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Here we present a synopsis of related work [1, 2] describistualy of black hole threshold
phenomena for a self-gravitating massive complex scallr ifiespherical symmetry.

Studies of models of gravitational collapse have revealadire which can arise
near the threshold of black hole formation. The solutionshis regime are known
as “critical solutions,” and their properties as “critiqggienomena”. These solutions
can arise generically, even in simple models such a masstedar field in spherical
symmetry [3].

Critical solutions can be constructed dynamically via ntioa simulations, in which
one considers continuous one-parameter families of im&aga with the following “in-
terpolating” property: for sufficiently large values of tlanily parameterp, the evolved
data describes a spacetime containing a black hole, whienesgficiently small values
of p, the matter-energy in the spacetime disperses to largeatliite times, andho
black hole forms. Within this range of parameters, theré exist a critical parameter
value,p = p*, which demarks the onset, or threshold, of black hole foiznat

Over the past decade, numerical and closed-form studieslapse in various matter
models have enlarged the picture of critical phenomena, [@, B], so that we now have
a more complete understanding of the relevant dynamiderésted readers should con-
sult the reviews by Gundlach [8, 9] for a more comprehensiseusgsion of critical phe-
nomena.) Black-hole-threshold solutions at&#actorsin the sense that they are almost
completely independent of the specifics of the particularijaused as a generator. Up
to the current time, the only initial data dependence whigh lheen observed in critical
collapse occurs in models for which there is more than orntendislack-hole-threshold
solution. Critical solutions are by construction unstablaving precisely one unstable
mode [10, 11]. Thus letting — p* amounts to minimizing or “tuning away” the initial
amplitude of the unstable mode present in the system. Thdsgoss also possess ad-
ditional symmetry which, to date, has either been a timestegion symmetry, in which
the critical solution is static or periodic, or a scale-gsi@tion symmetry (homethetic-
ity), in which the critical solution is either continuousdy discretely self-similar (CSS
or DSS).

These symmetries are indicative of the two principal typlesritical behavior that
have been seen in black hole threshold studies (with somelseghibiting both types
of behavior depending on the initial data). For Type | salng, there is a finite minimum
black hole mass which can be formed, and there exists a gdalwfor the lifetimet
of the near-critical solutions such that- —yIn|p — p*| wherey is a model-specific
exponent. In Type Il critical behavior, a black hole of ardily small mass can be
formed, and the critical solutions are genericaif-similar.
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FIGURE 1. Evolution of a perturbed stable boson star wig{0) = 0.04 x /41t and massMc =
0.59M3,/m. This shows contributions to the radial derivative of th&atmassdM(t,r)/or due to the
massive fieldg(t,r) (solid line) and massless fielgs(t,r) (dashed line). We start with a stable boson
star centered at the origin, and a gaussian pulse of mad@ks(\We see two peaks for the massless
field because it is only the gradients @f, not ¢; itself, which contribute t@M /dr.) In the evolution
shown above, the pulse of massless field enters the regidgaicmg the bulk of the boson star« 15),
implodes through the origirt & 30) and leaves the region of the boson star 60). Shortly after the
massless pulse passes through the origin, the boson skapsed into a more compact configuration,
about which it oscillates for a long time before either fanmia black hole or dispersing. (The case of
dispersal is shown here.)

Our current interest is a critical-phenomena-inspiredytf the dynamics associated
with “boson stars” [12, 13, 14, 15, 16]. A boson star is givgraltomplex massive scalar
field @(t,r) = @o(r) exp(iwt), minimally coupled to gravity as given by general relativit
In this study, we dynamically construct critical solutiookthe Einstein equations
coupled to a massivesomplexscalar fieldg(t,r), by simulating the implosion of a
spherical shell omasslesseal scalar fieldps(t,r) around an “enclosed” boson star. The
massless pulse then passes through the origin, explodesatidues ta — o, while
the massive complex (boson star) field is compressed inst@which ultimately either
forms a black hole or disperses. For the massless@iglair ), we choose a gaussian of
fixed widthA and initial distanceg from the origin, and vary the amplitudeuntil the
critical solution is obtained (to within machine precision

Figure 1 shows a series of snapshots from a typical simulativhich the parameter
p (p = A) is slightly below the critical valug*, for an initial stable boson star with
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FIGURE 2. Exchange of energy between the real and complex scalar.figassolid line shows the
mass of the complex field, shifted upward b.QINI,%l/m for graphing purposes. The long-dashed line
shows the mass of the real field, shifted upward tfgbmél/m. The amount (and percentage) of mass
transfer goes to zero as we consider boson star initial ¢igpi@aching the maximum mass (the transition
to instability). The dotted line near the top of the graphvetithe total mas#! = Mc + Mg, which is
conserved to within a few hundredths of a percent. In allsase only see a net transfer of mdissm
the real fieldto to complex field, and not vice versa.

a mass ofM = 0.59M3 /m (where Mg is the Planck mass). In this figure, we have
plotted the individual contributions of the complex andl félds to the total mass of
the spacetime. That is, we have defined masdesand Mg of the complex and real
fields, respectively. (Only in vacuum regions and for timesvhich the supports of
the two fields do not overlap cavic and Mg be interpreted as physically meaningful
masses.) During this gravitational “collision,” mass isrensferred from the real to the
complex field, as shown in Figure 2.

The resulting critical solutions persist for some finite amioof time which depends
on the fine-tuning — p* of the initial data. As we have shown in [1], the lifetinmesf
the near-critical solutions follow the scaling law for Typeolutions,t = —yIn|p— p*|.
Herey is related to the imaginary part of the growth factoof the unstable mode
(~ expiat]) by O(g) = 1/y. In keeping with the Type | nature of these solutions, we
find a finite minimum mass for the black hole formed for as weplet p* (for p > p*).

The critical solutions have properties which correspoogdely with those of unstable
boson stars, as shown in Figure 3. To further extend the cosgpmabetween these
critical solutions and boson stars, we perform a linearypokdtion analysis about boson
star equilibria, building on the work of Gleiser and Watkiig]. Using the method
described in [1], we find the distribution for the squaredyfrencyo? of boson star
quasinormal modes with respectdg(0), and we find the radial shapes of the modes. In
Figure 4 we provide a comparison between unstable modes fioom our simulations
and corresponding results obtained via perturbation thabout a boson star which
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FIGURE 3. (a) Quantities describing a near-critical solution. Heeesliow timelike slices through the
data shown in Figure 1, an evolution which ends in dispefiggd: Maximum value of the metric function
orr (t,r). Middle: Central valudq(t,0)| of the massive field. Bottom: RadilRs containing 95% of the
mass-energy in the complex field. (b) Massradius for equilibrium configurations of boson stars (solid
line), initial data for the complex field (triangles), andical solutions (squares). Arrows are given to help
match initial data with the resulting critical solutionifts on the solid line to the left of the maximum
mMasMmax ~ O.633|\/I§,,/m correspond to unstable boson stars, whereas those to thefipe maximum
correspond to stable stars. The squares show the time awafragch critical solution, which exists during
the oscillatory regime shown in (a). We show the radius dairtg (1—e1)M ~ 0.63M instead o0fRgs in
order to exclude the halo which forms in the critical solat{see Figure 5).

is a "best fit" to the simulation data. We find close agreemeativéen the shapes
and frequencies of the unstable modes obtained by these iffeoedt methods. A
comparison of the next higher (oscillatory) mode also ysd&lorable results.

Thus the critical solutions we obtain appear to corresponabison stars exhibiting
superpositions of stable and unstable modes. For bos@wgtarmasses somewhat less
than the maximum boson star mddgax ~ O.633’I\/I§,| /m (e.g.those boson stars with
masses @Mmax or less), however, we find less than complete agreement batihe
critical solutions and unstable boson stars of comparalassmThis is evidenced by
the presence of an additional spherical shell or “halo” ofteran the critical solution,
located in what would be the tail of the corresponding bogan #terior to this halo,
we find that the critical solution compares favorably witk thoson star profile.

It is our contention that this halo is not part of the trueical solution, but is instead
an artifact of the collision with the massless field. As ongimhexpect, the properties of
the halo are not universalg. they are quite dependent on the type of initial data used.
In contrast, the critical solution interior to the halo isgaly independent of the form
of the initial data. To demonstrate this, we use two famitésitial data, given by a
gaussian a “kink"@(0,r) = A/2[1+tanh(r —rp)/A]). A series of snapshots from one
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FIGURE 4. (a) Fundamental mode of unstable boson star. The solid lio&@sd|¢| obtained from the
perturbation theory calculations. The squares show tHerdiice betweefy| for two simulations for
which the critical parametgy differs by 10714, Differences between the simulation data and perturbation
theory results are below.1x 10-1°. (b) Comparison of squared growth factors (squared Lyapuno
exponents)og for unstable modes. The circles show a subset of the petiorbtheory results we
obtained for unstable boson stars. The squares show theiree@nts of unstable growth factors in our
simulations. (The solid line simply connects the circles.)

such pair of evolutions is shown in Figure 5. We suspect tmathilo is radiated over
time (via scalar radiation, or “gravitational cooling” [8or all critical solutions. We
find, however, that the time scale for radiation of the halmimparable to the time scale
for dispersal or black hole formation for each (nearly)icalk solution we consider. With
higher numerical precision, one might be able to more finghetout the unstable mode,
allowing more time to observe the behavior of the halo bethspersal or black hole
formation occur.

For the future, we consider it worthwhile to investigate i@mscenarios for neutron
stars. While there have bee studies regarding the expladioeutron stars near the
minimum mass€.g.[19]), we would like to see whether neutron starsxoh-minimal
masscan be driven to explode via dispersal from a critical soluti
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FIGURES5. Evolution ofrzaMc/ar for for two different sets of initial data. Both sets cont#ie same
initial boson star, but the massless figlg(0,r) (not shown) for one set is given by a gaussian whereas
for the other setp3(0,r) is given by a “kink" . The amplitude of each pulse is variedlépendently for
each family of initial data) to obtain the critical solutioe have multipliedMc/dr by r? to highlight

the dynamics of the halo; thus the main body of the solutiqmeaps to decrease in size as it moves to
lower values of . The kink data produces a larger and much more dynamical batdnterior to the halo,

the two critical solutions match closely — and also matchghafile of an unstable boson star. Thus,
the portion of the solution which is “universal” correspartd an unstable boson star. One can see the
additional halo of matter in the region roughly8r < 23, exterior to the bulk of the critical solution.
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