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Abstract 

Necessary and sufficient conditions are given for the existence 

of the posterior distribution of the variance components in a 

class of mixed models for binomial responses. The implications 

of our results are illustrated through an example. 

Some key words: Gibbs sampler; Improper Prior; Linear 

Programming; Logit; Mixed Model; Probit; Propriety; Variance 

Components. 

1 Introduction 

The question of the integrability of the posterior distribution 

arises when one imposes improper prior distributions on the 

parameters. Improper priors may be used for a variety of 

reasons in Bayesian analyses. In hierarchical models, one might 

impose improper prior distributions due to the absence of 

information on the hyperparameters at the lower levels of the 

hierarchy. In multi-parameter situations, elicitation of prior 

information and subsequent formulation into a distribution can 

be a difficult task. In such cases one might again consider 
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analyses with improper priors to reflect vague information 

(Ibrahim and Laud, 1991). Improper priors may also be used in a 

frequentist context due to the equivalence of flat prior Bayes 

and maximum likelihood estimation. 

Although a fair amount of work has focussed on studying 

the existence of maximum likelihood estimates for various models 

( Silvapulle (1981), Albert and Anderson (1984), Geyer and 

Thompson (1992)), very little has been done by way of verifying 

the existence of posterior distributions resulting from improper 

priors. We investigate conditions under which a class of 

improper priors on the variance components leads to proper 

posterior distributions for mixed models for binomial responses, 

specifically the logit-normal and probit-normal regression 

models. We are not concerned with the analytic tractability of 

the posterior, but rather its existence. Our conditions are 

very similar to those developed by Albert and Anderson (1984) on 

the existence of maximum likelihood estimates for the logit and 

probit models. 

Our results have implications for the use of Monte Carlo 

Markov chain methods, such as the Gibbs sampler, to perform 

Bayesian analysis of these models. It is common in analyzing 
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these models to impose improper priors on the parameters (Karim 

and Zeger, 1992). However, such priors do not necessarily lead 

to proper posterior distributions, even when they result in 

proper full conditional distributions. The use of the sampler 

in such situations can give seriously misleading results. 

In Section 2 we formulate the model and state the main 

result. In Section 3 we illustrate the implications of our 

result through an example. 

2 The Model 

Let Wt, ... , WN be a set of N correlated binary observations. A 

flexible class of models can be generated by linking the mean of 

Wi to the fixed and random effects. More formally, conditional 

on the vector of random effects u, the (wi) are independent with 

E(wi I u) h(xi (3 + Zi u), while u "' Nq (0, ()I), (1) 

where h(.) is a distribution function. We are particularly 

interested in h(.) corresponding to the logistic and normal 

distributions, which lead to the logit-normal and probit-normal 

models respectively. The random effects u serve as a convenient 

way to specify the correlation between the w. They are also 
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useful for prediction purposes (Harville and Mee, 1984). 

2.1 Bayesian Hierarchy 

We consider the following Bayesian hierarchical specification: 

[wi I u] "' Bernoulli {h(xi/3 + Zi u)} 

[0 I a] ex 

where the square brackets [.] denote probability density or mass 

functions and a is a pre-specified constant characterizing the 

prior distribution of 0. Note that when a = 0 we have the 

classic non-informative prior on a normal variance (Box and 

Tiao, 1992 p58 ). Since our focus is on improper priors for the 

variance components, we assume P known. However, our results 

hold even if P is unknown, so long as we assign it a proper 

prior. 

Let )( be the lV x p known design matrix, with rows Xi, and 

Z the lV x q incidence matrix, with rows Zi • Define )(* as the 

matrix with rows xi = -Xi if Wi = 1, and xi = Xi if Wi = 0, and 

define Z* similarly. The posterior distribution is given by: 

f L (P, u I w1, ... , WN) [u I OJ [0 I a] du 
f L(P,ulwh···,wN) [uiOJ[Bia]dudB 
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where L (/3, u I Wt, ... , wN) = TI~1 {1 - h(xi f3 + z; u)}. It is clear 

that the posterior distribution of 0 exists if and only if the 

integral in the denominator of (2) converges. 

While using a data augmentation approach such as the Gibbs 

sampler to perform a Bayesian analysis of this model, it is 

typical to impose improper priors on the parameters. Karim and 

Zeger (1992) show that the full conditional specifications for 

logistic normal regression, using non-informative priors, are 

all proper distributions and relatively easy to generate from. 

Thus, implementation of the Gibbs sampler appears 

straightforward and computationally attractive. However, 

improper priors do not always lead to proper posterior 

distributions. We now state a theorem that guarantees the 

propriety of the posterior distribution of the variance 

components. 

2.2 Existence Theorem 

Let C1 and C2 be the polyhedral cones defined by 

Ct {a : Z* a ::; 0}, 

C2 {a : (X* f3 + Z* a) < 0}. 
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Define conditions ITt and IT2 as follows: 

ITt dimension (C1 ) < q, 

IT2 dimension (C2 ) < q. 

Our main result is as follows: 

Theorem 1. For the model (1): 

(i) The posterior distribution of 0 exists only when ITt is 

satisfied and -~ < a < 0. 

(ii) When h(.) is the logit or probit function, the posterior 

distribution of 0 exists if IT2 is satisfied and -t < a < 0. 

The proof is given in the Appendix. 

The conditions on the constant a stem from the 

contribution of the prior distribution to the posterior, while 

conditions ITt and IT 2 arise from the likelihood function. It is 

interesting to note that the classic non-informative prior on a 

normal variance, that is a = 0, does not lead to proper 

posterior distributions for this model. 

Albert and Anderson (1984) developed conditions similar to 

ITl for the existence of maximum likelihood estimates of the 

fixed effects, for the logistic regression model. They proved 

that the maximum likelihood estimates exist if and only if there 
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does not exist a non-zero a such that X* a S 0. Their 

interpretation of this condition has its roots in the regression 

and discrimination literature. For the purely fixed effects 

case this condition implies that the data set is overlapped. 

Although their condition appears to be simpler than IT1 or IT2 , 

it is actually much more restrictive as illustrated in Section 

3. It cannot be verified directly using a standard linear 

programming package, and needs to be reformulated in order to be 

solved. Santner and Duffy (1986) presented a mixed linear 

program to verify their condition. 

We now discuss a method to verify conditions of the form 

IT1 or IT2 . We show that our conditions reduce to checking the 

feasibility of a system of linear equations, which is a standard 

problem in the linear programming literature. 

2.3 When is a polyhedral cone full-dimensional? 

We say a cone 1n ~n is full-dimensional if it has a non-empty 

interior. It is easy to see that the cone 

C = {x E ~n : Ax S 0} is full-dimensional if and only if the 

system of equations Ax < 0 has a solution. By Farkas' lemma 

(1902), it follows that Cis full-dimensional if and only if 
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there does not exist a non-negative vector y E ~n(y # 0) such 

that y A = 0. Thus for verifying II1 or II2 , it suffices to find 

such a y for C1 or C2. This is a standard linear programming 

problem which can be done using commercially available software, 

for example CPLEX. 

3 Example 

We consider the following mixed model with a single nested 

random effect: 

h((3 + Ui), j = 1, ... , k, Z 1, ... 'q 

and Ui "' N (0, 0), 1, ... 'q 

This model corresponds to k repeat observations being taken on 

each of the q levels of a single random effect. In this context 

the design matrix X = 1q k, a q k dimensional column vector of 

ones, and the incidence matrix is the direct product 

We first discuss condition Il1. The cone C1 is 

1, ... ,q, j = 1, ... ,k}. If for each z the 

outcomes are all successes or all failures, then C1 is the 

product of q half lines: (-oo, 0] for levels with only failures, 
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and [0, oo) for levels with only successes. Then C1 is 

full-dimensional. However, if for some z, there are distinct 

indices j,j* such that Wij = 1, Wij• = 0, then ai = 0 for any 

a E C1 , thereby decreasing the dimension of C1 by one. Thus, 

condition IT1 requires that there be a success and a failure for 

at least one level of the random effect, to ensure the propriety 

of the posterior distribution of the variance component. 

We now discuss the sufficient condition ll2. We have 

C2 {a: (1 - 2Wij) ({3 + ai) :::; 0, i = 1, ... ,q, j = 1, ... ,k}. Again, 

c2 is full-dimensional if at each level of the random effect we 

have all successes or all failures; if there is at least one 

level i for which there is a success and a failure, then c2 is 

less than full-dimensional due to the binding constraint 

f3 + ai = 0. Thus, condition ll2 states that it is sufficient to 

have a success and a failure for at least one level of the 

random effect to ensure proper posterior distributions. 

For this simple one-way analysis of variance model, with 

logit or probit link, we have shown that, to ensure proper 

posterior distributions, it is both necessary and sufficient to 

have a success and a failure for at least one level of the 

random effect. This condition is less restrictive than the 
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usual likelihood one, for the fixed effects case, which requires 

that, for the maximum likelihood estimates to exist, there must 

be at least one success and one failure for every level of the 

random effect (Albert and Anderson, 1984). 
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Appendix 

Denote the denominator in (2) by I. The posterior distribution 

[0 I Wt, ... , WN] is proper if and only if I converges. 

(i) Necessity: We first show that the condition _!l < a < 0 is 2 

necessary by re-writing I as: 

i 1 N u' u dO 
I ex: II {1-h(xi,B + ziu)} exp(- 2 n)du a+!l+t 

(} u i=l u 0 2 

(3) 

f 1 N v' v dO 
19 v!] {1-h(xi,B + 01, 2 ziv)} exp(-2 )dv oa+l (4) 

where (4) follows from (3) on making the change of variable 

Vi = Ui o-112 ' i = 1, ... , q. If a > 0 we see from (4) that the 

integrand diverges for 0 in a neighbourhood of zero, whilst if 
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a+ ~ < 0, we see from (3) that the integrand diverges for large 

e. 

We now prove that ITt is necessary. Suppose that IT1 is not 

satisfied. Since the integrand in (4) is non-negative it is 

clear that 

N 

I ~ i 1 II {1 
e c1 i=l 

* v'v d() 
h(xi ,B)} exp( -2) dv ()a+ 1 (5) 

where we have also used the fact that h(.) is monotone and () is 

non-negative. The right hand side of (5) diverges due to the 

integral over e. 

(ii) Sufficiency: Integrating (3) over () we have: 

I ex: fIT {1-h(x:,B + Z:u)} 1 d~+_g_) 
lu i=l ( u u) 2 

(6) 

If IT2 holds, then for every u there exists some index 

Ju E {1, ... , N} such that xj,. ,B + zj,. u > 0. Thus, we can bound I 

in the following way: 

where we have also used the fact that 1 - h(.) < 1 to retain only 

one term in the product in (6). It therefore suffices to 

inspect the convergence of 

1 du 
I· - {1 - h(xj ,B + zj u)} --:----;;-:-
1 - {u:xji3+zju>O} (u'u)(a+i) 

(7) 
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If h(.) is the logi t link, it can be seen readily that 

We can assume without loss of generality that zj = (1, 0, ... , 0) 

since this merely corresponds to the transformation v1 = zj u and 

Vk = uk, k = 2, ... ,q. Thus, 

Ij < { 1 ···1 exp { -(xj {3 + u!)} d~ !L) (8) J { 'Ul :xj (J + 'U! > 0} 'U2 'Uq ( u' u) a + 2 

Make the change of variable Uk 2, ... , q in (8) to 

obtain: 

The integral over u 1 converges since a < 0, while the integral 

over y can be transformed to 

on using spherical co-ordinates. This integral converges if 

If h(.) is the probit link, then the same proof applies after 

bounding {1 h(.)} by exp{ -~(.)2} in (7) since it is easily 

shown that, forT standard normal, 

P(T > .X) < exp( -;2
), .X > 0. 
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