressions which may be evaluated in parallel,
the appropriate operators have been labelled as parallel.

Using reduce promotion and * distributivity safe can be rewritten thus:

safe s= (all " sp s *11) s
where
sp pos = (all " (-' check pos)*,,) (s - [pos])

(As previously stated promotion conserves parallelism.)

The comb function may be realised thus:

Comb n= ({"} " take n) *" perms

The perms function takes a list and produces a set of all the permutations of the input list. (For
this to work all-pos must be a list not a set of board positions.) The take n function takes the
first n elements of a list.

Permutations (perms) may be generated in parallel thus:

perms I= inkset (power #1 g [[ýý)

where
g= }} II/_ f*
fJ =((J-H-)"['1)*II(1-y)

For any binary operator p, a®b=bOa. The function ink-set maps a list to a set
(mkset: [a] -* {a}).

The sequential complexity of comb all_pos is 0(n2), since all-pos has size n2 and perms 1 has
complexity 0(n!). At best we can only expect a linear speed-up with P processors; which given
the problem's complexity is not going to be very much!

CHAPTER 5. SQUIGOL

5.5.3 Specification refinement

66

Despite the parallelism in the specification, it is very inefficient - as has been shown. Hence,
the specification will be refined to reduce the search space (ol(dSS = comb all-pos); whilst not
increasing the cost of its generation.

The n-queens lemma:

dnENat, sE queens n: fst*s=snd*s={l.. n}& Isl =n

Proof by contradiction (omitted).

This states that the safe n queens must all lie on different rows and different columns. Thus
to place n queens on an n by n board the queens row positions must form the set {1.. n} as
must their column positions. To ease the derivation of a constructive specification the size of s
is made explicit.

This may be re-expressed thus:

Vu E Nat : queens nC newSS S" ýzewSS = {s : fst *s= snd *s= {1.. n} & Isl = n}

Also (lemma):

newwSS C oldSS where o! cISS = comb n all-pos

(proof omitted)

If newSS can be generated as efficiently as oldSS then this will be a more efficient space to
search. That is, below would be an efficient n-queens solution:

queens is = safe a newSS

Can newSS be generated efficiently? To attempt this a. constructive definition for newSS is
required. Such a definition will be synthesised:

CHAPTER 5. SQUIGOL

newSS

= definition
{s : fst *s= snd *s= {1.. n} S: Isl = n}

= since there are no duplicates a list abstraction can be used (Isl = n)
(mkset " mkset *) [11 mkset (fst * 1) = inksct (snd * 1) = {1.. n} & #1 = n]

= mkset-1{1.. n} = ink-set (perms [1.. n]) if Vi E mkset-1{1.. n} : #1 =n
(mkset " mkset *) [11 fst *1E (perms [1.. n]) & snd *1E (perms [1.. n])]

= fst *I= fst (unzip 1) similarly for slid
(mkset " rnkset *) [lt unzip I= (a, b) &aE perms [l.. n] &bE perms [1.. n]]

= unzip-' = Zip
(mkset " inkset *) zip * [(a, b)l aE perms [1.. n] .CbE perms [l.. n]]

=[(a, b)I aeAGEIJ]=AXpa irB
(mkset " ni set *) (zip * ((perms [1.. n]) Xpair (perms [1.. n])))

= do not generate duplications

newSS = (mkset " mkset *) ((zip " pair [1.. n]) * (perms [1.. n]))

The n-queens algorithm may now be expressed:

queens n= (safe a" mkset " mkset *" (zip " pair [1.. n]) *) (perms [1.. n])

= map filter swap
queens n= (ink-set " mkset *" (zip " pair [1.. n]) * (safe " zip " pair [1.. n])a) (perms [1.. n))

67

Since no duplicates are generated (all elements originate from perms) we will omit the mkset
operations. If necessary the ink-set operations can be added according to any context in which
queens is used.

queens 71 = (zipc [1.. n] *" (s(ife " zips [1.. n])a) (perms [1.. n])

zipc ab= zip (a, b)

This new search space (neurSS) may be generated as efficiently as the old search space (oldSS)

since both use pernis. The new search space, nezwSS, has sequential complexity O(zz!). This is
not much better than oldSS. However it does allow an important optimisation to be used, which
is described in the next subsection.

Later the safe position independence lemma will be required:

The safe position independence lemma:

Vi, j, 71 E
.
ATat :j-i>n (safe " zipc [l.. n] = safe " zipc [i.. j])

CHAPTER 5. SQUIGOL 68

This states that the safety of queens on a board is only dependent upon their relative, not
absolute, row positions.

The zip used by zipc is not the same as the one used in the refinement. This new zip is larger,
that is, it is defined for more elements, such as pairs of unequal length lists.

The check function may be simplified since in this refined specification queens can not be placed
on the same rows:

check' (i, j) (7n, n) _ (j=n)V(i+j=7n+n)V(i-j=7n-n)

5.5.4 The perms-filter lemma

This lemma is general to problems of the form: pa perms 1. If p is suffix closed, that is:
Vx, y: p (x -+4- y) =py and p holds for [] then:

p) a perms l= power #1 (bi - g) [[]]

where
g= 4+11/ " f* N

J= ((J) [])*II ýl-y)

The b predicate must satisfy:

ý)_pxk6([e]-H- x)

The intention is that candidate results are tested piece-wise as they are generated and discarded
if necessary. This reduces the number of elements which need be tested; since only elements
with suffices which satisfy the predicate are generated. An alternative way of understanding this
is: the permutations form a tree of suffices, with the resulting permutations at the leaves. The
expression pa perms 1 generates the whole tree of suffices then prunes the leaves (permutations).
This lemma permits branches to be pruned, thus pruning several leaves in one go.

This lemma improves the parallel efficiency of problems having the aforementioned form. The
expression pa perms l generates the permutations in parallel and then filters them. Each fil-
tering is done in parallel. The optimised version: pouter #1 (Sa " g) [[]] generates elements in
parallel exactly as perms does. It combines the filtering with elements generation though. For all
successful n-queens results the number of comparisons performed is n2 in both cases. These com-
parisons, applied to each result, may be performed in parallel or sequence for both algorithms;
the important fact being that the cost is the same for them both. Also for both algorithms, the
results will have been tested in parallel. The total number of tasks created will be smaller in the
optimised case though. In other words this lemma preserves the useful parallelism of the perms
filtering, whilst discarding redundant parallelism (searching).

The equation may be simplified:

CHAPTER 5. SQUIGOL

Sa

= def. of g

6"-4{-11/ " f*

= filter promotion
-H-11 /" (Sa) *"f*

_* distributivity

-H-j, /" (6 a "f)*

= introducing the definitions f'=ba"f and g' = Sa "g
g1 _

++II /" f'*

fy= (S a- ((y ýI) [])*II) (1- y)

=a definition

(++/ - (b [")' h []) *II ' (y * "["])*) (1- y)

=* distributivity and (p -ý f, g) "h= (p "h=f"h, y" h)
(-H-/ " (6 - (J * "[']) -y -}} "["] " ["], h [))*II) (I - v)

= introducing the definition hy= (ö " (y H "["]) -y -}}- "["] " ["], Ii [])
(-H-/ "hy *II) (1 - y)

= *II law
fey=('11! "hy*)(1-J)

Therefore, h may be rewritten thus:

h'ye =[], -, bx

_ [x], otherwise
where x= [e] ++y

Thus:

power #1 (b° - J) [[]] = power #1 g' [[]]

69

Note, that this is still general to any problem having the form: pi perzns 1 and where p is suffix
closed. In fact similar lemmas hold for predicates which are prefix and segment closed.

5.5.5 Application of the lemma

In this section the perms-filter lemma is applied to the refined n-queens specification. This is
possible because safe " zipc [1.. n] is suffix closed.

CHAPTER 5. SQUIGOL 70

All that remains is to calculate S which has the form: p (x -} [e]) =px ä' S (x --+ [e]). In this
case 6 must satisfy:

(safe " zipc [1.. n]) ([p] -l-+- r) = (safe " zipe [1.. n]) x&ö ([p] -I-{- r)

Manipulating:
(safe " zipc [1.. n]) ([p] -H- r)

= zipc def. and #r <n

safe ([(1, p)] 4+zipc [2.. ßa] r)

= safe def.
(all " sp *11) ([(1, p)) -j+ zipc [2.. n] r)

where
sp pos = (all " (-, " check' pos) *11) (1 - [pos])
I= [(1, J))] -+-i-zipc [2.. 7t] r

=/ and * def.
(all " sp *11) (zipc [2.. zz] r) & (all " sp *11) [(1,1))]

where ...

Simplifying spy pos = (all " (-i " check' pos) *11) (1 - [pos])

= since 1 contains no duplicates, and
if x -H- y contains no duplicates, then (x -H- y) - [e] = (x - [e]) -H- (y - [e])

sp pos =a pos &b pos
a pos = (all " (-' check' pos)*11) ((zipc [2.. n] r) - [pos])
b pos = (all " (-i check' pos)*,,) ([(1, p)] - [pos])

thus:
(all " a*,,) (zipc [2.. n] r) & (all " 611) (zipc [2.. n] r) & (all " sp*11) [(1, p)]

= safe def.
(safe " zipc [2.. n]) r& (all " 611) (zipc [2.. n] r) & (all " sp*11) [(1, p)]

= safe position independence lemma
(safe " zipc [1.. n]) r& (all " b*11) (zipc [2.. n] r) & (all " sp*11) [(1, p)]

%
cd

Thus:
(safe " zipc [l.. n]) ([p] -{-}' r) = (safe " zipc [l.. n]) r&5 ([p] -I-F r)

where
b ([p] -H- r) =cS: cl

simplifying b in order to simplify c
b pos = (all " (-, " check' pos)*,,) ([(1, p)] - [pos])

CHAPTER 5. SQUIGOL

= since (1, p) ý (zipc [2.. n] r)
(all " (-, " check' pos) *11) [(1, p)]

=* and all def. (all = &l)

-'check' pos (1, p)

= check' is commutative
-'check' (1, p) pos

Therefore

c= (all " (-, " check' (1, p))*,,) (zipc [2.. n] r)

simplifying d

cl = (all " sp*11) [(1, p)]

=* and all def.

sp (1, p)

= sp def.
(all " (-, " check' (1, p)) *II) (1 - [(1, p)])

where
1= [(1, p)] -}} Zip)c [2.. n]

=- def.
(all " (-, " check' (1, p))*Il) (zipc [2.. n] r)

Therefore

c= cl = (all " (-' " check' (1, p))*II) (zipc [2.. n] r)

Hence:
S (r -}-f [p]) = (all " (-i " cheek' (1, p))*II) (zi. pc [2.. n] r)

The definition of li was:
hye =[], -, bx

[x], otherwise
where x= [e] +I-y

After performing some pattern matching, 6 may be re-written as b':

Yrp= (all " (-i " check' (1,1?))*II) (zipc [2.. n] r)

and h becomes:

h' ye= []' -, S' ye
= [[e] -f-f. y1, otherwise

Doing a few simplifications the final algorithm becomes:

71

CHAPTER 5. SQUIGOL

queens n= power n g' [[]]

where
91 = ++"1{/' P*

fly = ("II/-hey*)([1.. n]-y)

h'Je =[]' 6' ye
= [[c] -H- y], otherwise

b' rp= (exists " check' (1, p) *11) (zipc [2.. n] r)

check'(i, j)(m, n) = (j=n)V(i+j=m+n)V(i-j=zn-n)

exists = V/

Notice how some partial evaluation of S' and check' could be done.

5.5.6 The functional program

72

The parallel functional program below is a simple translation of the Squigol algorithm. The

specialisation lemma has been used to rewrite list homomorphisms as directed reductions.

> queens n= power n g' [[]]
> where
> g' = foldl gg Q

> where
> gg ab= par a (x++a) where x= f' b

> f' y= foldl ff [] ([1.. n]--y)
> where
> ff ab= par a (x++a) where x= h' yb
> h' ye=Q, delta' ye
>= [e: y], otherwise
> delta' rp= (exists

. parlist id . map (check' (1, p)))
> (zipc [2.. n] r)

> check' (i, j) (m, n) = (j=n) \/ (i+j=m+n) \/ (i-j=m-n)

> exists = foldl (\/) False

The pars in gg and ff satisfy the par constraint since the expressions they spark occur in the
results of these functions, and the entire results of these functions are required. The parlist id

expression satisfies the parlist proof obligation since it is used in a head and tail strict context
(exists). For a real machine the parallelism in delta may be too fine to be used, see Chapter
6.

CHAPTER 5. SQUIGOL

5.5.7 Experimental results

73

Using the experimental set-tip described in Chapter 4; the following results were obtained. These

show that the algorithm is highly parallel.

Input size (number of queens) 468
Speed-up (average parallelism) 8 52 228

5.5.8 Discussion

The n-queens derivation occupies almost six pages. This may seem excessively long, however
two pages of this concerns the perms-filter lemma. This is quite general and it is applicable
to any problem having the required form. Thus, as with the other derivations, this derivation
has generated some theory enabling other similar problems to be easily solved. It is also worth
noting that the initial specification of n-queens is very abstract.

The specification, and hence algorithm, generate all the solutions to the n-queens problem. The

algorithm could be used to generate a single solution to the n-queens problem by selecting a

single element from the result. However to implement this efficiently in parallel is difficult since
speculative evaluation is required. This is because not all solution are required and it is not
possible to tell which partial solutions will lead to final solutions.

5.6 Example: A parallel greedy algorithm

This section consists of the derivation of a parallel greedy algorithm and a description of this
algorithm's use. The algorithm computes a maximal or minimal partition of a list, such that

each sub-list satisfies a given predicate. For example a list may be partitioned into a minimal
number of sublists, such that each sublist is sorted. A similar problem is solved in a different

manner by Bird in [131. Bird's algorithm is more general than the one presented here; however
it is not parallel.

The derivation is split into four parts:

" the specification of the problem.

"a general greedy lemma for use in the main derivation.

"a proof that the greedy lemma is applicable to the specification

+ the main derivation of the parallel greedy algorithm from the specification. The major
step in this derivation uses the greedy lemma..

5.6.1 The specification

The problem is to compute the minimum partition of a list, such that each element of the
partition satisfies a predicate p. This may be formally specified as:

CHAPTER 5. SQUIGOL 74

allpa" parts

Where parts is defined thus:

parts = 0/ ' [[[']]]*

a®b = ax*b ++- axeb
(as ++ [a]) ED ([Li] ++ bs) = as -H- [a ++ b] ++ bs

The function parts computes all the partitions of a list. For example parts [1,2,3] is:
[[[1], [2], [3]], [[1], [2,3]], [[1,2], [3]], [[1,2,3]]]. The filter all pa removes all partitions which
contain elements not satisfying p. The selection j# / selects the minimal partition. Only minor
changes are necessary in the derivation and the resulting algorithm in order to compute the
maximal partition of a list rather than the minimal one.

5.6.2 A greedy lemma

The main derivation requires the application of a lemma. This lemma allows the selection and
filtering of partitions to be combined with partitions generation. This lemma states that for any
function g :: [a] -* a and operator e :: [a] - [a] = [a], providing:

g. e/ = g"e/"(f"]"g)*

then:

9"e/ = O/"g*
where x0J=9([x]e[y])

Proof, by induction, of: (g " e/) 1= (Q/ g*) 1

case 1= [v]:

LHS=gv=RIIS

case 1=x-H-y:

CHAPTER 5. SQUIGOL

LHS =
9 ((e/x) e (e/y))

= using the precondition
9 ([9 (e/x)] e [g (E)/y)])

= inductive hypothesis

9 ([(D/9 * x] e [0/9 * J])

= fold using p def.
(0/9*x) o (0/9*y)

= map and reduce folding
((D/. 9*)(x+fy)

= R, IIS

0

5.6.3 Proof of the greedy lemma's applicability

75

To use the greedy lemma in the forthcoming derivation, the precondition of the lemma must
hold. This means that for g= J# /" all pia, the following must be true:

11"0/ =

Since this holds for singletons, only the following constraint is required:

g(x®J)=9([9x)®(9J])

= def. of ®
9(xx--J-I-j-xxED J) = 9([gx]X*[9A-h+ [J2]X(b[9YD

= since for any e, [a] xe [b] = [a e b]

9 (xx* y -H-xx(D J) = 9([9x-H-9 J] -f+[Jx®9J])

= filter and reduce promotion
9(xx-I+J) I# 9(xx(DJ) = 9[gx-H-JJ) I# 9IJz®9J]

This will be proved by proving that:

1. g(xX*y) _ g[sx++-9y]
2.9 (x x® J) =9 [g x gy] or #J (x x-++ J) ý#J (x x® J)

Under these two rules the previous equality becomes a. refinement. This is because in general
for any function h, th /[zu, v] is un-specified in the case that It it = It v. A refinement of f is

CHAPTER 5. SQUIGOL 76

a function which respects the ordering of f but which may impose an additional ordering on
values which are equal under f. Refinements are denoted by for example if li it =hv then
Ih /[u, v] ---), u or alternatively ih /[u, v] - v. Refinements are discussed further in [13,14,80].
For the equality in question, (1) and (2) will mean that:

9(xx-H. Y) t# 9(xxEy) 9[9 x-H-9J] 1# 9[9x®9J]

This means that the greedy lemma in the main derivation will result in a refinement.

Proofof(1), g(xx*y) = g[gx+fgy]

g(x x* y)

= since g=g" ["] "
(g - ["1 "g) (xx*Y)

= def. of g and filter promotion
g [1#/ (all pax X* all <p y)]

= since l# distributes through -H-, Lise cross-distribtitivity (D /" x0/ _ ®/ " ®/*
g [(I#/ allp ix)-I-I-(1#/ allp iJ)J

= def. of g
g[gx-I-I-9J]

=RHS
Proof of (2), first part, 9 (X x® y) _y [g X®9 y]

9 (x x(D y)

= def. of g
l# / all pa (x xý y)

assuming p is segment closed, that is: 1) (z -I-i- y) #- px &' 1) J

then: all pa (s ® t) = (all p 4) ((all pa s) ED (all pi t))

and hence: all pa (x x® y) = all pi ((all p4 x) x® (all pi i))

therefore:

CHAPTER 5. SQUIGOL

j# / all p< (all pi x x® all p) a J)

= sinceg = g"["]"g
(g " ["] " J, # /" all p a) (all pax x® all p -i y)

= assuming all p(1#1 (all pi x x® all p4 y))
(9 []#/) (all pa x x(D all pa y)

since J. # distributes through ®, using cross-distributivity
(9"['])(1#/ allpa x® l#/ all p4 y)

= def. of g
g[gx(D g J)

= RHS

77

Proof of (2), the second part. Discharging the assumption all p (i#/ (all pax x® all pa y))

, all p(1#/(all paxx(D allpay)) #J(xX-+-J) c #9(xx y)

Since J# / (x Xe ii) = j# / ®J# /y

-lall p (1# / (all pax xe all pa y)) q# (9 x ®9 y) <# (J (x xG) y))

Therefore:

#(gx gy) < #9(xxq)y) #9(xx -y) <_ #9(xx®y)

= since g (x x. * y) = [g x -H- g y] and factoring out #g (x x® y)
#(9x®9y) <a= #[Jx-[+Jy] <a

= factoring out gx and gy
#W (D y') <a=# [x' ++ y'] <a

= using def. of
#(as+1-[a-H-b]-H-Ls) <a= #(as-H-[a]+1-[G]-H-bs) <a

This is always true.

0

5.6.4 The main derivation

The derivation of the parallel greedy algorithm from the problem specification is presented
here. The use of the greedy leinina, means that the resulting algorithm is a refinement of the
specification.

CHAPTER 5. SQUIGOL

[/"allpa" parts

= parts definition
L#/ - allpa - ®/-([I-]]]*

= using the greedy lemma
O/ " (j# /" all p a)* - [[[']]]*

where aOb = (_l#/"allpa)([a]®[b))

=p holds on singletons and map distributivity

o/ " (1# /" [[[]l])*

= for any operator e, e/ " ["] = id
0/ " [["]]*

Simplifying apb

(1#/"allpa)([a]®[b])

= def. of ®
(I# /" all pia) ([a] x [b] [a] x [b])

= since [x] xe [y] = [x e y]
(I#/" allpa) ([a-H-b] -H- [a® b])

= since #(a ® b) < #(a -H- b)

a(D b, all p(a®b)
a-H-b, allp(a-f+b)&-, allp(a®b)
J#/[], otherwise

78

Since all p (a -f-f- b) always holds, by virtue of the fact that p holds on singletons, this may be

written thus:

(as -H- [a]) Q ([b] -H- bs) = as -H- [a -f+ b] -H- bs, all p (as -i-I- [a -1-F b] -H- Gs)

= as -H- [a] -H- [b] -H- Ls, otherwise

Furthermore since p holds for as and Gs, all p (as-i-i- [a-1+ b]-f4- bs) may be simplified to p (a* b).

The final Squigol algorithm is:

G/ " [["]]*
where
(as 4+ [a]) Q ([b] -I-I- bs) = as 4+[a-H-b]-H-Gs, p (a -H- b)

= as -H- [a] -H- [b] ++ Ls, otherwise

5.6.5 The functional program

To test the parallel greedy algorithm an implementation was coded in the parallel functional
language. The problem of run length encoding was used for the test. Run length encoding

CHAPTER 5. SQUIGOL 79

encodes runs of equal values as a pair of the value and the number of occurrences. For example
the string (list of characters) "aaabbac" would be encoded thus [('a', 3), ('b', 2), ('a', 1), ('c', 1)]. In
Squigol the problem may be solved using the derived algorithm thus:

h*"o/"[[.]]*
where h ([c] -H- r) = (c, + #r)

P([a]4'r)([b]4's) =a=b

The function Q/ " [["]]* minimally partitions lists, for example the string "aaabbac" would be

partitioned thus: ["aaa", "bb", "a", "c"]. The h* function encodes runs as pairs, representing a
run as a value and its number of occurrences.

To implement this efficiently either arrays, or a clever representation of lists, are required. The
latter was chosen because arrays were not available; also a naive array implementation would
consume a lot of storage. The implementation difficulty is caused by Q accessing elements at
both ends of lists. Clearly implementation using ordinary cons lists will be very inefficient. If
trees are used, access to elements will be at best logarithmic. The solution employed represents
the top level list, the list of partitions, as a tree. Partitions are represented by a special queue
(mqueue). These queues consist of either one (One), two (Two) or many elements (Queue). In
the latter case the end most elements were stored separately from the middle elements. The

middle elements were stored as a tree. The key to this working is that only end elements are
ever accessed, elements in the middle of a list are not accessed. The program is shown below:

> tree * :: = Node (tree *) (tree *) I Leaf *

> mqueue * ** :: = One *I Two **I Queue * ** *

> tmap f (Leaf x) = seq y (Leaf y) where y=fx
> tmap f (Node 1 r) = par rr (seq 11 (Node 11 rr))
> where
> 11 =tmapf 1
> rr = tmap fr

> treduce f (Leaf x) =x
> treduce f (Node 1 r) = par rr (seq 11 (f 11 rr))
> where
> 11 = treduce f1

> rr = treduce fr

> fun :: mqueue (*, num) (tree (*, num)) ->
> mqueue (*, num) (tree (*, num)) ->
> mqueue (*, num) (tree (*, num))

> fun (One a) (One x) = seq q (One q), pred ax
>= Two a x, otherwise
> where q= comb ax

CHAPTER 5. SQ UIGOL

> fun (One a) (Two x z) = seq q (Two q z),
= Queue a (Leaf x) z,

where q= comb ax

> fun (One a) (Queue xy z) = seq q (Queue qy z),
>= Queue a (Node (Leaf x) y) z,
> where q= comb ax

> fun (Two a c) (One x) = seq q (Two a q),
>= Queue a (Leaf c) x,
> where q= comb cx

80

pred ax
otherwise

pred ax
otherwise

pred cx
otherwise

> fun (Two a c) (Two x z) = seq q (Queue a (Leaf q) z), pred cx
> = Queue a (Node (Leaf c) (Leaf x)) z, otherwise
> where .q= comb cx

> fun (Two a c) (Queue xy z) = seq q (Queue a (Node (Leaf q) y) z), pred cx
> = Queue a
> (Node (Node (L eaf c) (Leaf x)) y) z, otherwise
> where q= comb cx

> fun (Queue ab c) (One x) = seq q (Queue a b q), pred cx
> = Queue a (Node b (Leaf c)) x, otherwise
> where q= comb cx

> fun (Queue ab c) (Two x z) = seq q (Queue a (Node b (Leaf q)) z), pred cx
>= Queue a
> (Node b (Node (Leaf c) (Leaf x))) z, otherwise
> where q= comb cx

> fun (Queue ab c) (Queue xy z)
>= seq q (Queue a (Node b (Node (Leaf q) y)) z), pred cx
>= Queue a (Node (Node b (Leaf c)) (Node (Leaf x) y)) z, otherwise
> where q= comb cx

> pred (x, n) (y, m)

> comb (x, n) (y, m)

> sing x

=x=y

= seq nm (x, nm)
where nm =n+m

= One (x, 1)

> pargreedy :: tree * -> mqueue (*, num) (tree (*, num))
> pargreedy = treduce fun . tmap sing

In order for the par in treduce to satisfy the par proof obligation it is sufficient for the function
argument of treduce to be strict in both of its arguments. The function fun is strict in both of
its arguments thus the treduce application in pargreedy is valid. In order for the par in tmap

CHAPTER 5. SQ UICOL 81

to satisfy the par proof obligation, it is sufficient for tmap to occur in a context which is strict
in tree elements. In pargreedy, tmap occurs in such a context.

The function fun corresponds to Q. The h function has been promoted through Q so that
the intermediate lists representing runs are directly represented as the value and its number
of occurrences. The pattern matching in fun will compile into very efficient code in a modern
implementation. Many seqs were needed in the fun function. These could be removed if the tree
used in mqueue could be defined as being strict. It is not possible to simply force the evaluation
of mqueue further than WIINF in treduce since it is unknown what must be evaluated. It is
not known how much of the tree argument of mqueue must be forced. The implementation of
lists using mqueues and trees is quite complicated. A good way to formalise this translation
would be to use abstract data types together with abstraction maps and commuting diagrams,

as described in [11].

The parallel greedy algorithm is very complex. Therefore to assess its performance fairly an
efficient sequential algorithm was also used in experiments. This is based on the sequential
greedy algorithm derived in [13]. This uses conventional lists rather than trees and mqueues.

> seqgreedy :: [*] -> [(*, num)]
> seqgreedy (x: xs) = sg x1 xs

> sg :: * -> num -> [*] -> [(*, num)]
> sg enQ_ [(e, n)]
> sg en (x: xs) = sg e (n+1) xs, x=e
>_ (e, n): sg x1 xs, otherwise

This program appears to be much simpler than the parallel greedy algorithm. An important
observation is that most of the additional complexity of the parallel greedy algorithm is involved
in implementing an efficient data structure for parallel evaluation. If arrays were available they
could simplify the parallel greedy program. However using trees rather than arrays may make
parallel implementation more efficient: particularly anticipatory data prefetching via pointers.

5.6.6 Experimental results

The parallel and sequential greedy algorithms were run on three lists of data, containing 512,
2048 and 8192 characters. Each interval of 16 characters in the lists contained the same value.
The results obtained were:

Input size 512 2048 8192
Speed-up (average parallelism) 30 39 43
Speed-up (efficient sequential algorithm) 4.7 6.3 6.9
Ratio of extra work 6.4 6.2 6.2

The average parallelism speed-up represents the speed-up, over the program's sequential execu-
tion, given an unbounded number of processors. The average parallelism speed-up figures are the
speed-up compared to the same algoritlun run sequentially. The efficient sequential algorithm

CHAPTER 5. SQUIGOL 82

speed-up figures are the speed-up compared to the efficient sequential algorithm. These figures

show good speed-up although the parallelism does not seem to increase linearly with the input

size. This should be the case since the algorithm is essentially a D&C algorithm with combining
operator (Q) which has constant time complexity. (See Section 8.2.2 for more information on
this result.)

The speed-up compared with the efficient sequential algorithm is poor. For example with an
input size of 2048, the parallel greedy algorithm utilises on average 39 processors to achieve
a performance 6.3 times that of the efficient sequential algorithm. The ratios of extra work
performed by the parallel greedy algorithm compared to the sequential greedy algorithm, are
almost constant. These figure reveal that the parallel algorithm performs a total of at least six
times the amount of work the sequential algorithm performs.

The speed-up of the parallel algorithm over the efficient sequential algorithm could be increased
in a number of ways:

1. Expand the comb and pred functions inline and hence decrease the total amount of work
the parallel algorithm has to do.

2. Increase the amount of parallel evaluation. The experimental results do not include the

output time of the data structures. However the parallelism profile reveals that much
of the resulting mqueue has to be evaluated (built) by the output driver. This could be

overcome if strict data structures could be defined. Using seqs would have the same
effect; however this would seriously obscure the program. Results of putting some extra
seqs in the program to force the evaluation of the tree data structures earlier, resulted
in a significant improvement of speed-up over the efficient sequential algorithm.

3. A hybrid algorithm could be used. This would reduce the total amount of work the parallel
algorithm had to perform. In particular it would reduce the total amount of work when
little performance gain was achieved by parallel evaluation: either because partitions are
short or because all the machine's processors are busy. Thus for building partitions of short
sub-lists, or when all processors were utilised, the efficient sequential algorithm would be

used. Larger partitions would be constructed concurrently using the parallel algorithm.

5.6.7 Discussion

The derivation has produced a parallel algorithm. However the algorithm is more complex than
its efficient sequential counterpart. The reason for this is the complicated data structure which is

necessary for parallel implementation. Fundamentally the algorithm is capable of good speed-up,
since it is a D& C algorithm and the combining operation can be efficiently implemented, however

achieving this is difficult. If arrays were available these might remedy this situation. Often it

seems that data structures used in parallel algorithms must be implemented very carefully in

order to achieve good speed-up. The ability to define strict data structures would be very useful
for this program.

CHAPTER 5. SQ UIGOL

5.7 Summary

83

Initially this chapter has described the basic aspects of Squigol; subsequently these have been
built on with a view to the derivation of parallel algorithms.

The majority of this chapter consists of three example derivations of parallel algorithms: an all
shortest paths algorithm, an n-queens algorithm and a greedy algorithm. For each derivation

parallel operators and associated laws have been developed. Experiments have verified that
the derived programs are indeed parallel. The experiments have revealed that some parallel
algorithms are not efficient sequential algorithms.

For deriving parallel algorithms several important observations have been made. It has been

shown that Squigol specifications are usually parallel; this is true of all the specifications in

this chapter. Also, it has been shown that homomorphisms correspond to divide and conquer
algorithms. Much of the Squigol work has concentrated on list data structures; lists must often be

represented as balanced trees or arrays in order for functions on them, such as holnoluorphisms,

to be evaluated in parallel. For example the parallel greedy algorithm represents a nested list

using two different structures. Despite this, many Squigol optimisations performed on lists, such
as directed reductions, are inherently sequential.

To aid the operational reading of Squigol expressions the use of parallel annotations has been

proposed. These annotations have been experimented with in the n-queens program derivation.

5.8 Conclusions

The main conclusions of this chapter are:

" Squigol may be used to derive parallel algorithms, and this has been demonstrated via
three examples.

"A derivation starts with an abstract parallel specification and this is progressively refined
to an efficient parallel algorithm. No intermediate sequential algorithms are produced.
This differs from the ideas of others who propose transforming sequential algorithms in
order to produce parallel ones.

" In order to derive parallel algorithms, parallel operators and accompanying theorems and
laws are needed. For example the map, multiply and perms functions used here.

" Homomorphisms are ubiquitous in Squigol. This is particularly useful when deriving par-
allel algorithms because homomorphisms correspond to divide and conquer algorithms,
which often make good parallel algorithms.

" Not all Squigol is suitable for deriving parallel algorithms. In particular optimisations
which refine reductions to directed reductions, result in sequential algorithms. For these

cases alternative parallel optimisations are required.

" Some parallel algorithms do not perform well sequentially. In such cases it is important
to combine these with efficient sequential algorithms to form hybrid algorithms.

CHAPTER 5. SQ UIGOL 84

The representation of data, structures in parallel programs is more important than it is for
sequential programming. In particular the representation of lists must often be carefully
designed, in order for them to admit parallel evaluation.

Chapter 6

Parallelism control

6.1 Introduction

In order to achieve real speed-up parallel programs must make efficient use of a parallel machines
resources. Particularly this means that processors and storage must be used carefully. To achieve
this a spectrum of possibilities exists. At one end the programmer must specify everything; for

example what constitutes a task, on which processor it should be run, its communication with
other processors and the order in which tasks should be executed. This is hardly compatible
with the philosophy of high level programming! At the other end of the spectrum the machine
must try to deduce all of these things, using analyses and heuristics. This is a, highly desirable

approach but it is unlikely to always produce programs with an acceptable level of efficiency.

What is required is a compromise, enabling the programmer to express programs with a free-
dom from low level implementation concerns and yet allowing the programmer enough control
over their programs for them to run efficiently. Furthermore the parallelism control which the

programmer has should not be mandatory, in the sense that it should be possible to develop

programs without such control and then further refine them to include this if necessary.

In keeping with the spirit of this thesis, my own proposals consider the minimum actions the
programmer must take to produce efficient parallel functional programs. The emphasis of this
thesis is on programming with functional languages, using just par and seq to control evalu-
ation. The thrust of this chapter is on programmer control of parallelism, using par and seq
combinators; in particular control of task sizes is investigated. However, control via a machine's
run-time system (the evaluate-and-die task model) is also used for comparative purposes.

Two kinds of algorithm are investigated: data parallel algorithms, (those algorithms whose
parallelism occurs from performing operations in parallel across data structures) and divide and
conquer (D&C) algorithms. The techniques used to control parallelism in these algorithms apply
equally well to other algorithms. For example, most of the D&C algorithm control techniques
can be applied to search and optimisation problems; for example branch-and-bound, and alpha-
beta algorithms. The data parallel algorithms use lists, but the parallelism control techniques
apply equally well to other data structures.

The parallelism control techniques are expressed as abstractions, as advocated by Cole (see

Section 3.4.3). Thus D&C algorithms are all expressed using D&C combinators. Importantly

85

CHAPTER 6. PARALLELISM CONTROL 86

this allows abstractions to be constructed whose meaning is relatively simple but whose operation
is sophisticated. These combinators may be used without the programmer understanding their
operation. The programmer need only understand the meaning of a combinator and what
parallelism control parameters it need be given, if any.

Thus, this chapter demonstrates some cases when parallelism control is necessary and a variety
of programming techniques for doing this. Many researchers have had many different ideas
concerning many different aspects of parallelism control. An objective of this chapter is to show
the relationship between these ideas and the relationship between the problems they try to solve;
previously these concerns have been regarded in isolation.

6.2 What should be controlled?

There are many aspects of parallelism which must be controlled. The following is a list of
common aspects for control:

" The number of tasks in a machine at a given time, task residency. It is desirable to control
the number of tasks in a, machine at any given time simply because there will, naturally,
be some constraint on the maximum number of tasks a machine can hold. Also, as task
numbers increase so do communication and blocking, both of which are expensive.

" The `size' of tasks, parallelism grain/granularity. Task sizes must be controlled to ensure
speed-ups are gained from parallel evaluation. There are always overheads associated with
parallel evaluation, caused by communication and context switching, and hence tasks must
be worth evaluating in parallel.

" Storage usage caused by parallelism, storage residency. Evaluating a program in parallel
may exhaust a machines storage. Thus the disastrous situation may arise where a program
will produce a result when run sequentially and may fail when run in parallel. Hughes
in his thesis investigates the storage usage of parallel and sequential functional programs
[5x1.

" Task and data placement: the mapping of tasks and data onto processors should preserve
parallelism and minimise communications costs. This is discussed in Chapter 2, and it is
not discussed further here since the assumed target machine is a shared memory one.

The first three areas are related. Controlling task residency will increase the size of tasks since
the same amount of work must be performed by programs but by fewer tasks. Controlling the
size of tasks controls task residency because it controls the total number of tasks. Tasks are
either split into smaller tasks or several tasks are coalesced, and hence the number of tasks active
at a given time is changed.

Tasks consume store in two ways. Firstly tasks use store for their own state - for example
a stack - and secondly they generally result in a greater transitory store occupancy than a
corresponding sequential program. For example consider an it task program where each task
uses s amount of store transitorily. A total amount of nxs storage is required when it is run
in parallel, compared with s when it is run sequentially. (However, there are occasions when

CHAPTER 6. PARALLELISIII CONTROL 87

parallelism can reduce the storage residency [58].) Thus there is a storage parallelism trade-off;
by decreasing the number of tasks the transitory store usage is also likely to be decreased. Also
task numbers in excess of the number of processors will increase storage use. Note that in the
experiments performed, it was not possible to measure the storage used by tasks' own state.
Some idea of this figure can be gained by examining parallelism profiles; however parallelism
profiles do not show blocked tasks and hence their state.

An important trade-off has now become apparent. An efficient parallel program should have its
parallelism limited so as to just keel) all of a machine's processes busy and to not use more storage
than necessary. However Eager's speed-up results [36] say, in effect, that to get a reasonable
speed-up the number of tasks should be much greater than the number of processors (see Section
2.6) .

6.3 A survey of parallelism control methods

Three different approaches to controlling parallelism have been proposed; these are discussed in
this section.

run-time system control: with this technique the run-time system uses heuristics to control
parallelism. The programmer has no control over this and the run-time system has no
information about the programs which are run. This may be compared with a paged
virtual memory system's management of memory.

automatic partitioning: this technique uses compile-time analyses to partition (divide) a
program into useful tasks. The decisions concerning parallelism control are expressed
within programs.

programmer control: here the programmer is responsible for controlling parallelism. The
programmer make decisions about parallelism and these are expressed within the program.

There are two forms of partitioning: static and dynamic. Static partitioning is the determination
of tasks at compile-time. Essentially task candidacy is decided prior to program execution.
Dynamic partitioning causes the postponement of task candidacy decisions until run-time. Tests
for determining task candidacy are derived at compile-time and inserted into the program at
sparking points. At run-time these tests will determine whether a task should be sparked or
not. Static partitioning is a special case of dynamic partitioning when task candidacy tests may
be evaluated at compile-time.

Notice that both automatic partitioning and programmer control of parallelism express par-
allelism within programs. Thus although this chapter concentrates on programmer control of
parallelism, much of it is also relevant to automatic partitioning too.

6.3.1 Run-time system control

Run-time system control is characterised by being blind to programs; that is nothing about
programs is known. Hence all control is by general heuristics. It is particularly suited to

CHAPTER 6. PARALLELISM CONTROL 88

controlling task residency. This is done by a machine calculating a loading factor which is used
to determine whether to create a new task or not when a spark occurs. If the number of tasks

and storage usage are used to compute the machines loading factor, then the storage use may
also be effectively controlled.

The ZAPP project investigated divide and conquer algorithms and in particular, how to run
them efficiently on a loosely coupled network of processors [25]. They proposed controlling the
number of tasks by using an adaptive scheduling strategy. The scheduling strategy used either
a LIFO or FIFO task queue depending upon the machines loading (the number of active tasks).
Parallel divide and conquer algorithms produce a tree of tasks. Thus the scheduling strategy
resulted in a breadth first traversal of the task tree when the machine was lightly loaded, causing
the generation of many new tasks. \Vhen the machine was heavily loaded a depth first traversal
occurred, causing tasks to be completed rather than new tasks to be generated. Importantly,

a notification model was used, see below. This mechanism controlled the number of tasks and
storage but it did not control task sizes.

The GRIP machine [27] has been briefly described in Section 2.5. It is interesting because it

attempts to control task sizes, as well as task numbers, using a run-tinte heuristic. The control
of both of these issues arise from GRIP's evaluate-and-die task model. This task mechanism
allows any task to evaluate any reflex. In particular sparking an expression does not reserve the
expression for evaluation by the new task. Effectively task sparks are only advisory and they
may be ignored. Thus once GRIP becomes loaded beyond a certain level it may ignore sparks;
this is how task numbers are controlled. Compare this with ALICE where a notification model
of task sparking is used; in this model if a closure is sparked it may only be evaluated by the
new task which was created to evaluate it [31]. Tlnis tasks may not be discarded.

GRIP is intended for programs with much greater parallelism than there are processors. If this
is the case then task sizes may be controlled. The idea is that once GRIP is fully loaded with
tasks, any sparked closures will be evaluated by parent tasks, rather than child tasks, because

parent tasks will encounter the closures first. Parent tasks will encounter closures first because

new tasks can not be run until there is some spare capacity; that is until some parent tasks
have terminated. Parent tasks cannot terminate until they have the sparked closures' values.
This strategy is particularly suited to D& C algorithms. For example consider a D&C algorithm
which produces a balanced tree of tasks. The parallel evaluation may be viewed as two waves
one proceeding down the tree dividing problems into sub-problems, and solving them at the
leaves; the other moving up the tree combining problems. If the tree is much bigger than the
number of processors, then at some point the down wave will fully load GRIP with tasks. When
this happens all subsequently sparked problems will be evaluated by parent tasks; since there
will be no spare processors on which to run new tasks. Effectively, once loaded, each remaining
sub-tree of the D&C tree will be solved sequentially. This results in larger tasks. Effectively
tasks are coalesced.

A recent paper has reported some early experiments with the GRIP machine [39]. This mainly
considers a parallel nfib function. Although this is a somewhat artificial example, the results
show that unrestricted parallelism causes communications time to swamp reduction time. Using

some run-time strategies they controlled parallelism and improved the program's absolute per-
formance. These are only preliminary results and further experimentation with more realistic
programs is necessary. However the results (to show that effective parallelism control is very
important for a real machine.

CHAPTER 6. PARALLELISM CONTROL 89

As previously stated, the target machine for programs in this thesis is an idealisation of GRIP
which has an evaluate-and-(lie task model, but which does not discard any sparks.

IIartel in his thesis, [42], states that control of task numbers, and their mapping to processors,
should be based on the recorded history of an application program which is running. This
history should include information from previous runs of the program. This is highly dependent

upon the regularities of the program being run. A run time system could learn about a program
over a number of runs and thereby mechanically tune it.

6.3.2 Automatic partitioning

Automatic partitioning is clone by a compiler; a. compiler uses analyses and heuristics to attempt
to partition a program into tasks. Two forms of automatic control have been proposed. The
first form is control at the micro-parallelism level, for example combining groups of dataflow

operators to form larger operators. These are all static partitioning methods. The second form
is a much more ambitious system which uses some form of complexity analysis to statically and
dynamically partition programs. The first form is only of limited use on an AIIMD machine. The

second form has problems because in general complexity analysis is not decidable. Therefore

some form of approximate complexity analysis is required. However general techniques for `good'

approximate complexity analysis have yet to be developed. Even worse, is the difficulty of using
such information for dynamic partitioning. For static partitioning this is simple, but for dynamic

partitioning some form of task candidacy test is required. Derivation of this test is non-trivial;
in particular a straightforward test may be too expensive. Often the only efficient way to do

the test is to combine it with some existing calculation; thus the automatic partitioning system
is now required to do program transformation as well! For example consider parallel Quicksort.
A suitable task candidacy test is to examine the length of the list to be sorted. If a list is short
it should not be sorted in parallel. However for efficiency the list length should be calculated in

conjunction with splitting the list, not separately.

The first three proposals described are for static partitioning, the last is for dynamic partition-
ing. Goldberg in his thesis [38] used a simple analysis to automatically determine whether an
expression was `big enough' to be considered a task. This was a very simple analysis which
was able to calculate the complexity of simple expressions, involving no recursion, and which
attributed an infinite cost to recursive expressions or expressions dependent upon recursive ex-
pressions. Any expression with a cost greater than a certain amount was considered a candidate
task. Unfortunately this proved rather too simple an analysis and it attributed most expressions
an infinite cost.

Some different work by Hudak and Goldberg considered parallelism at the combinator level [52].
Serial combinators were designed such that they corresponded to a task. They were executed
sequentially but they could spark new tasks (serial combinator applications). Any parallelism
had the form of one serial combinator invoking several other serial combinators in parallel.
Thus serial combinators contained no expressions within themselves which could be evaluated
in parallel other than parallel calls to other serial combinators. The effect of this was to make the
implementation of tasks simple since tasks were exactly serial combinator applications. However
this does not seem to have significantly affected the sizes or number of tasks produced.

Sarkar and Hennessy, [101], describe a compile-time method for automatically partitioning (IF1)
data flow graphs. The goal once again was to increase task sizes. Their system had three phases:

CHAPTER 6. PARALLELISM CONTROL 90

1. assign execution times to nodes and communications times to edges

2. partition the graph

3. generate the code

The partitioning required the following machine information: the number of processors, schedul-
ing overheads and function invocation overheads.

The data flow graph was partitioned on a function by function basis. Starting with the finest

granularity (single operators), nodes were merged together until the desired granularity was
reached. The result of the partitioning was a set of sequential bodied macro actors which could
be run in parallel. The difficult part were the cost assignments. These were based on type
information and probabilities; which in turn were based on three sources of information:

" heuristics

" programmer pragmas

" profiling information

The system which was implemented used only the latter source of information; which was
obtained from instrumented SISAL programs. This is one of the most sophisticated partitioning
systems which has been implemented. It is difficult to assess how applicable these techniques
are to parallel functional languages.

Rabbi and Manson [94] advocate the use of automatically derived complexity functions to control
parallelism grain size. Their approach uses static and dynamic partitioning. They show how

complexity functions may be used in a functional program to control the grain size of tasks. They
do not however have a system for automatically deriving the complexity functions. A problem
with their approach is that many proposals for automatic complexity derivation are concerned
with asymptotic complexity. It is unlikely that asymptotic complexity will be accurate enough
for determining task sizes. They also demonstrate how complexity functions are often expensive
to calculate. To alleviate this they sometimes assumed an infinite cost, as Goldberg does,

or they transform programs. The transformation they tried was to carry list lengths around
with lists. Thus list length calculation became a constant time operation, at the expense of
longer construction time. This supports the previous points made, concerning the difficulty of
automatic grain size control.

6.3.3 Programmer control

Lastly the control of task sizes by the programmer is discussed. Vree and Hartei [112], took
the approach of using program transformation to change the sizes of tasks. They used two
types of transformation depending on whether they wanted to increase or decrease the grain of
parallelism. Data partitioning was used for decreasing the grain size of a function, particularly
for D&C algorithms. This may be summarised thus:

F (union (a, b)) -> union ((F a) in parallel with (F b))

CHAPTER 6. PARALLELISM CONTROL 91

Data parallel algorithms are algorithms where parallelism occurs by performing operations over
data structures; the typical example is map. Vree and IIartel used data grouping to increase
the grain size of tasks for data parallel algorithms, for example:

ParMap F (1.. 10) -> SeqMap F (1.. 5) in parallel with SegMap F (6.. 10)

Starting with an algorithm which had the wrong grain of parallelism they were able to demon-
strate how various transformation rules could be used to improve the grain sizes of tasks. Trans-
formation was accomplished using some syntactic transformation rules. These rules took a
parallelism annotated program and some task size predicates, and produced a program with
dynamic task size control (dynamic partitioning). For example they transformed a Quicksort
program, similar to the one below, to increase its parallelism grain.

> pqsort [] = []
> pqsort (e: r) = par hi (lo++(e: hi))
> where
> lo = pqsort [xl x<-r; x<=e]
> hi = pqsort [x l x<-r; x>e]

The optimised program they produced was similar to the following one:

> pqsort [] = []
> pqsort (e: r) = lo++(e: hi), lshrt \/ hshrt
> = par hi (lo++(e: hi)), otherwise
> where
> 1= [x I x<-r; x<=e]
> h= Ex I x<-r; x>e]
> lo = sqsort 1, lshrt
> = pqsort 1, otherwise
> hi = sqsort h, hshrt
> = pqsort h, otherwise
> lshrt = #1 < threshold
> hshrt = #h < threshold

> sqsort [] _ []
> sqsort (e. r) = lo++(e: hi)
> where
> (l, h) = split er
> lo = sgsort 1
> hi = sqsort h

Both versions of pqsort are head and tail strict in their arguments. Thus if the hi value, which
is sparked, is undefined then so will be the overall result. Therefore the pars in both versions
satisfy the par constraint.

CHAPTER 6. PARALLELISM CONTROL 92

The idea is to evaluate recursive pqsort applications in parallel providing both the list arguments
are sufficiently long. Once sufficiently short, lists are sorted sequentially using a sequential
version of Quicksort (sqsort). This has become quite a complex program and it is quite different
from the usual short specification of Quicksort, shown previously.

It is not clear how they obtained their task grain size tests, which in some sense embody
the task candidacy criteria. Their transformation rules assume the programmer already has
these predicates available and that some initial parallelism in the program has, somehow, been

specified. A further problem is that it is unclear how general the transformation rules are; they

only specify them for an untyped sequence data type.

The goal of a parallel program is to run quicker than the fastest sequential program. Often to do
this sequential tasks (those which create no tasks) must use a different algorithm from parallel
tasks (those which create tasks). This is because, as shown in Section 8.2.3 with parallel prefix,
parallel algorithms are not necessarily efficient sequential algorithms. The ideal situation is to

run efficient sequential algorithms on each processor of a parallel machine so as to calculate
different parts of the desired result in parallel.

With this in mind a group at Imperial College have demonstrated with a small example the
importance of using different algorithms and data structures for sequential and parallel tasks.
They accomplish this by transforming functions to specialise them for parallel or sequential
evaluation. In [32] they describe a simple way of representing lists as balanced binary trees with
cons-style lists at the leaves. The trees are operated on in parallel and the leaves are operated
on by sequential tasks. This improves the locality of computations, the overall execution speed
and the storage usage. It also controls the number and size of tasks.

6.4 The goals of experiments

Before discussing some methods for controlling parallelism and presenting some experimental
results from using these methods, the desired goals of experiments are discussed.

The goals of controlling parallelism, for the machine under consideration, are to:

" reduce task residency

" decrease storage use

" increase the granularity of parallelism

Obviously some programs may not need parallelism to be controlled; for example a program's
granularity of parallelism may be naturally suited to its target machine. However for other
programs this will not be the case.

The target machine has been made deliberately abstract, in order to make results as general as
possible, see Chapter 4. Thus the target machine does not contain any built in parallelism costs,
such as communications costs. This means that controlling parallelism will result in a decrease
in performance, since all parallelism controls effectively reduce parallelism and hence increase

execution time. Of course on a real machine this would not be the case. Therefore the object

CHAPTER 6. PARALLELISM CONTROL 93

of controlling a programs parallelism is to achieve the points stated above, with only a small
decrease in performance and with only a small increase in the total mount of work performed.

In addition no fixed assumptions are made about the cost of parallelism overheads. For example,
it is not assumed that each program must produce tasks which perform at least n reductions.
Rather, it is simply assumed that for each example program it is necessary to improve its parallel
efficiency (parallelism granularity etc.). Although this is arbitrary it should be noted that the
data used for example programs is also arbitrary. Thus on a real machine some of the example
programs might not require parallelism control; however with different data they might do. The

goal is to investigate how parallelism can be effectively controlled.

6.5 Data parallelism

The preceding sections have surveyed the area of parallelism control and discussed the goals
of experiments. This section describes sowie methods and results for program control of data

parallelism.

Parallel evaluation across data structures may yield massive parallelism; this is often termed
data parallelism. Often such parallelism is fine grained; that is, the tasks produced are small.
While this is suitable for SIMD machines, such as the Connection Machine [46], this type of
fine grained data parallelism cannot be directly exploited by MIAMD machines, because of the
overheads of small tasks on MIXID machines. Furthermore unrestricted data parallelism may
flood a machine with tasks, often resulting in too much storage use.

6.5.1 Techniques

Three techniques are shown in this section for program control of data parallelism:

data grouping: this technique groups data elements together into chunks. Chunks are then
processed in parallel rather than single elements resulting in larger tasks.

k-bounded loops: these have a similar effect to data grouping techniques. K-bounded loops
bound the number of tasks which operate upon a data structure. Each task operates on
more than one element of data.

buffering: buffers may be used to control the uunºber of concurrently active tasks. These help
to synchronise the production of values with their consumption. This is particularly useful
for pipelined parallelism.

Essentially all of these techniques allow greater control of the parallelism produced by parlist
and other similar parallelism abstractions.

Data grouping

Vree and Hartei have used program transformation to increase the parallelism granularity of
some functions. They describe their program transformation as data grouping since it groups

CHAPTER 6. PARALLELISM CONTROL

together data to yield larger tasks.

94

An alternative account of such transformations, using Squigol (see Chapter 5) is given below.
The basic idea is to group data elements together and to operate upon these groups in parallel.
To do this an operation is needed to group the data elements of a data structure. An operator
to do this on lists is clakk (C11uIll{ify); this splits a list into a list of sub-lists of length k.

clzkk[al,..., a]= [[ai,..., akJ, [ak+1,
.... a2k], "..

1

Thus chkk is an inverse of -H-/. The only property required of chkk is the chunk law:

-}+ / I. chkk = id[,,]-[a]

Using this, the data grouping versions of map and filter may be derived. Geraint Jones has used
similar ideas in his impressive FFT derivation [64].

Map, data grouping
f*
= chi; law
f*- ++/ " chkk
= map promotion
4+ / (f*) *" chkk
= making parallelism explicit

"/-(f*)*II- chkk

Filter, data grouping
pa
= chk law

pa " -}+/ " chkk
= filter promotion
-H-/"(pa)*. chkk
= making parallelism explicit
-}-+ /. (pa) *11 " chkk

The values for k will depend upon the costs off and p. Other operations such as fold and scan
may also be defined using chkk. Also the clikj function may be defined for other data structures:
in particular for other data structures in the Boom hierarchy, such as sets and trees (see Section
5.2.1).

Some functions for implementing data grouping are shown below:

> splitat 01= ([], 1)
> splitat n []
> splitat n (x: xs) _ (x: 1, r)
> where
> (1, r) = splitat (n-1) xs

> chunkify nQQ
> chunkify n1=e: chunkify nr
> where
> (e, r) = splitat n1

> concat xs = Cyl ys<-xs; y<-ys7

> chk n= concat . parlist (seqlist id)
. chunkify n

CHAPTER 6. PARALLELISM CONTROL 95

The ehunkify function implements chkk; the chk function uses chunkify to evaluate groups of
list elements in parallel. The proof obligation for chk is essentially the same as for parlist id:

either the list which chk n is applied to must be defined in its structure and at least defined to
WIINF in its elements, or chk n must be used in a head and tail strict context.

K-bounded loops

A similar effect to chkk was achieved by Arvind's group at MIT. Arvind's group were concerned
with the flooding of their dataflow machine with tasks. This manifest itself as a prohibitive
amount of storage use. To tackle this problem they concentrated on a special programming
construct to control iterative parallelism. Their language, Id Nouveau [84], supports parallel
iteration. A naive implementation would unwind loops and evaluate loop bodies in parallel. Thus

a loop with one thousand iterations would produce one thousand tasks. To prevent flooding their
machine with tasks, bounded loops were used [5]. Their k-bounded loops limited the number of
loop bodies which could proceed concurrently to k. Thus a k-bounded loop with one thousand
iterations, where k equals nine, will only produce a maximum of nine tasks. Initially the first k
iterations of a loop are evaluated concurrently. On completion a task evaluating the ith iteration

evaluates the (i+k)th iteration. This also enables the task's storage to be reused for the (i+k)tlr
iteration. Excessive storage use is an important problem which the MIT group have identified.
Ii-bounded loops effectively combine several iterations into one task and thus task sizes are
increased too.

A drawback of k-bounded loops is that they only control iterative parallelism. Also k-bounded
loops can cause deadlock. For example, if a dependency exists from the ith iteration to the
(i + k)th of a k-bounded loop, deadlock will arise.

It seems ironic that a dataflow machine should need to control excessive storage use by enlarging
task sizes; since this is exactly how a MINID machine is able to make use of fine grained data

parallelism.

K-bounded loops may be written in the functional language thus:

> bounded k1= par (parmap f [0.. k-1]) 1
> where
>fi=g (drop i 1)
> g[] =()
>g (x: xs) = seq x (g (drop k xs))

The proof obligation for bounded is the sane as for chk: either the list which bounded n is

applied to must be defined in its structure and at least defined to WHNF in its elements, or
bounded n must be used in a head and tail strict context.

A difference between chk and bounded is the order in which they evaluate operations on data

structure elements. Also chk fixes task sizes whereas bounded fixes the number of tasks. Note
that in experiments bounded was optimised by specialising it to a particular k and unfolding
drop.

CHAPTER 6. PARALLELISM CONTROL

Buffering

96

A related issue is pipelined parallelism and buffering. In his thesis, [58], Hughes shows how
buffered lists can be programmed. These behave like a buffer by ensuring that k elements from
the last list element demanded, are evaluated or being evaluated. A more general version of
buffered lists is shown below:

> pipe kf1= par (parlist f (take k 1)) (pf 1 (drop k 1))
> where
> pf 1 [] =1
> pf (x: xs) (y: ys) = par (f y) (x: pf xs ys)

A sufficient proof obligation for pipe kf1 is: f must always be total and in addition either
the elements of 1 must be defined as far as f will evaluate them, or the strictness context in
which pipe kf1 occurs must be at least. that implied by f on list elements. This is the same
as the proof obligation for parlist.

For example an application g1 could be buffered thus: g (pipe kf 1). The value k is the
size of the buffer and f is used to force each list elements evaluation. The first k elements of
the list are evaluated in parallel. Any demand for the ith element of the list causes its value
to be returned and a task to be created to evaluate the (i + k)th element of the list. Buffered
lists control the number of active tasks and storage use. Storage use is controlled not only by
regulating the number of tasks but potentially by controlling the size of the intermediate list.
There is some overhead with pipe since it create a new list spine.

This differs from Arvind's k-bounded loops since the evaluation of the list here proceeds in a
demand driven way with some speculative evaluation of the next k list elements. Arvind's k-
bounded loops are eagerly evaluated, albeit with a bounded number of tasks. Also, new tasks
are created by pipe rather than re-using old tasks as k-bounded loops do.

The buffer size may be calculated. If the consumption rate is c and the production rate is p,
and there are no dependencies between produced elements, then the buffer size should be p/c.
Note that a buffer (for parallel evaluation) is only required if the consumer is faster than the
producer. For regular problems the 1)/c ratio may be easily estimated; notice that only a ratio is
required, and no absolute measurements are needed. A ratio-sized buffer ensures there is always
an element available for consumption, after an initial lag of p time. As the list length increases
the average parallelism tends to the buffer's size.

Pipelining cannot usefully be combined with bounded but it may be combined with chunkify
thus:

> pipe_chk kn= concat . pipe k (seqlist id) . chunkify n

This can be used to increase the granularity of parallelism, at the expense of buffering operating
on larger elements. Thus task size is increased, but buffering becomes coarser.

CHAPTER G. PARALLELISAI CONTROL

6.5.2 Claims

97

The results which follow show that it is essential to transform data parallel algorithms for use on
MIMD machines. Although the execution overheads of such transformation can be high, these
overheads are lessened when run on a real machine where the number of processors is much
smaller than the average parallelism.

The evaluate-and-die task model does not increase the granularity of parallelism for the data

parallel algorithm tested. This is because the parallelism is monolithic: all the tasks have the
same size and the tasks are not dependent upon each other. Thus tasks cannot be coalesced.
Since evaluate-and-die style task coalescing does not work at all for this algorithm, no experi-
ments were performed to investigate this form of parallelism control (experiments with a limited

number of processors). To achieve evaluate-and-die style task coalescing the algorithm must be

changed. For example, if the data structure was a tree, rather than a list, and algorithm was
expressed in a D&C style, then task coalescing might work. The D&C section describes methods
for controlling the parallelism resulting from these algorithms.

Data grouping and k-bounding both control task sizes and the number of tasks. Data grouping
has a larger overhead than k-bounding but it is more useful. This is because chk forms the
ith chunk (sub-list) before the (i + 1)th task may start. Also in the experiments bounded was
optimised to a greater degree than chk. Data grouping is more useful than k-bounding because

task size is specified rather than the number of tasks. The chk function may be combined with
pipe, unlike bounded. In addition data. grouping may have better data locality than k -bounding;
however this was not tested.

The chk function is less space efficient than bounded because it reconstructs the input list and
its order of element evaluation causes longer retention of the input list. This arises because

the first k elements of a list are evaluated sequentially by chk k; for large lists the equivalent
bounded version will evaluate the first k elements in parallel.

The pipe function controls the number of tasks and the storage used; it does not however con-
trol the size of tasks. The prime reason for needing pipe is to control storage use arising from

pipelined parallelism. A straightforward maximum parallelism implementation has a similar ex-
ecution time as a pipe implementation but it has considerably higher transient storage use. The
buffer size calculations, described in Section 6.5.1, are reasonably accurate and useful. However,
for complex or irregular pipelines, buffer sizes are more easily found by experimentation.

6.5.3 Data grouping and k-bounding results

To compare data grouping and k-bounding, experiments were performed which mapped a vector
operation across a list of 250 vectors (data). Vectors were represented as balanced binary trees.

> vector :: = Scalar num I Bin vector vector

> testvec = Bin
> (Bin (Bin (Scalar 1) (Scalar 2)) (Bin (Scalar 3) (Scalar 4)))
> (Bin (Bin (Scalar 5) (Scalar 6)) (Bin (Scalar 7) (Scalar 8)))

CHAPTER 6. PARALLELISM CONTROL 98

The size of testvec determines the granularity of parallelism which is produced. The dotprod
function assumes that vectors have the same shape.

> dotprod (Scalar n) (Scalar m) =n*m
> dotprod (Bin a b) (Bin c d) = (dotprod a c) + (dotprod b d)

> parmap fg= parlist f. map g

> seq_test = map (dotprod testvec) data
> par-test = parmap id (dotprod testvec) data
> chk_test k= chk k (map (dotprod testvec) data)

> bnd_test n= bounded n (map (dotprod testvec) data)

Experiments were performed with a sequential neap, a simple parallel map, data grouping and
k-bounding. Each parallel function occurs in a hyper-strict context (the output driver), hence

all proof obligations are met. The results are summarised in the table below:

Program seq par chk chk chk bnd bnd
Chunk length / task bound - - 5 10 20 5 10
Number of machine cycles 36023 289-! 4707 4892 5958 7080 4254
Average parallelism - 13.0 9.3 8.8 7.1 5.7 10.3
Work done - 37535 43775 42903 42481 40214 43986
Max. number of active tasks - 15 12 13 14 6 11
Total number of tasks - 251 51 26 14 5 10
Average sparked task length - 1.17 818 1576 2902 5441 3629

The results shown in the table above, and subsequent graphs, are now discussed. Many com-
ments are made about `short' tasks; these are taken to be the shortest tasks produced by the
simple parallel algorithm. Note that no task distribution graphs are shown, since each program
produced tasks of approximately one length.

Notice how for both chk and bnd the overhead, extra amount of work which is performed,
decreases as the size of tasks increase.

The store profile for the sequential trap is shown in Figure 6.1. It shows how store linearly
decreases as elements of data are consumed and the result list is output. Once used, the
elements of these lists become garbage, Bence causing the store to linearly decrease.

Figure 6.2 shows the task and store profiles for the simple parallel test. The simple parallel
version (Figure 6.2) uses parlist to force the parallel evaluation of map over data. Since the
result of dotprod is a number, evaluation to \VIINF is sufficient.

The storage usage is greater than in the sequential case but follows the same pattern. The

parallelism profile shows how equilibrium is reached with 14 tasks. At this point for every new
task created an old task (lies. This also demonstrates the sequentiality of cons-lists; one might
expect there to quickly be 7i tasks active, where n is the length of the list. Notice also that all
tasks are very short, see the previous table.

CHAPTER 6. PARALLELISM CONTROL

1500

1000

Storage

used

500

0

15

Number 10

of
tasks

(-) 5

0-

0 500 1000 1500 2000 2500
Time

Figure 6.2: Task and store profiles: parallel map

99

2000

1500

Storage
1000 used

500

0

3000

0 5000 10000 15000 20000 25000 30000 35000 40000
Time

Figure 6.1: Store profile: sequential map

Ch APTER 6. PARALLELISM CONTROL

15

10 Number

of
tasks

5

0
0 1000 2000 3000 4000 5000

Time

Figure 6.3: Parallelism profiles: clik 5 (-) and parallel map (" """ ")

15 -

10
Number

of
tasks

5

0
0 1000 2000 3000 4000 5000

Time

Figure 6.4: Parallelism profiles: chk 10 (-) and parallel map (" """.

6000

6000

100

The next set of graphs, Figures 6.3 to 6.8 compare the task and store profiles of using chk
with the simple parallel map of Figure 6.2 (the latter being shown dotted on each plot for

comparison). Three values of k were tried: 5,10 and 20. Since the list contained 250 elements
these respectively produced 50,25 and 13 tasks in total. The graphs and the previous table
show, compared to the simple parallel version:

. increased storage usage

" less maximum parallelism

" longer slopes leading to and from the parallelism equilibrium plateau

. greater work performed

" all tasks with lengths greater than 800 cycles

As expected the average task length is proportional to chunk size. The parallelism profiles
consist of three parts: an up slope, an equilibrium point and a down slope. Increasing chunk
lengths increases the starting latency of tasks and hence lengthens the up slope. Parallelism

CHAPTER 6. PARALLELISM CONTROL

15

10
Number

of
tasks

5

0
0 1000 2000 3000 4000 5000

Time
Figure 6.5: Parallelism profiles: clik 20 (-) and parallel map (" """.

5000-

4000-

Storage
3000

used 2000

1000

0

0 1000 2000 3000 4000 5000
Time

Figure 6.6: Store profiles: chk 5() and parallel map (" """ ")

5000-

4000-

Storage
3000

used 2000

1000

0

6000

6000

101

0 1000 2000 3000 4000 5000 6000
Time

Figure 6.7: Store profiles: clik 10 () and parallel map (" """ ")

CHAPTER 6. PARALLELISM CONTROL

5000

4000

Storage
3000

used 2000

1000

0

Figure 6.8: Store profiles: chk 20 () and parallel map (" """ ")

102

equilibrium is reached when the number of tasks being created equals the number of tasks
dying. The equilibrium point increases with chunk size since as task lengths increase so does the
number of concurrently active tasks. This phenomena occurs up to the point when the maximum
parallelism equals the total number of tasks sparked. After this the average parallelism and
maximum number of tasks must decrease. The down slope represents the staggered finishing of
tasks and the remaining output of the resulting list.

The storage profiles for the chk tests show that it uses more store than the simple parallel
version. This is because the chk version creates new lists to group elements in the input list.
The storage usage follows the parallelism profiles up and down slopes, but decreases at the
parallelism plateau. The plateau is analogous to the sequential version of the program: except
the sequential version has only one task. Hence throughout this plateau storage usage decreases

as it does in the sequential case. The storage follows the up and down slope since each task
corresponds to a chunk, a sub-list of the original list. As tasks are created so chunks are allocated
and hence more storage is used. When tasks die, chunks are output and storage is reclaimed.

Notice also how the overheads of chunks are such that chunk sizes of 5 and 10 have about the

same execution times. Overall the chk versions do approximately 15% more work than the

simple parallel version and they have a lower average parallelism. However on a real machine it
is expected for some programs, similar to this one, a chk version would be quicker than a naive
parallel version. However, this is very dependent on the machine, the program being run and
the data size. The important point is that for a particular machine and data parallel program,
this is a technique which may be used to improve parallel efficiency, if need be.

Two bounded examples are shown: one using 5 tasks and one using 10 tasks. Their graphs,
Figures 6.9 to 6.12, are similar to the chk graphs albeit less smooth. The major difference is
that the, parallelism, up and down slopes are much steeper. This is because, firstly bounded
was heavily optimised (for example drop 10 was unfolded). Secondly the pattern of boundeds
evaluation causes list elements to be evaluated in order from the front of the list rather than in
chunks. The bounding versions performed approximately the same amount of work as the data
grouping programs. That is they performed 10-15% more work than the simple parallel version.
As with the chunking version, on a. real machine with parallelism overheads, the bounding version
of the program may be far more efficient than the naive parallel version. Like the chk versions
the bounding versions all produced tasks with lengths greater than 800 machine cycles. The

0 1000 2000 3000 4000 5000 6000
Time

CHAPTER G. P_AKALLI: LISAI ('OX'I'l? OL

15

Number

of'
tasks

ii

() 1 000 2000 : 30001000 500O 600O 700O 800O

I 11110

Figure 0.9: Parallelism pluIiI(s: I)n(l 5() ýIf(I (parallel Iflal) ()

15--1

Niiii r
of

tasks

0 100O 2(1(10 3000 1000 5000 6000 7000

"1'1111 (1

() Figure 6.10: Parallelism biid 10 () and parallel niap

k-hounding versions of the prograiii used ; IpproxiunateIv the Same aitiutint Of s1OI(' as III(' siiiifple,

f)arafiel version, unlike t hi(' datai proI I I)inw v('r iuu. O' er, III I he I)Oun(IiIIg v(9rsiun Of I lie pr(r, I in
has a lower overliea(l than the the (. Iiuukiii v('rsioii.

CHAPTER 6. PARALLELISM CONTROL

2000

1500

Storage
1000

used

500

0
0 1000 2000 3000 4000 5000 6000 7000 8000

Time

Figure 6.11: Store profiles: bud 5 (-) and parallel map (" """ ")

2000

1500

Storage
1000

used

500

0

104

0 1000 2000 3000 4000 5000 6000 7000 8000
Time

Figure 6.12: Store profiles: bnd 10 (-) and parallel map (" """ ")

CHAPTER 6. PARALLELISM CONTROL

6.5.4 Buffering results

105

An abstract program with an abundance of pipelined parallelism was used to test the pipe
function:

> producer = map (delay 1000) [1.. 500]
> consumer = map f
> where fx= seq x (delay 100 x)
> bufsize = 10
> test = consumer (pipe bufsize id producer)

The pipe function was used in a hyper-strict context, since consumer is essentially the identity
function, thus the proof obligation for pipe was fulfilled. The application delay ne causes a
delay of approximately n reductions before e is returned. The function delay was found useful
for experimenting with abstract parallel programs. The optimal buffer size is 10 according to
the buffer size calculations (the ratio of the producer to consumer is 10: 1). The example was
tried with an unbounded buffer, that is parmap, and with buffers of size 10 and 20. The results
were as follows:

Buffer size 10 20 00
Number of machine cycles 69752 69482 66525
Average parallelism 8.2 8.2 8.7
Work clone 571269 571142 578768
Max. number of active tasks 12 22 48
Total number of tasks 502 502 501
Average sparked task length 1000 1001 991

The parallelism and storage use graphs are shown in Figures 6.13 to 6.17. These reveal that the
buffered map results in a striking improvement in task and storage residency without increasing
execution time; this demonstrates how important buffering is. The table and graphs show that
the optimal buffer size is just less than 10. That is a buffer size of just less than 10 will have
approximately the same performance as the unbounded parallel map, and yet minimise task and
storage residency.

The pipe and producer/consumer overheads account for the difference in calculated and actual
values for the optimal buffer size. All the examples have about the same execution time. However
the transient storage usage of the unbuffered version is much higher than for the buffered versions.
To a lesser extent the storage residency of 10 element buffer version was better than the 20
element buffer version. Thus having a buffer of size 10 (or slightly less) is optimal with respect
to storage use and execution time. Notice that because parmap was defined using map and
parlist it has resulted in more work being performed by the simple parallel version than the
buffered programs. Quirks like this also arose from the different transformations which the LAIL
compiler used for different programs. (The LNIL compiler was used to generate FLIC for the
simulator, see Chapter 4.)

CHAPTER 6. PARALLELISM CONTROL

50

40

Number 30
of

tasks
20

10

0

1200

1000

800

G00

-400

-200

0
0 10000 20000 30000 40000 50000 60000 70000

Time
Figure 6.13: Task and store profiles: map, unbounded buffer

106

Storage
used

50-

40-

Number 30
of

tasks 20

10

0

0 10000 20000 30000 40000 50000 60000 70000
Time

Figure 6.14: Task profiles: buffer 10 (-) and unbounded (" """ ")

50-

40-

Number 30
of

tasks 20

10

0

0 10000 20000 30000 40000 50000 60000 70000
Time

Figure 6.15: Task profiles: buffer 20 (-) and unbounded (" """ ")

CHAPTER 6. PA !? L1,1'LIS: 1I l'OX7'ItOL

1200

ti00
Storage

(i0U
used

100

200

0

U 10000 2()1) 0)) 30000 10000 5000() (iOO(lU
Tilll(l

Figure (i. l(i: ý1ur(' prr, lilv. ": Iýii(fýýr 10 () mid unlmi ride l()

1200

1000
Soo

Storage
6011

Used

200

0

-ý
ýI
i (1(1(11)

U1 0000 20000 30000 . I0000 : 50000 (; UOOO i OUOO
iI IIII('

Figure 6. i7: Sture hii(fcr 20 () anal iiul)Oiin(led ()

CHAPTER 6. PARALLELISM CONTROL

6.6 Divide and conquer algorithms

108

Divide and conquer (D&C) algorithms are interesting because the size of tasks they produce
varies. Also D&, -, C algorithms are exactly the kind of algorithms suited to the machine being
considered. This is because parallel D&C algorithms are difficult to map statically onto a
machine and therefore dynamic placement must be employed. In addition such algorithms are
easy to express in functional languages. D&C algorithms have been generally investigated in [83,
105]. In the context of functional programming the ZAPP project and later Cole, have advocated
the use of D&C combinators. Here too, combinators are used to express D&C algorithms. The
combinators used have the same meaning but they differ operationally. Different combinators are
used to attempt to control task sizes, and also to control task numbers and storage usage. The
combinators are compared with a run-time strategy for increasing the granularity of parallelism:
the evaluate-and-die (E& D) task model as used by GRIP [91] (note that unlike GRIP no sparks
are discarded).

6.6.1 Programming techniques

This section describes six different D&C combinators:

seq_dc a simple sequential one.

dcl a simple parallel one.

dc2 a depth bounding one; this limits the depth to which sub-problems are split-up and solved
in parallel.

dc3 a delayed sparking one; this delays parallel evaluation to reduce the probability of sparking
small tasks.

dc4 an exact control one; this uses a problem-specific predicate to determine whether a problem
is worth solving in a parallel.

dc5 a specialist exact control one; this is the same as dc4, except that it uses a specialised
sequential algorithm to solve the problem when it is not worth solving it in parallel.

The following sections describe these combinators in greater detail.

Simple sequential and parallel D&C combinators

A sequential D&C combinator is shown below:

> seq_dc div comb isleaf solve =
>f
> where
>fx= solve x, isleaf x
>= comb (f p1) (f p2), otherwise
> where
> (pl, p2) = div x

CHAPTER 6. PARALLELISM CONTROL 109

The div function is used to divide a problem up into sub-problems (always two in this case).
The comb function combines the sub-problems' results to form a new result. The isleaf x
predicate indicates whether x is a leaf problem and therefore whether it can be solved directly
by using solve.

For example a divide and conquer fibonacci function:

> dfib = seq_dc div (+) (<2) (const 1)
> where
> div x= (x-1, x-2)

A parallel D&C combinator may evaluate sub-problems in parallel:

> dcl div comb isleaf solve =
>f
> where
>fx= solve x, isleaf x
>= par sprobi (seq sprob2 (comb sprobl sprob2)), otherwise
> where
> (pl, p2) = div x
> sprobi =f p1
> sprob2 =f p2

In order for the par in dcl to satisfy the proof obligation it is sufficient for comb to be strict in
its second argument.

By using seq no assumptions are made about the order in which comb evaluates its arguments.
Notice also that only one task is generated, the parent continues with the evaluation of one
sub-problem. However, sometimes it may be desirable to replace seq by par to obtain pipelined
parallelism. This depends on whether any useful evaluation of comb sprobl sprob2 can occur
before sprobi and sprob2 have been evaluated. For the examples considered here, seq is
sufficient.

It is very difficult to make completely general DS: C combinators. Several generalisations of the
one shown are:

. have lists of sub-problems rather than just pairs.

" have a function for forcing the evaluation of sub-problems' results further than WHNF.

9 evaluate the sub-tasks in parallel with the comb application - for pipelined parallelism.

The more general the D&C coinbinator the less efficient it is. However a sophisticated compiler
may be able to do some partial evaluation to transform a program to a more efficient one. Even
if this cannot be done, and manual transformation is necessary, the combinators are still useful
for designing programs.

CHAPTER 6. PARALLELISM CONTROL

Depth bounding

110

It is desirable to limit the amount of parallelism produced by a D&C combinator. D&C al-
gorithms form a tree of tasks: sub-problems to be solved in parallel. A simple way to limit
the parallelism of a D&C combinator is to bound the depth of the task tree. That is to only
spark tasks less than a certain depth and thereafter to solve sub-problems sequentially, such a
combinator is shown below:

> dc2 bnd div comb isleaf solve =
> f bnd
> where
> fdx= solve x, isleaf x
> = seq_dc div comb isleaf solve x, d=0
> = par sprobl (seq sprob2 (comb sprobl sprob2)), otherwise
> where
> (pi, p2) = div x
> sprobi = f (d-1) pl
> sprob2 = f (d-1) P2

As for dcl, in order for the par in dc2 to satisfy the proof obligation it is sufficient for comb to
be strict in its second argument.

The variable d is used to bound the depth of the task tree. The isleaf test may be omitted if
it can be guaranteed that bnd is always less than the height of the tree.

Delayed sparking

A more complex method for controlling task sizes, is to delay the sparking of tasks; this is
based on an idea by John Hughes and David Lester. The idea is analogous to the Hewit and
Liebermann style garbage collector. It is this: the longer a task has run the longer it is likely to
run. If a task is likely to run a long time, it should spark child tasks; if not, it should not spark
any tasks. I call this delayed sparking; rather than immediately sparking a task, a parent task
delays its sparking - in case the parent task terminates. The delay depends on the particular
problem. This method is blind in the sense that it does not examine the problem being solved,
and it is, therefore, suited to implementation in a machine's run-time system.

The divide and conquer combina. t. or maybe expressed to do delayed sparking thus:

> dc3 k div comb isleaf solve =
>f 11
> where
> f1x= solve x,
> = seq this
> where
> (si, s2)
> delayed
> this

leaf x
(comb this delayed),

= div x
=f [] s2
=f (1++[delayed]) sl

#1<k

CHAPTER 6. PARALLELISM CONTROL 111

>= par old (seq this (comb this delayed)), #1=k
> where
> (old: rest) =1
> (si, s2) = div x
> delayed =f [] s2
> this =f (rest++[delayed]) s1

As for dcl, in order for the par in dc3 to satisfy the proof obligation it is sufficient for comb to
be strict in its second argument.

The first argument to f is a list of delayed sparks (a FIFO queue). The position of a delayed

spark in a task's queue is proportional to the amount of computation that the task has done

since the delayed spark. Thus once a delayed spark reaches the head of the queue, the sparking
task has done a sufficient amount of computation to warrant really sparking that task. On

encountering a leaf, the delayed sparks in a tasks queue will not be sparked but will be evaluated
sequentially (each delayed spark may produce tasks though). Notice that once a task terminates
the delayed sparks are visited sequentially in LIFO order. This is done purely for simplicity. It

could be changed to FIFO, which would probably give better performance, by altering the base

case equations. In the following examples an optimised version of dc3 was used because queues
(which dc3 needs) are difficult to implement efficiently in functional languages. The optimised
version had a queue of length one.

> dc3ql div comb isleaf solve
> f
> where
> fx = solve x, isleaf x
> = seq this (comb this del), otherwise
> where
> (subl, sub2) = div x
> del =f sub2
> this = f' del subs

> f' ax = solve x, isleaf x
> = par a (seq this (comb this del)), otherwise
> where
> (subi, sub2) = div x
> del =f sub2
> this = f' del subs

As previously, for the par in dc3ql to satisfy the proof obligation it is sufficient for comb to be

strict in its second argument.

This version, with a queue of length one, may be further optimised but it is designed to show
how similar optimisations can be used for other lengths of small queues. However, generally a
queue of length one was found to be sufficient for the grain size increases sought.

9

CHAPTER 6. PARALLELISM CONTROL

Tim e
_

Problem Solution
Division Leaf Problem Combination

Leaf Problem

Leaf Problem

Root Leaf Problem Final
Problem Leaf Problem Solution

Leaf Problem

Leaf Problem

Leaf Problem

Figure 6.18: D&C algorithm evaluation

A simple analysis of simple delayed sparking

112

This section describes a simple analysis of delayed sparking. It is restricted to the following

assumptions:

" The D&C algorithm, with no parallelism control, produces a binary balanced tree of tasks.

" The amount of work required to divide problems and combine their solutions is independent

of problems' size (this is necessary for a good speed-up anyway, see Section 8.2.2).

" The delay used is equal to one spark; that is sparks are delayed by one level in the divide

and conquer tree, as with dc3ql.

It will be proved that under these assumptions, using delayed sparking to control a D&C algo-
rithm, both the average task length and the execution time will be doubled (with an unbounded
number of processors).

The evaluation of a D&C algorithm will be represented as a tree. A pictoral representation of
its evaluation with an unbounded number of processors is shown in Figure 6.18. Its evaluation
has the form of a tree and its reflection: the problems' division and solutions' combination.
However since one tree is a reflection of the other, one tree will suffice to represent its evaluation.
Evaluation trees (trees representing a DSzC algorithm's evaluation) will be constructed from the
following data type:

eval_tree =E+ work eval_trce + eval_tree A evaLtree

CHAPTER 6. PARALLELISM CONTROL 113

The 6 value represents a directly solvable (leaf) problem, which, for this purpose, takes no time
to solve. The work value represents a unit of work which is required to divide a problem and
combine its solutions. The infix A value represents a spark. The left argument represents the
continuation of the parent task and the right argument represents the child task. Notice that
only work; values have an evaluation cost associated with them. For example an evaluation tree
work (6 A 6), represents the following evaluation: a unit of work is performed representing the
division of a problem and its solution's combination, a child task is sparked for one of the sub-
problems, each task is directly solvable and hence no work is required to solve them (6). The

units of work represent a fixed cost for dividing problems into sub-problems and for combining
their results.

A balanced evaluation tree will represent the evaluation of the D&C algorithm with no paral-
lelism control and an unbounded number of processors. Delayed sparking will be expressed as a
transformation on the balanced tree. A balanced evaluation tree of height)a may be expressed
thus:

tto =E
it 11 = work (tt (h-1) A tt (h-1))

A tree such as tt 10 represents the evaluation of a D&C algorithm with no parallelism control.
Delayed sparking has the effect of delaying sparking by one spark, provided a directly solvable
sub-problem (e) is not reached. Thus delayed sparking may be described as the following
transformation on balanced evaluation trees:

ds E=E
ds (work x) = work- (ds x)
ds (EAr) = (Is r

(Is ((work- l) A r) = work (cis 1A ds r)

This is not a complete transformation of all forms of evaluation tree, but it handles those
generated by it. The last equation delays sparking by one unit of work, which for tt is the
equivalent of one spark. The second to last equation shows what happens when a leaf problem
is encountered and hence delayed sparks are not sparked. The E represents the solution of a
leaf sub-problem, these are not measured, hence the evaluation in sequence of E and (Is r may
be represented by ds r.

The maximum number of works performed in sequence represents the parallel execution time
with an unbounded number of processors. For the no control case a tree of height It takes time h
(h works). The delayed sparking case takes time 2x It - 1. Proof is by induction on the balanced
(no control) tree height:

CHAPTER 6. PARALLELISM CONTROL

case height = 0, balanced tree = t:
delayed sparking tree =6 (using the delayed sparking transformation rules)
so both trees take time 0 (note, all number are naturals).

case height = 1, balanced tree = work (E A E):
delayed sparking tree = work E (using the delayed sparking transformation rules)
therefore, both trees take time 1.

case height =h (h > 1), balanced tree = work ((work 1) A r):
delayed sparking tree = work (work- (ds 1A (Is r))
execution time =2+ maximum execution time of ds 1 and ds r
1 and r are balanced trees and have heights h-2 and h-1 respectively.
using the induction hypothesis the execution time is-
2 +max(2x(h-2)-1)(2x(h-1)-1) =2xh-1Q

114

The average task length is equal to the total -amount of work done divided by the number of
tasks. The no control and delayed sparking versions, both perform the same amount of work.
For a tree of height h the amount of work (total number of works) is: 2h - 1. The no control
evaluation tree generates 2h tasks, for a tree of height la. The delayed sparking case generates
24-1 tasks, for h>0 and 1 task for h. = 0. Proof by induction on the no control tree height,
where the height is measured in terms of A s:

case height = 0, balanced tree =S:
delayed sparking tree =E (using the delayed sparking transformation rules)
delayed sparking consists of 1 task

case height = 1, balanced tree = work, (6'A E):
delayed sparking tree = work- 6 (using the delayed sparking transformation rules)
delayed sparking consists of 1 task (21-1)

case height = li (h > 1), balanced tree = work ((work 1) A r):
delayed sparking tree = work (work (ds IA ds r))
in terms of A s, I and r have the same height (h - 1)
number of tasks = number of tasks in (Is 1+ number of tasks in ds r
using the induction hypothesis = 2h-2 +2 h-2 = 2/L-1 Q

With formulae for the total amount of work performed and the number of task which each
version generates, the average task lengths can be calculated:

2h -1 no control average task length = ,,, -1=1

delayed sparking average task length = 2h_1 12

CHAPTER 6. PARALLELISM CONTROL 115

Thus under the assumptions given control of parallelism by delayed sparking doubles the average
task length and doubles the execution time with an unbounded number of processors. Providing
the average parallelism is much greater than the number of processors the effect on execution
time will be negligible. By inspection it can be seen that the shortest length tasks which are
generated by the delayed sparking technique, are equal to the shortest length tasks generated
under no control (0), plus the delayed sparking delay (one work unit). Thus the shortest length
tasks which are generated by the delayed sparking technique have lengths of one work unit.

Exact control

A more direct method of controlling task sizes is to examine the `size' of the problem to be solved.
Depending on the size of problem to be solved it may be solved in parallel or sequentially. A
simple way to implement this is to change the leaf predicate and the solve functions for the
simple D&C combinator. For example:

> dc4 issmall div comb isleaf solve =
> dcl div comb issmall (seq_dc div comb isleaf solve)

The proof obligation for dc4 is the same as for dcl: it is sufficient for comb to be strict in its
second argument.

This will only work providing Vp E problem-domain: isleaf p issmall p.

However as has been previously mentioned, sequential tasks often should use different algorithms
to parallel tasks; this is expounded in Chapter 8. Also, close inspection of dc4 reveals that task
sizes must be tested before sparking in order to decide whether to spark or not. For example if
two sub-problems a and b are produced from a problem division, a may be suitable for parallel
evaluation, but b may not. Together these problems should be executed sequentially but a
should be solved using the parallel D&C function and b should use a sequential D&C function.
This may be implemented thus:

> dc5 issmall segalg div comb =
>f
> where
>fx= comb sprobl sprob2, plsmall \/ p2small
>= par sprobi (seq sprob2 (comb sprobi sprob2)), otherwise
> where
> (pl, p2) = div x
> sprobl = segalg p1, plsmall
> =. f p1
> sprob2 = segalg p2, p2small
> =f p2
> plsmall = small pl
> p2small = small p2

In order for the par in dc5 to satisfy the proof obligation, it is sufficient for comb to be strict
in its second argument. An improved dc4, for use when the same algorithm should be used for
sequential and parallel solution of problems, may now be defined thus:

CHAPTER 6. PARALLELISM CONTROL 116

> dc4 issmall div comb isleaf solve
> dc5 issmall (seq_dc div comb isleaf solve) div comb

The proof obligation is the same as for dc5. The bounding D&C combinator may also be

extended so as to use a different algorithm to solve sub-problems when running sequentially.

It is interesting to compare a dc5 combinator version of Quicksort with Vree and Ilartel's
transformed Quicksort. Unfortunately, Quicksort cannot be expressed using these combinators
since it cannot be defined as a bomomorpliism on lists. This is because the combination of
two sub-problems' results is dependent upon the splitting element used to produce the results.
To enable Quicksort to be expressed, and other non-homomorphism algorithms like it, a more
general divide and conquer combinator is required. Specifically, the combine function must be

produced by the divide function. A more general version of dc5 to do this is shown below:

> dc5 issmall segalg div
>f
> where
> fx= comb sprobi sprob2, plsmall \/ p2small
> = par sprobi (seq sprob2 (comb sprobi sprob2)), otherwise
> where
> (comb, pl, p2) = div x
> sprobl = seqalg p1, plsmall
> = f p1, otherwise
> sprob2 = seqalg p2, p2small
> = f p2, otherwise
> plsmall = small pi
> p2small = small p2

The proof obligation is similar to before: it is sufficient for the comb function produced by div
to be strict in its second argument.

Quicksort may then be expressed thus:

> parqsort 1= dc5 isshort insertionsort div

> isshort 1= #1 <6

> div (e: r) = (comb, [xI x<-r; x<=e], [xl x<-r; x>r])
> where
> comb lo hi = lo++(e: hi)

Providing the whole of the result is required, comb will be strict in its second argument and hence
parqsort will fulfill the proof obligation. (In fact a weaker proof obligation can be formulated for
these D&C combinators which reveals that in any strict context parqsort is a valid program.)

The function insertionsort is the standard sequential insertion sort, which is efficient for short
lists.

CHAPTER 6. PARALLELISM CONTROL 117

This is comparable with the result of Vree and Ilartel's transformation. The same effect has been

achieved but without transformation. However with dc5, the programmer need only know that
its meaning is the same as the operationally simpler one (dcl), and the nature of the predicate
for controlling tasks sizes. Vree's and Ilartel's transformation results in a much more complex
program for the programmer but it has the advantage of being more efficient. The more general
the D&C combinators are, the less efficient they become. A solution to this inefficiency is to
do some partial evaluation, hopefully automatically, to produce a program equivalent to the
transformed version. Even if the partial evaluation cannot be done automatically, the manual
transformation of a D&C combinator program to an explicitly recursive one is easier than the
transformations Vree advocates.

One way to make exact control D&C combinators more efficient is to combine the issmall
and div functions. The resulting function may produce pairs, consisting of a sub-problem and
a truth value indicating whether it is small or not. This can improve efficiency because the
splitting of problems and determination of sub-problems-sizes are usually inextricably linked.
However this has not been done here, because it would mean using a different div function for
the exact control combinators.

6.6.2 Claims

It is not possible to say that one method for controlling parallelism is definitively better than
another. To adequately control parallelism for different algorithms a variety of techniques are
necessary: both run time and programmer controlled.

Parallelism control is particularly important for D&C algorithms because they typically produce
far more tasks than the machine has processors and they produce many small tasks. Task

residency is best controlled by the run-time system of a machine. To control the sizes of tasks a
combination of the evaluate-and-die (E&D) task model and programmer control is most effective.
For some algorithms, such as parallel prefix, good speed-up over a sequential implementation

may only be achieved by using a. different, sequential, algorithm for sequential tasks, see Section

8.2.3. For these algorithms a D&C combinator is required which enables a different algorithm
to be used for solving problems sequentially.

The most effective programmed method for controlling task sizes was found to be the exact
method. This works well for any shape of task tree. The drawback of this method is that
a predicate must be formulated indicating when a sub-problem is so small that it should be

executed sequentially. In some cases this predicate may be quite expensive to compute and it

may be difficult for the programmer to formulate.

For balanced task trees the simple depth bounding control works well and it has negligible cost
associated with it. However it is not suited to badly unbalanced task trees. More importantly

the notion of knowing when to bound the task tree not only requires information about the

cost of solving sub-problems but it also requires the size of the original problem to be known

or calculated. Thus this method is most suited to problems of fixed size which have balanced

task trees, such as the matrix problem described. This precludes, for example, the use of sparse
matrices represented using quad-trees.

The delayed sparking mechanism is better than the simple depth bounding one, for badly unbal-
anced task trees. Like the depth bounding case this too has some pathological bad cases. Unlike

CHAPTER 6. PARALLELISM CONTROL 118

the other programmed methods this method relies on lazy evaluation, which it needs in order
to represent the queue of delayed sparks; that is, a queue of unevaluated tasks. In many ways
delayed sparking is far more suited to being incorporated into the run-time system of a machine
rather than being a programmer controlled technique. This is because the technique requires
no problem specific information, unlike the other techniques. All that is required is to delay the
sparking of a task. If the parent task of a delayed spark completes evaluation before its task is
really sparked; then the parent may evaluate the task and no spark is necessary. Nevertheless
this technique is available to the programmer if it is not implemented in a machines run-time
system.

An important observation is that a GRIP-like machine which discards tasks (that is it does

not keep all sparks in some form of task pool) must regularly garbage collect its task queue
of useless WIINF tasks. The results show that vast numbers of WIINF tasks are created. A
machine which discards tasks must make sure that tasks in its task pool are not in WIINF.
Otherwise good tasks may be discarded when the majority of task in a task pool are in WHNF.
It is not sufficient to just check tasks when they are put in a task queue and when they are
evaluated to see whether they are in \VIINF; since while in a task pool a task's expression may
be evaluated by another task.

The E&D task model produces a dramatic increase in the average sizes of tasks. Although a
notification task model was not implemented, the E&D model may be compared with it. The
performance on the abstract machine of the two models will be approximately equal. This is
because the only difference between the two models on an abstract machine will be the order
in which tasks are scheduled, and Eager's result (Section 2.6) means that both systems should
perform well. The sizes of task which are produced by the notification model, when executed with
a limited number of processors, will be the same as the task sizes produced by the E&D model on
a machine with an unbounded number of processors. This is because with an unbounded number
of processors the E&D model sparks all tasks and coalesces no tasks: the exact behaviour of the
notification model on a machine with any number of processors.

Nevertheless the E&D model does still create a significant number of small tasks. This can
arise when a D&C algorithms task tree cannot be equally divided-up between processors and
the processors end up sharing the remaining work. Thus by itself, run-time system control of
parallelism is not sufficient.

A problem with programmed task size control is that for efficient task size control only enough
tasks to satisfy the number of available processors should be generated. The calculation of such
cut-off points is very hard. This is different from just ensuring that tasks which are created
are `worth-while'. However if the programmed control method and E&D model are combined,
then tasks sizes and task numbers may be very efficiently controlled. The programmed control
imposes a lower limit on the size of tasks which are generated. That is, only tasks are generated
which will be beneficial to evaluate in parallel. The E&D model automatically coalesces tasks
once the machine is busy, thus effectively increasing the sizes of tasks.

6.6.3 Adaptive quadrature results

Many experiments were performed; a few interesting ones are described here. Two programs
form the basis of the experiments shown: a. numerical integration, using an adaptive quadrature
algorithm, and a matrix multiplication, using quad-trees to represent matrices. The analysis

CHAPTER 6. PARALLELISM CONTROL 119

of the performance results had to take into account output times. The result of the numerical
integration is a single number hence its output time is negligible. The objective of task size
control was to reduce the number of short tasks. This was done relative to the sizes of the short
tasks in the simple (dcl) version of the program.

An adaptive quadrature algorithm Evas encoded using the D& C combinators. This performs an
integration of a function over an integral, using an adaptive trapezium rule [103].

> area left right = (foo left + foo right) / (2*(right-left))

> solve (1, m, r, val) = (area 1 m) + (area m r)

> isleaf (1, m, r, val) = abs ((left+right)-val) < 0.5
> where
> left = area 1m

> right = area mr

> div (1, m, r, val) ((1,:

> where
> nlm
> nrm
> left
> right

> comb = (+)

zlm, m, left), (m, nrm, r, right))

_ (1+m)/2

_ (m+r)/2

= area 1m

= area mr

> issmall (1, m, r, val) = abs ((left+right)-val) < 0.7
> where
> left = area 1m
> right = area mr

> depthbound =9

> mkdata 1r= (1, (l+r)/2, r, area 1 r)

> foo x= ((((x-6)*x)+3)*x)-2

> data = mkdata 0 100

Notice that the combining function comb is strict in both arguments; thus it satisfies the proof
obligations of the aforementioned DS: C conibinators.

This algorithm has the important characteristic that the sub-problems it produces are of varying
sizes.

Two sets of experiments were performed; the first set compared seq_dc, dcl, dc2, dc3 and
dc4, using an unbounded number of processors. With an unbounded number of processors no
scheduling issues arise and no task coalescing occurs. A bounding depth of 9 was used for dc2,
and the dc3g1 version of dc3 was used, see Section 6.6.1. The second set of experiments compared

CHAPTER 6. PARALLELISM CONTROL

400

300

Storage
200

used

100

0
0 50000 100000 150000 200000 250000 300000

Time

Figure 6.19: Store profile: seq_dc

120

dcl with dc4 running on machines with 25,100 and 200 processors. For these experiments task

coalescing did occur. The simulated machine and the simulator are described in Section 2.7 and
Chapter 4, respectively.

Short tasks are defined to be the those in the group of shortest tasks (as shown in task distribu-
tion graphs) produced by the simple parallel combinator dcl. Typically these fall in the range
of 0 to 150 machine cycles.

Comparison of the combinators

The results of the first set of experiments are summarised in the table below:

The algorithm seq_dc dcl dc2 dc3 dc4

Number of machine cycles 253909 1261 1885 2325 2663
Average parallelism - 203 152 110 115
Work done - 255983 286652 255471 305020
Max. number of active tasks - 986 505 429 385
Total number of tasks - 1040 505 518 384
Average sparked task length - 245 564 491 787

In general figures are not that accurate and they should only be read relatively to other figures;
thus only general trends should be inferred from them. The sequential evaluation time may
be compared with the work done by the parallel versions to reveal the extra work the parallel
algorithms have to do. Notice how the heavily optimised dc3 performs about the same amount
of work as dcl.

The execution times of the parallelism controlling combinators are worse than the execution time
for dcl. However this would be offset by the increased task overheads, such as communications,
from all the small tasks generated by dcl. Also for a limited processor machine the difference in

execution times between dcl and the other parallel combinators will be reduced; this is shown
in the second set of experiments.

CHAPTER 6. PARALLELISM CONTROL

1000-

800-

Number 600
of

tasks
400-

200-

0

600

500

400
Number

of 300
tasks

200

100

0

Task length
Figure 6.21: Task distribution: adaptive quadrature dcl

121

100000

80000
60000 Storage

used
40000 (" """ ")

20000

0

The sequential evaluation graph Figure 6.19 shows an erratic profile of storage usage. The

storage usage probably varies according to the depth of the D&C tree. This means that only
general remarks about the storage consumption of the parallel versions can be made.

Figures 6.20 and 6.21 show the dcl combinators performance. It shows the software limit on the

available parallelism; that is it shows the maximum amount of parallelism given an unbounded
number of processors. This shows that there is a lot of parallelism and that the storage used tends
to increase as parallelism increases. Parallelism increases as more of the D&C tree is concurrently
evaluated. The task distribution graph shows that many small tasks (100-200 reductions) are
created. These graphs will be compared with the graphs for the other combinators.

Figures 6.22 and 6.23 compare the parallelism and store usage of dc2 with dcl. The number
of tasks is reduced by approximately 50% and the storage residency is cut by approximately
75%. The execution time is increased by 50%, this is due to the reduction in parallelism and
the overheads of calculating the bound.

The task distribution graph, Figure 6.24, shows that far fewer short tasks are created, than for
dcl. By changing the bounding, bigger or smaller tasks may be created. In general selecting
a good bound for dc2 was found to be quite delicate and much `tuning' was required. A poor
bound either drastically reduces the available parallelism or results in many small tasks. This

0 200 400 600 800 1000 1200 1400
Time

Figure 6.20: Task and store profiles: dcl

>0> 50 > 100 > 150 > 200 > 250 > 300 > 350 > 400

CIIAPTER 6. PARALLELISM CONTROL

1000

800

Number 600

of
tasks 400

200

0
0 500 1000 1500 2000

Time

Figure 6.22: Parallelism profiles: adaptive quadrature dc2 (-

100000-

80000-

Storage
60000

used 40000

20000

0
0 500 1000 1500

Time

Figure 6.23: Store profiles: adaptive quadrature dc2

2500 3000

and dcl (")

2000 2500 3000

)anddcl(")

600-

500-

400-
Number

of 300
tasks

200

100

0>0>
50 > 100 > 150 > 200 > 250 > 300 > 350 > 400

Task length
Figure 6,2.1: Task distribution: adaptive quadrature dc2

122

CHAPTER 6. PARALLELISM CONTROL

1000

800

Number 600
of

tasks 400

200

0

Figure 6.25: Parallelism profiles: adaptive quadrature dc3 () and dcl (" """ ")

100000

80000

Storage
60000

used 40000

20000

0

Figure 6.26: Store profiles: adaptive quadrature dc3 (-) and dcl (" """ ")

123

was especially true for this example, which generates an unbalanced task tree. The bound chosen
here was necessarily very coarse to prevent the generation of small tasks.

Figures 6.25 and 6.26 compare the parallelism and store usage of dc3 with dcl. The delayed

sparking D&C version of the program is slower then the depth bounding version. The degra-
dation in performance was due to the delay in tasks being evaluated; since the amount of work
performed by this combinator and dcl was about the same. Nevertheless, this combinator ef-
fectively regulates the number of small tasks, and it controls the storage usage better than the
depth bounding version. It was noticeable how much less tuning was required with the delayed
sparking combinator to produce an efficient program than with the other combinators. The
main difference between the parallelism profile of dc3 and the other combinators is the longer
sequential start-up time of dc3. Figures 6.27 shows that no task less than 350 cycles were
generated; this compares well with dc2 where a few small tasks are still generated.

The results of the exact task size control combinator dc4 are shown in Figures 6.28,6.29 and
6.30. It's execution time is quite slow; this is because it produces no short tasks and it performs
more work than any of the other combinators. However the average length of tasks it produces,
are much greater than the other combinators. Its speed could be increased to a similar value to
the other combinators, at the expense of producing some smaller tasks. It could also be made

0 500 1000 1500 2000 2500 3000
Time

0 500 1000 1500 2000 2500 3000
Time

CHAPTER 6. PARALLELISM CONTROL

600-
500-

400-
Number

of 300
tasks

200

100

0
>0 >50 >

Task length

Figure 6.27: Task distribution: adaptive quadrature dc3

1000-

800-

Number 600

of
tasks 400

200

0

0 500 1000 1500 2000
Time

Figure 6.28: Parallelism profiles: adaptive quadrature dc4 (-

2500 3000

and dcl (.....)

100000

80000

Storage 00000

used 40000

20000

0
0 500 1000 1500 2000 2500 3000

Time
Figure 6.29: Store profiles: adaptive quadrature dc4 () and dcl (" """ ")

124

CHAPTER 6. PARALLELISM CONTROL

400

300

Number

of 200
tasks

100

0

Task length

Figure 6.30: Task distribution: adaptive quadrature dc4

125

much more efficient if div and issmall were combined, since they duplicate work. Although it
was not tried a des version utilising a different sequential algorithm could be tested, for example
using Simpson's rule.

Comparison of dcl with dc4, using a limited number of processors

The second set of experiments compared dcl with dc4 on a machine with a limited number of
processors. The machine used the evaluate-and-die (E&D) task model which attempts to coalesce
tasks. No sparks were discarded. Thus these experiments compare a combinator (dc1) which
relies solely on the run-time system's task coalescing to control task sizes, with a combinator
(dc4) which controls tasks sizes itself and has help from the run-time system. In addition
the E&D task model may be compared with the notification task model, see Section 6.3.1, as
previously mentioned programs with a high average parallelism will perform similarly on both
abstract machines. However the size of tasks which are generated will differ. Thus the sizes of
task generated by the dcl combinator with a limited number of processors may be compared
with the sizes of task generated for the dcl combinator with a infinite number of processors. The
latter measurement corresponds to the sizes of task which would be generated by the notification
model for any number of processors, since it cannot coalesce tasks.

Machines with 25,100 and 200 processors were tried. These sizes were chosen since in the
unrestricted case the average parallelism was approximately 200 and for a run-time task size
control policy to work well the average parallelism must be greater than the number of processors.
Also Eager's speed-up theorem can be verified.

The table below shows the results from these experiments:

>0> 50 > 100 > 150 > 200 > 250 > 300 > 350 > 400

CHAPTER G. PARALLELISM CONTROL 126

Algorithm dcl dc4 dcl dc4 dcl dc4

Number of processors 25 25 100 100 200 200
Number of machine cycles 10756 13502 3320 4634 2138 3575
Average parallelism 24 23 77 66 120 85
Work done 255993 305010 256005 305010 255983 305019
Max. number of active tasks 25 25 100 100 200 200
Total number of tasks 98 74 269 189 451 287
Average sparked task length 2527 3989 942 1595 564 1054
Number of useless tasks 942 310 771 195 589 97

Figures 6.31 to 6.42 show the results of experiments performed with machines of 25,100 and 200

processors. The results agree with Eager's speed-up predictions - they show a good performance
when the average parallelism (200) is much greater than the number of processor (25). Also none
of the performances drop below the limit which Eager's speedup theorem states, see Section 2.6.
For example the average parallelism of dcl and dc4 with an unlimited number of processors is
203 and 115, respectively (see the table prior to this one). With 200 processors dcl and dc4
have average parallelisms of 120 and 85. Eager's speedup theorem gives lower bounds on the

average parallelism of dc2 and dc4 as 101 and 73, respectively.

With an infinite number of processors, see the previous results, del produces tasks with an
average length of 245. This corresponds to the average length of tasks produced by a machine
using a notification task model for any number of processors. As can be seen above, the results
for dcl with a limited number of processors have much greater average task lengths than 245.
Thus, unlike the notification model, the E. CD task model can coalesce tasks and hence improve
the parallelism granularity of some programs.

The percentage difference in execution times between dcl and dc4 decreases with the number
of processors. This difference in execution times may be bounded by the percentage difference
in work done by the two algorithms (20%) and the percentage difference in execution time for
the two algorithms with an unbounded number of processors (80%).

Task numbers (tasks residency) are well controlled by dcl and dc4. The dcl combinator's task

sizes were greatly improved over the unbounded case, compare Figure 6.21 with 6.33,6.37 and
6.41. Nevertheless a significant number of small tasks were created. Figures 6.34,6.38 and 6.42

show that combining a run-tinte task size control with program control prevents all these small
tasks.

The dcl combinator generates many useless XVIINF tasks; this demonstrates that checking tasks'

expressions to see whether they are in \VIIN'r is very important for a machine which implements

an evaluate-and-die task model. However dc4 generates far fewer useless tasks than dcl, which
means that detection of such tasks is less important in this case.

CHAPTER 6. PARALLELISM CONTROL

25

20

Number 15

of
tasks 10

5

0

0 2000 4000 6000 8000
Time

Figure 6.31: Parallelism profiles: 25 processors dc4

8000

6000

Storage
4000

used

2000

0
0 2000 4000 6000 8000

Time

Figure 6.32: Store profiles: 25 processors dc4 (-

10000 12000 14000

)a. nddcl(.)

10000 12000 14000

and dcl (")

60-

50-

40-
Number

of 30
tasks

20

10

0--570 > 50 > 100 > 150 > 200 > 250 > 300 > 350 > 400

Task length

Figure 6.33: Task distribution: 25 processors dcl

127

CHAPTER 6. PARALLELISM CONTROL

80

60

Number

of 40
tasks

20

100-

80-

Number 60

of
tasks 40

20

0

0 1000 2000 3000
Time

Figure 6.35: Parallelism profiles: 100 processors dc4

20000-

15000-

Storage 10000
used

5000

0

0 1000 2000 3000
Time

Figure 6.36: Store profiles: 100 processors dc4

4000 5000

and dcl (")

4000

and dcl (" """ ")

5000

128

0>0>
50 > 100 > 150 > 200 > 250 > 300 > 350 > 400

Task length

Figure 6.34: Task distribution: 25 processors dc4

CHAPTER 6. PARALLELISM CONTROL

200

150

Number

of 100
tasks

50

200

150

Number

of 100
tasks

50

200

150

Number

of 100
tasks

50

0

129

0 500 1000 1500 2000 2500 3000 3500 4000
Time

Figure 6.39: Parallelism profiles: 200 processors dc4 (-) and dcl (" """ ")

0 1>
0> 50 > 100 > 150 > 200 > 250 > 03 0> 350 > 400

Task length

Figure 6.37: Task distribution: 100 processors dcl

0>0>
50 > 100 > 150 > 200 > 250 > 300 > 350 > 400

Task length

Figure 6.38: Task distribution: 100 processors dc4

CHAPTER 6. PARALLELISM CONTROL

40000

30000

Storage
20000

used

10000

0

0 500 1000 1500 2000 2500 3000 3500 4000
Time

Figure 6.40: Store profiles: 200 processors dc4 () and dcl (" """ ")

250

200

Number 150

of
tasks 100

50-

0
>0> 50 > 100 > 150 > 200 > 250 > 300 > 350 > 400

Task length
Figure 6.41: Task distribution: 200 processors dcl

300-

250-

200-
Number

of 150
tasks

100

50

0>0> 50 > 100 > 150 > 200 > 250 > 300 > 350 > 400

Task length
Figure 6.42: Task distribution: 200 processors dc4

130

CHAPTER 6. PARALLELISM CONTROL

6.6.4 Matrix multiplication results

131

The second example of a D&C algorithm is matrix multiplication. This used used quad-trees
to represent matrices, as advocated by Wise [120]. Generally quad-tree matrix representation
is very good for parallelism and data locality. It also means that sparse and dense matrices
may be uniformly represented. Important operations such as Gaussian elimination may also be

performed using quad-trees. The result of a matrix multiplication is large and hence considerable
time is spent outputting it. Therefore results (tables and graphs) were adjusted to remove this

output time.

Two 16 by 16 matrices were multiplied together in parallel. This problem is very different from
the adaptive quadrature one. Its characteristics are:

" sub-problems have fixed sizes (dense matrices)

" the task tree is thickly branching

" the comb operation uses another D&
-,
C algorithm - matrix addition

To handle this problem generalised versions of the previous D&C combinators were required,
which could handle more than two sub-problems. Therefore div and comb were changed to
produce and combine lists of sub-problems. For example dcl becomes:

> dcl div comb isleaf solve
>f
> where
>fx= solve x, isleaf x
>= comb (parmap id f (div x)), otherwise

> parmap ff f= parlist ff . map f

In order for the parmap proof obligation to be met, this DS, C coinbinator must be used in a
context where either comb is head and tail strict in its argument or where the solutions of all
sub-problems are defined. That is where div, comb, isleaf and solve are total and the input
data is defined. Similar proof obligations hold for the other D&C combinators.

The quad-tree matrix multiplication was implemented thus:

> matrix * .. = Scalar *I
> Quad (matrix *) (matrix *) (matrix *) (matrix *)

> isleaf ((Scalar True
> isleaf

_=
False

> addsolve (Scalar n, Scalar m) = seq x (Scalar x) where x= n+m

> adddiv (Quad ab c d, Quad efg h) = [(a, e), (b, f), (c, g), (d, h)]

CHAPTER 6. PARALLELISM CONTROL

> addcomb [p, q, r, s] = Quad pqrs

> addisshort (Quad
--, _) = False

> addisshort _=
True

> mulsolve (Scalar n, Scalar m) = seq x (Scalar x) where x= n*m

> muldiv (Quad abcd, quad efg h) =
> C(a, e), (b, g), (a, f), (b, h), (c, e), (d, g), (c, f), (d, h)]

> mulcomb madd [p, q, r, s, t, u, v, w] m=
> par ml (par m2 (par m3 (seq m4 (Quad ml m2 m3 m4))))
> where
> ml = madd (p, q)
> m2 = madd (r, s)
> m3 = madd (t, u)
> m4 = madd (v, w)

> depthbound =3

> mulisshort (Quad (Quad
___ _) = False

> mulisshort -=
True

132

The
_ pattern acts as a wildcard, which matches anything. An example multiplication using

dcl is:

> test = dcl muldiv mulcomb isleaf mulsolve (bigmatrix, bigmatrix)
> where
> comb = mulcomb (dcl adddiv addcomb isleaf addsolve)

Since all of the result matrix is required (by the output driver), both mulcomb and addcomb
occur in hyper-strict contexts. Thus test meets both dcl proof obligations. A similar argument
applies to tests performed with the other D&C matrices.

Notice how dcl has been used for both the multiplication and the addition of sub-problems. In
general matrix addition was always implemented using the same combinator as multiplication.

Like the adaptive quadrature program, two sets of experiments were performed. The first set
compared seq_dc, dcl, dc2, dc3, dc4 and dc5, using an unbounded number of processors. A
bounding depth of 3 was used for. n multiplication using dc2. For dc3 a version of dc3ql, see
Section 6.6.1, was used; this manipulated lists rather then pairs of sub-problems. The dc5

combinator used an optimised algorithm for multiplying small matrices directly, rather than

using recursion. The second set of experiments compared dcl with dc4 running on machines
with 25,100 and 200 processors.

CHAPTER G. PARALLELISM CONTROL

3000

2500

2000
Storage

1500
used

1000

500

0
0 25000 50000 75000 100000 125000 150000 175000 200000

Time

Figure 6.43: Store profile: seq_dc

Comparison of the combinators

The results of the first set of experiments are summarised in the table below:

The algorithm seq_dc dcl dc2 dc3 dc4 dc5
Number of machine cycles 173230 514 832 861 845 583
Average parallelism - 425 240 222 237 123
Work done - 218270 199320 191057 200072 71489
Max. number of active tasks - 1693 522 1041 523 432
Total number of tasks - 9105 1105 2422 1105 1105
Average sparked task length - 24 180 79 181 65

133

Notice that the optimisation of the parallelism controlling combinators means that they do less

work than dcl. This is partly because the parmap used in the definition of dcl is quite inefficient;
it is defined in terms of parlist. When solving problems sequentially the parallelism controlling
combinators do not incur the inefficiencies of using parmap. The dc5 combinator is much more
efficient than the others, due to its optimisation for multiplying small matrices.

Figure 6.43 shows the store profile of seq_dc. This shows a linearly decreasing use of storage.

Figure 6.44 shows beautiful parallelism and storage profiles, resulting from the problems reg-
ularity. The graphs show good speed-up and the storage usage exactly follows the parallelism
profile. However the storage usage (residency) is increased over the sequential version. This is
because sub-problems are solved concurrently and the solution of a sub-problem requires more
storage than its input data, or result. Thus sequential evaluation will only require the transient
storage use of one sub-problem, since sub-problems are solved sequentially. Parallel evaluation
will concurrently solve sub-problems and hence their transient storage requirements will be ac-
cumulated. The task distribution graph, Figure 6.45, reveals many small tasks; the majority of
tasks took less than 25 cycles to execute!

Depth bounding works well for this problem because the task tree is balanced; however a po-
tential weakness of depth bounding also becomes apparent. During matrix multiplication, the
matrix size which add operates upon varies and therefore this must be calculated dynamically to

CHAPTER 6. PARALLELISM CONTROL

2000

1500
Number

of 1000
tasks

500

0

10000

8000

Number 6000
of

tasks 4000

2000

134

50000

40000

30000 Storage
used

20000 (" """ ")

10000

0

600

Task length

Figure 6.45: Task distribution: matrix multiplication dcl

0 100 200 300 400 500
Time

Figure 6.44: Task and store profiles: dcl

01
>0> 50 > 100 > 150 > 200 > 250 > 300 > 350 > 400

CHAPTER 6. PARALLELISM CONTROL

2000

1500

Number

of 1000
tasks

500

0
0 100 200 300 400 500 600

Time

Figure 6.46: Parallelism profiles: matrix multiplication dc2

60000

50000

40000
Storage

30000
used

20000

10000

0

700 800 900

) and dcl (")

0 100 200 300 400 500 600 700 800 900
Time

Figure 6.47: Store profiles: matrix multiplication dc2 () and dcl (" """ ")

135

achieve correct bounding for matrix addition. This is less of a problem for matrices, compared
with other D&C algorithms, because matrices branch quickly and hence they are not usually
very high. Also the matrices used in this experiment are regular, hence only the height of one
matrix need be calculated for each set of additions. The overall execution time is 60% greater
than dcl and few small tasks are generated. This shows that the small tasks which dcl gener-
ates perform a lot of work, otherwise there would be less discrepancy in execution times between
dcl and dc2. However in practice these tasks would be too small to be beneficial for parallel
evaluation on a MIMD machine. Task numbers are controlled well by depth bounding; it only
generates about 12% of the tasks which dcl does. The storage use of dc2 is similar to dcl.

The delayed sparking algorithm performs very well compared to the other control methods,
see Figures 6.49 to 6.51. The amount of work it performs and its execution time are similar
to dc2 and dc4. However it does generate more tasks than the other parallelism controlling
combinators and it generates many small tasks. This is because the other methods are well
suited to controlling algorithms with balanced task trees. Nevertheless dc3 only generates 25%

of the tasks which dcl does, and it generate far fewer small tasks (less than 50 reduction cycles)
than dcl does.

CHAPTER 6. PARALLELISM CONTROL

600-

500-

400-
Number

of 300
tasks

200-

100

0>0>
50 > 100 > 150 > 200 > 250 > 300 > 350 > 400

Task length

Figure 6.48: Task distribution: matrix multiplication dc2

2000

1500

Number
of 1000

tasks

500

0
0 100 200 300 400 500 600 700 800 900

Time

Figure 6.49: Parallelism profiles: matrix multiplication dc3 (-) and dcl (" """ .)

60000

50000

40000
Storage

30000
used

20000

10000

0

136

0 100 200 300 400 500 600 700 800 900
Time

Figure 6.50: Store profiles: matrix multiplication dc3 (-) and dcl (" ."" ")

CHAPTER 6. PARALLELISM CONTROL

2000

1500

Number

of 1000
tasks

500

0

Task length

Figure 6.51: Task distribution: matrix multiplication dc3

2000

1500

Number

of 1000
tasks

500

0

Figure 6.52: Parallelism profiles: matrix multiplication dc4 () and dcl (")

137

Figures 6.52 to 6.54 show the results for the exact task size control combinator (dc4). The
results for this are essentially the same as for the dc2 combinator, the same sub-problems are
solved in parallel. The only difference is that dc4 is slightly less efficient than dc2 at determining
whether sub-problems should be solved in parallel. The graphs for dc4 are almost identical to
those for dc2.

Using exact task size control and an optiºuised sequential algorithm is very efficient as can be

seen in Figures 6.55,6.56 and 6.57. The same sub-problems were solved in parallel as dc2 and
dc4; however an optimised sequential algorithm was used for multiplying small matrices. The

execution time compares well with dcl yet the number of tasks is reduced to 12% of dcl. The

storage residency is reduced by approximately 50% of dcl. The drastic reduction in storage is

a result of the optimised sequential tasks which create no intermediate matrices for addition, as
the general case does. It is true that normally this optimisation would reduce the storage and
execution time of the sequential algoritlºni, but in a parallel setting these benefits are amplified.
This is because in a parallel setting the storage residency is increased and, because, sequential
parts of the program limit the parallel algorithms performance, see [67].

>0> 50 > 100 > 150 > 200 > 250 > 300 > 350 > 400

0 100 200 300 400 500 600 700 800 900
Time

CHAPTER 6. PARALLELISM CONTROL

60000

50000

40000
Storage

30000
used

20000

10000

0
0 100 200 300 400 500

Time

Figure 6.53: Store profiles: matrix multiplication dc4

600 700 800 900

and dcl (")

600-

500-

400-
Number

of 300
tasks

200-

100

0>0 >50 > 100 >150 >200 >250 >300 >350 >400

Task length
Figure 6.54: Task distribution: matrix multiplication dc4

2000

1500

Number
of 1000

tasks

500

0
0 100 200 300 400 500 600

Time

Figure 6.55: Parallelism profiles: matrix multiplication dc5

700 800 900

)anddci(")

138

CHAPTER 6. PARALLELISM CONTROL

60000

50000

40000
Storage

30000
used

20000

10000

0
0 100 200 300 400 500 600 700 800 900

Time

Figure 6.56: Store profiles: matrix multiplication dc5 () and dcl (" """ ")

1000

800

Number 600

of
tasks 400

200

139

Task length

Figure 6.57: Task distribution: matrix multiplication dc5

0 1>
0> 50 > 100 > 150 > 200 > 250 > 300 > 350 > 400

CHAPTER 6. PARALLELISM CONTROL

4000

3000

Number

of 2000
tasks

1000

0

Task length

Figure 6.58: Task distribution: 25 processors dcl

Comparison of dcl with dc4, using a limited number of processors

140

The matrix algorithm when run on an unbounded number of processors had an average paral-
lelism of approximately 200; therefore once again dcl was tried with 25,100 and 200 processors.

Figure 6.58 shows the task length distributions for a 25 processor machine. Notice how many
small tasks, less than 50 cycles long, are generated. Of the 5678 tasks sparked about 60% had
lengths less than 10 machine cycles.

One reason for this was the parlist combinator which was used. The parlist combinator
may generate sparks which do very little evaluation before terminating. For example in making
parlist general it forces evaluation of list elements with a function. The value being forced may
be in ` IINF but this cannot be detected by the machine because the task consists of a closure:
the forcing function applied to the value in NVIINF. It seems as though the mechanisms of parallel
machines may hinder the use of parallelism abstractions. Evaluation transformers, described in
Section 3.2.3, would prevent this problem; however at present they are not extensible, and they
do not support the definition of parallelism abstractions. This is discussed further in Section
9.1.7.

An alternative solution is to define parmap differently:

> pcons ht= par t (seq h (h: t))

> parmap fQ= 11
> parmap f (x: xs) = (f h) $pcons parmap f xs

This version of parmap must be used in at least a tail strict context: which it is in the D&C

combinators. With this version of parmap results and pars (task sparks) reference the same
values, therefore once a value is in \VIENF any task which refers to that value may also detect
this. Unfortunately parmap is no longer parameterised with a. forcing function.

Revised versions of the D&C combinators, which used the new parmap, were tried for 25,100
and 200 processor machines. The results are summarised in the table below:

>0> 50 > 100 > 150 > 200 > 250 > 300 > 350 > 400

CHAPTER 6. PARALLELISM CONTROL 141

Algorithm dcl dc4 dcl dc4 dcl dc4
Number of processors 25 25 100 100 200 200
Number of machine cycles 7860 7952 2127 2316 1163 1385
Average parallelism 25 25 92 85 168 142
Work done 195436 197227 195449 197225 195449 197226
Max. number of active tasks 25 25 100 100 200 200
Total number of tasks 3,136 569 4049 959 4636 959
Average sparked task length 56 3.12 48 205 42 205
Number of useless tasks 4499 390 3886 0 3299 0

These results show that the execution times of dcl and dc4 are very similar for small number
of processors. The execution overhead of using dc4 may be bounded as previously mentioned
in the discussion of the adaptive quadra. ture results. Also, as previously, the results agree with
Eager's speed-up predictions. In particular notice how the parallelism profiles in Figures 6.59,
6.63 and 6.67 deteriorate as the number of processors increases. (Ideally the parallelism profiles
should show a constant activity of p tasks for ap processor machine.)

Once again the E&D task model successfully coalesces some tasks and hence it results in a larger

granularity of parallelism than if a notification model had been used. A notification model, on
a machine with any number of processors, would have produced tasks with an average length
the same as dcl with an infinite number of processors (24).

The task distribution graphs, Figures 6.61 to 6.70, show that run-time control of task sizes is not
sufficient. Many more small tasks (< 50 cycles) are generated by dcl than dc4. It is noticeable
that for 25 processors, dc4 better controls the storage residency considerably better than dcl.

Similarly to the adaptive quadrature results, dc4 produces far fewer useless tasks than dcl:
which produces lots of them. However unlike the adaptive quadrature results, dc4 also produces
far fewer tasks in total than dcl.

Some of the short tasks which are generated by dcl and dc4 can be attributed to applications
of pcons h [I. This generates an unnecessary task since there is no point evaluating h and []
in parallel.

These results show that additional control of parallelism is far more necessary for this algo-
rithm than for the adaptive quadrature one. This is probably because this algorithm is more
complicated than the adaptive quadrature one; this algorithm is a double D&C algorithm.

CHAPTER 6. PARALLELISM CONTROL

25

20

Number 15

of
tasks 10

5

0
0 1000 2000 3000 4000 5000 6000 7000 8000

Time

Figure 6.59: Parallelism profiles: 25 processors dc4 () and dcl (" """ ")

12000

10000

8000
Storage

6000
used

4000

2000

0
0 1000 2000 3000 9000 5000 6000 7000 8000

Time

Figure 6.60: Store profiles: 25 processors dc4 (-) and dcl (" """ ")

3500-

3000-

2500-
Number 2000

of
tasks 1500

1000-

500

0>0>
50 > 100 > 150 > 200 > 250 > 300 > 350 > 400

Task length
Figure 6.61: Task (distribution: 25 processors dcl

142

CHAPTER 6. PARALLELISM CONTROL

400

350

300

Number 250

of 200
tasks 150

100

50

0

100

80

Number 60

of
tasks 40

20

0

0 250 500 750 1000 1250 1500 1750 2000 2250 2500
Time

Figure 6.63: Parallelism profiles: 100 processors dc4 (-) and dcl (" """ ")

14000

12000

10000

Storage 8000

used 6000

4000

2000

0
0 250 500 750 1000 1250 1500 1750 2000 2250 2500

Time

Figure 6.64: Store profiles: 100 processors dc4 (-) and dcl (" """ ")

143

>0> 50 > 100 > 150 > 200 > 250 > 300 > 350 > 400

Task length

Figure 6.62: Task distribution: 25 processors dc4

CHAPTER 6. PARALLELISM CONTROL

4000-

3500-

3000-

Number 2500

of 2000
tasks 1500

1000

500-

0>0> 50 > 100 > 150 > 200 > 250 > 300 > 350 > 400

Task length

Figure 6.65: Task distribution: 100 processors dcl

500

400

Number 300

of
tasks 200

100

200

150

Number

of 100
tasks

50

0

144

0 200 400 600 800 1000 1200 1400
Time

Figure 6.67: Parallelism profiles: 200 processors dc4 (-) and del (" """ ")

0 'L i-
>0> 50 > 100 > 150 > 200 > 250 > 300 > 350 > 400

Task length
Figure 6.66: Task distribution: 100 processors dc4

CHAPTER 6. PARALLELISM CONTROL

22500

20000

17500
15000

Storage 12500
used 10000

7500
5000
2500

0
0 200 400 600 800 1000 1200 1400

Time

Figure 6.68: Store profiles: 200 processors dc4 () and dcl (" """ ")

4500
4000
3500
3000

Number 2500
of 2000 tasks

1500
1000
500

0

Task length

Figure 6.69: Task distribution: 200 processors dcl

500
450
400
350

Number 300
of 250

tasks 200
150
100
50
0

145

Task length
.

Figure 6.10: Task distribution: 200 processors dc4

>0> 50 > 100 > 150 > 200 > 250 > 300 > 350 > 400

>0> 50 > 100 > 150 > 200 > 250 > 300 > 350 > 400

CHAPTER 6. PARALLELISM CONTROL

6.7 Summary

146

This chapter has reported some of the first experiments carried out on a variety of programs, for
testing the effectiveness of several techniques for controlling task sizes of functional programs.

The control of two different kinds of parallelism has been investigated: data parallelism and
divide and conquer algorithm's parallelism. Three aspects of parallelism have been investigated:
task sizes, task residency and storage residency. However all these areas are related and the
emphasis has been on controlling task sizes. In particular increasing the size of tasks decreases
task residency, and often decreases storage residency.

Three methods of controlling data parallelism were considered: data grouping, k-bounding, and
buffering. The results of these methods are summarised in the table below:

task size task numbers storage use
Data grouping increased decreased increased
I{-bounding increased decreased unchanged
Buffering unchanged decreased decreased

Data grouping is better than k-bounding for controlling task sizes because it fixes task sizes.
To use k-bounding to control task sizes, the size of the data must be known. For controlling
task numbers k-bounding is best since it fixes task numbers. Likewise to control task numbers
with data grouping, the size of the data must be known. For very large data structures, yielding
pipelined data parallelism, buffering is useful to control storage use. In particular buffering syn-
chronises production and consumption of values, and thus it can prevent over eager evaluation.

Divide and conquer algorithms produce many tasks, the majority of which are small. Therefore
it is particularly important to control task residency and the sizes of tasks produced. Three
different D&C combinators, which control task sizes, were tried. These indirectly control task
numbers too. In addition a run-time method, the evaluate-and-die task model, for coalescing
tasks was used for comparison.

The best method of control was a combination of the evaluate-and-die task model with an ex-
act task size controlling D&C combinator. The exact control combinator limited the minimum
sizes of task which were sparked. The evaluate-and-die task model reduced task numbers and
increased task sizes; however it was not found to be sufficient alone. It was found that the
difference in efficiency between just using the evaluate-and-die model and using this and pro-
grammer control, decreased as the number of processors decreased. For parallel D&C algorithms
which are not efficient sequential algoritlinis, an efficient sequential algorithm should be used
for solving problems sequentially. This can improve efficiency tremendously.

The delayed sparking D&C combinator performed well considering that it uses no information
about the problem to be solved. It is heuristic based and it appears to be well suited to
incorporation into a machines run-time system.

Section 3.2 argued that using just strictness analysis to determine parallelism risks producing
tasks of an unusably small grain. Results of this chapter support this.

In addition the matrix multiplication experiments have revealed some problems with using paral-
lelism abstractions. In particular parallelism abstractions can prevent a machine from detecting

CHAPTER 6. PARALLELISM CONTROL 147

that values are in WIINF, and this can lead to needless re-sparking. The only solutions to
this seem to be to write programs in a constrained style to prevent this from occurring (this is
discussed further in Section 9.1.7), or to use some form of extensible evaluation transformers.

6.8 Conclusions

The main conclusion of this chapter is that programmer control of parallelism is necessary;
in particular control of the following is required: task numbers, storage and task sizes. The

simulation results have shown this to be necessary.

The control of data parallelism is very problem dependent. Depending on the problem, one of
the techniques described here may be appropriate. The results reveal that each of the control
techniques are suited to different aspects of parallelism control.

For controlling divide and conquer parallelism a combination of the evaluate-and-die task mech-
anism with an exact control method works best. The programmer should provide a lower bound

on task sizes, and the E&D task model may coalesce tasks thereby increasing their sizes. This
is borne out by the results.

The delayed sparking scheme for controlling task sizes could usefully be implemented in a ma-
chine's run-time system. The results show that this scheme works well, especially considering
that it is a `blind' technique.

Many useless tasks are sparked; thus it is necessary to remove these tasks. On a real machine it

would be necessary to periodically garbage collect the task pool of useless tasks. The statistics
reveal this too.

Chapter 7

Bags

Traditionally functional programs have made great use of the list data type. However, often
lists are not used as lists but as bags (multisets). A list is a data type representing an ordered
sequence. A bag is a data type representing an unordered multiset. If lists are used in place of
bags, this results in a biased implementation, which can be detrimental to program meaning and
implementation. This chapter proposes an extension to functional languages to provide direct

support for bag data types.

A bag consists of a finite collection of unordered elements, which may contain duplicates. (Bags

are restricted to being finite because it is unclear what the semantics of infinite bags are, see
Section 7.5.1.) Operations may construct bags and take them apart. However operations to
take bags apart must be deterministic; that is, not dependent upon the order of elements in
bags. Determinism is necessary for referential transparency, which in turn is necessary for using
equational reasoning. Thus there is no operation to select an element from a bag, but there is
a bag filter operation.

This may be contrasted with Hughes and O'Donnell's sets [57]. They use sets for handling

non-determinism, where sets are represented by one element. All their operations on sets must
apply to one element only: for example set union is possible, intersection is not. As described
here, bag operations must apply equally to all bag elements elements.

Providing bags directly in a functional language allows specifications and programs to be written
which are more abstract than if lists had been used to model bags. Note that bags do not replace
lists, if a sequence is required then a list should be used; if only a multiset is required then a
bag, not a list, should be used. In particular bags are naturally suited to database queries.

Bags have two important advantages over lists. Firstly more transformations are applicable
to bags than lists because bags are insensitive to ordering changes. Secondly, bags may be
implemented non-deterministically and Bence they allow a greater freedom of parallel evaluation
than lists. If the elements of a. bag are evaluated in parallel they may be combined or consumed
as they terminate, since bag elements are unordered. This means that the scheduling of the
elements evaluation becomes less important, and parallel bag folding is very efficient.

1,18

CIIAPTER 7. BAGS

7.1 Survey

149

This section surveys several other bag like proposals. None of these proposals suggest introducing
bags generally and deterministically into functional languages, nor do any give an implemen-
tation of bags. It is particularly important not to introduce non-determinism into a language
because it means that referential transparency will be lost.

There have been several proposals for non-deterministic fold operations which behave deter-

ministically when the folding operator is associative and commutative. Hudak proposed a non-
deterministic list folding operator which combined the elements of a list in the order in which
they terminate [50]. This required that the folding function was associative and commutative.
Wadler had a similar operator to Ifudak for combining array elements in an array comprehension
[113). This allowed the value of an array element to be specified as the non-deterministic com-
bination of several values together: again providing that the combining function was associative
and commutative.

Bird and Meertens have used trees, lists, bags and sets in a generalised way, for algebraic program
transformation and derivation [14,80]. Trees, lists, bags and sets may be viewed as differing

only in the algebraic richness of their constructors (the Boom hierarchy), see Section 5.2.1.

Banätre et al. have used bags as part of a noin-deterministic rewriting model for parallel programs
[9]. Essentially this is a parallel rewriting system which non-deterministically rewrites elements
in a bag. They also describe how their bags may be implemented on a MIMD machine.

Connection Machine (CM*) Lisp has a data type similar to a bag called a Xapping [107].
Xappings have been inspired by the APL and FP languages and they fulfill the role of bags,

mappings and arrays. These have been designed for efficient implementation on the Connection
Machine, which has a fine grained SIAM architecture.

Xappings are specified as a. mappings from indices to values; all the indices must be distinct.
For example:

x= {a->1 b->2 c->3 d->4}

There are a variety of shorthaaids and operators for xappings, including two special forms.
Xappings where the indices are equal to the values are called Lets and xappings where the
indices are consecutive integers from zero are called xectors. Thus arrays are represented as
xectors of xectors. The most important xapping operators are a and ,ß these correspond to map
and fold applied to tappings values. Thus, a sqr x is {a->1 b->4 c->9 d->16) and ß+x
is 10. The implementation of ß is non-deterministic; zapping elements are combined in any
order. Thus the results of a 13 operation are only deterministic when the combining operator
is associative and commutative. Other operators allow rapping indices to be manipulated, for

example to achieve the effect of arrays. In general the operations are designed to allow efficient
programs for the Connection Machine to he written. Unfortunately xappings suffer the common
Lisp ailment of being over complicated: there are many different operations on xappings, each
with many different forms.

Some other researchers have proposed adding bags to a purely functional language [771. Their

proposal tries to mimic xappings. The operations they propose on bags are:

CHAPTER 7. BAGS 150

> emptybag :: bag *
> any .: bag * -> *
> add bag * -> bag *
> sub bag * -> bag *
> member .: bag * -> * -> bool
> distr bag * -> bag **
> fold -> bag * ->
> dom : (*->**) -> bag *

There are many problems with their approach. In particular any is a non-deterministic bag
selection operator, which means that referential transparency is lost. The dom operation is
meant to generate a bag from the domain of a function with a finite domain. The idea of dom is
to give some of the power of xappings. Generally their approach is confused and they see bags
as a method of introducing genuine non-determ inismn into a. functional language.

7.2 A bag abstract data type

This section describes a bag abstract data type. Bag operations are discussed along with con-
straints necessary for determinism. As previously stated a bag consists of a finite collection
of unordered elements possibly containing duplicates. A complete set of operations for a bag
abstract data type is shown below:

> bnil bag *
> bunit * -> bag
> bunion :. bag * -> bag * -> bag

> bhom (* -> * -> *) -> (** -> *) -> * -> bag ** ->

The first three functions are used to construct bags; the last function bhom is a homomorphism
on bags, it may be described using the following equations:

bhom fge bnil =e
bhom fge (bunit a) =ga
bhom fge (bunion x y) =f (bhom fge x) (bhom fge y)

This is not a legal functional program since bnil, bunit and bunion are not constructors.
However these equations may be used for reasoning about programs.

Since bags are unordered it follows that bunion is associative (like list append) and commutative
(unlike list append). That is:

bunion x (bunion y z) = bunion (bunion x y) z
bunion xy= bunion yx

As Meertens states in [80] "inserting an operator x in a. structure s is only meaningful if x has
at least the same algebraic richness as the operator + used to construct the structure". Thus

CHAPTER 7. BAGS 151

f in bhom fgeb must be associative and commutative, like bunion. (The homomorphism
(fold) used for lists in functional programs is directed and so the folding function does not even
have to be associative, see [14].) Analogously since:

bunion bnil x=x
bunion x bnil =x

The e value in bhom fgeb must be the right and left identity element of f; that is:

fev
fve

(It may also be useful to have a bhom which works on non-empty bags, in which case no identity
element is required. If required this is a trivial extension and it is discussed no further.) These

constraints on f and e are left as proof obligations to the programmer; often f will be a simple
operator. For example:

> bsum b= bhom (+) id 0b

This sums a bag of numbers. It is obvious that plus is associative and commutative, therefore
this is a valid bhom application and the additions may be performed in any order.

Another useful operation is bag membership:

> bmem eb= bhom (\/) (=e) False b

Care must be taken however since some operators are not equally strict in their arguments; for

example boolean or \/ may be left sequential:

> True \/ x= True
> False \/ x=x

This \/ operator is not commutative since: True \/ I. ý I. \/ True. Hence \/ must be either
bi-strict or more interestingly bi-lazy, that is parallel.

Bi-strict Parallel

\/ I False True
1 11 1
False I False True
True I True True

\/ 1 False True
I I I True

False I False True
Trite True True True

Similarly for bexists and ball:

CHAPTER 7. BAGS 152

> bexists pred b= bhom (\/) pred False b
> ball pred b=- bexists ((')

. pred) b

There is a large implementation cost associated with parallel-or since it requires unbounded
concurrency from a sequential or parallel implementation.

Alternatively evaluation of a bag expression such as bexists pb may be cut short, if it can
be guaranteed that all elements are defined. This can be achieved by using strictness analysis.
Another alternative is to regard programs as being specifications, possibly weaker than their
implementations; a program may terminate which should not. Bags may be defined to be strict
but they may be implemented more `lazily'. This is similar to evaluating a strict language lazily.
The par combinator is similar to this; it could be regarded as being strict in its first argument
that is, semantically equal to seq, but implemented more freely.

7.3 Bag comprehensions

A useful notational operation that is available is the bag comprehension; just as it is possible
to have list comprehensions, bag conmpreliensions are possible too. Bag comprehensions may
include list and bag generators: however list comprehensions cannot include bag generators. For

example the bag filter function may be written:

> bfilter pb= {I eI e<-b; pe 11

Bag comprehensions are delimited by {I and I }. The <- construct is a bag generator, whereas
<- is the usual list generator.

Bag comprehensions may be translated into applications of the basic bag functions using a
translation analogous to [11,11. An unoptimised translation is shown below:

T[{ IEI v<"B; QI }I - bflatmap fB where fv= TQ{ IEIQ III T1
TQ{ IEI v<-L; QI }D - bf latmap f (bagify L) where fv= TQ{ IEIQI }1 T2
TQ{ IEIP; QI }D - if P then TQ{ IEIQ III else bnil T3
T[{I EI I}] = bunit E T4

> bagify [*] -> bag *

> bagify = fold bunion . map bunit

> bflatmap .:
(* -> bag **) -> bag * -> bag **

> bflatmap fb= bhom bunion f bnil b

The value E is any expression, v is a variable, L is a list expression, B is a bag expression, Q is a
list of zero of more qualifiers (filters or generators) and P is a boolean expression. The bagify
function translates a list into a bag.

A different approach is to view bag compreliensions as monads [115], but this will not be pursued
here.

CHAPTER 7. BAGS

7.4 Some useful bag functions

153

This section shows that many useful bag functions can be defined. All of the functions shown
below may be defined in terms of the four basic bag operations previously described, by using
the translation rules. It may be desirable for some of these operations to be implemented as
primitives for efficiency.

> bfold feb
> bmap fb
> bflatten b
> bapply ba
> bsort pb

> bsize b
> bempty b
> bmax b
> bcartprod xs ys
> bcrossprod f xs ys
> bgencartprod b
> bsubbags b

> bdiff bi b2

= bhom f id eb
fxI x<"b I}

yI x<-b; y<"x I}

_ (bfold (.) id b) a
= bhom (merge p) listunit [] b

where
listunit e= [e]

merge p [] 1=1

merge p1 [] =1
merge p (x: xs) (y: ys) = x: merge p xs (y: ys), pxy

= y: merge p (x: xs) ys, otherwise
= bhom (+) (const 1) 0b

= bsize b=0

= bfold max minint b

_ {I (x, y) I x<-xs; y<-ys I}
_ {I fxyI x<-xs; y<-ys I}
= bhom (bcrossprod bunion) (bmap bunit) bnil b

= bhom (bcrossprod bunion) f bnil

where
fe= bunion (bunit bnil) (bunit (bunit e))
{I xI x<-b1; "bmem x b2 I}

The functions bfold, bapply and bsort are interesting because they are not necessarily deter-

ministic; potentially non-deterministic abstractions have been constructed. To be deterministic
f of bfold f e, as with bhom fgeb, must be associative and commutative, and e must be a
right and left identity element of f. The function bsort sorts a bag into a list; in order for this
to be a function the predicate pred must form a total ordering over all the elements and partial
elements of the bag. That is:

V a: pred aa
V a, b: (a54 b)q((predab, CNpredba)V (Npredab&predba))
V a, b, c: (prod a 1) S; pred b c) (prell a c)

The bapply function composes a bag of functions and applies them to an argument. In general
function composition is associative but not commutative; so for bapply fb to be deterministic
the functions in the bag must commute with each other, that is:

Vf, gEb: f. g =g. f

CHAPTER 7. BAGS 154

The last few functions have been adapted from [14]. The cartesian product of two bags is
generated by bcartprod; bcrossprod is a generalisation of the cartesian product, it applies a
function to elements drawn from each bag rather than pairing them. The bgencartprod function
takes a bag of bags and forms the general cartesian product of elements taken from constituent
bags. The bsubbags function forms the bag of all sub-bags of a bag (compare with the powerset
of a set). A form of bag difference is performed by bdiff; various different difference operations
are possible.

7.5 Bag laws and semantics

This section describes how bags may be reasoned about. Several laws are shown together with
an important theorem. The theorem allows bag comprehensions to be optimised by rearranging
filters and generators. The difficulties of giving a denotational semantics to bags is discussed,

and an algebraic approach is proposed. In addition the Squigol work in [141 contains many laws

and lemmas concerning bags.

Some example laws are shown below:

bunion x (bunion y z)
bunion xy
bunion bnil b
bunion b bnil
bfilter p (bunion x y)
bmap f (bunion x y)
(bfold f e) .

(bmap g)

= bunion (bunion x y) z
= bunion yx
=b
=b
= bunion (bfilter p x) (bfilter p y)
= bunion (bmap f x) (bmap f y)
= bhom fge

The last law is the Squigol homlolnorphisin lemma, see Section 5.2.1. Some laws allow the
manipulation of bagify and the conversion of bags to and from lists

bagify (map f 1) = bmap f (bagify 1)
bagify (x++y) = bunion (bagify x) (bagify y)

= bagify (y++x)
bagify [] = bnil

Also, if compbody does not contain any bag generators (<-), then:

bagify [compbody] = {I compbody I}

Using the bag comprehension translation rules, the following identities may be proved:

CHAPTER 7. BAGS

{I EI v<-bnil; Q (} = bnil

{I EI v<-bunit E'; Q I} = {I EI Q I}(E'/v]
{I EI v<-bunion X Y; Q I} = bunion {I EI v<-X; Q I} {I EI v<-Y; Q I}
{I EI False; Q I} = bnil

{I EI True; QI} ={IEI Q I}
{I EI I} = bunit E
{I EI V<-[]; Q I} = bnil
{I EI v<-EH: ET; Q I} = bunion (bunit ({I EI Q I}(EH/v]))

{I EI v<-ET; Q 11

155

An important theorem is the qualifier interchange theorem. This allows optimisations of bag
comprehension to be achieved by rearranging their generators and filters. Trinder has used this
to optimise queries within a functional database setting [108]; these optimisations originate from
the relational database world. The qualifier interchange theorem is stated and proved below:

Qualifier interchange theorem:

If Q1 and Q2 are qualifiers which (1o not refer to variables bound in each other, QL
and QL' are lists of zero or more qualifiers, and all the qualifiers are total, then:

{I EI QL; Q1; Q2; QL' I} _ {I EI QL; Q2; Q1; QL' I}

The reason for requiring all the qualifiers to be total is that changing the order of qualifiers can
change termination properties of a bag comprehension. For example:

> terminate = {I xI x<'{I 1 I}; even x; error "help! " I}
> bottom = {I xI x<"{I 1 I}; error "help! "; even x I}

The first expression will terminate and return {I 11, whereas the second will give an error (try
translating these using the rules previously given to see why).

To prove the qualifier interchange theorem, the following lemma will be needed:

Lemma:

If Q1 and Q2 are qualifiers which do not refer to variables bound in each other then:
{I EI Q1; Q2; QL I} = {I EI Q2; Q1; QL I}

Proof of the lemma:

By case analysis on Q1 and Q2 (using the translation rules of Section 7.3):

Case Q1 and Q2 are both filters:

= LHS using T1 twice
if Q1 then if Q2 then {1 EI QL I} else bnil else bnil

= (modulo termination)
if Q2 then if Q1 then {I EI QL 1} else bnil else bnil

= the R. IIS translated by TI twice

CHAPTER 7. BAGS

Case Q1 is a filter and Q2 is a bag generator Q2 = v2<-q2:

= LHS using T1 and T3
if Q1 then (bflatmap (\v2. {I EI QL I}) q2) else bnil

= using bnil = bflatmap (\v2. bnil) b

if Qi then (bflatmap (\v2. {I EI QL (}) q2)
else (bflatmap (\v2. bnil) q2)

= providing v2 not in Q1 and if idempotency

if Q1 then (bflatmap (\v2. if Q1 then {j EI QL I} else bnil) q2)
else (bflatmap (\v2. if Q1 then {I EI QL I} else bnil) q2)

= using (if c then e else e) =e and QS 54 1
bflatmap (\v2

.
if Q1 then {I EI QL 1} else bnil) q2

= the RIIS translated using TI and T3

Case Q1 is a generator and Q2 is a filter - similar to previous case

Case Q1 and Q2 are both generators:

{) EI vl<"q1; v2<-q2; QL I} _ {I EI v2<-q2; vl<"g1; QL I}

do by induction on qi

translating LIIS and RIIS using T3

MIS = bflatmap (\vl. (bflatmap (\v2. E) q2)) ql

RHS = bflatmap (\v2. (bflatmap (\vl. E) ql)) q2
base case: bnil

LHS and RHS = bnil

base case: bunit x
LHS and RIIS = bflatmap (\vl. E [vi/x]) q2

providing v1 not in q2 and v2 not in ql.

inductive case: bunion xy
LHS

bflatmap (\vl. (bflatmap (\v2. E) q2)) (bunion x y)

= bhom and flatmap

156

bunion (bflatmap (\vl. (bflatmap (\v2. E) q2)) x)
(bflatmap (\vl. (bflatmap (\v2. E) q2)) y)

CHAPTER 7. BAGS

= using induction hypothesis

bunion (bflatmap (\v2. (bflatmap (\vl. E) x)) q2)
(bflatmap (\v2. (bflatmap (\vi. E) y)) q2)

= since bunion associative and commutative

bflatmap (\v2. bunion (bflatmap (\vl. E) x)
(bflatmap (\vl. E) y)) q2

= bflatmap properties

bflatmap (\v2. (bflatmap (\vl. E) (bunion x y))) q2

= translated RHS using T3 Q

Proof of the Qualifier interchange theorem:

{I EI QL; Q1; Q2; QL' I} = {I EI QL; Q2; Q1; QL' I}

Do by induction on length of QL (a list of qualifiers):

case: empty - lemma applies
inductive case: QL =Q; QR

Q is a single qualifier and QR is a sequence of qualifiers.
trivial from the translation rules because all the translation rules translate
{I EIQ; QR; Q1; Q2; QL' I} to a function of the translation of
{I EI QR; Q1; Q2; QL' I} Q

157

The major optimisation which this theorem permits, is the moving of filters so as to filter

elements as early as possible. The following example is adapted from [108]:

> resi = {I aI (a, b)<"AB; (c, d)<"CD; b=c; d=99 I}

> res2 = {I a (c, d)<"CD; d=99; (a, b)<"AB; b=c I}

By qualifier interchange, resi is equal to res2. If the number of pairs in CD with a second
component equal to 99 is much smaller than it, where ri is the size of AB and CD, then res2 is

considerable more efficient to compute than res1; rest is 0(n2) and res2 is O(n). This is more
easily understood by analogy with for loops:

rest = bag-of-all-values-such-that
for (a, b) in AB

for (c, d) in CD
if b=c then

if d= 99 then

res2 = bag-of-all-values-such-that
for (c, d) in CD

if d= 99 then
for (a, b) in AB

if b=c then

aa

CHAPTER 7. BAGS

(These are similar to an SQL queries.)

158

This shows why it is desirable to filter elements as soon as possible. These transformations
could be done automatically; however this would be considerably more difficult for lists because
the qualifier interchange theorem does not hold. The compiler relies on the knowledge that the
ordering of qualifiers for bags does not matter. Bags make this explicit, lists do not since the
resulting elements' order may matter for lists.

7.5.1 Bag semantics

For manipulating bags it is desirable to have a. denotational semantics for them. Unfortunately
this is far from straightforward as is also the case with sets. This is because it is necessary to
reconcile the partial (information) ordering with the sub-bag (compare with subset) ordering
of bags. In order to do this powerdoniains niust be used which are complex constructions for
handling domains of sets of values, see [102]. One way to do this is to model bags as sets, by
uniquely labelling their elements.

A simpler approach is taken here, rather than trying to mathematically model bags, they are
viewed algebraically, in terms of their properties. This is similar to the Squigol view of data
structures. A bag corresponds to the free commutative monoid (bag *, bunion, bnil) gener-
ated by * under the assignment bunit :* -> bag *. This means that bhom fge defines a
unique function, providing f is associative and commutative with identity an element e. Thus
providing the constraints hold bhom fge denotes a unique function and the bhom equations
describe its behaviour. This approach assumes all operations on bags are total. Thus it is not
strong enough to enable reasoning about termination; only partial correctness can be ensured.

7.6 Bag implementation

This section describes the implementation of bags. There are two objectives of this section.
Firstly an efficient representation of bags is sought, which is both fast and store efficient. Sec-

ondly a correct parallel implementation which is non-deterministic is sought.

7.6.1 Bag representation

How should bags be represented inside a computer system? Two obvious representations are
lists and trees. Lists are compact and bagify is easy to implement, but bunion is slow, like
list append. Trees are not compact and bagify must convert a list into a tree, but bunion can
be performed in constant time. A good representation is to combine these two representations
thus:

> bagrep * .. = Bnil
> Bunit

> Bunion (bagrep *) (bagrep *)
> Blist [*]

CHAPTER 7. BAGS 159

Note, Bnil, Bunit etc. are true constructors, but they are not visible to the user. The bagrep
data type is used to implement the abstract data type bag whose operations are available to the

user. This combined representation has the good features of both list and tree representations;
in fact Bnil and Bunit are not really needed: Blist can be used, albeit less efficiently. With

the bagrep representation bagify and bunion are both constant time operations.

The bag data type may be implemented, in terms of bagrep, thus:

> bnil = Bnil
> bunit e= Bunit e
> bunion xy= Bunion xy

> bagify = Blist

A sequential implementation of bhom is:

> bhom f g e Bnil =e
> bhom f g e (Bunit a) =ga
> bhom f g e (Bunion x y) =f (bhom fge x) (bhom fge y)
> bhom f g e (Blist 1) = foldr he1
> where hab=f (g a) b

A problem with this representation is that redundant Bnils may consume a lot of storage. This

can be prevented by normalising Bags so that redundant Bnils are eliminated; thus Bnil only
occurs for representing a genuinely empty bag. The bag `constructors' may then be implemented
thus:

> bnil = Bnil
> bunit e= Bunit e
> bunion (Blist []) (Blist []) = Bnil

> bunion (Blist []) x=x
> bunion x (Blist []) =x
> bunion Bnil x=x
> bunion x Bnil =x
> bunion xy= Bunion xy

Normalising bags can save a lot of storage, but it does have an overhead too. Further normali-
sation is possible; for example rather than using Blist directly a function can be used:

> blist [] = Bnil
> blist [e] = Bunit e
> blist 1= Blist 1

This also eliminates the three Blist equations used for normalising `unioned' bags. The bagify
function is now just equal to blist. Nori nalisation opens up several bag possibilities. It would

CHAPTER 7. BAGS 160

be possible to allow pattern matching on Bnil and Bunit however this is not really in keeping
with the notion of bags being abstract data types. Some operations could be made much faster;
for example bempty can be done in constant time and multiple bag traversals would be made
more efficient. Also if a non-empty bag homomorphism was required, this could be implemented
as bhom fgl; since only genuinely empty bags would contain Bnils.

Normalisation does not affect the termination properties of bags. This is because once a bag
has been demanded, its whole structure Nvi11 be required. Intuitively, either none of the bag
structure or the whole bag structure will be required; this is necessary for bag operations to
be deterministic. Note that bag elements may not be evaluated; for example bsize need only
examine the structure of a bag. If bags are normalised then the bisempty operation need only
examine the top level constructor of the bag to determine whether the bag is empty or not.
Normalisation means that the empty bag has a unique representation, namely Bnil. Without
normalisation the whole bag structure must be traversed. Thus normalisation can reduce the
space usage of bags and it can improve the efficiency of some operations such as bsize and
bisempty.

7.6.2 Developing a parallel implementation

This section develops a parallel implementation of bags. It assumes that bags are strict to WHNF
in their elements. The implementation allows bag elements to be combined in any order; thus
the implementation is non-deterministic. A non-deterministic rewriting system is used for the
development.

Bags may be sequentially implemented in an ordinary functional language. However a parallel
implementation of bhom fge is interesting, because bag elements may be combined with f
in any order; this may be done efficiently by combining elements in the order in which they
terminate. This allows the non-deterministic reduction order of parallel functional tasks to be

matched to subsequent non-deterministic combination of such tasks. This non-deterministic
behaviour cannot be achieved with par and seq; thus, the parallel bag implementation requires
the implementation of a special non-deterministic mechanism. The implementation of such a
mechanism is non-trivial because the evaluation occurs asynchronously. In particular termina-
tion is quite delicate and must be explicitly detected; this is generally the case for asynchronous
(relaxation) algorithms, for example see [8].

The parallel implementation of bags is developed semi-formally to show that it is a correct
implementation. For simplicity the Blist constructor is ignored; its implementation is fairly

obvious from what follows. A simple re-writing system illustrates the operation of bhom:

bhom fgeb= (mkbag b, {e})

({1x} U D, (1) (D, UU {g x})
(D, {p, q)UU) (D, If Uif p(1})

f= A4 if], 9= M191 and e= , ißtQeJ

The first line shows the initial value of the tuple to be rewritten, given a full bhom application.
The second and third lines show the two rules of the rewriting system. A rule matching the

CHAPTER 7. BAGS 161

tuple is selected, and the tuple is rewritten according to that rule. Rewriting stops when no rule
matches the tuple. Here D and U are mathematical (algebraic) bags, where {} denote bags,
W denotes bag union and hom denotes a bag homomorphism, like bhom. The rnkbag function
is used to translate a concrete bag, as represented by bagrep, into a mathematical bag; its
elements are also translated to mathematical values. It is assumed that f is associative and
commutative, e is an identity element of f and the meanings of the arguments to bhom and bag
elements are given via a standard denotational semantics.

The bag D (down bag) corresponds to the map part of bhom; evaluation proceeds down the tree
like representation of bags (bagrep). The bag U (up bag) corresponds to the fold part of bhom;
evaluation proceeds upwards, combining values with f. The rewriting system shows that several
rewrites may be performed in parallel. Providing there are no dependencies between concurrent
rewrites, the result will be the same as through the rewrites were performed in some sequence.
Parallelism arises from concurrent applications of g and f.

The basis for the correctness proof of the rewriting system is shown below:

start the rewriting starts as described with a finite D and U= {e}

termination the following strictly decreases 2x IDI + JUI where JBI is the size of the bag B

invariant the following holds: h (mkbag b) =f (h D) (horn f id e U) where h= horn fge

result the rewrite system terminates when D= {} and U= {v} therefore v= It b

However, this simple rewriting system is hard to implement directly; the difficulty is in combining
elements of U with f. It is desired to combine pairs of elements of U as soon as they become
available. Unfortunately, it is unclear how to (1o this from the rewriting system. Some rendez-
vous point for evaluated elements of U is required. A more complex rewriting system, based
on the previous one, has been developed which may be easily implemented. This uses an
accumulator, a, to act as a rendez-vows point. for evaluated elements of U. The accumulator
holds the most recently evaluated element of U; it accumulates the result. A distinguished
element E is used to represent an empty accumulator. In addition, this new rewriting system is
made less abstract by working directly with the bag representation (bagrep):

bhom fgeb= ({b}, {}, e)

({Bnil} U D, U, a) - (D, U, a) (1)
({Bunit z} U D, U, a) - (D, UU {g z}, a) (2)
({Bunion x y} U D, U, a) - (D W {x,. y}, U, a) (3)
(D, {v} W U, a) - (D, UU If a v}, E), if a 54 (4)
(D, {v} U U, 6F) - (D, U, v) (5)

z=ý1Qz], f=MQf1, J=MQgl and c=, Vf{eJ

As before D represents the down (ºnap) part of bhom and U represents the up (fold) part of
bhom. The bag D is also used to extract elements from the bag representation. The pieces of bag

representation in D are progressively split-up (rule 3) until elements are encountered (rule 2).
The function g is applied to bag elements, representing the map operation, and the application

CHAPTER 7. BAGS 162

results are put in U for subsequent combination (rule 2). Rule 4 combines an element from U
and the element in the accumulator using f, and the result is put in U. If the accumulator is
empty rule 5 puts an element from U into it. This rewriting system is less abstract than the
previous one because it uses the bag representation (bagrep) directly and it uses an accumulator
as an explicit rendez-vous point for combining elements in U. As before parallelism arises from
being able to perform several rewrites concurrently; and in particular performing f applications
in parallel and g applications in parallel. Miles 1 to 3 may be applied concurrently to different

elements in D. Rule 4 may be overlapped with other rule applications. That is, to perform
a rewrite using rule 4 it is not necessary to wait for the application fav to complete, before
applying other rules. However it is necessary to rewrite the accumulator to E before applying
other rules.

The correctness proof of this more complicated rewriting system is similar to that of the previous,
simpler, rewriting system:

start the rewriting starts as described with a finite D and empty U

termination the following strictly decreases (t D) +2x JUI + iv a where (in Squigol)
t= +/ " (3" " height) *, height returns the height of a tree (bagrep); t is similar to the
standard multiset ordering used in termination proofs; wx= if (x = E) then 0 else 1

invariant the following invariant holds, let h= horn fge
h (mkbag b) =f (ho»t f (It " rnkbag) c D) (hont f id e (U W (q a))) where
qx= if (x = 6) then {} else {x}

result the rewrite system terminates when D=U= {} and therefore a=h (mkbag b)

Termination and invariant (maintenance must. be proved:

Termination proof:

Each rewrite rule must decrease (t D) +2x JUI +wa that is using (t D) +2x JUI +wa, it

must proven that for each rule MIS > MIS. For each rule it will be assumed that for the LHS
of the rule: d=tD, u=2x 1111 and z= zn a. The MIS and MIS values for the rule will then
be compared in order to prove that MIS > RIIS.

(rule 1): only D changes.
d+u+z>(d-3°)+u+--

since height of Bnil is 0

(rule 2): D decreases by one element of height 1, U increases by one element and a
is unchanged.
d+u+z> (d-3')+(u+2)+z

since height of Bunit x is 1

(rule 3): only D changes.
d+u+z> (d-3`+3'+3k)+11+Z

where j, k<i (law about height)

CHAPTER 7. BAGS 163

(rule 4): D is unchanged, JUI remains the same, a is not empty and it becomes
empty.
d +u+1 > d+u+0
(rule 5): D is unchanged, JUI loses an element, a is empty and it becomes full.

d+u+0>d+(u-2)+1

0

The termination proof is not dependent upon the associativity or commutativity of the combining
function f. Thus even non-deterministic programs will terminate (providing f and g are total

etc.).

Invariant proof-

h= horn fge and id is the identity function

The following properties of h and horn will be required:

hom property 1 for any f, g, e, B, x: horn fge (B W {x}) =f (hom fge B) (g x)
hom property 2 for any f, e, B, x: horn f id e (B U {x, y}) = hom f id e (B W if x y})
h property for any x, y and h= horn fge: h (x W y) =f (h x) (h y)

Proof by induction on rewrite sequences:

base case: ({b}, {}, e)

h (mkbag b) =f (hom f (li " mkbag) e {b}) (hom f id e ({} U {}))

RHS = hont f (h " rnkbag) c {b}

= (h " mkbag) b

inductive cases: rules 1-5

assume it holds for LIIS, prove it holds for I? IIS

(rule 1) trivial since nzkbag Bnil = {}

(rule 2)

Ia (mkbag b) =f (hom f (h " inl: bag) e ({Bunit x} W D)) (hom f id e (U U {q a}))
RIIS of above
f (hont f (h " mkbag) e ({Bunit x} U D)) (hom f id e (U U {q a}))

= hom property 1

f (f (hom f (h " mkbag) c I)) ((h " mkbag) (Bunit x))) (hom f id e (U U {q a)))

= using h def. and mkbag (Bunit x) =x
f (f (horn f (h " nrkbag) e D) v) (Irom f id c (U U {q a})) where v=gx

CHAPTER 7. BAGS

= using f associativity and comnlutativity

f (hom f (h " mhba. g) c D) (f v (hom f id e (U U {q as})))

= hom property 1

f (hom f (h " mkbag) c D) (hont f id e (U W {v} Wq a))
where v=gx

= invariant for the R. IIS of rule 2

(rule 3)

164

h (rnkbag b) =f (horn f (h " mkbaq) e ({Bunion x y} W D)) (hom f id e (U Wq a))
R. HS of above
f (horn f (la " mkbag) c ({Bunion x y) U D)) (lzonz f id e (U Uq a))

= hom property 1

f (f (hom f (h " mkbay) c D) ((h " mkbag) (Bunion x y))) (hom f id e (U Uq a))

= using the law: mkbag (Bunion x y) = mkbag xU mkbag y
f (f (horn f (Ii " mkbag) c D) (h (rnL"baq xU mkbag y))) (hom f id e (U Uq a))

= using the h property
f (f (hom f (li " mkbag) c D) (f (Ir (mkbaq x))(h (mkbag y)))) (hom f id c (U Uq a))

= hom property 1 twice

f (hom f (h " mkbag) c ({x, y} U 1))) (hom f id e (U Uq a))

= invariant for the RIIS of rule 3

(rule 4)

h (mkbag b) =f (/torn f (h " mkbaq) e D) (horn f id e ({v} WUW {a}))

RHS of above
f (hont f (h " mkbag) e D) (horn f id e({v} WUU {a}))

=homproperty 2and gE = {}

f (hom f (h " mkbag) e D) (hont f id c (U U{ fa v} Uq E))

= invariant for the RIIS of rule 4

(rule 5) trivial

0

The invariance proof is dependent upon the associativity and commutativity of the combining
function f and e being an identity element of f. Thus the value returned by non-deterministic
programs is unknown.

The result:

CHAPTER 7. BAGS 165

The rewriting system terminates when no further rewrite rules can be applied. Thus the re-
maining triple must belong to the set which is the complement of the union of the rewrite rule
left hand sides. This is the set of triples a)}. The invariant restricts the value of a to
that required.

A deficiency of the rewriting system is that it does not give the desired parallel be-
haviour when the result of a bhom fgeb application is a function. In particular bapply
(= bhom (.) id id) does not have the desired behaviour. This is because for an application
such as bapply b a, the functional result of bapply b will not be applied to a until all of the
functions in b have been evaluated. It is desired for the functions in b to be applied to a as they
become evaluated. One way to solve this problem is to provide a special implementation for

bapply. Although this is not a general solution, in practice bapply is the most commonly used
bhom application which yields a. fu nctional result. A type-checker could issue warnings about
bhom applications which yield functional results.

A rewriting system which gives bapply the desired operational behaviour is shown below:

bapply ba= ({b}, a)

({Bnil} W D, v) = (D, v) (1)
({Bunit f) U D, v) -_ (D, f v) (2)
({Bunion x y) W D, v) - (D l+J {x, y}, v) (3)

a= MQa] and f= MQfI

The basis for the correctness proof of t lie rewriting system is shown below:

start the rewriting starts as described with a. finite D

termination the following strictly decreases (I D) where (in Squigol) t= +/ " (3^ " height)
height returns the height of a tree (bagrep); t is similar to the standard multiset ordering
used in termination proofs

invariant the following invariant holds, let It = horn (") id id
It (mkbag b) a= horn (") (It " ººikbaq) id Dv

result the rewrite system terminates w"lien D= {} and therefore v= It (mkbag b) a

The proof of correctness is similar to the bhom one.

7.6.3 Practical parallel implementations of bhom and bapply

The rewriting systems may be used to guide t lie practical parallel implementations of bhom and
bapply. There is a gap between the rewriting systems and the implementations, it would be nice
to prove the implementations are correct with respect to the rewriting systems. However, the
rewriting systems are very revealing and the implementations closely follow them. Of particular

CHAPTER 7. BAGS 166

importance is that by keeping track of the sizes of D and U, for bhom, and D for bapply, termi-
nation may be detected. The invariants of the rewriting systems imply that when termination

occurs the accumulators of bhom and bapply hold the overall results.

The implementation of bhom is now described. When bhom is first reduced a single task is

created (down_phase(b), to traverse the tree (bagrep). Also an accumulator corresponding to

a is constructed, this includes information on the sizes of D and U; all tasks have access to the
accumulator.

acc = (value : graph-pointer; full : boolean; dsize, usize : integer)

Initially for bhom fgeb: acc = (e, true, 1,0) and down-phase(b) is initiated.

There are two overlapping phases in the evaluation:

down phase: the bag structure is evaluated in parallel and g is applied to the elements of the
bag in parallel. This corresponds to rules 1 to 3, the map part of bhom.

up phase: the elements resulting froni tue down phase are combined with f. This corresponds
to rules 4 and 5, the fold part of bhom.

The algorithm is as follows (for simplicity the Blist case has been omitted but its implementa-
tion should be obvious):

down-phase(x)

-- x is evaluated to WHNF

eval(x)
case x of
bnil: decrement acc. dsize

-- whole bhom has terminated?
if { (acc. dsize = 0) and (acc. usize = 0) }

then return(acc. value)
else die

bunit a: increment acc. usize
decrement acc. dsize

-- make an application and bind it to y
y :_ (g a)
eval(y)
up-phase(y)

bunion 1 r: increment acc. dsize

spark_new_task(down_phase(r))
down-phase(l)

up-phase(x) =
if acc. full

then {v := acc. value

CHAPTER 7. BAGS

set acc. full to false }
-- make an application and bind it to y
y ._

(f v x)
eval(y)
up-phase(y)

else { decrement acc. usize
set acc. full to true
set acc. value to x}

-- whole bhom has terminated?
if { (acc. dsize = 0) and (acc. usize = 0) }

then return(acc. value)
else die

167

All single operations must be atomic and all groups of operations, enclosed by curly braces must
behave as single atomic instructions. Since applications of f are disconnected from the rest of
the program graph, they can only be evaluated by the task created to evaluate them; thus bhom
sparks may not be discarded. If it is desired to limit parallelism in this way, then when a task
spark occurs which is not required, the spark must be performed sequentially by the parent task.

For large bags the accumulator could become a bottleneck in which case some form of distribution
would be required; for example a bag could be split up into several smaller bags each implemented
as described and the results of those could be combined in a. similar way. This may be described
as a program transformation, in a. similar way to the data parallelism optimisations shown in
Section 6.5, using Squigol.

fl g*
= chi; law
fl -9*-W/"chk.
= map promotion
fl-U/-g**"chkk

= reduce promotion
fl -(fl)*"g**"chkk
= map composition
fl " (fl . g*) *" clakL

Returning to the functional programming world, this may be expressed thus:

> bhom' fge= bhom f (bhom fg e) e. chk k

The problem with splitting up the bag in this way is that it prevents elements in different sub-
bags from being combined. All the elements in a sub-bag must be combined before their result
may be combined with the result of any other sub-bag. Thus splitting tip a bag into sub-bags
introduces extra synchronisation. Further work is required to see if a better implementation of
bhom can be found, which avoids the accumulator bottleneck but which is not overly synchronous.

With a tree like bag representation, well balanced trees are desirable: firstly from a storage
efficiency viewpoint and secondly when f and g are cheap operations and the the cost of travers-
ing the tree becomes important. One way to achieve this is to balance trees when they are

CHAPTER 7. BAGS 168

constructed, in a similar way to normalisation. This is an expensive operation but if bag union
occurs infrequently compared to bhom it could be cost effective.

The implementation of bapply is now described; in many ways this is similar to bhom. The major
difference between the implementations is that for bapply the combination of bag elements, by

applying them to the accumulator, is performed sequentially by one task. Initially one task is

created to do this (init_task(b)). An accumulator corresponding to v is created in which to

accumulate the result. This also contains a counter corresponding to the size of D, to detect

termination; this counts the number of functions which have been applied to v. In addition the

accumulator contains a queue of evaluated functions waiting to be sequentially applied to v.

acc = (value : graph-pointer; dsize : integer; fqueue : queue of graph-pointer)

Initially for bapply b a: acc = (a, 1, empty) and init_task(b) is initiated.

The algorithm is as follows:

init_task(b)

allocate(acc)
initialise(acc)

spark_new_task(down_phase(b))
while acc. dsize >0 do

if - isempty(acc. fqueue) then
decrement acc. dsize
f := dequeue(acc. fqueue)

-- make an application and bind it to x
x :=f acc. value
eval(x)
acc. value :=x

return(acc. value)

down-phase(x)
-- x is evaluated to WHNF

eval(x)
case x of
bnil: decrement acc. dsize

die

bunit f: eval f

enqueue (f
, acc .f queue)

die

bunion 1 r: increment acc. dsize

spark_new_task(down_phase(r))
down-phase(l)

CHAPTER 7. BAGS 169

The init_task procedure creates and initialises the accumulator. Then it repeatedly extracts
functions from the queue and applies them to v, until all the functions in D have been applied.
Thus it corresponds to the function application part of rule 2. The down-phase procedure
corresponds to rules 1 to 3; it traverses and evaluates the bag structure and the bag elements
in parallel.

Since combination of bag elements occurs sequentially in bapply, there are no bottleneck prob-
lems. Similar considerations to those for bhom apply to bapply if it is desired to discard sparks
in a GRIP-like fashion.

7.7 Parallel bags performance

What are the performance benefits of hags over conventional data structures? The benefits

arising from sequential optimisations have already been described. In a parallel setting, the
benefit of bags over other data structures is that bag elements may be combined in the order in

which they terminate. This concerns t 1w folding part of bhom; thus it is sufficient to compare
bfold with folds on conventional data structures. A fair comparison can be made with trees. A
parallel tree fold may be described thus:

> tree * :: = Tnil

> Tunit *I
> Tunion (tree *) (tree *)

> treefold fe Tnil =e
> treefold fe (Tunit x) =x
> treefold fe (Tunion x y) = par 1 (seq r (f 1 r))
> where
>
>

r= treefold fex
1= treefold fey

If the cost of combining elements is constant and it is much larger than the cost of traversing the
bag structure, then the parallel cost. of treefold is, theoretically, proportional to the maximum
depth of the tree. (The maximum number of combining function applications occurring in

sequence.) The function bfold behaves in such a way that the cost of combining elements is

as though the elements were arranged as a balanced tree. Thus the theoretical cost of bfold is

proportional to [ln n] where n is lime size of the bag. Therefore for balanced trees treefold
and bfold have the same parallel cost. `l'hus when the cost of combining elements is constant
and it is much larger than the cost of traversing the bag structure, bfold prevents the need
for balancing trees. However, if the cost of combining elements is comparable to the cost of
traversing the bag structure, bfold behaves like treefold. In some cases it may be possible to
balance a tree before combining tree elenºents, in order to achieve a similar parallel efficiency to

a bag. However, this will not be practical if the combining operation is relatively cheap.

This automatic balancing effect fron the iniplementation of bags can arise because bags' com-
bining operations must be associative. Siiuilar results could be achieved by designing a special
list folding operator which was designed to work with just associative combining operations.
However it seems difficult to iml)leinent such an operator.

CHAPTER 7. BAGS

50

40

Number 30
of

tasks 20

10

0

Figure 7.1: Parallelism profiles: bag (-) and tree (")

170

In addition, the commutative aspect of bags' combining operations means that the effect is more
than just tree balancing. Elements are effectively rearranged out of their original order, into
the order in which they terminate. Thus elements are combined in the order in which they
terminate. This matters when the cost of combining elements varies or when elements become

available at different times due to their scheduling. In such cases it is extremely difficult to

write a program without bags to arrange elements to be combined in the order in which they
terminate, and hence to maximise concurrency.

A simple example which compares trees and bags is shown in Figure 7.1; Chapter 4 describes the
experimental set-up, in particular bags were implemented using the algorithms described in the
previous section. A bag and tree of small vectors, all of the same size, were summed together -
thus the combining operation (addition) had a constant cost. The bag (which was represented
as a tree using bagrep) and tree of vectors were given the same shape of the fibonacci call tree;
which is a moderately well balanced tree. The bag and tree contained 89 vectors in the shape
of fib 10.

Program bag tree
Nuiiiber of machine cycles 4586 5953
Average parallelism 13.6 10.4
Work doiie 62278 62209
Max. number of active tasks 77 76
Total number of tasks 89 88

Average sparked task length 700 669

The results show that the bag version had a greater degree of initial parallelism, which resulted in
it being the quickest of the two. Further comparison is hard due to the different implementation
costs associated with the two particular implementations. It is possible though to use the
previous theoretical remarks to compare the two. The maximum height of a fibonacci call tree
is n-1 for fib n. Therefore the cost of the tree version (fib 10) was proportional to 9. The number
of elements in the bag/tree was 89; therefore the cost of the bag version was proportional to 7
(= Fin 891). This gives the bag version a 22% performance improvement over the tree version,
which is reasonably consistent w"itli the experimental figures.

0 1000 2000 3000 4000 5000 6000
Time

CHAPTER 7. BAGS 171

There is another parallelism benefit from bags which has not been explored here. This concerns
pipelining and scheduling. Sometimes it is desirable to combine bag elements sequentially, for

reasons of efficiency (see Chapter 6). \Vith conventional data structures this must happen in the
pattern specified by the combining function. For example a list of numbers might be summed
from left to right using foldr (+) 0. If the list of numbers is evaluated in parallel then task
scheduling may cause elements to become available in a different order from their ordering in
the list. This will hinder elements consumption which can only occur in strict sequence, left to
right. Hence evaluation will be slowed down, it may also result in a large amount of storage use,
from the eagerly evaluated list. Bags can eliminate this problem since they are not restricted
by such over-specified functional dependencies. However the bags described here do not do this.
Essentially a special sequential bf old, or bfold part of bhom, is required.

Friedman and Wise [37] have desigtted bags which behave in this way. Their bags consisted
of lists whose elements were evaluated in parallel, and which were ordered according to when
they terminated. Unfortunately they viewed their lists as a way of introducing genuine non-
determinism into a functional language. Also, they did not have a parallel bfold (bhom), only
a sequential fold and parallel map.

7.8 Sets

Lists with an associative combining operator have been briefly mentioned. Increasing the num-
ber of laws which the combining operator must obey can yield sets. Bags may be usefully used
to implement sets. The extra. law for implementation of sets is that the combining operator in
bhom fge must be idempotent, in addition to associative and commutative. This representa-
tion of sets does contain duplicates, but because combining operations must be idempotent they
are hidden. For space efficiency sets could be normalised, similar to bags, to eliminate dupli-

cates. However in cases where there are many duplicate elements an alternative representation
for sets may be desirable, for example see [12].

The set abstract data type may be defined thus:

> snil
> sunit
> sunion
> shom

= bnil

= bunit

= bunion

= bhom

Bag comprehensions may also be used to specify sets. For example:

> setfilter sp= {I xI x<-s; px 11

Since addition and multiplication are not idempot. ent, setsize and setsum may not be defined
as shorn (+) (const 1) 0 and shorn (+) id 0. One way to implement these is to convert sets
to bags, by removing duplicates. Then bagsize and bagsum may be used.

> settobag s= shorn f bunit bnil s
> where
>f bl b2 = bunion bi {I xI x<" b2; "(bmem x bi) (}

CHAPTER 7. BAGS 172

The function f, above, is idempotent as well as associative and commutative. This only works
where equality is defined on the set elements.

A last set example, set sort:

> ssort :: (*->*->bool) -> set * -> [*]
> ssort ps = shorn (remsorteddups

. merge p) listunit [] s
> where
> listunit e = [e]
> merge p [] 1 =1
> merge p1 []

> merge p (x: xs) (y: ys) =x: merge p xs (y: ys), pxy
> =y: merge p (x: xs) ys, otherwise

> remsorteddups
> remsorteddups (x: xs)
>
>
>
>

=fxxs
where

fx [] = [x]
fx (y: ys) =fx ys, x=y

= x: f y ys, otherwise

The representation of sets as bags is similar to the sets used in Machiavelli [86]. Machiavelli is an
extension of ML designed for database applications. In particular it extends ML polymorphism
to handle records. A key feature of Machiavelli is its ability to represent relations as sets of
records. Machiavelli's set type is similar to a bag. A set type can be defined over any equality
type, that is any data type for which equality is available. (It is unclear whether sets of equality
types are themselves equality types.) Like NIL, it is a strict language and hence sets can only
have a finite cardinality. There are live basic operations on sets:

{} - empty set constructor
{x} - singleton set constructor
union - set union
bhom - set homomorphism
bhom* - non-empty set homomuorphismn

The latter two operations may be described thus:

hom (f, op, z, {}) =z
hom (f, op, z, {xl.. xn}) = op(f(xl), op(f(x2), .. op(f(xn), z)..))

hom* (f, op, {x}) =x
hom* (f, op, {xl.. xn}) = op(f(xl), op(f(x2), .. op(f(xn-1), f(xn))..))

Applications of hom and hom* are only, considered proper if f has no side effects and op is

associative and commutative. This ensures the result of hom is independent of evaluation order.
Machiavelli cannot guarantee that hom applications are proper. Indeed, they write "improper

applications of hom are frequently useful" [86]. Applications of hom may be evaluated in parallel.

CHAPTER 7. BAGS 173

The authors claim that such sets are sets in the mathematical sense and that they are not bags

or lists. However in order to be sets, set union must be idempotent, and hence so must op in

hom (f, op, z).

7.9 Examples of bags use

This section shows several examples of bags use. In particular two problems posed by Arvind

are solved using bags, and a divide and conquer combinator is defined using bags.

An example where the combination of bag elements non-deterministically would greatly improve

the speed of an algorithm is a parallel compiler and linker. The compilations may proceed in

parallel subject to module dependencies; once any two modules have been compiled they may
be linked together to form a. single object code file:

> a_out = bfold linker empty_prog bag_of_comp_progs

The linker function should be associative and commutative, and empty_prog should be its
identity element.

In [6], Arvind shows two examples where I-structures, single assignment arrays, have limitations.
Some of these problems may be resolved by using bags.

The first example is: "... we are given a very large number of generators (say a million of
them), each producing a number. We want. to compute a frequency distribution (histogram) of
these values in say 10 intervals. An efficient parallel solution should allocate an array of ten

accumulators initialised to zero, and execute as many generators as possible in parallel. As each
generator completes, its result should be classified into an interval j, and the j'th accumulator
should be incremented. It does not matter in which order accumulations are performed, ..:

',
[6]. This may be coded using bags thus:

> gens = mkbag generators

> accumulators = mkarray 1 10 f

> where fi= bsize (bfilter (interval i) gens)

The function mkbag constructs a bag in parallel. The predicate interval ig returns true if a
generator g is in interval i. Tlse array of generators is modelled as a bag. The accumulations
may be performed in the order in which generators complete.

The problem with the above solution is that each generator is examined by each interval, if
there are a large number of intervals this could be inefficient. A solution which alleviates this
problem, by generating a, bag of functions to increment array elements, is:

> inc_array :: num -> array num -> array num

> int :: generator -> num

CHAPTER 7. BAGS

250

200

Number 150
of

tasks 100

50

0

0 10000 20000 30000 40000 50000 60000 70000
Tinte

Figure 7.2: histogram

> intv g= seq v (inc_array v) where v= int g

> initarray = makearray 1 10 (const 0)

> increments = bmap intv gens
> result = bapply increments initarray

174

Notice that the functions in increments, applications of inc_array, all commute with them-
selves, and hence satisfy the bapply proof obligation. -
The function inc_array increments an element of an array and int classifies a generator into
an interval (1 to 10). The intv function takes a generator as argument and produces a function
result; the function produced will increment the appropriate interval of an array of intervals,
according to the interval within which the generator falls. The bag of increments are then
applied to an array initialised to zero.

With this solution the generators can execute in parallel but the increments are done sequen-
tially; however the increments may be done in the order in which they are produced. The bag
increments may be viewed as a bag of increment messages for the accumulators - the result
array. A desirable optimisation is for the store used by initarray to be re-used by bapply.

Experimental results yielded the parallelism profile 'shown in Figure 7.2. The experiment used
10 intervals and 256 generators. Delays of 0 to 15000 cycles (in multiples of 5000 cycles) were
used.

The second example is: "... iii a sVsteni t hat performs symbolic algebra computations, consider
the part that multiplies polynomials. A possible representation for the polynomial:

(lp + ((1X + (12X2 + (13X3 +
...

+ (ln, xn

would be an array of size it+1 containing the coefficients ao,..., a,,. To multiply two polynomials
A and B of degree n together, we need first to allocate an array of size 2n, with each location

CHAPTER 7. BAGS

200

150

Number

of 100
tasks

50

0

Figure 7.3: Polynomial multiplication

175

containing an accumulator initialised to 0; then, for each j, initiate (j + 1) processes to compute
ao x bj, al x aj x bo; as each of these processes completes, its result should be added to
the j'th accumulator. The order of the accumulation at any index does not matter. ", [6].

This may be programmed thus:

> result = mkarray 0 (2*n) f
> where

>fj= bsum {I a[i]*b[j-i] I i<-[lo.. hi] I}
> where
> lo = max [1, j -n]
> hi = min [j, n]
> bsum b= bfold 0 (+) b

The variables a and b are the arrays to be multiplied; lo and hi bounds are necessary to

prevent indexing outside the arrays. The function bmap creates the tasks to compute
ao x bj, al x bß_1, ..., aj x bo and bf old collects together the results of these tasks as they com-
plete.

Experimental results for a polynomial of degree 20 yielded the parallelism profile shown in Figure
7.3; this demonstrates a good speed-up.

An alternative is to use the 'index value' pair style arrays, array comprehensions, see [113].
Rather than using a list, a bag of index-value pairs may be used. There are two useful forms of
array comprehension, one without and olle with a. reduction operator which applies to elements
with the same indices. These are analogous to Wadler's array3 and array4 operations; array4'
with bfold is the same as array6.

A= array3' n ixs =V 1_<i<ii: A[i] =v ýC (i, v) E ixs

A= array4' hn ixs =V 1<i<nt: A[i] = bhom h id e {I vI (i, v)<"ixs I}

Thus, the solution to Arvind's first problem becomes:

0 2.50 500 750 1000 1250 1500
Time

CHAPTER 7. BAGS 176

> gens = mkbag generators
> bsum g= bfold 0 (+) b
> accumulators = array4' bsum 10 (bunion {I (i, 0) I i<-[1.. 10] I}
> {I (interval g, 1) I g<-gens I})

The bunion with zero valued elements is necessary to give a value to intervals with no generators
falling within them.

Arvind's second example has the same form as before:

> result = array3'

> {I
>
>
>
>
> I}

(0,2*n)
(x, v) I x<-[O.. 2*n]

where

v= bsum {I a[i]*b[x-i]
lo = max [0, x-n]
hi = min [n, x]

I i<-[lo.. hi] 11

No reduction operator is needed for this example; for each array index there is exactly one
corresponding element in the bag comprehension, hence array3' is used.

Using bags it is possible to write a divide and conquer combinator thus:

> dc :: (*->bag *) -> (**->**->**) -> (*->bool) -> (*->**) -> * -> **

> dc div comb isleaf solve root = bfold comb e (f root)
> where
>fe= bunit (solve e), isleaf e
>= bflatmap f (div e), otherwise

The comb function must be associative and commutative, and e must be its identity element;
alternatively if a non-empty bhom is available, all non-empty bf old could be defined and used.
Notice that div produces a bag of subproblems to be solved.

7.10 Summary

This chapter has discussed introducing a bag data type into functional languages. Bags, in
various guises, have been proposed by other researchers; however the approach taken here is
the first to generally incorporate them, in a clean way, into a functional language. Unlike other
proposals, a parallel implementation of (bags is described, and this is formally developed.

Bags are introduced into functional languages as an abstract data type (ADT). The ADT oper-
ations consist of functions for constructing bags and a bag homomorphism function. Since the
bag union operation is associative and commutative, the corresponding homomorphism function
must also be associative and commutative. This is left as a proof obligation for the programmer;
in practice this is rarely difficult.

CHAPTER 7. BAGS 177

A useful notational operation for specifying bags is the bag comprehension. It is shown how
these may be translated into the bag ADT operations.

Many laws and theorems may be formulated about bags. Of particular importance is the
Qualifier-interchange theorem. This allows generators and filters in bag comprehensions to
be rearranged without changing the meaning of the comprehension.

The most important reason for introducing bags into a functional language is that they may be

given a non-deterministic parallel implelnentation. However, providing the proof obligation is

met, the results of bag expressions will be deterministic. A parallel implementation has been
developed semi-formally via. non-deternlinistic rewriting systems.

The performance of the parallel bag implementation is discussed and some experimei)ts are tried.
It is shown that bags performance is less dependent upou scheduling and it is less data dependent
than is possible without them. For example if operations are applied in parallel across trees, for

maximum parallelism it is important that trees are balanced, this is not necessary if bags can
be used.

Finally some parallel programming probletns, posed by Arvind [6J, are solved using bags.

The real utility of bags will not be known until there is more experience of writing parallel
functional programs. However there are certainly some cases where they make programming
easier and give greater efficiency than would otherwise be possible.

7.11 Conclusions

The main conclusions of this chapter are:

" Bags may be used to express a limited form of non-determinism. Thus bags may ex-
press some algorithms which can not be expressed in a standard functional language. For
example the histogram and polynomial multiplication problems may be solved using bags.

" In some situations bags mean that less work is require from the programmer to ensure
parallel evaluation. For example to sonn a. collection of numbers together in a conventional
language a balanced tree might be used, program code would be needed to ensure that the
tree is balanced. With bags this is not necessary.

" The evaluation order of bag homnomnorpliisms is not specified. This permits a greater
freedom of implementation than would be possible without bags. In addition this means
that scheduling will affect the performance of a bag homomorphism less than that of,
say, a tree one. This is because the dependencies between tasks, produced by a bag
homomorphism, are less constrained than those produced from a tree homomorphism.

" The implementation of non-deterministic algorithms, like the implementation of bags, is
complicated. In particular, rare has to be taken with detecting the termination of such
algorithms. For this reason it. is desirable to formally develop such algorithms. This has
been done for the bag implementation.

Chapter 8

Performance analysis and debugging

8.1 Introduction

8.1.1 Motivation

A great deal has been written on reasoning about the meaning of functional programs, but

much less has been written on reasoning about their performance. This is particularly acute for

parallel programs because:

" the problem is harder.

" the reason for parallel programs is performance; therefore it is especially important to get
a handle on parallel performance.

Indeed, there are many reasons why it is necessary to be able to reason about and measure the
performance (execution time) of parallel programs, including:

comparison of parallel programs: for example it is necessary to be able to answer questions
like: what is the best sorting algorithimi for a particular machine? or is this new algorithm
an improvement over existing ones?

validating program transformations: in the context of program transformation, it is desir-

able to prove that transformations improve or preserve performance. Do transformations
have their desired effect?

performance debugging: this means debugging parallel programs which do not perform as
expected. Typically this arises as si program's evaluation being far more sequential than
was expected.

Similar reasons exist for analysing and measuring the performance of sequential programs. h ow-
ever, except for the synchronous proärallnlnllla of SIMD machines such as the Connection Ma-

chine [46], the operation of parallel programs is much more complex than for sequential pro-
grams. A consequence of this is that performance analysis and measurement of parallel programs
is considerably more difficult than for sequential programs.

178

CHAPTER 8. PERFORMANCE ANALYSIS AND DEBUGGING 179

8.1.2 Performance analysis and measurement

There are several levels at which the performance of a parallel program may be measured. These

are listed in decreasing order of the insights which they give: which corresponds to increasing
levels of detail.

formal program analysis: this is the most abstract level of performance measurement. This
gives the greatest insights into a programs performance, yet it is the least detailed measure-
ment. Formal analyses may give a general performance measure for all possible program
inputs or bounds on a programs performance.

program simulation: by simulating a program, its performance may be measured. Different
levels of detail in the simulation are possible. Program simulation may be very abstract
or it may predict the real performance of a particular implementation.

run-time profiling: programs may be run on a real implementation and profiles of the pro-
grams' executions may be collected. Ultimately this is the most important performance
measure. It is the most accurate mneasure, but it is also the least revealing measure.

These levels of analysis/measuu"eniea are complementary. None alone is suitable for all uses
of performance measurement. Ultimately a programs execution time is most important. I low-

ever for algorithm comparison more abstract measurements are desirable, which abstract away
from particular implementations. For perform ance analysis to be mathematically tractable it is
necessary to abstract away from a language's implementation details.

Performance debugging may require measurements at all levels. Bugs which cause a program's
performance to differ from that expected, should be caught at as abstract a level as possible.
Initially a simple analysis should be used to estimate a programs performance. This should not
incorporate any scheduling issues or communications costs. The analysis may indicate that a
program is inherently sequential. If not then a more detailed analysis or an abstract simula-
tion of the program with some test data. should be performed. This should incorporate more
implementation details than the previous analysis. This process of measurement at increasing
levels of detail should be repeated until the bug is located; this may proceed as far as running
the program on a real machine. At each level the programmer should satisfy himself that the
performance of the program is satisfactory, before performing a more detailed measurement.

For example a program may be highly parallel but it may be slow because it performs a lot of
communication. A simple analysis will sliowv this as a good parallel algorithm. As successively
more detailed performance measureinents are taken it will be revealed, when communications
costs are incorporated into measurements, that this program performs a lot of communication.
The communications problem can t. lhen he identified and fixed. This may suggest that only
performance measurement at the lowest level is necessary. However it is necessary to proceed
through several refinements of measurement to determine at what stage a performance bug

occurs. Consider the case of an inherently sequential algorithm; this would be difficult to
identify with detailed levels of measurement, since communications costs etc. would mask the

real problem. However if the pro rain was analysed simply, this could reveal the inherent

sequentiality. The idea of measuring a program's performance incorporating different amounts
of implementation detail suggests tliat a simulator whose level of simulation could be varied
would be a very useful tool. Certainly it can be very difficult to interpret performance results

CHAPTER 8. PERFORMANCE A ., 'VA LYSIS A AD DEBUGGING 180

from real machines. For this reason the simulator outlined in Chapter 4 was found to be very
useful.

To summarise: it is necessary to be able to measure programs' performance at different levels
of abstraction.

8.1.3 Chapter summary and contributions

This chapter investigates program performance via program analysis and simulation. All per-
formance measurements made are quite abstract. In particular the average parallelism of a
program, will be used as a measurement. This measurement has been advocated by Eager
[36]. Importantly, it enables abstract ion away from scheduling issues, which would otherwise
greatly complicate analyses and interpretation of measurements. This measurement is discussed
in Section 2.6.

Section 8.2 considers a simple analysis of some divide and conquer (D&C) algorithms. These

algorithms have been advocated by many as a. paradigm for writing parallel programs. However,
it is shown here that some parallel D&-. C algoritlinls, such as Quicksort using lists, do not have a
good performance. This motivates the design of some formulae which describe the performance
of generalised divide and conquer algorithms. These formulae enable constraints to be derived
for ensuring that D&C algorithms do have a good performance. It is also shown that some
parallel algorithms are not efficient sequential algorithms, such as parallel prefix. This means
that for some problems efficient parallel algorithms need to be hybrid parallel and sequential
algorithms; which use parallel algorithms to distribute work across processors and sequential
algorithms to solve problems on individual processors. The analysis technique used in this
section is simple, but overly synclironous. It cannot be used to analyse pipelined parallelism;
essentially the technique can only analyse parallel languages which are strict.

To analyse pipelined parallelisni a more complex method of performance measurement is neces-
sary. A non-standard semantics which can calculate the performance of programs with pipelined
parallelism, is presented in Section 8.3. This semantics is presented formally because it is quite
complex. It is novel in its use of time and tinnestanips. The semantics enables the performance
of lenient programs to be calculated. Lenient. programs support pipelined parallelism, and they
represent a compromise between strict and lazy parallel languages. Unfortunately it does not
seem possible to easily extend the semantics to deal with parallel lazy languages. In Section
8.4 the performance of a parallel Quicksort. whicli has pipelined parallelism, is calculated using
the semantics. This is a long calculation and it shows the difficulties of using the performance
semantics.

Section 8.5 uses the non-standard semantics, for calculating lenient programs' performance, in

a different way. It uses the semantics as t lie specification of a parallel simulator/interpreter. By
treating the semantic equations as transformation rules, parallel programs' performance may
be simulated by transforming pro rants. It is shown how other more detailed information can
be collected from the semantics, sucht as parallelism profiles. Furthermore it is shown how

rather than directly calculating a programs performance, the semantics can be used to generate
a history trace of a programs evaluation. This may be traversed by a separate program to
simulate different numbers of processors and different scheduling strategies. This allows a much
more detailed level of performance ineasuirement than the original semantics.

CHAPTER 8. PERFORMANCE ANALYSIS AND DEBUGGING 181

Section 8.6 shows, via some real examples, how a simulator may be used to discover some
programming errors, which cause poor program performance. This section concerns errors of
algorithm translation rather than fundamental flaws in algorithms.

8.2 Simple analysis

In this section a simple analysis of some parallel programs performance is described. This

reveals the `algorithmic' parallelism of the programs; no communications or other overheads are
measured. Often upper bounds may be made on the performance of programs; these are useful
for determining whether an algorithm does contain any parallelism and how much it contains.

If some simplifying assumptions are made it is possible to reason about the performance of sonne
parallel algorithms in a similar wav to sequential ones. There are two major assumptions:

there are an unbounded number of processors: therefore scheduling issues do not arise
and the average parallelism may he easily calculated. Eager has shown that the aver-
age parallelism is a useful perforinauce measure, see Section 2.6, even if the number of
processors is fixed in the target nnacliine.

the language is strict: therefore the expressed parallelism is synchronous. In this context
synchronous parallelism means that a task may not be started until all tasks evaluating
expressions on which it depends, 1ºýºve completed. This means that all values which a task
depends on will be fully evaluated before the task is started. Thus the evaluations of tasks,
between which there are dependencies, do not overlap; hence no pipelined parallelism is

possible. For example consider fE E2, where El and E2 are evaluated in parallel. The

application cannot proceed until both the E1 tasks and the E2 task have terminated. Note
that, in all other chapters it has been assumed that the functional language is lazy.

Most forms of sequential algorithm analysis provide an asymptotic bound on the number of times
a certain operation is performed. For example an algorithm for searching a list sequentially for

a given element has an upper bound of 0(n) comparison operations, where is is the length of
the list.

However for the kind of machine envisaged asymptotic performance analysis is not accurate
enough. For the machines being considered it is desirable for algorithms to have a much greater
average parallelism than the machine lins processors, see Section 2.6 for an explanation. This

means that the total amount of work performed is much greater than the number of processors.
Hence the sequential performance will be of the sane order as the parallel performance. For

example consider matrix multiplication. if p is the number of processors and n is the matrix
size then for a high average parallelism p <n3, assuming sequential matrix multiplication has

complexity 0(n3). Therefore the I, est possible parallel complexity which can be obtained is
0(n3/p). However since p is a small constant compared to 773, the parallel complexity is equal
to the sequential complexity: O(n3/1)) = 0(nn3). Therefore for parallel algorithm analysis, in

this setting, performance measurements must be more accurate than asymptotic.

To measure parallel programs performance, program's average parallelism will be used. This
is the sequential execution time of the algorithm divided by the parallel execution time of

CHAPTER 8. PERFORM A NCI ANALYSIS AND DEB UGGING 182

the algorithm; given an unbounded number of processors. An equivalent measure is the total
number of operations performed by the program, divided by the maximum number of operations
performed in sequence: the proof of these two measures equivalence is due to Eager [36]. Often
the average parallelism will be termed speed-up: more accurately this is the speed-up given an
unbounded number of processors. The speed-up (average parallelism) can be viewed as a limit
on the size of machine, defined as the number of processors it contains, which an algorithm can
utilise efficiently.

The following sections analyse some divide and conquer algorithms; other similar algorithms
such as search and optimisation algorithms may be analysed in a similar way. The last section
discusses the shortcomings of this simple approach.

8.2.1 Quicksort analysis

A parallel Quicksort function' is shown below:

> qsort [] = []
> qsort (e: r) = par qhi (seq qlo (qlo++(e: ghi)))
> where
> qlo = qsort [x l x<-r; x<=e]
> qhi = qsort Ex I x<-r; x>e]

how might this be formally analysed? The difficulty with formal analyses is that the amount of
work performed by the program will depend on the values of the data as well as the size of the
data. Thus assumptions concerning the input data must be made. A simplifying assumption for
Quicksort is that the list to be sorted al vans splits into equal sized sub-lists. Fence applications
of parallel Quicksort are assumed to result in a balanced tree of tasks. This assumption puts a
lower bound on the cost of Quicl; sort (hot Ii sequential and parallel).

If it is assumed that qsort always Produces an equal split, then its sequential cost may be
described thus:

S(o) =0
S(n) =2x (71 - 1) +2x S((n - 1)/2)

For an input of size is the first element is removed and the remainder is recursively sorted. The
two recursive calls filter the remainder. producing a list half the size (the assumption). Each of
the filterings requires is -1 comparisons.

Assuming there are an infinite miller of processors available then qsort's parallel cost may be
described thus:

P(O) =0
P(n) = (n - 1) + P((tt - 1)/2)

'In practice append would not be used in Quick-sort but. this is of no consequence here since it is not measured.

CHAPTER 8. PERFORMANCE ANALYSIS AND DEBUGGING 183

The two recursive calls to Quicksort are performed in parallel and take the same time to evaluate
since the list splits exactly. Therefore out}" the cost of one task and its filtering is incurred.

These recurrence relations may be solved thus (assume input size n= 2' - 1):

Sequential cost:

S(2'-1) = 2'+1- 4 +2xS(2"1-1)
= 2m+1 +2x 2"' + 22 X 2"`'1 + ... + 2m+1 X 20

-4-2x4-2X2X4-... -2'-1x4
=mx 2nz+1 - if x ET-1 2=

: -o
= mx2�'}1-<lx (2"' - 1)

= 2m+1(m - 2) + -l

Parallel cost:

P(21z-1) = 2" -2+2fl 1-2+... +21-2
= 2m+1-2x(in+1)

The speed-up (average parallelism) of an algorithm is the ratio of the sequential cost to parallel
cost = S(n)/P(n):

2m+1(7)2 - 2) +4.2111
- 1)

2nt+l(rn - 2)
_ 2"t+l -2X (m + 1)

for large n(21n+l m-2

This is for an input size of n= 21' -I therefore the speed-up is only logarithmic in the input
size. This is unexpectedly poor! For example, for a. 100 processor machine it is desirable to
have an average parallelism of at least. 100. This means that the list to be sorted should have
a length of at least 2100! Experiments were performed to verify this result. A 1024 element list

was constructed which produced exact splits for Quicksort. Sorting this list with the parallel
Quicksort program produced an average parallelism of 10, compared to the calculated average of
8. In fact it was the poor experimental performance of Quicksort which led me to analyse it and
several other programs. Only after the analysis was complete was I convinced that Quicksort's

poor performance was inherent and that. it. was not due to an implementation bug! Notice that
the poor performance of Quicksort is due to its use of lists. If arrays were available, as they are
in Haskell [55], a better performance could be achieved.

This Quicksort result is briefly mentioned in Hughes's thesis [5S]; however lie does not say that
this is a bad result.

8.2.2 General divide and conquer analysis

This section generalises the results obtained for Quicksort. Given some assumptions about the
splitting of problems into stab-problems. general analyses can be made of divide and conquer
algorithms. The sequential analysis of divide and conquer (D&C) algorithms, as used here, is
described in [106].

In the following section the recurrence relation for the sequential D&C algorithm being described
is S. The input size is n, the number of sub-problems is a and the size of sub-problems is n/b.

CHAPTER 8. PERFORMANCE ANALYSIS AND DEBUGGING 184

The parallel divide and conquer function will be described as P, it solves sub-problems in parallel;
thus it is the same as S except that a is effectively 1.

For the first D&C function considered, the cost of dividing problems and combining their solu-
tions is constant and equal to c.

a>1 b>1 c >o
S(1) =c
S(n) =ax S(n/b) +c

P(1) =c
P(n) = P(n/L) +c

For an input of size n= L-:

k
ak+l -1 S(n)=cxEa` = cx

n-1 :. o

P(n)=cx(k+1)

Therefore the speed-up is equal to:

S(bý) cx ak+1_1

a-I _
Irk+l -1

P(bk) cx(I: +1) (a-1)x(1 +1)

This has a good speed-up which is almost linear in the input size. For example vector addition
where vectors are represented by binary trees. If the addition of two scalars (leaves) is assumed
to have the same cost as accessing and building a. tree node, then this fits the D&, C scheme
described. In this case a=2 hence the speed-up for an input of size n is:

2xn-1
In n+1

For example the addition of two 1000 element vectors should have an average parallelism of
approximately 190. Experiments were perfornºed to verify this result. These showed that the
average parallelism was 180, which coin, ores well with the predicted result of 190.

The results from the ZAPP project seeirr to he much better than formulae derived here [78]; they
manage to achieve a near linear speed-up. However they used a machine with a small number of
processors (40 maximum) and they used very large data sets, hence their figures do agree with
these formulae.

The second divide and conquer scheme considers the case when the cost of dividing problems
and combining their results is proport icmal to problems' sizes:

CHAPTER 8. PERFORMANCE ANALYSIS AND DEB UGGING

S(1) =c
S(n) =ax S(n/b) +cxn

P(1) =c
P(n) = P(n/b) +cxn

Assuming an input of size n= b' :

k ra

i=o

S(n) =cx 71 xE I G)

s(pa)=cxiix

g-1

-1 P(n)=cxiax
(i. k+1

7-1

if ýr=G

kliere q= a/b, if a 54 b

where r= 1/G =cx it x
Lk+i -1
bk-+i - Lý-

For example when b=2, P(az)=rx(2xit-1)

The speed-up is:

(k+I) x (bk+I -bk)

S(bk) b +l -1 rr =G

P(bk)9 +, -1 x ', -Lk ,uG q-1 F'. 1

185

This speed-up is logarithmic in the input size and therefore only useful in limited circumstances,
for example: a machine with only a small number of processors. Ideally an algorithm's speed-
up, with an unbounded number of processors, should be near linear in its input size. Thus any
algorithm which fits this scheme is not a good parallel algorithm. Divide and conquer algorithms
have been advocated by many as a good parallel programming paradigm [29,78]. This result
shows that not all D&C algorithms are good parallel algorithms.

An example of this is parallel merge sort. Merge sort splits its input list into two halves, each
halve is recursively sorted and the results are merged together. Each split requires the input
list to be traversed once, as does each merge (a = 2, b=2 and c= 2). Thus this divide and
conquer algorithm fits the current scheine. The speed-up of merge sort for a list of length 2k is:

S(2k) (k + 1) x (2k+' -2 k)k+1

P(2k) 2'+i -12

Like Quicksort this is very bad; for a one million element list (ii = 220) the speed-up would only
be 10!

CHAPTER 8. PERFORMANCE ANALYSIS AND DEBUGGING 186

The final general divide and conquer analysis considers algorithms where the cost of dividing
problems and combining their solutions is logarithmic in problems' sizes. The performance of
these algorithms should lie between that of the two previous schemes. The new scheme is:

S(1) =c
S(n) =ax S(n/L) +cx (In ii)

P(1) =c
P(n) = P(n/L) +cx (In n)

Since base two logarithms are used it is assumed, in addition to the previous assumptions about
a, b and c, that b= 2d. For an input of size n= 2k:

k-I
77

S(n)=cxa'+cx>a` xIn -
i=o

Since b= 2d:

k-J
S(n)=cxa'+cxdxEa'x(k-i)

i=o

For example if a=2:

S(n) =cx2k+cxdx (2k+l -1"-2)

The parallel case is the same as the sequential case but with a=1:

k-1

P(n)=c+cxEdx(J -j) =ý x(2xc+cxkxdx(k+1))
i=O

The speed-up for a=2 is:

S(2')
-

cx2'+cxdx(2k+'-I -2) _
2k*+'+2xdx(2k'+'-k-2)

P(2k) 2x(2xc+cxkxdx(k+1)) 2+kxdx(k+1)

For example the speed-up for b=2, d=I is:

S(2k)
P(2k)

2k+1+2x(2k+1-/; -2)
2+kx(k-j-1)

Some example figures are shown below:

input size 11 S : 32 128 102-1 '1096 16384
speed-up 2.7 5.6 13 55 155 464

CHAPTER 8. PERFORMANCE ANALYSIS AND DEB UGGIINIG 187

As can be seen quite a large input size is required to get a good speed-up. Algorithms with this
form are viable for machines with a small number of processors or for large input sizes.

This analysis shows how recurrence relations can get quite complex for even small algorithms.
However, rather than solving recurrence relations they can always be calculated for a few values
and a graph plotted. This can easily be done automatically and can serve as a useful method
for verifying solutions too. Justification for this is that usually only a fairly limited range of
input sizes need be considered for an algoritlun; a few orders of magnitude normally suffice.

To summarise, in order for a D&C algorithm to have a reasonable parallel performance, the
dividing and combining operations should take constant time or no worse than logarithmic
time. If this is not the case then it will be difficult to efficiently utilise a parallel machine unless
the machine is very small or the input. data is extremely large.

8.2.3 Parallel prefix

Parallel prefix (scan or accutnttlate) is a particular D&C algorithm. However this algorithm is

very important and general in its own right, for details see [47]. This analysis is of a parallel
prefix which uses trees rather than list data structures. It is assumed that the tress are balanced;
this gives a lower bound on parallel prefix's cost for arbitrary binary trees. Parallel prefix using
trees is analogous to parallel prefix using lists. An informal specification of parallel prefix, using
lists, is:

listscan ® [al, a2, ..., fº,,) = [a1, fll 'q. i 112, ..., l(al ®a2)(Da3)®... (D an)

A parallel prefix (pscan) using trees is shown below:

> tree * .. = Node (tree *) (tree *) I Leaf *

> tmap f (Leaf x) = seq fx (Leaf fx) where fx =fx
> tmap f (Node 1 r) = par 11 (seq rr (Node 11 rr))
> where
> 11 = tmap f1
> rr = tmap fr

> pscan f (Leaf x) = (Leaf x, x)
> pscan f (Node 1 r) = par lt (seq rt (seq rt' (seq v (Node lv rt', v))))
> where
> (lt, ly) = pscan f1
> (rt, rv) = pscan fr
> rt' = tmap (f iv) rt
>v=f lv rv

An application such as pscan ft meets the par proof obligation providing either f is total and
t is completely defined, or if the application occurs in a context which is strict in tree elements
to the same degree as f.

CHAPTER 8. PERFORMANCE ANALYSIS AND DEBUGGING 188

Notice that the calculation of v is redundant, since v is equal to the right-most element in rt'.
For simplicity optimisation is not. shown, but the cost of v is omitted from calculations.

Assuming that the scanning function's (f's) cost is much greater than the cost of tree traversal,
and if the cost of v is omitted, the following recurrence relations result (S is the sequential cost
and P is the parallel cost):

Spscan(1) _0
Spscan(f) _2X Ppscan(lt/2) + Smap(ii/2)

Ppscan(1) _0
Ppscan(n) = Ppscan(f1/2) + Pimp(i 12)

Sm,
a, p(n) =n

Prnap(n) =1

Thus for an input of size n= 2k (number of leaves in the tree):

Spscan(7l) _kx 21k-11
Ppscan(1l) =k

This gives rise to the following average parallelism:

kx 2(k-1)
= n/2 k

Thus this algorithm has an excellent average parallelism.

Next the case when the scanning function has approximately the same cost as tree traversal,
is considered. To do this some arbitrary assumptions about the cost of tree traversal and
construction must be made. The assumptions are: only the cost of traversing and constructing
leaves and nodes, and scan functions applications, are counted. All these are assumed to have
the same unit cost. This generates the following recurrence relations:

Smap(l) =3
Smnp(f) =2+2X Smnp(12/2)

Pm. ap(1) =3
Pmap(n) _2+ Pmap(]1/2)

Spscan(1) =2
Spscan(12) =2+2X Spscan(11/2) +

"5map(nn/2)

Ppscan(l) =2
Ppscan(9t) =2+ Ppscan(nn/2) + P,

<<, p, (? 1/2)

These can be simplified to:

CHAPTER 8. PERFORMANCE .4 NA LYSIS AND DEBUGGING 189

Sm,
ap(n) = 3Xn+2x(n-1) =5 xn-2

Pmap(2k) = 2X(k+1)+1

Spscan(1)
=2

Spscan(9t) = (5/2) x is +I+2x Spscan(7t/2)

Ppscan(2°) =2
Ppscan(2k) =2Xk+3+ 1'Ps", T, ýZ/. -1)

Assuming the input size is n= 2k and using the solutions generated in the previous section,
these recurrence relations may be solved:

spscan(n)_(5/2)x7ax(k+1)+(n-1)-n/2 = (n/2)x(5xk+6)-1

Ppscan(7z) =kx (k +, I) +2

Thus the speed-up is:

S(n)
_

(n/2) x (5 xk+ 6) -I
P(n) kx (k+4)+2

Some example average parallelism figures are shown below:

input size 11 S 32 128 1024 4096 16384

speed-lip : 3.5 11 33 200 697 2450

The average parallelism for this case is not as good as the previous case but is nevertheless
reasonable.

However, although these scan results do give its average parallelism, they are misleading. Scan
is an interesting algorithm because an efficient sequential algorithm does less work than the
parallel algorithm. Hence the im port ant tneasiurement. is the speed-up of the parallel algorithm
compared with the efficient sequential algorith m. An efficient sequential algorithm is shown
below:

> scan fe (Leaf x) = (Leaf fxe, fex) where fex =fex
> scan fe (Node 1 r) _ (Node 1 r, e '')
> where
> (1, e') = scan fe1
> (r, e'') = scan f e' r

Notice how the sequential scan requires an identity element to `prime' it with. This performs 71
applications of f, where n is the input size,

CHAPTER 8. PERFORMANCE ANALYSIS AND DEBUGGING 190

The pure parallel algorithm will ihn much slower than the efficient sequential algorithm on a.
single processor. Akl has also noticed this [4]; lie describes such algorithms as not being cost
optimal. This means that on a i\II\ID machine, a hybrid parallel and sequential algorithm
is most efficient. The parallel algorithm should be used to distribute work to processors; each
processor should evaluate its sub-problem using the efficient sequential algorithm. However it can
be difficult to express such algorithms on a. GRIP-like system. This is because programs (tasks)

cannot determine when they have generated enough tasks for distribution across a machine,
so that they may change and use an efficient sequential algorithm to solve problems. Kelly's
Caliban [70] is well suited to this kind of behaviour because there is a one-to-one mapping of
tasks to processors. Most parallel imperative languages also consist of static task networks,
including the one used by AM. Thus expressing hybrid algorithms is not a problem for these
languages. A solution to this problem, for GRIP-like systems, is proposed in Section 9.1.3.

The following analysis compares the efficient hybrid parallel algorithm with the naive parallel
algorithm. For this analysis only applications of the scanning function will be counted. As

previously mentioned, the sequential algorithm performs n applications of the scan function,

where n is the input size. To investigate the efficiency of the naive parallel algorithm the cost
of the parallel algorithm run sequentially must be used. This was previously calculated to be:

Spscan(2k) =kx 20-1)

The naive parallel algorithm running on a ºnaclºine with p= 2q processors and an input of size
n= 2k*, where k>q, may be described thus:

Pnaive(l, fl) = Spscan(ft)

Pnaive(p, n) = Pita ivc (p/2,11/2) + mrip(P, 7t/Z)

Pmap(p, n) = n/p

This says that the cost of evaluating an input of size n on one processor is equal to the cost of
evaluating it sequentially using the pscan algoritlun. On more than one processor the input is
divided into two and each recursion is allocated half the number of processors available (p/2)
to recursively evaluate their input halves. On completion using the p available processors the
parallel map is performed. The synchronisation of tasks is crucial to this cost formulation.

Therefore,

2"'-i
Pnuive(2gv 2" = Spscuiiý9))

- q) + q) X 2m-q-1 + (! X 2Tn-9-1
Zýtl-i

i-U

= ? 7t X 2m-9-1

The efficient parallel prefix which runs Hie efficient sequential algorithm on each processor is

similar to the naive parallel algorithm except. the sequential parts have cost it (S9uiek(n) = 71).

Pquick(1,72) = 71
Pquick(P771) = Pquick(P/2,11/2) + Rnnp(P, n/2)

CHAPTER 8. PERFORMANCE A \'A [A SIS AND DEBUGGING

This has the following solution:

Pquick(2q, 2m) = 2m-q +qX 2nL-q-1 = 2m-q-1 x (2 + q)

Therefore, the speed-up, with 2q processors, for the naive parallel algorithm is:

Sguick(2m) 2ni
_

2? +1

Pnaive(2q, 2i) 7)t x 2m-q-1 m

The speed-up of the efficient parallel algorithm is:

Squick(2 m

- Pquick(2q, 2m)

2111

21n-q-1 x (Z+q)

2q+1
2+q

191

The efficiency of the two parallel algorit. lims may be compared. The ratio of the efficient parallel
algorithms cost to the naive parallel algorithms cost is:

2m-9-1 x (2 + q)

mx 2m-9-J

2+q

In

This is quite substantial. For example for a 128 processor machine with an input size of 4096
the efficient parallel prefix algorithm is 33%% faster than the naive one, despite the fact that
the naive parallel algorithm has a much greater average parallelism. This result contravenes
the philosophy that having it much greater average parallelism than the number of processors
available is always a good idea. 'plums the object of designing a parallel program is not simply
to produce one with maximal parallelism.

8.2.4 Shortcomings

A major shortcoming of the simple approaclº described is that it is cannot describe pipelined
parallelism. The difficulty is inherent since simple synchronous systems are easier to reason about
than ones which synchronise purely on data values. Nevertheless it is particularly desirable to be

able to reason about pipelined parallelisºn. Some algorithms may rely on pipelined parallelism,
for example the sieve of Eratost. lºenes for finding primes. Many other algorithms will contain
implicit pipelined parallelism; this may affect. or invalidate the analysed performance of an
algorithm if disregarded.

For example the Quicksort shown Inrlowr is a modified version of the previous Quicksort which
was analysed. An important question is: what, if any, performance improvement is obtained by

evaluating the filters in parallel; thus allowing successive Quick-sort recursions to evaluate in a
pipelined fashion?

> qsort [] _ 11
> qsort (e: r) _ ((par seqall lo) . (par seqall hi) . (par qhi) . (seq qlo))

CHAPTER S. PERFORMANCE ANAIIYSLS AND DEBUGGING 192

> (qlo ++ (e: qhi))
> where
> lo = Ex I x<-r; x<=e]
> hi = Ex i x<-r; x>e]
> qlo = qsort lo
> qhi = qsort hi

The next section formalises the basis for the analyses done here and it extends this to incorporate

pipelined parallelism. This enables the performance of the version of Quicksort defined above,
to be analysed.

8.3 Formal performance analysis

The previous semantics informally analysed the performance of several algorithms. However, the
simple informal analysis was overly syiiclironous and it could not analyse pipelined parallelism.
Thus, it can not accurately measure the performance of programs written in the parallel lazy
language, described in Section 3.1. The objective of this section is to develop an analysis which
is able to calculate the performance of hipelined algorithms. Pipelined parallelism is more
operationally complex than the strict parallelism of the previous section; this is because for

pipelined parallelism task synchronisation occurs on values. Due to this complexity a formal

method for calculating programs performance will be used. This will be achieved by defining

a non-standard denotational semantics wliicli, in addition to calculating a program's standard
meaning, will calculate its performance. To do this program operations must be counted or
timed.

It is desirable to devise a non-standard semantics to calculate the performance of the parallel
language which has been used throughout this thesis. Unfortunately the operational behaviour

of lazy languages, even sequential ones. is very complex. Essentially this is because although the
semantics of lazy languages are compositional; their operational behaviour is not compositional.
The evaluation of one expression may affect the cost. (performance) of evaluating another ex-
pression. The cost of evaluating a variable depends on whether the variable has previously been

evaluated or not. For example:

> res = (a, a)
> where
>a=...

The cost of evaluating snd res will depend upon, amongst other things, whether the first

component or the second component lins been previously evaluated. This operational behaviour
is clearly not compositional.

There have been several proposals for aiialYsimi-, the performance of sequential lazy languages
including [15,97,99). These are all based on the same technique. The problem with lazy
languages is that it is not known to what degree, if at all, expressions will be evaluated. Strictness

analysis, see Section 3.2.1, yields this infornmation. This enables operations to be counted in a
similar way to sequential step count ing (t his is described in the next section); basically the total

CHAPTER 8. PERFORMANCE ANALYSIS AND DEBUGGING 193

number of operations which are performed can be summed to give the sequential performance.
However this strictness approach to the performance analysis of sequential lazy languages is
not sufficient to analyse parallel lazy languages. This is because it is not sufficient to know to
what degree expressions are evaluated; in addition it is necessary to know when expressions are
evaluated.

Hudak and Anderson [51] have devised an operational semantics for parallel lazy languages,
based on partially ordered multisets. ']'his could be used as the basis for a performance semantics.
However the approach is extremely complicated and unwieldy, and there are some technical
problems with it.

Rather than trying to solve the inherently difficult problem of reasoning about parallel lazy
languages, a simpler problem has been solved. :1 non-standard semantics is presented for rea-
soning about the performance of a lenient language. Lenient languages, such as Id Nouveau
[84], represent a compromise between strict and lazy languages. Lenient languages are strict in
expressions which are evaluated sequentially, and lazy in expressions which are evaluated in par-
allel. The essential difference between strict languages and lenient languages is that for lenient
languages synchronisation between tasks occurs when tasks' results are required by another task.
Importantly, like strict languages, lenient languages' operational behaviour is compositional.

The next sections describes two performance semantics. Firstly a semantics for calculating
the performance of sequential strict languages is devised. This is subsequently extended for
analysing a parallel strict language (this has the sane operational behaviour as the language
used for the informal analyses). Lastly a semantics for reasoning about a lenient language is
described.

8.3.1 A sequential strict language

This section presents a semantics for calculating the performance of a sequential call-by-value
language. Call-by-value languages have a compositional operational behaviour. (I believe the
only real advantage of call-by-value functional languages over lazy ones is their compositional
operational behaviour.) For example the cost. of evaluating El * E2 will be equal to the cost
of evaluating El plus the cost of evaluating E2 plus the cost of the multiplication. Note that
any shared variables must have already been evvaluated. This forms the basis of step counting
which will be used to analyse the call- by- %"alue language. Using step counting to measure strict
languages performance is not a new ideal: one of the first references to it is [119]. More recently
LeMetayer [74] has used step counting in ACE; this attempts to automatically analyse the
complexity of FP programs. Sands [9S] has also used step counting, as part of an operational
semantics calculate the performance of strict. functional programs.

The syntax of the language to be used is shown in Figure 8.1. The language is typed although
no typing rules are shown. It is similar to languages like Hope and a pure subset of ML.

To perform step counting the value given to any expression must be a pair comprising its

standard value and the number of steps take to evaluate it. Thus the valuation function M used
to give values to expressions within ýi particular environment has the form:

: fit :E- Env - : ins

CHAPTER 8. PERFORMANCE ANALYSIS AND DEBUGGING

CE Coll

N' ,ll. tE \'a r

r.. - c
V
EE
\v. E
let N -E in E

letrec v=E in E

E+r

case 1; of []->L' (h: t)->E
(1)

I'i ure 5.1: Syntax

The semantic domains for the step counting semantics are:

Anis =DQ Step
a,, 8 ED= Basic + (1) - 21 iis) + (, ist

Basic = constants and juinnitive functions including integers and booleans
List = nil + (D x List)

sE Step = Nat 1
pE Env = Var - 1)

194

The ® operator is smash product., that is strict product. This is used to ensure the strictness
of the source language. Since the lamlh(la calculus used to describe the source language is lazy,
the strictness of the source langvage ºnust be enforced. Normally this is done by either using a
special strictifying function or by using a continuation based semantics which mimics the call-
by-value evaluation order. The trick ein1ºloved here relies on the fact that a function applied
to bottom may yield a value ('oniponent of the answer which is not bottom; however the step
count component will be hot tonº. Thus t lie smash product forces the whole answer to bottom
if the step component is bottom.

For example, the let construct, has the following meaning:

MQ1etVV=lil in1L., lp _ (/3, Si+82)

= -W Ell p (/3,82) =M [E2D P[v "3 al

This says that if it takes sj steeps to evaluate l;, and 82 to evaluate E2 then the total number
of steps required to evaluate the let is s+s,. Contrast this with a lazy language where El
may or may not be evaluated. Even worse in a lazy language different amounts of evaluation
of El and E2 are possible if they are data structures. Notice how the environment only binds
variables to values (D). This is because the cost of evaluating a variable is always zero. This

CHAPTER 8. PERFORMANCE ANALYSIS AND DEBUGGING 195

is very important and it is the reason why a strict semantics can be formulated. This arises
because:

I In a strict language all bindings (variables) are evaluated before they can be shared.

The meaning of a variable is thus:

: tt Qvý i) _ (p[vv], 0)

Of course accessing a variable may cost a small amount or a great deal if the access is non-local;
however no evaluation of the program will be necessary.

Figure 8.2 shows the complete semantics minus the rules for constants and primitive functions.
Underscore is used to represent infused values hi patterns.

Notice how none of the above expressions take any steps to evaluate. It would be possible
to make some expressions take a number of steps to evaluate. For example cons could take
one step to evaluate. however a more general solution is to have a user supplied annotation
which indicates which expressions should be counted as taking one step to evaluate. These
annotations are represented as curly braces around an expression thus: {E}. The meaning of
these annotations is:

Mif I'

(a,. s)=A 1 El

It is possible to have a version this annotation which also indicates the number of steps to count.
Thus different costs may be assigned to different operations. However usually in these complexity
analyses only the cost of one primitive operator is of concern and it is given a unit cost. For
example in analysing sorting algorithms usually only the number of comparisons performed are
counted. (For parallel sorting time nmaxinuuin (lumber of comparisons performed in sequence is
sought.)

8.3.2 A parallel strict language

This section describes how the previous semantics can be extended to calculate the performance
of a parallel call-by-value language.

Before discussing the parallel semantics a comment is made on the approach taken. Parallelism
may be introduced into the sequential language previously described in various ways. The most
general approach is to evaluate all function applications and other constructs in parallel. The
drawback with this is that an implementation taust be faithful to the semantics. This semantics
means that even case statements will be evaluated in parallel. Since case statements are non-
strict speculative evaluation has been introdticecl, which is very hard to implement efficiently.
The semantics could restrict paraillelisiii to just strict functions and constructs. However, most
parallel programs only have a few 'points' where parallel evaluation is necessary to gain a
substantial speed-up. Evaluating oilier expressions in parallel will cloud the analysis of the

CHAPTER 8. PERFORAIANCI, A NA LYSIS AND DEBUGGING 196

P MH = (1)1%, 1,0)
M[E1 E21 p= (f(ie G1+S2+'S3)

(f. s,)= A4jEl
1p

(a. s. » _)vl[E2]j P
(. f(1

,. 3) _f ct

MQ\v. Ej p=(, An.. 14QE] P[vi--ßa], 0)

MQlety=ElinE2]p = (3.. 'I }s2)

(<<., ý,) _ M[EII p

MQletrec v= E1 in E21 p=(; ",. 'I-}-. "))

(i
.. ̀2) =M JE21 p[v'-, ß]

MQEl+E2 P= ((a+ 3, si+s2)
(«,. 5,) = A'1 E1 P
(0,. 92) = MIE21 P

mull p= (nil. 0)

[Ei. E2] p= (rntt. ýt ß, sl I sý}

; t4[E21 p
Ml case E of = ((IM ,"

JE]1 p
11 ->El (nrl, til) (cl, sl i s2)

(x: 1s) ->E21 n (a, s2) _ . Mt Ejj p (eons a /3, s1) : (a, 61+s2)

(a, s2) _ J" [E21 P[tr-4a, xsý-+Q]

Figure ý. ý: Step counting semantics

CHAPTER 8. PERFORMANCE A, VALYSIS AND DEBUGGING 197

major parallelism. Also, as has been shown experimentally, there is no benefit from evaluating
small tasks in parallel. Thus all parallelism will be made explicit; there will be no implicit

parallelism. To do this parallel langvage constructs will be introduced. The philosophy behind
the approach is to make programs operationally declarative.

To make the previous sequential language parallel it will be augmented with a parallel version
of let. The syntax for this new construct. is:

plet {v=E}+ in E

The plet construct makes a munber of bindings which are all evaluated in parallel. Its semantics
is defined below:

Jvt[plet in 1" p (a, s+ nlax (sl,...
) Sn))

(ß, si) _ M[Ell n

(yv sn) = J: 41EnI n

The bindings (E1 to E,,) are evaluated in 1mrallel and the main expression (E) is not evaluated
until all the bindings have been evaluated. Thus the number of steps taken to evaluate the
parallel bindings is the maximum number of steps that any one of the bindings takes to evaluate.
The number of steps to evaluate the main expression is added to the number of steps it takes
to evaluate the parallel bindings, to give I he number of steps it takes to evaluate the whole
construct.

This assumes, as with the informal analysis, that there is an unbounded number of processors.
By calculating the performance milli an unbounded number of processors, and the sequential
performance, the average parallelism can be calculated, which is a useful measure, as previously
explained. To calculate the sequential 1a'rforniance plets are treated as lets.

An example showing the use of plet is a1 arallel snap function.

parmap = V. \1. case 1 of
1i -> C]
(x: xs) -> plet

first = fx

in
rest = parmap f xs

first : rest

This applies f to each element, of the Iisl in parallel. The cost is the maximum cost of applying
f to any element of the list. This also inilflies that none of the result list is formed until all
the parallel applications have conip>Ieted. 'T'hus no pipelined parallelism can arise between this
and another task consuming the result Iist. In fact, this semantics does not permit any pipelined

CHAPTER 8. PERFORMANCE .1 \': I LYSIS AND DEBUGGING 198

parallelism. A true call-by-value language cannot have any pipelined parallelism. This is because

all constructors' (functions) argtunents nnist be evaluated before the constructor is evaluated
(built).

The plet construct is the only source of parallelism in the language; however other parallel
constructs such as those proposed in [-10] could easily be added and analysed.

A successor to LeMeta. yer's ACE system (CAT) has been constructed for analysing parallel FP

programs [65]. The basis of the approach is the same as the parallel step counting described
here.

8.3.3 A lenient language

The semantics for the call-by-v'alue Iaii nahe is very simple and corresponds to the intuitive

parallel step counting used previously to analyse Quicksort. Its drawback is that it is overly
synchronous and it does not support pipelined parallelism. In this section a semantics for a
lenient language is devised; this language does support pipelined parallelism.

In alenient language, a parallel let's bindings and main expression are evaluated in parallel. Thus
lenient languages are non-strict in expressions which are evaluated in parallel. Operationally

parallel call-by-value and lenient languages differ in when synchronisation occurs. Synchronisa-
tion occurs in a lenient language when oje t ask requires the value of a variable being evaluated by

another task. In the parallel call-by-value language synchronisation was such that all the tasks
evaluating a parallel let's bindings Iiad to terminate before the parallel let's main expression was
evaluated.

For a lenient language a parallel let grit Ii a single binding is sufficient: multiple parallel definitions

may be accomplished by simply , pest ing parallel lets. Therefore, the syntax of plet will be

simplified thus:

plet v=I in E

The rest of the syntax for the lenient h ngnage will be the same as for the call-by-value language.

Step counting does not work for lenient Iangiuages. Consider the evaluation of plet v= El in E;

the tasks evaluating El and B shotilcl proceed in parallel, with no unnecessary synchronisation.
Synchronisation between the tasks may occur if the task evaluating E tries to access the value
of v. When this happens one of two possibilities can arise: either v will have been already
evaluated or it will still be being evaluated. ']'his is because:

In a lenient language all Variables' evaluation is started at binding time
but their evaluation is not uecessarily completed then.

If v has been evaluated, it should be accessed exactly the sane as if it had been evaluated
sequentially by a let. If v is still hviiih evaluated. tue task evaluating E should wait for it to
be evaluated to NVIINF. (In an implenienlation this arises as one task blocking on another.) To

reason about the length of one task. evaluating v, and the time for another task, evaluating E,

to require the value of v, a concept of Irak is required.

CHAPTER 8. PERFORMANCE ANA M SI. S AND DEBUGGING 199

Two pieces of temporal information are required for this non-standard semantics. Firstly the
time spent evaluating expressions is needed. Secondly the time at which values become available
is needed. To understand these pieces of temporal information a simple operational model of

evaluation is required. The model consists of a dynamic collection of tasks. Each task evaluates
an expression. The essential components of the model are tasks and values. With regards to
the performance semantics of the lenient language, each task will have an associated evaluation
time. The evaluation time monitors the time a task has spent evaluating and waiting for values:
rather like a reduction clock. Each value has an associated timestamp, indicating the time when
the value was reduced to NVIINF, and hence when it became available. (Note that in the lenient
language expressions are reduced to \YN P, as in a strict language.)

Consider a task evaluating a list, its evaluation time monitors the time spent evaluating the list.
Elements of the list will be timestanipecl with the times at which they become available: the
times at which they are evaluated to \V II\P. 'I'luis the time at which the task finishes evaluating
the entire list is likely to be later than \vlieii some list elements become available. Alternatively if

the task evaluating the list sparks tasks to evaluate list elements in parallel, the task evaluating
the entire list may finish before list elc'iuents become available. Pipelining relies on this; for

example, one task may consume list elc'inents while another task produces list elements. Of
importance is that list elements may be consumed before the entire list has been evaluated.

Times have also been used in real-l iine functional languages, for example ART and Ruth [17,41].

However, in these languages times are used for a different purpose; they are used to respond
to real-time events and to avoid noii-delormninisln. Times are explicitly manipulated to avoid
non-determinism. For example an operator for merging streams of elements can be written
deterministically by simply taking stream elements with the lowest timestamps first. In these

real time languages times are an integral part of the language; in the lenient language described

here, times are part of the non-standard seºnantics, they are not visible to the programmer.

Rather than augmenting a, standard semantics with temporal information, a combined semantics
has been defined. In this semantics. t lie standard semantics and temporal information are
mutually dependent.

The valuation function jvt has the form:

At: I: - Eup- Time - Args

Expressions are evaluated within yin euviroiiment and at a. specific time to produce answers. The

new semantic domains are:

: Ins

a, ß ED
Basic

run
List

tE Time

pE Eli',
B

I) x Time
Basic + Fun + List
13 x Tinte
(: Ins - tins) x Tiinc
(rail + (D x List)) x Time

: Vat 1
\<ir D

constants and primitive functions

All values (D) are time-stamped with the time when they become available: when they are
evaluated to \VIINF. Each evaluation rc't urus a pair (u ns), comprising a value (D) and a Time

CHAPTER 8. PERFORMANCE ANALYSIS AND DEBUGGING 200

denoting the time when evaluation by the current task finished. Tasks only occur implicitly in
the semantics. The time argument. to the valuation function represents the time when a task
starts to evaluate an expression. 'I'lse time component of Ans pairs represents the time when a
task finishes evaluating an expression. This time is not necessarily the time when the value of
the expression becomes available. For example the current task may have sparked another task
to evaluate an expression. Thus Ow current task need spend no time evaluating the expression.
However if the current task requires tlºe expression's value it will have to wait for it to become
available. With one exception tines are sequentially threaded through valuation functions,

representing a single task's sequential evaluation. The exception is for the meaning of the plet
function. This is the only parallel construct. Here there are two valuation function applications
with the same time arguments: this represents a fork, parallel evaluation with a newly created
task.

The meaning of a variable v, in an environment p and at time t, is:

Al Q'"]] i' I= (P[v,], t)

The time-stamped value is looked-u p in t Iweuvironnteut.. The variable is either already evaluated
or being evaluated by another task, t Iius no time is required to evaluate it. Therefore the amount
of time required by this task to evaluate a variable is zero; hence the input time t is returned as
the new time after v's evaluation.

The meaning of let is:

MI[let Ei in pt= ; "QE?] p[v'-'a] t'

(a, t') = MJEiI p
The let construct evaluates its binding (E,) and then it evaluates its main expression (E2).
Thus the binding is evaluated at the current time t and the main expression is evaluated at the
time when the evaluation of the binding finislies. The valuation function is strict in its time

argument: MQE]j p1= (1,1). Therefore if the let binding evaluates to bottom, t' will be
bottom and hence the whole construct will evaluate to bottom. In this way times are used to

ensure the strictness of sequential evaluation.

The let construct may be contrasted grit Ii plet:

M plet v_(: j in E, pi= .
A4 E21 P[v `r a] t

(a, -) = MQE1¢ pi
The difference between plet and let is t liat. for plet, the main expression's evaluation (E2)
begins at the same time as the bindings evaluation (E1). Thus implicitly a new task has been
sparked to evaluate the binding. Unlike the sequential let, the binding may evaluate to bottom
and the main expression may still be delined. Synchronisation occurs if the current task eval-
uating E2 requires v's value; in which case it may have to wait for the value of v to become

available.

To help understand the semantics consider: let I=E in I and plet I=E in 1. The meanings
of the two expressions in an environment. p and at time I are:

CHAPTER S. PERFORMANCE ANALYSIS AND DEBUGGING

MQ1etI=Ein11 pt = (a, t')
(a, t') _ ýýt 1 Ll i

,M
jp1et l =Ein 1j pt= (ß, t)

(, 6,
-) =M JE] pt

There are two important points concerning the meanings of these two expressions:

201

1. a=Q. The values a and ß are equal (including their timestamps); thus the results of the
two expressions are equal, and they become available at the same time.

2. t< t'. Since a task evaluating let must fully evaluate E before it can evaluate the main
let expression (1), the amount of time required fora task to evaluate the let is at least that
required to evaluate the plet. A task evaluating plet will evaluate the main expression
(1) immediately, because it has sparked a. task to evaluate its binding. No evaluation of
the let and the plats main expressions are required since in both cases the expression is

a variable (1), and all variables mist either have already been evaluated (let) or sparked
tasks must be evaluating them (plet).

The meaning of cons is:

A4[Ej : E2 Pt= ((cons a ß, t), t. 2)
(o, t,) = , Vf [Ell pt ß. t2) = MJE21 p tl

Operationally cons produces a cons cell, t lien the head of the cons is evaluated and then the
tail of the cons is evaluated. Many different patterns of evaluation for cons are possible; for

example El and E2 could be evaluated in parallel. This cons, although sequential, can give rise
to pipelining. Notice that the cons value is tine-stamped with the current time. The head and
tail will often have different tinge-stamps from this cons tine-stamp.

The semantics for {E} increments the time at which the evaluation of E completes and the time
at which that value becomes available. The behaviour of this annotation only makes sense for

annotating primitive operator applications wit ich return an atomic value.

AW {E}I pt= ((a, II +1), t2+1)
((a, ä), 12) = A4JEI pt

The semantics for + is:

Jt4 E1+ E2ý f) t= it = lfl(IX t1 t3 tq

((0,11)1/2) =)4[E1JJ pt
((n2,13), Li) = %W JE2JI n 12

Like most primitive operators + must synchronise on its arguments. That is, if the arguments to

+ are not yet available after the current task has finished evaluating them, it must wait for them.

CHAPTER 8. PERFORMANCE ANALYSIS AND DEBUGGING 202

The + operator sequentially evaluates its arguments, left to right. Thus first the left argument is
evaluated, and then the right argument. is evaluated. The left argument is evaluated at time t.
At time t2 the evaluation of the left argument, by the current task, finishes. The left argument
may not be fully evaluated at time 12, since another task may be evaluating it. However it is

guaranteed that this current task need not evaluate the left argument any further and that the
argument will eventually be fully evaluated, possibly by another task. Thus the evaluation of
the right argument may start at time tz. At time 14 the evaluation by the current task of the
right argument finishes. Only when the values of both arguments are available may the result
of the addition be calculated. The arguments become available at times tl and 6. Thus the
result of the addition cannot be calculated until the latest of the times t, i, tl and t3. (The time
t4 must be later than or equal to 12.)

The semantics for case is:

MQcase E of
11 ->E1
(x: xs) ->E21 Pt

= cn. S(A<EIJ pt
((I2il. ll), f2)

((curls a /3, tl), 12)
M Ejj p (max ti t2)
AW E2 P' (max ti t2)

p' = p[x-a, xs 01

The case construct evaluates E at time I. Since case requires the value of E, if necessary, it

must wait for this value to become available (synchronise). It does not wait for the whole list to
become evaluated but only the top cons or nil. The value E becomes available at time tl. The

evaluation of E, by the current task, takes until t2. Therefore the evaluation of E1 or E2, by the

current task, starts at the later of the two times tl and t2.

The complete semantics is shown in Figure 8.3.

The lenience of the semantics may be demonstrated by comparing: let v=I in Q with
plet v=I in D. The plet expression terminates whereas the let expression does not:

,M
Elet v =1 in []]pt1

= (1,1) since »i is strict in times

Mýplet v =1 in []I pt= M[[]] p[vý-- J] t
(l, l) = ; ý1IVI pt

= ((nil, I), I)

The following example demonstrates liow pipelining may occur in the lenient language. Consider
the expression E defined below:

plet 1= {1} : {2} : {3} :
in case 1 of

-> 0
(a: as) -> a

CHAPTER 8. PERFORMANCE ANALYSIS AND DEBUGGING 203

The 1 binding is evaluated in parallel with the case expression. Each list element takes one time
unit to evaluate. The value of the whole expression may be returned before all of the list 1 has
been evaluated. This is essentially a very simple form of pipelining. If it is assumed that the
whole expression (E) is evaluated at time t and in an environment p then:

[1] pt= (w, t-i-3)
w= (cons(l, t+l)x, i)
x= (cons(2, t+ 2)y, t+ 1)
y= (cons (3, t +: 3) z, t +2)
z= (nil, t+3)

For example, the second cons cell x becomes available at time t+1; however its integer head
value becomes available later, at time 1+2. This has a. ̀ real' value of 2. Since plet discards the
evaluation time of 1 and evaluates the case expression at time t, the meaning of E is:

M1 E] pt= MQcase 1 of
CJ -> 0
(am s) -> ai (p[1, uw}) t

= case (w, t)
((nil, t1), t2) . 'Wo p (imix t1 t2)
((cons a /3, t1), 12) : \4 jai (p[x-a, xsº-+ßýý (max ti t2)

= Mial (p[a-#(1, /+1). as-. r]) t

= ((1,

Thus the initial task evaluating E will finisli at time t and the value of the whole expression (1)
will become available at time t+1.

8.4 Using the semantics

Using the semantics proofs may be inacle about the performance of parallel programs. Two
properties are commonly sought: the (approximate) performance equivalence of two programs
and the absolute performance of a program. As with conventional complexity analysis one
does not calculate the performance of arbitrary programs. Rather, the performance of core
algorithms and library functions are calculated. The following section uses the semantics to
prove two program fragments have the equivalent. performance; a kind of idempotence is proven.
To simplify proofs some rules are used; two of these are given in the next section (without proof).
The last section shows a performance calculation for a pipelined version of Quicksort.

8.4.1 A small proof

The following is a proof that the two program fragments shown below, have equivalent operation
and meaning. A kind of idempotence is proved. The significance of this, is that it enables some
redundant plets to be removed from programs; this will improve programs' efficiency. Thus
any expression having the form of the left Band side may be replaced by the more efficient form

CHAPTER 8. PERFORMANCE ANNA LYSIS AND DEBUGGING 204

MJEJJ P

If t51:

M[V] pt = (P[v], t)

M E1 E2D pt= f (M E21 Pt i)
((i,

-), t,
)= ! vl E1I pt

,
M[\v. E] pt = ((A(a, I'). MJED P[v'-'n] t', t), t)

Mý1et v= El in E2D pt= M E9 P[v'-'a] t'
(cr. I') = . /VMQEij pt

MQletrec v= El in E21 Pt = . \4QE21 p[vF--ß] t'
(! 3, t') = fix (A(a,

_). /VI[El] P[vti«] t)

J4[p1et v= El in E21 pt= , Vl JE2D P[v'- a] I

(n,
-)=MI[E1 pt

. '.
4 E1+ E21 Pt= ((gal -}-11; x, 1), t')

1' = max tl t3 t4

((ni, 11), t2) = 1S4 E1D pt
((112,13), tq) = M[E2] p t2

NIQ[]D pt= (Oil, t), t)

. 1QE1: E2D Pt= ((cons cc /3, t), t2)
(n. I,) = MQEIJ pt
(; 3,12) = . -/IQE2D P 11

MQcase E of = ease ; Iý1 Ept
17 ->E1 ((iii!, 11), t2) : «,

%4 E1JI p (max ti 12)

(x: xs) ->E211 p1 ((cons (1 /3e 11)1 12) : M[E21 p' (max ti t2)

p' = p[týa, xsº-,, ü]

.
MQ{E}] pt= ((a, 11+1), t2+1)

((a. l1), t2) = 1t4 EJ pt

Figure 8.3: A time based semantics

CHAPTER 8. PERFORMANCE ANALYSIS AND DEBUGGING 205

shown on the right. This may be used to prove algebraic identities similar to those used in
Section 3.1.3.

plet a=E in = pleta=Ein
plet b=a in Emain [a/b]

Emain

The left hand side is equal to, at time t and in in environment p:

MQEmainj p' [b i fst (i'vi Qaj p' l)] t
p' =p [a F-; fst (M QE pt)]

= var semantics

M QEmainj p' [b i p'[a]] i

= by substitution

MQEma. in [a/b]l p' t
p' =p [ai fst (M EI p!)]

= meaning of the right hand side Q

This proof may seem intuitively obvious; liowever beware, for example plet x=E in x and
E have the same meaning, but they do not have the same performance.

8.4.2 Rules

This section describes two rules which are useful in the proof which follows. The first states that

essentially times can only increase. The second is an uncurrying simplification for full function

applications.

1. Time monotonicity:
VE, v, p, t, t': (((v,

-), t') = : t4 1'. 1J p I) (c' > t)

2. Uncurrying, if f is bound to a lambda abstraction of n arguments in an environment p:
f= (\vl

...
\v,,

. E)

then applications off to n arguments may be performed by f'; where the meaning of f' is
defined to be:

. Qf'D p' t= ((At'. Aal
....

An, l. ! 41E] p[ß'1'-- a1, ... , v,, -= a,] 1', t), t)
The meaning of f' applications is:
M JP El E2 ... E, j pt=ft,, al 1.) ... n,,

((I, -), Ij) = JýQf'D pt (a1, i1) = Jv1E111 p tf

(02.12) =M E211 p tl

(ü,
1.

In) =i` JE7j 1 jn-1

CHAPTER 8. PERFORMANCE A NA LYSIS AND DEBUGGING 206

Both of these rules follow in a straightforward way from the semantics.

8.4.3 Quicksort revisited

The aim of this section is to calculate an upper bomid on the performance of a Quicksort
function. This function has some pipelined parallelism; this is caused by the evaluation of
successive recursive calls to Quicksort overlapping. The performance of this Quicksort may then
be compared with the non-pipelined version. To improve the readability of subsequent programs
written in the lenient language: top level letrecs will be removed, defining constructs will be

extended to handle multiple definitions and sonic brackets will be omitted where the intended

meaning is obvious. In addition sonic extra data structures, such as tuples, will be needed.
These entail only minor extensions to (lie I)reviously defined semantics.

The pipelined Quicksort program is:

qsort = \1. case 1 of
11 -> CJ
(e: r) -> parlet

lo = filter (\x. {x<=e}) r
hi = filter (\x. {x>e}) r

in

parlet
qlo = qsort lo

qhi = qsort hi
in

append qlo (e: qhi)

filter = \p. \1. case 1 of
11 -> 11
(x: xs) -> if px then x: filter p xs else filter p xs

Notice the curly braces which indicate that only comparisons should be counted.

Although technically possible, it is very difficult to reason about a program of this complexity
directly using the semantics. Instead the program will be transformed so as to compute the
execution times in addition to the real results. Thus temporal information will be calculated
explicitly as standard values. The transformed program may then be reasoned about using
equational reasoning, in the same way as programs are usually reasoned about. This greatly
simplifies reasoning because all reasoning; is performed at the program level. The transformation
can be achieved by regarding the non-standard semantics as specifying a program transformation
rather than a denotational semantics. 1)euot at ional semantics specify the semantics of a language
by translating expressions in the language into the lambda calculus. The lambda calculus has

a well known domain theoretic semantics. A simple functional language is very similar to the
lambda calculus. Therefore the deuotat ional semantics may be treated as a source to source
transformation, rather than a translation of the lenient language into the lambda calculus. The
lambda calculus used in the denotational semantics has been made deliberately similar to the
lenient language for this purpose. This is a standard 't. rick' which often may be performed with
the denotational semantics of functional languages.

CHAPTER 8. PERFORMANCE ANALYSIS AND DEBUGGING 207

The only difficulty in performing this transformation is that non-strictness is required in places
in the semantics (for parallel constructs). Thus parallel constructs should be transformed into

expressions with parallel constructs. However since the standard meaning of plet and let is
the same, when the binding is completely defined (this can be easily proven), parallel constructs
may be transformed into sequential constructs.

Despite calculating Quicksort's performance via program transformation, the calculation is still
very detailed. Thus the calculations shown, especially the first step, contains many simplifica-
tions. These will be highlighted when important. Ideally powerful simplification rules should be
developed to allow more formmal, yet concise, reasoning to be used.

Once a transformed program has been obtained it is progressively simplified; until a recurrence
relation may be derived and solved. Where necessary assumptions about data are made. The
transformed version of gsort, which includes explicit time information, is:

qsort = \t. \1.

case 1 of
([1, t') -> let tt = max t t' in (([], tt), tt)
(e: r, t') -> let tt = max t t' in

let lo = filter tt (time e) (\x. x <= value e) r
hi = filter tt (time e) (\x. x > value e) r

in
let qlo = fst (qsort tt lo)

qhi =f st (qsort tt hi)
in

filter = \t. \te. \p. \1.

case 1 of
([], t') -> ([], max t t')
(x: xs, t') -> let tt =1+ max (max to (time x)) (max t t') in

if p (value x)
then ((value x, tt) : filter tt to p xs, tt)

else filter tt to p xs

Several simplifications have been made; these include:

" Time monotonicity and the uncurryin;; rule have been used.

" Since the argument to both case statements is a variable, which takes no time to evaluate,
neither case statement calculates the Iiine to evaluate its expression to be matched.

" The filter function has been specialised. In particular, it need not calculate evaluation
times since it is evaluated in parallel by qsort.

" The filter function increments the time taken for each predicate application.

"A `real' predicate is passed into filter. The time taken to evaluate the predicate depends

on the time at which x and e becoimie available. The time at which e becomes available,
is passed into filter. Time tithe at wliicli x becomes available is inspected in filter.

CHAPTERS. PERFORMANCE, 4N. 1LYSIS AND DEBUGGING 208

The syntax of of answers (fins in (lie scºmºnt ics) is (value, time) and the syntax of values is (real
value, time). For example ((x: xs), t) is a cons value with a timestamp of t. The expression
(([] t) t) is an answer taking time t to evaluate. It has a value (Q t) which in turn is nil
with a time stamp of t. As in the semantics, value and time are fst and snd respectively.

How should append (qsort lo) (e: qhi) be transformed? Rather than transform it directly it
will be assumed that the greatest time it. lakes for any element to become available, is required.
Therefore the performance calculation ma' may be simplified by only calculating the longest time it
takes for any element to become available.

In addition since filter is always uillecl from qsort with a. non-empty list and since max is
idempotent the time e value will be lifted out of filter. Thus the functions become:

qsort = \t. \1.

case 1 of
([I

, t') -> max t t'
(e: r, t') -> let tt = max t t' in

let lo = filter (max tt (time e)) (\x. x <= value e) r
hi = filter (max tt (time e)) (\x. x > value e) r

in

let qlo = qsort tt lo

qhi = qsort tt hi
in

max qlo (max (time e) qhi)

filter = \t. \p. \1.

case 1 of
([]

, t') -> (0
, max t t')

(x: xs, t') -> let tt =1+ max (time x) (max t t') in
if p (value x)
then ((value x, tt) : filter tt p xs, tt)
else filter tt p xs

Currently list elements and list cons calls are tiinestamped. This is unnecessary since only list
elements need to be timestamped. The precoirdition for removing list cons cell timestamps can
be formalised for filter tliiis:

! (. "'1 II p' I') =f (zero (M[1 p' t'))

where
((f,

_),
1') _W filter pj pt

zero (a, /) _ (z a, t)
il,

(coils a r3. t) _ (cons a (z ß), 0)

This says that filtering a list. mist be Ilse same as filtering a. list with all the top level cons times
zeroed. That is the list timestanips are irrelevant. only the element timestamps are required. A
similar result holds for map.

CHAPTER 8. PERFORMANCE ANALYSIS AND DEBUGGING 209

This precondition is met by the filter used by qsort. Also since qsort consists of successive
list filterings, list timestamps are unnecessary in qsort too. Thus the functions may be rewritten
as:

qsort = \t. \1.

case 1 of
[1 -> t
(e: r) -> let lo = filter (max t (time e)) (\x. x <= value e) r

hi = filter (max t (time e)) (\x. x > value e) r
in

let qlo = qsort t lo

qhi = qsort t hi
in

max qlo (max (time e) qhi)

filter = \t. \p. \1.

case 1 of
CJ -> (Q, t)
(x: xs) -> let tt =1+ max (time x) t in

if p (value x)
then ((value x, tt) : filter tt p xs, tt)

else filter tt p xs

It will be assumed that the list argument to qsort becomes available at the same time as qsort
is applied to it. Then the time argimiciºt to qsort may be omitted, only the times at which list

elements become available is requited. 'l'liiis qsort becomes:

qsort = \1. case 1 of

-> 0
(e: r) -> let lo = filter (time e) (\x. x <= value e) r

hi = filter (time e) (\x. x > value e) r
in

let qlo = qsort lo

qhi = qsort hi
in

max qlo (max (time e) qhi)

It has also been assumed that the initiil list. to be sorted is non-empty. Thus, the nil case for

qsort may return 0 which is the identity element of max (on naturals).

The intuition behind this description of the qsort's performance is now given. Only comparisons
are being measured and the greatest time taken for any element to become available is required.
Therefore only the times at which clement s become available from each filtering is required.
Effectively the qsort applications cost nothing and Bence they can be completely unfolded at
no cost. Thus the description consists solely of nested filters. Each comparison in filter
increments the availability sinne of elements.

CHAPTER $. PERFORMANCE AN. 1 JXSL. S AND DEBUGGING 210

Filter rules

To further simplify qsort it is necessary to simplify the filter applications. To do this some
rules about filter are developed.

These rules concern the transformed version of filter like the one in qsort: this filter has no
cons timestamps and it has a predicate which is being `counted'. In suitable cases these rules
enable the time at which elements become available to be determined independently of which
elements are present in the result.

The following assumptions are made, the list to be filtered is 1:

1=

Thus (ei, t=) is the ith element of 1, e; is the real value and ti is its timestamp. The filtering
starts at time tt, the predicate is p and t lie result of the filter is fl:

fl = filter It p1

The time taken to evaluate the predicate. p. is constant. for all values which are available at the
same time:

V x, y: (tine x= time y) (time (p (z'nluc x)) = time (p (value y)) = (tp + time x))

The value ip is the relative time taken to evaluate the predicate on an element of the list to be
filtered. The series ti ...

to are the times at «"liich each element (ei, ti) of 1 is tested with the
predicate p.

ti = tp+ max It tj
t; = tp + max tý,

-,
t;

Then in general the following rule holds:

V(Cie
-)E1:

(c1,1)E fl = t=t=

Two more restricted cases of the general rule are given below, case 1:

(V(ei, ti)El: ti<It) => (V(ci. _)¬1:
(ei, t=)Efl z* ti=11+ixtp)

This may be expressed in prograininih g ton us thus:

fl = Eilt p (acc tt 1)

acc = \tt. \tp. \1. case
11 -> CJ
(x: xs) -> (value x, tt) : acc (tt+tp) tp xs

filt = \p. \l. case 1 of
11 -> 11
(x: xs) -> if p (value x) then x: filt p xs else filt p xs

CHAPTER 8. PERFORMANCE :1 \'. =t L1'. SI. S AND DEBUGGING

Case 2:

(V 1<i<n -1 : (t; + 11» :5t i+1) =: (ei, =t; = t= + tp)

This may be expressed thus:

fl = filt p (map (add tp) 1)

add = \t. \x. (value x, (time x)+t)

211

Notice how in this case the time 11 is not used. Similar rules hold for map, and other rules can
be usefully formulated for scan and fold.

To use the filter rules it is necessary to unfold qsort once:

qsort = \1. case 1 of

-> 0
(e: r) -> let lo = filters (time e) (\x. x<=e) r

hi = filterl (time e) (\x. x>e) r
in

let qlo = qsort' lo

qhi = gsort' hi
in

max qlo (max (time e) qhi)

qsort' _ \1. case 1 of
C] -> 0
(e: r) -> let lo = filter2 (time e) (\x. x<=e) r

hi = filter2 (time e) (\x. x>e) r
in

let qlo = gsort' lo

qhi = qsort' hi
in

max qlo (max (time e) qhi)

filters = filter
filter2 = filter

If it is assumed that all the input list ek'ineiits become available at time zero and hence qsort
is initially applied at time zero; the filter rules may now be applied to filters and filter2

yielding:

filtert = \t. \p. \1. filt p (acc t1 1)
filter2 = \t. \p. \1. filt p (map (add 1) 1)

CIIAPTER S. PERFORMANCE ., \7: 1 GY'SLS ANI) DEB UGGIA'G 212

Notice that filter2 does not use its time parameter.

To simplify the filter functions further it is necessary to make some additional assumptions
about the input list. It is assumed that the input list divides exactly, as was assumed in the

analysis of the strict parallel Quicksort. Furthermore the input data divides into alternating
sequences of elements less than or equal to, then greater than the pivot element; for example
the list: [8,4,12,2,10,6,14,1,9,5,13,3,11,7,151. This means that each pair of recursive
calls to qsort, q1o and qhi will take almost the same amount of time to evaluate, and hence
the splitting is optimal. Thus, the result obtained will give an upper bound on the performance
of pipelined Quicksort.

Since pairs of qsort recursions are almost. symmetric and they take almost the same time to
evaluate, only the slightly longer recursion m'ed be analysed: qhi.

The filter function may now be iuodelled as a. function which selects every other element of
the list to be sorted. Since the real values of the elements to be sorted are no longer used, only
the times when elements become available are required:

qsort = \1. case 1 of
11->0
(e: r) -> let lo = filterl er

hi = filtert er
in

let qhi = qsort' hi in max e qhi

qsort' _ \1. case 1 of
U -> 0
(e: r) -> let lo = filter2 er

hi = filter2 er
in

let qhi = qsort' hi in max e qhi

filtert = \t. \l. everyother (from t ((length 1)+t))
filtert = \t. \1. everyother (map inc 1)
inc = \x. x+1

Now the list of times may be eliminated since time times are strictly increasing and therefore only
the last element is required. Time last elcliwjit. will have the longest time; in the program this is
represented as t. The length of the list will now he nioclellecl using a number 1. This gives:

qsort = \1. let 11 = length 1 in qsort' ((11-1)/2) 11

qsort' = \1. \t. if 1=1 then t else qsort' ((1-1)/2) (t+1)

The recurrence relation which i this defines may he solved thus: assuming the length of 1 is
n= 2' -1 then the calculated time is: gsort' (2"`-2 - 1) n. This equals 2' + in - 3. This may
be compared with the previous strict (non-pil)elined) version of Quicksort previously analysed;

CHAPTER 8. PERFORM4NCI; : 1: \'_i LYSIS ADN!) DEBUGGING 213

this had a parallel execution time of 2"'+1 -2x (7n -1-1). This gives a. factor of two improvement
in execution time for this pipelined Quicksort over the non-pipelined version of Quicksort. This
is significant when compared with the basic logarithmic speed-up which is possible. Effectively
this means that this algorithm can efficiently utilise twice as many processors as the previous
strict algorithm can. Experiments have been performed and these verify the result, namely
that the pipelined version of Quicksort is approximately twice as fast as the simple version of
Quicksort.

The derivation is rather long. This is because the reasoning is at a very detailed level. Ideally
theorems enabling reasoning at it, ltiglier level are re(luired. For reasoning about purely sequen-
tial expressions, all of whose free varj; d)1e are immediately available, a step counting semantics
could be used. The complexity of the semantics is inherent in the lenient language; in particular
this is caused by tasks synchronising; on vadues. The parallel strict language has a much simpler
operational behaviour because this does not happen; all the values a task may use are immedi-
ately available. To reason about the performance of large programs either many simplifications
must be made to enable an analysis to he tractable, or some kind of simulation must be used.

8.5 Abstract simulation

This section describes how the non-stanclarcl semantics for the lenient language, which was devel-
oped in the previous section, may be used for 1)rograln simulation rather than for generating cost
formulae. Other non-standard semantics are also developed for generating different information.
Often simulation is preferable to analysis because although less general, simulation is quicker
than analysis and it is tractable for large programs. The comparison of analysis and simulation
is analogous to that of symbolic versus nnnieric. integration; the former is more general, but the
latter is much easier!

8.5.1 Running the semantics

A different view of the non-standard seniant ic"s (Figure 8.3) is to regard it as defining a simulator.
It may be used to simulate the performance of a, parallel program; that is to evaluate a program
and to generate some statistics about its evaluation. The main reason why this might be useful
is that, as was shown in the previous sect ions, simplifying and solving recurrence relations is
both difficult and time consuming. Often it. is quicker and simpler to simulate a program, using
sets of typical input data of different, sizes. `1,11e results may be used to plot speed-up graphs
to show the general behaviour of a progran1 over a certain range of data.. Further justification
of this is that usually the context in which aan algorithm is to be used puts constraints on the
type and size of input data. Thins general infornmation about an algorithms performance, as
obtained by doing a complexity analysis and solving recurrence relations, is rarely required.
Even if recurrence relations are generated and solved, the semantics may be run to verify the
solutions for some values.

Two different approaches exist for running tlie semantics:

" The semantics in ay be treated as I Iie sperifical. ion and the basis for a conventional simu-
lator. A simple but very inefficient ýý"; ýý" to do this is to implement the semantics directly

CHAPTER S. PERFORMANCE ANALYSIS AND DEBUGGING 214

yielding an interpreter.

" The semantics may be viewed as a set of transformation rules, as was done in the analysis
of Quicksort. Simulation then becomes a two stage process. First a parallel program is
transformed (automatically) into a sequential program. Then the sequential program is

evaluated using a conventional interpreter or compiler.

The second approach is new and corresponds to simulation by program transformation. This has

several advantages over the conventional first approach. The advantages may be summarised
as giving greater flexibility than conventional simulation. This arises because the simulation is

not `wired-in' to the simulator. The two techniques can be implemented with approximately
the same efficiency. For both approaches t lie essential optimisation is to only timestamp values
which need to be timestamped. Many sequential parts of programs do not need to propagate
timestamps since they never change them.

Benefits of simulation by transformation

The programmer may vary the detail of simulation and has great control over the simulation.
For example the cost of all operations uuav be counted or only a few. The programmer can
decide what the costs should be. For calibration of operations costs, the cost of operations on a
real implementation may be measured.

Another benefit is that expressions beliavioiu" and value may be modelled. During the develop-

ment of a software system, the system is often tested, although it is incomplete, by using stubs.
Stubs model the value of missing parts of Hie system, either by calculating values inefficiently,
for example a constructive specification or rapid prototype, or by only being defined for a range
of values. This technique ma)" be extended to include the performance of missing software com-
ponents, as well as their values. TLfis the jwrformance of missing components must be modelled
in addition to their values. For some complex high performance systems this may be essential.

To model the evaluation of an expression delays are required. This may be achieved by the delay
function:

delay = \n. \x. if n=0 then x else delay (n-1) x

The delay function introduces an artificial delay proportional to its first argument. Pragmat-
ically delay has been found to be a very useful function for debugging and designing parallel
programs. It is used in the subsequent. sect ion on debugging (Section 8.6).

Rather than iterating n times, as Hie definition above shows, delay could be treated specially
by the transformation phase. It can simply return its second argument and increment the time
by n, or some proportion of it.. In terms of the semantics delay may be defined thus:

.
"Idelay] P1= ((df. 1). 1)

(If = A((n.
-)'1').

((A\(a, 1). (a, t+n), 1ý), i')

CHAPTER 8. PERFORMANCE ANALYSIS AND DEBUGGING 215

The meaning delay produces a function (If. The (If function takes a. numeric argument and
produces a further function. This function returns its argument but increments the time by the
numeric argument.

An example of such expression modelling is a game playing system. The system may be tested
before the evaluation function which assesses how good a move is, has been written. The value
of the evaluation function may be modelled as an arithmetic formulae. Its behaviour may be

modelled using delay. If the evaluation function is an 0(n2) operation then the delay should be

proportional to the square of the argument's size. The stub for an evaluation function is shown
below:

eval_fun = \pos. delay (sqr (size pos)) (modelled-value pos)

The arithmetic code for calculating the modelled value should not contain any cost annotations;
the entire cost of the evaluation function is modelled by the delay function.

The final advantage of doing sintulat ion by t ransformatiott, is that although a program trans-
former is required, a, simulator is toot requuired!

8.5.2 Generating parallelism profiles

As described so far the only infornºation which the semantics delivers is the result value and
the execution time. For simulation purposes it is highly desirable to be able to generate other
information too. Parallelism profiles plot t lie number of active tasks against time. They are
particularly useful; hence the semantics will be augmented to generate these. For consistency,
the addition of profiling information will still he presented as a. non-standard semantics, although
this semantics is difficult to reason xvitIi directly.

To get parallelism profiles tracing information must be incorporated into the semantics. This
information represents the History of a task and its child tasks. This extra information is an
augment to the previous semantics. The semantics is essentially unchanged.

Parallelism traces are lists of numbers showing the number of tasks active at a certain time.
The value of a trace element at position t indicates tlºe number of tasks active at time t. Several

operations are required on traces: 11, * and : cros. The 11 operator adds the elements of two
traces pairwise. If the traces are of cli(fereut lengths the shorter is padded-out with zeros. The
11 operator represents parallel coinimsitiou of' traces. The -f{- operator appends one trace to

another like list append; this represents sequential composition of traces. The zeros n function

creates a trace of is zeros; this is used for indicating a passage of time when a task is blocked -
waiting for the result of another task. Traces are quoted in the same way as lists, for example
[1,2,0,3]. This means that at tine zero (Isere was one task active, at time two there were two
tasks active, at time three there were 110 tasks active and at time four there were three tasks

active. The total execution time is four tiiue units.

The valuation function M is:

. /VI : 1? - Env = Timc - Ans

CHAPTER 8. PERFORMANCE A NA LY'SIS AND DEBUGGING 216

The semantic equations are the same as previously except for the parallelism tracing information.
The old semantics domains are augmented with traces thus:

Ans = Dx Trace x Tim
tr E Trace = 1+ (Nat x Trace)
a, ß ED= Basic + Fun + I, is1

Basic =Bx Time,
Fun = (Time -D- : ins) x Time
List = (nil + (D x Li. t)) x Time

t E Time = Nats
p E Env = Var -D

B= constants and primitive functions including integers and booleans

The Ans domain now becomes triples of values, traces and times. The Trace domain represents
the parallel execution trace of an evaluation.

The semantic equations are the same as previously except for the parallelism tracing information.
The meanings of let and plet are:

Ml{let v= E1 in E9 pI= (13,12,11'2 -f+ 11'2)
(ß, 12,17'2) = J%4QE2j n[V i «1 ti

(a, I,, I1'ß) = j4 E1 pt
Mpiety=E1 inE. >ý f, 1 = (; 3,12. ' 1 1117'2)

(/3,12,11-2) _M E211 p[v F, a] t
(n,

-,
17.1) _ : "JE111 pt

Notice how they differ in the time at wliicli E9 is evaluated and the way in which the traces, for
the executions of El and E2, are combined. The let construct evaluates El and then E2, thus
the trace for El is appended to the trace for E2 to form the result trace. For plet, El and E2

are evaluated in parallel so their traces are combined using ýý.

The meaning of + is:

A4 Ej+E21 /) 1= (11/+ii`?, I', 1 ri -H- tr2 -H- z)
I' = mnx 11 13 t4

_ zeros (t' - t4)
((, n/, 11), 12,1r1) = :M Ejj pt
((:) 2,1: 3), I.,. 172) = 'W E211 n t2

As before, the semantics of + states that each argimient is evaluated and then the values of
the arguments are awaited. 'hlius the left argument to -f is evaluated at time t. At time t2 the

evaluation of El, by the current task. liuislies and the evaluation of E2 may start. At time t4
the evaluation of E2, by the current task. finishes. Tlie values of the two arguments are then

awaited. Thus, the addition happens at the latest of the tines t. t, tj and t3. Since the arguments
are evaluated sequentially their ti-; ices are concatenated. After evaluating the two arguments,
the current task may have to wait for t flair values. For every unit of time spent waiting, this

CHAPTER 8. PERFORMANCE ANALYSIS AND DEBUGGING 217

evaluation is not active. Therefore there is a trace of zeros, corresponding to the time spent
waiting: zeros (t' - t4). If If is less than or equal to t_i there is no delay and hence the empty
trace is produced. Otherwise a trace of zeros corresponding to the difference between t4 and the
latest value to become available will result.

The meaning given to case is:

MQcase E of = case M[E] pt
Q ->El ((nil. t 1), (2, /r) (a, ti, tr -I-f Zeros (tl

- t2) -(-E- tr')

(x: xs) ->E21 nt (a, t:,, tr') = MQE1D P (max tl t2)

((conk (1 14, tr) : (Cl, t1, tr -I-}- zeros (tl
- t2) -}-}- tr')

(a, t. 1, lr') = MIE2D p' (max tl t2)

p' = p[x, -' a, xs'-Y QJ

The value of (ti - t2) is the time Spent waiting for value of E to become available. The values
of tl and t2 are natural numbers licnce if t, is less than 12 then the time spent waiting is 0. For

every unit of time spent waiting, this evaluation is not active. Therefore after evaluating E and
before evaluating El or E2 there is at race of zeros, corresponding to the delay: zeros (tl - tz).

The semantics for {E} is the same as in t lie previous semantics except that it appends a unit
trace of value [1] to the parallelism trace for f.; since this represents a single time unit of activity:

A11:: } pr= ((a, t, +1),! 2+1, it-f-I- [11)
((a, I I) 1 12 11 r) =. VW Epi

The full semantics is shown in l igures ??.

Many other forms of information can be -collected' by the semantics; this includes: task length

statistics, blocking (waiting statistics), I he number of tasks, and communication statistics: show-
ing the communication of values between tasks.

8.5.3 A limited number of processors

This section concerns how evaluation information n my be collected such that simulation with
a limited number of processors may he performed. Performance with a limited number of
processors is much less general tliau with a unbounded number of processors. However it is
useful to be able to vary the degree of simulation as has been previously mentioned.

Unfortunately it is difficult to directly eucoth cyaluation with a fixed number of processors into
the semantics. Instead the semantics will he used to generate task dependency information.
This information can then be used to I)erform the actual simulation. This idea has been used by
Deschner [35] to produce an efficient simulator for the parallel evaluation of functional languages.

The information necessary to describe potential tasks is:

" when work is performed

CHAPTER 8. PERFORMANCE A NA LY. SIS AND DEBUGGING 218

MQEJJ p1= (1.1,1

Ift01:

. /Vi 1A pt= (P[v]i1, [])

M[E1 Eat Pt= (3, tj, try -f+ 11"Q 4+ tr ja)
(13, tta, 17'fa) =f to a

((f -), tf, 17-f)= M1[El pt (n, I(II t 1'(1) = 1W
[E2D

P tJ

. Nt[\v. E] pt= ((, \/'., \n. A4 EI n[vi- a] 1', t), t, [])
)v llet v= E1 in Ed PI= ('1. I",, 1v2 17'2)

(, '3. '2,11'2) = J"11121 p[v'- a] tl
(n, l] . lry) = i4 EiJ P1

MQletrec v= El in E2j p1= (ý
. t,, t7-1 -I-I- tr2)

12, l7"2) = MIILL21 p[v'-'Q] ti
(13,1

, 1v1) = fix (A (a,
-, -).

M[E1I p[vº- a] t)

! vtj[plet v= E1 in E21 pl= (13. ! 2, I; ýý tß"2)
/V"[E2l P[l! tia] t

(cý,
_. fry) _ MlEi]I pt

Figure S. -1: Parallelism profiling semantics

CHAPTER 8. PERFORMANCE ANALYSIS AND DEBUGGING 219

.
M1El+E21 pt= (n. /+n 3. I'. Ir, -{-i- Iv) -H- z)

t' = ilt!!: L' tl 13 t.,

= zcros (t' - t:,)

17.1) = t1 ELI pt ((! 1 ý, 13), 1: 1,11'2) _ : VIIE21 P t2

NIQný pi

MQE1: E21 nt

MQcase E of
C] ->EI
(x:. xs) ->E21 pt

= ((nit, 1), 1, []>

_ ((cons n (3. I), 12,11"1 ; -F ire)

= c(l. c. '4IJIIn
((nil. 1,). 12 Ir) (a, t: i, t. r-t-I- zs -H- tr')

(a, t"1, tr') =M E1j P t3
13 = max t1 t2

zs = zeros (t1 - t2)
(a, t. t, tr 4+ zs 4+ tr')
(a, 14, tr') =M E21 PI t3
t3 = max t1 t2

.s= zeros (t1 - t2)

P' = p[xºya,. sý/3]

((con. ri ,:
3.11), 12, t i")

, III pt ((a, ti), 12.1P) = , "t1QE11 pt

Figure S.: 5: Parallelism profiling semantics

CHAPTER 8. PERFORMANCE ANA LY. SIS AND DER UGGING 220

Time

task C: 3

tasI D5-

task B22 41 01-

task A1 10

Figure 8.6: 't'ask execution graph

9 when new tasks are sparked

" when a task requires a value computed by another task

This information must be collecte(I 1)
,yI

liv seinatitics. To simplify the semantics lists are omitted
from the language. In actual fact oifly pipelhihig is a problem so strict lists could be introduced.
This means that all tasks coniptite a ship-le valtie and then die. With this constraint tasks

synchronisation is simple since if a task requires the value of another task the 'requiring' task
just waits for the other task to terinhiate. If pipelining may occur then it is necessary to know

when values become available to otlier lasks. Witliout pipelining tasks synchronise on other
tasks and not on the values tlicy coniptite. If a task requires a value computed by another task
it simply waits for that other task to coiiiplete.

The obvious representaticiii for a parallel proprains execution is as a graph: see Figure 8.6.
n

This diagram shows the exectitioii of foiii- tasks. Eacli tasks execution is represented by a solid
arrow; dotted arrows represent tasks beiiig sparke(l and tasks results being demanded. Thus
task A sparks task B; task B sparks task C, I lien it sparks task D, after which it dernands the

result of task C then the result of task 1). N'tunbers indicate work which is performed between

other actions. The e. xecutioik Onie wifli aii iinboun(le(l number of processors corresponds to the
longest path through the graph. Wit-li a liiiiite(l number of processors demands for task values
introduce constraints on whicli tasks cim I)e run. If pipeline(] parallelism was supported, this
would manifest itself as multiple arrows froni different parts of one tasks trace (arrow) to another
parent task. This would represent intiltiple (lentaii(Is, for different parts of some data, from one
task to another.

Thus the most natural represemai imi of I lie seinantic information representing the constraints
between tasks is as a directe(I grapli. 1Io%\-v\-(,, r graphs are difficult to manipulate and so trees 0 in

are used instead. The graph slioNvii hi Pip-tire S. 6 will be represented by the tree shown in Figure
n 8.7. This tree has the same forin as Ilie grapli except all demands have been made explicit. 11

All demands for tasks results are represeMe(I 1)
,y explicit demands. Demand i means that this

task requires the value of the (i+])tli last sparke(I task. For example in the example when task

CHAPTER 8. PERFORMANCE .1 NA LYSIS AND DEBUGGING 221

Time

task C

5

task 1)

task B22 `1 (demand 1) 0 (demand 0) 1

task A1 10 (demand 0) 2

Fifpire S. 1: Task execution tree

B requires the value of task I) it does a "demand 1" action.

The tree is called a Tracetrce and il has I Ii following definition in the semantics:

Tracclrcc =

Sparkeounl =

111011 7'rrrcctrcc +

. earl; Traccirce x Tracetrrce +
(II111(111(1 Sparkcount x Tracctrcc +

No t1

Note, work, spark, demand and end are all labels for the different parts of the sum construction:
like constructors in programming languages. The work element represents a unit of work per-
formed by a task. The spark element rc ýýrc cents the creation of a new task; its first argument
is the Tracetree for the new task and its second argument is the current tasks continuation.
A demand i element represents a cleinaºicl for the value of the ith last sparked task. The end
element is used to indicate the termination of a. task (Traeetrce).

From this information it is possible to get: execution times, parallelism profiles, task length

statistics, task blocking statistics and coiniiiiinication information for an unbounded, or bounded,

number of processors.

The previous example has the followin semantic representation:

A= 2v 1 (spark B (ir 10 ('knrnnul 0 (u' 2 cntd))))
B= zu 2 (spark C(rig 2 (spark l) (in .1 (demand 1 (demand 0 (zu 1 end)))))))
C=w3 end
D= w5 end
wnt = work" I

Since only a unit cost is used in the semantics (work) a shorthand for multiple works is used:
to. The tu function is not used in llie semantics.

CHAPTER 8. PERFORAIANCI.: 1 NAM SIS ANI) DEBUGGING 222

The semantic domains are:

D= Valrrc x (T racclrce - Trace! ree)
a, 0E Value = Basic + (Value -- Sparkcount -; D)

Basic = constants and primitive functions including integers and booleans

pE Env = Va. r - Sparkcount -- D

nE Spark-count = Nat 1

Rather than enforce the strictness of Ibis semantics, it is left lazy. Thus an infinite computation
will produce an infinite Tracct, -cc. If desired, strictness could be easily enforced.

The valuation function /W is:

A4 : l; - Em, - Sparkcount -= D

Result triples (D) consist of values, functions from Tracetrees to Tracetrees and Sparkcounts.
Task executions are represented as functions which add their argument Tracetree to the end of
their current Tracetree: forms of data continuations. In this way sequential composition of tasks
executions simply becomes functional composition of their Tracetree functions.

Since task executions amount to essentially unfolding programs, it is necessary to pass Spark-

counts through the semantic functions in order to count the number of sparks. This is necessary
to ensure that demands can he matched to their correct tasks.

The meaning of let is:

AWllet v= E1 in]Jý] p nn tI" t2)
(n, ti) =A lE1]j pn
(ii. 19) =M E2D p[v t- an. (a, id)] n

There are two important poin Is to iiotv- I-Irs II'ytI te traces (trace functions) are sequentially com-
posed using function compositioii lwcaiise let is s('(111011tial (tI * t2). Secondly when An. (a, id),
the value that v is bound to, is applied to a Sparkcount, it discards the Spark-count and returns
a D, which consists of the calctilated n awl the identity function for the trace function. The
identity function corresponds to the iiiffl I r; ice. -in enipty execution, the no-op. This is correct
because accessing a variable wliicli lias aIrv; idY beeii evaluated, causes no Traccirec actions to
take place.

This may be compared with the meaning o(' plet:

.
A4 plet v= El in 12 pn= (1/3,. ßj iik (il end) " 12)

((k, 11) = , 'lQE1 p (n+1)
(%3,12) =M JEA p[v - x1 (71+1)

. 11 = , \n'. (a, dent and (n'-n))

Since plet sparks a task (evaIuation) for F, It two trace trees(Tracetrce functions) tl and 12 are
combined using spark. The sparked task's evaluation finishes after this, hence it is applied to end.

CHAPTER 8. PERFORM. \'CE .4X; 11. YSI. S :1 NI) 1)EB UGGING 223

Note, sparktakes two arguments; the first argument represeiits the sparked task's evaluation, and
the second argument represents t lie parviit task's evaluation. Another major difference between
let and plet is the binding of the variable v; in plet v is bound to a deniand. This is because if
the main task tries to access the sparked týisks value, this constitutes a synchronisation constraint
between the tasks. In particular whou a denzand occurs the demanding task must wait for the
demanded task's value to be eviiluated. The (? z - W) argument to denzand identifies the task
whose result is required. Thus Aniand (n - W) represents a demand for the (it - n')th last task
sparked. Notice also how the evaluations for both El and E2 have the number of sparked tasks
incremented, since a spark has occurred.
The meaning for a variable is:

ýý p ii = pfv} n
The value associated with the variable v in the environment p is looked-up and applied to the
current number of sparks. This applicatiou will either return a. no-op Tracetree function or
the function will be a demand. In the former case the no-op Tracetree function is the identity
function, see for example the sequential let binding. The latter case, see plet, corresponds to
a synchronisation constraint; the cleniaiiclecl task must complete before this task may continue.

The work annotation {E} has t lice following nmeanin :

A4J{1.. } p 11 = (i, I work)

((i, I) = :WEpn

It appends a work- Tracetrcc function (constructor) to the Tracetree function for E.

The full set of semantic equations are shown in Figure S. S.

Using the tracetree semantics for simulation

This section describes an infortiu-il iise ol't liv previotis Traccirec semantics. Although the seman-
tics was only used to guide the inipleiiiew; ition, it wotild lia-ve been possible, if a little tedious,
to formally derive the inipleineiii; i6oii.
Since a lenient language Nvas not available I]w experiments were performed in a lazy language.
For strict adherence to the seniawics, t1w st-rictiiess of sequential bindings must be enforced. If
this is not enforced some proi.,, ranis iiiaY feriiihiate wldch otherwise would not do so.

The Tracetree data, structure was iºnplenº'nled in the obvious way:

> tracetree :: = Spark tracetree tracetree
> Work num tracetree I
> Demand num tracetree
> End

CHAPTER 8. PERFORMANCE ANALYSIS AND DEBUGGING

M vI p 71 = n[V] 71

M E1 E2JI pn= (fah tl " t2 " t3)

(. f, tI) _ /ti[EI] pn
((,, 12) _M {421 P ýt (Ja. 13) =f (I 71

.
A4 [\v. El pn= (\n.) n'.: V1QE p[v i-: An. (a, id)] n', id)

. 1t41let v= E1 in E2D P il = (0,11 12)

(n, 11) =M ELI pn (13, i2) = MjE21 p[vF+an. (a, id)] n

MQ1etrec v= E1 in E., j p» I1 " 12)

(3,1k)= fix (, \(n, -)" J4 ELI n[vF-.)- x] n
x= An. (a, id))

Ki
. 12) _i 4jE2I p[%, F An. (ß, id)] n

..
M[plet v= E1 in E21 p ii = (; 3, spark (11 end) " t2)

/"Qrij p
/"JE2] p[v'_'x] (n+1)

r= An. (n, demand (n'-n))

M E1+ Ed n It

M[MI p is

(H+r2, ii '12)
(s'1,1) = /W[Ell n ?a
(i'2,12) = /ViIE21 P 71,

wwork)

= 14
I[E] p 71

where id = Al. t

224

Figure 8. S: 't'race tree semantics

CHAPTERS. PERFORill. -, INCI, -'.. I. 'V. ýllýý'SISA: \7DI)EBUGGIi\G 225

Note that a parameterised zvork has becti used Work. The Demand constructor has a numeric
argument representing the nth Iasi fask which is being demanded, exactly as demand does in
the semantics.

The simulated function shown here is ;i imi-allel divide and conquer combinator. It is based on
the simple divide and conquer combimitor sliown in Section 3.4.3.

> dc:: (*->(**->**->**, *, *, tracetree->tracetree, tracetree->tracetree))
> (*->bool)
> (*->(**, tracetree->tracetree))

> (**, num, tracetree)

> dc div' isleaf solve
>f0 End
> where
>f ns tt x= (solveval, ns, solvett tt), isleaf x
>= (comb vI v2, ns, divtt (Spark 1 r)), otherwise
> where
> (v2, z, r) =f ns End s2
> (vl, rns, l) =f (ns+l) tr sl
> tr = Demand (rns-ns) (combtt tt)
> (comb, sI, s2,
> divtt, combtt) = divI x
> (solveval, solvett) = solve x

Conceptually two types of operatioiis occtir: the computation of real results and the simulation
of parallel evaluation. The ftnictioiis divI, isleaf awl solve perform the division, leaf testing
and solution of problems. hi ad(fitioii Io the restilt hiforniatioii which they normally generate
they also generate simulatioii hiforinatioii. Tlie finictimis divtt, combtt and solvett produce
the simulated evaluation for flie (Iivisioii. coiiibiwitioii aiid solutioii of problems respectively.
These are in turn represciAed as tracetree. s.

The result of a D&C combitiator ; ipplicmimi is -i triple comprising the result value, the number of
sparks (down the leftmost bram-li) mid ;t tracetree of the evaluation. The subsidiary function f
has three aTguments: ns, tt and x. 'Pliese roproseiit the miniber of sparks so far, the tracetree
continuation and the 'real' re. sidt. Tlw tracetree continuation represents the evaluation to
occur once each leaf task completes. Aii idterimti%, e to this would be write the D&C combinator
using a continuation passing style, this mmid more closely inimic the real evaluation order of
the function.

An example application of the conml)iuator is shown below:

> bsum:: (num, num) -> (num, num, tracetree)

> bsum = dc div' isleaf solve
> where
> isleaf (a, b) =a=b

CITAPTER8. PERFORALUN CEA A7A IXSIS AND DEB UGGING 226

> divI (lo, hi) = ((+), (lo, mid), (mid+l, hi), Work 1, Work 1)
> where
> mid = (lo+hi) div 2
> solve (lo, hi) = (lo, id)

The bsum function takes a. pair or iiiiiiibers, representing a range, as argument and uses the
divide and conquer function to stini Ilie range of numbers. Dividing and combining problems
both have a tracetree function N(ficathi, a constant cost of one (Work 1). Solving a problem
causes no evaluation to take place, lieiice I lie tracetree function for this is the identity function.
A more complex function such as the (prid-tree matrix multiplication will produce much more
complicated tracetrees for div'. Iii fact (Imid-tree matrix multiplication will use the D&,

_C
combinator to perform matrix additimi for coinhiiihig matrix multiplication sub-problems. I
A function for interpreting tracetrees is shown below:

> trace:: tracetree -> ([num], num, num)

> trace = trace' [] 0

> trace':: [num] -> num -> tracetree -> ([num], num, num)

> trace' sl pt End
> trace' sl pt (Work w tt)

> trace' sl pt (Spark 1 r)

> trace' sl pt (Demand n tt)

> rep 0e
>repne

> addlist

> ziplist op [] 1
> ziplist op 1
> ziplist op (x: xs) (y: ys)

_ (C], pt, o)
_ (rep w1 ++ p, pt', st+w)

where
(p, pt', st) = trace' sl (pt+w) tt

_ (addlist ppl ppr, ptl, stl+str)
where
(ppl, ptl, stl) = trace' (ptr: sl) pt 1
(ppr, ptr, str) = trace' sl pt r

(rep (spt-pt) 0 ++ pp, pt, st)
iihere
(pp'pt''st) = trace, si (max [pt, spt]) tt
spt = sl! (n-1)

= C7
=e rep (n-1) e

= ziplist (+)

=1
=1

= op xy: ziplist op xs ys

The trace function takes a tracetree mid produces a triple representhig: the parallelism trace
(given an unbounded number of procvssors). the parallel execution time and the sequential

CHAPTERS. PERFORMANCEA., YALYSIS AND DEBUGGING 227

execution time. The function trace I ta Iýes three argiinients. The first is a list of times at which
tasks finish along the current tracetree branch; this is arranged in task sparking order. By
arranging the first argument in t1iis wa ,v

Demands may simply look-up when the demanded task
finished. The second represents the parallet time and the third is the tracetree.

Notice that especially in the trace fmictimi lazy evaltiatimi has been very useful. This would
not be possible in the proposed leiiietit Imi(fitage unless such lists etc. were always evaluated ill
parallel. Thus lazy languages are more expressive, btit at the cost of not being able to reason
about their operational beliaviour.

In general this technique of abstriict sinitibition was found to be very useful. Its usefulness stems
from its versatility. It gives t lie progn-, unniergrezit control over simulation and it does not require C,
a simulator. Of particular importmice is I he ability to model the behaviour of functions in order
to aid understanding of their perfornumce.

8.6 Debugging

8.6.1 General

This section describes how poody I)erforniing, programs may be debugged. In particular pro-
gramming errors rather than algorilliniic ori-ors are tackled. A distinction is made between the
program expressing a parallel a]-orit Iiin aii(l t lie algorithin itself. Ideally the approximate per-
formance of an algorithm sliotil(I be calciikilv(l before the program is tested. However in practice
the performance is only likely to be calctilale(I xviien a program performs poorly. This section
considers how program errors inay be (liscovered bY testing, in practice it also may pin-point
expressions whose cost should lie forniall

,v aiialysed. Testing alone is not sufficient to determine
inherent poor performance in in algoritIlin.

The basic techniques for perforninuce (IM)ii-ging are the same as for any form of debugging.
Different parts of the prograin are teste(I in isoLition to try and locate any bugs: in this case
expressions with a high evaluation cost. 'Hiis nui , N, procced top down or bottom up. Bottom up
testing is straight forward. It aniotints to tosliiig functions on data which they typically could
be applied to during a prograin riin. '1'01) down lesting re(Iiiii-es abstraction over component
expressions. This may be acIiieved bY wsitil,, teclini(Ities, as described in the previous chapter,
to model functions behaviotir ; in(l A 1); irticiilarly useful function for modelling other
functions behaviour is delay:

> delay 0x =x
> delay nx= delay (n-i) x

The delay function introduces an arlificial delay proportional to its first argument. This may
be provided as a primitive so lli; tl aii m-ew driveii simulator need not actually perform the
delay. Example uses of delay occtir iii siihse(piew sections. I'liroughout performance debugging,
program meaning is irrelevaiit: Iwograill lwliaviolir is t1le chief concern.

Many performance errors arise froin laz
,v evidiiitioii. 1,, iz.), evaluation may delay the evaluation

of an expression and hence reduce Ilw miotim of work a task may do. This can mean that the

CHAPTER 8. PERFORjllAjYCE. ý1jV: 11, ý'SIS. ýl. iVDDEBUGGhVG 228

work tasks could have done is perforiiied se(litentially by a single task. ror example work may
be locked-up in a closure which is the argmneiit to a constructor. Many of these errors caused
by laziness could be eliminated if coiiipflei-s perform strictness analysis of programs and cause
strict functions to evaluate their argimieWs using call by valtie evaluation. This is a little ironic

since strictness analysis is being tised to cliange the sequential order of evaluation which may
in turn aid parallel evaluation. However. all parallelism is expressed by the programmer. The

problem with this approacli is that the strictness analysis is invisible to the programmer. The

programmer does not know wlietlier st rict ness analysis is being performed and if it is being done,
how, good such an analysis is. The alterivitive is to tise seq expressions to force evaluation of
strict arguments and to force the evahiatimi of data structures beyond NVIINF. This is discussed
further in Section 9.1.

All the following example en-ors wei-v ono., acniallY made by the author. The techniques shown
were used to eliminate these biigs. Him-evvi- For soine of these, an(l in general for more complex
programs, some blind alleys will be invesligalv(l too.

8.6.2 Example: n-queens

This n-queens program was derive(l as sliown in t lie Sqtfigol chapter. However, a mistake was
made in its translation from S(Ini-ol iii1o I lie hinctional language. The program shown below
computes the correct valties bio only lias an averallre parallelism of just over one.

> queens n= power n g' [D]
> where
>9f oldl gg 0
> where
> gg ab= par x (x++a) where x=Pb
> f) y= foldl ff [I ([l.. nl--y)
> where
> ff ab= par x (x++a) where x= hI yb
> hI ye= 11, delta' ye
>= [e: yl, otherwise
> delta' rp= (exists

.. parlist id . map (check' (1, p)))
> (zip [2.. nl r)

check' (i, j) (m, n) = (j=n) \/ (i+j = m+n) \/ (i-j = m-n)

> exists = foldl (\/) False

> res = queens 4

A single iteration of power g sliotild iii pirallel. Therefore the program was broken up
into into its constituent functions, so I li; i II livy coidd be tested individually. The parallelism in
g arises from applying f in pinillel Iot lip, vlvineiits of g's list argument. Hence g was given a
test argument of [Ell

,
[21 J31 J411. wliicli is the restilt of the first power iteration and this

should result in some parallel ev; iIiinlioit.

CHAPTER& PERFORAIA NCEA. NA IXSIS A ND DEB UGGING

> V =f oldl gg D
> where
> gg ab = par x (x++a) where x=Pb
> f) y = foldl ff
> where
> ff ab = par x (x++a) where x= hI yb
> hI ye = 11. delta' ye
> = [e: yl, otherwise
> delta' rp = (exists . parlist id . map (check' (1, p))) (zip [2.. nl r)

check' (i, j) (m, n) = (j=n) V (i+j = m+n) \/ (i-j = m-n) .

> exists = foldl (\/) False

>n=4

> res =g [[1], [2], [3], C4)ß

229

The g function did not evaluate iii parallel. 'I'lierefore its structure was scrutinised. Either the
function f it should be applyhi, - iii parallel does not do inucli work, or f is not being applied in
parallel. The latter seems inost likel

,y mid so it was tackled first. A substitute for f was required
which was guaranteed to do some work. TIiis is exactly NvIiat delay is designed to do. Thus, f
was replaced by a functim criidelY modelled its bellaviolir:

>9f oldl gg
> where
> gg ab par x (x++a) where x= delay 100 b

> res g [[11, [21, [31, [411

This still produced little pmillelism. Hence the problem nitist lie with g itself. Close inspection
led to the realisation that a jiot x shotild be spirked. To test this hypothesis the previous test
was repeated except a was simi-ked insfv; id of x:

>9f oldl gg
> where
> gg ab par a (x++a) where x= delay 100 b

> res g [[11, [21, [31, [411

Now g did evaluate in panillel. 'I'lie oripinal n-qnvens progrzim was then tested with this change: 00

> queens n= power n g' [[]]
> where
> g' = foldl gg
> where

CHAPTER& PERFOR,., IIA., \Cl!,, AA.; V. -ILý'SISA.!, \DDEBUGGIAG

> gg ab= par a (x++a) where x=Pb
> f) y= foldl ff [I (Cl.. nl--y)
> where
> ff ab= par a (x++a) where x= hI yb
> hI ye= 11, delta' ye
>= [e: yl, otherwise
> delta' rp= (exists . parlist id . map (check' (1, p)))
> (zip [2.. nl r)

check' (i, j) (m, n) = (j=n) \/ (i+j = m+n) \/ (i-j = m-n)

> exists = foldl (\/) False

> res = queens 4

This evaluated with a very Idgli averago parallelism. 1) In

230

This error involving foldl nmy iiot li; ive occiii-red if the Squigol had been translated to use
f latmap rather than to use f oldl. Nlevvil ltvlvss t Ids example is still a useful debugging demon-

stration and if f latmap Ii-ml been wse(l t lieii a (liffereut programming error may have occurred:
as it does in the next example.

8.6.3 Example: Primes

This program generates all tlic pritne iiiiiii1wrs less thaii 2000. Like ii-queens it produces the
correct results, but evaluates witli fit I le 1), irallelism. It works by testing each number for divis-
ibility by any of the prime numbers lv. ss lliaii its s(piare root. If no prime less than its square
root divides it exactly, then t1w mmilwr is prime, otlierwise it is not prime. This algorithm is
discussed in Section 3.4.2.

The erroneous program is -, IioxN-n below:

> prim ((p, sqrp): ps) n=U, n mod p=0
>= [(n, n*n)], sqrp >n
>= prim ps n, otherwise

> primes = (2,4) : flatmap (prim primes) [3.. 19991

> flatmap f= 11
> flatmap f (x: xs) =fx ++ flatmap f xs

> res = map fst (parlist id primes)

One reason for the lack of parallelisiii iii. i ,v
be that primes are being generated too slowly. The

calculation of each prime requires all t liv pi-evioiis primes less than its square root. To determine

whether this is the case aii(I to try (iji(I shii1dif
*v

the rectirsive nature of the datastructure, primes
will be given a pre-comptited list of priiiies primes'. This eliniiii-ates the recursion of primes
and any delays in calculathi, Hie primes lisl (hic to backwards dependencies.

M

CHAPTER& PERFORAMAICTI'A N-A 1, VMS A ND DEB UGGIJNG

> prim ((p, sqrp): ps) n= [1, n mod p=0
>= [(n, n*n)], sqrp >n
>= prim ps n, otherwise

> primes' = E(3,9), (5,25), (7,49), (11,121), (13,169), (17,289),
> (19,391), (23,529), (29,841), (31,961), (37,1369),
> (41,1681), (43,1849), (47,2209)]

> primes = (2,4) : flatmap (prim primes') [3.. 19991

> flatmap fD= 11
> flatmap, f (x: xs) =fx 4+ flatmap f xs

> res = map fst (parlist id primes)

231

However this still performs little 1). -ir; illel (w., ilualiciii. Thus either the function (prim primes')
does little evaluation or there is sciiiiel Iii w, wi-oii- wit li the wa res has been expressed. To test
this the function (prim primes I) is nuAvIlv(I by ushig, delay. This will ascertain whether the
problem lies with (prim primes I) oi- I lie ,I i-tict tire of res.

> primes

1fX

> flatmap f []

> flatmap f (x: xs)

> res

= flatmap f [3.. 1999]

= delay 100 [x]

= C]
=fx ++ flatmap f xs

= parlist id primes

This still has little parallelism, hencv t1w proNein must lie with the structure of res. By running
the previous program on paper and willi a little careful thought the problem is revealed to be
parlist composed with flatmap. 'I'lic parallel evaluation, by parlist, of a list produced from
flatmap f1 cannot proceed fi-oin one application off to the next until theprevious application
of f has produced tliespine of its residtin. g, list. 'I'lic hypotliesis is that aspecial parallel flatmap
is required. This is tested below:

> primes

1fX

> parflatmap f [I
> parflatmap f (x: xs)

= parflatmap f [3.. 1999]

= delay 100 Ex]

= 11
=Parr (f x++r)

where
r= parflatmap f xs

> res = primes

CHAPTER8. PERFORMANCEANA LI'SISAND DEB UGGhVG 232

The result of the above confirm t lie liypotliesis that a special parallel flatmap is required. The
primes program then may be rewritten tinis:

> prim ((p, sqrp): ps) n= [1, n mod p=0
>= [(n, n*n)], sqrp >n
>= prim ps n, otherwise

> primes = (2,4) : parflatmap (prim primes) [3.. 19991

> parflatmap f [I
> parflatmap f (x: xs)

> res

=0
=Parr (f x++r)

where
r= parflatmap f xs

= map fst primes

This version of primes does evaluate in parallel. Parallel filter exhibits a. similar property that:

> res = parlist id (filter p 1)

exhibits little parallelism. Like f latmap a special parallel version is required:

> parfilter p []
> parfilter p (x: xs) par rest 1

where
(x: rest),
rest,

rest parfilter p xs

8.6.4 Example: matrix addition

px
otherwise

The final example is matrix addition. 'Hiis is exactly the sanic as has been used before except
that it has been encoded directly rillwj- tliýtn witli it divide and conquer combinator.

> matrix Scalar *I
> Quad (matrix *) (matrix *) (matrix *) (matrix

> add (Scalar n1) (Scalar n2) = Scalar (nl+n2)
> add (Quad abc d) (Quad efg h) = (par ml . par m2 . par m3 . seq m4)
> (Quad ml m2 m3 m4)
> where
> ml = add ae
> m2 = add bf
> m3 = add cg
> m4 = add dh

CITAPTERS. PERFORMANCE A., VA LYSIS AND DEB UGGIAG

80

60

Number
of 40

tasks

20

0

Figure 8.9: Matrix addition (erroneous)

> res = add test test

233

The test matrix is a 64 eleinenit mal rix. Tliis program has a. Iiiah average parallelism; however
its parallelism profile shows a Imig seqiiviitial -tail'. Figtire 8.9. This tail may be accounted for
by the output time for the matrix. 'I'lie siimilator w1iich was used takes one reduction cycle to
output each constructor or basic value. Also Ilie symmetric nature of the prograin (quad-trees

were balanced) means that once all btit mic task lias died in the parallelism trace, only output
can be occurring. Output of the 6-1 olviiiew residt matrix should take: 64 numbers + 64 Scalar
constructors +1+4+ 16 Quad coiisti-iictors, a total of 1,19 cycles. (See Chapter 4 for more
details of the simulator which was irsod.) However the sequential output tail is well over 200

reduction cycles long. By dry-riiiiiihig, Oto I)rogram with a small four element matrix it became

obvious that the extra, time was diie to Hie imii-stricniess of Scalar constructors. The number
additions were being forced by the ow1ml driver, (hiriii- the output phase.

To remedy this, the scalar additiow; wol-v I'M-cv(l hi the inatrix addition function by using seq:

> matrix Scalar *I
> Quad (matrix *) (matrix *) (matrix *) (matrix

add (Scalar n1) (Scalar n2)
add (Quad abc d) (Quad efg h)

seq x (Scalar x) where x nl+n2
(par ml . par m2 . par m3 seq m4)
(Quad ml m2 m3 m4)
where
ml = add ae
m2 = add bf
m3 = add cg
m4 = add dh

> res = add test test

0 100 150 200 * 250 300
Tillie

CIIAPTER8. PEI? FORil[Ai\'C]-,,. I., Y. -A],)'SISANI)I)r:, BUGGIjN'G 234

80

60

Number
of 40

tasks

20

0

Figure 8.10: Matrix addition (correct)

This resulted in the new parallelism pi-ofile sliown in Finire 8.10. This has an output tail of the
predicted length.

8.7 Summary

This chapter has considered reasoiihig al)otit 1)erforniaiice and performance debugging. It has
been argued that performance aimlysis mid diff*erent levels of performance measurement are
all complementary and that they are all iiecessary for performance debugging. Starting witli
a simple, general analysis of prograiii 1wi-forimmce and moviiig to more detailed analyses and n0
measurements, this chapter has hivesliý, aled 1wi-forimuice issues of parallel functional program-
Ming.

The first section used a simple geiieral aiial. ysis to sliow that some seemingly good parallel
algorithms do not exhibit a goo(I sjwe(l-iij). for exainple Qtiicksort using lists. Some generic
divide and conquer algorithms were awil , y. sw(I aii(l tlieh- speed-iij) calculated. This generated
simple constraints which can be used to (leterinine whether a divide and conquer algorithm is

a good parallel algorithm or not. It also becaine apparent that some problems have sequential
algorithms which do substantiall ,v

lo. -'s work diall J)arallel algorithms for that problem, notably
scan (parallel prefix). Thus for soine 1)robloiiis officiea parallel algorithms should be hybrid

parallel and sequential algoritlinis. Tk-w sliotil(l use a parallel al orithm to distribute work 09
across processors and an efficient se(liwiiiial algoritlini tosolve problems onindividual processors.

The naive analysis used for analysing DK--C algorit-linis was simple but overly synchronous. In

particular it did not permit pipelined parallelisin: lience a more detailed analysis was devised.
A semantics was designed for calcidaling t1w performance of lenient programs, which permit
pipelined parallelism. The semantics was (Iiiite complex, reflecting the operational complexity
of lenient languages. It was possible, to reason about small prograins, but even so this was
quite complicated. A pipelined version of Qnicksort was analysed; this occupies five pages! This
showed that the pipelined version of Qiiirksort %vas twice as Fast as the previously analysed
synchronous one. Lenient languages represelit a Compromise between strict and lazy languages;
however, it seems difficult to extvnd I liv soniantics to d"cribe parallel lazy languages.

0 . 50 100 1.1-50 200 250 300
Time

CHAPTER& PERFORAIANCPI'ANA LVSIS A NO DER UGGING 235

A different use of the perforinaw-e sviiiaiitics for the lenient language was to regard it as a
specification of a parallel interpreter or shmilator. By treating the semantic equations as trans-
formation rules, parallel prograni shiiiihitiou could be performed by pro-ram transformation.
This represented an abstract form of perforniance rueasurenieut, rather than analysis. Also, it
was shown how more detailed inforinatiou

such as parallelism profiles could be generated from
the performance semantics. Witli the hell) of' a clever compiler, simulation by transformation
could be made very efficient; effectively shmilation could be compiled into programs, rather like
instrumenting them. ror siniulathig par-allel evaluation with a. limited number of processors, a
semantics was designed which generatesa Iiistory trace representhig a programs eva, luation. This
tree maybe traversed in different waYs to reln-esent evaluation by different numbers of processors
and different scheduling strategies.

Finally, it has been shown lioxv a shniihi(or. stich as the one outlined in Chapter 4 or the one
derived from the performance seiiiawics. caii be used to detect some programming errors which
result in prograiris with poor perforinaiwes. This can involve scrutinising parallelism profiles
at quite a detailed level. Thus this reprvsciitý; performance debugging at a very detailed level,
using performance measurements ral her I ha ii a iialyses.

8.8 Conclusions

The main conclusions of this clm pt (, r a re:

It has been shown that difl7erent. lex-els of performance debugging are necessary. This has 0 been demonstrated by measuring mid dobugging the performance of programs at different
levels of abstraction.

Formal methods are necessaiw for reisoifitio- abont performance. This has been shown by
measuring the performance of soine seenihigly good parallel algorithms, which are revealed
to be poor parallel algorithins.

0 Pipelined parallelism is inij)ortaiit for t1w perforim-mce of sonie parallel algorithms, for 0
example the sieve of Eratostliciies iiid Trinder's functional database [109]. To this end
a formal semantics for rezisoidiig abow the perforniance of a lenient language has been

11 devised (lenient languages periiiii pilw1iiied 1), irallelisni).

0 Sometimes hybrid parallel aii (I se(piciitia I algorithins are necessary for efficient implementa-
tion on AHNID machines. This is bocaiise sonie parallel algorithms are inefficient sequential
algorithms. This has been deniowtrated by awilysing the performance of various parallel
and sequential scan functions.

0 An interpreter or simulator is tisefid for low le%-el performance debugging. Particularly in
the case that an algorithin is k iio%%- ii Io li; o-e a good parallel performance, but a mistake has
been made in encoding it iii a hiiiclioiwl kiii-tuige. Three real examples have demonstrated
this.

*A flexible simulator inay be dc\-(-IoI)ed directly froin a perforinance semantics. This enables
simulation to be achieved by progrimi traiisforination. This allows the programmer great
control over the detail of sinnilatimi. It was found useful to model programs' performance
by constructing functional progrmis. Z:)

CHAPTER8. PERFORMANCE AiNTA LYSIS AND DEB UGGIATG 236

An advantage of programming ushig parallelism abstractions, is that it is possible to find

constraints which guarantee an alo-orithins good parallel performance. This has been done
for a divide and conquer parallelism abstraction.

Chapter 9

Further work

This chapter discusses directions for fin-dier work. Some specific problems from the preceding
chapters are discussed and ideas for ; i1leviithig them are considered. Three main areas are
discussed: parallelism expression au(I ; dgorithnis, parallelisin control and performance
analysis.

9.1 Expressing parallelism and parallel algorithms

9.1.1 Non-determinism and algorithmic skeletons

Determinism is both the saviour md ctirse of jnirillel ftinctional programs. Many parallel algo-
rithms require non-determinism, for exaniple br. mch and bound algorithms. It is important to
be able to express such algorithms; for ex; imple it luis been claimed that: "Branch and bound

algorithms are the most frequently use(l niethods iii practice for the solution of combinatorial
optimisation problems" (Karp awl Zli; iwr [69)). Uiifortimately functional languages cannot ex-
press parallel branch and bound algoritimis. Addresshig this problem, Burton and Hughes have
described ways of handling non-detei-ndidsiii hi a. ftnictiom-il language without compromising the
ability to reason about such pro ranis. 'Fliese iire described in Chapter 7. Also in this chapter,
bags are proposed, which permit a Ihnited forin of jioii-deterininism to be expressed. However
there are problems with all of these approm-lies.

An alternative approach is to provide the prograiiiiner with a library of non- deterministic algo-
rithmic skeletons [29]. These abstractioiis cotild be giveii special non-deterministic implemen-
tation in another language. If hiter-law, tiage workiiig was supported, new abstractions could
also be defined. The results of abstractioiis coid(I be truly non- deterministic, in which case
Ilughes-style sets could be used to represcia fliese (57]. AlteriiativelY abstraction results could
be deterministic, with an implicit. proof obligation of (leterininacy, like bags.

0
The problem with this approach is the additimuil complexity of using two languages: the func-
tional. language and the sh-eleton inipleniewMimi kingitage. Reasoning can be aided by providing
a functional specification of what, abstrictioiis do. However it is difficult to transform applica-
tions of skeletons, since these consist of a inixtin-v of two languages.

0

23 7

CHAPTER 9. FURTHER WORK

A branch and bound algorithmic skeleton

238

This section describes an example of i noii-(leterininistic algorithmic skeleton, which implements
branch and bound algorithms. The branch and bound combinator (bb) has type:

> bb :: (val

> (prb

> (prb

> (prb

> prb
> (prb

, va

val -> bool)

val)
[prbl)
bool)

an ordering on val
fun for a problems cost (val)

problem division
is a leaf problem?
the problem to be solved
the least cost solution and its cost

A typical application of bb would mig ,
ht look like:

res = bb (<=) cost div isleaf problem

The bb combinator finds the least cost so] tit ioii to a problein. It returns a pair of the solution and
its cost. The first argument of bb represeas aii ordering on costs (val). The second argument
(cost) determines the cost of solviii, a probleiii. The third argument (div) divides a problem 0
into a list of sub-problems. The foiirdt argimient (isleaf) determines whether a problem is

solvable.

An exhaustive search specification of bb nui. v be defined thus:

es :: (val
> (prb
> (prb
> (prb
> prb
> (prb , va

val -> bool)

val)
[prbl)
bool)

1)

an ordering on val
fun for a problems cost (val)

problem division
is a leaf problem?
the problem to be solved
the least cost solution and its cost

> es rel cst div isl a= (a, cst
> (foldll
> where
>f
> sel ab

a) , isl a
sel . map f. div) a, otherwise

= es rel cst div isl
= a, (snd a) $rel (snd b)
= b, otherwise

The operation and parallelisation of this fmiction sliould be obvious.

Branch and bound algorithms -, ire optinii. wd sviirch zilgorithins. They work by computing a lower
bound on the cost of a sub-problem's sohition. Such lower bounds can be used to guide the order
in which sub-problems are solved, or to detect that sub-problenis need not be considered, see
[48,93] for further details. In order for es to be vqwil to bb the following conditions must hold:

1. The cost function inust give a lower bound on sub-probleills' solutions:
Vp E prb : (cost p) $rel (es rel cost div isleaf p)

CHAPTE R 9. FURTHER WORK

2. The rel relation must be a total ordering on val.

239

3. The bb function may not expand all the problems which es does; therefore problems and
their sub-problems must be completely defined.

If these conditions hold then: es = bb. These conditions are left as a proof obligation for the

programmer who uses bb.

A problem for the implementatimi of bb is that it must inimic the same search order as es.
This search order is induced by sel hi es; sel favours its left operand in the case that the
two operands have the same cost. The bb iniplementation must either reflect this or it must be

ensured that the costs of different sub-problenis are never the same. That is, it maybe necessary
to add the constraint that cost is injective hi order for the implementation to give precisely the

same results as the exhaustive searcli.

For details of how bb might. be implemeitte(I see the imperative implementations described in
[48,93). The effects of parallelising brmch mid bound dgoritlirns are considered in [73].

Very recently McKeown et al. [79] have suggested a similar idea to this parallel branch and
bound abstraction.

The utility of bb is unknown. An iinpiciticiOzition of it is required in order to test it. There are
a number of possible implementations. Soine experinictitation is needed to determine whether a
single combin-ator for expressing parallel bratich and botind algorithms can be both general and
efficient.

9.1.2 Speculative parallelism

It is useful to classify speculative ON"1111,11ion into two classes:

general: this speculative evaltiatioji is iised to improve the performance of an algorithm by

speculatively evaluathig expressimis. TJJs is ati attempt to try aiid utilise spare processhig
resources. Many expressloiis ire rmidmidY selected for parallel evaltiatioii.

specific: this specific speculative evaltiation is ftindamental to some parallel algorithms. It
is typified by parallel search algoritlinis; whose only source of parallelism is speculative
parallelism. This parallelism tistially only arises in a few places in an algorithm.

General speculative evaluation, iii aiiy laiigiia e, is difficult to manage. The performance benefits
n

of this kind of random speculative parallelisiii are also dubious; since the overheads of supporting
this parallelism will be high and decidijig wldcli expressions to speculatively evaluate is difficult.
However it is clear that specific speculative parallelism can be fundamental to an algorithm's
performance.

Therefore it seems desirable to support specific speculative parallelism and to express this ex-
plicitly, for example a simple parallel som-clt:

> bintree * :: = Node (bintree *) (bintree *) I

CHAPTER 9. FURTHER IVORK

> Leaf

> found Yes No

> search :: (*->**) -> ** -> (bintree *) -> found *

search f key (Leaf e)

> search, f key (Node 1 r)

> sel No y=y
> sel xy=x

Yes e, key =fe
110, otherwise

= spec-par sr (sl $sel sr)
where
sl = search f key 1
sr = search f key r

240

An alternative to using spec-par wotil(l be to tise i generic parallel combinator for speculative
and conservative parallelism. By perforinhigg a st rict. iiess analysis it could be determined which
kind of parallel conibinator wis re(Iiiii-M: coiiser%-ati%'e (par), or speculative (spec-par). Ex-
plicitly indicating speculative Imnillelism. v%, eii %, i; i a gpieric parallel combinator, can decrease
the overheads of implementing spectihiti%-v Imrillelism.

Implementation difficulties can be furt lier reduce(] by constraining the form of speculative par-
allelism which can be expressed. Nlaiiy of t lie problems associated with speculative parallelism
are caused by sharing. If speculative tasks are only referenced by exactly one other task many
problems are alleviated. This may be eiistired by either performing a, sharing analysis to ensure
that this is the case, or by eiiforciug huearity, for example via linear logic [116]. By analysing
occurrences of spec-par it should be possible to determine where tasks become dereferenced (in
the same way that it is possible to deteriiiiiie where cells can be reclaimed with linear logic) and
hence where the necessary task killhig iiiechauisin needs to be implemented. However, there are
still problems ensuring that all rediiii(law sjwculative tasks are killed.

For optimal speculative evalti; ttioii il nm ,y
be necessary to analyse patterns of evaluation to

determine a good schedule for specubitive tasks. This corresponds to assigning priorities to
tasks. In the example above the schediding ofspectilative tasks should be optimised for a depth
first left to right search.

A lot more further work is necessary to develop these ideas. It is however essential that algo-
rithms, like the one above, can be expressed aiid inipleniented in a. parallel functional language.

9.1.3 Hybrid progranis

In Section 8.2.3 it was shown that efficieW parallel al-prithnis may need to consist of two parts: a
parallel algorithm for distributhig work across processors and a sequential algorithm for solving
work on individual processors. Tlie parallel language which has been proposed is not suited
to expressing such algorithms. In partictilar, generatim, a fixed number of tasks to run on the

I ?n
machine can be very difficult. The iminber of tasks which must be generated is also dependent on
the machines loading; this inforinatimi camiot vasily be obtained at run-time. It would be easier

CHAPTER 9. FURTHER WORK 241

to specify such algorithms using nn (,. xl)li(-it mapping scheme, which enables the programmer
to explicitly map tasks to processors. However, for a shared memory machine a more abstract
method is desirable. One possibility is now outlined.

It should be possible to specifýy -i Imi-allel and sequential algorithm and to indicate where
in the parallel algorithm choice betweeii the algorithms should be made, according to the
system load. One way to acifleve this is by ushig a non- deterministic choice operator:
(choose paralg seqa1g). The choose -function' is non-deterministic, it chooses (returns)
its first argument if the system is liglitly 1wided and its second argument if the system is heavily
loaded. The arguments of choose inust liwe the saine value in order for it to be determinate,

and for it to make sense! In order to reiisoii abotit programs using choose oracles could be used,
see [2,24]. It may be necessary to t ake t 1w 'size' of problein being solved into consideration:

..
(if (small prob) then seqalg else (choose paralg seqalg)) prob

If a heavily loaded machine subsequent] ,v
beconies liglitly loaded then parallelism will be lost.

This can be circumvented by inserting a choose paralg seqalg into the sequential algorithm.
A version of the sequential algoritlini witli no chooses may be required for when evaluating
'small' problems.

The utility of choose is tinknown. Soine iniportmit algorithms do have inore efficient sequen- 0
tial solutions than parallel soltitimis. liviwo soniv niethod of expressing, hybrid algorithms is
required. Experimentation is re(lidred to test the effectiveness of choose. It should be possible
to implement choose very efficientlý.

9.1.4 par placement

The placement of pars can sometimes be dillicult. It is desirable for the programmer to indicate

where parallelism occurs in a prograin. however perhaps this need not be as rigorous as by

using pars and seqs. One particular problein is that often strict or parallel data structures are
required. It would be useful if these cotild be delhied or denoted as strict or sequential via some
special explicit type information.

Often the difficulty with placing pars mid seqs is ensuring that pars are evaluated as soon 0
as possible and that pars perform as much evaluation as possible. An ironic situation arises:
strictness analysis could be used to iii. sert seqs hito a program. It could ensure that pars are 0
evaluated as soon as possible and that pars 1wi-form as much evaluation as possible.

This may be too difficult to do. Ili this case au alternative approach is to design tools such as
interpreters and debuggers for verifyiw, diat pars and seqs are correctly placed. A concurrent
interpreter could allow all par and seq argunwias to be inspected before they were evaluated. In
this way it could be verified that pars aiid seqs were perforining the desired amount of work. It

would be interesting to extend the shnulalor wliicli was used to perform experiments, Chapter 4,
to generate this information, or alteniativolY to go via the simulation by transformation route,
Section 8.5.

CHAPTER 9. FURTHER IVOR K

9.1.5 Pipelining, par and seq

242

It can sometimes be difficult to get the desired operational behaviour from par and seq. Some-
times cither too many tasks must be generated or pipelining must be sacrificed. As frequently

mentioned in this thesis generating too iminy tasks can reduce programs' efficiency. 00
For example consider a simple pnrillel tree ni, -ip:

> bintree * :: = Node (bintree *) (bintree *) I Leaf *

> tmap f (Leaf x) = seq y (Leaf y) where y= (f x)
> tmap f (Node 1 r) = par rr (seq 11 (Node 11 rr))
> where
> 11 = tmap f1
> rr = tmap fr

This map definition does not support I)i1w1hied ptrallelism because Nodes are not built until 11
terminates. An alternative definitioti wtticli does support pipelined parallelism could replace the

expression par rr (seq 11 (Node 11 rr)) with par rr (par 11 (Node 11 rr)). However
this definition generates many redmidwit lasks. It might be expected that a tree with n leaves

would generate n or n+1 tasks. llowever this iiew definition which does support pipelining
generates 2xn tasks.

The problem stems from seq. The seq coiiibiii, -itor evaltiates its first argument and then performs
the update with its second argmnew. 'I'litis iccess to seq's result, and hence pipelining if its

result is a data structure, is preveitted tiiitil it has evaluated its first argument. This may be

prevented by changing the operatiowil beliiviom- of seq. (Note that in a real implementation
full applications of seq should be 'coiiipiled-mvay'.) Rather than evaluating its first argument
and then returning its second, seq ab slioidd initially save, but not evaluate, its first argument
(for example push it on a stack) flieii il slioid(l retiirii its second argument and evaluate that.
Once its second ' argument beconies blockvd or is iii WIINF, its saved seq arguments should be

evaluated. Thus seq becomes riolier like par, Ow first arginnent to seq is put in a pool for later

evaluation. However other processors iii; iY iiot take sparks from this pool. Only the current
processor may do this.

The problems with this approach is that norniallY seqs can be compiled to produce very efficient
code. With this approach they cannot. An alternative approach is to do some program analysis.
The problem only arises when the second argpinient to seq is a. data structure. Only in such
cases can pipelining be lost and hence seq needs to I)ehave differently.

9.1.6 Spark discarding

If GRIP-style pars are used which inaY discai-d spai-ks theii crucial parallelism can be lost. For
example, consider parlist:

> parlist f1 par (p 1) 1
> where

CHAPTER 9. FURTHER WORK

>p 11

>p (x: xs) par (f x) (p xs)

213

If the first par happened to be discarded all the parallelism would be lost forever! Thus some
parallel functions are not 'safe'. To detect this safety is difficult since it involves essentially
a sharing analysis to determine whetlier all par combinators occurring in an expression el of
par el e2 are accessible (shared) in e2. W'riting safe programs means that data structures must
be constructed using parallel constructors. This manifests itself as a loss of some abstraction.
Since for example a list cannot be built aiid then evaluated in parallel, it must be built with a
view to parallel evaluation. An exaiiiple of a parallel constructor is pcons, shown below:

pcons ht= par h (par t (h: t))

> parmap f [I = 11
> parmap f (x: xs) =fx $pcons parmap f xs

This suffers from the probleni disciis-sed iii I lie previous section, that of generating too many
tasks. One would expect pmap f1 wliere #1 =n to geiierate ?i or ? z+ 1 tasks, in fact it generates
2X 71 tasks. If pcons is derhied as I)elo\%- Hivii some pipelhihig may be lost.

pcons ht= par t (seq h (h: t))

An alternative is to introduce two forins, or par: par-may which may or may not spark a task
and par-must which always will spark i tisk. Essentially the idea is to prioritise some pars
over others. For example the parlist fittictimi may be expressed thus:

> parlist f1 par-must (p 1) 1
> where
>p 11
>p (x: xs) = par-may (f x) (p xs)

The drawback with this approacli is t1ml it roydres more work from the prorammer, than if
just pars are used.

9.1.7 Resparking and parallelism abstractions

A machines task mechanisin should discard useless tasks. That is a task mechanism should
discard a task if when it is first evaliiatv(l its --rapli is already in INIIINF or its graph is being

C,
evaluated by another task. In this waY soiiw resparkiiig inay be avoided. Unfortunately the use
of parallelism abstractions caii preveiit 11w delectioti ofsonie tasks being in INIIINF. Forexample

consider parlist id [1,2,3,41. w1wre parlist is defined thus:

> parlist f1 par (p 1) 1
> where

CIIAPTER 9. FURTIIER. IVORK

>p 11 0
p (x: xs) = par (f x) (p xs)

> idx =x

This application will create five tasks. An implementation of evalmition transformers could
record the degree to which the list [1,2,3,41 was evaluated and hence would not create any
redundant tasks. If partial evahiation is employed or if a specific parallelism abstraction is
written instead, for example pp [1,2,3,41 where pp is defined thus:

> pp par (p
> where
>p 11
>p (x: xs) par x (p xs)

(pp = parlist id) then only one exi r; i I; isk will be created; this will just traverse the list.
However it is not always possible to stmic, -dly determine what the argument to parlist will be.

Another solution to this problem is to use pcons ; is defined in the previous section. This has the
drawback though that it will create ext rii uisks inididly, in order to support pipelined parallelism.
The pcons constructor is described in t1w previous section.

9.2 Parallelism control

9.2.1 Analysis of delayed sparking and GRIP task size control 0

In Section 6.6.1 a limited forni of dela
' yed sj)arkhig is analysed. It would be interesting to

generalise this. In addition, if the GRIP taslý size control was also analYsedit would bepossible to
compare the two methods. This would be iiseftil for determining which problems the approaches
are best suited to. It would -also be useftil to (lei ei-jidite the effect of different scheduling strategies
on these two approaches. A simple aiial * ysis of I lie GRIP task size control strategy reveals that the
number of small tasks produced froiii a balaiwed tree of tasks, when there are many more tasks
than processors, should be logaritliiiiir hi the orighial iminber of tasks. However experimental 0 I'll
results produced many more sinall taslýs tliaii tlds, especially with unbalanced task trees and
other shapes of task networks. ']. 'his iweds ftirtlier aiialytical and experimental investigation.

9.2.2 Portable parallelism control

As described in Chapter 6 it is necessai-y to comi-ol progranis parallelism in order to make them
efficient. It is also desirable to uialw pi-opj*aiiis 1)ortable. However, these issues are potentially in

contention, since incorporating pandlelisin comi, ols, which are inachine specific, into a program,
is not going to make a prograin poi-tahle. To iiiake progranis portable and to allow machine
specific parallelism control, pro,,, i-anis inust be pai-anieterised with control information. This

may be achieved by providing predefiiw(l coiistauts at compile time, or input from the machine
at run-time.

CHAPTER 9. FURTHER WORK 245

For shared memory MIMI) machines, task sizes and task numbers must be controlled. To control
task numbers a program needs to -kiiow' t lie number of processors a machine has. The number
of idle processors will vary at run-tinie; u(wertheless it is useful to have a limit on the number
of available processors. This hiforinatioit could, for example, be used by a program to govern
how large buffers it should use for com rolliug pipellued parallelism.

Task size control needs two measures to cliaracterise a machine. Firstly the minimum amount
of processing a task should (to is required; since there will be some fixed machine overheads
associated tasks. Secondly a ineasure of tlie execution cost to communications cost ratio is
required. This characterises how much execution in relation to a tasks communication cost must
be performed in order for a task to be worth evaluating on a. different processor. Some simple
metrics are required to measure Otis. Y-Ixeculion cost can be measured in terms of reductions.
Communication cost can be measured hi lerms of grapli nodes which must be communicated.
Measuring these will be very approximate: liowc%-er this should be sufficient. Depending on
the particular algorithm, these ineasures imi 'y

be redmidaut. For example the execution cost to
communications cost ratio inay be ijivariaw for some divide and conquer algorithms.

Thus a program may control parallelism via some abstract measurements. These measurements
can be compared with parallelism coutrol measurenients which are provided by a particular
implementation. For example in algoritlini may be able to calculate the approximate number
of reductions that are required to sort auy tfi\- ', eii tree. The compiler may provide a predefined
constant worth-sparking wNcli is a lower bound ou. the number of reductions a task must do
to be worth sparking. Thus by couipariii- Ilie approximate number of reductions it will take
to sort a tree, with worth-sparking, it cim be determiiied whetlier a task is worth sparking or
not.

A yet more sophisticated systeni is also oiivisaged. Tijis systein autoinatically tunes a program's
parallelism control. It is -aimed at di\-ide aud couquer algoritlinis. Rather than the programmer
having to provide absolute ineasureineids, sucli as reduction counts, for specifying task sizes and
communication costs, abstract measuremeuts could instead be used. For example if a balanced
tree is to be sorted, rather tlian calculatim, an approximation to the number of reductions
required to sort a tree of beiglit It. It could bv used as in abstract task size measurement. These

0
abstract measurements should be ijiteggor values which increase, as task sizes do. Parallelism
control could be incorporated into a special combiuator. Essentially this would be a parallel
combinatorwhich mayormay not sparlýoiioofits ; ii-giiiiieiits, (Iei)eii(lingoii theotherarguments' 0
values. The parallel conibinator \\-out([lake wN, eral arprurneuts: what potentially to spark and 0
sorne abstract task size and coinimmicaliou cost measurements for that potential task.

A program containing these special parallel conihiiiators an(] some test input for the program
should be submitted to an automatic timijig systein. This system will repeatedly run the
program with the test data. Each rim %%-ill try to improve parallelism control by changing
integer bounds used by instances of t lie special parallel conibinator. These bounds determine
whether a task should be sparked or uot. Tliv bomids are automatically devised by the tuning
system. The integer values whicli in some way represent. task sizes and communication costs,
are supplied by the programmer, via I lie special parallel conibinators. Thus the system may
automatically time a, prograni's parallelism (-out rot. iii order to produce worth while tasks. It is
necessary for the test data, to produce a wide \, arioly of task sizes.

This
'
system needs to be irriplenieuled hi order to test it. It is potentially very useful because it

enables the programmer to coutrol parallelism witli very little effort. ?D

CHAPTER 9. FURTHER WOM

9.2.3 Pipelined parallelisni

2, iG

Buffering is required to control pipeliiied parallelisin. Unfortunately not all forms of buffering

can be implemented in a functional Jaiil-ý)iiage. In effect additional synchronisation is required
between tasks, in order to implenwiJ btiffering.

Consider the expression: f 1, to evalmite the list 1 in parallel with f the following expression
could be used:

> res =f $pipe 1
> pipe f1= par (seqlist 1) (f 1)

Thus f and 1 are evaluated hi i pilAhwd fiishioii. To limit the winiber of tash-s which are
generated and to reduce the sp-, we tisw-e. it is desir; ible to have some form of buffering. The

n
production (evaluation) zind cowsiiiii1dioii of' the list 1 shoidd be synchronised. Buffering could
be expressed tbus:

res =f $(buf k) 1

The buffer can be written to pro(hice a iiew lask for eacli element of the list; this was originally
described by Hughes in [58] an(] it has bevii experimented with in Section 6.5. However some-
times it is required to just liave, two ot- t ltr(ýv wqiwiaial tasks; one for the consumer, one for the

producer and possibly one for nmiiagiiig I Ite btiffer. However this cannot be implemented in the

parallel functional language.

Since this kind of pipelined behaviotir is iistially sotight only of lists, a special primitive could
be provided to implement this. There are two reasons for desiring this behaviour. The first is to
constrain space usage, to prevent the whole list being evaluated and then consumed. Secondly
for an infinite or very long list, like a strvaiii iii an operating system, some fairness is required
in the scheduling, in order to gtiarawee that the systeiii makes reasonable progress.

An alternative is to implement the khid of btifferhig previously described using logical vari- 00
ables, as used by Josephs in [661. Lopical variaMes are a. rion-functional extension to functional

n languages, which enable a greater coWrol of syiichroiflsation than is possible with just a pure
functional lan-tia-e. A great deal of' iise has becii iiiade of loaical variables in parallel logic

C. CD 00
programming, see [96].

The buffer function may be defined tlms:

> buf kf1= par (seq (seqlist init) (ff ctri rest)) (f l')
> where
> 11 = zipwith gg ctrl 1
> init = take k1
> rest = drop k1
> ctrl = inf-lst-log-vars

ff c0

CHAPTER 9. FURTHER WORK

ff (GO: c) (x: xs)

gg cx

> zipwith f [I y
> zipwith fx0
> zipwith f (x: xs)

= seq x (ff c xs)

seq (c: =GO) x

(y: ys) fxy: zipwith f xs ys

247

Notice that only one task is sparhed. Si ynclironisation is achieved via the ctri list; this is a list
of, initially, uninstantiated logical varia Ifles. rhe expression c: =GO instantiates a logical variable
to GO. The function ff blocks until ail eleincia of c is instantiated to Go. (This requires a fairly
simple extension to the inipleineutatioii of' tasks so that tasks may block on uninstantiated
variables and be resumed when such variables are instantiated.) Only when this occurs is tile
body of ff evaluated, and heiice Hie ww list eleitieut x evaluated. When the consumer f
evaluates an element of 11 it causes a logical variable to be instantiated, via gg. This represents
the synchronisation betweeii the coiisiiiiier f aii(l flie producer ff ctrl rest.

This implementation is quite coniplicýovd. It iti-a 'v
I)e possible to achieve the same effect more

simply by using some some Idgher level al)st ractiom.. for expressing synchronisation constraints.
Further work is required to deternihic liow iisefid buf is and whether it is sufficlent to just have
one built-in function for this, or wliet livr) niore general facility like logical variables is required.
Also, an implementation of buf is re(Iiiii-v(I for experinientation. I believe that the same effect
as using logical variables to increas(, sYm-limiiisatioii can also be achieved by using Hughes's
synch, see [58].

9.3 Performance

9.3.1 GRIP's spark discarding and Eager's restilt 0

As mentioned in Section 2.6, CRIP's scliediditig disciplhic means that technically Eager's result is

not applicable to GRIP. This is becaiise GR 11' inay discard sparks and hence GRIP's scheduling
discipline is not parallelism comervNg. If w sparks are discarded, like in the simulator used
for experiment ation, then Eager's restill will liold. Clearly as the spark retention limit is raised
there is less potential for loshig perforiiiaiwo. However, it would be reassuring to analyse the
GRIP sparking reginie to deteriiiiiie coiiditioiis iiii(ler xv16ch Eager's result does apply. 0 ?D

9.3.2 Performance i-neastirement

Throughout this thesis perforniaiwe lias bovii nwasm-ed using Eager's metric of speed-up. How-

ever this is not alwaýys acctirate; hi particidai- wlieii aii efficient sequential algorithm exists, which
is better than an efficient pai-allel algoi-ithni i-iiii se(Itietitially. In such cases an efficient parallel
algorithm must be compared witli aii efficieW se(piential algorithm.]Furthermore for MINID

machines an efficient parallel algoi-illini iwi. y tise a se(piential algorithm to run on individual

processors. Sometimes algorithins, will iiol bo so sepai'able; thus different algorithms may be

suited to machines Nvith dilrewiit iiiiiii1wi-s ol' 1)i-ocessors. Therefore, sometimes it is desirable

CHAPTE R 9. FURTHER 11701? K 248

to know the performance of a parallel prograin with a given number of processors. This can
be difficult to calculate because of sclie(hiling issues. However usually a parallel algorithm will
either have many more Usks thaii processors or there will be exactly one task per processor.
Analysing these programs' perfornmitco mi machines Nvith ;i fixed number of processors is rela-
tively simple. The speed-up of pro , lp-, mis lYing betweeii these extremes may be very dependent
upon scheduling. Such algorithins %vill geiierilly need to specify in exact schedule; it is hard to
analyse their performance i%, itfiotit ým ex, -ict schedtile shice it may vary so much.

Parallel pro. rams with many nioi-e u-i. sks than processors may be analysed using a weighted
Eager's result. The speed-up given by F, %er's result must be weighted by the ratio of an efficient
sequential algorithm's perforniance, itphist the parallel algorithm's sequential performance.
This will yield a bound on the spee. (I-up %vith i giveii number of processors, compared with an
efficient sequential algorithin. If t how is exict I, v one task per processor, the parallel performance
will be equal to the perfornimice wit h wi iiiibotin(led number of processors. This is one of the
basic measures which are norniallY calciihite(I.

9.3.3 Performance analysis

Reasoning about the perforin-aiwe of 1)rogn-ains written in parallel lazy languages is inherently
difficult. Parallel strict lan-wwes are ai-v siniple to reason about but they are not as expressive as
one would Eke. Therefore, in Sectioii 8.3 a coinproinise is made between parallel lazy languages
and parallel strict languages: a leidew lawnrige is used. However, reasoning about even lenient 0 1-) ý in
programs is quite complicated. deslAte lvidviit laiigiiages being a compromise. There are at least
three possible approaches to shnIflifyiii- reasoifliur about the performance of parallel functional

171

programs:

mechanisation: reasoning about prog-rams' performance could be seiiii-atitoinated. This would
si. mplify reasoning bY puling- some of lhe burden on the Inachille.

language simplification: n1auy reseirchers advocate a seinautics first approach to prograln-
ming language design. Thiis a shiijfler laiigwige could be designed with a simpler opera. - ZI) 0

tional semantics (and a siiiiple nw; iiiiii,,, seiiiamics). For exaniple sharing constraints could
be enforced betweeii tasks. to iiiake rv; isoiihqr aii(I iniplenientation easier. Alternatively

I
a parallel strict laii-juip with restricled j)ij)elhjed parallelisin, such as streanis, could be

used.

assume programs are not complex: mot. her approach is to assume that most parallel pro-
grams contain few places whei-v pai-allvl evaltiation is required. Thus many simplifying
rules could be developed Im special cisvs which frequently arise. For example purely se-
quential expressions could be reasmed abotit ushig a different, simpler, semantics. Where

parallelism does exist, dcpeiidviwY and shai-hig information could be used to simplify rea-
soning.

The latter approach seenis pin-ticiikirly for sinipliýying reasoning about the perfor-
mance of parallel functiomil pi-o-i-imis. It is desh-able to investigate this further. 00

Chapter 10

Conclusions

Parallel programming is becoinhig hicre; ishi-ly iiecessiry. Unfortunately there are many difficul-
ties involved with parallel iml. thly imii-deterininisin. Using functional languages
to express parallel programs (, finihiales iiiiii ,y ol' (liese difficulties, at the expense of some ex-
pressiveness. Essentially fuiictioiial detei-iiiiiii. sin eliminates the problems of deadlock
and correctness. Unfortunately t Iii-, ilso nicii iis I luit iton-deterininistic algorithms cannot be ex-
pressed. In addition communicatimi awl sym-Iii-oidsition need not be specified since they occur
implicitly.

Starting from t lie premises above tI Js tI iesis i it %, estio-ates the implications of parallel programming 0
using functional languages. I'lie inahi cow--hision is that when applicable functional languages
are an excellent vehicle for parallel prop-ainining. The following sections discuss the results of In this thesis' main chapters: 3, . 5.6,7 and S rosj)ectivel. y.

10.1 A parallel functional language

Throughout this thesis it has beeii sliowit liow parallel algorithms may be written in a parallel
functional language. As a result of assimthig quite a coiiservative implementation (a shared
memory AIIAID maclihie.)l inimy potviitial problenis with parallelism were alleviated. In par-
ticular the only issue which iieeded to be addi-essed was: what to spark? It was argued that
parallelism (sparking) should be explicid ,v vxpressed. This was realised in a simple parallel
functional language which used par coiiibiwflors to express parallel evaluation. In addition se-
quential evaluation sometinies iiecded lo be expressed, this was (]one with a seq cornbinator. By
using higher order functioii. s. parallolisin absiraclioiis could easily be defined in the language.
These were found to be verv tischil for st nict iii-hig prograins. In particular, they simplified the
programmers task of plachig, pars. 'I'lieY also iiiade t lie operatioiial reading of pro... rains simpler.
In general it was found that oid. N1 a f6v par coiiibhiators were required in order to express parallel
algorithms.

2.19

CHAPTER 10. CONCLUSIONS

10.2 Squigol

250

One of the advantages of parallel progn-aiiiining with functional languages is that standard func- 0 C5 0 tional programming techniques niay be ii-sed. Chapter 5 discusses the derivation of parallel
functional programs using prograin traiisforination. The Squigol variety of algebraic program
transformation was used. Previously this has mostly been used for sequential program deriva-
tion. Although all Squigol laws aiid theorvins are semantically valid for program transformation,
not all of them were suitable for derivhq; I)arallel programs. 0
It was shown that specifications should I)e inherently parallel. Titus the object of derivations
was to derive an efficient parallel algoritliin front in inefficient one. Typically these derivations
reduced the total amount of parallelisin atid dicy re(luced the total amount of work which was
performed, in order to produce an alg; orit Iiin w1iich is efficient for a real machine with a limited
number of processors. An iniportaid set of rifles, promotion rules, were shown to conserve
parallelism. Other rules, sticli as r0hiiii- -eiwral re(hictions to directed reductions, were found 71

to be specifically sequential opthnisaliojis.

In Squigol much use is made of hoiiioiiiorj)hisiiis md their properties. llomomorphisms were
found to correspond to foritis of dk-id(ý iuid compier algorithms, which often were suitable for

0
parallel evaluation. Squigol exj)r(, ssioiis 1YI)icifflY coiisist of compositions of maps and reduces.
Generally composition of list. wiltied fiiiictimis give rise to pipelincd parallelism, and map and
reductions gave rise to partitioord To aid the operational reading of Squigol expres-
sions they were sometimes ainiouiled \\-it h 1), irillcl labels.

It is unknown how generall - deriving parallel programs. However it has useful Sqidgol is foi
been shown that some parallel pro-, 1-ratu.,; caji be usefully derived with it.

10.3 Parallelism control

Whereas Chapter 3 is cmicenied wit Ji (xpr(s. siny parallel algorithms, Chapter 6 is concerned
with the ef C. ,

riciency of parallel algorithins. hi Imi-ticukir the efficiency implications of when to
spark were considered. It \v; is slimvii HiM uisk sizes (parallefisin granularity), task residency
and storage residency must be cow rolle(l for ii sluired memory AIIAID machine.], Furthermore it
was shown that these issues ýire ill relde(l.

For controlling divide and conquej, algoi-itliinsý parallelism, in particular task sizes, a run-tinle
strategy for controlling parallefisin (t1w evaluate-and-die task model) was compared with var-
ious programmer controlled ones. It was (Iiscovei-e(] that a combination of the run-time and
programmer controlled strategies wodw(l best. Tlic run-thne strategy increased task sizes by
coalescing them; however it also j)j-o(hw(-(I a significant number of sniall tasks. The solution was
to use the run-time strategy to inci-easo t1w granularity of tasks, whilst the programmer enforced
a lower bound on task sizes.

The delayed sparking approzicli to 1); irzillolisni control Nvis implemented in the parallel functional
language. This performed well I Iiit it, nsed no problem information specified by the
programmer. However, this apj)ro; icIj is jwrliij)s better suited to incorporation into a machine's
run-time system.

CHAPTERIO. COATCLUSIO. NS 251

For controlling data parallelism, t he ni ii-t i ine strategy (lid not work. Three program techniques 00 for controHing this form of parallelisin were tried. These techniques are suited to controlling
different aspects of parallelism. 'I'hws del)eiiding on the particular algoritlim and machine, any
one of these techniques might be iippropriite.

10.4 Bags

Determinism makes parallel pro-raininhip with functional lan-tiages relatively simple. Unfortu- 0n00
nately this is also a curse for functioiial laii-tiages since non-deterministic computation cannot 00 be expressed. Non-deternfluistic. coiiiptitatioii is very desirable for AIIAID machines since it
prevents needless synchronisatioit aii(I lwiwe needless sequentiality.

Chapter 7 proposed a limited forin of iioii-deternihiisin via a bag abstract data type. Providing
combining operations on bags are associatiý-v and commutative, bag expressions are determin-
istic. This is left as a proof obligatioii to the prograninier. Bags are shown to be useful for
both sequential and parallel prograimiihig. Bags permit greater parallelism than is otherwise
possible. Alternatively bags can elhniiiate soiiiv operations, such as tree balancing, which can
be necessary to ensure parallelisin.

A parallel implementation of bags is AvI clied hi liapter 7 and this was used to implement bags n in the simulator. The inipleniciflalioii was based oii imii-deterininistic rewiiting systems, which
were proven correct. This was tisefid b(q-aiisc Ilie noji-deterininistic parallel implementation of
bags is quite difficult.

The utility of bags is difficult to assess; corlahily for some problems they are very useful. Only
through greater experience willi parallel him-tioiial proo-ranuning can their utilit really be
judged.

10.5 Performance

Although writing parallel pro,, ranjs is nol parlicidarly difficult, writing ones which demonstrate
good performance is much liarder. Tlie 17,, -oal of designing a parallel program is to produce a
program with a good performance coinpared witli an efficient sequential program for the same
problem. For example it is sliown that Qtiicksort. tising lists, produces lots of parallelism (tasks);
however it has a very poor speed-up (parallel performance). This result was obtained via an
informal analysis, and it was verified experiiiientally. A generalisation of the analysis yielded
conditions under which divide awl coii(pior algoritlinis will give a good speed-up.

For some problems, sucli as scan an (I so i- I hip-, c If icient para Ile] aI gorithnis are not efficient sequen-
tial algorithms. Thus for an efficivio M INI 1) iniplenientation liybrid algorithms must be used.
These use a parallel algoritlini to (lisli-ibim, work across processors and an efficient sequential
algorithm to solve the probleni on eacli in(lividtial processor of a niaclihie. This means that
the goal of writing a parallel pro-rain is not to pro(hice a, prograin with maximal parallelism. n in Both the sequential and parallel perfoi-niance of a prograin must be considered. The efficiency 0
of parallel programs is niticli inore ai-clii1ect iii-e (lel)endent tlian might be expected.
Analysing pipelined algorithins provvd diflicull. and hence error prone. Therefore rather than

CHAPTER 10. CONCLUSIONS 252

using an informal method for aii; fl , ysis. ;i formal inethod for reasoning about programs' parallel
performance was developed. Reisoiihig fl)otit a lazy kinguage proved very difficult; therefore a I C) C)
compromise was made and a lenient hinguage was used. A non-standird denotational semantics n
was used to reason about programs xvi-it-teii in the lenient language. This was quite complicated
but adequate for reasoning about 'sni, -fll' -, ilgorithnis and program fragments.

00
The semantics was also shown to be cip, -ible of collecting other information, for example paral-
lelism profiles. It is difficult to reisou zibout this hiforniition, but it did form a novel specification
for a concurrency simulator. In NO by I re; itiug the seiiiantics -, is a set of transformation rules,
concurrency simulation could be ii(Iiieved hy prog-rain traiisformation.

10.6 A final comment

This thesis has deinonstrated tliat I'micliomil laiiguages are viable for writing some parallel
programs; just as functional laupiage, ar(ý viable for writing some sequential pro-rams. In

Cý n0
particular functional languages aresiiited to expresshig a variety of parallel algorithms, especially
divide and conquer algorithms. I'lie 1)owerfid Astraction facilities of functional languages are 00Z: 5

very useful for defining parallelkiii absiraclimis. Tlie ability to reason simply about parallel
functional programs and to not liavo am- cniworiis abotit deadlock, seems to far outweigh their
inability to express non-deterniiiiist ic algoril Imis.

Bibliography

[1] 11 Abelson and G Sussman. Slriichirc and Intcrprelation of Compider Programs. MIT
Press/McGra, w Hill, 198-1.

[2] S Abramsky. SECD-NI: a virt tial inaclihie forapplicative multiprocessing. Technical report,
Internal Report. Dept. Coniptiler Sciviicv.. Queen Mary College, London, November 1982.

[3) S Abrarnshy. Strictness analysis in([I)ol * vinorphic invariance. In 11 Ganzinger and N Jones,
editors, Proceedings of Ihc Workshop On Proyrains (is Data Objects, Copenhagen, LNCS
217. Springer-Veylag, 1985.

[4] SC Akl. The Design and -Inaýqsi-tt of Parallel
. 111gorithins. Prentice-Hall International,

1989.

[51 Arvind and RS Nikhil. Execlithq, a pi-op-ain oii the MIT ta- ed-token dataflow architec- I og
ture. In Proc. P, 4RLE Confcrcnr(. k'itidhorriz. The Netherlands. Springer Verlag LNCS,
1987.

Phigali. I-sti-tictin-es: Data structures for parallel computing. [61 Arvind, RS Nikhil, and K l\
In Graph Reduction 11"orkshop. Said" PV, pages, 336-369. Springer-Verlag, November 1986.

[7] J Backus. Can programming be liberated from the von Neumann style? A functional style
and its algebra of prograniq. (,. 4 C1 1.21 (8): 613-6,11,1978. 0

[8] J-P Banfitre, A Coutant, and 1) Lv. Wla
* ver. ,\ fornialisin for parallel program construction

and its distributed implenientatioti. hi E Chiricozzi an(] A D'Amico, editors, Parallel
Processing and Applications. pagvs . 51-5,8,. NNorth Holland, 1988.

[9] J-P Banfitre and D 1,616ta
' ver. Clivinical reaction as a computational inodel. In K Davis

and J Hughes, editors, Finiclional Pruýyraimning: Proceedings of the 1989 Glasgow Rork-
shop, 21-23 August 1989. Fras(rhmyh. Scolland, Springer Worl-shops in Computing.
Springer Verlag, July 1990.

[10] M Ben-Arl. Principles of Conrarrcitt Pr(ýqrannniny. Prentice Hall International, 1982.

[11] R Bird and P Wadler. 4n Inlrodaction to Fundional Programming. Prentice Hall Inter-

national, 1988.

[12] R Bird and P Wadler. AM bilrodnNium to Fmictional Progranuning, pages 222-231. Pren-
tice Jlall International,

[13] RS Bird. A calculus of fmicliows for prograin derivations. Technical monograph 64, PRG,
Oxford University, December MKi.

2-53

BIBLIOGRAPHY 254

[14] RS Bird. Lecture notes on const riwl ive functional programming. Technical monograph 69,
PRG, Oxford University, Svplember 1988.

[15] B Bjerner and S Holmstrom. A compositional approach to time analysis of first order lazy
functional programs. In 1989 AC, I/ Conference on runctional Programming Languages 0
and Computer Architc-clurc. London. pages 157-165,1989.

[16] A Bloss and P Hudak. Path semantics. In Proc. 3rd lVorkshop on Mathematical Founda-
tions of Progranuniny Languages. Springer Verlag, 19SS.

[17] M Broy. Applicative real-time programming. IFIP, North Holland, pages 259-264,1983. r)
[18] G Burn. Evaluation transforiners ---- A mode] for tlie parallel evaltiation of functional Iall-

guages (exteiidecl abstract), In of 1V1P Coi2fei-ciiee on Functional Prograrn-
ming Languages and Compulri- Portland, pages 146-470. Springer Verlag
LNCS 27,1, September 1981.

[19] GL Burn. Implementing the, evaluation transformer model of reduction on parallel ma-
chines. to appear in Journal of Fimclional Programming, 1(2), April 1991.

[20] CL Burn. The evaltiatim I raiisformvr model of reductimi and its correctness. In TAP-
SOFT 91, Brighton, UK.. 8- Q April 1991, to appear.

[21] GL Burn, CL Ilankiii., aml ý Abramsk
, v. Strictness an-al , ysis for higher order functions.

Science of Computer Progranimbig. 1: 2.19-278.. November 1986.

[221 FW Burton. Annotations lo control parallelism and reduction order in the distributed
evaluation of functional languages. A CAI Transactions on Programming Languages arid
Systems, 6(2): 159-17,1, April 198-1.

[23] FW Burton. Speculative computalim. Imi-allelism mid functional programming. IEEE
Transactions on Compulcr-5, C-3-1(12): 1190-1193,1985.

[24] FW Burton. Nondeternihiism with i-efei-enlial transparency in functional programming
languages. Technical report. Dept. of Comptiler Science, University of Utah, Salt Lake
City, Utali, June 1986.

[25] FW Burton and Al It Sleep. Execii I im, him-tiomi I programs on a virtual tree of processors.
In Conference on Functional Pr(ýyramming Languages and Computer Architecture, pages
187-194, Portsmouth, New flaml)shire. October 1982.

[26] N Carriero and D Gelernter. Ilow lo write parallel programs: A guide to the perplexed. 0 ACM Computing Surmys, 1989.

[27] C Clack, SL Peyton Jones, and .1 Sallidd. Efficient parallel graph reduction on GRIP. In
ACA1 Conference on Lisp and Fmirlimial Programming, 1988.

[28] CD Clack and SL Peyton 1'hidim, fiNpohits in abstract interpretation. In S Abram-
In

sky and C flankin, editors. Ab.; Ivarl Intiv-pi-clation of Declarative Languages. Ellis Ifor-
wood, N87.

[29] M Cole. Algorithmic Skc1clomq: A Slructurc. d Approach to the Management of Parallel
Computation. PhD thesis. Dept. Computer Science, University of Edinburgh, October
1988.

BIBLIOGRAPHY 255

[30] M Colo. Higher order fmiclimis for parallel evaluation. In C Hall, J Hughes, and
J O'Donnell, editors, Proc(alings of the 1988 Glasgow 11"ork-shop on Functional Pro-
gramining, August 2-5,1988, Rolhcsay, Isle of Butc, Scotland. Research report 89/114,
Computing Science Dept. [Niversity of Glasgow, rebruary 1989.

[311 MD Cripps, AJ Field, and N1 .1 Hoeve. The Design and Implementation of ALICE., it
Parallel Graph Reduction Machim. 1jilis Horwood Pub. Ltd, 1986.

[32] J Darlington, M Reeve, and S NVright. Progranuning parallel computer systems using n00 functional languages and prograin transformation. Technical report, Dept. Computing, 41ý Imperial College of Science and 1'echnology, 1989.

[33] K Davis and P XVadler. Strictness anal ' ysis in 4D. In SL Peyton Jones, CK Holst,
and G Hutton, editors, Funcliolial Programming: Procccdings of the 1990 Glasgow 11"ork-
shop, 13-15 August 1990, [11apool. Se-WIand, Springer Workshops in Computing. Springer
Verlag, to be published 1991.

[34] 0 de Aloor. Indeterminacy in oplindsation problenis. Lecture notes from the International
Summer School on Constructive Aig-orillintics., Anteland, Holland, September 1989.

[35] J Deschner. Simulating the parallvi oxectitimi of functional programs. Master's thesis,
Department of Computing Scivitce. Uiiiversity of Glasgow, in preparation.

100
[36] DL Eager, J Zahorjan, an(] 1ý1 1) Lazowska. Speedup versus efficiency in parallel systems.

Technical Report 86-08-01, Dept. of Coiiipoatimial Science, University of Sasketchewan,
August 1986.

[371 DP Friedman and 1) S ApIflicalive in tilt ipro.
In-ainniing.

Technical Report 72, 5 t) Computer Science Dept, Indiana Vniversily, Deceinber 1978.

[38] B Goldberg. Ahiltiproccssor F. r(culion of Fitnetional Programs. PliD thesis, Dept. of
Computer Science, Yale University. AI)HI 1988.

[39] K Hammond and SL Peyton Joiws. Some vad , N, experiments on the GRIP parallel re-
ducer. In Proc. 2nd International Worh,; hop on ImpIcinentation of Functional Languages
on Parallel ArchitcOures, Ni

,
im(y(n. Th(- A"eth(Hands, June 1990. Technical Report 90-16,

Department of Informatics, (Iiiivel-silY of Nijillegen, October 1990.

[40] C Ilankiii, G Burn, and S 1, Pv
* vion -lones. A safe approach to parallel combinator redlic-

tion. Theoretical Compulc r Scic 11(-(. 56: 17- -: 36,1988.

[411 D Ilarrison. Ruth: A functional hinguage for real-time programming. In PARLE, pages
297-314,1987.

[42] P 11 Ilartel. Peiformance analysis of slorage managcment in combinator graph reduction.
P11D thesis, Computing Scieuce of Amsterdam, Holland, October
1988.

[43] CT Haynes and DP rriedmaii. Fii, ýJiies build process abstractions. In ACAI Conference
on Lisp aind runctional Prograninmig. 198-1.

[44] P Henderson. Fünclional floýgrümmhig: Applicalion and Inipleinentalion, cliapter De-
layed evaluation -A functional approach lo parallelisin, pa0ges 214-2,11. Prentice-Hall
International, 1980.

BIBLIOGRAPHY 256

[45] Al Hennessy. Algebraic Throry of Proccsscs. MIT Press, 19,038.

[461 WD Hillis. The Conticclion Alachinc. MIT Press, Cambridge, INIassachusetts, 1985.

[47] WD Hillis and CL Steele. Data I)nrallel algOritlinis. CACA1,29(12), December 1986.

[48] E Iforowitz and S Sahiii. Fundanicnials of Coniputcr Algovithins, chapter Branch and
Bound, pages 370-421. Pitinan. 1978.

[491 P Ifudak. Distributed task and invinory management. In Proceedings of the YICAI Syni-

ages 277-289, August 1983. posium on Principles of Distribut(d Coniputing, 1), C3 1

[50] P Iludak. Arrays, non-detorminism. side-efrects, and parallelism: A functional perspective
(extended abstract). In Graph Uctluclion 11"orkshop. Santa rý, pages 312-327. Springer-
Verlag, November 1986.

[51] P Hudak and S Awlei-son. 11cmi. m, 1 iiitvi-pi-etations of pai-allel functional programs. In
1987 ACAI Confcrenec on Functiontil Ivogramminy Languagcs and Computer Architecture,
Portland, pages 234-256. Spiiiigpi- Vvi-Im, 27-1, September 1987. 0nn.

[52] P Iludak and B Goldberg. Serhil combimitors: "Optimal" grains of parallelism. In Func-
tional Programminy Languayrs owl Compulcr

.
4rchilcelurc, volume 201 of LNCS, pages

382-399. Springer Verhig, 1985.
13

[53] P Iludak and E Alolir. Gral)hinalor.., and the duality of SIAID and MIAID. In ACAI
Conference on Lisp and Funrlional Programmingt 1988.

[54] P Hudak and L Sinith. P; ira-binclional programming: A paradigm for programming
multiprocessor systems. In Pilnriplfs 4 Mngr(unining Languagcs, Florida, 1986.

[55] P Hildak, PL Arvhid, It BoWel, J rairbairii, J rasel, K Hammond, J Hughes,
T Johnsson, R Kieburtz, RS Nikhil. S 1, Peyton Jones, M Reeve, D Wise, and J Young.
Report on the functioii-al prograiiiiiihig laii-tiage Haskell. Technical report, Dept. of Com-

o 11 0
puting Science, University of (flas. gow. 1990.

[56] J Hughes. Why functional programming matters. Computer Journal, 32(2), April 1989.
ZI) Zý

[57] J Hughes and J O'Donnel. 1"xinossing ind rvisoning about non-deterministic functional

programs. In K Davis and J Ilugliv. s. odiloi-s. Funclional Programming: Proceedings of the
1989 Glasgow lVorkShop, ý1-2.; Auflio-I 19S. 9, Frascrburgh, Scolland, Springer Workshops
in Computing. Springer JulY 1990.

[58] RJ Al Hughes. The Design awl Imphin(. niation of Programming Languages. PhD thesis,
Oxford University, 1983.

[59] RJ NI Hughes. Backwards, anal , vsis or functional prograrns. Technical Report 87/R3,
Dept. of Computing Science. [inivvi-sily of Gl; is,, o%v, March 1987.

[60] RJM Hughes. Abstract inlerprotalion of first-order polymorphic functions. In Proc.
lVorkshop on Implonentation of Lw-y Flinclional Languages, Aspenas. Programming
Methodology Group, Chalmers Univor., ity. Sweden, 19SS.

[61] RJ Al Hughes. Projections for pol , ymorphir strictness analysis. In Proc IrIP Conference

on Category Theory and Compulcr Sel(nr(, Alanchcstcr, LNCS. Springer Verlag, 1989.

BIBLIOGRAPHY 257

[62] S Hunt. PERs generalise projectiows for strictness amalysis. lit SL Peyton Jones, CK
Holst, and G Hutton, editors, Funrlional Programming: Proceedings of the 1990 Glasgow
lVork-shop, 13-15 August J. 9-90, b"Hapool, Scolland, Springer Workshops in Computing.
Springer Verlag, to be published]991.

[63] T Johnsson. The iieu G-inachine: An abstract machine for parallel graph reduction. In
1989ACAlConferenceon Functional Programming Lanytiagesand Con2puterArchitecture,
London, 1989.

[64] C Jones. Factorising fom-ior for fastness. In rzinctional Programming: Proceedings of
the 1989 Glasgow 11"orkshop., 21--l.; .

4agiist 1989, Fraserburgh, Scolland. Springer Verlag,
August 1989.

[65] SB Jones. Investigatic, ii of perfoi-inaiwo acliievable with highly concurrent interpretations C) 0
of functional programs. Fiiial Itelmi-t. 17SPIR11' project 302, October 1987. 0

[66] Al B Josephs. Functional Pr(ý(jranmiing With . 5idc-E"jfccls. Phl) thesis, Oxford Univeristy,
June 1986.

[67] A II Karp and 11 P Flati. Mvasiii-hig 1)ai, allel processor performance. CACM, 33(5): 539-
543, May 1990.

[68] AH Karp and R G' Babb 11. A (-oiitj)a6soii of 12 parallel Fortran dialects. IEEE Softwarc,
5(5): 52-67, September 198R.

[69) RM Karp and Y Zlimg. A i-aii(loiiiized 1)arallel branch-and-bound procedure. In Proc. r3 20th ACAISymposimn on I& Th(ory of Compiding, 1988.

[70] P Kelly. Functional Programining fi-jr 1, oos(1y-Co? tp1cd Multiprocessors. PhD thesis, Im-
perial College of Scieiice mid TocIiii0lopy.

[71] 11 Kingdon, D R. Lester, aii(I G Is Iki-ii. A ti-aiisimter-based JIDG-machine. to appear in
The Compider Joiirnal, Yl)(cial Isstir on Parallclism, 1991.

[72] E Knapp. An exercise in the foi-iiial (ledvation of parallel programs: Maximum flows in 0
graphs. ACM Transactions on Prograimning Lanyiiaycs and Systems, 12(2): 203-223,1990.

[73] Ten-Ilwang Lai and S Salmi. Aiminalies, hi 1)arallel branch-and-bound algorithms. CACA1,
27(6): 594-602, June 1981.

[74] D LeAl6tayer. Mechaidcal aii; dvsis of j)i-o, n-; mi complexity. ACAI SIGPLAN Symposium
on Programming Langiiaflcs aml Prograinining Environinents, 20(7), 1985.

[75] INMOS Limited. Occain Pv(ý(jvm)mmqj Manital. Prentice Hall International, 1984.

[76) G Malcolm. Ilonioniorphisins. aii(I 1)voitiolability. Lecture notes from the International
Summer School on Coiisti-tictive Algoi-illmiics. Aineland, Holland, September 1989. ýn

[77] G Marino and G Sticci. Da ta striwitires for II te para lie] execution of functional languages.
In E Odijk, Al Rein, awl 3 (--'S

, vre. editors. LYCS 365-6 PARLE, Eindhoven, The Nether-
lands, pages 3,16-3.56. Spi-higer V(, rhilg.

(78] D McBurney and INI It Sleep. experiments with the ZAPP architecture.
Technical Report SYS-Cwi-lo. Univorsity of East Anglia, Nloveniber 1986.

BIBLIOGRAPHY 258

[79] GP McKeown, VJ Rayward-Smitli, mid 11 J Turphi. Branch-and-bound as a higher-order
function. Technical report, School of luformatimi Systems, University of East Anglia,
Norwich, 1990.

[80] L Meertens. Algorithruics - towards prograininim, as a mathematical activity. In JW
0 4-n

deBahker
,M

Ilazewinkel, in(] 1, K Loiistra, e(litors, CIVISymposium on Mathematics and
Computcr Science, Vol.], pages 2-R9-33-1. C\Vl monographs, North Holland, 1986.

[81] L Aleertens. Lecture notes- on the 1,, eneric theory of binary structures. Lecture notes
from the International Stininier School on Constructive Algorithmics, Ameland, Holland,
September 1989.

[821 R Millier. Communication and Conrurr(ucy. Prentice Hall International, 1989.

[83] ZC Alou and P Hudak. An dgebraic inodel for divide and conquer and its parallelism. Zý The Journal of Supci-conywing. 2: 2-5 7- 2-5,1t. 19S. S.

(841 RS Nikliil, K Pingali. and Arvind. Id Non-van. Technical Report memo 265, Computa- 0

tional Structures Grotip. Laboi-aior. v for Conipmer Science, MIT, July 1986.

[85] JT O'Donnell. I'mictiomil for a data parallel arcliitecture. In C Hall,
J Hughes, and J O'Domiell. edilors. Prormling-5 of the 1988 Glasgow lVorkshop on Func-
tional Programming, A ugust -2-5,1.988.

Hollics(iy, Isle of Bute, Scolland. Researcli report
89/R4, Computing Science Dept. Uidversi ty of Glasgow, February 1989.

[86] A Ohori, P Buneinan, and \1 Breazii-I'Muten. Database programming in Machiavelli -
A polymorphic language with slatic I pe iiiference. Technical report, Dept. Computer 00 Science and Inforniatimi Scietice. Viiivoi-sily of Pennsylvania, rebruary 1989.

[87] AS Partridge. Dynamic Aspccl., ý ()f I)i., iribuird 61'raph Wduction. PhD thesis, University
of Tasmania, January 1990.

[88] SL Peyton Jones. Thc Implumcidalimi of Functional Programming Languages. Prentice
Hall International, 1987.

[89] SL Peyton Jones. T& ImpIrmcnIalion of Funclional Programming Languages, chapter
23: The Pragmatics of Grapli Reduclimi. Prewice liall International, 1987.

[901 SL Peyton Jones. FLIC -A fimci imial laimmage intermediate code. SIGPLAN Notices,
23(8), 1988.

[91] SL Peyton Jones. Parallel impleiiwiii; i1imis offimcdonal programming languages. Com-

puter Journal, 32(2): 1-15--18(i. April 19-1,9.

[92] SL Peyton Jones et al. G11.111 -- A high performance architecture for parallel graph
reduction. In 1987.4 Cill Confri-cm-c on runclional Programming Languages and Computcr
Architcctztre, Poriland. Springer Vorhw LIN'C's 27-1, September 1987.

1ý ll-ý
[93] Al J Quinn. Designing EjTicicni Aýqorilhms for Parallel Computers. McGraw-Hill Inter-

natiolral, 1987.

[941 F Rabbi and G' Manson. tlshig, conip1mity Niictions to control parallelism in functional

pro-rams. Research report (! ý-90- 1. DvpI. oniputer Science, The University of Slieffield,
0

January 1990.

BIBLIOGRAPHY 259

[951 S Ranka, Y Won, and S Sahid. Prop-rannifing, a hypercube niulticomputer. IEEE Software,
5(5): 69-77, September 1988.

[96] GA Ringwood. Parlo-86 ajid the diiihig logicians. CAC'ill, 31(l): 10-25, January 1988. 0 4: 5
[97] M Rosendahl. Automatic complexii *v analysis. In 1989 ACH Conference on Functional

Programming Languayrs and Coinpulcr Archilcclurc, London,
, pages 144-156,1989.

[98] D Sands. Complexity aiialysis for a hilylier order laiiguage. Technical Report DOC 88/14,
Dept. of Computing, Imperial College of Science and Technology, 1988.

[99] D Sands. Complexity amilysis for a lazy higher order language. In K' Davis and J Hughes, -) 0
editors, Functional Prcý(Iramnzbifj: Pror(-rflings of Ihe 1989 Glasgow lVork-shol), 21-23 Au-
gust 1989, Fraserburgh, . 5colland. Spriu.,, vi- Worhshops in Computing. Springer Verlag, July
1990.

[100] V Sarkar. Partitioning awl srh(didiiig parall(I programs for multiprocessors. MIT Press,
1989.

[101] V Sarkarand J Ilennessy. Parlitioidw, parallel progranis formacro-dataflow. In 4 CAlCon-
ference on Lisp and Fimclional Programming, pages 202-211, Cambridge, Massachusetts,
August 1986.

[102] D Schmidt. Denotational Scn)(inlics: A . 110hodology for Language Development, chapter
Nondeterminism and Concun, ency. Allyn an(I Bacon, Newton, Massachusetts, 1986.

[103] R Sedgewick. Algorithms, pages : ý. 5-s(i. j\ In
ddison-Wesley, 1983.

[104] M Sheeran. Describing alpoi-ithms hi Ruby. In runctional Programming:
In Proceedings of the 1989 Glasgow 11'Orkshop. 21-23 . 4uyust 1989, rraserburgh, Scotland.

Springer Verlag, August 1989. 0
[105] DRSinitli. Al)plicatioiisofzisti-, ite,, -x-foi-(](, si,, -iiiiili(li%-i(le-aiid-coiiqueraigoritlims. Science

of Computer

[1061 DF Staiiat and DF McAllister, 1.)isvv(Ic
.
1fallicinalics in Computer Science, pages 248-

256. Prentice Hall International. 1977.

[107] GL Steele and NV D Ilillis. Comiectimi Machiiie Lisp: Fine-grained parallel symbolic
processing. In 401 Confri-(. ncr ot) Lisp and Functional Programming, pages 279-297,
August 1986.

[108] P Trinder and P Wildler. improvin-u, ' lis, comprehension database queries. Technical Report
CSC 90/RI, Dept. of Compming- 'S I University of Glasgow, January 1990.

[109] PW Trinder. A functiomil dalabris(. Ph 1) 1 hesis, Oxford University, December 1989.

[110] DA Turner. Functional prowram..,, as executable specifications. In CAR Hoare and
JC Sheplierdson, editors. ilia thomi / 1, w/ 1, (ýqic and Programming Languages, pages 29-54.
Prent4ce Hall International.

[111] hl CJD van Eekelen, M .) Plasmoijer. ; md J F', NV Smetsers. Parallel graph rewriting
on loosely coupled machine archhert"rvs. ITchnical report, Faculty of Mathematics and
CompuWr Science, Wiversio- or NUnwWm. Ile NedmdaM, 1990.

BIBLIOGRAPHY 260

[112] WG Vree. Design considerationsfor a parallel ruluclion machinc. PhD thesis, University
of Amsterdam, 1989.

[1131 P Wadler. A new array operatioii. N Graph Rcdiiction Workshop. Santa Fiý, pages 328-
335. Springer-Verlag, Noveinber 19,86.

[114] P Wadler. List compreliciisimis. hi SL 1)eyloii Jones, editor, The Implementation of
Functional Prograninzing Lanfluafl(s. I)i-eiitice Hall International, 1987.

[115] P Wadler. Comprehendhig iiioiiads. In 4Cj1l Conference on Lisp and Functional Pro-
graninzing, Nice, June 1990.

[116) P Wadler. Linear type.,, caii cliaiigo Hie world! In IFIP TC 2 Working Conference on
Programming Conccpt, ý and 110hods. Isracl, 1990.

(1171 P Wadler and RJ Al Hughes. I)rojectimis forstrictness analysis. In 1987.11 CAI Conference
on Functional Prograinining 11(inguafIcs and ConipulcrArchitccture, Portland, pages 385-
407. Springer Verlag LNCS 27-1. Seplviiiber 1987.

[118] P Watson and I Walsoii. Evaluaihip- fum-timial prograins on the Flagship machine. In
Iý ? -) t::)

1987ACM Conference ou Funcliewal I-Yograinining Lanyuagcs and CoinputerArchitecture,
Portland, pages 80--97. Spriii-er Veda- 274., September 1987.

[119] B Wegreit. Mechnical prograin arialysis. C. 401,18(9): 528-539,1975.

[120] DA Wise. Matrix algebra aud aj)jflicative multil)rogranuning. In 1987ACAI Conference 00
on Functional Progranuning Languagcs and Conilmicr 21rchitceture, Portland, pages 134-
153. Springer Verlag LNCS 27-1. Soj)fvniber 1987

[121] K Zink and S Tighe. as, a 1110 11od of cmit rollhig speculative evaluation. Technical
report, MCC, 1989.

F ýTl 7
UGF-1510--W-l Ni'VERSITY

