An Evolutionary Algorithm to Discover Numeric
Association Rules

J. Mata
Dpto. Ing. Elect. Sist.
Informéaticos y Automética
Universidad de Huelva(Spain)

mata@uhu.es

ABSTRACT

Association rules are one of the most used tools to discover
relationships among attributes in a database. Nowadays,
there are many efficient techniques to obtain these rules,
although most of them require that the values of the at-
tributes be discrete. To solve this problem, these techniques
discretize the numeric attributes, but this implies a loss of
information. In a general way, these techniques work in two
phases: in the first one they try to find the sets of attributes
that are, with a determined frequency, within the database
(frequent itemsets), and in the second one, they extract the
association rules departing from these sets. In this paper we
present a technique to find the frequent itemsets in numeric
databases without needing to discretize the attributes. We
use an evolutionary algorithm to find the intervals of each
attribute that conforms a frequent itemset. The evaluation
function itself will be the one that decide the amplitude of
these intervals. Finally, we evaluate the tool with synthetic
and real databases to check the efficiency of our algorithm.

Keywords

Data Mining, Association Rules, Evolutionary Algorithms

1. INTRODUCTION

Association rules were introduced in [1] as a method to
find relationships among the attributes of a database. By
means of these techniques a very interesting qualitative in-
formation with which we can take later decisions can be
obtained. In general terms, an association rule is a relation-
ship between attributes in the way C1 = Cs, where C7 and
C> are pair conjunctions (attribute-value) in the way A = v
if it is a discrete attribute or A € [v1,v2] if the attribute is
continuous or numeric. Generally, the antecedent is formed
by a conjunction of pairs, while the consequent usually is a
unique attribute-value pair.

In most of databases can appear a rather high number of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specifc
permission and/or a fee.

SAC 2002, Madrid, Spain

Copyright 2002 ACM 1-58113-445-2/02/03 ...$5.00.

J.L. Alvarez
Dpto. Ing. Elect. Sist.
Informéticos y Automéatica
Universidad de Huelva(Spain)

alvarez@uhu.es

J.C. Riquelme
Dpto. Lenguajes y Sistemas
Informaticos
Universidad de Sevilla(Spain)

riguelme@lsi.us.es

assists height time age points
00888 201 36.02 28 0.5885
0.1399 198 3932 30 0.8291
0.0747 198 388 26 04574

01276 196 384 28 05703

Figure 1: Basketball database

rules of this kind, so it is essential to define some measures
that allow us to filter only the most significant ones. The
most used measures to define the interest of the rules were
described in [1]:

e support. It is a statistical measure that indicates
the ratio of the population that satisfies both the an-
tecedent and the consequent of the rule. A rule R :
C1 = C5 has a support s, if a s% of the records of the
database contain C; and Cs.

e confidence. This measure indicates the relative fre-
quency of the rule, that is, the frequency with which
the consequent is fulfilled when it is also fulfilled the
antecedent. A rule R : C7 = (> has a confidence c, if
the ¢% of the records of the database that contain C;
also contain Cbs.

The goal of the techniques that search for association rules
is to extract only those that exceed some minimum values
of support and confidence that are defined by the user. The
greater part of the algorithms that extract association rules
work in two phases: in the first one they try to find the
sets of attributes that exceed the minimum value of support
and, in the second phase, departing from the sets discovered
formerly, they extract the association rules that exceed the
minimum value of confidence. Some of these algorithms can
be seen on [2, 8, 11, 12, 7].

The first works on association rules were focused on mar-
keting. In them the databases are transactions that rep-
resent the purchases made by the customers. Hence, each
transaction is formed by a set of elements of variable size.
These kind of rules use to be called classic association rules.
The databases with which we will work, unlike these, will
consist of a set of records or tuples formed by a fixed number
of continuous attributes, as can be seen in figure 1.

In this paper we will use the definitions proposed in [1],
adapting them to the databases with which we will work.

https://core.ac.uk/display/281383544?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Definition 1. Itemset. It is a set of attributes belonging
to the database. Each itemset is formed by a variable num-
ber of attributes. An itemset formed by k attributes will be
called k-itemset. In our case, an itemset is formed by pair
(attribute-range of values)

Definition 2. Frequent itemset. It is that itemset that
exceed the minimum value of support.

Therefore, the problem of mining association rules con-
sists, basically, in finding all the frequent itemsets and ob-
taining the rules departing from these sets. All the studies
and researches are focused on the first phase, which is the
most expensive, since the second one can be considered a
simple and direct process. Most of the tools cited before
work starting with the frequent itemsets of size 1 and join-
ing them to conform frequent itemsets of a greater size in
each step.

But in the real world there are numerous databases where
the stored information is numeric. In these databases, at-
tributes have thousand of possibilities of taking one value, by
this reason the process described above is unthinkable from
a computational point of view. Association rules obtained
on numeric databases will be called quantitative association
rules. The problem of mining quantitative association rules
was first introduced in [13]. These rules are a variant of
classic association rules where the value that the attribute
takes in the rule is an interval instead of a discrete value.
An example of this kind of rules is: if height € [196, 201] and
time € [35.3,37.8] then assist € [0.025,0.076].

The basic idea of the algorithm presented in their work
consists in dividing the range of each numeric attribute into
intervals, treating them, from that moment onwards, as dis-
crete attributes. That strategy is the same that have been
followed by the diverse authors that have worked with nu-
meric databases.

Each of them uses different methods: clustering tech-
niques, partition of the domain into intervals of the same
size, techniques to merge adjacent intervals until reaching
a maximum support, discretization by means of fuzzy sets,
etc., but all of them have in common the fact that they need
information a priori from the user. Some of these techniques
can be consulted in [10, 14, 3]. The main problem of all of
them lies in the fact that the data must be prepared be-
fore applying the tool. This preparation, either by means
of the user or by means of an automatic process, conveys a
loss of information because the rules will be only generated
departing from the partitions previously created.

Our goal is to find association rules in numeric databases
without the necessity of preparing previously the data. In
order to get this objective we present a tool based in an evo-
lutionary algorithm [4] that discovers the frequent itemsets
in numeric databases. We have designed the evolutionary
algorithm to find the intervals in each of the attributes that
conforms a frequent itemset, in such a way that the fitness
function itself is the one that decides the amplitude of the
intervals.

2. PRELIMINARIES

The tool presented in this paper is based on the evolu-
tionary algorithm theory (EA). In order to find the optimal
itemsets, that is, those with the best support without being
their intervals excessively wide, we depart from a population

algorithm GAR
nltemset = 0
while (nItemset < N) do
nGen = 0
generate first population P(nGen)
while (nGen < NGENERATIONS) do
process P(nGen)
P(nGen+1) = select individuals of P(nGen)
complete P(nGen+l) by crossover
make mutations in P(nGen+1)
10. nGen++
11. end_while
12. I[nItemset] = choose the best of P(nGen)

©CoO~NOOPWN -

13. penalize records covered by I[nItemset]
14. nltemset++

15. end_while

end

Figure 2: GAR algorithm

where the individuals are potential itemsets. These individ-
uals will be evolving by means of crossover and mutations,
so that, at the end of the process, the individual with the
best fitness will correspond with the ”best” frequent itemset.

One of the problems we find when we work with EA the-
ory is the convergence of all the individuals towards the
same solution. In our case, this means that all the indi-
viduals evolve towards the same frequent itemset, that is,
the individuals that conform the last generation provide, in
practice, the same information. There are many techniques
to solve this problem. Among them evolutionary algorithm
with niches and iterative rule learning [5], which is the one
used in our tool. In this paper we develop only the first
phase of a process of mining association rules, that is, the
one that undertakes to find the frequent itemsets, because
we use for the second phase some of the algorithm presented
in the studies cited before.

3. PRACTICAL IMPLEMENTATION

As it was above, the core of this tool is an EA where the
individuals are the possible itemsets we want to discover. In
the following sections we will see the general structure of the
algorithm, the same that the fitness function, representation
of the individuals and the meaning of the genetic operators.

3.1 GAR Algorithm

The GAR (Genetic Association Rules) algorithm is based
in the theory of evolutionary algorithms and it is an exten-
sion of the GENAR algorithm presented in [9], that search
directly for the association rules, so it is necessary to prepare
the data to indicate to the tool which attributes form part
of the antecedent and which one is the consequent. Never-
theless, this process is not necessary in GAR, because the
algorithm finds the frequent itemsets and the rules are built
departing from them.

In figure 2 the structure of the algorithm is shown. The
process is repeated until we obtain the desired number of fre-
quent itemsets N. The first step consists in generating the
initial population. The evolutionary algorithm takes charge
of calculating the fitness of each individual and carries out
the processes of selection, crossover and mutation to com-
plete the following generation. At the end of the process the
individual with the best fitness is chosen and it will corre-
spond with one of the frequent itemsets that the algorithm

Figure 3: Representation of an individual

] [u e [wfa]e]w]

[l v [o] v [us [sa s [R N

Figure 4: Example of a crossover operation

returns. Finally, the records covered by the obtained item-
set are penalized. Since this factor affects negatively to the
fitness function we achieve that in the following evolutionary
process the search space tends to not be repeated.

3.2 Characteristics of the Genetic Algorithm

Due to the nature itself of the problem to solve, that is,
the fact that the value of the attributes are taken from con-
tinuous domain, we use real codification to represent the
individuals.

An individual in GAR is a k-itemset where each gene rep-
resents the maximum and minimum values of the intervals
of each attribute that belongs to such k-itemset. In general,
the frequent itemsets are formed by a variable number of at-
tributes, that is, for a database with n attributes there can
be frequent itemsets from size 2 to size n, as can be seen
in figure 3, where I[; and u; are the limits of the intervals
corresponding to the attribute a;.

The generation of the initial population consists in the
random creation of the intervals of each attribute that con-
forms the itemset. The number of attributes of each itemset
is also chosen in a random way between 2 and the maxi-
mum number of attributes of the database. We condition
the itemesets to cover at least a record of the database and
that their intervals have a reduced size.

The genetic operators used in GAR are the usual ones,
that is, selection, crossover and mutation. For the selec-
tion, we use an elitist strategy to replicate the individual
with the best fitness. By means of the crossover opera-
tor we complete the rest of the population, choosing ran-
domly, the individuals that will be combined to form new
ones. From each crossover between two individuals two new
ones are generated, and the best adapted will pass to the
next generation. Given two individuals of the population
I'= ([ln,wa], [ls,us]) and I" = ([I1,u], [I2, u], [I3, us]), that
are going to be crossed, the crossover operator generates the
following two offspring:

O1 = ([[ln, wa] V [I1, ui]], [[I3, us] V [I5, us]])
02 = (Hllly ull] \ [llv ul]]v [l/%u/ﬂ’ [[lg,ué] \4 [lg,Ug]])

In figure 4 a possible result of the crossover operator for
two itemsets of different size can be seen.

The mutation operator consists in altering one or more
genes of the individual, that is, in modifying the values of
some of the intervals of a itemset. For each limit of the
selected interval we have two possibilities, to increase or to
decrease its value. In this way we achieved four possible
mutations: to shift the whole interval to the left or to the
right and to increase or to decrease its size.

Finally, a process of adjusting the chosen individual is
carried out. This consists in decreasing the size of its inter-

vals until the number of covered records be smaller than the
records covered by the original itemset. Again, the goal of
this post processing is to obtain more quality rules.

3.3 Fitness Function

As any evolutionary algorithm, GAR has a function im-
plemented in order to evaluate the fitness of the individuals
and to decide which are the best candidates in the following
generations.

In our scenery, we look for the frequent itemsets with a
larger support, that is, those that cover more records in the
database. But, if we use this criterion as the only one to
decide the limits of the intervals the algorithm will try to
span the complete domain of each attribute. For this reason,
it is necessary to include in the fitness function some measure
to limit the size of the intervals.

The fitness function f for each individual is:

f@) = cov — (mark xw) — (ampl *) + (nAtr xu) (1)

The meaning of the parameters of the fitness function is
the following:

e covered (cov). It indicates the number of records
that belong to the itemset that represent to the indi-
vidual. It is a measure similar to support.

e marked (mark). It indicates that a record has been
covered previously by a itemset. We achieve with this
that the algorithm tend to discover different itemsets
in later searches. We use a value that we call penal-
ization factor (w) to give more or least weight to the
marked record, that is, we will permit more or least
overlapping between the itemsets found depending on
this value. This factor will be defined by the user.

e amplitude (ampl). This parameter is very impor-
tant in the fitness function. Its mission is to penalize
the amplitude of the intervals that conform the item-
set. By means of the factor v it is achieved that the
algorithm be more or least permissive with regard to
the growth of the intervals. Within this concept, we
penalize both the mean and the maximum amplitude
of the intervals.

e number of attribute (nAtr). This parameter re-
wards the frequent itemsets with a larger number of
attributes. We will be able of increasing or decreasing
its effect by means of the factor pu.

All the parameters of the fitness function are normalized
into the unit interval. In this way all of them have the same
weight when obtaining the fitness of each individual.

4. EXPERIMENTAL RESULTS

To test if the developed algorithm finds in a correct way
the frequent itemsets, we have generated several synthetic
databases. We have used different functions to distribute
the values in the records of the database, in such a way that
they group on predetermined sets. The goal will be to find,
in an accurate way, the intervals of each one of the sets artifi-
cially created. Besides, we have tested our tool with numeric
databases from the Bilkent University Function Approxima-
tion Repository [6].

To carry out the tests, the algorithm was executed with
a population of 100 individuals and 200 generations. We

Table 1: Sets synthetically created by means of an
uniform distribution

sets

Ay € [1,15], Ay € [7,35], Az € [60,75], Ag € [0, 25]

A1 € [5, 0} A2 € [25 40] A3 € [10 30] A4 € [25 50]
Ay € [45,60], As € [55,85], Az € [20,25], Ay € [50, 75]
Ay € [75,77], As € [0,40], Az € [58,60], Ay € [75,100]
Ay €[10,30], Az € [0,30], A3 € [65,70], As € [100,125]

Table 2: Frequent itemsets found by GAR

frequent itemsets sup(%) | #records
1, 15] [6, 35], [60, 76], [0, 26] 13.40 201
[5,30], [24,40], [10,30], [26,51] | 13.07 196
(44, 61], [55,84], [20,35], [50,75] | 13.34 200
[74,77), [0,40], [58,60], [75,101] | 13.34 200
[9,29], [0,30], [62,71], [102,125] | 12.80 192

have chosen the following parameters in the GAR algorithm:
15% of selected individuals for the selection operator, 50%
of crossover probability and 80% of mutation probability.

4.1 Synthetic Databases

A first database formed by four numeric attributes and
1000 records was generated. The values were distributed, by
means of a uniform distribution, into 5 sets formed by pre-
determined intervals. Besides, 500 new records were added
with the idea of introducing noise in the data, distributing
their values, by means of a uniform distribution, between
the minimum and maximum values of the domain of the in-
tervals. In table 1 the 5 sets synthetically created are shown
and in table 2 we show the frequent itemsets found by GAR.

The exact support for each of the synthetically defined
sets is 13.34%, since each of them cover 200 records. As
can be seen in table 2, the support of each of the sets found
is quite close to such value, with a suitable size for each
interval. The results show that the algorithm behaves in a
correct way when the database contains a set of records that
can not be grouped in any frequent itemsets. The values
used in the fitness function were: w=0.7, 1=0.6 and ©=0.7.

The first experiment was carried out creating sets inde-
pendent among them, that is, without overlapping. In order
to test if the tool works properly when the sets have records
in common, a second database was created in the same way
that the first one but with overlapping among the sets. In
this case 600 records with the values distributed into 3 sets
were generated and other 200 records were added to gener-
ate noise. In table 3 the three sets synthetically created are
shown and in table 4 we show the frequent itemsets found
by GAR.

The penalization factor was decreased to carry out this
test in order to permit overlapping among the itemsets. The
values used in the fitness function were: w= 0.4, ¢ = 0.6 and

Table 3: Sets synthetically created with overlapping

sets

Ay € [18,33], As € [40,57], Az € [35,47]
A1 € [1, 15], A2 € [7, 30], A3 € [0,20]
Ay € [10,25], As € [20,40], Az € [15,35]

Table 4: Frequent itemsets found by GAR

frequent itemsets sup(%) | #records
[16,32], [41, 57, [35,46] | 22.12 177
[1,16], [7,30], [1,22] 27.38 219
[11,25], [19,41], [13,35] | 23.88 191
[1,24], [7,37], [0, 34] 49.50 396

Table 5: Sets variable size

sets
A1 € [1,15], Az € [7,35], A4 € [0, 25]
Az € [25,40], Az € [10,30], A4 € [25,50]
Az € [55,85], As € [50,75]
Ay € [75,77], Az € [0,40], As € [58,60], A4 € [75,100]
Az € [10,30], Az € [65,70]
n=0.7.

The next test was carried out to test the behaviour of
the tool when the itemsets are of a variable size. For this
test we used the first database but distributing the values
only among some of the attributes. In table 5 the five sets
synthetically created are shown and in table 6 we show the
frequent itemsets found by GAR.

The result of the test shows how the tool found the prede-
fined frequent itemsets. Besides, two new sets appeared as
a consequence of the random distribution of the rest of the
values. In this test the penalization factor and the number
of attributes were loosen to find itemsets of variable size.
The values used in the fitness function were: w = 0.5, ¢ =
0.6 and g = 0.45.

4.2 Real-life Databases

With the idea of evaluating our tool with real databases,
we carried out some experiments using the Bilkent Univer-
sity Function Approximation Repository.

In table 7 the results obtained after executing the algo-
rithm five times are shown. The first and second column
indicate the number of records and the number of numeric
attributes of each database respectively. The third column
(#1itemsets) indicates the mean number of frequent itemsets
found. The value of the column support indicates the mean
of support of the found itemsets, while size shows the mean
number of attributes of the itemsets. The column %ampl in-
dicates the mean size of the intervals that conform the set.
This measure is significant to test that the intervals of the
sets are not too many ample. The last column (%records)
shows the percentage of records covered by the found item-
sets on the total records.

Due to the fact of not knowing a priori the distribution
of the values of the records, we use a minimum support of

Table 6: Frequent itemsets found by GAR

frequent itemsets sup(%) | #records
[1,15], [8, 34], [0, 24] 10.94 164
25, 38], [12, 30], [24, 46] 10.20 153
[55,77], [50, 73] 11.60 174
(75, 78], [1,37], [58, 61], [75,100] | 12.40 186
[10, 30], [64, 70] 14.07 211
Ay € [0,40], As € [13,70] 42.74 641
Ar € [0,31], A € [9,73] 33.47 502

Table 7: Results for real-life databases
Database records | #att | #itemsets | support | size | %ampl | %records
baskball (BK) 96 5 5.6 36.69 3.38 25 100
bodyfat (FA) 252 18 4.2 65.26 | 7.45 29 86
bolts (BL) 40 8 5.6 25.97 | 5.29 34 77.5
pollution (PO) 60 16 4.8 46.55 | 7.32 15 95
quake (QU) 2178 4 6.9 38.65 | 2.33 25 87.5
sleep (SL) 62 8 5.2 35.91 4.21 5 79.03
stock price (SP) 950 10 6.8 45.25 5.8 26 99.26
vineyard (VY) 52 4 6.6 36.08 3 17 100
assist [0.0721,0.252%] assist [0.0578,0.277] fitness function and to find, with more accuracy, the size of
height [179,138] height [175,196] the intervals in a k-itemset.
age [22.32] time [19.02.3297]
age [22,31]
Support =39.45 points [0.3071,0.59] 6. ACKNOWLEDGMENTS
This work has been supported by Spanish Research Agency
Support = 36.31 CICYT under grant TIC2001-1143-C03-02

Figure 5: Two itemsets discovered in BK database

20% and thresholds of w = 0.4, ¥ = 0.7 and u = 0.5 to
carry out this tests. The tool found frequent itemsets with
high values of support but without expanding the intervals
in excess (amplitude percentage below 30%).

In figure 5 we can see the result obtained by the algorithm
GAR for the BK database. We have only represented two
of the frequent itemsets found. The most important of our
results with regard to formerly tools is the possibility of ob-
taining ranges with overlapping in different itemsets. For
example, in the first itemset, the best interval for height at-
tribute is [179,198], while in the second one, the best interval
for this attribute is [175,196]. In the previously referenced
techniques, the attributes are discretized before searching
the itemsets. So, if the discretization process finds the in-
terval [179,198] for height attribute, the interval [175,196]
can not appear in any itemset. This fact generates a loss
of information. For example, if the minimum support is
30% and the discretization process has created the interval
[179,198] for the height attribute, the second itemsets would
never be discovered because, probably, it would not exceed
the minimum support or it would be smaller than 36.31%.
Nevertheless, if their limits are slightly dynamically modi-
fied (we make it by means of mutations), the second itemset
can also be discovered.

5. CONCLUSIONS

We have presented in this paper a tool to discover asso-
ciation rules in numeric databases without the necessity of
discretizing a priori, the domain of the attributes. In this
way the problem of finding rules only with the intervals cre-
ated before starting the process is avoided. We have used an
evolutionary algorithm to find the most suitable amplitude
of the intervals that conform a k-itemset, so that they have
a high support value without being the intervals too wide.
We have carried out several test to check the tools behaviour
in different data distributions, obtaining satisfactory results
if the frequent itemsets have no overlapping, if they have
overlapping and if they are of a variable size.

Nowadays, we are studying new measures to include in the

7. REFERENCES

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining
association rules between sets of items in large
databases. In Proc. ACM SIGMOD, pages 207-216,
Washington, D.C., 1993.
R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In Proc. VLDB, pages 487499,
1994.
Y. Aumann and Y. Lindell. A statistical theory for
quantitative association rules. In Proc. KDD, pages
261-270, 1999.
D. Goldberg. Genetic algorithms in search,
optimization and machine learning. Addison-Wesley,
New York, 1989.
A. Gonzalez and F. Herrera. Multi-stage genetic fuzzy
systems based on the iterative rule learning approach,
1997.
H. Guvenir and I.Uysal. Bilkent university function
approximation repository.
http://funapp.cs.bilkent.edu.tr, 2000.
J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. pages 1-12, 2000.
H. Mannila, H. Toivonen, and A. Verkamo. Efficient
algorithms for discovering association rules. In Proc.
KDDYj, pages 181-192, Seattle, Washington, 1994.
J. Mata, J. Alvarez, and J. Riquelme. Mining numeric
association rules with genetic algorithms. In Proc. of
the Conf., pages 264-267. ICANNGA. Praga, 2001.
R. J. Miller and Y. Yang. Association rules over
interval data. pages 452—-461, 1997.
J. Park, M. Chen, and P. Yu. An effective hash based
algorithm for mining association rules. In Proc. ACM
SIGMOD, pages 175-186, San Jose, California, 1995.
A. Savasere, E. Omiecinski, and S. Navathe. An
efficient algorithm for mining association rules in large
databases. Technical Report GIT-CC-95-04.
R. Srikant and R. Agrawal. Mining quantitative
association rules in large relational tables. In Proc.
ACM SIGMOD, pages 1-12, Montreal, Canada, 1996.
K. Wang, S. W. Tay, and B. Liu. Interestingness-based
interval merger for numeric association rules. In Proc.
4th Int. KDD, pages 121-128, 1998.

(10]

(11]

(12]

(13]

(14]

