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Abstract

We give a complete analytical computation of three and two-point loop integrals occurring
in heavy-particle theories, involving a velocity change, for arbitrary real values of the external
masses and residual momenta.

1 Introduction

The study of the dynamics and spectroscopy of hadrons containing a heavy quark has been greatly
simplified and systematized with the introduction of heavy quark effective theory (HQET) [1].
Heavy-particle theories along similar lines have also been succesfully applied in other, related
contexts. Thus, in those cases where a chiral approach to the strong interactions of heavy hadrons
with light mesons is applicable, a combination of chiral and heavy-quark symmetries leads to
heavy hadron chiral perturbation theory (HHChPT) [2]. A heavy-particle expansion has also been
developed in the chiral-perturbative framework for nucleon-meson interactions, which constitutes
the so-called heavy baryon chiral perturbation theory (HBChPT) [3].

In the heavy-quark limit the interaction of a heavy quark, or hadron, with the light degrees of
freedom cannot change its four-velocity vµ. In consequence, vµ becomes a good quantum number
and, therefore, heavy-particle effective theories of the strong interactions are expressed in terms
of velocity-dependent fields. Weak interactions, or other external sources, however, can change
the velocity and/or flavor of a heavy quark or hadron. Strong-interaction corrections to velocity-
changing interaction vertices then involve loop integrals with two different velocities.

In this paper we report on a complete analytic computation of three-point loop integrals in-
volving a velocity change, and two-point loop integrals. We consider a class of one-loop integrals
occurring in heavy-particle theories, with arbitrary real values for the external masses and residual
momenta. Since our aim here is mainly methodological, we will not discuss specific phenomeno-
logical applications. For definiteness, however, we adopt the language of HHChPT in the sequel.

In the next section, we define the integrals to be studied, establish our notations and conven-
tions, and discuss the method we use, which involves a combination of the HQET technique and of
standard methods for computing loop integrals [4, 5, 6]. In section 3 we give technical details about
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the computation of the scalar three-point integral, state our results and discuss several important
limits and particular cases and cross-checks. In section 4 we briefly consider the two-point integral,
which has already been given in the previous literature. In section 5 the vector and second-rank
tensor integrals are given in terms of form factors. Finally, in section 6 we give some final remarks.

2 Method. Notation and Conventions

The loop integrals we consider are of the form,

I3α1···αn =
iµ4−d

(2π)d

∫
ddq

qα1 · · · qαn

(2v1 ·(q + k1)− δM1 + iε) (2v2 ·(q + k2)− δM2 + iε) (q2 −m2 + iε)
(1)

I2α1···αn =
iµ4−d

(2π)d

∫
ddq

qα1 · · · qαn

(2v ·(q + k)− δM + iε) (q2 −m2 + iε)
. (2)

Here vµi , i = 1, 2, are the velocities of the external heavy legs, kµi their residual momenta, and δMi

their mass splittings relative to the common heavy mass of the corresponding heavy-flavor/spin
multiplet. m is the mass of the light particle, which in HHChPT corresponds to a light pseudoscalar
meson. These integrals are defined in d = 4− ǫ dimensions, µ being the mass scale of dimensional
regularization. Their degrees of divergence are n + d − 4 for I3α1···αn and n + d − 3 for I2α1···αn .
The factor of 2 in front of vµi corresponds to our normalization of the heavy-particle propagators.

In this section we will restrict ourselves to the scalar case n = 0. The cases n = 1, 2 will be
considered in detail in section 5. Together with I2,3 we consider also the auxiliary integrals,

Ĩ3 =
iµ4−d

(2π)d

∫
ddq

1(
(q + p1)2 −M2

1 + iε
) (

(q + p2)2 −M2
2 + iε

)
(q2 −m2 + iε)

(3)

Ĩ2 =
iµ4−d

(2π)d

∫
ddq

1

((q + p)2 −M2 + iε) (q2 −m2 + iε)
. (4)

Ĩ3 is convergent in four dimensions, with degree of divergence d − 6. Ĩ2 has degree of divergence
d − 4, diverging logarithmically at d = 4. The relations among external momenta and masses in
I3 and Ĩ3 are, (i = 1, 2)

pµi = Mvµi + kµi , pµi piµ > 0 ; Mi = M +
1

2
δMi , Mi > 0, (5)

and similarly for I2 and Ĩ2. We remark at this point that Ĩ2,3 need not be related to Feynman
diagrams in any existing physical theory. The similarity of the limit M → ∞ studied below with
the heavy-quark limit is purely formal. Ĩ2,3 are just intermediate steps in our calculation of I2,3,
as we discuss next.

In the limit M → ∞ we have, (k = 1, 2)

1

(q + pk)2 −M2
k + iε

=
1

M

1

2vk ·(q + kk)− δMk + iε
+O

(
1

M2

)
. (6)

Since ∂I2,3/∂m2 are convergent for d = 4, equation (6) leads to,

∂I3
∂m2

= M2 ∂Ĩ3
∂m2

+O
(

1

M

)
,

∂I2
∂m2

= M
∂Ĩ2
∂m2

+O
(

1

M

)
. (7)
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Therefore, at d = 4 we must have,

I3 = I3|m=0 +M2
(
Ĩ3 − Ĩ3|m=0

)
+O

(
1

M

)
(8)

I2 = I2|m=0 +M
(
Ĩ2 − Ĩ2|m=0

)
+O

(
1

M

)
. (9)

Moreover, using equations (5) and defining ∆j ≡ δMj − 2vj ·kj , we can write I3, Ĩ3 in terms of ∆i.
Differentiating we obtain, to leading order in 1/M ,

∂I3
∂∆j

= M2 ∂Ĩ3
∂∆j

+O
(

1

M

)
, j = 1, 2, (10)

or, equivalently,

I3 = M2Ĩ3 + C1(∆1) +O
(

1

M

)
= M2Ĩ3 + C2(∆2) +O

(
1

M

)
. (11)

Here, the dependence of C1,2 on d,M, µ,m and v1 ·v2 is understood, but it is shown explicitly
that C1 can depend on ∆1 but not on ∆2, and the oposite is true for C2. Subtracting the two
equations (11) term by term, we conclude that C1 = C2 = C(d,M, µ,m, v1 ·v2) do not depend on
∆1,2. (Furthermore, (7) together with (10) imply that C does not depend on m either.) Thus,

I3 = I3|∆1=0=∆2
+M2

(
Ĩ3 − Ĩ3|∆1=0=∆2

)
+O

(
1

M

)
. (12)

We notice that I3 is straightforward to compute for ∆j = 0 by using the HQET method for
combining denominators (see, e.g., [7]). On the other hand, Ĩ3 is needed in (12) only at d = 4,
and to leading order in M , including logarithmic corrections. Eq. (12) will then be the starting
point for our computation of I3. Equations for I2 analogous to (11) and (12) can also be obtained,
involving two derivatives. We will find it more convenient to use eq. (9) in order to compute I2.

Scalar integrals can depend on vµ1 , v
µ
2 only through ω = v1 ·v2. If we denote by Ω the magnitude

of the three-velocity associated to vµ1 or vµ2 in the rest frame of vµ1 + vµ2 then [8, §11.5],

ω = v1 ·v2 =
1 + Ω2

1− Ω2
; Ω =

√

−(vµ1 − vµ2 )
2

(vµ1 + vµ2 )
2
=

√
ω − 1

ω + 1
. (13)

Together with Ω, the roots of (vµ1 − αvµ2 )
2 = 0, given by

α± = ω ±
√
ω2 − 1 =

1± Ω

1∓ Ω
, (14)

will appear frequently below. For physical values of vµ1,2, such that (vµ1,2)
2 = 1, we have ω > 1,

0 < Ω < 1, 0 < α− < 1 < α+. We will always assume these inequalities to hold in what follows.
Logarithms have a cut along the negative real axis. The log of a product can be split as log(ab) =

log(a)+log(b) if Im(a) and Im(b) have opposite sign, or if a > 0. Similarly, log(ab) = log(a)− log(b)
if Im(a) and Im(b) have the same sign, or if a > 0 [4]. Given a complex number z, we use that
determination of the argument such that −π < arg(z) < π. In particular, log(1/z) = − log(z). We
use the same definition and conventions as [4] for the dilogarithm, which we denote by Li2.
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3 The Scalar Three-Point Integral

We will now consider in detail the calculation of I3. Our first step is to compute Ĩ3 to leading
order in M. As mentioned above, we only need to evaluate Ĩ3 at d = 4. We introduce a standard
Feynman parametrization of the integrand in (3). Integrating over d4q and over the Feynman
parameter associated with the third propagator in (3), we obtain,

Ĩ3 =
1

(4π)2

∫ 1

0

dx

∫ 1−x

0

dy
1

(yp1 + xp2)2 + y(M2
1 − p21 −m2) + x(M2

2 − p22 −m2) +m2 − iε
. (15)

In the limit M → ∞ the polynomial in the denominator is a sum of terms of the form Mpxqyp−q,
with p = 0, 1, 2 and 0 ≤ q ≤ p, the term with p = 0 being m2− iε. These are properties we want to
maintain, in order to be able to take the limit M → ∞ later, retaining only the leading terms in
M in each coefficient. Thus, we will not make a change of variable y → 1− y at this stage, as the
limits of integration suggest. Following [4], we shift variables according to y → y − αx. This shift
is homogeneous in x, y, so it does not change the order of each term as M → ∞. The parameter
α is taken to be one of the roots α± of (p2 − αp1)

2 = 0. For M large, we have α+ > 1 > α− > 0.
Choosing α = α+ and exchanging the order of integration, we are led to,

Ĩ3 =
1

(4π)2






∫ 1

0

dy

∫ y/α+

0

dx+

∫ α+

1

dy

∫ y/α+

y−1

α+−1

dx





1

D
(16)

D =
(
2y(p1 ·p2 − α+p

2
1) + (M2

2 − p22 −m2)− α+(M
2
1 − p21 −m2)

)
x

+p21y
2 + y(M2

1 − p21 −m2) +m2 − iε .

Using equations (5) and retaining only leading powers of M in each coefficient, the previous expres-
sion simplifies considerably. In the limit M → ∞, α± are given by (14). Performing the integration
over x we obtain,

Ĩ3 = − 1

64π2

1− Ω2

Ω

1

M2

∫ 1

0

dy
1

G
log

(
K

H

)
− 1

64π2

1− Ω2

Ω

1

M2

∫ α+

1

dy
1

G
log

(
K

L

)
(17)

L = H − 4Ω

1− Ω2

y − 1

α+ − 1
G ; K = H − 4Ω

1− Ω2

y

α+

G

H = y2 +
∆1

M
y +

m2

M2
− iε ; G = y − y0

M
,

with

y0 = −1 + Ω

2Ω
(Ω∆+ δ) ; ∆ =

1

2
(∆1 +∆2) ; δ =

1

2
(∆1 −∆2) . (18)

In these last two equations we have introduced several notations that will be needed later. In the
second integral in (17) the variable y is O(1) over the entire domain of integration. Therefore,
My = O(M) and the integral is given, to leading order in M , by

− 1

64π2

1− Ω2

Ω

1

M2

∫ α+

1

dy
1

y
log

(
α−

y − iε

−y + α+ + 1− iε

)
. (19)

This expression does not depend on ∆1,2. Therefore, it will cancel when we subtract Ĩ3|∆1=0=∆2

from Ĩ3, and will not contribute to I3 as given in (12). We shall then drop this term from Ĩ3 from
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now on. The remaining integral can be re-written as,

Ĩ3 =
1

64π2

1− Ω2

Ω

1

M2

∫ 1

0

dy
1

G
{log(H)− log(K)}+ · · · . (20)

We notice that there is no singularity at the zero of the denominator, since the numerator vanishes
there. We will denote y1±/M and y2±/M the roots of H and K, respectively. They are given by,

y1± =
1

2

(
−∆1 ±

√
∆2

1 − 4m2 + iε

)
; y2± =

α+

2

(
−∆2 ±

√
∆2

2 − 4m2 + iε

)
. (21)

From their definition, (17), it is clear that H and K are equal at the zero of G. Defining,

zkσ = ykσ − y0 , k = 1, 2, σ = ± , (22)

the equality of H and K at y = y0/M can be expressed as,

z1+z1− = α2
−
z2+z2− , (23)

an identity that will be important below.
After factorizing H and K and splitting the logs in (20), we find,

Ĩ3 =
1

64π2

1− Ω2

Ω

1

M2

∫ 1

0

dy
1

y − y0/M

{
log

(
y − y1+

M

)
+ log

(
y − y1−

M

)

− log

[
α−

(
y − y2+

M

)]
− log

[
α−

(
y − y2−

M

)]}
. (24)

In order to be able to distribute the integral inside the braces without introducing spurious singu-
larities, we use (23) to add and subtract the value of each log at the pole. In this way we obtain,

Ĩ3 =
1

64π2

1− Ω2

Ω

1

M2

∑

k,σ

(−1)k+1

∫ 1

0

dy
1

y − y0/M

{
log

(
y − ykσ

M

)
− log

(
y0

M
− ykσ

M

)}
, (25)

where the sum runs over k = 1, 2 and σ = ±. These integrals are already in standard form.
Evaluating them to leading order in M , we arrive at,

Ĩ3 =
1

64π2

1− Ω2

Ω

1

M2

∑

k,σ

(−1)k+1

{
1

2
log2

(
M

µ

)
− π2

6
− log

(
M

µ

)
log

(
−zkσ

µ

)

−1

2
log2

(
zkσ
µ

)
+ log

(
zkσ
µ

)
log

(
−zkσ

µ

)
− log

(
− y0

zkσ

)
log

(
ykσ
zkσ

)
− Li2

(
ykσ
zkσ

)}
. (26)

In order to simplify this result we have explicitly used the relation log(µ/zkσ) = − log(zkσ/µ) as
explained in section 2. Notice that we have introduced a mass scale µ that makes the arguments of
the logs dimensionless. The first two terms in (26) are independent of k and therefore they cancel
out in the sum. The third term can be simplified by making use of (23), which results in a term of
the form (1− Ω2)/(64π2M2Ω) log(α2

+
) log(M/µ).

The integral Ĩ3 at ∆j = 0 is straightforward to compute. Its logarithmic dependence on M
cancels that of Ĩ3, so that we obtain,

Ĩ3 − Ĩ3|∆j=0 =
1

32π2M2

1− Ω2

2Ω

{
log2(α+) + log

(
α2

+

)
log

(
m

µ

)
+
∑

k,σ

(−1)k
[
1

2
log2

(
zkσ
µ

)

− log

(
zkσ
µ

)
log

(
−zkσ

µ

)
+ log

(
− y0

zkσ

)
log

(
ykσ
zkσ

)
+ Li2

(
ykσ
zkσ

)]}
. (27)
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This is essentially the final result, except for the dimensional regularization pole term, which is
supplied by I3|∆j=0 (see eq. (12)). Setting n = 0, δMj = 0 = kj , j = 1, 2, in (1), we obtain, after

using the HQET method for combining denominators and integrating over ddq,

I3|∆j=0 =
µ4−d

(4π)d/2
Γ

(
3− d

2

)∫ 1

0

dx

∫ ∞

0

dλ
λ

[λ2 (x2 + (1− x)2 + 2x(1 − x)ω) +m2 − iε]3−d/2
. (28)

The innermost integral can be evaluated by changing variable to u = λ2. We get,

I3|∆j=0 =
1

2(4π)d/2
Γ

(
2− d

2

)(
µ

m

)4−d ∫ 1

0

dx
1

x2 + (1− x)2 + 2x(1− x)ω

=
1

2(4π)d/2
Γ

(
2− d

2

)(
µ

m

)4−d 1− Ω2

4Ω
log
(
α2

+

)

=
1

64π2

1− Ω2

Ω
log(α+)

(
2

ǫ
− γE + log(4π) + log

(
µ2

m2

))
+O(ǫ) , (29)

where γE is Euler’s gamma.
Thus, finally, using (12), (27) and (29), we obtain,

I3 =
1

64π2

1− Ω2

Ω

{
2

ǫ
log(α+) + log2(α+) +

∑

k,σ

(−1)k
[
1

2
log2

(
zkσ
µ

)

− log

(
zkσ
µ

)
log

(
−zkσ

µ

)
+ log

(
− y0

zkσ

)
log

(
ykσ
zkσ

)
+ Li2

(
ykσ
zkσ

)]}
, (30)

where we used (23) to rewrite log(µ) in (27) as log(µ) = log(µ
√
4π) − γE. Equation (30) is our

main result. It gives the analytical expression for I3 for general real values of the external masses
and residual momenta. Below we consider some particular values of the parameters which are
important in practice, and in which the expression for I3 takes on a simplified form. They can also
serve as cross-checks of (30).

We note that I3, given by (1) with n = 0, is symmetric under exchange of heavy particles
1 ↔ 2. The general result (30) is not manifestly invariant under ∆1 ↔ ∆2, but its symmetry has
been thoroughly checked numerically.

3.1 The case y0 < 0 and the zero-recoil limit

An important particular case to consider is the case vµ1 = vµ2 or, equivalently, Ω = 0 (ω = 1).
I3 at Ω = 0 can be computed more directly by differentiating I2 (see section 4). Therefore, its
calculation from (30) constitutes a cross-check.

The limit Ω → 0, however, is difficult to take in (30). As indicated by the factor 1/Ω in that
equation, the limit results from complicated cancellations among different terms in the sum in (30).
Individually, some of those terms may be large as Ω → 0. This situation arises mainly from the
addition and subtraction of terms of the form log(y0/M − ykσ/M) in (25), which is necessary when
y0 > 0, since in that case there is a singularity in the integration domain. If, however, we restrict
ourselves to the case y0 < 0, then the general expression (30) takes a simpler form, which makes
the zero-recoil limit transparent.

As mentioned at the end of the previous section, I3 is symmetric under exchange of ∆1 and
∆2. Hence, without loss of generality we can assume δ > 0 (see eq. (18). The case δ = 0 will be
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considered afterwards as a limiting case). From the definition of y0 in (18) we see that, if δ > 0,
then for sufficiently small Ω we will have y0 < 0. This is therefore the relevant parameter region
to consider when Ω → 0.

Assuming, then, y0 < 0, we can go back to (24) and distribute the integral inside the braces
without adding extra terms. The calculation goes through unchanged, yielding,

I3
∣∣∣ δ>0
y0<0

=
1

64π2

1− Ω2

Ω

{
log(α+)

[
2

ǫ
+ log(α+) + log

(
µ2

4Ω2y2
0

)]

+
∑

k,σ

(−1)k
[
1

2
log2

(
1− ykσ

y0

)
+ log

(
1− ykσ

y0

)
log

(
2Ωy0

ykσ

)
+ Li2

(
ykσ
zkσ

)]}
. (31)

The zero-recoil limit of this expression can be easily obtained. Using the assumption δ > 0 and
the relation (valid for Ω = 0) ∑

k,σ

(−1)kykσ = 2δ ,

we find,

I3
∣∣∣δ>0
Ω=0

=
1

32π2

(
2

ǫ
+ 2 +

∑

k,σ

(−1)k+1 ykσ
δ

log

(
−ykσ

µ

))
. (32)

It is understood that in this equation we must set Ω = 0 in the expression (21) for ykσ. In section
4 we will obtain this result from I2.

We give, finally, the result for I3 at zero-recoil when δ = 0 (∆1 = ∆2 ≡ ∆). We just take the
limit of (32) as δ → 0 to obtain,

I3
∣∣∣δ=0
Ω=0

=
1

32π2

{
2

ǫ
+ log

(
µ2

m2

)
+

∆√·

[
log

(
∆−√·

µ

)
− log

(
∆+

√·
µ

)]}
, (33)

where
√· =

√
∆2 − 4m2 + iε. Notice that, in general, we cannot express the difference of logs in

(33) as the log of the ratio of the arguments , because their imaginary parts have opposite sign.

3.2 The case y0 = 0

When y0 = 0 the general expression (30) for I3 is singular. The singularity is avoidable, though,
so that we can take the limit y0 → 0 in (30) to get,

I3
∣∣∣
y0=0

=
1

64π2

1− Ω2

Ω
log(α+)

(
2

ǫ
+ log(α+)

)

+
1

64π2

1− Ω2

Ω

∑

k,σ

(−1)k
[
1

2
log2

(
ykσ
µ

)
− log

(
ykσ
µ

)
log

(
−ykσ

µ

)]
. (34)

This expression is valid, in particular, when ∆1 = 0 = ∆2, which is the point in parameter space
we used to “match” I3 and Ĩ3. As is easily seen, in that case we recover (29).

3.3 The case m = 0

The case m = 0 is relevant to theories involving massless particles, such as gluons in HQET and
Goldstone bosons in chiral theories in the limit of massless quarks . The value of I3 at m = 0

7



can be obtained from the general expression (30), and also by direct computation from (1) using
the HQET method for combining denominators. We will consider both approaches in this section.
Together with the zero-recoil case studied in sections 3.1 and 4, this is one of our main cross-checks.

We will now study the limit m → 0 of I3 as given in (30). We notice that when m = 0 one of
the two possible values σ = ± leads to ykσ = 0 (see eq. (21)). In fact, m = 0 and ∆k > 0 (resp.
∆k < 0) implies yk+ = 0 (resp. yk− = 0). Calling σk = −sgn(∆k) = −σ′

k, so that ykσk
6= 0 = ykσ′

k
,

we have zkσ′
k
= −y0 + iεσ′

k and, therefore,

log

(
− y0

zkσ′
k

)
log

(
ykσ′

k

zkσ′
k

)
= 0 ; Li2

(
ykσ′

k

zkσ′
k

)
= 0 ,

so these terms drop from the sum in (30). On the other hand, since y0 is by definition (18) a real
number, we have the equalities,

2∑

k=1

(−1)k
1

2
log2

(
−y0 + iεσ′

k

)
= iπθ(y0) log(y0)

2∑

k=1

(−1)kσ′
k

2∑

k=1

(−1)k log
(
−y0 + iεσ′

k

)
log
(
y0 − iεσ′

k

)
= iπsgn(y0) log(|y0|)

2∑

k=1

(−1)kσ′
k ,

θ(x) being a step function. With these relations taken into account, from (30) we find for I3,

I3
∣∣∣
m=0

=
1

64π2

1− Ω2

Ω

{
2

ǫ
log(α+) + log2(α+) +

2∑

k=1

(−1)k
[
1

2
log2

(
zkσk

µ

)

− log

(
zkσk

µ

)
log

(
−zkσk

µ

)
+ log

(
− y0

zkσk

)
log

(
ykσk

zkσk

)
+ Li2

(
ykσk

zkσk

)
+ E(y0)

]}
, (35)

E(y0) ≡ iπθ(−y0) log

( |y0|
µ

) 2∑

k=1

(−1)kσ′
k = −2iπ log

(−y0

µ

)
θ(∆1)θ(−∆2) . (36)

Notice that the sum in (35) runs over k = 1, 2 but not over σk, and that −y0 > 0 in (36) due to
the step functions. As before, ykσk

and zkσk
in (35) are given by (21) and (22) with m set to zero.

When δ = 0 (∆1 = ∆2 ≡ ∆), equation (35) becomes

I3
∣∣∣
m=0=δ

=
1

64π2

1−Ω2

Ω

{
2

ǫ
log(α+)−

1

2
log(α+) log

(
1− Ω2

4

)
− 2 log(α+) log

(
∆− iε

µ

)

+Li2

(
1− Ω

2

)
− Li2

(
1 + Ω

2

)}
, (37)

a result we will explicitly cross-check below.
We now turn to the calculation of I3 at m2 = 0 directly from its definition (1) with the

HQET method for combining denominators. For the sake of brevity, we will skip the details of the
derivation and quote the final result, which can be written as,

I3
∣∣∣
m=0

=
1

64π2

1− Ω2

Ω

{
2

ǫ
log(α+)−

1

2
log(α+) log

(
1− Ω2

4

)
+ Li2

(
1− Ω

2

)
− Li2

(
1 + Ω

2

)}

+
1

64π2

1− Ω2

Ω

{
− log

( −(1 + Ω)δ

Ω∆− δ − iε

)
log

(
∆+ δ − iε

µ

)
+ log

( −(1− Ω)δ

Ω∆− δ − iε

)
log

(
∆− δ − iε

µ

)

−Li2

(
∆+ δ − iε

∆− δ/Ω − iε

)
+ Li2

(
∆− δ − iε

∆− δ/Ω − iε

)
+ (δ → −δ)

}
. (38)
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Here, the terms within braces in the second and third line are to be repeated with δ replaced by
−δ as indicated.

When δ = 0, (38) reduces to (37). Thus, in the case m = 0 = δ we have an analytic cross-check
of our results. In the more general case δ 6= 0, we have numerically compared general expression
(30) for small values m, with equations (35) and (38). The three expressions for I3|m=0 were found
to agree over a wide range of real values for ∆1, ∆2, and 0 < Ω < 1, again providing a cross-check
for (30).

4 The Scalar Two-Point Integral

The scalar two-point integral I2 is given by (2) with n = 0. I2 is a function ofm and ∆ = δM−2v·k.
The starting point for the calculation of I2 is (9). The computations of both Ĩ2 and I2|m=0 are
standard. Defining,

x± =
1

2

(
−∆±

√
∆2 − 4m2 + iε

)
, (39)

from (9) we obtain,

I2 =
∆

32π2

(
2

ǫ
+ 2

)
+

1

16π2

(
x+ log

(
−x+

µ

)
+ x− log

(
−x−

µ

))
. (40)

This result can also be obtained by using the HQET method for combining denominators, which
yields an equivalent expression in terms of hypergeometric functions.

In order to compare our result (40) for I2 with those in the previous literature, we rewrite it
in terms of x = ∆/(2m),

I2(∆,m) =
∆

32π2

(
2

ǫ
+ log

(
µ2

m2

)
+ 2

)
+

m

16π2
F(x) (41)

with F(x) =
√
x
2 − 1 + iε

[
log
(
x−

√
x
2 − 1 + iε

)
− log

(
x+

√
x
2 − 1 + iε

)]
. The coefficient of the

dimensional regularization pole vanishes when ∆ = 0. This is due to the fact that the real part of
the integrand in (2) is parity-odd when ∆ = 0.

Equation (41) agrees with [9] for all real values of ∆, once their different normalization and
conventions are taken into account. It agrees with the results from [10, 11] (see also the second of
[2]) only in the region x > 0, our result being different from theirs over the entire negative semiaxis.

We consider now I3 at zero recoil. As shown in [10], and seen from its definition (1), I3 at
Ω = 0 can be obtained from I2 as,

I3
∣∣∣
Ω=0

(∆1,∆2) =
1

∆1 −∆2

(I2(∆1,m)− I2(∆2,m)) , and I3
∣∣∣
Ω=0

(∆,∆) =
∂

∂∆
I2(∆,m).

(42)
Substituting the value of I2(∆,m) given by (41) in (42), we recover our previous results (32) and
(33), as can be easily checked.

5 Vector and Tensor Integrals

In this section we give general expressions for vector and second-rank tensor integrals in terms of
form factors. We also compare our results to those in the literature, when available. The form

9



factors will be expressed in terms of scalar integrals. Of those, I2 and I3 have been given in
previous sections. We will also need,

I1 =
iµ4−d

(2π)d

∫
ddq

1

(q2 −m2 + iε)
= − m2

16π2

(
2

ǫ
+ log

(
µ2

m2

)
+ 1

)
+O(ǫ) , (43)

with m > 0, d = 4 − ǫ, log
(
µ2
)
= log

(
µ24π

)
− γE. Two other scalar integrals appear in the

evaluation of tensor ones,

I1′ =
iµ4−d

(2π)d

∫
ddq

1

(2v ·q −∆+ iε)
and I2′ =

iµ4−d

(2π)d

∫
ddq

1

(2v1 ·q −∆1 + iε) (2v2 ·q −∆2 + iε)
(44)

Both I1′, and I2′ vanish, as we will now show. The easiest way to see that I1′ = 0 is by applying
the axioms of dimensional regularization [12, §4.1]. We consider I1′(vµ, d) as a function of d and
vµ, momentarily allowing vµvµ > 0, not necessarily equal to 1. Then, we can always shift the
integration variable so that,

I1′(vµ, d) =
iµ4−d

(2πd)

∫
ddq

1

(2v ·q + iε)
.

Let s > 0, and consider I1′(svµ, d). By factoring s out of the integral we get, I1′(svµ, d) =
1/sI1′(vµ, d), whereas by rescaling the integration variable qµ we find, I1′(svµ, d) = 1/sdI1′(vµ, d).
Therefore, we must have 1/sI1′(vµ, d) = 1/sdI1′(vµ, d) for all s > 0 and all complex d, excluding
positive integer values. Since I1′ must be an analytic function of d, we conclude that it vanishes
for vµvµ > 0.

We now turn to I2′. Introducing a Feynman parameter, we can write it as,

I2′ =
iµ4−d

(2π)d

∫ 1

0

dx

∫
ddq

1

2V (x)·q −∆(x) + iε
,

with V µ(x) = xvµ1 + (1− x)vµ2 and ∆(x) = x∆1 + (1− x)∆2. For v
µ 2

1 = 1 = vµ 2

2 and 0 ≤ x ≤ 1 we
have V µ 2(x) > 0. Thus, the inner integral is I1′(V µ, d) and since I1′ = 0, I2′ also vanishes.

5.1 Vector and tensor two-point integrals

The vector two-point integral is given by,

I2µν(vα,∆,m) =
iµ4−d

(2π)d

∫
ddq

qµ

(2v ·q −∆+ iε) (q2 −m2 + iε)
. (45)

Lorentz invariance dictates that I2 is given in terms of only one form factor, which can be imme-
diately evaluated by algebraic reduction [5, 6],

I2µ(vα,∆,m) = F (∆,m)vµ , with F (∆,m) = vµI2µ(vα,∆,m) =
1

2
I1(m) +

∆

2
I2(∆,m) , (46)

where the scalar integrals I1 and I2 have been given in (43) and in section 4, respectively.
The tensor two-point integral is defined as,

I2µν(vα,∆,m) =
iµ4−d

(2π)d

∫
ddq

qµqν

(2v ·q −∆+ iε) (q2 −m2 + iε)
. (47)
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We will introduce two sets of form factors. First, we define,

I2µν(vα,∆,m) = I0(∆,m)gµν + I1(∆,m)vµvν . (48)

Second, we introduce F form factors which can be easily computed in terms of scalar integrals,

F0(∆,m) ≡ gµνI2µν = dI0 + I1 = m2I2(∆,m) (49)

F1(∆,m) ≡ vµvνI2µν = I0 + I1 =
∆

4

(
I1(m) + ∆I2(∆,m)

)
. (50)

In fact, F0(∆,m) = I1′ +m2I2(∆,m), so here we have used I1′ = 0. Inverting the relation among
F ’s and I’s we obtain, to lowest order in ǫ = 4− d,

I0(∆,m) = −1

3

(
1 +

ǫ

3

)[
∆

4
I1(m) +

(
∆2

4
−m2

)
I2(∆,m)

]
(51)

I1(∆,m) =
∆

3

(
1 +

ǫ

12

)[
I1(m) + ∆I2(∆,m)

]
− m2

3

(
1 +

ǫ

3

)
I2(∆,m) . (52)

Finally, we substitute the known values of I1(m) and I2(∆,m). Using the same notation as in
(41),

I0(∆,m) = − m3

3 · 16π2

{(
2

ǫ
+ log

(
µ2

m2

)
+

8

3

)
x

(
x
2 − 3

2

)
+

x

2
+ (x2 − 1)F(x)

}
(53)

I1(∆,m) =
m3

3 · 16π2

{(
2

ǫ
+ log

(
µ2

m2

)
+

13

6

)
x(4x2 − 3) +

3

2
x+ (4x2 − 1)F(x)

}
. (54)

This is the general form for I2. We do not find agreement with [11].
There are two particular cases of interest, in which I2µν can be easily computed directly by using

the HQET method for combining denominators, thus providing cross-checks for our results. In the
first place, we consider the case m = 0, ∆ > 0 (the case ∆ < 0 is analogous). A straightforward
computation using the HQET method yields,

I0
∣∣∣m=0
∆>0

= − ∆3

3 · 128π2

(
2

ǫ
+ log

(
µ2

∆2

)
+

8

3

)
; I1

∣∣∣m=0
∆>0

=
∆3

3 · 32π2

(
2

ǫ
+ log

(
µ2

∆2

)
+

13

6

)
(55)

which agree with (53) and (54) evaluated at m = 0.
Second, in the case ∆ = 0 we find,

I2µν(vα,∆ = 0,m) =
m3

3 · 16π (g
µν − vµvν) , (56)

again in agreement with the corresponding limit of (53) and (54). As remarked above, in connection
with the scalar integral, there is no dimensional regularization pole in this case.

Furthermore, if we assume 0 < x < 1 (m > ∆/2 > 0) and expand in powers of x, we recover
the result given in [7].
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5.2 Vector three-point integral

We now turn to the tensor three-point integrals, starting with the vector one,

I3µ(vα1 , vβ2 ,∆1,∆2,m) =
iµ4−d

(2π)d

∫
ddq

qµ

(2v1 ·q −∆1 + iε) (2v2 ·q −∆2 + iε) (q2 −m2 + iε)
. (57)

On the left-hand side we omitted µ and d from the argument for brevity. We define, as before, two
sets of form factors,

I3µ = I1v
µ
1 + I2v

µ
2 and F1,2 = v1,2 · I3 , (58)

with Ij(Ω,∆1,∆2,m) and Fj(Ω,∆1,∆2,m) related by,

I1 =
1− Ω2

4Ω2

[
−(1− Ω2)F1 + (1 + Ω2)F2

]
, I2 =

1− Ω2

4Ω2

[
(1 + Ω2)F1 − (1− Ω2)F2

]
. (59)

The form factors Fj can be expressed in terms of scalar integrals as,

F1,2 =
1

2
I2(∆2,1,m) +

∆1,2

2
I3(Ω,∆1,∆2,m) . (60)

These equations give an explicit expression for I3µ.
At zero recoil we have vµ1 = vµ2 = vµ and,

I3µ
∣∣∣
Ω=0

= vν · I3ν
∣∣∣
Ω=0

vµ , with vν · I3ν
∣∣∣
Ω=0

=
1

2
I2(∆2,m) +

∆1

2
I3(Ω = 0,∆1,∆2,m) . (61)

Using (42) we obtain,

vν · I3ν
∣∣∣
Ω=0

=
1

2

1

∆1 −∆2

[∆1I2(∆1,m)−∆2I2(∆2,m)]

if ∆1 6= ∆2 and

vν · I3ν
∣∣∣
Ω=0

=
1

2
I2(∆,m) +

∆

2

∂

∂∆
I2(∆,m)

if ∆1 = ∆2 = ∆. This completes our treatment of the vector integral.

5.3 The tensor three-point integral

We consider, finally, the tensor integral,

I3µν(vα1 , vβ2 ,∆1,∆2,m) =
iµ4−d

(2π)d

∫
ddq

qµqν

(2v1 ·q −∆1 + iε) (2v2 ·q −∆2 + iε) (q2 −m2 + iε)
. (62)

In this case we have two sets of four form-factors each,

I3µν = I11v
µ
1 v

ν
1 + I22v

µ
2 v

ν
2 + I12v

{µ
1 v

ν}
2 + I0g

µν , (63)

with v
{µ
1 v

ν}
2 = vµ1 v

ν
2 + vµ2 v

ν
1 , and,

F11 = vµ1 v
ν
1I3µν ; F22 = vµ2 v

ν
2I3µν ; F12 = v

{µ
1 v

ν}
2 I3µν ; F0 = gµνI3µν . (64)
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The F ’s can be given in terms of the I’s using (63). Inverting those relations we obtain,

I11 =
d− 1

d− 2

(1− Ω2)2

16Ω4

{
(1− Ω2)2F11 +

(
Ω4 + 2

d− 3

d− 1
Ω2 + 1

)
F22 − (1− Ω4)F12

}

+
1

d− 2

(1− Ω2)2

4Ω2
F0

I22 =
d− 1

d− 2

(1− Ω2)2

16Ω4

{(
Ω4 + 2

d− 3

d− 1
Ω2 + 1

)
F11 + (1− Ω2)2F22 − (1− Ω4)F12

}

+
1

d− 2

(1− Ω2)2

4Ω2
F0 (65)

I12 = −d− 1

d− 2

(1− Ω2)2

16Ω4

{
(1− Ω4)(F11 + F22)−

(
Ω4 +

2

d− 1
Ω2 + 1

)
F12

}

− 1

d− 2

1− Ω4

4Ω2
F0

I0 =
1

d− 2

(1− Ω2)2

4Ω2
(F11 + F22) +

1

d− 2
F0 −

1

d− 2

1−Ω4

4Ω2
F12 .

Using the results from sections 5.1 and 5.2 we can express the F ’s in terms of scalar integrals as,

F11 =
ω

4
I1(m) +

∆1 + ω∆2

4
I2(∆2,m) +

∆2
1

4
I3(Ω,∆1,∆2,m)

F22 =
ω

4
I1(m) +

∆2 + ω∆1

4
I2(∆1,m) +

∆2
2

4
I3(Ω,∆1,∆2,m) (66)

F12 =
1

2
I1(m) +

1

2

(
∆1I2(∆1,m) + ∆2I2(∆2,m)

)
+

∆1∆2

2
I3(Ω,∆1,∆2,m)

F0 = m2I3(Ω,∆1,∆2,m) .

Here we are using a mixed notation, in terms of both ω and Ω (see (13)), for brevity. Equations
(63), (65) and (66) give an explicit analytic expression for I3µν . Notice also the symmetry of
(66) under exchange of ∆1 and ∆2. The same as with the scalar integral, there are a number of
particular cases of interest which we briefly comment upon in the remainder of this section.

5.3.1 The zero recoil case

In order to study the zero recoil case, it is convenient to write I3µν in terms of vectors vµ± =
1/2(vµ1 ± vµ2 ). Instead of (63) we then have,

I3µν = I++v
µ
+v

ν
+ + I−−v

µ
−v

ν
− + I+−v

{µ
+ v

ν}
− + I0g

µν . (67)

In the zero recoil limit, vµ1 = vµ2 = vµ+ ≡ vµ. Using the results of sections 5.1 and 5.2 it is not
difficult to show that when Ω = 0 we have vµ−I3µν = 0. Therefore, we can write,

I3µν
∣∣∣
Ω=0

= I++

∣∣∣
Ω=0

vµvν + I0
∣∣∣
Ω=0

gµν . (68)

These form factors can be computed as before, resulting in,

I++

∣∣∣
Ω=0

=
1

3

(
1 +

ǫ

12

){
I1(m) +

∆2
1 −m2

∆1 −∆2

I2(∆1,m)− ∆2
2 −m2

∆1 −∆2

I2(∆2,m))

}
(69)

I0
∣∣∣
Ω=0

= − 1

12

(
1 +

ǫ

3

){
I1(m) +

∆2
1 − 4m2

∆1 −∆2

I2(∆1,m)− ∆2
2 − 4m2

∆1 −∆2

I2(∆2,m))

}
. (70)
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We notice that we could have arrived at these equations by using a relation analogous to (42),
namely,

I3µν
∣∣∣
Ω=0

=
1

∆1 −∆2

(I2µν(vα,∆1,m)− I2µν(vα,∆2,m)) , (71)

showing the consistency of our result. These expressions acquire a particularly simple form for
some special values of the parameters. For instance, setting m = 0, ∆j > 0, j = 1, 2 and using
either (71) and (55), or (69), we get,

I0
∣∣∣Ω=0
m=0

=
−1

3 · 128π2

1

∆1 −∆2

{
∆3

1

(
2

ǫ
+ log

(
µ2

∆2
1

)
+

8

3

)
−∆3

2

(
2

ǫ
+ log

(
µ2

∆2
2

)
+

8

3

)}
(72)

I++

∣∣∣Ω=0
m=0

=
1

3 · 32π2

1

∆1 −∆2

{
∆3

1

(
2

ǫ
+ log

(
µ2

∆2
1

)
+

13

6

)
−∆3

2

(
2

ǫ
+ log

(
µ2

∆2
2

)
+

13

6

)}
,(73)

which provides another cross-check of our previous equations.

5.3.2 The case ∆1 = 0 = ∆2

Another case where the form factors for I3µν take a very simple form is when ∆1 = 0 = ∆2. In
this case equations (63), (65) and (66), together with our previous results for the scalar integrals,
give,

I0
∣∣∣
∆j=0

=
m2

128π2

1−Ω2

Ω
log(α+)

(
2

ǫ
+ log

(
µ2

m2

)
+ 1

)

I11
∣∣∣
∆j=0

=
m2

128π2

[
−1− Ω4

2Ω2
+

(1− Ω2)3

4Ω3
log(α+)

](
2

ǫ
+ log

(
µ2

m2

)
+ 1

)

I22
∣∣∣
∆j=0

= I11
∣∣∣
∆j=0

(74)

I12
∣∣∣
∆j=0

=
m2

128π2

[
(1− Ω2)2

2Ω2
− (1− Ω2)(1 − Ω4)

4Ω3
log(α+)

](
2

ǫ
+ log

(
µ2

m2

)
+ 1

)
.

We have also computed I3µν for ∆j = 0 directly from its definition (62) by using the HQET
method for combining denominators. Full agreement with (74) was found.

5.3.3 The case m = 0

A direct calculation of I3µν at m = 0 with the HQET method is considerably more involved than
in the previous case. The results are also much less compact. As an illustration, we will quote the
result for the form factor I0 when m = 0 and ∆1 = ∆2 ≡ ∆ > 0,

I0 = − ∆2

256π2
(1− Ω2)

{(
1 +

1− Ω2

2Ω
log(α+)

)(
2

ǫ
+ log

(
µ2

∆2

))
+ 3 +

(1− Ω2)

2Ω
log(α+)

−(1− Ω2)

4Ω
log

(
1− Ω2

4

)
log(α+) +

(1− Ω2)

2Ω

(
Li2

(
1− Ω

2

)
− Li2

(
1 + Ω

2

))}
. (75)

This equation agrees with the general result given by (65) and (66), evaluated at m = 0, ∆1 = ∆2,
as it should.
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5.3.4 The chiral logs

In this section we focus on the case ∆1 = ∆2 ≡ δm, with 0 < δm/2 < m. We expand in powers
of δm/m, retaining only those terms proportional to log(m), with coefficients computed to lowest
order in δm/m. In this way, we obtain the chiral logs in I3µν .

From equations (41) and (43), we get,

I1(m) = − m2

16π2
log

(
µ2

m2

)
+ · · · ; I2(δm,m) =

δm

32π2
log

(
µ2

m2

)
+ · · · , (76)

where the ellipsis denotes terms not containing log(m), or containing higher powers of δm. On the
other hand, I3 is needed only to zeroth order in δm because it enters the form factors with δm2

as a coefficient. From (29),

I3(Ω, 0, 0,m) =
1

64π2

1− Ω2

Ω
log(α+) log

(
µ2

m2

)
+ · · · . (77)

With these approximations, we obtain the form factors as,

F11 = F22 =
1

64π2
log

(
µ2

m2

){
−1 + Ω2

1− Ω2
m2 + δm2

(
1

1− Ω2
+

1− Ω2

4Ω
log(α+)

)}
+ · · · (78)

F12 =
1

64π2
log

(
µ2

m2

){
−2m2 + δm2

(
2 +

1− Ω2

2Ω
log(α+)

)}
+ · · · (79)

F0 =
1

64π2
log

(
µ2

m2

)
m2 1− Ω2

Ω
log(α+) + · · · . (80)

These results agree exactly with those of [7], once we take into account the differences in normal-
ization and conventions.

6 Final Remarks

In phenomenological applications, the exact functional dependence of Feynman integrals on masses
and residual momenta is usually not needed. Often, the first few terms in a series expansion in some
of the parameters provides the required accuracy. We believe, however, that the exact analytic
computation presented here does not require more calculational effort than approximate schemes.
It has the added advantage of being valid over the entire physical region for internal and external
masses.

Our result (30) for the scalar three-point integral involves four dilogarithms. This is to be com-
pared with the analogous vertex integrals in renormalizable theories, which are generally expressed
in terms of twelve dilogarithms and a collection of logarithms [4, 6]. This simplification is afforded,
of course, by the effective theory formalism, which focuses only on the relevant degrees of freedom.
Equation (30) is quite compact. Once the values for internal and external masses are given, so
that the appropriate branches of square roots, logs and dilogs are determined with the aid of the
“iε” prescription, the expression for I3 given by (30) is easily translated into computer code.

Another possible approach to the computation of three-point integrals is to consider them
strictly within the context of the effective theory, without introducing auxiliary integrals such as
Ĩ3, eq. (3). In that case, one can parametrize the integrand with the HQET method. The resulting
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expressions are, however, difficult to handle and, in general, they seem to lead to hypergeometric
functions of two variables or, more likely, to series of hypergeometric functions. The procedure
adopted in this paper avoids those difficulties.
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