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Estimation of Multivariate Distributions Under 
Stochastic Ordering 

ALLAN R. SAMPSON and LYN R. WHITAKER* 

Let F and G be the cdfs of two p-dimensional multivariate distributions, such that F is stochastically larger than G. A 
straightforward derivation is given of the generalized maximum likeli~ood est~mators. of F and G,_ ba~ed on ran~om samples 
from each population. An algorithmic approach to computing these estimators 1s descnbed and motJvatJ?g numencal examples 
are discussed. The special case when F and G correspond to multivariate ordinal contingency tables is also presented. The 
relationship of these results to those of Robertson and Wright (1974) is considered. 

KEY WORDS: Isotonic regression; Maximum likelihood estimation; Ordinal contingency tables; Two-sample problem. 

1. INTRODUCTION 

The problem of comparing two populations is basic, and 
widely encountered in statistics. Both parametric and non
parametric procedures are available for a vari~ty of set
tings (see Hettmansperger 1984, chap. 3; Miller 1985, 
chap. 2). An appealing framework, often used to comp~re 
two univariate populations, assumes that one population 
is stochastically larger than the other; that is, larger values 
are more likely from one population than the other. Spe
cifically, let X and Y be random variables from popula
tions with respective cumulative distribution functions 
( cdf's) F and G. Then, Fis said to be stochastically gre~ter 
than G, denoted by F ~ G, or equivalently X ~ Y, if F(t) 
:<::: G( t) for all t. Stochastic ordering of univariate distribu
tions extends to multivariate distributions. Let X and Y 
be p-dimensional random vectors with cdf's F and G, re
spectively. We say that F (or X) is stochastically greater 
than G (or Y), denoted by F ~ G (or X ~ Y), if 

E[h(X)] :<::: E[h(Y)], (1.1) 

for all functions h that are nondecreasing in each argument 
and have finite expectations. Marshall and Olkin (1979, 
p. 483) showed t~at (1.1) is equivalent to the existenc~ .of 
random vectors X and Y defined on the same probab1hty 
space with Pr(X :<::: Y) = 1, where:<::: denotes component
wise ordering. 

The multivariate version of stochastic ordering also con
veys the intuition that larger values are more likely for 
one population than another. To gain further insight into 
multivariate stochastic ordering, consider the two-sample 
bivariate setting where experimental units are randomly 
assigned to either a control treatment (with cdf G) or an 
experimental treatment (with cdf F), and assume that 
larger bivariate values are associated with a bette~ re
sponse. Based on each bivariate response (u, v~, d~fm~ a 
one-dimensional binary variable, S(u, v), md1catmg 
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whether response is satisfactory. We would expect experts 
to have different definitions for a satisfactory response, 
but most would agree that S(u, v) must satisfy the criteria 
that if ( ui. v1) is satisfactory and ( u2, v2) is better, then 
(u2, v2) must be considered a satisfactory response; that 
is, if S(ui. v1) = 1 and u2 :<::: u1 and v2 ?: v1, then S(uz, Vz) 
= 1. With this in mind, F ~ G has the interpretation that 
the probability of satisfactory response unde.r. the expe~i
mental treatment is larger than the probab1hty of satis
factory response under the control, no matter how S is 
chosen. 

Inference based on two-sample stochastically ordered 
univariate data has been studied extensively. The theory 
of isotonic regression has played a key role in deriving 
maximum likelihood estimators (MLE) and likelihood ra
tio tests (LRT) for two or more stochastically ordered 
populations. Brunk, Franck, Hanson, and Hogg. (1966) 
obtained the MLE's of F and G under the assumption that 
F ~ G; see Barlow, Bartholomew, Bremner, and Brunk 
(1972) for a comprehensive review of the literature for this 
and related problems prior to 1972. Grove (1980) and 
Robertson and Wright (1981) obtained and studied the 
LRT for H 0 : F = G against H.: F ~ G, when F and G 
are discrete distributions on the same k points, or equiv
alently when F and G are multinomial distributions with 
the same k ordered categories. Lee (1987) obtained MLE's 
for multinomial distributions with fixed and random zeros. 
Franck (1984) considered the LRT for these hypotheses 
when the data come from arbitrary distributions, and ob
tained approximations to the distribution of the L_RT. For 
censored multinomial data, Dykstra (1982) obtained the 
MLE's assuming F ~ G, and Dykstra, Madsen, and Fair
banks (1983) obtained the LRT of H0 : F = G versus 
H. : F ~ G. Other research includes Robertson and Weg
man (1978), Robertson and Wright (1982), and Dykstra 
and Robertson (1983). 

Statistical inference in the multivariate setting has re
ceived much less attention. A notable exception is Rob
ertson and Wright (1974), who for a general setting gave 
a theoretical derivation and consistency arguments for the 
MLE's of F and G under the assumption F ~ G. The 

541 

© 1989 American Statistical Association 
Journal of the American Statistical Association 

June 1989, Vol. 84, No. 406, Theory and Methods 



542 

multivariate setting poses more difficulties than the uni
variate setting, because multivariate estimators cannot 
generally be recast as solutions to standard isotonic regres
sion problems. In addition, once derived, numerical eval
uation of these estimators is extremely difficult. 

We obtain the MLE's of F and G in the multivariate 
case, using a different approach from Robertson and 
Wright (1974). We reduce the two-sample problem to two 
one-sample problems using a multivariate version of the 
techniques of Barlow and Brunk (1972). This reduction 
permits the use of existing algorithms, to obtain numerical 
approximations for the MLE's. In addition, we can solve 
several one-sample multivariate problems that are of in
terest in their own right. 

In Section 2 we present specific formulations of several 
estimation problems that occur in practice. The basic the
oretical results are given in Section 3. Computational pro
cedures and numerical examples are discussed in Section 
4. In Section 5, we include a brief discussion of related 
problems. 

2. PROBLEM MOTIVATION AND FORMULATION 

In this section, we discuss several settings for which 
estimation under stochastic ordering is applicable. In each 
setting we explicitly formulate the corresponding optimi
zation problem whose solution is given in Section 3. To 
do so, we need an upper (lower) set. Let u = (u" ... , 
up) and v = (v1, ••• , vP) be vectors in RP; then, U(L) 
is an upper (lower) set in RP if u E U (u EL) and u; s 
V; (u; ::= v;) for i = 1, ... , pimply that v E U (v E L). 
An alternate formulation of stochastic ordering (see Mar
shall and Olkin 1979, prop. 17.B2) equival.ent to (1.1) is 

Pr(X E U(L)) ::= (s) Pr(Y E U(L)) 

for all U E b)t (for all L E 1"), (2.1) 

where 0ll(1") is the class of all upper (lower) sets U(L) in 
RP. 

For notational convenience, we restrict attention to bi
variate data; however, our discussion clearly applies to 
higher-dimensional data. 

2.1 Two-Sample Problems 

Suppose that X and Y are two discrete bivariate random 
vectors with common support on an I x J lattice. Equiv
alently, consider two ordinal contingency tables with I row 
categories and J column categories. Let P = {p;i} and Q 

, = {q;i}, where p;i = Pr(X = (i, j)) and% = Pr(Y = (i, 
j)) are the probabilities associated with thefirst and second 
tables, respectively. We are interested in the parameter 
space for which X ~ Y. Because P and Q have support 
in the I x J lattice, the constraint (2.1) becomes 

L Pii ;::= L q;j for all u E 01l1xh (2.2) 
(i.j)EU (i,j)EU 

where u)[A ={Un A : u E, 01l}, for any subset A of RP. 
Independent random samples of size m and n are chosen 
from P and Q, respectively, resulting in the observed con-
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tingency tables A = {a;i} and B = {b;J, where a;i and b;i 
are the frequencies associated with the (i,j)th cell. Finding 
the MLE's of P and Q subject to (2.2) is equivalent to 
maximizing 

J I nn Q·· b .. 
P;/q ;/• 

j=I i=l 

(2.3) 

subject to (2,2), I;,i p;i = I;,i q;i = 1, p;i ::= 0, and q;i ::= 
0, and .'1Vhere 00 = 1. 

Interes~ingly, multivariate stochastic ordering has a 
property that is desirable when analyzing categorical data. 
If we collapse two or more adjacent columns or rows in 
both tables, P ~ Q implies that the distributions for the 
collapsed tables will also be stochastically ordered. 

In Section 4, we analyze the well-known British and 
Danish social-mobility data (see Bishop, Fienberg, and 
Holland 1975), under the assumption that the British pop
ulation is stochastically larger than the Danish. 

For the general two-sample problem, there is a variety 
of potential applications of stochastic ordering, such as in 
medicine and reliability engineering. Specifically, consider 
a reliability context where one is constructing a coherent 
system of components, where the components are oper
ating in an environment that causes their lifetimes to be 
statistically dependent. Suppose that two manufacturers 
are available, and we want to determine whether the co
herent system assembled from the first manufacturer's 
components is typically longer-lived than that from the 
second manufacturer. The lifetime of a coherent system 
is a nondecreasing function of the lifetimes of its com
ponent parts. Thus one approach is to test (in a common 
environment) m and n sets of components from each man
ufacturer, respectively. The stochastic ordering properties 
of the resulting empirical distributions could then be ex
amined to determine which manufacturer is preferred, if 
either. 

For these more general multivariate distributions, the 
previous formulation needs to be modified. Suppose that 
(X1, Xi) and (Y1, Yi) are bivariate random vectors with 
respective cdf's F and G. Let (xii, Xi;), i = 1, .. , m, and 
(Yti• Y2i),j = 1, ... , n, be the observed random samples 
from F and G, respectively. Using the notions of Kiefer 
and Wolfowitz (1956), we want to find the generalized 
maximum likelihood estimators ( GMLE's) of F and G, 
subject to the constraint that F ~ G. [See Miller (1983) 
for: a description of the GMLE approach.] This problem 
is equivalent to finding P and Q, which maximize (2.3) 
subject to the stated constraints (2.2), where Pii• q;i, a;i, 
and b;i are defined ·as follows. Let I be the number of 
distinct values of the pooled data, x11 , ••• , X1m, Y11, ... , 
Yin, and let J be the number of distinct values of the pooled 
data, X21' ... ' Xim, Y21' ... ' Y2n· Let U1 < ... < U1 and 
v1 < .. · < v1 be the distinct ordered values of the first and 
second coordinates of the pooled observations, respec
tively. Then, Pii = Pr((X1, X2) = (u;, vJ), q;i = Pr(( Yi. 
Y2) = (u;, vi)), a;i is the number of (xlk, Xik)'s equal to 
(u;, vJ, and b;i is the number of (Yit. Yitfs equal to (u;, 
vi). 
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2.2 One-Sample Problems 

Consider the case where (Xi. Y1), ••• , (Xn, Yn) are a 
random sample from a single discrete population, with 
joint probability mass function (pmf) P on an I x J 
lattice. In this one-sample setting, we are interested in P 
~ P0 , where P0 is a fixed pmf. This situation, although of 
interest in its own right, is important in our theoretical 
development. The MLE of P is found by maximizing 
II;./ p4; subject to P ~ P0, ~i.i Pii = 1, and Pii ~ 0, and 
where A = {a;J denotes the observed contingency table. 

The choice of P0 in this situation may represent certain 
structural conditions on P. Consider the simple compar
ative distribution, the bivariate uniform; that is, P0(x) = 

(IJ)- 1 for all x in the I x J lattice. A direct argument 
shows that the parameter space P ~ P 0 is equivalent to 
(vol(U))- 1P(U) ~ (vol(Uc))- 1P(Uc) for all U E bll1xi. 

and where vol( U), the volume of the upper set U, is the 
number of lattice points in U (see Sampson and Whitaker 
1988, sec. 5). Following Robertson and Wright (1981, p. 
1248) and considering this condition in higher dimensions, 
we call such a condition multivariate increasing on the 
average .. 

For general bivariate distributions, F, one can consider 
obtaining a GMLE for F ~ F0 analogous to Section 2.1. 

3. THEORETICAL RESULTS 

To solve the most general two-sample problem, we build 
our results serially. We start by using isotonic regression 
techniques to solve the simplest one-sample problem. 
Much of the section extends this solution to the general 
one-sample problem in such a. way that numerical tech
niques (discussed in Sec. 4) are feasible. In turn, the so
lution to the general one-sample problem provides the key 
and an almost immediate solution to the two-sample prob
lem. The proofs for all of the main results of this section 
are found in the Appendix. 

3.1 One Sample: Simplest Case 

Let P be a discrete p-dimensional pmf with support ~:X, 
and let P0 be a known pmf whose support is a subset of 
ff. We use the notation P(y) and P(S) to denote both the 
probability of the point y and the set S, respectively. Based 
on a random sample from P, let a(x) and x E ~X denote 
the number of observations with value x, and for S ~ ff 
let a(S) denote the number of observations in the set S. 

For this simplest one-sample case, assume that a(x) > 
0 for all x E ~X, for example, when the data are in the 
form of a p-dimensional ordinal contingency table with no 
empty cells and where P0 is some known pmf on the same 
table. To find the MLE P we maximize 

L(P) = TI P(x)a(x) 
xE\X 

among probability distribution P satisfying 

P(U) ~ P0(U) for all U E GU. 

(3.1) 

(3.2) 

Since both P and P0 have support on OC, and 6ll;x: contains 

only a finite number of sets, clearly (3.2) can be replaced 
by the finite number of constraints: 

P( U) ~ P0( U) for all U E GU;x:. (3.3) 

An expression for the MLE of P ( P) is given in the 
following theorem, whose proof is based on isotonic 
regression techniques. 

Theorem 3.1. Assume that a(x) > 0 for all x E OC .. The 
MLE of P subject to P ~ P0 is 

P . P0(L n U) 
(x) = a(x) m1n m~ a(L n U) , (3.4) 

where the minimum is taken over {LE l'-;x:: x EL} and 
the maximum is taken over {U E GU;x: : x E U}. 

Note that the optimization result of Theorem 3.1 holds 
for arbitrary positive weights a(x), as well as positive in
teger weights a(x). This is employed to prove the gener~ 
alization of Theorem 3.1 to arbitrary distributions P and 
P0, given in the next subsection. 

3.2 One Sample: General Case 

In the general one-sample case, suppose that the ran
dom sample conies from an arbitrary distribution P on 
RP, where P ~ P0 and P0 is an arbitrary but known dis
tribution on RP. Again, let OC be the set of distinct observed 
values of a random sample from P, and let a(x) be the 
number of observations with value x. As before, we want 
to find P*, which maximizes (3.1) subject to (3.2). 

We reformulate this constrained optimization problem 
by first reducing the set of feasible P to those P that con
centrate as much mass as possible on OC while still pre
serving stochastic ordering. We then replace P0 with a 
discrete version, P0, so that the original constraints, 
P ~ P0, are reexpressed as a finite number of constraints 
involving P0, similar to (3.3). Finally, we use the results 
of Theorem 3.1 and a limiting argument to obtain the 
optimal solution. To illustrate the procedure for comput
ing the solution to the one-sample problem, throughout 
this section we refer to the following example. 

Example 3.1. Let P0 be the bivariate uniform distri
bution on [O, 1) x [O, 1), and let oc. = {(.5, .8), (.6, .6), 
(.8, .7)}. 

To maximize L(P) under the constraint P ~ P0, we 
need to identify the most mass that P can assign to OC and 
still satisfy P ~ P0• The first step is to construct V, the 
smallest lower set containing OC. Define Qx = {y : y; ::5 

X;, i = 1, ... , p}. The set Vis then easily found to be 
the finite union of certain lower rectangles: 

V = LJ Qx. (3.5) 
xE\X 

Example 3.2. For Example 3.1, 

V = (-oo, .5) X (-oo, .8) U (-oo, .6) 

X (-oo, .6) U (-oo, .8) X (-oo, .7). 

The following technical lemma allows us to partition the 
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constraints (3.2) into two sets of constraints: those in
volving subsets of V and similar constraints involving only 
subsets of vc. It is used to prove Lemma 3.2, which states 
that we can restrict attention to P that assigns all of the 
mass in V to \'X: and where P(V) = P0(V). 

Lemma 3.1. Let P and P0 be distributions on RP, and 
Wbe any lower set such that P(W) = P0(W). Then, P( U) 
;:::: P0(U) [P(L) :s P0(L)] for all U E 6li(L E 2) is equiv
alent to 

P(U);:::: P0(U) [P(L) :s P0(L)] 

for all U E 6liw (L E 2w ), (3.6) 

and 

P(U);:::: P0(U) [P(L) :s P0(L)] 

for all U E 6liw, (L E 6liwc). (3.7) 

Lemma 3.2. Each maximizer P* of L(P) over P ~ P0 

must satisfy P*(V) = P0(V) and P*(\'X:) = P*(V). 

Note that as long as P(Vc) = P0(Vc) and P( U) ;:::: P0( U) 
for all U E 6liv,, the exact specification of P on vc does 
not affect L(P). Thus a viable choice for the optimal Pis 
to consider only those P for which P(·) = P0(-) in the set 
vc. From (3.7) we also notice that if P0(Vc) = 1, then 
there is a trivial solution for the optimal P, because P(V) 
= 0 necessarily for such P ~ P0• Without loss of generality 
in the remainder of the section, we take P0(VC) < 1 [equiv
alently, P0(V) > O]. In view of Lemmas 3.1 and 3.2, the 
original problem is reduced to finding P* that maximizes 
L(P) subject to 

P( U) ;:::: P0( U) for all U E 6liv, (3.8) 

and P(\'X:) = P(V) = P0(V). 
The next step is to construct a discrete version P0 of P0 

so that (3.8) can be reexpressed as a finite number of 
constraints. This involves shifting P0 mass to points on a 
p-dimensional grid G in V, exactly containing \'X:. Spe
cifically, for i = 1, ... , p, let xi,(J) < ··· < xi,(D(i)) denote 
the D(i) distinct ordered values of the ith components 
among x E ~-For any x E \'X:, we write x = (xi,(i,)> ... , 
xp,(ipi) to indicate exactly where x lies in the D(l) x ··· x 
D(p) lattice constructed from \'X:. Then, G = V n 
(Xf=1 {xi,(J)> ••• , X;,(D(i))}). For P whose mass on V is 
concentrated on \'X:, P(U) = P(U n G) for all U E 6liv. 
It is also clear that P( U) = P(W) for any W E 6liv such 
that U n G = W n G, from which it is easily seen that 
(3.8) is equivalent to 

P( U) ;:::: sup P0(W) for all U E ~1ta, (3.9) 
w 

whe:ve the supremum is taken over all {W : WE ~1tv and 
W n G = U}. For U E 01La, denote the right side of (3.9) 
by PMU). 

The set W that optimizes the right side of (3.9) is the 
largest upper set in ~1tv that does not contain G - U, that 
is, W = V - Uxea-u {Qx}· The set function P0 shifts the 
mass of P0 in the appropriate hyper-rectangle of G to the 
upper right-hand corner of the hyper-rectangle. Thus we 
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can restate the optimization problem as follows: Find P* . 
that maximizes L(P) subject to P(U);:::: P0(U) for all U 
E L'lla. Further, from the construction of P0 it is straight
forward to prove that P 0( ·)IP 0( V) is indeed a pmf on the 
set G. 

Lemma 3.3. Let PO( U) be defined by the right side of 
(3.9) for all U E 011a. Then, there exists a pmf P0 on G 
such that P0( U) = P0( U)I P0(V) for all U E 6lia. More
over, P0(x) = [P0(V)]- 1P0(Xf=i (xj,(ii-1)> xj,(i)) for x E G 
and is 0 otherwise, where x = (xl(i,)> ••• , Xp(ipi) and 
Xj(O) = -oo, for j = 1, ... , p. 

Example 3.3. Continuing Example 3.2, we let G = 
{(.5, .6), (.5, .7), (.5, .8), (.6, .6), (.6, .7), (.8, .6), (.8, 
.7)}. The grid points and the P0 probability content of the 
appropriate hyper-rectangles are given in Figure 1. These 
determine P0(x) for x E G's; for example, P0(.S, .6) = 
.30/.61, P0(.8, .7) = .02/.61, and so forth. 

We have reduced the general one-sample problem to 

max II P(x)a<x>, (3.10) 
xEG 

subject to P( U) ;:::: P0( U) for U E 6lia and P( G) = 1. Note 
that we have reparameterized by dividing by P0(V), and 
thus the solution to (3.10) gives the conditional probability 
P*(·)/P0(V) in the set V. 

Theorem 3.1 cannot be applied directly to solve (3.10), 
because a(x) may be 0 for some x E G. Nevertheless, with 
a simple limiting argument Theorem 3 .1 can still be used 
to find the P that solves (3.10). Fore> 0, define a.(x) = 

a(x) for x E ~x, and a.(x) = e for x E G - \'X:. By Theorem 
3.1, we can find P, that maximizes Ilxea P(x)•cfx) subject 
to P( U);:::: P0(U), for all U E 01La, and P( G) = 1. Further, 

A • P0(L n U) ( ) 
P,,(x) = a,(x) mln m;x a,(L n U) , 3.11 

1.0 

.39 

.8 
.05 

.7 ' 
/ ,,,,. 

.05 
,I 

"".07'' .02 
.6 -"IL '/ 

71" "' 

.30 .06 .12 

.5 .6 .8 1.0 

Figure 1. Hyper-Rectangles Used to Calculate P0 and Po in Example 
3.3: • indicates x E er; x indicates x E G - er. 
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where the minimum is taken over the set {L E !£G : :x E 
L} and the maximum is taken over {U E "lLG : :x E U}. 
By evaluating lim,,....0 P.(x), we get the explicit solution to 
(3.10) that yields P*, given in the following theorem. 

Theorem 3.2. Let Xi. ... , Xn be a random sample 
from P, and let a(:x) be the number of observations with 
value :x. A GMLE of P subject to P ~ P0 is given by P*, 
where P* = P0 on vc, with V given by (3.5); P*(:x) = 0 
for :x E V - ff, and 

P*( ) _ ( ) . P0(L n U) 
:x - a :x m1n m;x a(L n U) 

for all :x E ~x. (3.12) 

where the minimum is taken over the set { L E !£G : :x E 
L} and the maximum is taken over { U E "lLG : :x E U}. 

Finding the GMLE for the case P ~ P0 follows the same 
general argument leading to Theorem 3.2. Let K = U{L 
E !£ : L n ff = </>}and H = Kc n (Xf=t {x;.c1» ... , 
X;.(D(i))}). For all U E "ll8 , define Q 0( U) = inf P0(W), where 
the infimum is taken over {WE 6lLKc: W n H = U}, and 
let Q0 be the probability distribution determined by Q0( U) 
= Q0( U)/ P0(Kc) for all U E 6l!8 , where Q0 is constructed 
from P0 analogously to the construction of P 0. Then, ap
plying the reasoning that yields Theorem 3.2, we obtain 
the following corresponding theorem. 

Theorem 3.3. Let Xi. ... , Xn be a random sample 
from P, and let a(:x) be the number of observations with 
the value :x. A GMLE of P subject to P ~ P0 is given by 
P*(:x), where P* = P0 on K, P*(:x) = 0 for :x E Kc - OC, 
and P*(:x) = a(:x) minu maxdQ0(L n U)la(L n U)} for 
all :x E OC, where the minimum is taken over the set { U 
E 6l!8 : :x E U} and the maximum is taken over {LE !£8 

: :x E L}. 

3.3 The Two-Sample Case 

We approach the general two-sample problem by re
casting it as two one-sample optimization problems, and 
then apply the results of Section 3.2. This approach has 
been used successfully in the univariate setting; for ex
ample, see Barlow and Brunk [1972, eq. (5.8)] and Dyk
stra (1982). 

Following the notation of Section 3.2, we use ff to de
note the distinct values of the pooled samples from P and 
Q, and we let a(:x) and b(:x) be the number of observations 
sampled with the value :x from P and Q, respectively. The 
appropriate function to be maximized for this two-sample 
problem is 

L(P, Q) = II P(:x)a(x) II Q(:x)bCx>, (3.13) 
xEt~ xE\X 

among probability distributions P ~ Q. 
By fixing Q, applying Lemma 3.2, fixing P, and applying 

the analog of Lemma 3.2 when the stochastic ordering is 
reversed, we can show that the constraints P ~ Q can be 
replaced by P(~X) = Q(ff) = 1 and P( U) ~ Q( U) for 
all U E "U .. ~. 

The sol~tion to (3.13) subject to the constraint P ~ Q 

must also satisfy the multivariate analog of Barlow and 
Brunk [1972, eq. (5.8)]: 

P( U) ~ a~ U~ + :~ U~ ~ Q( U) for all U E 6l!.x, 
a \'X + \'X 

where (a(·) + b(·))/(a(\'X) + b(\'X)) is the pooled esti
mator of P and Q under the assumption that P = Q. 
Finally, the two-sample problem can be reformulated as 
the following one-sample problems: max Ilxe.x P(:x)a<x> 
subject to P(U) ~ a(U) + b(U)/(a(OC) + b(<OC)) for all 
U E "llff, and max Ilxe.x Q(:x)bCx> subject to a( U) + 
b(U)/(a(~X) + b(OC)) ~ Q(U) for all U E 6l!,x. The so
lutions are given by Theorems 3.2 and 3.3, respectively. 

4. COMPUTATION AND NUMERICAL EXAMPLES 

Our aim is to demonstrate that P in (3.4) and P* in 
(3.12) can be computed using existing isotonic regression 
algorithms. First, consider the simplest one-sample prob
lem discussed in Section 3.1. Direct computation of Pfrom 
(3.4) for any reasonable-sized data set is impractical, be
cause of the large numbers of sets in 6l!oc and S:oc (see 
Sampson and Whitaker 1988). Nevertheless, viewing 
P(:x)/a(:x) as the least squares isotonic regression of P0(:x)/ 
a(:x) with weights a(:x) and with respect to the component
wise partial order on 'OC, we could employ the minimum 
lower sets algorithms described by Barlow et al. (1972, 
sec. 2.3) or the algorithm of Gebhardt (1970). But as 
pointed out by Dykstra and Robertson (1982), any of these 
algorithms either take an extremely large amount of com
puter time or involve intricate branching logic that is dif
ficult to program. 

Dykstra and Robertson (1982) proposed an efficient it
erative algorithm for approximating the isotonic regression 
on finite subsets of RP with respect to component-wise 
partial ordering (see also Dykstra 1983). Bril, Dykstra, 
Pillers, and Robertson (1984) provided FORTRAN code 
implementing the Dykstra and Robertson algorithm, for 
when OC is a two-dimensional lattice. If OC is a subset of a 
two-dimensional lattice G, this program approximates the 
desired optimization problem by defining a(:x) = 10-5 for 
:x E G - ~X, and then proceeds to a solution. To handle 
our p-dimensional situations, the authors have developed 
a FORTRAN 77 program (available for distribution) im
plementing the Dykstra and Robertson algorithm. 

The general one-sample problem presents much the 
same difficulties. In addition, this problem cannot be re
cast as a standard isotonic regression problem because, as 
discussed in Section 3.2, a(:x) = 0 does not necessarily 
imply P0(:x) = 0. We now illustrate the use of (3.11) to 
solve this problem by letting a(:x) = e for all x E G - OC 
and then letting e become small. The approximating P;s 
are obtained using existing isotonic regression algorithms. 

Example 4.1. Let OC = {(.1, .1), (.1, .4), (.3, .1), (.4, 
.5), (.7, .4), (.7, .7), (.9, .4), (1.0, .7), (1, 1)} be a simple 
hypothetical sample assumed to be drawn for a single bi
variate population. Based on this data we calculate the 
GMLE P* of P under the assumption that P ~ P0, where 
P0 is the bivariate uniform distribution on [O, 1] x [O, 1]. 
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The estimate P* is approximated by P. for several small 
values of B [note that P0(V) = 1, and thus P* = lim.-.0 

P:]. In Table 1 we present P0(x) and a(x) for all x E G. 
/>.(x)/a.(x) is the isotonic regression of P0(x)la.(x) with 
the weights a.(x), and can be approximated using the Dyk
stra and Robertson algorithm. Table 1 also gives P. for B 

= .1, .05, .001, and .0001, and the GMLE P*. Even 
though the hypothetical sample was chosen so that the 
unrestricted GMLE would be far from multivariately in
creasing on the average, it took a very short time (on an 
IBM PC/ AT clone) to actually compute each of the P.'s. 

A possible alternative approach to computing P* for the 
general one-sample case can be seen from the following 
easily provable lemma. 

Lemma 4.1. Let p.(x) = P.(x}la.(x) for all x E G. 
Let /J*(x) = lim p.(x) as B- 0, where P.(x) is the isotonic 
regression of p.(x}, with weights a.(x) and with respect to 
the component-wise partial ordering. Then, there exists Bo 

such that for all 0 < B < Bo, the sets where P. is constant 
are the same as those where p* is constant. 

Lemma 4.1 states that for each one-sample problem 
there is a sufficiently small B0, so for B < Bo the level sets 
(see Barlow et al. 1972, def. 2.5) for p.(x) are the same 
as those for /J*(x). Thus if Bo could be identified, fJ* can 
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be computed exactly from the level sets of p •. For example, 
if A is a level set of p. (B < Bo), then P*(x) = 
a(x}P0(A}/a(A} for x EA. It is interesting to note that 
in Example 4.1 the level sets for P.ta. are the same for B 

= .05, .001, and .0001, and can be used to compute P*. 
To illustrate the applicability of our approach to a two

sample problem, we estimate the underlying distributions 
P and Q, respectively, for the British and panish social
mobility data, assuming (as suggested by the data) that P 
~ Q. Table 2 gives both of these MLE's, and the usual 
(unrestricted) MLE's. Because neither the British nor the 
Danish contingency table has empty cells, P* and 0* are 
found by a single application of Dykstra and Robertson's 
(1982) approximation algorithm. 

5. DISCUSSION 

Since we obtained the MLE's under stochastic ordering, 
we can construct the likelihood ratio test (LRT) of H0 : 

F = G against H1 : F ~ . G. Analogous to the argument 
of Robertson and Wright (1981) and Grove (1980}, it can 
be shown that the LRT statistic has a x2 distribution asymp
totically, which is a mixture of x2 distributions~ Not only 
is the mixing distribution extremely difficult to compute 
under H0 , the distribution itself depends on the specific 
values of F = G. In the univariate case, Grove obtained 

Table 1. a(x), P~(x), /S.(x) fore = .1, .05, .001, .0001, and fl*(x) for x in ~ From Example 4.1 

x a(x) P~(x) f'.1 f>.os fl.001 f'.0001 fl• 

(.1, .1) 1 .01 .Q100 .0100 .0100 .0100 .01 
(.1, .3) 0 .02 .0027 .0014 .0000 .0000 .00 
(.1, .4) 1 .01 .0273 .0286 .0300 .0300 .03 
(.1, .5) 0 .Q1 .0054 .0030 .0001 .0000 .00 
(.1, .7) 0 .02 .0100 .0060 .0001 .0000 .00 
(.1, 1.0) 0 .03 .0200 .0120 .0003 .0000 .00 

(.3, .1) 1 .02 .0200 .0200 .0200 .0200 .02 
(.3, .3) 0 .04 .0054 .0030 .0001 .0000 .00 
(.3, .4) 0 .02 .0054 .0030 .0001 .0000 .00 
(.3, .5) 0 .02 .0054 .0030 .0001 .0000 .00 
(.3, .7) 0 .04 .0100 .0060 .0001 .0000 .00 
(.3, 1.0) 0 .06 .0200 .0120 .0003 .0000 .00 

(.4, .1) 0 .01 .0054 .0030 .0001 .0000 .00 
(.4, .3) 1 .02 .0538 .0609 .0699 .0700 .07 
(.4, .4) 0 .01 .0054 .0030 .0001 .0000 .00 
(.4, .5) 1 .01 .0538 .0609 .0697 .0700 .07 
(.4, .7) 0 .02 .Q100 .0060 .0001 .0000 .00 
(.4, 1.0) 0 .03 .0200 .0120 .0003 .0000 .00 

(.5, .1) 0 .03 .0083 .0045 .0001 .0000 .00 
(.5, .3) 0 .06 .0083 .0045 .0001 .0000 .00 
(.5, .4) 1 .03 .0833 .0909 .0998 .1046 .10 
(.5, .5) 0 .03 .Q100 .0060 .0001 .0000 .00 
(.5, .7) 1 .06 .1000 .1200 .1493 .1499 .15 
(.5, 1.0) 0 .09 .0200 .0120 .0003 .0000 .00 

(.7, .1) 0 .02 .0083 .0045 .0001 .0000 .00 
(.7, .3) 0 .04 .0083 .0045 .0001 .0000 .00 
(.7, .4) 1 .02 .0833 .0909 .0998 .0954 .10 
(.7, .5) 0 .02 .0100 .0060 .0001 .0000 .00 
(.7, .7) 0 .04 .0100 .0060 .0001 .0000 .00 
(.7, 1.0) 0 .06 .0200 .0120 .0003 .0000 .00 

(1.0, .1) 0 .01 .Q100 .0060 .0001 .0000 .00 
(1.0, .3) 0 .02 .0100 .0060 .0001 .0000 .00 
(1.0, .4) 0 .01 .0100 .0060 .0001 .0000 .00 
(1.0, .5) 0 .01 .0100 .0060 .0001 .0000 .00 
(1.0, .7) 1 .02 .1000 .1200 .1493 .1499 .15 
(1.0, 1.0) 1 .03 .2000 .2400 .2985 .2999 .30 
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Table 2. Soctat-Moblllty Data: British Restricted (Unrestricted) MLE's and 
Danish Restricted (Unrestricted) MLE's 

Father's 
status 1 2 

.012 (.014) .011 (.013) 

.012 (.008) .010 (.007) 

2 .008 (.008) .048 (.050) 
.011 (.010) .047 (.044) 

3 .003 (.003) .021 (.022) 
.Q10 (.010) .038 (.035) 

4 .004 (.004) .041 (.043) 
.004 (.003) .022 (.021) 

5 .001 (.001) .011 (.012) 
.003 (.003) .004 (.003) 

an approximation that Robertson and Wright discussed 
further. In this multivariate case, however, it appears that 
obtaining such approximations is impractical. 

• st st st 
To obtam the MLE's of F1 ;:::: F2 ;:::: • • • ;:::: Fk for the 

multiple-sample multivariate problem, an iterative algo
rithm can be developed based on the Feltz and Dykstra 
(1985) multiple-sample univariate solution. 

Finally, we note that further study of the numerical 
aspects of the algorithms discussed here is important, es
pecially to carry out effective simulations. 

APPENDIX: PROOFS 
Theorem 3.1. Let p(:x) = P(:x)/ a(:x) and po(:x) = Po(:x)I a(:x) 

for :x E \X'. Reparameterizing the objective function (3.1) and 
the constraints (3.3), we recast the optimization problem as find
ing the solution to 

min - L a(:x)ln(p(:x)), (A.1) 
1:Er\' 

subject to the constraints 

L a(:x)p(:x) ;;=: L a(:x)p0(:x) for all U E 6lL;x:, (A.2) 
xeu •EU 

L a(:x)p(:x) = L a(:x)p0(:x) = 1, (A.3) 
xE!r 

and 

p(:x) ;;=: 0 for all :x E \X. (A.4) 

Let K be the class of all nondecreasing functions f(:x) on \X, and 
define its dual cone: K•* = {g(:x), :x E \X : ~.e,\· a(:x)g(:x)f(:x) 
s 0, for all f E K}. The constraints (A.2) and (A.3) imply that 
(Po - p) E K•*. Barlow and Brunk (1972, theorem 3.4) showed 
that the unique minimum of (A.l), subject to (p0 - p) EK•*, 
is 

. L.eLnu a(v)po(v) 
p(:x) = min max ~ ( ) ;;=: 0, (A.5) 

L u "-•eLnu a v 

where the minimum is taken over {L E ~;r : :x E L} and the 
maximum is taken over { U E 0ll,,. : :x E U}. Furthermore, Barlow 
et al. (1972, theorem 1.4) showed that jJ(:x) [defined by (A.5)) 
also satisfies (A.2) and (A.3), so P(:x) = a(:x)jJ(:x), and the result 
follows. 

Lemma 3.1. Let P(W) = P0(W). Suppose that P and P0 

satisfy (3.6) and (3.7). Then, if U E 6lL, P(U) = P(U n W) + 
P( U n W<) ;;=: P0( U n W) + P0( U n W<) = P0( U); hence, 
P( U) ;;=: P0( U) for all U E 01!. Conversely, if P( U) ;;=: P0( U) for 

Son's status 

3 4 5 

.002 (.002) .005 (.005) .002 (.002) 

.007. (.007) .002 (.002) .001 (.008) 

.024 (.024) .043 (.044) .015 (.016) 

.047 (.046) .026 (.025) .009 (.009) 

.032 (.031) .065 (.064) .028 (.027) 

.118 (.121) .089 (.091) .039 (.040) 

.054 (.053) .208 (.204) .130 (.128) 

.071 (.073) .142 (.146) .081 (.083) 

.021 (.021) .093 (.091) .120 (.117) 

.028 (.029) .082 (.084) .100 (.103) 

all U E 011, then (3.7) holds, because Un W< E "ll. To show 
(3.6), note that 

P(U n W) = P(W) - P(U< n W) 

= P0(W) - 1 + P(U U W<) 

;;=: Po(V) - 1 + P0( U U W<) 

= Po(U n W). 

The result for lower sets follows similarly. 

Lemma 3.2. To show P*( OC) = P*(V), begin by defining OC* 
!;;;; OC as the upper extreme points of OC, that is, OC* = {:x E OC : 
y ;;=: :x, y ¥- :x implies y EV<}. Note that V = U.eoc• Q •. Suppose 
that P*(V) > P*(OC). Then, there exists :x* E OC* such that 
P*(Q •• ) - P*(Q •• n OC) > 0. Construct a pmf II by shifting the 
excess mass P*(Q •• ) - P*(Q .. n OC) onto :x*; that is, define II 
= P* on Q~., II(:x*) = P*(:x*) + P*(Q •• ) - P*(Qx• n OC) and 
II(:x) = P*(:x) for :x E (Q .. - {:x*}) n oc, and II = 0 otherwise. 
Then, L(II) > L(P*) and II~ P* ~ P0 , yielding a contradiction. 

The proof that P*(V) = P0(V) uses two basic steps that allow 
us to add mass to the extreme points of OC and yet not violate 
the stochastic ordering constraint. 

Step 1. Suppose that M is a subprobability measure satisfying 
M(L) s P0(L) for all lower sets L !;;;; V. We observe that if for 
every :x* E \X'* there exists a lower set L,. with Qx• !;;;; L .. !;;;; V 
and M(L .. ) = P0(L .. ), then M(V) = P0(V). To see this, write 
ff* as {:x:, ... , :x:}, and note that P0(V) ;;=: M(V) = M(U~=1 
Ld = ~t=1 M(L,;) - ~t.:-l M((~f=i+t L,j) n L,;) ;;=: Po(V). 

Step 2. We now suppose that P*(V) < P0(V); Step 1 shows 
that mass can again be shifted to obtain a contradiction. 

Step 1 (with M = P*) guarantees the existence of a Q.; such 
that there exists a lower set L, Q.; !;;;; L !;;;; V, such that P0(L) 
- P*(L) > 0. Without loss of generality, call such a set Q•i• 
and let 

a1 = min (P0(L) - P*(L)). (A.6) 
{Le~: Q,jl:Ll:V} 

Because P*(X) = P*(V), the right side of (A.6) can be found 
by taking the minimum over the finite number of lower sets L 
in {n.eA Q. : x: E A !;;;; OC}; thus a1 > 0. Now, define the 
subprobability measure II;, with full mass on ff, by II:(:x) = 
P*(:x), if :x E \X - {:xn, and II:Cxn = P*(:xn + a1. It then 
follows that II:(L) s P0(L) for all lower sets L !;;;; V, and that 
there exists a lower set L 1 such that Q.i !;;;; Li !;;;; V and II;(L1) 
= Po(L1)· . 

Let a2 = min(P0(L) - II;(L)), where the minimum is taken 
over lower sets Q,1 !;;;; L !;;;; V. If there does exist a lower set L 
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with Q.2 !;;;; L !;;;; V such that rr;(L) = P0(L), then ai = 0, and 
we define m = rr;. Otherwise, ai > O; we define m by 
Il~(:xi) = IT;(:xi) and m = rr; otherwise. In either case (ai = 
0 or ai > 0), observe that m(L) s P0(L) for all lower sets L !;;;; 
V and that there exists lower sets L 1 and Li, where Q.i !;;;; L 1 !;;;; 
V and Q.2 ~ Li !;;;; V such that Il~(L 1) = P0(L1) and Il~(Li) = 
P0(Li). We repeat this procedure until all k extreme points have 
been examined. By Step 1, the resulting m satisfies ITHV) = 
P0(V) and m(L) s P0(L) for all lower sets L ~ V. Now, define 
fi = II~ on V and fi = P0 on Ve. Note that fi is a pmf, L(fi) 
> L(f>*), and by Lemma 3.l fi £ P0, which contradicts the fact 
that f>* is the MLE. 

Theorem 3.2. For :x E !X, let />* be given by (3.12), f>*(:x) 
= 0 for :x EV - !X, and f>* = P0 for the set Ve. It is first shown 
that P,,(:x)--+ f>*(:x)/ P0(V) as e--+ 0 for all :x E G. [Note that the 
right side of (3.12) is well defined, because :x EL n U and :x E 
!X imply that a(L n U) :::: a(:x) > 0.] It is clear that P,,(x) --+ 
f>*(:x)/ P0(V) as e--+ 0 for all :x E !X. To see that P,,(:x) --+ 0 as e 
--+ 0 for :x E G - !X, we show that lim,....0 maxu minL [P0(L n 
U)/a.(L n U)] < co, where the maximum is understood to be 
taken over,{U E 61.la : :x EU}; similarly, the minimum is under
stood to be over {L E :fa : :x E L}. Note that for convenience 
max and min have been interchanged (see Barlow et al. 1972, 
theorem 2.8). Because GE ~a. 

. P0(L n U) P0(U n G) P0(U) 
max mm s max =max--. 

u L a,(L n U) u a,(U n G) u a,(U) 

(A.7) 

The limit as e --+ 0 of the right side of (A.7) is maxu 
P0(U)la(U), which is finite, because by construction of V and 
G, a(U) > 0 for all U E •lla. Therefore, P,,(:x)--+ 0 as e--+ 0 for 
:x E G - !X. 

Next, we verify that f>* £ P0• Because P0(V)P,,--+ />*for :x E 
G, we have f>*(U):::: P0(U)P0(V) for all U E 61.la, and f>*(G) 
= P0(G)P0(V). This implies that f>*(U) :::: P0(U) for all U E 

61.lv, and f>*(V) = P0(V). This, along with f>* = P0 on vc, implies 
that f>* £ P0, by Lemma 3.1. 

It remains to show that/>* maximizes L(P) among P £ P0• 

Suppose that L(Q) > L(f>*) and Q £ P0• From the discussion 
in Section 3.2 and the definition of P,,, it is clear that for e > 0 

II Q(:x)"'<•> S II (P,,(:x)P0(V))•.<x>. (A.8) 
xeG xeG 

Take the limit as e--+ 0 of both sides of (A.8) to yield L(Q) s 
L(f>*), which contradicts the fact that L(Q) > L(f>*). 

[Received January I987. Revised June I988.] 
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