
Managing and Querying Multi-Version XML Data with Update Logging

Raymond K. Wong Nicole Lam
School of Computer Science & Engineering

University of New South Wales
Sydney, NSW 2052, Australia

{wong, s2244316}@cse.unsw.edu.au

ABSTRACT
With the increasing popularity of storing content on the WWW and
intranet in XML form, there arises the need for the control and man-
agement of this data. As this data is constantly evolving, users want
to be able to query previous versions, query changes in documents,
as well as to retrieve a particular document version efficiently. This
paper proposes a version management system for XML data that
can manage and query changes in an effective and meaningful man-
ner.

Categories and Subject Descriptors
H.3.2 [Information Storage and Retrieval]: Information Stor-
age—File organization

General Terms
Algorithms, Documentation, Performance

Keywords
Path Expression, Versioning, XML

1. INTRODUCTION
As an increasing amount of documents are being created in XML

form, authors require the ability to manage their content through
version control. Content authors require flexibility and efficiency
in maintaining their content, as well as the ability to query previous
versions of the author’s content.

Consider the situation where content authors are continuously
modifying their documents and ”checking-in” these documents into
the database. The database system has to provide the necessary
facilities for storing and querying the current version of the doc-
ument, together with previous versions of the document. This
presents the problem of version control.

Several solutions to this problem have been proposed by [2, 1,
4]. [3] utilise the concept of object referencing and identities to
solve this problem.

In this paper, we present a Content-Based Version Management
System which solves the problem of version control efficiently. Our

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’02, November 8–9, 2002, McLean, Virginia, USA.
Copyright 2002 ACM 1-58113-594-7/02/0011 ...$5.00.

proposed system has an efficient storage policy which stores inter-
mediate complete versions of a document, as well as delta files of
the document. By storing intermediate complete versions of docu-
ments, we are able to improve the space complexity, as well as the
efficiency of the system. This is possible because the system can
construct a given version from one of the intermediate complete
versions rather than from the current version only, as suggested in
[9]. Our concept of complete deltas also promotes efficiency as
we are able to provide a mapping between backwards and forward
deltas, hence reducing the space requirements for storing deltas.

Although several approaches to version control of semistructured
data use the concept of object referencing, our proposed system
uses complete deltas instead. This was done as we argue that deltas
are more intuitive than object referencing. That is, the deltas we
define in our system can be directly applied to complete versions,
as edit scripts, in order to obtain the previous version.

The rest of the paper is organized as follows. The next sec-
tion details works that are related to the area of version con-
trol/mangement. Section 3 provides an overview of the logical
model of the proposed system. This is followed by a section on
the querying facilities of the system, together with algorithms for
query processing.

2. RELATED WORKS
The development of version management systems for semistruc-

tured data is closely related to the more general area of document
management systems, such as [6] and [8]. The development of
such commercial products illustrates that users need to be have ac-
cess to a system that allows them to control and query their struc-
tured/unstructured data.

Previous solutions to the general topic of version control of doc-
uments were based on region-based diff operations, such as GNU
diff. However, this approach is not suitable for Semistructured Data
(e.g. XML documents) due to the rich semantics of the data. For
example, if the difference between version 1 and version 2 of a
document is the swap of two 20-line paragraphs, traditional region
based comparison systems would state the deletions of two para-
graphs and the insertions of two new paragraphs. Hence, there is a
need for a more meaningful comparison of documents based on the
semantics of the update operations.

More recently, [4, 9] have discussed the use of content-based
version management. Identifying changes based on content result
in more meaningful and intuitive results that are more efficient to
query.

The Reference-Based Version Model (RBVM) proposed by [4]
uses object references to manage multiversion documents. Chien
et. al. focus on the storage performance of the system, while the
performance of inserting a new version into the system was notbrought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/281359897?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

discussed. Our work differs from RBVM in that we use the notion
of complete deltas and edit scripts, rather than object references.
We believe that this approach is more intuitive as the deltas (i.e. the
edit scripts) can be applied directly to a complete version.

[9] propose a system that keeps track of changes using complete
deltas. We use a similar concept of completed deltas and the storing
of the last version of a document. However, in contrast to [9], we
also store intermediate complete versions of the document.

3. LOGICAL MODEL
The logical model of the version management system detailed

in this section forms the basis of our proposal. Firstly, we look at
the complete deltas used, the change detection algorithm, followed
by the types of edit operations that the complete deltas contain.
Next, several user operations for version insertion and retrieval are
defined. A performance analysis of version insertion and retrieval
can be found in [7].

3.1 Deltas
Definition: A delta represents the difference between two data

versions. A delta can be classified as either a forward or backward
delta. A forward (backward) delta to be an edit script that can be
applied to a complete version of a document to obtain the next (pre-
vious) complete version of a document.

Example: Given Version 1 and 2 below, e1,2 =
section/subsection!insertInto(heading/"Title"),
which is the edit operation to convert Version 1 to Version 2. The
inverse of the insertInto operation corresponds to the complete delta
file e2,1 = section/subsection/heading!delete().

<section>
<subsection>
</subsection>
</section>

Version 1

<section>
<subsection>
<heading>Title</heading>
</subsection>
</section>

Version 2

e1,2 represents an edit operation in a forward delta while e2,1 repre-
sents an edit operation in a backward delta. Note that there is a loss
of information in the delete operation, e2,1, as the operation does
not specify the contents of the node that is being deleted. Hence,
deltas are also referred to as ’lossy’ deltas. This loss of information
is significant for reconstructing a particular data version and will be
elaborated on in the following sections.

3.2 Complete Deltas
One of the main components of our proposed system is the use

of complete deltas for change detection. Several other change de-
tection algorithms [1, 2, 3, 5, 12] have been proposed. However,
we utilise the concept of deltas, rather than object references [4],
or node annotations [1], as deltas are more intuitive. That is, the
deltas we define in our system can be directly applied to complete
versions, as edit scripts, in order to obtain the previous version.

We define a complete delta to be an edit script such that there
exists a 1 - 1 mapping between the forward and backward deltas
between two versions. Although a lot of redundancy is introduced
to the edit operations in a complete delta, this method is preferred
as we argue that complete deltas enable our system more flexibility
and efficiency. Complete deltas allow the system to work back-
wards and forwards from any complete version stored. Efficiency
in terms of storage space of the deltas is achieved as complete deltas
only require the storage of a forward or backward complete delta
and not both. This method is preferred rather than storing both the
backward and forward (lossy) deltas in the system.

3.3 Change detection
The user can load a new version of data in one of two ways:

1. providing the list of edit operations (in the form of a com-
plete delta) that were performed on the data to obtain the
new/current version (using update logging); or

2. providing the new/current version and allowing the system
process the changes that were performed on the existing ver-
sion stored in the system.

The mechanisms behind constructing a complete delta, given the
new/current version of data (as specified in Method 2) is defined
in the xDiff algorithm, a modified version of Wang et. al.’s X-Diff
[12].

xDiff(Vx, Vy):
1 parse Vx and Vy

2 find minimum cost matching between Vx and Vy

3 generate minimum-cost edit script

We find the minimum cost matching by matching each node in
Vx to each node in Vy to identify the common nodes between Vx

and Vy . Next the minimum-cost edit script is generated consisting
of edit operations which updates nodes that are in the minimum
cost matching that have different values, deletes nodes in Vx not
in the minimum cost matching and inserts nodes in Vy not in the
minimum cost matching.

In contrast to X-Diff, xDiff computes the delta between 2 input
versions based on the ordered tree model (X-Diff detects changes
using the unordered model). We find xDiff to be more meaningful
especially in the context of textual documents, where the order of
paragraphs and sections are important.

3.4 Edit operations
In addition to the two basic operations: Insert and Delete, we

define three more main operations: Update, Move and Copy. Al-
though the Insert and Delete operations are sufficient to describe the
differences between two versions, we find that the three additional
operations provide a more meaningful and intuitive approach to the
description of differences. Furthermore, we found that including
the Copy operation enabled more flexibility in representing docu-
ment restructuring. We use simple path expressions, in the style of
[10], to present the edit operations of our system, see Appendix A
for the syntax.

For the insert, delete, move and copy operations, it is necessary
to include the element’s final index as this facilitates the inversion
of the operations. The operations also contain some redundant in-
formation (for example the oldvalue in Update operation) so as to
aid in the mapping between forward and backward deltas. See [7]
for details on converting an edit operation to its inverse.

We consider the following operations:

1. Insert: We define three sub-operations under the Insert op-
eration: insertInto, insertBefore, insertAfter.

insertInto: Intuitively, path!insertInto(insertedpath)
inserts insertedpath as a subtree of path, given
that path has no children.

insertBefore: path!insertBefore(insertedpath,
i) assumes that there exists a subtree, t, rooted at
path, such that t has nodes other than the root. This
operation inserts insertedpath before subtree t,
such that it has a final element index i.

insertAfter: path!insertAfter(insertedpath,
i) assumes that there exists a subtree, t, rooted at
path, such that t has nodes other than the root. This
operation inserts insertedpath after subtree t such
that it has a final element index i.

2. Delete: This operation is the inverse of the Insert opera-
tions. That is, path!delete(x, elem, isBefore)
removes the subtree x (which has nodes other than the root
node) rooted at path. The subtree x is the raw XML that
represents the subtree being deleted. This redundancy is nec-
essary, so as to be able to invert the delete operation to an
insert. Also, elem is the node that was adjacent to x before
it was moved. isBefore is a boolean which identifies if
elem is the left/right neighbour or neither.

We also define path!delete(elem, isBefore)
which assumes that path describes a leaf node and thus re-
moves the leaf node.

3. Update: Intuitively, path!update(newvalue,
oldvalue) updates the oldvalue of path to the
newvalue specified. It is necessary to keep track of the
oldvalue in order to invert the operation.

4. Move: We define three sub-operations under the Move oper-
ation: moveInto, moveBefore, moveAfter.

• dstpath!moveInto(srcpath, elem, boolean)

• dstpath!moveBefore(srcpath, elem, boolean, path)

• dstpath!moveAfter(srcpath, elem, boolean, path)

The intuition for the three move operations is similar
to those of the insert operation and will not be dis-
cussed here. However, we also include extra param-
eters for these operations to aid in the mapping be-
tween backward and forward deltas. For example,
in path!moveAfter(srcpath, origNeighbour,
isBefore, newpath), newpath is the final path of
srcpath in its new location. The parameters for the other
move operations are similarly defined.

5. Copy: We define three sub-operations under the Copy oper-
ation: copyInto, copyBefore, copyAfter.

• dstpath!copyInto(srcpath)

• dstpath!copyBefore(srcpath, index)

• dstpath!copyAfter(srcpath, index)

The intuition for the three copy operations is similar to those
of the insert operation and will not be discussed here.

3.5 Version Insertion
To insert a new version into the system, we use the xDiff algo-

rithm. The system stores forward deltas (as opposed to backward
deltas). This was a design decision, as the type of delta stored by
the system is arbitrary. The algorithm presented below will work
equally well with backward deltas stored instead. That is, the data
model presented here can work with either forward or backward
deltas as we define a function that provides a mapping between the
two. However, we found that storing forward complete deltas in the
system facilitates in the processing of user queries, as described in
the following chapters.

A complete version is stored, Vx, depending on the number of
operations required to retrieve version x from the most recent com-
plete version. This is implemented by specifying an upper bound
for the total number of edit operations consecutive deltas can con-
tain. This upper bound determines if a complete version of the
document is stored. As an enhancement, the value of this upper
bound actually depends on the size of the document. The intuition
behind this is: intermediate complete versions are stored in the sys-
tem to reduce the number of operations that have to be applied to
a complete version in order to reconstruct a given version, while
maintaining the space efficiency of the system. We vary this value
using the user defined parameter MAX RATIO such that it depends
on the size of the document too.

#ops

size(document)
≥ MAX RATIO (1)

where #ops is the total number of operations that have to be applied
to the most recent complete version stored in the system to retrieve
the given version, and size(document) is the size of the complete
document.

If Eq. 1 is true, then we store the complete version of the docu-
ment, in addition to the delta.

insertNewVersion(Vx):
1 // Step 1: Compute the difference
2 // between Vx and current version
3 delta = xDiff(Vx, current version)
4 Save complete version Vx

5 Save delta
6 // Step 2: Process previous version
7 if Eq. (1) is not satisfied :
8 Delete complete version (x-1)

3.6 Version Retrieval
To retrieve a particular version, z, we locate the 2 complete ver-

sions (Vx and Vy) that bound version z. That is, there consist of
only deltas between Vx and Vy, such that one of the deltas be-
long to z. The method then constructs version z by applying the
forward/backward deltas, depending on the number of operations
each involve. The construction of a version using forward deltas is
favoured in the algorithm, as less computation is required to con-
struct the version required - we just need to apply the stored delta
step-wise on version Vy. On the other hand, to work backwards
from Vx, we have to do extra computation to work out the backward
deltas as they are not explicitly stored in the system. We define a
constant FORWARD CONSTANT such that:

upperOps

lowerOps
< FORWARD CONSTANT (2)

where upperOps (lowerOps) is the number of operations re-
quired to get from the Vy (Vx) complete version to the version z.

If Eq. 2 is true, it is more efficient to use Vy to construct version
z (using backward deltas).

getVersion(ver):
1 // Locate closest complete version stored before ver
2 for each complete version, v, stored in the system:
3 if v = ver:
4 return complete version v
5 else if v = closest complete version stored:
6 break
7 lowerOps = # of ops to compute ver from v
8 upperOps = # of ops to compute ver from (v+1)
9 if Eq. 2 is satisfied:

10 convert forward deltas [v..ver] to backward deltas
11 and apply to Vv

12 else:
13 apply forward deltas [ver..v] to Vv

convertToForward(backwardDelta):
1 for each edit operation in backwardDelta:
2 apply rules to obtain the inverse
3 store the inverse operation
4 in reverse order in forwardDelta
5 return forwardDelta

It is necessary to store the inverse operations in reverse order in
backwardDelta. This concept can be illustrated by the following
example:

Given versions Vi, Vj and Vk, where xDiff(Vi, Vj) = ei and
xDiff(Vj , Vk) = ej (en is a single edit operation). To get from
Vk to Vi, it is necessary to apply edit operation ej first, then ei to
Vk. Hence, the edit operations are applied in reverse order.

4. QUERYING MULTI-VERSION DOCU-
MENTS

This section deals with the design of the query language used
to perform queries on the data stored in the system. It also details
the design of the query mechanism to process queries based on the
logical model described in the preceeding section.

4.1 Query Language
We use XQuery [11] to allow the querying of multi-version doc-

uments. XQuery, which contains XPath as a subset, is a query
language for XML data proposed by W3C. XQuery is a power-
ful query language that supports conditional statements, iterative
loops, collections, set operations, user-defined functions etc. These
features make XQuery a suitable choice for our query language.

The FLWR (FOR/LET) expression forms the basis of XQuery.
Informally, the syntax of a FLWR expression is: FOR ... LET ...
WHERE ... RETURN ... The FOR clause allows iterations over
sets of elements, while the LET clause assigns a collection of el-
ements to a variable. The WHERE clause allows conditions to be
specified and the RETURN clause provides the formatting for the
output to the user.

To define a function funcName in XQuery that takes in parame-
terList as arguments:

DEFINE FUNCTION funcName (parameterList)
RETURNS elementList {

... XQuery expression ...
}

The user can then invoke funcName in the body of an XQuery
expression.

Example:

<catalog>

<book>
<title>ABC book</title>
<year>2002</year>
<publisher>XYZ publishing</publisher>

</book>
<book>
...
</book>
...

</catalog>

Given the XML document above, the user can perform the fol-
lowing queries:

• Retrieve all book publishers which have published a book
before year 2000. Here, the FOR clause iterates over each
node resulting from the expansion of the path //book and
checks that each book was published before year 2000.
FOR $i IN //book

WHERE $i/year < 2000

RETURN $i/publisher

• Retrieve all the books published by each publisher, cate-
gorised by publishers.
In particular, the user can define a function bookPublisher
which takes the publisher element as an argument and re-
turns the books associated with the publisher in the correct
format. In the FLWR expression, the LET clause assigns the
collection of nodes from the expansion of the path //book
to the variable $bks. Next, the FOR clause iterates this col-
lection of books to obtain a publisher. Note that $p contains
a single element, while $bks contains a collection of ele-
ments.

DEFINE FUNCTION bookPublisher(ELEMENT publisher $pub)
RETURNS ELEMENT book publisher {
<book publisher name=$pub>
{

FOR $b IN //book
WHERE $b/publisher = $pub
RETURN

<book>
<title>$b/title</title>
<year>$b/year</year>

</book>
}
</book publisher>

}

LET $bks := //book
FOR $p IN $bks/publisher
RETURN bookPublisher($p)

We also define a query function edit-operation() in the
style of XPath functions. As with other standard XPath functions,
edit-operation() is executed based on the context node.
That is, edit-operation() is performed on the most recently
matched element node in the data graph. This query function re-
turns the edit operation associated with the node (as specified by
the path expression). This function provides flexibility in specify-
ing queries in the body of a regular path expression which contains
a predicate.

We define other functions for querying data versions:

HISTORY(doc, path): Returns the history of edit operations that
were performed on the node specified by path.

DOC-HISTORY(doc, Vi, Vj): Returns a list of edit operations
representing the changes between document versions i and j.

DOC-HISTORY(doc, timestampi, timestampj): Returns a
list of edit operations representing the changes between time
timestampi and timestampj .

CURRENT(doc): Returns the most current version of doc.

VERSION-OP(doc, path, op): Returns the version of doc such
that the operation op was performed on path or an ancestor
of the node path.

We can define a majority of the functions listed above as user-
defined functions in XQuery. In the design of the query mechanism
for our proposed system, it is necessary to provide a more concrete
description of the logical model of our system - in terms of the
actual complete deltas that are stored in the system. There are two
factors that can be included in a query that affect the method of pro-
cessing the query. These are: (i) change-related or content-related
queries; and (ii) queries over a range of versions or a particular
version.

Firstly, we discuss our approach to query processing, together
with a detailed description of the indexes maintained by the system
for query processing. Finally, we explore the different types of
queries that can be performed on the system.

4.2 Approach
A naive approach to processing a user query based in the changes

or content of a given document version, v, would involve recon-
structing version v by applying a sequence of complete deltas to
the closest complete version of the document stored in the system.
This is very inefficient because if a user specifies a range of ver-
sions to query, a range of complete versions of the document will
have to be reconstructed, while only a few versions may match the
user’s query and are returned to the user.

In our approach to query processing, the system scans the deltas
stored in the system and returns the corresponding version(s) that
matches the query without having to reconstruct an intermediate
versions. This is possible through an index structure, which stores
all the deltas in a single structure indexed on the tags that were
involved in an update operation. With this approach, the system
only retrieves the complete version of a document that satisfies the
query.

4.3 Index Structure
The basic intuition behind our index structures is the indexing of

tags that are involved in an edit operation. We present the two index
structures maintained by the system to facilitate query processing:
Tag Index and Path Index.

For illustration purposes, we provide an example of a sample
state of our version management system.

Example 1: The Figure 2 shows 3 versions of a document. e1,2

represents the edit operation that was performed on Version 1 to
obtain Version 2, while e2,3 represents the edit operation to obtain
Version 3 from Version 2.

where e1,2 = title!insertInto(bold); title/bold!insertAfter(font)
and e2,3 = title/font!delete(); title/bold!insertAfter(italics); ti-
tle/italics!insertInto(comment);

4.3.1 Tag Index
The system maintains a hash table, Tag Index, which maps a tag

to a list of edit operations. With this index structure, the query pro-
cessor is able to access the required edit operation associated with
a given tag in near constant time. This is important as a majority of
user specified queries are based on a specific tag (and can hence be
easily obtained from the hash table).

Each row in the Tag Index represents a tag that was involved in
an edit operation in the given document’s history. Associated with
each tag is a list of nodes that represent the particular nodes that

title

bold italics

comment

root

(2,1) {(2,2), (3,1), (3,2)}

(3,3)

a) Example of a Multi−Version Document (sample.xml)

Tag OperationC. PathVersion Id

<italics>

2

<bold> 2 1 0.0 insert

2 insert0.1

0.113

3 2 0.1

3 3 0.1.0

title title

bold font

e_1,2 e_2,3

Version 3Version 2Version 1

c) Path Indexb) Tag Index

delete

insert

insert<comment>

Figure 1: Sample State of Version Management System

participated in the edit operation. More specifically, each node in
the list of nodes contains the following variables:

Node ID: Node identifier. This identifier uniquely identifies a par-
ticular node within a given version. Hence, the Node ID, to-
gether with the Version (i.e. (Version number, Node ID))
uniquely identifies each node in the Tag Index. The Node ID
also implicitly orders the edit operations that are performed
on a document version.

Version: The document version that corresponds to the edit oper-
ation executed.

Canonical path: The canonical path of a node is a unique repre-
sentation of a node in terms of its order with respect to its
siblings.

Definition: Given an XML document, represented as a data
graph, the Canonical Path Representation, C, of a node
consists of a sequence of numbers separated by ’.’ of the
form: C = x1.x2.x3.....xk where xi ∈ NAT .

The Canonical Path is defined recursively as follows:

1. x1 = 0, as each XML document has exactly 1 root node;
and

2. the ith number in the sequence corresponds to the xi-th
child of the node represented by x1.x2.x3.....xi−1 at
level i of the data graph.

Note that C corresponds to the XPath expression *[x1]/ ∗
[x2]/ ∗ [x3]/.../ ∗ [xk].

Example 2: The XPath representation for the nodes for
’<title>’, ’<bold>’ and ’<italics>’ in Example 1 are *[0],
[0]/[0] and *[0]/*[1] respectively. Hence, the Canonical
paths are 0, 0.0 and 0.1. The canonical path represents the
final position of the node after the operation was executed on
the document.

Operation: The operation that was performed on the node. Possi-
ble operations include: insert, delete, updateOld, updateNew,
moveSource, moveDest, copySource and copyDest. Note
that it is not neccessary to include opBefore/After as an oper-
ation type because the canonical path of the node is the final
location of the node after the operation has been executed.
We also keep track of the old tag value of an update opera-
tion via the operation updateOld. In addition, we include the

opSource and opDest for move and copy so as to maintain
information on the previous location of the node.

It is important to note that the Canonical path representation of a
node containing either a delete or moveSource operation is the orig-
inal location of the node before the operation was executed. Hence,
for a node with Version: x and Operation: delete or moveSource,
its Canonical path identifies the node in Version (x-1). Note also
that the node list associated with each tag is ordered based on the
Version number followed by the Node ID. This enables efficient
evaluation of user queries.

In our Tag Index, we store the Canonical path of a node. This
path value is derived depending on the method that the data version
is loaded into the system. If the user loads the complete modified
data version into the system, we user xDiff to detect the modifi-
cations that were performed on the data. In this case, the xDiff
algorithm returns the Canonical path representations of the nodes
that were involved in edit operations. On the other hand, if the
user loads a list of edit operations into the system to represent the
modifications to the data version, the edit operations may contain
complex path expressions which cannot be immediately converted
into their corresponding Canonical path. Hence, the system has to
perform the provided list of edit operations onto the existing data
version to determine the specific node in question and traverse the
data graph to obtain the Canonical path of the node. This is best
illustrated with an example.

Example 3: Given the data version, V:

<a>

<c></c>
<c></c>

and the edit operation performed on this version to obtain a new,
modified version:

e_1 = a//c!insertInto(d)

The user loads the new version of the data by entering the edit
operation, e1, into the system. When the system performs e1

onto the exisiting data version, V, it identifies a/b/c[0] and
a/b/c[1] as the nodes that are affected by the edit operation.
Hence, the Canonical path of the inserted node corresponding to
a//c!insertInto(d) are 0.0.0.0 and 0.0.1.0.

By applying the edit operations onto the existing document ver-
sions, we are able to obtain the Canonical paths of all edited nodes.
This is applicable to all Regular Path Expressions.

4.3.2 Path Index
In addition to the Tag Index, we also present an index structure,

Path Index, to maintain the relationships between the paths of the
edit operations that are performed on the data version. This enables
the efficient processing of complex queries on the changes made to
the data.

The Path Index is a tree consisting of path index nodes. Each
index node contains a list of (Version, Node ID) pairs (uniquely
identifying each node in the Tag Index). The parent-child relation-
ship between the path index nodes illustrates the parent-child rela-
tionship between the nodes within the path index node (i.e. A node
in the parent path index node is actually the parent of a node in
the child path index node). Each path index node can be identified
by the Canonical Path of the nodes that it represents. Hence, each
node (in the node list of the Tag Index) also holds a pointer to the
path index node of the Path Index, corresponding to the path index
node that it is in.

4.4 Change-Related Queries

4.4.1 Queries spanning a single version:
This is the most basic type of query that can be performed by the

user on the system. These queries involve the changes that were
performed on a single document version. That is, these queries in-
volve querying on one or more edit operations executed on a single
document version.

Example 4: From the running example, the user can issue a
query to locate the version of document where the ’’ tag
was deleted and the ’<italics>’ tag was inserted into the docu-
ment. The system would return Version 3. This is executed by
looking-up the index structure for the ’’ and ’<italics>’
tag. The node list associated with ’’ contains the node (3,1)
which was involved in a delete operation, while the node list for
’<italics>’ contains the node (3,2) for an insert operation. Hence,
as both matched nodes are associated with Version 3, the system
returns Version 3 of the document to the user.

Query:

FOR $i IN /
WHERE edit-operation($i//font) == DELETE AND

edit-operation($i//italics) == INSERT
RETURN version($i);

4.4.2 Queries spanning multiple versions:
For queries spanning multiple versions, it is necessary to com-

bine the query over several deltas in order to keep track of the mod-
ifications that the user may have performed on different document
versions.

Example 5: From the running example, the system returns Ver-
sion 3, when the user issues a query to locate the version of docu-
ment that has both the ’<bold>’ and ’<italics>’ tag inserted into
the document. To execute this query, the query processor performs
a lookup in the Tag Index for the ’<bold>’ and ’<italics>’ tag,
obtaining their corresponding node lists. By identifying the nodes
which were involved in the required (insert) operation (i.e. (2,1)
for ’<bold>’ and (3,2) for ’<italics>’), the processor next scans
both node lists to ensure that either tag was not deleted or updated
within Versions 2 and 3. Finally, the processor returns Version 3 to
the user, in response to the query.

Query:

FOR $i IN /
WHERE edit-operation($i//bold) == INSERT AND

edit-operation($i//italics) == INSERT
RETURN version($i);

4.4.3 Content-Related Queries
Content-related queries have to be handled differently from

change- related queries as the particular content of a document may
not have been involved in an update operation. An example of a
content-related query: Locate the document version which contains
that phrase ”hello world”.

We augment the Tag Index structure in order to be able to han-
dle content-related queries. We combine the Inverted File Index
together with the Tag Index to obtain the Augmented Tag Index.
Here, each row contains either a tag or a word located in the data
version. If the row contains a word,

Example 6: From Example 1, suppose the user performed
the operation title/bold!insertAfter(font/"hello
world") instead of title/bold!insertAfter(font) in
e1,2. The Augmented Tag Index would look like Figure 2. For
”hello”, the Order = 1 indicating that ”hello” is the first word in
document version 2. The node information associated with ”hello”
and ”world” are the same as for (2,2). This was done to

world

Operation

insert

insert

C. Path

0.1

0.1

Tag

hello

Version

2

2

Id Order

2

2

1

2

...

Figure 2: Augmented Tag Index (from Example 1)

keep track of the operations performed on the words in the docu-
ment.

By including the content (in terms of the words) of the data
version in the Tag Index, the query processor is able to perform
change-related queries on both the tags as well as the content of the
document.

4.5 Algorithms

4.5.1 Insertion
We provide the algorithm for inserting an edit path (or Canoni-

cal path of the node) into the Path Index. Here, P is the Path In-
dex currently being constructed. As a user performs an edit opera-
tion on the data version, the edit operation is inserted into P using
INSERT(). INSERT-PATH locates the appropriate location that
the path should be located and inserts pid into the Path Index. It
determines the correct location by performing a PREFIX compar-
ison on the current index node and the argument path. If an index
node to represent path does not exist, an new index node is created
using CREATE-NODE.

// pid = (ver, id)
// ’path’ is the Canonical path representation of the node
// that was affected by a user operation.
INSERT(pid, path):
1 P.root ← INSERT-PATH(pid, path, P.root());

INSERT-PATH(pid, path, node) :
1 if node = {} then
2 return CREATE-NODE(pid, path);
3 if path == node.path then
4 node.append(pid);
5 return node;
6 else if PREFIX(path, node.path) then
7 n ← CREATE-NODE(pid, path);
8 update children of node.path
9 return n;

10 else if PREFIX(node.path, path) then
11 c ← child node of ’node’ that is a prefix of path
12 if (c == null) then
13 n ← CREATE-NODE(pid,path);
14 node.children.append(n);
15 else
16 INSERT-PATH(pid, path, c);
17 return node;
18 else
19 return CREATE-NODE(pid,path);

CREATE-NODE(pid, path) :
1 n ← INDEX-NODE();
2 n.path ← path;
3 n.nodes ← pid;
4 n.children ← [];
5 return n;

4.5.2 Change-Related Queries
When the user specifies a change-related query, the query pro-

cessor executes PROCESS-QUERY with the regular path expres-
sion and edit operation the user is interested in as arguments. We

define a function NODE-NAME which extracts the tag name of the
node specified by the argument path. This enables the processor to
perform a lookup on the Tag Index to identify the relevant edit op-
erations (this identifying process is executed using FILTER). Note
that PROCESS-QUERY can handle the wildcard (*) operator as the
end of a path too, as TAG-INDEXwould return all operations in the
Tag Index. If there are nodes that match the ’tag’ and the ’op’ re-
quired, PROCESS-QUERY then checks that the matching node has
a Canonical path equivalent to the input path, using IS-VALID.
The function also traverses the Path Index tree upwards, in an at-
tempt to locate other data versions that had the required operations
performed on the ancestor of the current matching nodes.

// returns a set, R, of version numbers that
// match the ’path’, ’op’ inputs
PROCESS-QUERY(path, op):
1 tag ← NODE-NAME(path);
2 C ← TAG-INDEX(tag);
3 if C ← {} then
4 // path does not exist
5 return {};
6 N ← FILTER(C, op);
7 R ← {}
8 if N != {} then
9 for each node ∈ N do

10 if IS-VALID(node.path, path, node.ver, node.id) then
11 R ← R ∪ node.ver;
12 for each c ∈ C do
13 i ← *(c.ptr);
14 R ← R ∪ PROCESS-QUERY-UP(c.path, path, op, i.parent, R);
15 return R;

PROCESS-QUERY-UP(cpath, path, op, i, V) :
1 // traverse the tree upwards to see if
2 // the ancestors were involved in op
3 R ← {};
4 N ← FILTER(i, op);
5 if N != {} then
6 for each node ∈ N do
7 if node.ver ∈ R then
8 // version already matched
9 continue;

10 if IS-VALID(cpath, path, node.ver, node.id) then
11 R ← R ∪ node.ver;
12 if i = P.root() then
13 return R;
14 return R ∪ PROCESS-QUERY-UP(path,op, i.parent, R);
15 else
16 if i = P.root() then
17 return R;
18 return PROCESS-QUERY-UP(path, op, i.parent, R);

In IS-VALID we include a parameter l to keep track of the cur-
rent token in cpath being matched to path. We define a token to be
either a tag, wildcard operator (*), child operator (/) or descendant
operator (//). This enables the query processor to handle queries
with regular path expressions.

IS-VALID(cpath, path, ver, id) :
1 return IS-VALID(cpath, path, ver, id, 0, 0, P.root(), 1);

// (lowerVer, lowerId) = lower bound for matching nodes
// (ver, id) = upper bound for matching nodes
IS-VALID(cpath, path, ver, id, lowerVer, lowerId, start, l) :
1 if start = null ∧ path.length() = l then
2 // matched path with cpath
3 return (lowerVer, lowerId);
4 // scan the Path Index
5 valid ← null;
6 C ← start.children();
7 for each c ∈ C do
8 if PREFIX(c.path, cpath) then

9 for each i ∈ c do
10 if ! (lowerVer, lowerId) < i) then
11 // previously matched tokens are not valid here
12 continue;
13 res ← (i.ver, i.id) < (ver, id);
14 if path[l] equiv i.tagc ∧ res then
15 for each j ∈ c do
16 res ← (j.ver, j.id) < (ver, id);
17 if j > i ∧ res ∧ j.tag = i.tag then
18 if j.op = "delete" || j.op = "updateOld" ||
19 j.op = "moveSrc" then
20 break;
21 if j != c.last then
22 // i not valid anymore
23 continue;
24 else
25 value ← IS-VALID(cpath, path,
26 ver, id, i.ver, i.id, c, l+1));
27 valid ← min(valid, value);
28 return valid;

The above algorithm only handles regular path expressions with-
out predicates. To handle predicates, the code fragment below has
to be inserted into IS-VALID, after Line 12. The code fragment
below checks if the condition is true before allowing the algo-
rithm to continue processing the next token in the path. It exe-
cutes IS-VALID-QUERY to check for path validity. The function
PREDICATE-PATH extracts the predicate path at position l and
returns the corresponding path and operation.

13 if CHANGE-PREDICATE(path, l) then
14 (p, op) ← PREDICATE-PATH(path, l);
15 if ! IS-VALID-QUERY(cpath, p, op, ver, id,
16 i.ver,i.id, c, l+1) then
17 // predicate not satisfied
18 continue;

The algorithms for IS-VALID-QUERY is similar to that for
PROCESS-QUERY and thus will not be presented here.

4.6 Index Representation
In practice, we store both indexes: Tag Index and Path Index as

XML documents in the database. The DTD for the Tag Index and
Path Index is:

<!DOCTYPE tagIndex[
<!ELEMENT tagIndex (tagRow)*>
<!ELEMENT tagRow (node)+>
<!ELEMENT node (path, ver, id)>
<!ELEMENT path (#PCDATA)>
<!ELEMENT ver (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ATTLIST tagRow

tag CDATA #REQUIRED>
]>
<!DOCTYPE pathIndex[

<!ELEMENT pathIndex (indexNode)*>
<!ELEMENT indexNode (insert|delete)*, (indexNode)*>
<!ELEMENT insert (ver, id, tag)>
<!ELEMENT delete (ver, id, tag)>
<!ELEMENT ver (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT tag (#PCDATA)>

]>

The advantages of storing the indexes as XML documents in-
clude:

1. Ease in performing lookups on the indexes. This is possible
by applying complex XPath expressions on the XML doc-
ument indexes. This enables the query language to be more
expressive as all the information contained in the indexes can
be queried efficiently and easily;

2. Intuitive mapping between the syntax and semantics of the
query language; and

3. Ease in updating the indexes as concurrency/ access control
mechanisms are provided by the database management sys-
tem. Therefore, the design of our query mechanism can fo-
cus on the querying of changes rather than the index locking
mechanisms.

Hence, the user has two avenues for querying changes in docu-
ments, either directly, via the actual XML copies of the indexes, or
indirectly, via the functions defined in Section 2.1.

Therefore, when the user performs an operation on a document
version, the query mechanism issues update statements to the Tag
Index and Path Index XML documents in order to maintain the
indexes.

5. CONCLUSION
In this paper, we have presented an efficient version management

system for multi-version documents. By storing intermediate ver-
sions of the document as complete deltas, we are able to efficiently
query these data versions without having to reconstruct each ver-
sion. We utilise XQuery to facilitate the querying of changes and/or
content in the system.

6. REFERENCES
[1] S. Chawathe, S. Abiteboul, and J. Widom. Representing and

querying changes in semistructured data. In Proceedings of the
International Conference on Data Engineering, February 1998.

[2] S. Chawathe and H. Garcia-Molina. Meaningful change detection in
structured data. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 26–37, May 1997.

[3] S-Y. Chien, V. Tsotras, and C. Zaniolo. Copy-based versus edit-based
version management schemes for structured documents. In
RIDE-DM, pages 95–102, 2001.

[4] S-Y. Chien, V.J. Tsotras, and C. Zaniolo. Efficient management of
multiversion documents by object referencing. In Proceedings of
VLDB, September 2001.

[5] G. Cobena, S. Abiteboul, and A. Marian. Detecting changes in xml
documents. In ICDE (San Jose), 2002.

[6] CVS. Concurrent versions system. http://www.cvshome.org.
[7] N. Lam and R. Wong. Managing and querying changes for xml data.

In Proceedings of the 6th World Multiconference on Systemics,
Cybernetics and Informatics, July 2002.

[8] Hummingbird Ltd. Hummingbird’s document management and
content management solutions.
http://www.hummingbird.com/products/dkm/.

[9] A. Marian, S. Abiteboul, G. Cobna, and L. Mignet. Change-centric
management of versions in an xml warehouse. In Proceedings of
VLDB, September 2001.

[10] W3C Recommendation. Xml path language (xpath) version 1.0.
http://www.w3.org/TR/xpath, November 1999.

[11] W3C Recommendation. Xquery 1.0: An xml query language.
http://www.w3.org/TR/xquery, April 2002.

[12] Y. Wang, D. J. DeWitt, and J-Y. Cai. X-diff: An effective change
detection algorithm for xml documents. Technical report, University
of Wisconsin, 2001.

