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Critical Phenomena Associated with Boson Stars
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Here we present a synopsis of related work [1, 2] describing astudy of black hole threshold
phenomena for a self-gravitating massive complex scalar field in spherical symmetry.

Studies of models of gravitational collapse have revealed structure which can arise
near the threshold of black hole formation. The solutions inthis regime are known
as “critical solutions," and their properties as “criticalphenomena”. These solutions
can arise generically, even in simple models such a masslessscalar field in spherical
symmetry [3].

Critical solutions can be constructed dynamically via numerical simulations, in which
one considers continuous one-parameter families of initial data with the following “in-
terpolating” property: for sufficiently large values of thefamily parameter,p, the evolved
data describes a spacetime containing a black hole, whereasfor sufficiently small values
of p, the matter-energy in the spacetime disperses to large radii at late times, andno
black hole forms. Within this range of parameters, there will exist a critical parameter
value,p= p⋆, which demarks the onset, or threshold, of black hole formation.

Over the past decade, numerical and closed-form studies of collapse in various matter
models have enlarged the picture of critical phenomena [4, 5, 6, 7], so that we now have
a more complete understanding of the relevant dynamics. (Interested readers should con-
sult the reviews by Gundlach [8, 9] for a more comprehensive discussion of critical phe-
nomena.) Black-hole-threshold solutions areattractorsin the sense that they are almost
completely independent of the specifics of the particular family used as a generator. Up
to the current time, the only initial data dependence which has been observed in critical
collapse occurs in models for which there is more than one distinct black-hole-threshold
solution. Critical solutions are by construction unstable, having precisely one unstable
mode [10, 11]. Thus lettingp→ p⋆ amounts to minimizing or “tuning away” the initial
amplitude of the unstable mode present in the system. These solutions also possess ad-
ditional symmetry which, to date, has either been a time-translation symmetry, in which
the critical solution is static or periodic, or a scale-translation symmetry (homethetic-
ity), in which the critical solution is either continuouslyor discretely self-similar (CSS
or DSS).

These symmetries are indicative of the two principal types of critical behavior that
have been seen in black hole threshold studies (with some models exhibiting both types
of behavior depending on the initial data). For Type I solutions, there is a finite minimum
black hole mass which can be formed, and there exists a scaling law for the lifetimeτ
of the near-critical solutions such thatτ ∼ −γ ln |p− p⋆| whereγ is a model-specific
exponent. In Type II critical behavior, a black hole of arbitrarily small mass can be
formed, and the critical solutions are genericallyself-similar.
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FIGURE 1. Evolution of a perturbed stable boson star withφ0(0) = 0.04×
√

4π and massMC =
0.59M2

Pl/m. This shows contributions to the radial derivative of the total mass∂M(t, r)/∂r due to the
massive fieldφ(t, r) (solid line) and massless fieldφ3(t, r) (dashed line). We start with a stable boson
star centered at the origin, and a gaussian pulse of masslessfield. (We see two peaks for the massless
field because it is only the gradients ofφ3, not φ3 itself, which contribute to∂M/∂r.) In the evolution
shown above, the pulse of massless field enters the region containing the bulk of the boson star (t ≃ 15),
implodes through the origin (t ≃ 30) and leaves the region of the boson star (t ≃ 50). Shortly after the
massless pulse passes through the origin, the boson star collapses into a more compact configuration,
about which it oscillates for a long time before either forming a black hole or dispersing. (The case of
dispersal is shown here.)

Our current interest is a critical-phenomena-inspired study of the dynamics associated
with “boson stars” [12, 13, 14, 15, 16]. A boson star is given by a complex massive scalar
field φ(t, r)= φ0(r)exp(iωt), minimally coupled to gravity as given by general relativity.
In this study, we dynamically construct critical solutionsof the Einstein equations
coupled to a massive,complexscalar fieldφ(t, r), by simulating the implosion of a
spherical shell ofmasslessreal scalar fieldφ3(t, r) around an “enclosed” boson star. The
massless pulse then passes through the origin, explodes andcontinues tor → ∞, while
the massive complex (boson star) field is compressed into a state which ultimately either
forms a black hole or disperses. For the massless fieldφ3(0, r), we choose a gaussian of
fixed width∆ and initial distancer0 from the origin, and vary the amplitudeA until the
critical solution is obtained (to within machine precision).

Figure 1 shows a series of snapshots from a typical simulation in which the parameter
p (p ≡ A) is slightly below the critical valuep⋆, for an initial stable boson star with



FIGURE 2. Exchange of energy between the real and complex scalar fields. The solid line shows the
mass of the complex field, shifted upward by 0.21M2

Pl/m for graphing purposes. The long-dashed line
shows the mass of the real field, shifted upward by 0.55M2

Pl/m. The amount (and percentage) of mass
transfer goes to zero as we consider boson star initial data approaching the maximum mass (the transition
to instability). The dotted line near the top of the graph shows the total massM = MC +MR, which is
conserved to within a few hundredths of a percent. In all cases, we only see a net transfer of massfrom
the real fieldto to complex field, and not vice versa.

a mass ofM = 0.59M2
Pl/m (whereMPl is the Planck mass). In this figure, we have

plotted the individual contributions of the complex and real fields to the total mass of
the spacetime. That is, we have defined massesMC andMR of the complex and real
fields, respectively. (Only in vacuum regions and for times at which the supports of
the two fields do not overlap canMC andMR be interpreted as physically meaningful
masses.) During this gravitational “collision,” mass is istransferred from the real to the
complex field, as shown in Figure 2.

The resulting critical solutions persist for some finite amount of time which depends
on the fine-tuningp− p⋆ of the initial data. As we have shown in [1], the lifetimesτ of
the near-critical solutions follow the scaling law for TypeI solutions,τ =−γ ln |p− p⋆|.
Here γ is related to the imaginary part of the growth factorσ of the unstable mode
(∼ exp[iσt]) by ℑ(σ) = 1/γ. In keeping with the Type I nature of these solutions, we
find a finite minimum mass for the black hole formed for as we letp→ p⋆ (for p> p⋆).

The critical solutions have properties which correspond closely with those of unstable
boson stars, as shown in Figure 3. To further extend the comparison between these
critical solutions and boson stars, we perform a linear perturbation analysis about boson
star equilibria, building on the work of Gleiser and Watkins[17]. Using the method
described in [1], we find the distribution for the squared frequencyσ2 of boson star
quasinormal modes with respect toφ0(0), and we find the radial shapes of the modes. In
Figure 4 we provide a comparison between unstable modes found from our simulations
and corresponding results obtained via perturbation theory about a boson star which



FIGURE 3. (a) Quantities describing a near-critical solution. Here we show timelike slices through the
data shown in Figure 1, an evolution which ends in dispersal.Top: Maximum value of the metric function
grr (t, r). Middle: Central value|φ(t,0)| of the massive field. Bottom: RadiusR95 containing 95% of the
mass-energy in the complex field. (b) Massvs.radius for equilibrium configurations of boson stars (solid
line), initial data for the complex field (triangles), and critical solutions (squares). Arrows are given to help
match initial data with the resulting critical solutions. Points on the solid line to the left of the maximum
massMmax≃ 0.633M2

Pl/mcorrespond to unstable boson stars, whereas those to the right of the maximum
correspond to stable stars. The squares show the time average of each critical solution, which exists during
the oscillatory regime shown in (a). We show the radius containing (1−e−1)M ≃ 0.63M instead ofR95 in
order to exclude the halo which forms in the critical solution (see Figure 5).

is a "best fit" to the simulation data. We find close agreement between the shapes
and frequencies of the unstable modes obtained by these two different methods. A
comparison of the next higher (oscillatory) mode also yields favorable results.

Thus the critical solutions we obtain appear to correspond to boson stars exhibiting
superpositions of stable and unstable modes. For boson stars with masses somewhat less
than the maximum boson star massMmax ≃ 0.633M2

Pl/m (e.g. those boson stars with
masses 0.9Mmax or less), however, we find less than complete agreement between the
critical solutions and unstable boson stars of comparable mass. This is evidenced by
the presence of an additional spherical shell or “halo” of matter in the critical solution,
located in what would be the tail of the corresponding boson star. Interior to this halo,
we find that the critical solution compares favorably with the boson star profile.

It is our contention that this halo is not part of the true critical solution, but is instead
an artifact of the collision with the massless field. As one might expect, the properties of
the halo are not universal,i.e. they are quite dependent on the type of initial data used.
In contrast, the critical solution interior to the halo is largely independent of the form
of the initial data. To demonstrate this, we use two familiesof initial data, given by a
gaussian a “kink" (φ3(0, r) = A/2[1+ tanh[(r − r0)/∆]). A series of snapshots from one



FIGURE 4. (a) Fundamental mode of unstable boson star. The solid line showsδ|φ| obtained from the
perturbation theory calculations. The squares show the difference between|φ| for two simulations for
which the critical parameterp differs by 10−14. Differences between the simulation data and perturbation
theory results are below 1.1× 10−15. (b) Comparison of squared growth factors (squared Lyapunov
exponents)σ2

0 for unstable modes. The circles show a subset of the perturbation theory results we
obtained for unstable boson stars. The squares show the measurements of unstable growth factors in our
simulations. (The solid line simply connects the circles.)

such pair of evolutions is shown in Figure 5. We suspect that the halo is radiated over
time (via scalar radiation, or “gravitational cooling” [18]) for all critical solutions. We
find, however, that the time scale for radiation of the halo iscomparable to the time scale
for dispersal or black hole formation for each (nearly) critical solution we consider. With
higher numerical precision, one might be able to more finely tune out the unstable mode,
allowing more time to observe the behavior of the halo beforedispersal or black hole
formation occur.

For the future, we consider it worthwhile to investigate similar scenarios for neutron
stars. While there have bee studies regarding the explosionof neutron stars near the
minimum mass (e.g.,[19]), we would like to see whether neutron stars ofnon-minimal
masscan be driven to explode via dispersal from a critical solution.



FIGURE 5. Evolution ofr2∂MC/∂r for for two different sets of initial data. Both sets containthe same
initial boson star, but the massless fieldφ3(0, r) (not shown) for one set is given by a gaussian whereas
for the other setφ3(0, r) is given by a “kink" . The amplitude of each pulse is varied (independently for
each family of initial data) to obtain the critical solution. We have multiplied∂MC/∂r by r2 to highlight
the dynamics of the halo; thus the main body of the solution appears to decrease in size as it moves to
lower values ofr. The kink data produces a larger and much more dynamical halo, but interior to the halo,
the two critical solutions match closely — and also match theprofile of an unstable boson star. Thus,
the portion of the solution which is “universal” corresponds to an unstable boson star. One can see the
additional halo of matter in the region roughly 8≤ r ≤ 23, exterior to the bulk of the critical solution.
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