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SOME NOVEL DEVELOPMENTS IN FINITE ELEMENT 
PROCEDURES FOR GRADIENT-DEPENDENT PLASTICITY 

RENE DE BORST* AND JERZY PAMIN' 

Dew University of Technology, Faculty of Civil Engineering, P.O. Box 5048,2600 G A  Dew,  The Netherlands 

SUMMARY 
Improved algorithms are proposed for a gradient plasticity theory in which the Laplacian of an invariant 
plastic strain measure enters the yield function. Particular attention is given to the type of finite elements 
that can be used within the format of gradient-dependent plasticity. Assuming a weak satisfaction of the 
yield function, mixed finite elements are developed, in which the invariant plastic strain measure and the 
displacements are discretized. Two families of finite elements are developed: one in which the invariant 
plastic strain measure is interpolated using C '-continuous polynomials, and one in which penalty-enhanced 
C'continuous interpolants are used. The performance of both families of finite elements is assessed 
numerically in one-dimensional and two-dimensional boundary value problems. The regularizing effect of 
the used gradient enhancement in computations of elastoplastic solids is demonstrated, both for mesh 
refinement and for the directional bias of the grid lines. 

KEY WORDS higher-order continua; plasticity; localization; mixed elements 

1. INTRODUCTION 

Conventional constitutive models which incorporate strain softening tend to  exhibit an extreme 
mesh sensitivity when numerical methods are applied to the solution of boundary value prob- 
lems. The introduction of strain softening triggers localized zones of high strain intensity. In 
standard, rate-independent continuum models, the size of these localization zones is not specified 
and is therefore fully determined by the discretization. Also, the direction of the localization zones 
is biased by the mesh lines. The underlying reason is the fact that the set of governing partial 
differential equations can locally change type at the onset of strain softening. Whether this indeed 
occurs depends on the applied constitutive model and the particular boundary value problem. 

Upon the emergence of a localization zone, the standard, rate-independent continuum model 
together with the equilibrium equations and the kinematic relations no longer results in a set of 
partial differential equations that is elliptic under static loading conditions. Instead, locally the set 
of equations becomes hyperbolic, which allows for the occurrence of discontinuities in the strain 
distribution. As a consequence localization of deformation can take place in a set of measure zero 
(a line in two-dimensional configurations and a plane in three-dimensional problems). The finite 
element solution attempts to reproduce this discontinuity by a localization band that is between 
one and two elements wide, depending on the angle between the propagation direction of the 
localization band and the grid lines. 
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Various approaches have been suggested to avoid this change of character of the governing set 
of partial differential equations.' - Herein gradient plasticity is explored for this purpose.4- lo 

Specifically, a theory is utilized in which the yield function depends on second-order spatial 
derivatives of an invariant plastic strain measure. This dependence introduces an internal length 
scale in the continuum model, which defines the width of the localization band and preserves 
ellipticity until far into the softening regime. 

From a physical point of view, one can associate the occurrence of higher-order gradients in the 
macroscopic constitutive model with the non-local interaction between microstructural deforma- 
tion carriers. Alternatively, gradient plasticity may be thought of as an approximation to fully 
non-local plasticity  model^.'^^^ " 9  l 2  H owever, the physical justification of the introduction of 
higher-order deformation gradients is not the prime concern of this contribution, as an abund- 
ance of arguments exists in the literature in support of t h i ~ . ~ , ~ , ' '  Rather, we shall focus on the 
computational implications which result from the introduction of higher-order gradients of the 
inelastic strain in the constitutive description. 

Due to the gradient dependence of the yield function, the consistency condition, which governs 
the plastic flow, becomes a partial differential equation. A possibility is to satisfy the yield 
condition in a distributed sense and to discretize the plastic strain field in addition to the usual 
discretization of the  displacement^.'.^ Previous work includes a general formulation and an 
algorithm for gradient plasticity theory' and some applications to soil instability and concrete 
fracture.' ' This paper can be considered as an extension to and an improvement on the material 
presented in Reference 9, in the sense that a new family of elements is derived with Co-continuous 
interpolation functions, suitable for gradient plasticity, and that an improved algorithm for the 
stress computation is presented, including the derivation of a consistent tangent operator. 

2. GRADIENT-DEPENDENT PLASTICITY 

We start the discussion by briefly summarizing the rate boundary value p r ~ b l e m . ~ . ' ~  We 
introduce the displacement vector u = (ux, uy,  u,), the strain tensor in a vector form 
E = ( E ~ ~ ,  cyy ,  E,,, yxy, yyz ,  yZx) and the stress tensor in a vector form ts = (oxx, oYy, o,,, oxy, oyz, orx). 
Under the assumption of small deformations and static loadings we have the following equations 
for an elastoplastic body occupying a volume I/: 

LTI = 0 (1) 

& = LU 

ir = ~ " ( 1 :  - dm) 

where superimposed dots denote the derivative with respect to time and the superscript T is the 
transpose symbol. In the above equations L is a differential operator matrix and D" is the elastic 
stiffness matrix. Body forces have been skipped in equation (1) for simplicity. Equation (3) 
contains the definition of the plastic strain-rate vector, called the flow rule: 

i p  = jm (4) 

in which is a plastic multiplier and m defines the direction of the plastic flow. The vector m may 
be derived from a plastic potential function G: m = aG/da. 

The gradient dependence is included in the definition of the yield function F :  

F = F ( c , K , V ? I C )  (5 )  
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in which u is an invariant plastic strain measure (hardening parameter). Together with equations 
(1H3) the Kuhn-Tucker conditions 

X30,  F<O,  X F = O  (6) 
must be fulfilled. To complete the rate boundary value problem we specify the standard static and 
kinematic boundary conditions on complementary parts of the body surface S: 

cv, = t, u = us (7) 

where X is the stress tensor in a matrix form, v, denotes the outward normal to the surface S and 
t is the boundary traction vector. It is noted that when the equation of motion is used instead of 
the equilibrium equation (l), and when appropriate initial conditions are supplied, an initial value 
problem can be formulated for dynamic  loading^.^' l4 

The gradient dependence of the yield function makes the plastic consistency condition P = 0 
become a differential equation: 

(gy6 + & aF li: + Fu aF V2K = 0 

We introduce the gradient of the yield function n: 

aF n = -  
aa 

the (variable) hardening modulus h: 

K aF 
h(lc,V21c) = - T- 

Iz  alc 

and the gradient influence variable g: 

ic aF 
g(u) = T- 

,I avZK 

(9) 

which is assumed to be a function of K only. We limit our consideration to the theories of plastic 
flow, for which we can write 

k = g A  (12) 
with q a positive constant. This relation is broad enough to encompass the Huber-Mises, 
Drucker-Prager and Rankine yield functions with some form of strain hardening hypothesis. 
Then, we can write equation (8) in the form 

nT6 - h i  + g V z i  = 0 (13) 
The partial differential equation (13), which must hold in the plastic part of the body V,, is 
characteristic for the present theory. For softening the modulus h is negative and the additional 
variable g must be positive. For g = 0 the classical flow theory of plasticity is retrieved. Then, the 
consistency condition is a non-linear algebraic equation, from which the plastic multiplier can be 
determined locally. 

In this contribution we focus attention on the Huber-Mises gradient plasticity model, for 
which the yield function can be written in the following format: 

F = f i  - *#(K, v2K) (14) 
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with J z  the second invariant of the deviatoric stress tensor and Og the (non-negative) yield 
strength. Introducing a symmetric matrix P, 

3 3 1 - 3 0 0 0  
_ -  1 2 _ -  : o o o  
_ -  1 _ -  I 5 0 0 0  

- 2  - _ -  
3 3 

3 3 

0 0 0 2 0 0  

0 0 0 0 2 0  

- 0 0 0 0 0 2  

the function F can be written in the following form: 

so that the gradient to the yield function equals 

To determine the relation between k and 2 we adopt the strain-hardening hypothesis: 

(18) r;: = (3k!’.iP.)1/2 = [$(iP)TQiP]3”2 
1J II 

with Q = diagC1, 1, 1, f, 9, f]. For an associated flow rule, the plastic strain rate is given by 
i p  = An. Substitution of this identity into the definition of k and noting that PQP = P leads to 

k = 1 ,  q = l  (19) 

The important advantage of the Huber-Mises yield function is its smoothness, since the presence 
of singular edges on the yield surface poses a difficulty for the gradient plasticity a1g0rithm.I~ 

3. INCREMENTAL FORMULATION 

In order to derive an incremental-iterative algorithm for gradient plasticity, we require a weak 
satisfaction of the equilibrium condition9~’ 

and the yield condition 

at the end of iterationj + 1 of the current loading step, where b denotes a variation of a quantity. 
Equation (20) can be modified using integration by parts and the standard boundary condi- 

tions (7)1y and decomposing oj+ as aj + du, where d indicates an increment, i.e. the difference 
between the values of a variable at the end of iterationj + 1 and iteration j: 

J 6zTdodV = J 6uTtj+l dS - 6ETujdV 
V S J V  
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Using the incremental form of the relationship between the stress vector and the elastic strain 
vector 

d a  = D’(ds - d lm)  (23) 

we obtain the following integral equation: 

Sy6sTDe(ds - dAm)dV = ss 6uTtj+l dS - jv6sTujdV (24) 

We observe that this equation does not depend explicitly on the Laplacian of the plastic 
multiplier and has a form similar to the incremental equilibrium equations used for classical 
plasticity. 

Strictly speaking, relation (23) and therefore also the ensuing equation hold for infinitesimally 
small changes of stress and strain. If a return mapping algorithm is used to integrate the rate 
equations, the resulting set of equations can be differentiated for consistent linearization, again 
yielding an equation of the form (23), but with the elastic stiffness matrix D‘ replaced by an 
algorithmic stiffness matrix H, see Section 6.2. 

The yield function F in equation (21) is developed in a Taylor series around (aj, K ~ ,  V’K~) and 
truncated after the linear terms. With the definitions (9Hll) we obtain 

F ( C ~ + ~ ,  K ~ + ~ , V ’ K ~ + ~ )  = F ( u ~ , K ~ , V ’ K ~ )  + nTda - h d l  + gV’(dL) (25) 

which, after substitution into equation (21), results in 

61[nTD’da - (h + nTD‘m)dl + gV’(dl)]dV = - 61F(aj, KjrVZKj)dl/ (26) 

The values of n, m, h and g on the left-hand side of equation (26) are determined at the end of 
iterationj, i.e. for the state defined by (aj, I C ~ ,  V’K~). Using integration by parts for the last term on 
the left-hand side of equation (26) we obtain 

J: 

r r r ! 6A[oTD’ds - (h + nTD‘m)dA]dV - ! g(V6A)T(VdL)dV = - 6AF(uj,Kj.V2Kj)dV 
VA V1 J V *  

provided the non-standard boundary conditions 

6 A = O  or (Vdl)Tvrl=O (28) 

are fulfilled on the whole boundary S1 of the plastic part of the body. The first condition is delicate 
for finite increments, since the elastic-plastic boundary moves when the plastic zone in the body 
evolves. During this process the boundary condition 82  = 0 on the momentary elastic-plastic 
boundary may not be true and (28), must hold. If the same mesh is used for both the equilibrium 
and yield condition, i.e. if integrals over the whole volume V appear in equations (21) and 
(26)/(27), either the admissible d l  must vanish or we must enforce F = 0, n = m = 0 and d 1  = 0 in 
the elastic part of the body. 

The dependence of the yield function on the Laplacian of the plastic strain measure is essential 
for the plastification condition and for the calculation of the non-standard residual forces on the 
right-hand side of equations (26)/(27). To enable expansion of the plastic process from the 
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originally imperfect zones, the numerical solution must correctly determine a positive value of the 
Laplacian at the elastic-plastic boundary. The boundary conditions (28)2 require the existence of 
derivatives of 1 as nodal degrees of freedom. Therefore C'-continuous interpolation functions are 
necessary for 1 whether equation (26) or equation (27) is di~cretized.'~ This issue has raised some 
doubts in the past,' since the formulation of the variational principle for gradient plasticity' 
suggests that the use of a standard Co-interpolation for the plastic multiplier is sufficient. 

4. REMARKS ON C'-CONTINUOUS FORMULATION 

In the integral equations (24) and (26)/(27) there appear at most first-order derivatives of the 
displacements and second-order derivatives of the plastic multiplier. Therefore, the discretization 
of the displacement field u requires Co-continuous interpolation functions N and the discretiz- 
ation of the plastic multiplier 1 requires C'-continuous shape functions h: 

u = N a ,  I = h T A  (29) 

where a is a nodal displacement vector and A denotes a vector of nodal degrees of freedom for the 
plastic multiplier field. The strain vector E can then be written as 

E = Ba (30) 

where B = LN according to the linear kinematic relation (2). The gradient of the plastic multiplier 
VA and the Laplacian of the plastic multiplier Vz 1 are then discretized as follows: 

V 1 =  qTA, V 2 1  = pTA (3 1) 

where qT = VhT and p contains the Laplacians of the C'-continuous interpolation functions in h. 
Discretizing the integral equations (24) and (26) using equations (29H31) and requiring that the 
result holds for all admissible 6a and 6A, one arrives at a non-linear algebraic set of equations' 

with the elastic stiffness matrix 

K,,= BTDeBdV I (33) 

the off-diagonal matrices 

BTDemhTdV, KA, = - (34) 

the gradient-dependent matrix 

[(h + nT Dem) hhT - g hpT] d Y (35) 

and the vectors 

N'tj+ldS, f a =  - F(aj,Ij,V21j)hdV 
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respectively. The matrix KAA is non-symmetric due to  the gradient dependence even for an 
associated flow rule as considered here (m = n). If equation (27) is used as a point of departure 
instead of equation (26) the matrix KA1 becomes symmetric: 

[(h + nTD'm)hhT + gqqT] dV (37) 

With respect to the non-standard boundary conditions for the plastic multiplier field, we notice 
that both boundary conditions (28) are satisfied at the evolving elastic-plastic boundary if 
C'-continuity is satisfied. However, the second of the conditions (28) must be enforced on the 
outer boundary of the plastic part or, in practice, on the whole surface of the body if the tangent 
operator in equation (32) is symmetric or if it does not possess a sufficient rank for elastic 
elements. To illustrate this point we consider a structure which is initially elastic and then, due to 
an inhomogeneous stress distribution, exhibits a partial plastification. If all elements are elastic, 
we have K1, = 0 since the gradient vectors m and n are set to zero. Then we obtain from equation 
(32) the classical set of equations in da 

K,,,da = f, + fa (38) 

and the additional set of equations in dA 

For the elastic state we have F <O and we set the residual forces f, to zero. Equation (39) then 
yields the desired solution dA = 0 if the global matrix Ki, is non-singular after the element 
assembly and, if necessary, after the introduction of boundary conditions for the A degrees of 
freedom. If plastic elements appear in the structure, we have f, # 0 in elastic elements adjacent to 
the plastic zone and we compute non-zero dA from equation (39). 

To avoid singularity of the tangent operator for elastic elements the hardening modulus h in 
equation (35) is initially set equal to Young's modulus E. The gradient term may be neglected in 
the matrix K:, for elastic elements as its inclusion only slightly influences the results. Using 
numerical integration the matrix Ki, is then determined as 

where Vi is a volume contribution of an integration point. The rank of submatrix K;, 
should be examined in order to determine the number of integration points and addi- 
tional boundary conditions necessary to avoid spurious kinematic modes for the plastic multi- 
plier field. 

On the other hand, a high-order integration scheme and too many additional boundary 
conditions of the A field can lead to an overconstrained plastic flow and have a negative influence 
on the accuracy of finite element predictions. Since the yield condition can be conceived as 
a differential constraint to the equilibrium condition of a non-linear solid, the number of 
constraints for the plastic multiplier field must be limited, otherwise the solution will be 
inaccurate or will lock, just as happens for some standard elements under isochoric deformations. 
In other words, we have a two-field theory similar to the mixed formulation with independent 
displacement and pressure interpolation and a proper constraint ratio between the displacement 
and R degrees of freedom should be satisfied. 
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5. Co-FORMULATION WITH A PENALTY CONSTRAINT 

In order to be able to use Co-continuous interpolation functions for the plastic multiplier field, we 
introduce new variables cpx, cpy and cp,: 

and collect them in a vector + = (cpx, cpy ,  cp,). In this fashion we can write the gradient of the 
plastic mu!tiplier as 

V A = +  (42) 

and represents the Laplacian of I as 

where the scalar product of the operator VT and the vector field + denotes the divergence 
operator. The result of equation (43) can be substituted in equation (26) or (27), but the constraint 
(42) must be added to the formulation. 

Since we want to avoid the introduction of a Lagrangian multiplier field in addition to the 
introduced fields u, 1 and Q,, we make use of a penalty approach. We include the constraint by 
means of an additional variational equation: 

where k is a penalty factor. In practical calculations we use k = E3,  where E is Young's modulus. 
Using the incremental form of equation (44) together with equations (24) and (26) we obtain a set 
of three integral equations: 

J 6ETDe(d& - dAm)dV = 6uTtj+, dS - J GETujdV (45) 
V V 

jv61[nTWd& - (h + nTDem)dA + gVTd+]dV = - 61F(uj, ~ ~ , V ~ i ~ ~ ) d i /  (46) 
J-V 

where according to equations (12) and (43) we calculate V'K = qVT+ and 

k 61VT[V(dI) - d+] dV - k S+'[V(dn) - d+] dV = 0 (47) J: IV 
The above equations are now discretized using Co-continuous interpolation functions. The 
interpolation functions for the displacement field are like in the previous section, but the shape 
functions h for the plastic multiplier field in equation (29)~  are now Co-continuous. The following 
interpolation for the new variables in Q, is used: 

+=P@ (48) 
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where @ contains the nodal values of 'px, 'p,, and 'pz and P is a matrix of shape functions, similar to 
N in equation (29),. Upon the discretization of equations (45H47) and the usual argument that 
the resulting equations 

r r r 

haT J [BTDeBda - BTD'mhTdA]dV = daT NTtj+ldV - SaT J BTajdV (49) 
V V 

dATjv[  - hnTDeBda + (h + nTDem)hhTdA - ghVTPd@]dV = 6AT F(aj, K ~ , V ' K ~ ) ~ ~ V  I 
and 

kGAT J q(qTdA - Pd@)dV - k6mT PT(qTdA - Pd@)dV = 0 
V J Y  

must hold for any admissible Sa, 6A and 6@, we obtain the following set of algebraic equations in 
a matrix form: 

where K,,, Kan and K,, are given in equations (33) and (34), K1, and K, are defined as 
r r 

Knn = (h + nTDem)hhTdV, KI, = - [ghVTP] dV J v  J v  (53) 

and the submatrices with the superscript c in the additional (symmetric) matrix introducing the 
constraint (42) are defined as 

I 

Kf;, = qqTdV, K &  = j vPTPdV,  K;, = jv - qPdV b (54) 

As in the preceding section, due to the gradient dependence the tangent operator in equation (52) 
is non-symmetric. 

If we substitute the definitions (42) and (43) into equation (27), instead of into equation (26), the 
symmetric formulation of the tangent stiffness matrix ensues. In particular, we obtain the weak 
form of the yield condition as 

r r r 

6,1[nTDedE -(h + nTDem)dl]dV - gS+d+dV = - dAF(aj, Kj,V2Kj)dV (55) 
JV JV JV 

in which the derivatives of + appear only on the right-hand side in V'K~. Substitution of 
equations (29),, (30) and (48) gives the second form of the discretized yield condition: 

dATSv[ -hnTDcBda + ( h  + nTDem)hhTdA]dV + gdcDTPTPd@dV 
SV 
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which results in a symmetric tangent operator provided the associated flow rule is considered 
(m = 0): 

where 

K,,= gPTPdV b 
and all the other submatrices have been defined previously. With the set (57) the additional 
boundary conditions (28), now written in the form 

dA=O or d$'vA=O (59) 

must be fulfilled on the boundary of the plastic part of the body. 
It is important that for the penalty method of introducing the constraint (42) to be successful 

the penalty submatrix K" must be singular. Otherwise non-zero 8 values are not admitted. To 
achieve this goal, reduced numerical integration should be used." Since the penalty constraint 
assures satisfaction of equation (42) only in the sampling points, the best results are expected if 
uniformly reduced integration is employed for all the matrices. If equation (42) is not true at 
a Gauss point, the stress computation can give a stress point that is not located on the yield 
surface and convergence is violated. 

As explained in the previous section, the sets of equations (52) and (57) are also required to hold 
in the elastic subdomain. We should have a sufficient rank of the elastic stiffness matrix K,, to 
prevent the presence of spurious deformation modes. Simultaneously we should have a sufficient 
rank of the matrix K:A from equation (40) to prevent the presence of the spurious non-zero modes 
of both 3, and $ in the elastic elements. This suggests the use of a full integration scheme, but in 
view of the argument that the penalty submatrix K" must be singular, we must then resort to extra 
boundary conditions. It also turns out advantageous to include the gradient submatrix K, 
(or KVV) in the tangent operator for the elastic elements, since it perturbs the singularity of the 
tangent operator in equations (52) and (57), making the emergence of the spurious modes less 
likely. 

It is noted that for a two-dimensional case' the element structure in the above approach 
shows similarities to the Reissner-Mindlin plate bending elements and that the penalty method 
has also been used within the context of plate bending to introduce the Kirchhoff constraints in 
the formulation. l 7  

6. ALGORITHMIC ASPECTS 

6.1. Integration of the rate equations 

In the residual terms on the right-hand sides of our integral equations, for instance equations 
(24) and (26), the stress aj appears. It is determined using the standard elastic-predictor-plastic- 
corrector algorithm (backward Euler type) at each integration point which is in a plastic state: 

aj = a,, + D'Azj - AljD'mj (60) 
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where a. is the stress state at the end of the previous (converged) load increment and A denotes 
a total increment (from state 0 to iterationj). The values of K~ and V21cj are also updated using 
total increments. Since the vector mj is known only after the mapping in equation (60), it is 
approximated by the gradient m, calculated for the 'trial' stress: 

= GO + DCA&j (61) 
To decide whether an elastic point enters the plastic regime, or whether a plastic point begins 
elastic unloading the trial value of the yield function F, is calculated at each integration point: 

Ft = F(at, 8g(Kj,VzKj)) (62) 

5, = (T(Kj) - g(Kj)vz l j  (63) 

where the gradient-dependent yield strength 5, is determined as follows: 

An integration point is assumed to be in the plastic state when F, > O  and in the elastic state when 
F, <O.  In the elastic elements I = 0, so that for spreading of the plastic zone it is crucial that the 
numerical solution allows V21 > 0 at the elastic-plastic boundary. The gradient-dependent yield 
strength 5, is then reduced as a result of the plastic process in the neighbourhood. 

The ensuing solution procedure is presented in Box 1 for C1-continuous gradient plasticity 
elements. The algorithm for Co-elements is similar. For integration points in the elastic state an 
artificial hardening modulus h = E is substituted in submatrix KA1 of the tangent operator to 
avoid singularity. The update of the nodal variables is done in a 'total-incremental' way, i.e. in 
every iteration total increments from the equilibrium state at the end of the previous loading step 
are calculated. The advantage of this approach is that spurious unloading can be avoided. The 
increment of plastic multiplier A l  is determined from the nodal values of AA and there are no 

Box 1. An algorithm for gradient plasticity (iteration j ,  C'-elements) 

1. Compute K,,, KO,, K,,, KIA, f,, f, and f, according to equations (33H35) and (36). 
2. Solve for da and dA according to equation (32) and update Aaj = Aaj-l + da, 

3. For each integration point compute: 
AAj = AAj-1 + dA. 

= BAaj, 

A I j  = bTAAj, 

V2(AAj) = pTAAj, 

Kj = KO + qAAj, 

V2icj = v 2 ~ o  + qv2(AAj), 

a, = a. + D e A z j  (trial stress). 

If F(o , ,  K j ,  V2ICj) > - E ,  

then plastic state: aj = a, - AAjDem,, 

else elastic state: aj = at. 

4. Check global convergence criterion. If not converged, go to 1. 
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additional iterations at the integration point level. The updated values of the hardening para- 
meter K~ and its Laplacian VZxj are already available at the trial stress state and are used in the 
yield condition, but alternatively the memorized values from the previous increment ic0 and V2q, 
can be used, which results in a slightly delayed plastification. The relation of the present algorithm 
to the tangent-cutting-plane algorithm18 is not so close as in the ‘delta-incremental’ algorithm in 
Reference 9. 

Because the plastic multiplier is an independent variable determined in the solution of the 
global set of equations, the weak form of the yield condition (21) is not satisfied until con- 
vergence is achieved. It can happen that due to stress redistribution or non-linear softening the 
increment A 1  results in a return mapping to the inside of the yield surface. In the present 
total-incremental algorithm this does not cause the detection of unloading, but changes sign of 
the residual forces, which results further in a proper correction (decrease) of AL. However, 
difficulties may arise, if the value of the yield function has different signs at the integration points 
within one element. The respective contributions to residual force f, get averaged because of the 
weak formulation and improper values of corrections dA are obtained from the global set of 
equations. Therefore the best convergence is found for those finite elements in which, at the 
sampling points, the value of the yield function F converges to zero with the decrease of the 
residual force norm. 

The algorithm in Box 1 can also be used for gradient-independent plasticity. However, the 
introduction of additional nodal degrees of freedom makes it seem inferior to the standard return 
mapping algorithms. It is noted that for a homogeneous stress state the new formulation can be 
proved equivalent to the standard plasticity formulation. 

6.2. Consistent linearization 

In the algorithm the stress is updated in iteration j according to 

where S is a non-linear mapping operator, which depends on the numerical method of plastic 
strain integration within the increment (e.g. generalized midpoint rule), and A denotes a ‘total’ 
increment, which is a sum of ‘delta’ increments in the iterations: 

j 
A E ~  = C d&i 

i =  1 

The consistent (algorithmic) tangent operator is then defined as” 

and is in general non-symmetric. For finite, especially large, steps the operator Dcons differs 
significantly from the continuous elastoplastic operator Dep: 

To achieve a quadratic convergence rate when using a full Newton-Raphson method for the 
solution of the global set of non-linear algebraic equations, consistent linearization must be 
performed. 
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The elastic-predictor-plastic-corrector formula from equation (60), used in the gradient plastic- 
ity algorithm to calculate oj at an integration point, is essentially an Euler backward algorithm” 
and falls within the format (64). To derive the algorithmic tangent operator DCons, we calculate the 
‘time’ derivative of equation (60): 

dm 
d a  = D”de  - dlD‘m - AADe- d a  

aa 

where the subscript j has been skipped for convenience and ‘d’ is used to denote the ‘time’ 
derivative at the state j .  We can reformulate equation (68): 

and obtain an algorithmic relation between the stress increment and the elastic strain increment 
in the form 

d o  = H(de - d h )  (70) 

where H is the algorithmic stiffness operator: 

In the present gradient plasticity algorithm the elastic stiffness matrix D’ must thus be replaced 
by the algorithmic operator H in the equilibrium equation (24), and in the relevant form of the 
yield condition, for instance equation (26), in order to ensure quadratic convergence of a 
Newton-Raphson procedure. 

6.3. Gradient-dependent yield strength 

We will now focus attention on Huber-Mises plasticity, for which we have ic = A, and consider 
some softening rules and the consequences of their gradient dependence. In equation (63) we have 
introduced a non-linear softening rule 

( r s ( K ,  v2K) = C ( K )  - g ( K ) v z K  (72) 

in which d ( ~ )  is a given standard softening rule (Figure 1) and g ( K )  is a gradient influence function. 
We assume that Cg 2 0. We generalize the relation between the variable g, the classical hardening 
modulus 0’ and an internal length scale 1, found for the one-dimensional analytical solution and 
linear softening,’ to the case of non-linear softening 

g ( K )  = - l 2 8 ’ ( K )  (73) 

with 1 constant, and obtain for the gradient-dependent softening law 

(r,(K,V2K) = C(K) + IZi?’(K)V2K (74) 

which reflects the decrease of the gradient influence with the increase of the accumulated plastic 
(inelastic) strain, corresponding to the gradual failure of microstructural deformation carriers for 
a fully developed plastic flow or progressive material damage. The simplest case is to assume 
linear softening (h = 5’ = constant, Figure 1) and a constant gradient influence coefficient g :  

c g ( ~ , V 2 ~ )  = oy + h K  - gVZK (75) 



2490 R. DE BORST AND J. PAMIN 

The gradient-dependent yield strength in equation (72) is composed of two contributions. The 
gradient contribution -g(K)V2rc may be positive or negative as shown in Figure 2. The former 
case occurs in the middle of the localization band, giving additional carrying capacity to the 
gradient-dependent material in this area: even if 5 equals zero, the yield strength 5, is larger than 
zero. The case of negative gradient contribution occurs at the elastic-plastic boundary, making it 
possible for the localization zone to spread, since the elastic elements close to the elastic-plastic 
boundary have an apparent reduced yield strength. These modifications of the standard yield 
strength ~ ( I c )  are the algorithmic essence of the gradient regularization. 

We consider now the problem of a vanishing yield strength. When the local residual strength is 
exhausted in standard softening plasticity, i.e. when the yield surface has shrunk to zero 
@(K) -, 0), further calculations should still be possible under displacement control. However, in 
this limiting case the yield function becomes singular and the tangent operator may become 
ill-conditioned. To prevent this a small positive number can be introduced instead of zero as the 
limit value of the yield strength 5 ( ~ , ) ,  cf. Figure 1. 

The problem is more delicate in gradient plasticity. As shown in Figure 2, the limit case 5, + 0 
can be reached at a state, for which 5 > O  (IC <xu). This happens easily for linear softening and less 

Figure 1. Linear and non-linear softening diagrams 

Figure 2. Gradient contribution to the yield strength 
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quickly for non-linear softening functions as in Figure 1, since the gradient contribution 
in equation (74) goes to zero together with if@). To prevent the occurrence of numerical 
difficulties when the yield strength reaches zero as well as the unacceptable situation of a 
negative Cq,  its value is bounded by a small positive number (e.g. 5, > and a corrective 
procedure is suggested to avoid a spurious return mapping to stress states of the opposite 
sign. The procedure resolves in one additional (global) iteration the case of return mapping to 
the other side or to the inside of the shrinking yield surface (cf. Figure 2). From the numerical 
viewpoint, for non-linear softening both limits aq -, 0 and g --* 0 should be avoided. Therefore 
non-linear softening to zero is not allowed and the values of 6 and g for K = 0.98 K ,  are 
kept constant for K > 0.98~".  From the physical viewpoint, the element topology should be 
modified at this stage by introducing interface elements modelling a discrete displacement 
discontinuity. 

7. SOME ELEMENTS FOR GRADIENT PLASTICITY 

The finite elements, developed according to Sections 4 and 5 and presented below, have been 
named with the aid of the following convention: 

(1) the first letter in the name describes the geometry of the element ( L  denotes a line or 
one-dimensional element, R a rectangular element, Q a quadrilateral element, T a triangu- 
lar element); 

(2) the number in the name is the number of degrees of freedom for all interpolated fields; 
(3) the last but one letter in the name of a two-dimensional element, replaced by an 

underscore when irrelevant, describes the stress state (E denotes the plane strain 
conditions, some applications of the plane stress versions of the elements can be found 
elsewhere' 3* ' ); 

(4) the last letter in the name denotes the type of formulation (G stands for the C'- 
continuous interpolation of the plastic multiplier field and C for the Co-continuous 
formulation). 

7.1. One-dimensional elements 

Figure 3 shows some one-dimensional gradient plasticity elements.' 3*2 The axial displace- 
ment u is interpolated linearly or quadratically. In the Cl-case the cubic Hermitian shape 
functions are used for the plastic multiplier 1. In the penalty-enhanced Co-formation a separate 
Lagrangian interpolation is employed for 1 and the additional variable cp. 

Element L6G, originally derived in Reference 9 and not depicted in Figure 3, has a linear/ 
Hermitian interpolation and two-point Gaussian integration. The element yields an exact 

1 2 3 1 2 1 2 3 

' L7G L6C 
0 0 0 - 

OL9C - 0 - 
X 

Figure 3. One-dimensional gradient plasticity elements 
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fulfilment of the yield condition at  the integration points, which means that when f, --+ 0, 
then F j  = F ( G ~ , K ~ , V ~ K ~ )  + 0, but stress oscillations are observed. This phenomenon may cause 
a failure of convergence at an early stage of softening as soon as the oscillating stresses reach 
a state with Cq + 0. 

For element L7G, which has a quadratic/Hermitian interpolation (cf. Figure 3) and two- 
point integration, the balance between the interpolation for u and ;1 is optimal, i.e. the 
stress integration in equation (60) gives a stress state oj ,  which is constant within an element 
and which fulfils exactly the yield condition. Convergence in one iteration is observed unless 
the softening zone spreads or non-linear softening is used. This behaviour is attributed to the 
special qualities of the integration stations, so-called Barlow points,22 in which higher-order 
accuracy of interpolated field derivatives is obtained. In fact, these are the only points in which the 
third-order terms in F (aj, l c j ,  V2xj) cancel the first-order terms, so that the yield function equals 
zero. 

The above properties are exhibited by the non-symmetric formulation with KAA from equation 
(35). If the symmetric format for KLA according to equation (37) is used together with the required 
boundary conditions and two-point (reduced) integration, convergence is lost. This behaviour is 
attributed to a numerical integration error, since for three-point integration the symmetric and 
non-symmetric formulations give the same results. However, for the three-point integration too 
many constraints are introduced and the results are inaccurate. The stresses at one or more points 
are then mapped to the inside of the yield surface ( F j  cO), which violates the Kuhn-Tucker 
conditions (6)  and results in a disturbance of convergence. 

The Co-continuous element L6C uses linear shape function for all the unknowns and one 
integration point. It is the point in which the constraint cp = I , ,  is fulfilled. The element is 
perfectly convergent since the integration station is a Barlow point.22 Element L9C uses quadratic 
shape functions and two Gauss points, which are again optimal for convergence and therefore the 
return mapping is exact. In the presence of the additional boundary conditions (59) the symmetric 
and non-symmetric formulations give the same results for the one-dimensional penalty-enhanced 
elements, because the employed numerical integration schemes are sufficient for an exact integra- 
tion of the shape function polynomials. 

7.2. Quadrilateral elements 

Figure 4 shows some of the possible quadrilateral gradient plasticity elements.' 3 7 2 1  The 
C'-continuous rectangles have a varying interpolation of the displacements and the same 
bi-Hermitian shape functions for the plastic multiplier field. The elements are formulated in 
a Cartesian global reference system and cannot be transformed because of the presence of the 
mixed derivative degrees of freedom Axy in the C'4nterpolation of I .  Only the non-symmetric 
formulation of the problem yields in this case fully convergent results. 

Element R24-G employs a bilinear interpolation of the displacements and selective integration. 
Matrix K,, possesses the correct rank, but the matrix KZL requires 12 additional constraints, 
which can be introduced by extra boundary conditions for derivatives of A. For an arbitrary 
assembly the conditions An = 0 and Axy = 0 on the whole model boundary supply exactly the 
required number of constraints. Element R24-G gives Fj -+ 0 at the integration point, but as the 
one-dimensional element L6G it shows stress oscillations due to the lack of balance between the 
employed interpolations. 

Element R32-G employs eight-noded serendipity interpolation of displacements and 2 x 2 
Gauss integration. The matrix K,, possesses one zero-energy mode that disappears in an 
assembly of elements. With the matrix K; described above, this element shows proper 
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Figure 4. Quadrilateral gradient plasticity elements 

convergence to  a state with Fj + 0 and vanishing stress oscillations, and is the most reliable of 
C'-elements. 

Element R34-G (not depicted in Figure 4) employs biquadratic Lagrangian interpolation of 
displacements and 2 x 2 numerical integration. The element shows excellent behaviour, but only 
in sufficiently constrained configurations, since the matrix K,, possesses three zero-energy modes, 
two of which propagate in an assembly of elements. With 3 x 3 integration the rank of K,, is 
correct and in an assembly no extra boundary conditions for 1 are necessary. However, these 
sampling points are not optimal for our problem (cf. the description of element L7G); mapping of 
stresses to the inside of the yield surface takes place at  some Gauss points and convergence is 
gradually lost. Selective (3 x 3/2 x 2) integration of matrices K,, and K I A  is not easily achieved 
because of the presence of the coupling matrices KI, in equation (32) and does not solve the 
problem. 

Quadrilateral penalty-enhanced Co-continuous elements with linear, quadratic serendipity and 
quadratic Lagrange interpolation functions for the unknowns have also been derived.' 3*21 The 
elements are formulated in a Cartesian global reference system, but they can be transformed. As is 
the case for the one-dimensional Co-elements the non-symmetric and symmetric formulation 
both yield convergent results. 

All shape functions for element Q20-C are linear. Because of the penalty constraint this element 
can yield proper convergence only if one-point integration is used. With 2 x 2 Gauss integration 
the element locks: no zero eigenvalues exist in K:l, the constraint cpx = is true everywhere and 
as a result the Laplacian is zero. However, a large number of spurious modes are present if 
one-point integration is employed: two hourglass modes for the displacement field u and nine 
spurious modes for the I field unless extra boundary conditions are introduced. The hourglass 
modes can be controlled, but the anti-hourglass stiffness interferes with the gradient plasticity 
algorithm. No satisfactory way of controlling the spurious modes for il has been found and the 
number of available boundary conditions is in general insufficient. 

The quadratic Lagrange element Q45-C with 2 x 2 integration (see Figure 4) converges 
perfectly. However, it possesses zero-energy modes for u and also spurious modes for 1. In an 
arbitrary mesh the boundary conditions for cpx or cpy are not sufficient to assure the correct rank 
of the K:). matrix and additional conditions for I I  itself on at least a part of the boundary are 
necessary to obtain a correct solution. 
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The quadratic serendipity element Q40-C with 2 x 2 integration does not converge very well, 
since the return mapping in equation (60) is inaccurate for this element. Apparently the quadratic 
terms missing in the serendipity interpolation are important for interpolation compatibility. Since 
an assembly of elements Q40-C does not possess hourglass deformation modes, a combination of 
eight-noded interpolation of displacements and nine-noded interpolation of the I and 4 fields is 
suggested and gives rise to element Q43-C, quite similar to the' 'heterosis' plate bending 
elements.23 This element converges better and is a Co-equivalent of the eight-noded element 
R32G. 

7.3. Triangular elements 

For a triangular element geometry the problem of choosing well-balanced interpolations of 
displacements and plastic multiplier as well as optimal integration scheme becomes even more 
d i f f i~ul t . '~*~ '  Experience with rectangles suggests the use of the lowest possible interpolation 
order and reduced integration. Figure 5 shows three triangular elements, which have a quadratic 
interpolation of displacements. The elements are formulated in area co-ordinates and, to avoid 
transformations, are referred to the global axes. 

Element T21-G has a cubic interpolation of 1 based on a non-conforming plate bending 
triangle.z3 The element does not fulfill the continuity requirements for I,, on its boundary and is 
included in the group of C'-elements because of the presence of A, and A, degrees of 
freedom. Integration with three Gauss points or three Hammer points (at the midsides of 
the triangle) is applied. Neither of these integration schemes is optimal: stresses are mapped 
inside the yield surface and stress oscillations are found. Additional boundary conditions for the 
plastic multiplier field are necessary to prevent the existence of non-zero A modes in the elastic 
elements. 

Element T30-G employs the shape functions derived in Reference 24, has a quintic interpola- 
tion of A and cubic distribution of A,, along the sides and is fully C'-compatible. To prevent 
spurious 1 modes six integration points and extra boundary conditions, involving A,, or A, and 
sometimes also second-order derivatives of the plastic multiplier are necessary. 

It seems that for the above elements it is not possible to find sampling points in which 
higher-order accuracy of stress approximation and convergence of Fj to zero is obtained. 
Consequently neither of them exhibits a fast convergence and stress oscillations are observed that 
may lead to violation of the positive yield strength condition and sometimes also to local 

1 

L X 

1 

Figure 5. Triangular gradient plasticity elements 



NOVEL DEVELOPMENTS IN FINITE ELEMENT PROCEDURES 2495 

unloading. Nevertheless, in numerical tests with Huber-Mises gradient plasticity they give 
reasonable predictions of the global response and shear banding. 

It is also difficult to construct Co-continuous triangular elements which satisfy the require- 
ments for interpolation and numerical integration. We have limited our research to a low-order 
interpolation and have obtained only one applicable element.'3*21 This element, called T30-C, 
has a uniform quadratic interpolation and is integrated using three Gauss points. Although full 
convergence is not achieved-mapping of stresses to the inside of the yield surface is observed and 
stress oscillations are found-this element gives acceptable results. In constrained configurations 
the use of one-point integration yields fast convergence and three integration points may cause 
locking. 

8. THE REGULARIZING EFFECT OF GRADIENT PLASTICITY 

First, we investigate the stabilizing and regularizing influence of the gradient term in the case of 
positive, zero and negative hardening in equation (72). We analyse a bar with linearly varying 
thickness under uniaxial tension conditions (Figure 6). 

For this problem the equivalent stress in the Huber-Mises yield function reduces to the normal 
stress ox and the following yield condition is obtained: 

The hardening parameter IC is now equal to the plastic strain 6;. 
In the calculations the length of the bar is L = 100 mm, the cross-section grows 

from 1 mm x 1 mm at the left end to 1 mm x 2 mm at the right end of the bar, Young's modulus 
is E = 20000 N/mm2, the tensile strength oy = 2 N/mm2. We first assume a linear softening 
with the softening modulus h = 8' = - 0.1 E, then an ideal plasticity case h = 0 and 
finally a linear hardening h = 005 E. We analyse all these cases using the classical plas- 
ticity (g = 0) and gradient-dependent plasticity with an arbitrary value of the gradient 
constant g = 50000 N. We employ a discretization with 80 C'-continuous elements L7G with 
two integration points. The derivative of the plastic multiplier is set to zero at both ends of the 
bar. 

Figure 7 presents the calculated relations between the stress at the right end of the bar o, and 
the elongation of the bar U. It is emphasized that for the case with g = 0 the present algorithm and 
the standard algorithm with a strong satisfaction of the yield condition at the integration point 
level give the same results. For the case of softening and g = 0 divergence of the numerical 
solution is obtained. It is attributed to the incapability of reproducing localization in only one 
integration point, which is triggered by the linearly changing geometry of the bar. On the other 
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Figure 6.  Tensile bar with varying cross-section 
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hand the calculations for g = 50000 N converge perfectly and produce the expected smooth 
distribution of the plastic strains as shown in the right part of Figure 7. We observe that the 
localization zone first grows from the thinnest elements, then its width is almost constant while 
the solution follows the linear softening branch and finally, when U > 1.05 x mm, the plastic 
zone starts to grow again while the load-displacement diagram bends upwards. This effect will be 
further discussed in the next section. 

The diagrams for ideal and hardening plasticity (Figure 7) demonstrate the stabilizing influence 
of the gradient term with g > O .  Figures 8 and 9 compare distributions of plastic strains calculated 
in the analysed loading history for the classical and gradient-dependent case. In the classical ideal 
plasticity problem the strains are confined in a small zone at the weakest cross-section, which 
corresponds to the limiting case of the loss of material stability and ellipticity. The gradient term 
introduces an apparent hardening and produces a gradual expansion of the plastic zone (note that 
the strain scale is different in the two diagrams of Figure 8). In the hardening plasticity cases we 
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Figure 7. Load-displacement diagrams for softening/ideal/hardening plasticity (classical and gradient-dependent case) 
and localization of plastic strains at the smallest cross-section 
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Figure 8. Localization of plastic strains for classical ideal plasticity and evolution of plastic strains for gradient plasticity 
with zero hardening 
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Figure 9. Evolution of the plastic front in classical and gradient-dependent hardening plasticity 

observe the expected motion of the plastic front, but with g = 50000 N the expansion of the 
plastic zone is faster and the strain profiles are smooth (regularized). 

9. LOCALIZATION ANALYSES USING GRADIENT PLASTICITY 

9. I .  One-dimensional elements 

We analyse a similar bar in tension,' but now with a constant thickness (unit cross-section) and 
an imperfection as shown in Figure 10. The elements in the centre of the bar (d  = 10 mm) have 
a 10 per cent smaller value of the tensile strength cry. The following data are as before: 
L = 100 mm, E = 20000 N/mm2, cry = 2 N/mmz. Two meshes with 20 and 80 one-dimensional 
gradient plasticity elements are used to examine the mesh sensitivity of results. 

According to the analytical s ~ l u t i o n ~ . ' ~  for the case of linear softening the width of the 
localization zone, w,  is related to the constant g via the internal length 1 and the hardening 
(softening) modulus h = 0': 

w = 2x1, 1 = J--y/h (77) 

First the case of linear softening is analysed with the softening modulus h = - 0.1E. The internal 
length 1 = 5 mm is assumed, which gives according to equation (77) the gradient constant 
g = - 12h = 50 000 N and the width of the localization zone w = 31.4 mm. We begin the com- 
parison with Co-continuous penalty-enhanced elements. The left diagram in Figure 1 1 shows 
load-displacement paths obtained using elements L6C and L9C with the (optimal) one-point and 
two-point Gauss integration, respectively. In the same figure on the right stress-strain relations 
exhibited by different elements in the 20-element mesh are shown (element 10 lies at the symmetry 
axis, element 9 to the left etc.). As can be seen for elements 8 and 7, the yield strength is correctly 
reduced owing to the evolving plastic process in the adjacent elements (non-local behaviour). It is 
also stressed that in the absence of a localization limiter only the weaker element 10 would follow 
the softening path and the other elements would unload. 

Immediate convergence has been observed in the calculations. While the coarse mesh with 20 
linear elements L6C still gives slightly too stiff response and a disturbed L distribution (Figure 12), 
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Figure 10. Imperfect bar in pure tension 
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Figure 11. Load4isplacement diagrams for one-dimensional C'elements (left) and stress-strain paths followed by 
different elements in the middle of the bar discretized with 20 linear elements L6C (right) 
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Figure 12. Evolution of the plastic strain distribution in the bar for 20 (left) and 80 (right) elements L6C 

the fine mesh and both meshes for the quadratic L9C element yield identical results. It is observed 
that when all the plastic points in the structure are in the softening regime, the slope of the 
load-displacement diagram is equal to the analytical ~ a l u e ~ . ' ~  and the width of the localization 
band is set by the internal length 1. The calculations are stable when the strain in the centre 
elements exits the softening branch (IC > K"). The load-displacement diagrams then bend upwards 
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and the localization zone broadens. This behaviour is a result of the fact that the softening 
modulus h goes to zero in the centre elements and g is kept constant, so that the internal length 
I locally increases to infinity. 

Next, we apply again the C1-continuous elements L7G, but it is emphasized that the Co- and 
C'-element formulations yield similar results. We adopt the exponential softening r e l a t i ~ n ' ~ . ' ~  
plotted in Figure 1. The gradient influence is now proportional to the decreasing softening 
modulus according to equation (73). Figure 13 shows the results for two values of the ultimate 
plastic strain K ,  = 0.003 and K ,  = 0.006. The same load-displacement diagrams are obtained for 
both meshes. The error of in the energy norm is obtained after 2-3 iterations. Figure 14 
shows the distribution of plastic strains in the bar for the two analysed cases. In the more brittle 
case, i.e. K ,  = 0.003, softening is exhausted in the middle of the bar at the elongation U ~ 0 . 0 4 3  and 
therefore the width of the localization zone in the left picture of Figure 14 grows over the 
analytical value w = 31.4 mm, which is well predicted for K, = 0.006. It is observed that also in 
the case of non-linear softening the internal length 1 governs the localization band width. 

- 
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Figure 13. Load4isplacement diagrams for non-linear softening and decreasing gradient variable g(K) (elements L7G) 
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Figure 14. Evolution of inelastic strains for non-linear softening and gradient dependence (left-ic. = O G I 3 ,  right- 
K, = 0.006) 
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9.2. Rectangular elements 

To demonstrate the potential of two-dimensional elements we consider a biaxially compressed 
specimen (plane strain configuration, Figure 15) in which strain localization into a shear band 
takes place at the onset of softening. The dimensions of the specimen are B = 60 mm and 
H = 120 mm. The specimen is placed on a smooth rigid plane and its upper edge is constrained to 
remain horizontal while a vertical deformation equivalent to a compressive force is applied (see 
Figure 15). The elastic shear modulus G = 4000 N/mm2 and Poisson’s ratio v = 0.49 are assumed. 
The Hube-Mises yield function is adopted with the initial yield strength cy = 100 N/mm2, the 
(linear) softening modulus h = - 0.1G and the gradient constant g = 3600 N, which corresponds 
to an internal length scale 1 = 3 mm in the case of pure shear. 

It is noted that a homogeneous solution is found in the elastic regime. For an ideal system, 
homogeneous deformations are also calculated in the unstable regime. The gradient enhancement 
then has no influence on the solution. To follow an equilibrium path associated with a localized 
deformation mode we can either detect the bifurcation point and perturb the incremental solution 
with a scaled eigenvector belonging to the chosen deformation pattern or include one or more 
slightly weaker spots in the In the latter approach, followed in this paper, the bifurcation 
problem is transferred into a limit problem and the imperfections initiate a localized deformation 
pattern. In the present calculations an imperfect zone with a 10 per cent reduction of (T,, is 
introduced in the bottom left-hand corner of the specimen. 

The right part of Figure 15 shows the results obtained for the classical Huber-Mises softening 
plasticity (g = 0). Three meshes with 6 x 12, 12 x 24 and 24 x 48 selectively integrated four-noded 
elements have been used. We observe that after the onset of softening the solution is totally 
determined by the discretization. Upon mesh refinement the analytical solution for a classical 
continuum is approached, i.e. for an infinite number of elements the post-peak response would 
follow back the elastic loading path and localization would occur in a line. 

All subsequent results are obtained for gradient plasticity. The left part of Figure 16 shows the 
loadclisplacements diagrams for three discretizations with eight-noded elements R32EG. In the 
right part of Figure 16 a comparison of load-displacement diagrams for different rectangular 
elements and the medium mesh (12 x 24) is given. 

W B U J  

1.2 

----Homogeneous 
4 x 12 elem. 
-1 2 x 24 elem. 
-24 x 48 elem. 

0 0.2 0.4 0.6 0.8 1.0 1.2 
x V , ~ , / H  

Figure 15. Biaxial test configuration (with dimensions B x H and an imperfection in the bottom left-hand corner) and 
mesh sensitivity of results for classical continuum 
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Figure 16. Load4isplacement diagrams for three discretizations using element R32EG with 2 x 2 integration (left) and 
comparison of different elements with integration scheme given in brackets (right) 

For C1-elements extra boundary conditions for 1 (A,, = 0 and Axy = 0) are introduced on the 
whole circumference of the specimen. For the most reliable element R32EG fast convergence is 
observed in the whole analysis, also when the yield strength in the most strained elements goes to 
zero. The response is practically insensitive to mesh refinement (left part of Figure 16). The 
nine-noded element R34EG shows an even faster convergence and results for the coarse mesh are 
better, but the spurious hourglass deformation modes are present in the solution. 

A similar performance is found for the Co-continuous element Q45EC (right part of Figure 16). 
For this element, however, the available boundary conditions for Ox and Oy are not sufficient to 
assure the correct rank of the K:A matrix, negative pivots are found and spurious modes are 
observed for the plastic multiplier field. They can be prevented by setting the A degrees of freedom 
to zero on the upper edge of the model. The results are then similar to the two previous elements. 
Stiffer results and poor convergence are found for element Q45EC with 3 x 3 numerical integra- 
tion, which supplies a sufficient rank of the matrices in elastic elements and prevents zero-energy 
modes, but introduces too many internal constraints and destroys the satisfaction of the yield 
condition, since optimal sampling points are not used. The four-noded element R24EG also gives 
stiffer results (Figure 16), but shows good convergence in spite of a poor match between the 
interpolations. 

Figure 17 presents the deformation patterns obtained using element R32EG. Notice that the 
deformations seem large due to the use of a large scaling factor. Figure 18 presents contour lines 
of equal plastic multiplier values. Both figures show about the same width of the shear band for 
the three used meshes, especially for the medium and fine meshes. 

9.3. Triangular elements 

The same biaxial compression test has been analysed using two six-noded triangular elements: 
the non-conforming element T21 EG and the Co penalty-enhanced element T30EC. The behav- 
iour of the quintic C'-element T30EG is similar to that of element T21EG.13**' Attention 
has been focused on the comparison of their sensitivity to mesh alignment. Figure 19 shows 
the load-displacement diagrams obtained for the chosen elements and three different 
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Figure 17. Deformation patterns for the three discretizations (element R32EG, u,.,/H = 002, scaling factor for the 
incremental deformations equal to 50) 
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Figure 18. Contour plots of the equivalent plastic strain (element R32EG, u,&f = 0.02) 
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Figure 19. Mesh alignment sensitivity for element T 2 l E G  (left) and element T30EC (right) 
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discretizations: 12 x 24 x 4 (crossed-diagonal), 12 x 24 x 2 with the element lines parallel to the 
expected direction of the shear band and 12 x 24 x 2 with the elements aligned perpendicularly to 
the shear band. 

For element T21EG three integration points and the boundary conditions A,, = 0 are used. 
For element T30EC three integration points and the boundary conditions for Q,, (normal to the 
boundary) are used. Figures 20 and 21 presents the obtained deformation patterns. 

Despite the fact that none of the analysed triangular elements ensures fast and full convergence, 
because the used integration stations are not Barlow points:' for crossed-diagonal meshes both 
of them give a similar inclination of the post-peak equilibrium path and prediction of the shear 
band width and position. The results are close to the results of elements R32EG. The mesh aligned 
perpendicularly to the shear band makes the response stiffer (cf. Figure 21), but the shear band 
extends from the weaker spot in the bottom left-hand corner of the specimen according to 
expectations, which does not happen for the classical plasticity m0de1.I~ The Co-element T 30EC 
predicts in this case a too broad shear band. It also yields overstiff results for the mesh which is 

Figure 20. Deformation patterns for element T2lEG and three mesh alignments (deformations scaled by a factor of 100) 

Figure 21. Deformation patterns for element T30EC and three mesh alginments (scaling factor equal to 100) 
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aligned parallel to the shear band direction. The results for element T21EG are better and the 
slight mesh alignment sensitivity is expected to vanish upon a further mesh refinement. 

10. CONCLUDING REMARKS 

In this paper various aspects of finite element implementation of gradient-dependent plasticity 
have been studied. The theory includes a regularizing dependence of the yield function on the 
Laplacian of a plastic strain measure. The fundamental feature of the used algorithm is the weak 
(and not pointwise) satisfaction of the yield condition, which is coupled with the weak equilibrium 
condition. 

A new, Co-continuous formulation has been developed, in which the continuity requirements 
are relaxed by treating the first derivatives of the plastic multiplier as additional unknowns and 
connecting them to the plastic multiplier field using a penalty constraint. Several C'- and 
Co-continuous, one-dimensional, rectangular and triangular elements have been examined. The 
consistent tangent operator has been derived and the algorithmic consequences of the gradient 
dependence of the yield strength have been investigated. 

The implemented elements introduce properly the stabilizing and regularizing properties of the 
gradient-dependent continuum. The results of finite element simulations are almost insensitive to 
mesh refinement and alignment, since the width of the shear bands is determined by the internal 
length scale included in the theory. However, it is emphasized that for robustness the elements 
should fulfill some additional conditions: 

(a) The balance of interpolations for displacements u and plastic multiplier A. The best 
agreement is found between quadratic shape functions for u and cubic Hermitian poly- 
nomials for A or quadratic shape functions for A and its derivatives. 

(b) The existence of a suitable integration quadrature. A proper number of integration points is 
necessary to prevent zero-energy modes for u and A fields without introducing too many 
constraints. The sampling positions should be optimal for accuracy. 

(c) The availability of additional boundary conditions for the A field, necessary in combination 
with a symmetric tangent operator and helpful in removing spurious modes for the plastic 
multiplier field. 

Failure to satisfy these conditions manifests itself by stress oscillations and/or incorrect return 
mappings, deteriorating the convergence rate and reliability of the solution. Since the employed 
set of integral equations for equilibrium and plastic yielding is coupled, an error in the satisfaction 
of one equation may affect adversely the other equation. 

Among the analysed two-dimensional elements only the eight-noded serendipity/Hermitian 
element R32-G fulfils all the requirements, but the nine-noded elements R34-G and 
Q45-C/Q43-C also give proper results if a sufficient number of additional boundary constraints 
are introduced in the model. Among the implemented triangular elements the six-noded quad- 
ratic/non-conforming element T21-G with three integration points performs the best. 
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