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Abstract

Java is often accused of being too slow for serious
programming, especially for scienti�c problem solving.
However, we found that for a large-scale geophysical
application, Java code compiled with current just-in-
time compilers runs slower than Fortran by a factor
of at most four, on both a shared-memory parallel
machine (SGI Origin2000) and a distributed-memory
parallel machine (IBM SP/2). The moderate slow-
down is easily o�set by the following advantages: (a)
object-oriented Java code is easier to maintain and
reuse than Fortran code, (b) Java code is fully portable,
even among parallel computers with di�erent memory
models. Furthermore, better compiler technology is on
the horizon, which will narrow the performance gap
even more.

1 Introduction

Within Geophysics, seismic methods are an essen-
tial tool for petroleum and gas exploration. They
produce images of the earth's interior and let explo-
rationists analyze the geological structure of the un-
derground. Seismic methods process data obtained
from sound wave reections caused by di�erent struc-
tural elements within the earth. Sound data is an-
alyzed with respect to the variation in time delay of
the reected signal. The necessary operations demand
vast amounts of processor time and memory.

The implementations of such methods in procedu-
ral programming languages like FORTRAN that are
largely used in petroleum industry have disadvantages:

� Procedural programming languages usually lack
in software reusability and therefore make it di�-
cult to maintain the source code. They don't in-
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volve an intrinsic hierarchy of operators, needed
for a compound framework of seismic methods.

With the main focus on object-oriented languages
the GOON/CLOP architecture [1, 11] for imple-
menting seismic methods in C++ has been de-
veloped within the Stanford Exploration Project.
Although GOON/CLOP is appropriate for ar-
ranging operators for reusability, it su�ers from
performance problems, and it is not capable of
being parallelized easily.

� Message Passing libraries are used to implement
seismic methods on parallel distributed memory
computers. With these libraries, the programmer
does not only have to deal with the seismic prob-
lem but in addition has to tackle the problems
of parallel programming: load balancing and lo-
cality. The resulting program code is not only
error-prone but cannot easily be ported from one
machine architecture to another.

In this situation, the Java programming language [4, 5]
has been introduced. Java is object-oriented and of-
fers language elements to express thread-based paral-
lelism and synchronization without additional system
libraries. In combination with the integrated Remote
Method Invocation (RMI) of Java, data exchange be-
tween processors is easy. This allows parallel process-
ing on application level, i.e., in the Java environment
itself, as Hassanzadeh et al. discuss for geophysics [6].
There is no further need for Message Passing or vir-
tual shared memory within the application. Addi-
tionally, this parallelism is hardware independent, i.e.,
programs run on any major platform.

From the software engineering point of view, Java
seems to be a perfect programming language for the
parallel implementation of seismic methods. Unfor-
tunately, Java has the reputation of being slow and
RMI of being even slower. In this paper we show that
Java can achieve acceptable performance for scienti�c
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computing.
For this study we picked an operator according to

the speci�c area of velocity analysis, namely the Vel-
tran operator. The Veltran operator is a basic method
in seismic processing. E�orts are underway at the
Stanford Exploration Project to produce a seismic op-
erator framework (JAG [13]) in Java. We base our
implementation of a parallel geophysical operator on
a preliminary version of JAG. After a short introduc-
tion into this geophysical operator in section 2, the
architecture of the underlying distributed runtime en-
vironment, JavaParty, is discussed in section 3. In
section 4 the parallel implementation of the operator
is sketched. The �nal section gives the results of our
measurements.

2 The Veltran operator

The Veltran operator for velocity analysis is one of the
elementary seismic methods. It is the �rst of a pipeline
of operators used for the analysis of the earth's sub-
surface layers and is therefore directly applied to the
data obtained by seismographic devices. Such mea-
surements are subject to reection properties of the
earth's layers.

S x0 x1 x2 x3 x4 x5 x6 x7

l1

l2

Figure 1: Measurement of seismic data { the waves em-

anate at s and x0-x7 are distinct seismographic devices.

The dotted line is the boundary between two horizontal

layers l1 and l2 with di�erent speci�c velocities.

As shown in Figure 1, a wave is generated at a dis-
tinct point s and expands circularly. If the media
within two horizontal layers namely l1 and l2 di�er
in their speci�c velocity, a part of the incoming waves
are reected. The energy conveyed by these reected
waves can be measured with seismographic devices at
distinct points x0 � x7. The Veltran operator takes
the signal readings of the seismographic devices and
derives the speci�c velocities. For these purposes a
simpli�ed model of the earth is assumed where the
layers are arranged horizontally.

From the input data, we have the measured sig-
nal travel time t and the distances between s and xi.

Each of the two graphs in Figure 2 contains a two-
dimensional matrix of incoming data, called an input
plane, that describes the power of the signal received
by the seismographic devices over time. Mathemati-
cally, the travel time curves can be arbitrarily shaped,
but for horizontal layers the curves are hyperbolic.
The �rst graph uses synthetical data to show the hy-
perbolae more prominently, whereas the second graph
depicts real data.

Figure 2: Source data illustrating the hyperbolae: (a) syn-
thetical data, (b) �eld data (courtesy Mobil Oil). Time re-

lates to � (see below) and distance represents the distance

between s and xi.

If in addition, we knew the time � consumed for the
signal propagating straight down from s to the layer
and back, the following formula, called \normal move-
out", could be used for computing the velocities:

t =

r
�
2 +

x
2

4v2
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Unfortunately, � cannot be measured since it is im-
possible to install a seismographic device directly at
s. Therefore, Veltran must infer the layer velocity and
pseudo-depth from the data indirectly.

Figure 3: Veltran results for input from Figure 2 illustrat-

ing the maxima of the amplitudes: (a) synthetical data,

(b) �eld data (courtesy Mobil Oil). Time relates to � and

slowness describes the reciprocal of the velocity v.

This is done as follows. Veltran iteratively assumes
potential velocities from a range of nv values. For
each of these velocities, hypothetical hyperbolae are
computed. The signal measurements from the input
matrix are added along the hyperbolae. For the cor-
rect velocity the hypothetical hyperbolae and the ac-
tual hyperbolae in the data match { the sum of the
measured signals along the hyperbolae reaches a max-
imum. The computation of the sum takes nt steps
since each time step must be considered. Hence, for a
single input plane, Veltran takes nv � nx � nt steps.

Figure 3 shows the result of Veltran: The brighter
a point is for an assumed velocity, the higher is the
sum of the measured signal readings along the hyper-
bole that corresponds to that velocity. The brightest
point in each row refers to the speci�c velocity of the
layer with the time o�set � . Some unavoidable side-
e�ects often make more than one point look bright.
This is because a part of the waves can be reected
more than once, causing distortion in the projected
results.1 To reduce the strength of such e�ects, addi-
tional techniques are used that are beyond the scope
of this paper. These typically involve iterative linear
and non-linear solvers such as the conjugate gradient
method. For more details see [3, 14].

For reconstructing the a 2D image of the earth's
interior, measurements for more than just one source
location are necessary. The most common way to ob-
tain the data is to move the point of wave generation
along a line on the earth's surface, producing several
input planes, i.e., a 3-dimensional input matrix. In
addition to nv � nx � nt steps needed for Veltran on a
single input plane, Veltran now has to take the third
dimension with ns iterations into account.

For obtaining a 3D model of the earth's interior
seismographic devices and emanation points are posi-
tioned within a surface area instead of a single line.
Hence input data becomes 5-dimensional. But these
additional dimensions are independent from the com-
putation model since the measurements within the
surface area can be transformed to a single line. This
is done by concatenating the lines of the area to a
straight one. Therefore, only the lengths of the s- and
v-axis increase.

3 JavaParty - the distributed runtime

environment for Java

JavaParty [9, 12] is a programming layer on top of
Java and RMI. JavaParty inherits the advantages of
both, but it is designed to avoid their disadvantages.

Java's threads and synchronization mechanisms of-
fer appropriate means for parallel programming of
shared memory parallel computers. Unfortunately,
Java does not provide elegant and straightforward
mechanisms for parallel programming of distributed
memory machines, e.g., of an IBM SP/2 or a cluster
of workstations.

On these platforms, the programmer can either use
explicit socket communication to connect between var-
ious nodes or use Remote Method Invocation (RMI).
Both approaches, however, result in complicated and

1In Figure 1, one of the waves has been reected twice.
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error-prone programs, which have similar disadvan-
tages as programming with message passing in gen-
eral:

� Depending on communication requirements,
multi-threaded Java programs often grow by
about 70% when being ported from a shared
memory environment to a distributed memory
platform by means of sockets or RMI [12]. Both
the socket and RMI mechanisms are complicated.
They induce a signi�cant extra amount of imple-
mentation work and render the programs more
di�cult to understand and maintain.

� Although the source code of message passing pro-
grams with hard-wired data and thread distri-
bution is often portable between architectures,
porting frequently causes signi�cant performance
losses [7, 10]. Moreover, it is often di�cult to
adapt programs with explicit communication for
varying numbers of nodes, for di�erent architec-
tures, or for changing network topologies.

JavaParty transparently adds remote objects to Java
purely by declaration and avoids exposing the pro-
grammer to sockets, RMI, and message passing li-
braries. JavaParty code is preprocessed into Java code
with RMI hooks, both are then compiled by regular
Java and RMI compilers into platform independent
and secure ByteCode.

JavaParty extends Java with a new class modi�er
remote. By this modi�er, the programmer can distin-
guish between objects that are local and objects that
may be instantiated on a remote node. Since Java's
threads are implemented by means of objects as well,
the programmer can create remote threads that run
on remote processors. JavaParty implements Java's
object semantics, i.e., the programmer has the im-
pression of writing regular multi-threaded Java pro-
grams. The source code size does not change when
moving from Java to JavaParty, but JavaParty pro-
grams are portable between single processor work-
stations, shared memory parallel computers, and dis-
tributed memory platforms. Since the topology and
the number of processor nodes of the underlying par-
allel computer is completely transparent in JavaParty
programs, programs written in JavaParty automati-
cally adapt to changing con�gurations.

When it comes to performance, locality is the most
crucial issue of programs for distributed memory com-
puters. Because of cache hierarchies, locality is signi�-
cant for the shared memory architectures as well. Lack
of locality induces communication through the inter-

connection network of the distributed memory plat-
form or results in cache misses on shared memory ar-
chitectures. Both are at least an order of magnitude
slower than local accesses and must be avoided wher-
ever possible.

JavaParty provides compile-time and run-time sup-
port for achieving locality. When remote objects
are instantiated or remote threads are started, Java-
Party's object distributor automatically assigns re-
mote threads to processor nodes to achieve good load
balancing. Moreover, JavaParty's object distributor
tries to assign all objects that are used by a remote
thread to the same node. If di�erent threads use the
same data objects, the object distributor implements
heuristics that keep the amount of node-to-node com-
munication small. Since di�erent phases of a program
may need certain objects on varying nodes to achieve
high-frequency local accesses, JavaParty monitors ob-
ject access patterns and migrates objects to di�erent
nodes at runtime.

The programmer is free to overrule the decision
of JavaParty's object distributor and to place re-
mote objects and remote threads manually. Analo-
gously, the programmer can disable automatic object
migration and replace it with explicit migration com-
mands. Moreover, the programmer can even imple-
ment application-speci�c object distributors and mi-
gration managers. The implementation of the Veltran
operator, shown below, uses JavaParty's standard ob-
ject distributor.

The JavaParty preprocessor and the rest of the
JavaParty environment are 100% pure Java and freely
available [9].

4 Parallelizing the Veltran Operator

An e�cient parallelization of Veltran is needed since
Veltran runs long and consumes a vast amount of
memory.

Since the velocities of di�erent planes can be com-
puted independently and result in a trivial paralleliza-
tion we consider a single input plane for a single em-
anation point �rst.

The main problem for parallelizing Veltran is the
non-linear structure of the hyperbolae. For a hypo-
thetical velocity v that is to be considered during the
Veltran iterations, all values from the t �x array might
contribute to the computation of the maximum, i.e.,
the velocity.

Therefore, when the computation is spread to the
processors along the x axis, every processor computes
a matrix of partial sums. In a completion phase, all
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parts of the results have to be summed before get-
ting the �nal output of this operator. The completion
phase would require an additional amount of nt � nv

operations2 which extends the total runtime of the op-
erator considerably.

The parallelization along the v- or t-axis avoids the
complexity of the completion phase and is hence more
appropriate. If every processor analyzes some of the
hypothetical values of v, every processor computes a
segment of the resulting matrix without interference
from other processors. The resulting matrix is thus
produced by merging the distinct result matrices to-
gether. The same argument holds for the t-axis.

Figure 4: Architecture of the parallel implementation of

the Veltran operator. The Data Distributor divides in-

put data along the v-axis. Concurrent threads compute

separate parts of the resulting arrays that can be merged

together.

The parallel version of the Veltran operator is a com-
bination of remote and local components. The initial
object is started on the �rst machine. It reads source
data and constructs a local data distributor. The data
distributor distributes source data and combines the
results into the desired output as shown in Figure 4.

2Although logarithmic run-time for this operation is ex-

pected on a PRAM, it cannot be achieved in practical parallel

environments.

Additionally, parallel I/O is established to avoid bot-
tlenecks within the data distributor.

The data distributor starts threads on the remote
machines after distributing source data among the
processors. It is important to assign each thread to
a di�erent machine to obtain a well-balanced load be-
tween the processors.

For several input planes, i.e., for an additional s-
axis, optimal performance is obtained if these planes
are distributed among groups of processors each com-
puting a distinct plane. Therefore, the data space de-
scribed by the t-, v- and s-axis can be divided in any
way along the v- and s-axis or the t- and s-axis re-
spectively. It is up to the distribution of the source
whether separation of one of both axes or a mix might
be better.

5 Benchmark Setup

We implemented parallel Veltran three times: in Java-
Party, in Fortran90, and in HPF. For a speci�c set of
input data, we took runtime measurements on both
an SGI Origin2000 and an IBM SP/2. This section
discusses the benchmark setup in detail.

The benchmarks are conducted on up to eight nodes
of an SGI Origin2000 (shared memory parallel ma-
chine) as well as on the same number of nodes of an
IBM SP/2 (distributed memory machine). See Fig-
ure 5 for the machines' technical data.

SGI Origin2000

8 195MHz IP27 Processors

CPU: MIPS R10000 Processor Revision: 2.6

FPU: MIPS R10010 Floating Point Chip Revision: 0.0

Secondary uni�ed instruction/data cache size: 4 MB

Data Cache Size: 32 KB

Instruction Cache Size: 32 KB

Main memory size: 3072 MB

Operating System: Irix 6.4

IBM SP/2

8 66MHz RS/6000 Processors

Data Cache Size: 128 KB

Instruction Cache Size: 32 KB

Main memory size: 64 MB per node

Operating System: AIX 4.1

Figure 5: Data sheets of the system platforms used.

The benchmark consists of an iteration of Veltran with
a variable number of input planes with nt = 1000
points along the t-axis, nx = 60 points along the x-
axis and nv = 120 points along the v-axis. I/O is
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not considered during the measurements since each
system platform has di�erent capabilities. The mea-
sured time comprises the steps of data distribution,
computation, and data collection. Measurements are
evaluated within the computation of one, four, and
eight planes. For the problem size of one plane, four
nodes are su�cient, since no further speedup can be
obtained with additional nodes.

The JavaParty implementation uses JDK 1.1.4 with
just-in-time compilation on the IBM SP/2. On each
node, a separate JVM is started. The JVMs commu-
nicate by means of RMI. For the HPF measurements,
version 2.2 of the Portland Group High Performance
Fortran compiler is used. On the SGI Origin2000, we
used JDK 1.1.5 with just-in-time compiler. Since this
version o�ers native thread support, JavaParty did not
use any RMI communication. SGI's standard par-
allelizing Fortran90 compiler is used for the Fortran
measurements.

On both platforms, optimizing Fortran compilers
have been used. Java's performance was not attained
by compiled and optimized native code but instead re-
lied on interpreters with just-in-time compilation fea-
tures.

6 Results

On the SGI, our JavaParty implementation is slower
than the equivalent Fortran90 program by a factor of
about 4. On the SP/2, JavaParty faces a slowdown by
3. In part, the slowdowns are due to Java's mandatory
and implicit array boundary checking.

JavaParty

Fortran90

sec

8 planes
8 nodes

4 planes
8 nodes

1 plane
4 nodes

1

4

SGI Origin2000 runtime

2

6

3

12

Figure 6: Measurements of parallel Veltran processing

time on the SGI Origin2000.

sec

8 planes
8 nodes

4 planes
8 nodes

1 plane
4 nodes

JavaParty

HPF

7

14

25IBM SP/2 runtime

2

5

8

Figure 7: Measurements of parallel Veltran processing

time on the IBM SP/2.

The JavaParty program automatically adapts both
to the number of planes to be processed and to the
number of nodes available. The Fortran programs
did not have the same adaptability. Instead, we had
to change some constants and recompile the Fortran
code for each of the measurements. Without the man-
ual changes and recompilation, the performance of the
most general and slowest program would have shown
up repeatedly. For example, to process one plane on
four nodes with the general program, the Origin2000
needs 3 seconds and the SP/2 needs 8 seconds.

We expect signi�cant performance increases for
Java in the near future because of two main reasons.
First, we had to use JDK 1.1.x, because later releases
are not yet available for our hardware platforms. Later
versions (JDK 1.2, HotSpot) have increased perfor-
mance (especially RMI performance, improved native
thread support and better just-in-time compilation)
on Solaris and Wintel platforms and are likely to show
the same e�ect in our environments. Second, compil-
ers producing optimized native code like IBM's High
Performance Java Compiler [8] are on the horizon.3

These compilers will approach Fortran performance
because they can apply much more sophisticated op-
timization techniques than current just-in-time com-
pilers.

3Although the IBM SP/2 o�ers an alpha version of a High

Performance Java Compiler [8] compiling to native and stati-

cally linked code, it is too early to seriously use that compiler.

The HPJ compiler revealed a general speed up of 1.6 compared

to just-in-time Java performance, but unfortunately HPJ's com-

munication through RMI turned out to be slower by a factor of

between 20 and 35.
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7 Conclusion

We achieved Fortran performance within a factor of
at most four with a parallel Java implementation of a
basic geophysical algorithm on two major system plat-
forms for scienti�c computing, both on a shared mem-
ory and a distributed memory parallel computer. Sim-
ilar results can be expected for other seismic operators
and on other platforms. The slowdown factor is ac-
ceptable because of three reasons: (a) object-oriented
Java code is easier to maintain and reuse than Fortran
code, (b) Java code is fully portable even between so
di�erent platforms, and (c) Java's performance is go-
ing to improve because of the enormous amount of re-
search in Java base technology that is currently under
way.
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