
Geometry & TopologyMonographs 14 (2008) 295–319 295
arXiv version: fonts, pagination and layout may vary from GTM published version

Roots in 3–manifold topology
C HOG-ANGELONI

S MATVEEV

Let C be some class of objects equipped with a set of simplifying moves. When we
apply these to a given object M ∈ C as long as possible, we get a root of M .

Our main result is that under certain conditions the root of any object exists
and is unique. We apply this result to different situations and get several new
results and new proofs of known results. Among them there are a new proof of
the Kneser–Milnor prime decomposition theorem for 3–manifolds and different
versions of this theorem for cobordisms, knotted graphs, and orbifolds.

57N10; 57M99

1 Introduction

Let C be some class of objects equipped with a set of simplifying moves. When we
apply these to a given object M ∈ C as long as possible, we get a root of M .

Our main result is that under certain conditions the root of any object exists and is
unique. We apply this result to different situations and get several new results and new
proofs of known results. Among them there are a new proof of the Kneser–Milnor
prime decomposition theorem for 3–manifolds and different versions of this theorem
for cobordisms, knotted graphs, and orbifolds.

We thank C Gordon, W Metzler, C Petronio, W H Rehn and S Zentner for useful
discussions as well as the referee for his helpful comments.

Both authors are partially supported by the INTAS Project “CalcoMet-GT" 03-51-3662
and the second author is also partially supported by the RFBR grant 05-01-00293.

2 Definition, existence and uniqueness of a root

Let Γ be an oriented graph and e an edge of Γ with initial vertex v and terminal vertex
w. We will call the transition from v to w an edge move on v.
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296 C Hog-Angeloni and S Matveev

Definition 1 A vertex R(v) of Γ is a root of v, if the following holds:

(1) R(v) can be obtained from v by edge moves.

(2) R(v) admits no further edge moves.

Recall that a set A is well ordered if any subset of A has a least element. Basic examples
are the set of non-negative integers N0 and its power Nk

0 with lexicographical order.

Definition 2 Let Γ be an oriented graph with vertex set V(Γ) and A a well ordered
set. Then a map c : V(Γ)→ A is called a complexity function, if for any edge e of Γ
with vertices v, w and orientation from v to w we have c(v) > c(w).

Definition 3 Let Γ be an oriented graph. Then two edges e and d of Γ with the same
initial vertex v are called elementary equivalent, if their endpoints have a common
root. They are called equivalent (notation: e ∼ d), if there is a sequence of edges
e = e1, e2, . . . , en = d such that the edges ei and ei+1 are elementary equivalent for all
i, 1 ≤ i < n.

Definition 4 Let Γ be an oriented graph. We say that Γ possesses property (CF) if it
admits a complexity function. Γ possesses property (EE) if any two edges of Γ with
common initial vertex are equivalent.

It turns out that property (CF) guarantees existence, while property (EE) guarantees
uniqueness of the root.

Theorem 1 Let Γ be an oriented graph possessing properties (CF) and (EE). Then
any vertex has a unique root.

Proof Existence Let v be a vertex of Γ. Denote by X the set of all vertices of Γ
which can be obtained from v by edge moves. By property (CF), there is a complexity
function c : V(Γ) → A. Since A is well ordered, the set c(X) has a least element a0 .
Then any vertex in c−1(a0) is a root of v.

Uniqueness Assume that v is a least counterexample, ie, v has two different roots
u 6= w and c(v) ≤ c(v′) for any vertex v′ having more than one root. Let e respectively
d be the first edge of an oriented edge path from v toward u respectively w. By
property (EE), we have a sequence e = e1, e2, . . . , en = d such that the edges ei and
ei+1 are elementary equivalent for all i, 1 ≤ i < n. Hence, their endpoints vi, vi+1

have a common root ri . As c(vi) < c(v) for all i, that root is in fact unique. Thus
u = r1 = · · · = rn = w which is a contradiction.

The following sections are devoted to applications of Theorem 1.
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3 A simple proof of the Kneser–Milnor prime decomposition
theorem

Definition 5 Let S be a 2–sphere in the interior of a compact 3–manifold M . Then a
spherical reduction (or compression move) of M along S consists in cutting M along S
and attaching two balls to the two 2–spheres arising under the cut.

Let us consider the three types of spherical reductions. If S bounds a 3–ball in M , then
the reduction of M along S is trivial, ie, it produces a copy of M and a 3–sphere. If
S does not bound a 3–ball and separates M into two parts, then the reduction along
S produces two 3–manifolds M1,M2 such that M = M1#M2 , the connected sum of
M1,M2 . If S does not separate M , then the reduction along S produces a 3–manifold
M1 such that M = M1#S2×S1 or M = M1#S2×̃S1 (the latter is possible only if M is
non-orientable).

Recall that a 3–manifold M is prime if it is not a connected sum of two 3–manifolds
different from S3 . Also, M is irreducible, if it admits no non-trivial spherical reductions.

Theorem 2 (Kneser–Milnor prime decomposition [3, 6]) Any closed orientable
3–manifold M is a connected sum of prime factors. The factors are determined uniquely
up to homeomorphism.

The same holds for compact 3–manifolds with boundary. For non-orientable 3–
manifolds the Kneser–Milnor theorem is also true, but with the following modification:
the factors are determined uniquely up to homeomorphism and replacement of the
direct product S2×S1 by the skew product S2×̃S1 and vice versa. Note that these two
products are the only 3–manifolds that are prime, but reducible.

To get into the situation of Theorem 1, we introduce an oriented graph Γ. The set
of vertices of Γ is defined to be the set of all compact 3–manifolds considered up to
homeomorphism and removing all connected components homeomorphic to S3 . Two
manifolds M1,M2 are joined by an oriented edge from M1 to M2 if and only if the
union of non-spherical components of M2 can be obtained from M1 by a non-trivial
spherical reduction and removing spherical components.

Our next goal is to prove that any vertex of Γ has a unique root.

Remark 1 Our choice of vertices of Γ is important. If we did not neglect spherical com-
ponents, then the root would not be unique. For example, the manifold S2×S1#S2×S1

would have two different roots: a 3–sphere and the union of two disjoint 3–spheres.
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In order to construct a complexity function, we need Kneser’s Lemma1, see [3].

Lemma 1 For any compact 3–manifold M there exists an integer constant C0 such
that any sequence of non-trivial spherical reductions consists of no more than C0 moves.

Corollary 1 Γ possesses property (CF).

Proof We define the complexity function c : V(Γ) → N0 as follows: c(M) is the
maximal number of spherical reductions in any sequence of non-trivial spherical
reductions of M . By Lemma 1, c is well defined and evidently it is compatible with the
orientation on Γ.

Lemma 2 Γ possesses property (EE).

Proof Let Se, Sd be two non-trivial spheres in M and e, d be the corresponding edges
of Γ. We prove the equivalence e ∼ d by induction on the number m = #(Se ∩ Sd) of
curves in the intersection assuming that the spheres have been isotopically shifted so
that m is minimal.

Base of induction Let m = 0, ie Se ∩ Sd = ∅. Denote by Me,Md the manifolds
obtained by reducing M along Se, Sd , respectively. Since Se ∩ Sd = ∅, Sd survives the
reduction along Se and thus may be considered as a sphere in Me . Let N be obtained
by reducing Me along Sd . Of course, compression of Md along Se also gives N . We
claim that any root R of N is a common root of Me and Md (and hence the edges
e, d are elementary equivalent). Indeed, if the sphere Sd is non-trivial in Me , then R
is a root of Me by the definition of a root. If Sd is trivial in Me , then N = Me ∪ S3

and the manifolds Me,N determine the same vertex of Γ, so again R is a root of Me .
Symmetrically, R is a root of Md whether or not Se is trivial in Md .
Therefore, R is a root of Me and Md .

Inductive step Suppose that m > 0. Using an innermost circle argument, we find
a disc D ⊂ Sd such that D ∩ Se = ∂D and compress Se along D. By minimality of
m, we get two non-trivial spheres S′, S′′ , each disjoint to Se and intersecting Sd in a
smaller number of circles, see Figure 1. Taking one of them (say, S′ ) and denoting
the corresponding edge by e′ , we get e ∼ e′ and e′ ∼ d by the inductive assumption.
Therefore, e ∼ d .

1Here is Kneser’s original statement of the lemma: Zu jeder M3 gehoert eine Zahl k mit
der folgenden Eigenschaft: Nimmt man mit M3 nacheinander k + 1 Reduktionen vor, so ist
mindestens eine davon trivial. Durch k (oder weniger) nicht triviale Reduktionen wird M3 in
eine irreduzible M3 verwandelt.
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S′
Sd

D

Se

S′′

Figure 1: Removing intersections

Theorem 3 For any 3–manifold M , the root R(M) under spherical reduction exists
and is unique up to homeomorphism and removal of spherical components.

Proof This follows from Theorem 1.

Note that R(M) is the disjoint union of the irreducible factors of M , ie, of the prime
factors other than S2×S1 or S2×̃S1 . So the root appears more natural than the Kneser–
Milnor decomposition and the same is true for other applications of Theorem 1, see the
following sections. In order to get the full version of the prime decomposition theorem,
additional efforts are needed. The advantage of this two-step method is that the first
step (existence and uniqueness of roots) is more or less standard, while all individual
features appear only at the second step.

In our situation, note that the number n of factors S2×S1 is determined by M . Let
M be orientable. Denote by Σ(M) the subgroup Σ(M) ⊂ H2(M; Z2) consisting of all
spherical elements (that is, of elements of the form f∗(µ), where µ is the generator of
H2(S2; Z2) and f : S2 → M is a map). Let us show that n coincides with the rank r(M)
of Σ(M) over Z2 . This follows from the following observations.

(1) Spherical reductions along separating spheres preserve Σ(M) and r(M) while
any spherical reduction along a non-separating sphere decreases r(M) by one
and kills one S2×S1 factor.

(2) After performing all possible spherical reductions, we get a 3–manifold M′ ,
which is aspherical (according to the Sphere Theorem) and thus has r(M′) = 0.

Geometry & TopologyMonographs 14 (2008)
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We thus easily deduce the Kneser–Milnor theorem from Theorem 3: M is the connected
sum of the connected components of R(M) plus n factors S2×S1 . The factors are
determined uniquely up to homeomorphism.

4 Decomposition into boundary connected sum

By a disc reduction of a 3–manifold M we mean cutting M along a proper disc D.
If ∂D bounds a disc in ∂M , then the reduction is called trivial. It makes little sense
to consider disc reductions separately from spherical ones. Usually one uses them
together or considers only irreducible manifolds. We start with the first approach. By
an SD–reduction we will mean a spherical or a disc reduction.

As in Section 3, we begin by introducing an oriented graph Γ. The set of vertices of Γ is
defined to be the set of all compact 3–manifolds, but considered up to homeomorphism
and removing connected components homeomorphic to S3 or D3 . Two vertices M1,M2

are joined by an edge oriented from M1 to M2 if M2 can be obtained from M1 by a
non-trivial SD–reduction.

Lemma 3 Γ possesses properties (CF) and (EE).

Proof Let M be a 3–manifold. We assign to it two integer numbers g(2)(∂M) and
s(M). The first number is equal to

∑
g2(F), where g(F) is the genus of a component

F ⊂ ∂M , and the sum is taken over all components of ∂M . Note that any non-trivial
disc reduction lowers g(2)(∂M) while g(1)(∂M), the sum of the genera of the components
F ⊂ ∂M , stays unchanged when ∂D is separating. The second number s(M) is the
maximal number of non-trivial spherical reductions on M introduced in the previous
section, where we denoted it by c(M). Now we introduce the complexity function
c : V(Γ)→ N2 by letting c(M) = (g(2)(∂M), s(M)), where the pairs are considered in
lexicographical order. It is clear that c is compatible with the orientation of Γ.

For proving property (EE), we apply the same method as in the proof of Lemma 2.
Let Fe,Fd be two surfaces such that each of them is either a non-trivial sphere or a
non-trivial disc. We will use the same induction on the number m of curves in Fe ∩ Fd .

Base of induction Let m = 0 and let Me,Md be the manifolds obtained by reducing
M along Fe and Fd , respectively. We wish to prove that Me and Md have a common
root. Let N be obtained by reducing Me along Fd as well as by reducing Md along Fe .

Suppose that either both Fe ⊂ Md and Fd ⊂ Me are non-trivial, or both are spheres, or
one of them is a sphere and the other is a disc (in the latter case the disc is automatically
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non-trivial, since spherical reductions do not affect the property of a disc to be non-
trivial). Then any root of N is a common root of Me,Md (the same proof as in Lemma
2 does work). That covers all cases when at least one of the surfaces is a sphere.

Suppose that both surfaces Fe,Fd are discs such that Fe is trivial in Md . Then the disc
D ⊂ ∂Md bounded by ∂Fe must contain at least one of the two copies F+

d ,F
−
d of Fd

appeared under the cut. Let S ⊂ IntMd be a sphere which runs along Fe and D such
that S ∩ Fe = ∅. The last condition guarantees us that S may be considered as a sphere
sitting in M as well as in Me . Now there are two possibilities.

(1) D contains only one copy (say, F+
d ) of Fd (in this case the disc Fd ⊂ Me also is

trivial). Then the spherical reductions of Me and Md along S produce the same
manifold N′ . So any root of N′ is a common root of Me and Md .

(2) D contains both copies F+
d and F−d of Fd (in this case the disc Fd ⊂ Me

is non-trivial). Note that S survives the reduction along Fe and thus may be
considered as a sphere in N . Denote by N′ the manifold obtained from Md by
spherical reduction along S . It is easy to see that the spherical reduction of N
along S produces a manifold homomorphic to the disjoint union of N′ and a
3–ball. Since 3–balls are neglected, any root of N′ is a common root of Me and
Md .

M
Fe

����
��

��
� Fd

��?
??

??
??

Me

Fd
��??

Md

S����
��

��
�

N
S

��??

N′

The inductive step is performed exactly in the same way as in the proof of Lemma 2. The
only difference is that in addition to an innermost circle argument we use an outermost
arc argument for decreasing the number of arcs in the intersection of discs.

Theorem 4 For any 3–manifold M the SD–root R(M) exists and is unique up to
homeomorphism and removal of spherical and ball connected components.

Proof This follows from Theorem 1 and Lemma 3.

If a 3–manifold M is irreducible, then one can sharpen Theorem 4 by considering only
D–reductions. Any such disc reduction can be realized by removing an open regular
neighborhood of D in M and getting a submanifold of M . So any D–root of M is
contained in M .
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Theorem 5 For any irreducible 3–manifold M , the D–root R(M) exists and is unique
up to isotopy and removal of ball connected components.

Proof Given M , we begin by introducing an oriented graph Γ = Γ(M). The set of
vertices of Γ is defined to be the set of all compact 3–submanifolds of M , considered
up to isotopy and removing connected components homeomorphic to D3 . Two vertices
Q1,Q2 are joined by an edge oriented from Q1 to Q2 if Q2 can be obtained from Q1 by
a non-trivial D–reduction. Property (CF) for Γ is evident: one can take the complexity
function c : V(Γ)→ N by letting c(Q) = g(2)(∂Q). Property (EE) can be proved exactly
in the same way as in the proof of Lemma 3. The only difference is that cutting along
a trivial disc produces the same manifold plus a ball (because of irreducibility) and
thus preserves the corresponding vertex of Γ. Therefore, the conclusion of the theorem
follows from Theorem 1.

Remark 2 This gives another proof of Bonahon’s Theorem that the characteristic
compression body (which can be defined as the complement to a D–root R(M) ⊂ IntM )
is unique up to isotopy, see [1].

In the previous section we have mentioned that there is only one closed orientable
3–manifold which is reducible and prime. On the contrary, the number of boundary
reducible 3–manifolds which are ∂–prime (ie, prime with respect to boundary connected
sums) is infinite. For example, if we take an irreducible boundary irreducible 3–manifold
with n > 1 boundary components C1, . . .Cn and join each Ci, i < n, with Ci+1 by
a solid tube, we obtain a boundary reducible ∂–prime manifold. (In analogy to the
closed case, the ∂–reductions take place along non-separating discs). Nevertheless, any
compact 3–manifold has a unique decomposition into a boundary connected sum of
∂–prime factors. This theorem was first proved by A Swarup [8]. Below we show that
for irreducible 3–manifolds it can easily be deduced from Theorem 5.

Theorem 6 Any irreducible 3–manifold M is a boundary connected sum of ∂–prime
factors. The factors are determined uniquely up to homeomorphism and – in the
non-orientable case – replacement of the direct product D2×S1 by the skew product
D2×̃S1 and vice versa.

Proof Existence of a boundary prime decomposition is evident. Let us prove the
uniqueness. Recall that any disc reduction can be realized by cutting out a regular
neighborhood of a proper disc. We are allowed also to cast out 3–balls. It follows
that we may think of the root N = R(M) of M (which is well defined by Theorem 5)

Geometry & TopologyMonographs 14 (2008)
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as sitting in M such that M can be obtained from N by adding disjoint 3–balls and
attaching handles of index one. Therefore M can be presented as M = N ∪H such that
H is a union of disjoint handlebodies and N ∩ H is a collection of discs on ∂N .

One may easily achieve that the intersection of any connected component Ni with H
consists of no more than one disc, see Figure 2.

H H

Ni Ni

Figure 2: The intersection of Ni with H consists of no more than one disc.

Moreover, the presentation M = N ∪ H as above is unique up to isotopy.

We now wish to cut H to get from the root to a prime decomposition, see Figure 3:

1

2 3

4

5 6

7

Figure 3: H consists of two balls and seven handles.

Temporarily shrink each connected component of N to a red point and each component
of H to a core with exactly one non-red (say: green) vertex. Call the resulting ancillary
graph G.

G admits cutting if there is a graph Ĝ (again with vertices coloured green and red) such
that Ĝ has one more component than G and G = Ĝ/x1 ∼ x2 for some green vertices
x1, x2 of Ĝ.

Note that the cutting loci (and thus also the outcome of a maximal cutting procedure)
are uniquely determined by the equivalence relation generated by the following rule:

Geometry & TopologyMonographs 14 (2008)
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edges outgoing from the green vertex x are elementary equivalent if they lie in the same
connected component of G− {x}.

Let M′ be obtained from M by cutting along discs corresponding to such cuts of G.

It follows from the construction that the connected components of the resulting new
manifold M′ are the ∂–prime factors of M .

5 Roots of knotted graphs

Now we will consider pairs of the type (M,G), where M is a compact 3–manifold and
G is an arbitrary graph (compact one-dimensional polyhedron) in M . Recall that a
2–sphere S ⊂ M is in general position (with respect to G), if it does not pass through
vertices of G and intersects edges transversely. It is clean if its intersection with G is
empty.

Definition 6 Let S be a general position sphere in (M,G). Then the reduction (or
compression) of (M,G) along S consists in cutting (M,G) along S and taking disjoint
cones over (S±, S± ∩ G), where S± are the two copies of S appearing under the cut.

Equivalently, the reduction along S can be described as compressing S to a point and
cutting the resulting singular manifold along that point.

If (M′,G′) is obtained from (M,G) by reduction along S , we write (M′,G′) = (MS,GS).
The two cone points in MS are called stars. They lie in GS if and only if S ∩ G 6= ∅.

It makes little sense to consider all possible spherical reductions, since then there would
be no chance to get existence and uniqueness of a root, see below. In order to describe
allowable reductions of the pair (M,G), we introduce two properties of spheres in
(M,G).

Definition 7 Let S be a 2–sphere in (M,G). Then S is called

(1) compressible if there is a disc D ⊂ M such that D ∩ S = ∂D, D ∩ G = ∅,
and each of the two discs bounded by ∂D on S intersects G; otherwise S is
incompressible;

(2) admissible if S ∩ G consists of no more than three transverse crossing points.

The following examples show that compressions along compressible and inadmissible
spheres may produce different roots.

Geometry & TopologyMonographs 14 (2008)



Roots in 3–manifold topology 305

⋃

Figure 4: Example of a spherical reduction along a compressible sphere

Example 1 Take the knot k in M = S2×S1 shown in Figure 4.

k mainly follows {∗}×S1 , but has a trefoil in it. If we allowed to perform reduction
along the dotted sphere S (which is compressible!), then (M, k) would split off a
3–sphere containing the trefoil knot. But note that k is in fact equivalent to {∗}×S1 .
Indeed, by deforming some little arc of the trefoil all the way across S2×{∗}, we can
change an overcrossing to an undercrossing so that the knot k comes undone. Thus,
(M, k) would equal (M, k) plus a non-trivial summand and there would be no hope for
uniqueness of the root.

Example 2 Let (M,G) be the standard circle with two parallel chords in S3 . As we
see from Figure 5, compressions of (M,G) along two different spheres (admissible and
non-admissible) produce two different roots.

Note that the existence of an admissible compressible sphere implies the existence of
either a separating point of G or an (S2×S1)–summand of M .

Figure 5: Example of a spherical reduction along an inadmissible sphere

Definition 8 A sphere S in (M,G) is called trivial if it bounds a ball V ⊂ M such that
the pair (V,V ∩ G) is homeomorphic to the pair (Con(S2),Con(X)), where X ⊂ S2

Geometry & TopologyMonographs 14 (2008)
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consists of ≤ 3 points and Con is the cone. An incompressible admissible non-trivial
sphere is called essential.

Note that reduction of (M,G) along a trivial sphere produces a homeomorphic copy
of (M,G) and a trivial pair (S3,G), where G is either empty, or a simple arc, or an
unknotted circle, or an unknotted (ie contained in a disc) theta–curve.

Let G be a knotted graph in a 3–manifold M . Following the same lines as in the
previous sections, we begin by introducing an oriented graph Γ. The set V(Γ) of
vertices is defined to be the set of all pairs (M,G), considered up to homeomorphism
of pairs and removing connected components homeomorphic to trivial pairs. Two
vertices (M1,G1), (M2,G2) are joined by an edge oriented from (M1,G1) to (M2,G2)
if (M2,G2) can be obtained from (M1,G1) by reduction along some essential sphere.

We need an analogue of Lemma 1 (Kneser’s Lemma) for manifolds with knotted graphs.

Lemma 4 Suppose that (M,G) contains no clean essential spheres, ie, that the manifold
M \ G is irreducible. Then there is a constant C1 depending only on (M,G) such that
any sequence of reductions along essential spheres consists of no more than C1 moves.

Proof We choose a triangulation T of (M,G) such that G is the union of (some of
the) edges and vertices of T . Let C1 = 10t , where t is the number of tetrahedra in T .
Consider a sequence S1, . . . , Sn ⊂ (M,G) of n > C1 disjoint spheres such that each
sphere Sk is essential in the pair (Mk,Gk) obtained by reducing (M0,G0) = (M,G)
along S1, . . . , Sk−1 . It is easy to see that the spheres are essential in (M,G) and not
parallel one to another.

We claim that the union F = S1 ∪ · · · ∪ Sn can be shifted into normal position by
an isotopy of the pair (M,G). To prove that, we adjust to our situation two types of
moves for the standard normalization procedure of arbitrary incompressible surface in
an irreducible 3–manifold.

Tube compression Let D be a disc in (M,G) such that D ∩ F = ∂D and D does
not intersect the edges of T (in practice D lies either in a face or in the interior of a
tetrahedron). Since F is a collection of incompressible spheres, compression along D
produces a copy F′ of F and a clean sphere S′ . By irreducibility of M \G, S′ bounds a
clean ball, which helps us to construct an isotopy of (M,G) taking F to F′ .

Isotopy through an edge Let D be a disc in a tetrahedron ∆ such that D ∩ F is an
arc in ∂D and ∂D intersects an edge e of ∆ along the complementary arc of ∂D. If
e were in G, by incompressibility there could be no further intersection of G and the
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component of F containing the arc of ∂D. As each clean sphere bounds a ball this
component would be a trivial sphere in (M,G). Thus, e is not in G, so we can use D to
construct an isotopy of (M,G) removing two points in F ∩ e.

Performing those moves as long as possible, we transform F into normal position.

Now we notice that the normal surface F decomposes M into pieces (called chambers)
and crosses each tetrahedron of T along triangle and quadrilateral pieces (called patches).
Let us call a patch black, if it does not lie between two parallel patches of the same
type. Each tetrahedron contains at most 10 black patches: at most 8 triangle patches
and at most 2 quadrilateral ones. Since n > 10t , at least one of the spheres is white, ie
contains no black patches. Let C be a chamber such that ∂C contains a white sphere
and a non-white sphere. Then C crosses each tetrahedron along some number of prisms
of the type P×I , where P is a triangle or a quadrilateral.

Since the patches P× {0, 1} belong to different spheres, C is S2 × I .

This contradicts our assumption that the spheres be not parallel.

Lemma 5 Let a pair (MS,GS) be obtained from a pair (M,G) by reduction along an
incompressible sphere S such that S ∩G 6= ∅. Then M \G is reducible if and only if
so is MS \ GS .

Proof Let S1 be a clean essential sphere in M . Suppose that S ∩ S1 6= ∅. Using an
innermost circle argument, we find a disc D1 ⊂ S1 such that D1 ∩ S = ∂D1 . Since S is
incompressible, ∂D1 bounds a clean disc D ⊂ S . Now we may construct a new clean
sphere S′1 ⊂ M such that S′1 ∩ S consists of a smaller number of circles than S1 ∩ S .
Indeed, if the sphere D ∪ D1 is essential, we take S′1 to be a copy of D ∪ D1 shifted
away from S . If D∪D1 bounds a clean ball, we use this ball for constructing an isotopy
of D1 to the other side of S . This isotopy takes S1 to S′1 .

Doing so for as long as possible, we get a clean essential sphere S1 ⊂ M such that
S ∩ S1 = ∅. It follows that then S1 , considered as a sphere in MS , is essential.

The proof of the lemma in the reverse direction is evident.

Lemma 6 For any pair (M,G) there exists a constant C such that any sequence of
reductions along essential spheres consists of no more than C moves.

Proof Let S1, . . . Sn ⊂ (M,G) be such a sequence of essential spheres. For any
k, 1 ≤ k ≤ n, we denote by (Mk,Gk) the pair obtained from (M0,G0) = (M,G) by
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reductions along the spheres S1, . . . , Sk . We may assume that the last pair (Mn,Gn)
admits no further reductions along clean essential spheres. Otherwise we extend the
sequence of reductions by new reductions along clean essential spheres until we get a
pair with irreducible graph complement. Denote also by (M′k,G

′
k) the pair obtained

from (Mk,Gk) by additional reductions along all remaining clean spheres from the
sequence S1, . . . Sn . Note that (M′n,G

′
n) is obtained from (M′k,G

′
k) by reductions along

dirty spheres and that M′n \ G′n is irreducible. By Lemma 5 M′k \ G′k also is irreducible
and hence contains no clean essential spheres.

It is convenient to locate the set X of clean stars (the images of the cone points under
reductions of all clean essential spheres from S1, . . . Sn ). Then X consists of no more
than 2C0 points, where C0 = C0(M,G) is the constant from Lemma 1 for a compact
3–manifold whose interior is M \ G. We may think of X as being contained in all
(M′k,G

′
k).

Let us decompose the set S1, . . . Sn into three subsets U,V,W as follows:

(1) Sk ∈ U if Sk is clean.

(2) Sk ∈ V if Sk , considered as a sphere in (M′k−1,G
′
k−1), is an essential sphere

(necessarily dirty).

(3) Sk ∈ W if Sk is a trivial dirty sphere in (M′k−1,G
′
k−1).

Now we estimate the numbers #U, #V, #W of spheres in U,V,W . Of course, #U ≤ C0

and #V ≤ C1 , where C0 is as above and C1 = C1(M′0,G
′
0) is the constant from

Lemma 4. Let us prove that #W ≤ 2C0 . Indeed, the reduction along each sphere
Sk ∈ W transforms (M′k−1,G

′
k−1) into a copy of (M′k−1,G

′
k−1) and a trivial pair

(S3
k−1,Γk−1) containing at least one clean star. Since no star can appear in two different

trivial pairs and since the total number of clean stars does not exceed 2C0 , we get
#W ≤ 2C0 . Combining these estimates, we get n ≤ C = 3C0 + C1 .

Lemma 7 The graph Γ = Γ(M,G) possesses properties (CF) and (EE).

Proof We define the complexity function c : V(Γ) → N0 just as in the proof of
Corollary 1: c(M,G) is the maximal number of reductions in any sequence of essential
spherical reductions of (M,G). By Lemma 6, this is well defined. Evidently, c is
compatible with the orientation.

The proof of property (EE) is similar to the proof of the same property for the case
G = ∅, see Lemma 2. Let Se, Sd be two essential spheres in (M,G) corresponding
to edges e, d of Γ. We prove the equivalence e ∼ d by induction on the number

Geometry & TopologyMonographs 14 (2008)



Roots in 3–manifold topology 309

m = #(Se ∩ Sd) of curves in the intersection assuming that the spheres have been shifted
by isotopy of (M,G) so that m is minimal. The base of the induction, when m = 0, is
evident, since reductions along disjoint spheres commute and thus, just as in the proof
of Lemma 2. produce knotted graphs having a common root.

Let us prove the inductive step. Suppose that Sd contains a disc D such D ∩ Se = ∂D.
Assume that D is clean, ie D ∩ G = ∅. Then we compress Se along D. We get two
spheres S′, S′′ , each disjoint with Se and intersecting Sd in a smaller number of circles.
Since Se is incompressible and m is minimal, at least one of them (say S′ ) must be clean
and essential. As Se ∼ S′ and S′ ∼ Sd by the inductive assumption, we get Se ∼ Sd .

Now we may assume that Sd (and, by symmetry, Se ) contain no innermost clean discs.
Since Sd contains at least two innermost discs and #(Sd ∩G) ≤ 3, there is an innermost
disc D ⊂ Sd crossing G at exactly one point. Its boundary decomposes Se into two
discs D′,D′′ , both crossing G. Since #(Se∩G) ≤ 3, at least one of them (let D′ ) crosses
G at exactly one point. Then the sphere S′e = D ∪ D′ is admissible, incompressible,
and non-trivial. Moreover, it is actually disjoint with Se and crosses Sd in less than m
circles. Using the inductive assumption, we get Se ∼ Sd again.

Theorem 7 For any knotted graph (M,G) the root R(M,G) exists and is unique up to
homeomorphism and removal of trivial components.

Proof This follows from Theorem 1 and Lemma 7.

According to our definition of the graph Γ for the case of knotted graphs, its vertices and
hence roots of knotted graphs are defined only modulo removing trivial pairs. One of
the advantages of roots introduced in that manner is the flexibility of their construction:
each next reduction can be performed along any essential sphere. We pay for that by the
non-uniqueness: roots of (M,G) can differ by their trivial connected components. This
is natural, but might seem to be inconvenient. We improve this by introducing efficient
roots, which are free from that shortcoming (the idea is borrowed from Petronio [7]).

Definition 9 A system S = S1 ∪ · · · ∪ Sn of disjoint incompressible spheres in (M,G)
is called efficient if the following holds:

(1) reductions along all the spheres give a root of (M,G);

(2) any sphere Sk, 1 ≤ k ≤ n, is essential in the pair (MS\Sk ,GS\Sk ) obtained from
(M,G) by reductions along all spheres Si, 1 ≤ i ≤ n, except Sk .
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Efficient systems certainly exist; to get one, one may construct a system satisfying
(1) and merely throw away one after another all spheres not satisfying (2). Having an
efficient system, one can get another one by the following moves.

(1) Let a ⊂ (M,G) be a clean simple arc which joins a sphere Si with a clean sphere
Sj, i 6= j, and has no common points with S except its ends. Then the boundary
∂N of a regular neighborhood N(Si ∪ a ∪ Sj) consists of a copy of Si , a copy of
Sj , and the (interior) connected sum Si#Sj of Si and Sj . The move consists in
replacing Si by Si#Sj .

(2) The same, but with the following modifications:

i) a is a simple subarc of G such that all vertices of G contained in a have
valence two, and

ii) Sj crosses G in two points.

Both moves are called spherical slidings, see Figure 6. Note that spherical slidings do
not affect the corresponding root.

Si Sj

Si#Sj

Figure 6: Spherical sliding

Definition 10 Two efficient system in (M,G) are equivalent if one system can be
transformed into the other by a sequence of spherical slidings and an isotopy of (M,G).

The following theorem can be proved by a modification of the proof of property (EE) in
Lemma 7. See [5] for details.

Theorem 8 Any two efficient systems in (M,G) are equivalent.

Definition 11 A root of (M,G) is efficient, if it can be obtained by reducing (M,G)
along all spheres of an efficient system.
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Theorem 9 For any (M,G) the efficient root exists and is unique up to homeomorphism.

Proof This is evident, since spherical slidings of an efficient system do not affect the
corresponding root.

Remark 3 Theorem 9 easily implies the Schubert Theorem on the uniqueness of
prime knot decomposition in S3 as well as the corresponding theorem for knots in
any irreducible 3–manifold. Indeed, the connected components of the efficient root of
(M,K) are exactly the prime factors of the knot K .

6 Colored knotted graphs and orbifolds

Let C be a set of colors. (For example think of C = N.) By a coloring of a graph G we
mean a map ϕ : E(G)→ C , where E(G) is the set of all edges of G.

Definition 12 Let Gϕ be a colored graph in a 3–manifold M . Then the pair (M,Gϕ)
is called admissible, if there is no incompressible sphere in (M,Gϕ) which crosses Gϕ

transversely in two points of different colors.

It follows from the definition that if (M,Gϕ) is admissible, then Gϕ has no valence two
vertices incident to edges of different colors. We define reductions along admissible
spheres, trivial pairs, roots, efficient systems, spherical slidings, and efficient roots just
in the same way as for the uncolored case.

Theorem 10 For any admissible pair (M,Gϕ) the root exists and is unique up to color
preserving homeomorphisms and removing trivial pairs. Moreover, any two efficient
systems in (M,Gϕ) are equivalent and thus the efficient root is unique up to color
preserving homeomorphisms.

Proof The proof is literally the same as for the uncolored case. There is only one
place where one should take into account colorings: the last paragraph of the proof of
Lemma 7. Indeed, in this paragraph there appears an incompressible sphere S′e that
crosses G in two points. We need to know that these points have the same colors, and
exactly for that purpose one has imposed the restriction that the pair (M,Gϕ) must be
admissible.
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Further generalizations of the above result consist in specifying sets of allowed single
colors, pairs of colors, and triples of colors. The idea is to define admissibility of
spheres according to whether their intersection with Gϕ belongs to one of the specified
sets and allow reductions only along those spheres. Again, all proofs, in particular, the
proof of the corresponding version of Theorem 10, are literally the same with only one
exception where we need that (M,Gϕ) is admissible. We naturally obtain a generalized
version of the orbifold splitting theorem proved recently by C Petronio [7].

Recall that a 3–orbifold can be described as a pair (M,Gϕ), where all vertices of Gϕ

have valence smaller than or equal to 3, all univalent vertices are in ∂M , and Gϕ is
colored by the set C of all integer numbers greater than 1. We specify the following
sets of colors:

We allow no single colors, ie, we do not perform reductions along spheres crossing
Gϕ at a single point. The set of allowed pairs consists of pairs (n, n), n ≥ 2. The
allowed triples are the following: (2, 2, n), n ≥ 2, and (2, 3, k), 3 ≤ k ≤ 5. See [7] for
background. An orbifold (M,Gϕ) is called admissible, if it is admissible in the above
sense, ie, if there is no incompressible sphere in (M,Gϕ) which crosses Gϕ transversely
in two points of different colors.

In view of the previous discussion, the following theorem is an easy consequence of
Theorem 10.

Theorem 11 For any admissible orbifold (M,Gϕ) the root exists and is unique up
to orbifold homeomorphisms and removing trivial pairs. Moreover, any two efficient
systems in (M,Gϕ) are equivalent and thus the efficient root is unique up to orbifold
homeomorphism.

7 Roots versus prime decompositions

In Section 3 we have seen that the existence and uniqueness of roots of 3–manifolds with
respect to spherical reductions (that is, spherical roots) is very close to the existence
and uniqueness of prime decompositions with respect to connected sums. Indeed, to
get the disjoint union of prime factors one should merely perform as long as possible
spherical reductions along separating essential spheres. The same is true for prime
decompositions of irreducible manifolds with respect to boundary connected sums
and for prime decompositions of knotted graphs and orbifolds with respect to taking
connected sums (which are inverse operations to reductions along separating essential
spheres).
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In contrast to that, the uniqueness of prime factors requires additional arguments. For
decompositions of 3–manifolds into connected sums and boundary connected sums
such arguments are given in Sections 3 and 4. The uniqueness of prime decompositions
of knotted graphs is not known yet.

Conjecture 1 Any knotted graph is a connected sum of prime factors. The factors are
determined uniquely up to homeomorphism.

The uniqueness of prime decompositions of orbifolds is also unsettled. The main
result of [7] does not solve the problem, since it works only for orbifolds without
non-separating 2–suborbifolds. So the following conjecture remains unsettled.

Conjecture 2 Any 3–dimensional orbifold is a connected sum of prime factors. The
factors are determined uniquely up to homeomorphism.

8 Annular roots of manifolds

In addition to spherical and and disc (S– and D–) reductions from Sections 3 and 4 we
introduce A–reductions (reductions along annuli).

Definition 13 Let A be an annulus in M such that its boundary circles lie in different
components of ∂M . Then we cut M along A and attach two plates D2

1×I,D2
2×I by

identifying their base annuli ∂D2
1×I, ∂D2

2×I with the two copies of A, which appear
under cutting.

A reduction along an annulus A ⊂ M is called trivial, if A is compressible, and non-
trivial otherwise. Note that incompressible annuli having boundary circles in different
components of ∂M are automatically essential, ie, not only incompressible, but also
boundary incompressible. It makes little sense to consider annular reductions separately
from spherical and disc ones. We will use them together calling them SDA–reductions.
As above, we begin by introducing an oriented graph Γ. The set of vertices of Γ is
defined to be the set of all compact 3–manifolds, but considered up to homeomorphism
and removing connected components homeomorphic to S3 or D3 . Two vertices M1,M2

are joined by an edge oriented from M1 to M2 if M2 can be obtained from M1 by a
non-trivial SDA–reduction.

Our next goal is to prove that Γ possesses properties (CF) and (EE). The inductive
proof of property (EE) is based on the following lemma, which helps us to settle the
base of induction.
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Lemma 8 Let a 3–manifold N be obtained from a 3–manifold M by annular reduction
along a compressible annulus A ⊂ M . Then N contains a sphere S such that the
spherical reduction NS of N can be obtained from M by cutting along two disjoint
proper discs.

Proof Let D be a compressing disc for A. Denote by U a closed regular neighborhood
of A∪D in M . Then the relative boundary ∂relU = Cl(∂N∩ IntM) consists of a parallel
copy of A and two proper discs D′,D′′ . Denote by S a 2–sphere in N composed from
a copy of D and a core disc of one of the attached plates, see Figure 7. Then it is
easy to see that the manifold NS obtained from N by spherical reduction along S is
homeomorphic to the result of cutting M along D′ and D′′ .

S

A

A

D

D′

D′′

Figure 7: Reduction along compressible annulus

Lemma 9 Γ possesses properties (CF) and (EE).

Proof Property (CF) is easy:
The complexity function c(M) = (g(2)(∂M), s(M)) introduced in the proof of Lemma 3
works.

To prove property (EE), consider two surfaces in M corresponding to edges e, d of Γ.
Each surface is either a non-trivial sphere or disc, or an incompressible annulus having
boundary circles in different components of ∂M . We prove the equivalence e ∼ d by
induction on the number #(Fe ∩ Fd) of curves in the intersection assuming that the
surfaces have been isotopically shifted so that this number is minimal.

Base of induction Let m = 0, ie Fe ∩ Fd = ∅. Denote by Me,Md the manifolds
obtained by reducing M along Fe,Fd , respectively. Since Fe ∩Fd = ∅, Fd survives the
reduction along Fe and thus may be considered as a surface in Fe . Let N be obtained
by reduction of Fe along Fd . Of course, reduction of Md along Fe also gives N . We
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claim that there is a root R of N which is a common root of Me and Md (and hence the
edges e, d are elementary equivalent).

Indeed, if both surfaces Fe ⊂ Md,Fd ⊂ Me are non-trivial, then any root of N is a
common root of Me and Md . If one of them is a trivial sphere or a trivial disc, then the
same tricks as in the proofs of Lemmas 2 and 3 do work.

Suppose that one of the surfaces (let Fe ) is a trivial (ie compressible) annulus. Then we
apply Lemma 8 and get a manifold N′ such that any root of N′ is a common root of Me

and Md .

Now we suppose that both annuli Fe,Fd are trivial. Then we apply Lemma 8 twice:
construct two manifolds N′,N′′ such that each can be obtained from Me (respectively,
Md ) by cutting along two disjoint discs. Since both N′,N′′ are spherical reductions of
N , they have a common root by Lemma 2.

Inductive assumption Any two edges e, d with #(Fe ∩ Fd) ≤ m are equivalent.

Inductive step Suppose that #(Fe ∩ Fd) ≤ m + 1. We may assume that Fe ∩ Fd

contains no trivial circles and trivial arcs. Otherwise we could apply an innermost circle
or an outermost arc argument just as in the proof of Lemmas 2 and 3. It follows that Fe

and Fd are annuli such that Fe ∩ Fd consists either of non-trivial circles (which are
parallel to the core circles of the annuli) or of non-trivial arcs (which join different
boundary circles of the annuli).

First we suppose that Fe ∩ Fd consists of non-trivial circles of Fe and Fd . Then one
can find two different components A,B of ∂M such that a circle of ∂Fe is in A and a
circle of ∂Fd is in B. Denote by s the first circle of Fe ∩ Fd we meet at our radial way
along Fe from the circle ∂Fe ∩ A to the other boundary circle of Fe . Let F′e be the
subannulus of Fe bounded by ∂Fe ∩ A and s, and F′d the subannulus of Fd bounded by
s and ∂Fd ∩ B. Then the annulus F′e ∪ F′d is essential and is isotopic to an annulus X
such that #(X ∩Fe) < m and #(X ∩Fd) = 0, see Figure 8 (to get a real picture, multiply
by S1 ). It follows from the inductive assumption that e ∼ x ∼ d , where x is the edge
corresponding to the annulus X .

Now we suppose that Fe ∩ Fd consists of more than one radial segments, each having
endpoints in different components of ∂Fe and different components of ∂Fd . Let
s1, s2 ⊂ Fe ∩ Fd ⊂ Fe be two neighboring segments. Denote by D the quadrilateral
part of Fe between them.

Case 1 First we assume that Fd crosses Fe at s1, s2 in opposite directions. This means
that each part of Fd \ (s1 ∪ s2) approaches D from the same side. Then we cut Fd along
s1, s2 and attach to it two parallel copies of D lying on different sides of Fe . We get a
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Fd

Fe

X

A

B

Figure 8: X is disjoint with Fd and crosses Fe in a smaller number of circles.

new surface F′d consisting of two disjoint annuli, at least one of which (denote it by X )
is essential, see Figure 9 to the left. The real picture showing the behavior of the annuli
in a neighborhood of D can be obtained by multiplying by I . Since #(X ∩ Fe) ≤ m− 2
and, after a small isotopy of X , #(X ∩ Fd) = ∅, we get e ∼ x ∼ d , where x is the edge
corresponding to the annulus X .

s1 s1

s2 s2Fd Fd

Fe Fe

X

Figure 9: X crosses each annulus in a smaller number of segments.

Case 2 We assume now that at all segments Fd crosses Fe at s1, s2 in the same
direction (say, from left to right). Then s1, s2 decompose Fd into two strips L1,L2

such that L1 approaches s1 from the left side of Fe and s2 from the right side. Then
the annulus L1 ∪ D is isotopic to an annulus X such that #(X ∩ Fe) ≤ m − 1 and
#(X ∩ Fd) = 1, see Figure 9 to the right. Since X crosses Fe one or more times in the
same direction, it is essential. Therefore, we get e ∼ x ∼ d again.

Case 3 Suppose M is not homeomorphic to S1×S1×I and Fe and Fd are annuli
such that Fe ∩ Fd consists of one radial segment. Denote by F′d the relative boundary
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∂rel(N) = Cl(∂N ∩ IntM) of a regular neighborhood N = N(Fe ∪ Fd) in M . Then F′d
is an annulus having boundary circles in different components of ∂M .

Case 3.1 If F′d is incompressible, then we put X = F′d .

Case 3.2 If F′d admits a compressing disc D, then the relative boundary of a regular
neighborhood N = N(F′d ∪ D) consists of a parallel copy of F′d and two proper discs
D1,D2 . If at least one of these discs (say, D1 ) is essential, then we put X = D1 .

Case 3.3 Suppose that the discs D1,D2 are not essential. Then the circles ∂D1, ∂D2

bound discs D′1,D
′
2 contained in the corresponding components of ∂M . We claim that

at least one of the spheres S1 = D1 ∪ D′1, S2 = D2 ∪ D′2 (denote it by X ) must be
essential. Indeed, if both bound balls, then M is homeomorphic to S1×S1×I , contrary
to our assumption.

In all three cases 3.1–3.3, X is disjoint to Fe as well as to Fd . Therefore, e ∼ x ∼ d ,
where x is the edge corresponding to the annulus X .

Case 4 This is the last logical possibility. Suppose that M = S1×S1×I . Then e ∼ d
since reducing M = S1×S1×I along any incompressible annulus having boundary
circles in different components of M produces the same manifold S2×I .

Theorem 12 For any 3–manifold M the SDA–root R(M) exists and is unique up to
homeomorphism and removal of spherical and ball connected components.

Proof This follows from Theorem 1 and Lemma 9.

It turns out that the condition on boundary circles of annuli to lie in different components
of ∂M is essential. Below we present an example of a 3–manifold M with two
incompressible boundary incompressible annuli A,B ⊂ M such that ∂M is connected
and reductions of M along A and along B lead us to two different 3–manifolds admitting
no further essential reduction, ie to two different “roots”.

Example Let Q be the complement space of the figure-eight knot. We assume that
the torus ∂Q is equipped with a coordinate system such that the slope of the meridian is
(1,0). Choose two pairs (p, q), (m, n) of coprime integers such that |q|, |n| ≥ 2 and
|p| 6= |m|. Let a and b be corresponding curves in ∂Q. Then the manifolds Qp,q and
Qm,n obtained by Dehn filling of Q are not homeomorphic. By Thurston [9], they are
hyperbolic.

Consider the thick torus X = S1×S1×I and locate its exterior meridian
µ = S1×{∗}×{1} and interior longitude λ = {∗}×S1×{0}. Then we attach to
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X two copies Q′,Q′′ of Q as follows. The first copy Q′ is attached to X by identifying
an annular regular neighborhood N(a) of a in ∂Q with an annular regular neighborhood
N(µ) of µ in ∂X . The second copy Q′′ is attached by identifying N(b) with N(λ).
Denote by M the resulting manifold Q′ ∪ X ∪ Q′′ .

Since Q is hyperbolic, M contains only two incompressible boundary incompressible
annuli A and B, where A is the common image of N(a) and N(µ), and B is the common
image of N(b) and N(λ). It is easy to see that reduction of M along A gives us a disjoint
union of a punctured Q′p,q and a punctured Q′′ while the reduction along B leaves us
with a punctured Q′ and a punctured Q′′m,n . After filling the punctures (by reductions
along spheres surrounding them), we get two different manifolds, homeomorphic to
Qp,q ∪ Q and Qm,n ∪ Q. Since their connected components (ie Qp,q,Qm,n,Q) are
hyperbolic, they are irreducible, boundary irreducible and contain no essential annuli.
Hence Qp,q ∪ Q and Qm,n ∪ Q are different roots of M .

9 Other roots

Roots of cobordisms Recall that a 3–cobordism is a triple (M, ∂−M, ∂+M), where
M is a compact 3–manifold and ∂−M , ∂+M are unions of connected components of
∂M such that ∂−M ∩ ∂+M = ∅ and ∂−M ∪ ∂+M = ∂M . One can define S– and
D–reductions on cobordisms just in the same way as for manifolds. The A–reduction
on cobordisms differs from the one for manifolds only in that one boundary circle of A
must lie in ∂−M while the other in ∂+M .

Theorem 13 For any compact 3–cobordism (M, ∂−M, ∂+M) its root exists and is
unique up to homeomorphism of cobordisms and removing disjoint 3–spheres and balls.

The proof of this theorem is the same as the proof of Theorem 12. We point out that
considering roots of cobordisms was motivated by the paper [2] of S Gadgil, which is
interesting although the proof of his main theorem contains a serious gap. We found the
gap after proving Theorem 13, which clarifies the situation with Gadgil’s construction.

Roots of virtual links Recall that a virtual link can be defined as a link L ⊂ F×I ,
where F is a closed orientable surface. Virtual links are considered up to isotopy and
destabilization operations, which, in our terminology, correspond to reduction along
annuli. Each annulus must be disjoint to L and have one boundary circle in F×{0},
the other in F×{1}. We also allow spherical reductions. The proof of the following
theorem is the same as the proof of Theorem 12.
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Theorem 14 For any virtual link its root exists and is unique up to homeomorphism
of cobordisms and removing disjoint 3–spheres and balls.

This theorem is equivalent to the main theorem of Kuperberg [4].
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