
Dynamic Common Sub-Expression Elimination during
Scheduling in High-Level Synthesis

Sumit Gupta Mehrdad Reshadi Nick Savoiu
Nikil Dutt Rajesh Gupta Alex Nicolau

Center for Embedded Computer Systems
University of California at Irvine
http://www.cecs.uci.edu/∼spark

{sumitg, reshadi, savoiu, dutt, rgupta, nicolau}@cecs.uci.edu

ABSTRACT
We introduce a new approach, “Dynamic Common Sub-expression
Elimination (CSE)”, that dynamically eliminates common sub- ex-
pressions based on new opportunities created during scheduling of
control-intensive designs. Classical CSE techniques fail to elimi-
nate several common sub-expressions in control-intensive designs
due to the presence of a complex mix of control and data-flow. Ag-
gressive speculative code motions employed to schedule control-
intensive designs often re-order, speculate and duplicate operations,
hence changing the control flow between the operations with com-
mon sub-expressions. This leads to new opportunities for apply-
ing CSE dynamically. We have implemented dynamic CSE in a
high-level synthesis framework called Spark and present results for
experiments performed using various combinations of CSE and dy-
namic CSE. The benchmarks used consist of four functional blocks
derived from two moderately complex industrial-strength applica-
tions, namely, MPEG-1 and the GIMP image processing tool. Our
dynamic CSE techniques result in improvements of up to 22 % in
the controller size and up to 31 % in performance; easily surpass-
ing the improvements obtained by the traditional CSE approach.
We also observe an unexpected (and significant) reduction in the
number of registers using our approach.

Categories and Subject Descriptors: B.5.1 [Register-Transfer-
Level Implementation] Design Aids
General Terms: Design, Performance
Keywords: High-level synthesis, Common Sub-Expression Elimi-
nation, Dynamic CSE, Parallelizing Transformations

1. INTRODUCTION
The quality of synthesis results for most high level synthesis ap-

proaches is strongly affected by the choice of control flow (through
conditions and loops) in the input description. This has led to a
need for high-level and compiler transformations that overcome the
effects of syntactic variance or programming style on the quality of
generated circuits. To address this need, a set of speculative code
motion transformations have been developed that enable movement
of operations through, beyond, and into conditionals with the ob-
jective of maximizing performance [1, 2].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSS’02, October 2–4, 2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-576-9/02/0010 ...$5.00.

These code motions have been shown to be effective in improv-
ing both the scheduling and the synthesis results of high-level syn-
thesis, particularly for control-intensive designs. Such code mo-
tions re-order, speculate and sometimes duplicate operations, creat-
ing opportunities for dynamically eliminating common sub-expressions
during scheduling.

Operations with common sub-expressions are often present in
designs with moderately complex control flow. However, these op-
erations are typically within conditional branches and hence, do not
execute under all conditions. This mix of control-data flow lim-
its the effectiveness of common sub-expression elimination (CSE),
when applied as a pass before scheduling. However, the movement
and duplication of operations caused by speculative code motions
frequently creates new opportunities for applying transformations
such as CSE and copy propagation. This has led us to develop a
new technique called Dynamic CSE that exploits these opportuni-
ties dynamically as they arise.

Dynamic CSE operates during scheduling by eliminating com-
mon sub-expressions between the operation that has been sched-
uled and the other operations that are ready to be scheduled. The
heuristic takes advantage of the possible new position or duplica-
tion of the scheduled operation. Any additional copy operations
generated during scheduling are also dynamically propagated as
explained in Section 4.1. Applying CSE as a pass after scheduling
is not as effective as performing dynamic CSE during scheduling,
since the latter eliminates some operations from the design graph,
and other operations may get scheduled in lieu of these eliminated
operations.

We have implemented dynamic CSE and dynamic copy propa-
gation along with various other code transformations such as code
motions, in a high-level synthesis framework called Spark that takes
a behavioral description in ANSI-C as input and generates synthe-
sizable register-transfer level VHDL. We use this system to evalu-
ate the effectiveness of dynamic CSE on some large benchmarks.
The results obtained from these experiments demonstrate that dy-
namic CSE is an effective technique that not only reduces execution
cycles and controller size, but also reduces the number of registers
and the area of the final synthesized design.

The rest of this paper is organized as follows: the next section
discusses previous related work and gives an overview of CSE. Sec-
tion 3 reviews the speculative code motions in our synthesis system.
Next, we present dynamic CSE and demonstrate how it can exploit
the new CSE opportunities created by these code motions. We also
show how this technique has been extended to dynamic copy prop-
agation. Section 6 presents our experimental setup and the results
and Section 7 concludes the paper.

261

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/280615609?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

cond1

4: g = d + f

....

...
1: a = b + c

3: e = a

2: d = a

cond1

4: g = d + f3: e = b + c

....

...
2: d = b + c

1: a = b + c

T F T F

BB 3

If Node BB 2

BB 1

BB 4
BB 5

BB 6

BB 3

If Node BB 2

BB 1

BB 4
BB 5

BB 6

(a) (b)

Figure 1: CSE: (a) a sample control-data flow graph (b) the
common sub-expression b + c in operations 2 and 3 has been
replaced with the variable a from operation 1.

cond1

...

...

3: g = d + f

4: d = b + c

2: e = b + c

BB 2

BB 1

BB 3 BB 4 BB 5

BB 6

(a) (b)

T F

1: a = d + f

BB 5
BB 3

BB 2

BB 6

If Node

BB 4

BB 1

Figure 2: Basic Block Dominance: (a) Operation 4 cannot be
replaced with variable from operation 2 (b) Basic block domi-
nator tree for the example

2. PREVIOUS WORK
CSE is a standard transformation that is implemented in most

software compilers [3, 4]. In the domain of high-level synthesis,
CSE has been used for throughput improvement [5], for optimizing
multiple constant multiplications [6, 7] and as an algebraic trans-
formation for operation cost minimization [8, 9]. [10] and [11]
present the converse of CSE, namely, common subexpression repli-
cation, whereby a redundant operation is inserted to aid scheduling.
A compiler transformation called partial redundancy elimination
(PRE) [12] inserts copies of operations present in only one condi-
tional branch into the other conditional branch, so as to eliminate
common sub-expressions in subsequent operations. The authors in
[8, 13] propose doing CSE at the source-level to reduce the effects
of the factorization of expressions and control flow on the results
of CSE.

Mutation scheduling [14] also performs local optimizations such
as CSE during scheduling in an opportunistic, context-sensitive
manner; whereas dynamic CSE is a guided technique that system-
atically and globally applies CSE during scheduling.

2.1 Classical CSE
Common sub-expression elimination (CSE) is a well-known trans-

formation that attempts to detect repeating sub-expressions in a
piece of code, stores them in a variable and reuses the variable
wherever the sub-expression occurs subsequently [3]. Hence, as
shown by the example in Figure 1, the common sub-expression
b + c in operations 2 and 3 can be replaced with the result of oper-
ation 1.

Whether a common sub-expression between two operations can
be eliminated depends on the control flow between the locations or
basic blocks of the two operations. One common approach to cap-
ture the relationship between basic blocks in a control flow graph is
using dominator trees [3, 15]. These trees can be constructed using

T

If Node

Across Hierarchical
Blocks

F
Reverse Speculation

Conditional Speculation

Speculation

Figure 3: Various speculative code motions: operations may
be speculated, reverse speculated, conditionally speculated or
moved across entire conditional blocks.

the following definition: a node d in a control flow graph (CFG) is
said to dominate another node n, if every path from the initial node
of the flow graph to n goes through d.

Consider the example in shown in Figure 2(a) and its correspond-
ing dominator tree in Figure 2(b). In this example, basic block BB2
dominates basic blocks BB3, BB4 and BB5 and is itself dominated
by BB1. BB5 in turn dominates BB6.

In order to preserve the control-flow semantics of a CFG, the
common sub-expression in an operation op2 can only be replaced
with the result of another operation op1, if op1 resides in a basic
block BB1 that dominates the basic block BB2 in which op2 resides.
Hence, in the example in Figure 2(a), BB3 does not dominate BB6
as per the dominator tree shown in Figure 2(b). So, the common
sub-expression in operation 4 cannot be replaced with the result of
operation 2. On the other hand, operation 3 can be eliminated using
the result of operation 1.

Dominator trees have been extensively used previously for data
flow analysis and transformations such as loop-invariant code mo-
tion and CSE [3, 15]. They have recently been extended to incorpo-
rate the notion of sets of basic blocks dominating over other basic
blocks (see Section 5) [16]. In our work as well, we use the domi-
nator information of the basic blocks that contain the operations, to
apply CSE. However, as shown next, speculative code motions can
change the basic blocks that contain such operations.

3. SPECULATIVE CODE MOTIONS
To alleviate the problem of poor synthesis results in the presence

of complex control flow in designs, a set of code motion transfor-
mations have been developed that re-order operations to minimize
the effects of syntactic variance in the input description. These
beyond-basic-block code motion transformations are usually spec-
ulative in nature and attempt to extract the inherent parallelism in
designs and increase resource utilization.

Generally, speculation refers to the unconditional execution of
operations that were originally supposed to have executed condi-
tionally. However, frequently there are situations when there is a
need to move operations into conditionals [2, 17]. This may be
done by reverse speculation, where operations before conditionals
are moved into subsequent conditional blocks and executed condi-
tionally, or this may be done by conditional speculation, wherein an
operation from after the conditional block is duplicated up into pre-
ceding conditional branches and executed conditionally. The vari-
ous speculative code motions are shown in Figure 3. Also, shown is
the movement of operations across entire hierarchical blocks, such
as if-then-else blocks or loops.

To illustrate how these speculative code motions can create new
opportunities for applying CSE, consider the example in Figure

262

cond1

...

3: g = d + f

T F

...

2: e = e’

4: d = e’

5: e’ = b + c

cond1

...

3: g = d + f2: e = b + c

T F

...

4: d = b + c

BB 3 BB 4
BB 5

BB 6

BB 2 BB 2

BB 4
BB 5

BB 6

BB 3

If Node

(b)(a)

BB 1BB 1

If Node

Figure 4: Dynamic CSE: (a) A sample control-data flow graph
(b) Speculative execution of operation 2 as operation 5 in ba-
sic block BB1 allows dynamic CSE to replace the common sub-
expression in operation 4.

4(a). In this example, classical CSE cannot eliminate the com-
mon sub-expression in operation 4 with operation 2 since operation
4’s basic block BB6 is not dominated by operation 2’s basic block
BB3. Consider now that the scheduling heuristic decides to sched-
ule operation 2 in BB1 and execute it speculatively as operation 5
as shown in Figure 4(b). Now, the basic block BB1 containing this
speculated operation 5, dominates operation 4’s basic block BB6.
Hence, operation 4 can be eliminated and replaced by the result of
operation 5, as shown in Figure 4(b).

Since CSE is traditionally applied as a pass, usually before schedul-
ing, it can miss these kinds of opportunities. This motivated us
to develop a technique by which CSE can be applied dynamically
while scheduling a design.

4. DYNAMIC CSE
Dynamic CSE is a technique that operates after an operation has

been scheduled. Conceptually, it examines the list of remaining
ready-to-be-scheduled operations and determines which of these
have a common sub-expression with the currently scheduled oper-
ation; this common sub-expression can now be eliminated due to
the code motion of the currently scheduled operation. We use the
term “dynamic” to differentiate from the phase ordered application
of CSE before scheduling.

This transformation can be incorporated into a scheduling heuris-
tic; we illustrate a list scheduling heuristic incorporating dynamic
CSE in Figure 5. This heuristic takes as input an unscheduled
control-data flow graph (CDFG) of the design and produces a re-
source constrained schedule. The heuristic schedules the design
by traversing the CDFG in a top-down manner by considering one
basic block at a time. In our implementation, control paths are fol-
lowed such that at the fork node of a if-then-else conditional block,
the true branch is scheduled first and then the false branch. How-
ever, unscheduled operations in other basic blocks are also consid-
ered for scheduling into the current basic block using the specula-
tive code motions discussed above.

The heuristic starts scheduling on each resource at each control
step in a basic block by collecting a list of available operations A.
Available operations are operations whose data dependencies are
satisfied and that can be scheduled on the given resource at the cur-
rent scheduling step by using the various available code motions
[18]. Available operations may be collected from all unscheduled
basic blocks in the CDFG. Next, the cost of scheduling each of
these operations is calculated; currently, this cost function favors
operations on the longest data dependency chain (critical path).
However, in the future, this cost function can be made to include
estimates of the control costs of a code transformation. Finally, the
heuristic selects the operation op with the lowest cost and schedules
it using the appropriate code motions.

Algorithm 1: Dynamic CSE during Scheduling
Inputs: Unscheduled CDFG of design, Resource List R
Output: Scheduled CDFG of design

1: Scheduling step step = 0
2: while (step �= last step of CDFG) do
3: foreach (resource res in Resource List R) do
4: Get List of Available Operations A
5: Calculate cost of all operations in A
6: Pick Operation op with lowest cost in A
7: Move op and schedule on res in step
8: Get list of operations cseOpsList from A that

have common sub-expressions with op
9: foreach (operation cseOp in cseOpsList) do
10: if (BB(op) dominates BB(cseOp) then
11: ApplyCSE(cseOp, op)
12: endforeach
13: endforeach
14: step = step+1
13: endwhile

Figure 5: Incorporating Dynamic CSE in a list scheduling
heuristic. Available operations are determined based on data
dependencies and the ability of an operation to be moved to the
scheduling step under consideration. BB(op) gives the basic
block that the op is located in.

As shown in line 8 of this heuristic, from the remaining opera-
tions in the available list, dynamic CSE then determines the list of
operations, cseOpsList, that have a common sub-expression with
the scheduled operation op. Then, for each operation cseOp in
cseOpsList, if the basic block of cseOp is dominated by the ba-
sic block of op after scheduling, then it replaces the common sub-
expression in cseOp with the result from op (by calling ApplyCSE).

We illustrate this heuristic using the earlier example from Figure
4(a). In this example, consider that while scheduling basic block
BB1, the scheduling heuristic determines that available operations
are operations 2, 3 and 4. Of these operations, the heuristic sched-
ules operation 2 in BB1. Then, the dynamic CSE heuristic examines
the remaining operations in the available list, namely operations 3
and 4, and detects and replaces the common sub-expression (b+c)
in operation 4 with the result, e′, of the scheduled operation 5, since
BB(op5) dominates BB(op4).

This example also demonstrates that applying CSE as a pass af-
ter scheduling is not as effective as dynamic CSE, because in this
example, the resource freed up by eliminating the common sub-
expression in operation 4, can now potentially be used to schedule
another operation by the scheduler. Performing CSE after schedul-
ing would be too late to effect any decisions by the scheduler.

4.1 Dynamic Copy Propagation
The concept of dynamic CSE can also be applied to copy propa-

gation. After code motions such as speculation and transformations
such as CSE, there are usually several copy operations left behind.
Copy operations read the result of one variable and write them to
another variable. For example in Figure 4(b), operations 2 and 4
copy variable e′ to variables e and d respectively.

These variable copy operations can be propagated forward to
operations that read their result. Again, traditionally copy propa-
gation is done as a compiler pass before and after scheduling to
eliminate unnecessary use of variables. However, we have found
that it is essential to propagate the copies created by speculative
code motions and dynamic CSE, dynamically during scheduling it-
self, since this enables opportunities to apply CSE on subsequent
operations that read these variable copies. After copy propagation,

263

(a)

cond1
T F

T F
cond2

BB 1

BB 2 BB 3
BB 4

BB 5

BB 6 BB 7
BB 8

If Node 2

If Node 1

BB 9

3: a’ = b + c 4: a’ = b + c

1: a = a’

2: d = a’

(b)

...

cond1
T F

T F

... ...

cond2

BB 1

BB 2 BB 3
BB 4

BB 5

BB 6 BB 7
BB 8

If Node 2

If Node 1

BB 9

1: a = b + c

2: d = b + c

...

Figure 6: Dynamic CSE after conditional speculation: (a) A
sample CDFG (b) Operation 1 has been conditionally specu-
lated into BB2 and BB3. This allows dynamic CSE to be per-
formed for operation 2 in BB9.

BB 5

BB 6 BB 7 BB 8

BB 9

BB 1

BB 2 BB 3 BB 4

Figure 7: Dominator tree for the example in Figure 6

these dependent operations can directly use the result of the opera-
tion that creates the variable in the first place, rather than its copy
operation. A dead code elimination pass after scheduling can then
remove unused copies.

5. CONDITIONAL SPECULATION AND DY-
NAMIC CSE

Another code motion that has a significant impact on the number
of opportunities available for CSE is conditional speculation [2].
Conditional speculation duplicates operations up into the true and
false branches of a if-then-else conditional block. This is demon-
strated by the example in Figure 6(a). Consider that the schedul-
ing heuristic decides to conditionally speculate operation 1 into the
branches of the if-then-else conditional block I f Node1. Hence, as
shown in Figure 6(b), the operation is duplicated up as operations
3 and 4 in basic blocks BB2 and BB3 respectively.

If we look at the original description in Figure 6(a) again, we
note that operation 2 in BB9 has a common sub-expression with
operation 1 in BB6. But since BB9, is not dominated by BB6 (see
dominator tree in Figure 7), this common sub-expression cannot
be eliminated by classical CSE. However, after conditional spec-
ulation, operations with this common sub-expression exist in all
control paths leading up to BB9. Hence, we can apply dynamic
CSE now and operation 2 uses the result, a′, of operations 3 and 4
as shown in Figure 6(b).

This leads to the notion of dominance by sets of basic blocks
[16]. A set of basic blocks can dominate another basic block, if all
control paths to the latter basic block come from at least one of the
basic blocks in the set. Hence, in Figure 6(b), basic blocks BB2 and
BB3 together dominate basic block BB9, hence, enabling dynamic

CSE of operation 2. In this manner, we use this property of domina-
tion by sets of basic blocks while performing dynamic CSE along
with code motions such as reverse and conditional speculation that
duplicate operations in the control-data flow graph.

Another case, in which dynamic CSE is applied in conjunction
with conditional speculation, arises when an operation is duplicated
into a basic block in which another operation with the same expres-
sion already exists. In this case, the operation being duplicated is
instead replaced with a copy operation using the result of the al-
ready present operation with the same expression. In this way, we
are again able to reduce the number of operations with common
sub-expressions in the final scheduled design.

6. EXPERIMENTAL SETUP AND RESULTS
Dynamic CSE and copy propagation have been implemented

in our high-level synthesis research framework called Spark [17].
This synthesis system takes a behavioral description in ANSI-C
as input and generates synthesizable register-transfer level VHDL.
This enables the system to evaluate the effects of several coarse
and fine-grain optimizations on logic synthesis results. Code mo-
tion techniques such as Trailblazing [19] are used to enable the
parallelizing, speculative code motions. These code motions are
supported by standard compiler transformations such as CSE, copy
and constant propagation and dead code elimination.

We have chosen two large and moderately complex real-life ap-
plications, representative of the multimedia and image processing
domains, to perform experiments using various combinations of
CSE and dynamic CSE. We present results for two functions from
the Prediction block of the MPEG-1 algorithm [20] and for two
functions derived the GIMP image processing tool [21]. The MPEG
functions used are the pred0 1 and pred2 functions and GIMP
functions are the functions in the “tiler” transform and the calc
undistorted coords from the “Polarize” transform1. The two func-

tions (scale and tile) in the tiler transform have been inlined into one
function, that we call “tile”.

6.1 High-Level Synthesis Results
The synthesis results for these benchmarks are presented in Ta-

bles 1 and 2. These results are in terms of the number of states in
the finite state machine controller, the cycles on the longest path
(i.e. execution cycles) and the number of registers in the output
VHDL. For loops, the longest path length of the loop body is multi-
plied by the number of loop iterations. The resources are indicated
in the tables; ALU does add and subtract, == is a comparator, ∗
a multiplier, / a divider, [] an array address decoder and << is
a shifter. The multiplier (∗) executes in 2 cycles and the divider
(/) in 4 cycles. All other resources are single cycle. The number
of non-empty basic blocks and operations in the functions are also
given.

The first row in both these tables presents synthesis results for
when CSE is not applied, when only CSE is applied as a pass before
scheduling (2nd row), when only dynamic CSE is applied (3rd row)
and finally, both CSE and dynamic CSE are applied (4th row). In
all these experiments, dynamic copy propagation is done whenever
possible (even when dynamic CSE is not applied) and the baseline
is with all parallelizing code motions enabled but no CSE applied.
The percentage reductions of each row over the first row (no CSE
baseline case) are also given in parentheses.

The second row in both Table 1 and Table 2 demonstrates that
when CSE alone is applied, improvements ranging from 3 to 25 %

1Note that these floating point functions have been arbitrarily con-
verted to integer functions for the purpose of our experiments. This
does not effect the nature of the control flow, but only the way the
data is handled.

264

MPEG Pred. Block; Resources = 3ALU,2[],3 <<,2 ==,1*; BBs = non-empty Basic Blocks
Transformation pred2 (217 Ops, 45 BBs) pred0 1 (101 Ops, 26 BBs)

Applied # States Long Path # Regs # States Long Path # Regs
No CSE 52 2260 26 55 1051 18
with CSE 50(-3.8%) 2188(-3.2%) 26(0%) 53(-3.6%) 987(-6.1%) 17(-5.6%)
with Dyn CSE 45(-13.5%) 1676(-25.8%) 17(-34.6%) 48(-12.7%) 731(-30.4%) 8(-55.6%)
with CSE & Dyn CSE 43(-17.3%) 1676(-25.8%) 15(-42.3%) 46(-16.4%) 731(-30.4%) 10(-44.4%)

Table 1: Scheduling results after applying CSE and Dynamic CSE for functions from the MPEG-1 Prediction block

tile with inlined scale(145 Ops,35 BBs) polar: calc undist coords(252 Ops,78 BBs)
Transformation

Resources=3+,2−,1/,2∗,2 <<,2 ==,1[] Resources=2+,3−,1/,2∗,2 <<,2 ==
Applied

States Long Path # Regs # States Long Path # Regs
No CSE 41 3131 34 47 47 27
with CSE 34(-17.1%) 2331(-25.6%) 22(-35.3%) 47(0%) 47(0%) 25(-7.4%)
with Dyn CSE 32(-22%) 2131(-31.9%) 17(-50%) 45(-4.3%) 45(-4.3%) 22(-22.7%)
with CSE & Dyn CSE 32(-22%) 2131(-31.9%) 18(-47.1%) 45(-4.3%) 45(-4.3%) 22(-22.7%)

Table 2: Scheduling results after applying CSE and Dynamic CSE for two functions from the GIMP image processing tool

in the number of states and longest path cycles are obtained. In
itself these improvements are good.

Also, contrary to common belief, the results in these tables show
that applying CSE leads to a reduction in the number of registers
required. This decrease can be attributed to three factors: (a) the
reduced schedule lengths imply shorter variable lifetimes, espe-
cially for variables whose results are required for future loop it-
erations, (b) elimination of an operation by CSE means that the
variables read by the operation, can potentially be killed earlier and
hence, have shorter lifetimes, and (c) the speculative nature of the
code motions means that there are operations with the same sub-
expression being executed anyway; by eliminating some of these
operations and then performing copy propagation, CSE is able to
increase reuse of the result from only one of the operations, instead
of storing the results of several operations.

When dynamic CSE is applied, the improvements are even more
dramatic, especially for the MPEG functions. As the third row in
Table 1 shows, the number of states and longest path cycles reduce
as much as 13 % and 30 % respectively, whereas register usage
can go down by as much as 55 % for the pred0 1 function. Note
that since both these functions have doubly nested loops, any re-
duction in schedule length of the loop body leads to large overall
reductions.

When both CSE and dynamic CSE are applied to these func-
tions (4th row of Table 1), the improvements in performance and
controller size are the same as when only dynamic CSE is ap-
plied. And, although the pred2 function requires fewer registers,
the pred0 1 function actually requires two extra registers with this
combination – but this is due to the fact that our resource binding
methodology attempts to minimize interconnect and hence, area –
sometimes at the expense of registers [2]. This is validated later
in Section 6.2, when we look at the area after logic synthesis of
these functions. The total improvements in performance and con-
troller size after applying CSE and dynamic CSE for the functions
from the MPEG benchmark range from 16 to 30 % and number of
registers reduce by as much as 44 % (last row of table).

The results for the functions from the GIMP tool in Table 2 also
show improvements when dynamic CSE is used (3rd row of ta-
ble) versus applying CSE alone (2nd row). Whereas for the tiler
function, both CSE and dynamic CSE leads to improvements, for
the polarize function, only dynamic CSE leads to improvements in
performance and controller size. The improvements for the tiler
function are in the range of 22 to 31 %, and those of the polarize
function are in the 4 % range. Note that, the calc undistorted
coords function from the Polarize transform is called in two places,

both times in a doubly nested loop, since the transform is applied
for each pixel in an image. Hence, the improvements shown in Ta-
ble 2 will multiply by the number of iterations of both the nested
loops.

Overall the results from these tables demonstrate that dynamic
CSE is always able to out perform doing CSE alone as a pass before
scheduling. We also verified that runnint CSE as a pass both before
scheduling and after scheduling did not lead to any improvements
over running CSE only before scheduling.

6.2 Logic Synthesis Results
In this section, we present results for our experiements on the

effects of CSE and dynamic CSE on the final net list generated by
logic synthesis. We synthesized the VHDL generated by the Spark
system for the MPEG functions using the logic synthesis tool, De-
sign Compiler from Synopsys. The logic synthesis results are pre-
sented in Figure 8. In these graphs, three metrics are mapped: the
critical path length, the unit area and the maximum delay through
the design. The critical path length is the length of the longest com-
binational path in the netlist as determined by static timing analysis.
The unit area is in terms of the synthesis library used (the LSI-10K
library) and the maximum delay is the product of the longest path
length (in cycles) and the critical path length (in nanoseconds) and
signifies the maximum input to output latency of the design. The
values of each metric are normalized by the case when no CSE or
dynamic CSE is applied.

The results in the graphs in Figure 8 again demonstrate the use-
fulness of dynamic CSE. For both the MPEG functions, applying
CSE alone leads to only marginal improvements in the synthesis
metrics when compared to applying dynamic CSE. When dynamic
CSE is applied with or without classical CSE, shorter delays and
significantly lower area (up to 35 % less) are obtained, with critical
path lengths remaining fairly constant or decreasing marginally.

These decreases in the area and critical path length can be at-
tributed to two factors. Firstly, the elimination of some operations
due to dynamic CSE means that fewer operations are mapped to
the functional units. This leads to reduced interconnect (multiplex-
ors and demultiplexors). Also, since dynamic CSE leads to lower
register usage, this too contributes to the reduced area of the final
circuit.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a new approach for applying the

classical compiler transformation, common sub-expression elimi-
nation (CSE) called dynamic CSE that is able to eliminate common

265

MPEG Pred2 Function

0

0.2

0.4

0.6

0.8

1

Critical Path (c
ns)

Total Delay (c*l
ns)

Unit Area

N
o
rm

al
iz
ed

V
al
u
es

MPEG Pred0 Function

0

0.2

0.4

0.6

0.8

1

Critical Path (c
ns)

Total Delay (c*l
ns)

Unit Area

N
o
rm

al
iz
ed

V
al
u
es

d

No CSE With CSE With Dyn CSE With CSE & DynCSE

Figure 8: Effects of CSE and dynamic CSE on logic synthesis results for the MPEG Pred2 and Pred0 1 functions

sub-expressions that are missed by classical CSE due to the pres-
ence of control-flow. Dynamic CSE exploits the operation move-
ment caused by scheduling to apply CSE based on the new position
of operations that have been scheduled. This operation movement
occurs due to speculative code motions that re-order, speculate and
sometimes duplicate operations to achieve higher performance and
maximize parallel execution.

We have demonstrated the effectiveness of dynamic CSE over
classical CSE on two moderately complex and control-intensive
benchmarks derived from real-life multimedia and image process-
ing applications. We obtain significant improvements in perfor-
mance, controller size and area of the design implementation. Fur-
thermore, we observe a non-intuitive and significant reduction in
register usage due to shorter schedule lengths and elimination of
duplicate operations. These results encourage us to look at other
transformations that may be applied dynamically and may be able
to take advantage of the transformations applied during scheduling.

8. REFERENCES
[1] L.C.V. dos Santos and J.A.G. Jess. A reordering technique

for efficient code motion. In Design Automation Conf., 1999.
[2] S. Gupta, N. Savoiu, N.D. Dutt, R.K. Gupta, and A. Nicolau.

Conditional speculation and its effects on performance and
area for high-level synthesis. In Intl. Symp. on System
Synthesis, 2001.

[3] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles and
Techniques and Tools. Addison-Wesley, 1986.

[4] S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

[5] Z. Iqbal, M. Potkonjak, S. Dey, and A. Parker. Critical path
optimization using retiming and algebraic speed-up. In
Design Automation Conference, 1993.

[6] M. Potkonjak, M.B. Srivastava, and A. Chandrakasan.
Multiple constant multiplications: Efficient and versatile
framework and algorithms for exploring common
subexpression elimination. IEEE Trans. on CAD, Mar 1996.

[7] R. Pasko, P. Schaumont, V. Derudder, S. Vernalde, and
D. Durackova. A new algorithm for elimination of common
subexpressions. IEEE Trans. on CAD, Jan 1999.

[8] M.Janssen, F.Catthoor, and H.De Man. A specification

invariant technique for operation cost minimisation in
flow-graphs. In Intl. Symp. on High-level Synthesis, 1994.

[9] M.Miranda, F.Catthoor, M. Janssen, and H.De Man.
High-level address optimisation and synthesis techniques for
data-transfer intensive applications.

[10] D.A. Lobo and B.M. Pangrle. Redundant operator creation:
A scheduling optimization technique. In Design Automation
Conference, 1991.

[11] M. Potkonjak and J. Rabaey. Maximally fast and arbitrarily
fast implementation of linear computations. In International
Conference on CAD, 1992.

[12] R. Kennedy, S. Chan, S.-M. Liu, R. Io, P. Tu, and F. Chow.
Partial redundancy elimination in SSA form. ACM Trans.
Progrm. Languages and Systems, May 1999.

[13] S. Gupta, M. Miranda, F. Catthoor, and R. Gupta. Analysis
of high-level address code transformations for programmable
processors. In Design, Automation and Test in Europe, 2000.

[14] S. Novack and A. Nicolau. Mutation scheduling: A unified
approach to compiling for fine-grain parallelism. In
Languages and Compilers for Parallel Computing, 1994.

[15] V.C. Sreedhar, G. R. Gao, and Y.-F. Lee. Incremental
computation of dominator trees. ACM Trans. Progrm.
Languages and Systems, March 1997.

[16] V.C. Sreedhar, G. R. Gao, and Y.-F. Lee. A new framework
for exhaustive and incremental data flow analysis using DJ
graphs. ACM SIGPLAN Conf. on PLDI, 1996.

[17] S. Gupta, N. Savoiu, S. Kim, N.D. Dutt, R.K. Gupta, and
A. Nicolau. Speculation techniques for high level synthesis
of control intensive designs. In Design Automation
Conference, 2001.

[18] K. Ebcioglu and A. Nicolau. A global resource-constrained
parallelization technique. In 3rd International Conference on
Supercomputing, 1989.

[19] A. Nicolau and S. Novack. Trailblazing: A hierarchical
approach to percolation scheduling. In International
Conference on Parallel Processing, 1993.

[20] Spark Synthesis Benchmarks FTP site.
ftp://ftp.ics.uci.edu/pub/spark/benchmarks.

[21] GNU Image Manipulation Program. http://www.gimp.org.

266

