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Abstract

Henri Lunnikivi: Model compression methods for convolutional neural networks
Master’s thesis
Tampere University
Master’s Degree Programme in Information Technology
November 2019

Deep learning has been found to be an effective solution to many problems in the

field of computer vision. Convolutional networks have been a particularly successful

model for computer vision. Convolutional neural networks extract feature maps

from an image, then use the feature maps to determine to which of the preset

categories the image belongs. Convolutional neural networks can be trained on a

powerful machine, and then deployed onto a target device for inference. Computing

inference has become feasible on mobile phones and IoT edge devices. However, these

devices come with constraints like reduced processing resources, smaller memory

caches, decreased memory bandwidth. To make computing inference practical on

these devices, the effectiveness of various model compression methods is evaluated

quantitatively. Methods are evaluated by applying them on a simple convolutional

neural network for optical vehicle classification. Convolutional layers are separated

into component vectors for a reduction in inference time on CPU, GPU, and an

embedded target. Fully connected layers are pruned and retuned in combination

with regularization and dropout. Pruned layers are compressed using a sparse matrix

format. All optimizations are tested on three platforms with varying capabilities.

Separation of convolutional layers improves latency of the whole model by 3.00×
on a CPU platform. Using a sparse format on a pruned model with a large fully

connected layer improves latency of the whole model by 2.01× on desktop with a

GPU and by 1.82× on the embedded platform. On average, pruning the model

allows 39.1× reduction in total model size while causing a 1.67 %-point reduction

in accuracy, when dropout is used to control overfitting. This allows for a vehicle

classifier to fit in 180 kB of memory with reasonable reduction in accuracy.

Keywords: CNN, cross-platform, deep learning, dropout, GPGPU, Mali, master

of science thesis, model compression, neural networks, OpenCL, pruning, Rust,

separable convolutions, supervised learning.

The originality of this thesis has been checked using the Turnitin Originality Check

service.
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Henri Lunnikivi: Konvoluutioneuroverkkojen mallinpakkausmenetelmien arviointi
Diplomityö
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Syväoppimisen on todettu olevan hyvä ratkaisu moniin konenäön ongelmiin. Ko-

nenäön sovelluksissa erityisen menestyksekkäästi käytetyt konvoluutioneuroverkot

yksinkertaistavat laskentaa erottelemalla kuvasta korkean tason piirrekarttoja (engl.

feature map). Konvoluutioneuroverkkoja voidaan kouluttaa tehokkaalla laitteistolla,

josta mallin painokertoimet voidaan ottaa käyttöön kohdelaitteelle. Mallin käyttämis-

estä on tullut mahdollista matkapuhelimissa ja Internet-reunalaitteissa. Nämä lait-

teet ovat kuitenkin usein monella tavalla rajoittuneita: vähemmän laskentakapa-

siteettia, pienemmät välimuistit ja vähemmän erilaisten muistien välistä kaistan-

leveyttä. Jotta mallin käyttämisestä voitaisiin tehdä käytännöllisempää tällaisilla

laitteilla, erilaisten mallinpakkausmenetelmien tehokkuutta arvioidaan kvantitatiivis-

esti. Työssä menetelmiä arvioidaan käyttäen niitä yksinkertaiseen konvoluutioneu-

roverkkoon, joka luokittelee ajoneuvoja optisesti. Konvoluutiokerrokset optimoidaan

separoimalla ne pohjavektoreiksi, jotta mallin käyttäminen olisi laskennallisesti

yksinkertaisempaa. Täysin kytkettyjen kerrosten vähiten merkityksellisiä painok-

ertoimia karsitaan regularisoinnin (engl. regularization) ja dropout-menetelmien

avulla. Karsitut kerrokset pakataan harvaan matriisimuotoon. Optimoituja verkkoja

testataan pöytätietokoneen suorittimella, grafiikkasuorittimella ja tyypillisellä su-

lautetulla laskentajärjestelmällä. Konvoluutioiden separointi nopeuttaa koko mallin

suoritusta 3-kertaisesti tavallisella suorittimella. Karsitut mallit ja harva matri-

isimuoto nopeuttavat mallin suoritusta 2,01-kertaisesti kun konvoluutiot voidaan

ajaa grafiikkasuorittimella. Vastaava nopeutus sulautetulla laskentajärjestelmällä on

1,82-kertainen. Mallin karsiminen vähentää mallin kokonaismuistivaatimusta 39,1-

kertaisesti, aiheuttaen noin 1,67 %-yksikön menetyksen tarkkuudessa, kun käytetään

dropout-menetelmää ylisovittumisen (engl. overfitting) estämiseen. Tämä mahdollis-

taa ajoneuvoluokittelijan sovittamisen 180 kilotavuun muistia.

Avainsanat: diplomityö, dropout, GPGPU, konvoluutioneuroverkot, Mali, mallinpakkaus,

neuroverkot, OpenCL, pruning, Rust, separoituvat konvoluutiot, syväoppiminen,

valvottu oppiminen.

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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Abbreviations

Adam Adaptive moment estimation algorithm for gradient descent

AI Artificial intelligence

ASIC Application specific integrated circuit

AVX Advanced vector extensions

BLAS Basic linear algebra subroutine

CNN Convolutional neural network

CPU Central processing unit

CRS Compressed row storage

CSB Compressed sparse blocks

DNN Deep neural network

DRAM Dynamic random-access memory
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FPGA Field-programmable gate array

GAN General adversarial network

GEMM General matrix multiply

GPGPU General-purpose computing on graphics processing units

GPP General purpose processor

GPU Graphics processing unit

MAC Multiplier-accumulator

MLP Multilayer perceptron

MSE Mean squared error

ReLU Rectifier linear unit

SGD Stochastic gradient descent

SIMD Single instruction, multiple data

SIMT Single instruction, multiple threads

SRAM Static random-access memory

SSE Streaming SIMD extension

SVM Support vector machine

TPU Tensor Processing Unit

VCN A convolutional neural network for vehicle classification [15] by

Huttunen et al.

nnz Non-zero

fN N-bit floating-point number (eg. float f32, double f64)

iN N-bit signed fixed-point integer (eg. signed char, short, int)

uN N-bit unsigned fixed-point integer (eg. unsigned char)

N The set of all natural numbers n ∈ [1,∞[



R The set of all real numbers. Often practically implemented as a 32-bit

or a 64-bit floating point.

Z The set of all integers.
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1 Introduction

Deep learning is becoming pervasive as a solution to problems in the field of computer

vision. In 2012, Cireşan et al. [6] reported reaching and exceeding of human level

performance on state of the art computer vision benchmarks. Soon after, Krizhevsky’s

convolutional neural network [20] classified the 1000-category ImageNet database

of images with unprecedented accuracy. They achieved this level of accuracy by

using a significantly more efficient training procedure that enabled them to fit a large

model to the 1.2 million training examples of the huge ImageNet database. The best

modern deep learning models, based on the convolutional neural network archetype,

are able to create photorealistic images of people [18] or transform hand-drawn style

guide images into synthesized photorealistic sceneries [26].

Research on convolutional neural networks and their derivatives has produced

impressive results. The number of applications for convolutional neural networks

and other deep learning models has increased steadily. The wealth of applicability

is making deep learning pervasive, and there is a growing interest in how to deploy

deep learning models on mobile phones, embedded devices, wearables, and in other

applications of edge computing [1, 15].

As AI becomes pervasive, the requirements to supporting infrastructure increase

as well. Pushing location of computing towards the end-user helps reduce total power

consumption and increase privacy. However, deep learning and edge computing

is a difficult combination. Resource constraints include: limited memory size and

bandwidth, limited processing power and requirements for efficient usage of hardware.

Simpler processors and application specific integrated circuits (ASICs) are often used

instead of general purpose processors. In the past, running a deep learning model on

an edge device has seemed like a tall order. In recent years, there has been plenty of

research into compressing models. An older state-of-the-art deep model like AlexNet

[20] used to have 60 million parameters, while recent cutting edge networks like

MobileNetV21 [28] have only a little more than 2 million parameters for a similar or

better accuracy. Another recent space-optimized variant, SqueezeNet, only has 1.2

million parameters, resulting in a < 500 kB model size [16].

For edge computing, reducing resource usage of deep learning models also results

in less communication between devices, which results in less total power used and

better bandwidth usage. Enabling a model to run on an edge device also mitigates

the privacy problems inherent with the very common practice of server-offloading,

where a picture taken on a cell phone might be sent to a server for processing. Moving

1open-sourced and available as part of TensorFlow-Slim Image Classification Library
in the TensorFlow API
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the processing onto a user’s phone or an intermediate edge device lessens problems

caused by server-offloading. Additionally, it makes it easier for a user to be aware of

where their data has gone.

The particular constraints of edge platforms create a need for particular techniques

and processes. There is a need for models that are smaller, require less power, and

that enable computation on the device instead of server-offloading. Enabling creation

of models like this makes it possible to apply deep learning models on a wider range

of platforms for cheaper and more securely than before.

The aim of this work is to evaluate the effects, results and platform applicability

of some recent techniques in creating smaller and more efficient models. The

main methods evaluated are cross-platform model compression and computational

approximations.

1.1 Deep neural networks and image recognition

The neural network is a basic model structure of deep learning. A neural network

comprises interconnected weights, or parameters, that transform the inputs in a

series of layers. A properly trained network with enough input data can infer classes

or attributes from unseen inputs. An instance of a simple deep neural network (DNN)

is the multilayer perceptron (MLP). A MLP takes selected features as a vector of

inputs. Inputs are then multiplied in chained fully connected hidden layers and a

nonlinearity for each layer. The role of fully connected layers is to apply a weight to

each of the inputs, and the role of the nonlinearities is to simulate an activation of a

neuron. Fully connected layers are often implemented as plain matrix multiplications,

while there are multiple popular implementations of different activation functions.

To summarize, the inputs to the network are progressively multiplied with matrices

and then activated in a predefined structure of layers.

The many parameters of a network can be algorithmically stabilized such that

the resultant model can correctly classify input data it has never seen before. This is

called training of weights. Training can be done by ”showing” the network carefully

selected and correctly labeled input data, and adjusting the weights towards the least

error with a gradient descent algorithm. In addition to the parameters, a network

is defined by its hyperparameters. The typical hyperparameters of a network are

the number of layers and the cardinality of each layer. The first layer starts the

transformation of the input data, and the last layer provides a representation of the

desired outputs.

The creation and operation of a neural network can thus be coarsely divided

into two phases: training and inference. The training phase involves the use of

a massive set of training data to estimate the correct parameters for the network.

Training until the network stops learning (ie. convergence) can often take hours, days
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or weeks depending on the size of the model and the availability of computational

resources. In inference, the deployed network is making predictions on data it has

never seen before, and the training data set needs not be present on the inference

device. Inference is a real-time application. Real-time applications are often latency

sensitive and constrained by available resources on the real-world platforms that

need to be doing the inference. While training is mostly done on a high performance

computer, inference might be run on a small edge device. Examples of devices that

might be running inference would be an end user’s cell phone, or an integrated system

like a security camera.

Hardware manufacturers have risen to the occasion by developing various hardware

solutions to accelerating computations for machine learning, both for server-side and

edge computing. At Google I/O, in 2016, Google announced its Tensor Processing

Unit (TPU), which had already been in use in their data centers. A TPU resembles

a GPU in its ability to do high volumes computation power efficiently but lacks

rasterization and texture mapping capabilities. In 2018, Google announced the Edge

TPU - a power efficient ASIC for machine learning in edge computing. All of the

optimizations measured on a GPU in this thesis should also translate to comparable

TPUs with similar effects on performance, possibly with further reductions in power

consumption. Other notable machine learning manufacturers include Intel Movidius2

which produces special hardware for computer vision, and Huawei with their Kirin3-

family of SoC chipsets, which are oriented for mobile AI.

The convolutional neural network (CNN) is a special case of a deep neural

network, with layers of adaptive feature extractors before the fully connected layers.

CNNs have held the title of being the best adaptive image recognizer since 2011,

when Cireşan et al. used CUDA to accelerate the training of a general, fully

parameterizable convolutional network on a GPU platform. That implementation

used maxpooling and gradient descent on a GPU to achieve best published results

on object classification benchmarks of that time (NORB, CIFAR10, MNIST). [5]

The bar for the state-of-the-art of convolutional neural networks was again raised

in 2012 by Alex Krizhevsky’s AlexNet [20]. His work enabled quick training of CNNs

on very large datasets. This was achieved by speeding up network training via swap-

ping the commonly used nonlinearity function f(x) = tanh(x) for a nonsaturating

nonlinearity called ReLU, and then by training the network using a GPU. ReLU is

defined simply as R(x) = max(0, x) and it was first applied in signal processing by

Hahnloser et al. in 2000 [9]. ReLU and its gradient are easy to compute on a GPU.

This technique has been found to consistently reduce model training times by at

least a factor of 2− 6×. Additionally, they effectively reduced model overfitting by

2https://www.movidius.com/
3https://consumer.huawei.com/en/campaign/kirin980/

https://www.movidius.com/
https://consumer.huawei.com/en/campaign/kirin980/
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use of a technique called dropout, where half of the model parameters are randomly

selected for temporary deactivation during training.

1.2 Deep models with resource-constraints

Deep learning models have come a long way in ease of computing. Creating and

training a model with sufficient predictive power used to be difficult, but is now

practical. While the process of training an effective computational model is still

a task better fit for specialized, high-capacity hardware, the inferring models have

become small. The size reduction of models has proven it possible [21] to fit a model

on an embedded device, with constraints on memory bandwidth and processing

power. In 2016, Iandola et al. introduced SqueezeNet [16], that reaches AlexNet level

accuracy on ImageNet with 50× less parameters. SqueezeNet can also be compressed

into the size of 0.5 MB, which is 510× smaller than AlexNet. Running these networks

on smaller devices, ASICs and FPGAs is now viable.

Reducing model size has many advantages. Memory access on small devices is

generally energy intensive. Han et al. indicate that in a neural network, the energy

use per operation is most dependent on the type of memory access: 5 pJ for on-chip

SRAM and 640 pJ on off-chip DRAM [11]. There is a 100-fold difference in using a

register w.r.t. using the main memory. Reducing the size of the network is generally

effective in reducing the total energy cost of the network by moving the computation

closer to the processor.

Another advantage of small model size is when a model is trained in a distributed

environment, where servers need to communicate less [16]. Lane and Bhattacharya

discuss that many of the current models running on smaller devices also offload the

inference to an external server [1]. This causes a privacy issue where unnecessary

data, such as the pictures that a cell phone user takes, leak further away from the

device where they are needed. Not requiring cloud offloading for inference alleviates

these privacy concerns.

Smaller model size implies that less data need to move between circuits and

between devices. For the current processor architectures, this means that a smaller

network layer might fit into a different kind of a memory or a smaller cache that is

closer to the computation device doing the work. Moving less data between devices

is also obviously beneficial to reduce network load and delays in real-time systems.

There has been continuing research interest in reducing the size of deep models.

A recent study [10] by Han, Mao and Dally has been able to reduce the memory

footprint of AlexNet by 35× and the memory footprint of the VGG-16 by 49×, both

with only a very slight reduction in accuracy. This was achieved via pruning of

low-relevance weights, trained quantization and Huffman coding.

In a recent study [1] by Lane and Bhattacharya, they developed an approach called
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SparseSep to reduce the memory footprint of a CNN consisting of both a notable

amount of convolutional layers and fully connected layers. In SparseSep, the idea is

to compress the fully connected layers via use of sparse matrices and the convolution

layers via separation of the kernels into vectors. Both techniques involve insertion

of a new layer to get a reduction in total number of computations. The techniques

produce a minor loss in accuracy, but they claim to use principled methods that

avoid specializing the original model to recognize a smaller set of activities/contexts.

They were able to reduce the memory footprint of some commonly used deep neural

networks by 11.3× on average and get the networks to run 13.3× faster on platforms

like Qualcomm Snapdragon 400, ARM Cortex M0 and M3, and Nvidia Tegra K1.

1.3 Separable convolutions and sparse layers

Effective compression of convolutional neural networks requires strategies that are

able to reduce the size of both convolutional and fully connected layers. Model

pruning is a method of removing low impact parameters and has been previously

used effectively in model compression [10, 34], though it has been shown to be mostly

effective on the fully connected layers, and less so on convolutional layers.

Combining the model pruning approach with an orthogonal approach for reducing

the size of the convolutional layers is an effective way to gain good total model

compression. An effective way to reduce the cost of the convolutional layers has been

introduced by Jaderberg et al. [17]. They exploit the redundancy between different

filters by decomposing the convolution into a horizontal and a vertical convolutional

vector.

In this study, the effects of several recent inference optimization techniques are

investigated in the context of a small CNN [15]. This CNN classifies images into

four classes of vehicles. The network will be introduced in detail in Chapter 3. The

performance characteristics of the compressed layers are empirically mapped for three

different devices: a desktop computer with a graphical processor, a multithreading

Intel CPU and a representative embedded computer.
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2 Convolutional neural networks and model

compression

Making a small MLP capable of making predictions on images is nigh impossible

due to the large size of image files. Multiplying the pixels of an image taken on

a multi-megapixel camera with a weights matrix costs unfeasibly high amounts of

computing power. Fortunately, much smaller images, like a 128 × 128 pixels RGB

image, usually contain enough information for a computer to make predictions on.

However, this is still too large to enable training a MLP and another approach is

required.

Prior to training, MLP has no presumption of any correlation between the

parameters of the input layer. In a real world image, the close-together pixels are

strongly correlated. A more macroscopic feature of the image might have significance

regardless of its position in the image. Given enough training data, a MLP may

learn to account for this, but it is computationally very costly. The other option is

to build these types of correlations into the model via use of techniques called local

receptive fields, weight sharing and subsampling (Chapter 2). This is what makes

up a convolutional neural network (CNN). [2, pp. 267-269]

Convolutional neural networks solve the problem of extracting macroscopic

features from the image instead of treating each input pixel as a feature. This has

allowed models to have much less parameters, e.g. one 3× 3 kernel of parameters per

feature instead of one for each combination of one pixel and one hidden layer node.

The convolutional neural network (CNN) is a DNN that is widely applied in

image recognition tasks [2, p. 267], and has in fact been the state-of-the-art model

architecture of image recognition since the implementation by Cireşan et al. [5]. It

differs from a MLP in the inclusion of one or more convolutional layers at the start

of the network. To understand the purpose of including the convolutional layers, the

difference to a MLP is explained next.

Prior to training, a DNN does not assume any correlation between the parameters

of the input layer, though it may learn it with enough input data. A convolutional

neural network uses the intrinsic properties of images to extract relevant information

before the fully connected layers. This is achieved by leveraging the fact that the

close-by pixels of a real-world photo are more related to each other than distant pixels.

Convolutional layers extract local features into feature maps using local receptive

fields and weight sharing (2.1.2 Convolutional layer). Stacking more than one

convolutional layer makes it possible to extract higher-order features. Convolutional

layers are often paired with subsampling layers that effectively reduce the amount of
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data in the pipeline and make the network less sensitive to small input translations.

[2, pp. 267-269]

An illustration of a convolutional neural network is presented in Figure 2.1.

Figure 2.1 An illustration of a CNN [32].

As seen in Figure 2.1, features get extracted with convolutions from an image

into feature maps. These feature maps get subsampled into smaller feature maps.

From those smaller feature maps, higher order features are extracted and again

subsampled. The final layer of feature maps gets fed into one or more fully connected

layers that produce the final output.

2.1 The structure of a convolutional neural network

Convolutional neural networks are essentially a stack of linear algebra, organized into

layers. This section describes the different layer types and the non-linear activation

functions used for post-processing layer outputs.

A convolutional neural network predicts the class of an input image from a number

of pre-defined categories. It does so by passing the input image through a series of

specifically weighted layer transformations in the form of convolutions and matrix

multiplications. Transforming an input with a well-selected set of weights produces

the right class label for a given input image. Obtaining well-selected weights for the

layer transformations is called training of the model. The particulars of training are

further explained in Section 2.2.

When a CNN makes a class prediction (i.e. inference), inputs are transformed

through a series of layers. Each layer has a hyper-dimensional weights matrix - i.e. a

tensor that the input gets multiplied with. The structure of a layer transformation

generally matches the following template:

1. an input tensor, ...

2. multiplied or convolved with a weights tensor, ...

3. with a function for post-processing, ...
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4. producing an output tensor.

The exact shape and function of each of the parts varies between different layers.

Weights might function like a filter in a convolutional layer, or as a simple weighting

matrix for a set of input neurons in a fully connected layer. In post-processing, the

output may be aggregated to a reduced size, and/or an activation function may be

applied to transform each element in the output to otherwise enhance the capabilities

of the network. Finally, the outputs are propagated to the next hidden layer, or the

final output probabilities.

The linear algebra needed for inference includes cross-correlation for convolution,

matrix multiplication for fully connected layers and an activation function for the

nonlinearities. In convolutional layers, features are extracted from the input image

using local receptive fields (i.e. filters) that multiply-add or convolve each pixel in

the input. This produces a feature map that is subsampled to a smaller feature

map that makes it more invariant to small translations in input data. Reduced-size

feature maps from subsampling are fed into fully connected layers. In a multiclass

image classification application, the last layer would usually be a fully connected

layer, with a softmax nonlinear function to convert numbers into action probabilities

matching with each output class. [2, p. 267-269]

The simplest part of a CNN, a commonality with the MLP, is the fully connected

layer.

2.1.1 Fully connected layer

The fully connected layer is the basic building block and the defining factor of most

contemporary neural networks. A model consisting only of fully connected layers

and activations is called a multilayer perceptron or a feed-forward neural network.

In their 2006 book, Bishop et al. described it as having been proven to be the

network type of greatest practical value in pattern recognition [2, p. 226]. The

modern convolutional neural network such as the one used by Krizhevsky et al. [20]

still uses this layer type to correlate image features and outputs.

A fully connected layer, put simply, is a matrix multiplication between well-selec-

ted parameters and values of input neurons, producing the values of output neurons

~zl with a bias weight ~b sometimes added to each output neuron.1 These outputs

become activations after being activated by the activation function. The vector

formed by the activations of neurons in one layer is denoted with ~al. Obviously, what

follows is that the activations of neurons in any preceding layer are called ~al−1, and

1Mathematical descriptions about multilayer perceptrons and backpropagation in this chapter
are adapted from http://neuralnetworksanddeeplearning.com/ [23]

http://neuralnetworksanddeeplearning.com/
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the neurons in the following layer are called ~al+1. The structure of a fully connected

layer in the context of a simple neural network is illustrated in Figure 2.2.

Input #1

Input #2

Input #3

Input #4

Output

Output

Hidden
layer

Input
layer

Output
layer

Figure 2.2 An illustration of a simple feed-forward neural network with one hidden layer.
[8]

In a fully connected layer, every neuron is connected to every neuron in the

previous layer multiplied by a weight. Mathematically, this is matrix multiplication

between the activations of the previous layer ~al−1 ∈ RM×1, where M is the number of

neurons in the previous layer, and the weights matrix W l ∈ RN×M , where N is the

number of neurons in the current layer. Additionally, there can be one bias variable

bl summed to each output neuron, though the network described later in this thesis

manages without. This calculation produces output zl = W lal−1+bl ∈ RN×1. Finally,

an activation function is applied to the output. The rectifier function (denoted by R)

is used in all layers except the last one. The rectifier function R is better explained

later in Subsection 2.1.3. The activations of a given layer are defined in terms of the

activations in the previous layer as follows:

~al = R(W l~al−1 +~bl). (1.1)

The network described later in this thesis (Chapter 3) contains no biases, so the

expression for the fully connected layer simplifies to:

~al = R(W l~al−1). (1.2)

In a MLP, these fully connected layers are chained, and the result of the final

layer ~aL can be calculated recursively based on Equation 1.2. Executing this part of

the algorithm on a computer is called a forward pass. A forward pass is required for

both the first training pass, and later when the model is deployed, during inference.

The matrix multiplications of the fully connected layers can be efficiently computed

on most kinds of contemporary hardware by using highly optimized general matrix
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multiplication implementations (GEMM), while applying the rectifier function is

very efficient on all kinds of processors.

2.1.2 Convolutional layer

Fully connected layers and non-linearities can be used to represent the solution to

any problem space, though this is often computationally expensive and redundant.

The common solution to this problem in the domain of image recognition is to first

extract features from the input data using convolutional layers.

The convolutional layer is a solution to the inability of the fully connected layer

to correlate spatial locality, with the benefit of drastic reduction in total computation

and number of weights required. Correlating spatial locality is achieved via use of

local receptive fields, weight sharing and subsampling. These techniques substantially

reduce the number of parameters in the network when compared to a fully connected

layer. [2, p. 269]

A convolutional layer processes an image into a set of F feature maps by convolving

the image with F weights kernels. Each feature map is produced by convolving the

respective weights kernel with each overlapping, kernel-sized neighborhood of input

pixels. Each of the kernels essentially detects one pattern or feature within the input

image in all positions of the image. Multiple chained convolutional layers detect

higher-order features. [2]

In the network under optimization (explained later in Section 3.1), there is a

downsampling layer after each convolution. The subsampling layer takes as input all

nonoverlapping rectangles of the feature map and picks the highest value as output.

A 2 × 2 max pooling layer would then produce a half-sized version of the feature

map. Chaining convolution layers with subsampling layers increases the degree of

invariance of features to minor input transformations [2].

The algorithm for a convolutional layer is, in principle, similar to a filter in an

image processing program. In the algorithm for a monochrome image, a weighted,

constant-sized, 2D filter is multiplied over each input pixel neighborhood. Then the

products are summed, which produces a single output pixel. This repeats for every

input pixel, producing a 2D set of pixels known as the feature map. This process

repeats for a number of times for a number of different filter weights, thus producing

a number of different feature maps. The multicolored RGB version of this algorithm

changes only in that the filters are 3-dimensional, where the last dimension is the

color. Each 3D neighborhood still produces one singular output pixel per feature

map because the products for each color are finally summed.

Given a specific hard-coded kernel and convolving it over an image, a variety

of effects can be produced, as seen in Figure 2.3. In model training, this effect is

turned around to train the weights of the convolutions such that they produce maps
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of trainable features.

Convolution in machine learning is almost always implemented as cross-correlation.

Using the notation introduced in Subsection 2.1.1, 2-D cross-correlation between a

monochrome input image of (i, j) ∈ W ×H and the (u, v) ∈ K ×K kernel of one

feature map is expressed as:

~zl,i,j = W l ? ~al−1 ,
k∑

u=−k

k∑
v=−k

W l,u,v~al−1,i+u,j+v.

Here, ? is used to denote cross-correlation and k = bK
2
c is the radius of the kernel.

The inputs to a convolution usually have multiple channels C (eg. in RGB, C = 3),

and multiple features are detected using F filters. Adding in c ∈ NC channels and

f ∈ NF filters and feature maps, the final equation for 3-D cross-correlation is defined

as

~zl,f,i,j = W l ? ~al−1 ,
C∑
c=1

k∑
u=−k

k∑
v=−k

W l,f,u,v~al−1,i+u,j+v. (2.2)

A plain convolution innately produces a slightly smaller feature map in relation to

the original image by cropping a little bit of the edges of the image. This intuitively

happens because the sliding multiplication window over the original image has no

values to multiply for the outermost pixels of the feature map, as can be seen in

Figure 2.4. Often, it would be useful to have the output feature map be equal in

size to the input image. This issue can be remedied by adding zeroes as edge padding

to the input image for the kernel to convolve over.

Mathematically, a convolution is still a linear transformation and as such, can be

computed using a matrix multiplication algorithm, provided that the input image

is first reordered. Chellapilla et al. were the first in 2006 to use a technique which

first unrolls the convolution, then uses a basic linear algebra subroutine (BLAS) to

efficiently compute the convolution as a matrix multiplication [4]. This unrolling

operation is often referred to as im2col, while the opposite operation is called col2im.

2.1.3 Rectifier linear unit

Outputs of all layers are activated with an activation function to introduce nonlinearity

to the network. The rectifier linear unit (ReLU) is a simple nonlinear activation that

turns negative values into zeros. The behavior of the ReLU is described as follows:

R(x) =

0 x < 0

x x > 0.
(2.3)

According to Bishop et al., the choice of activation function depends on the
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Figure 2.3 Effects of different filter kernels. [33]
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Figure 2.4 Convolution. [27]

nature of the data and the assumed distribution of target data [2, p. 227]. However,

in practice, ReLU was found by Krizhevsky et al. [20] to reduce model training times

by a factor of 2 − 6×, while still allowing the parameters of a model to converge

during training such that the network accuracy remains very high.

2.1.4 Softmax

In the last layer of a network, there is a softmax activation function. The purpose of

the softmax activation is to convert values into action probabilities [30]. This is done

by switching the elements of the activation vector from linear to logarithmic scale

and updating each element to be a fraction of the total sum of values. The action

probability σ(~x)j : RK → RK for each output class j ∈ K is defined as follows,

σ(~x)j =
exp ~xj∑K
k=1 exp ~xk

, (2.4)

where ~x ∈ RK is the vector of output neurons before activation. The softmax

activation function produces the output probabilities, or class predictions, of the

network.

2.2 Model training and the pruning process

This section describes the process of model training. Model training refers to adjusting

the values of weights towards the direction of least error with a gradient descent

algorithm until a sufficiently good model is obtained. The complexity comes from

determining how to calculate error effectively, and how to find the minimum for the

error effectively using gradient descent. A description of determining the error for

each layer for each input (2.2.1 Calculating training loss, 2.2.2 Backpropagation) is

followed by a description of the gradient descent method (2.2.3 Gradient descent).
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Finally, well-known, modern methods are introduced for improving the ability of

the model to generalize (2.2.4 Regularization). Coincidentally, these regularization

methods are also relevant to creating smaller and more efficient models. At the end

of 2.2.3 Gradient descent, a summary of equations for the implementation of a simple

deep neural network is provided.

2.2.1 Calculating training loss

Quadratic cost

The carrying principle of supervised learning is that the weights of the model are

shifted

iteratively towards the direction of least error w.r.t. ground truth, until the model is

sufficiently accurate. This iterative process is governed by two main variables: the

cost function and the learning rate. The cost function determines how divergence

from the right answer is penalized, and the learning rate determines how fast the

weights should be adjusted based on that. A learning rate that is too low causes the

model to converge very slowly, while an overly high of a learning rate may cause

the model to either ”bounce” around a local minimum, or to diverge. A diverging

training process is known as a gradient explosion.

A modified mean squared error (MSE), or the quadratic cost function is written

as

C =
1

2n

n∑
i=1

(~y(~xi)− ~aL(~xi))
2

=
1

2n

n∑
i=1

(~y − ~aL)2,

(2.5)

where n is the number of training samples ~xi. ~aL(~xi) are the activations in the

output layer (i.e. prediction). The ground truth ~y(~xi) are the vectors with known

class labels, a.k.a. the right answers. The output activations ~aL(~xi) can be calculated

simply as one forward pass over the network, as was previously discussed at the end

of Subsection 2.1.1.

Throughout this work, both the activations and the ground truth labels are

expressed and implemented as one-hot encoding. This means that a true label of

a domain with 4 separate classes could be expressed as a vector of 4 floating point

probabilities ~y = 〈0, 0, 1, 0〉.
The quadratic cost function is easy to understand. The original formula for

the MSE is multiplied here by an extra 1
2

to make the expression reduce when

differentiated with respect to weights. This operation does not affect the resultant
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behavior of the network.

The practical interpretation of this is that to train the weights of a model, the

network needs to be provided with training samples ~xi. Then the weights must

be shifted effectively, such that the outputs ~aL(~xi) move in the direction of least

error with respect to ground truth. Mathematically, this can be interpreted as the

derivative of the cost function w.r.t. the outputs:

∇~aC =
∂

∂~a

{
1

2n

n∑
i=1

(~y − ~aL)2

}
. (2.6)

This differential is easily obtained with the chain-rule (f ◦ g)′ = (f ′ ◦ g)g′:

∇~aC =
1

2n

n∑
i=1

∂

∂~a
(~y − ~a)2

=
1

2n

n∑
i=1

2(~y − ~a)(−1)

=
1

n

n∑
i=1

~a− ~y

∇~aC = ~a− ~y.

(2.7)

As is apparent, the gradient of the error can be calculated by subtracting the

value of the true label from the outputs. The extra multiplier 1
2

causes the final

expression of the derivative to simplify.

However, in multiclass classification problems with a softmax output activation,

the cross entropy loss function is used to represent the distance between the target

distribution and the view of the model of the distribution. Cross entropy cost function

is explained in subsection 2.2.2.

2.2.2 Backpropagation

Once the cost function is decided, the error for each layer needs to be determined

and differentiated w.r.t. the weights in each layer. An effective method of doing

this is calculating the error in the final layer, and then backpropagating that error

backwards through the network, reusing the intermediate derivatives obtained in the

calculation of the previous layer. A description of the backpropagation process for

determining the error in the rest of the layers follows.
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Calculating error

The error for the final layer is calculated first. Remembering that in a fully connected

layer, the output before activation is ~zL = W L × ~aL−1, the error for the final layer

in a network of fully connected layers, can be defined as

~δL = ∇~aC �∇σ(~zL). (2.8)

In Equation 2.8 and onwards, � signifies an elementwise vector product between

the gradient of the cost function and the gradient of the softmax outputs ∇σ(~zL) of

the previous layer.

For quadratic cost, the error in the final layer ~δL can be calculated based on

Equation 2.8 by differentiating the cost function presented before in Equation 2.5,

producing ∇~aC = ~aL − ~y. The error in the final layer becomes:

~δL = (~aL − ~y)�∇σ(~zL). (2.9)

This error ~δL is easily calculable. Here, the difference ~aL − ~y is simply output

activations subtracted by ground truth labels. Obtaining the gradient for the softmax

function ∇σ is not necessary. This is because the gradient can be simplified out

of the expression via swapping the MSE cost function for the cross entropy cost

function, explained later in this subsection.

The error in all other layers except the final one can be found by backpropagation

[23]:

~δl = (~δl+1 ×W>
l+1)�∇R(~zl), (2.10)

where ∇R is the gradient of the rectifier function.

Cross entropy cost

If MSE is used as the loss function, initial learning is slow [23]. This is fairly intuitive

from Equation 2.9 on page 16 for error in the final layer: the gradients of the softmax

function tend to be a poor reflection of the perfect step sizes to find the next best

estimate in backpropagation. In particular, when the outputs of the model are far

from the ground truth, the gradient of the softmax function tends to be very flat,

causing a slowdown in learning. This problem can be ameliorated by using cross

entropy as the loss function [23]:

C = −
n∑

i=1

~aL(~xi) log ~y(~xi), (2.11)

where ~y is ground truth, and ~a is model output. Using one-hot encoding, the
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magnitude of the vectors ~a and ~y is the same as the number of classes. Implementation

of cross entropy cost and its derivative for vectors in one-hot encoding are provided

in TensorFlow. Those implementations are used in the model under optimization.

2.2.3 Gradient descent

With the knowledge of how much each weight impacts the resultant cost ∂C
∂W l

, the

weights should now be adjusted effectively towards the direction of least error. The

classic approach to this optimization problem is called stochastic gradient descent

(SGD). In SGD, each weight is updated each iteration i based on a learning rate α:

W i+1 = W i − α
∂C

∂W i

. (2.12)

Running this training iteration on a computer usually takes a lot of time. Iteration

continues until it is interrupted, usually when the model converges.

In modern machine learning applications, SGD has largely been replaced by

more recent and effective methods of gradient descent, such as the adaptive moment

estimation method (Adam) by Kingma et al. [19]. The basic principle of adjusting

the weights towards the least error still holds.

Table 2.1 Equations for training a simple CNN.

Id Equation Eq.-#

1. feedforward

node computations ~zl =

{
~al−1 ×W l , for fully connected

W l ? ~al−1 , for convolution
1.2, 2.2

activations ~al = ~R(~zl), l ∈ [1, L− 1] 1.2

final layer activations ~aL = exp ~zL−1∑
exp ~zL−1

2.4

2. backpropagation

output error ~δL = ∇aC = ~aL − ~y 2.7

error ~δl = (~δl+1 ×W>
l+1)�∇R(~zl) 2.10

∂C
∂W l

= ~a>l−1 × ~δl
3. gradient descent

weights update (SGD) W i+1 = W i − α ∂C
∂W i

2.12

Table 2.1 describes all the equations required to train a neural network consisting

of fully connected layers and convolutional layers.

2.2.4 Regularization

When a network is trained on a set of training data, it can perform worse with

images that it has never seen before. This is called overfitting to training data.

One of the most effective ways of disrupting a network’s tendency to overfit is to
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prevent parameter co-adaptation with a technique called dropout. Dropout refers to

deactivating random neurons for one forward pass during training, which prevents

them from participating in backpropagation. This computationally inexpensive

method causes the neurons of the network to learn to make more general ”observations”

on the data, independent of the presence of particular neurons in the surrounding

layers. [13]

Another very common method of input regularization is called data augmentation.

Data augmentation means expanding the initial set of labelled images by adding

slightly transformed duplicates. Some such transformations include flipping, rotating,

shifting and blurring.

In supervised learning, data is not infinite as it cannot be generated. As such,

the same input data may be shown to the network multiple times over the course

of a single training session. Each set of iterations over which the network sees the

whole input data set is called an epoch.

Dropout is generally effective in increasing the ability of a single neuron to

produce more generally useful output. In practice, this results in better ability of

the resultant model to generalize, improving accuracy on test set. Dropout has been

found by Krizhevsky et al. to approximately double the time that it takes their

model to converge [20]. The resultant models are still large, and it has been found

that further reductions in size can be achieved by eliminating a large number of

parameters in the resultant network.

While the inputs of a network are determined by the data, and the outputs by

the use case, the structure and number of hidden units can be adjusted to get the

best network performance. The number of hidden units non-trivially influences the

network’s propensity for overfitting. A good practical solution is to choose a model

with a high performance on a validation set. The validation set is a set of images

chosen to be left out of the training set. [2, p. 256]

In this study, the best models are chosen based on validation set performance,

and the reported accuracy is based on another set called the test set, which is also

separated from the training data.

L2 regularization

Overfitting can be controlled by reducing model complexity. A good approach for

doing this is to first choose a relatively high number of hidden units, then pressure

weights towards 0, i.e. penalizing model complexity. This can be achieved by adding

a regularization term to the error function ~δ. [2, p. 256]

Two common techniques for penalizing model complexity are L1 regularization

and L2 regularization. Results by Han et al. suggest that the L1 regularization

gives better accuracy after pruning but before retraining, while L2 regularization
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gives the best results after retraining. Both convolutional and fully connected layers

can be pruned. By just pruning a network without retraining, they were able to

achieve a 2× reduction in the number of connections. With retraining, the number

of connections was reduced by 9× [11].

Bishop et al. describe the regularization term as

δ̃(W ) = ~δ(W ) +
λ

2
W>W , (2.13)

where λ is the regularization coefficient that defines the resultant effective model

complexity.

Bishop et al. write that regularizers that are not invariant to linear transformations

favor some equivalent models over others, so they introduce a regularizer that is

invariant to linear transformation [2, p. 258]:

λl
2

∑
w∈W l

w2. (2.14)

Correctly choosing the regularization term λ for L2 pruning is important. Choos-

ing a too large λ results in a simple, underfit model, since more weights get squeezed

to zero. Choosing a small lambda makes the model larger and more prone to overfit-

ting. This can be seen as the accuracy on the validation set being larger than the

accuracy on the test set.

In this thesis, L2 regularization is used in conjunction with masking of weights

during training. This makes the fully connected layers have significantly fewer

nonzero weights in total, effectively reducing model complexity.

2.3 Proposed optimizations

In this study, three strategies for reducing the model size of a pre-trained network were

used: threshold pruning, pruning with L2 regularization, and separable convolutions.

The effect on model size and performance was studied. Some parts of the network

are more efficiently run on a graphics processor, and OpenCL was used to enable

that.

2.3.1 Weights pruning

The aim of pruning weights is to reduce the total amount of values and computations

required in a fully connected layer. Neural networks are often over-parameterized [7],

which helps weights pruning be an effective technique in making the model smaller.

Weights pruning during training has long been used as a technique for regulariza-

tion. In an early work by Le Cun et al. [22], they identified and dropped the least

significant weights in a network to improve its ability to generalize in classification,
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and to speed up training of the model. There has been a lot of recent research interest

in reducing the model size by reducing the number of weights and connections. In

2015, Han et al. [11] reduced the number of parameters of AlexNet by a factor of

9× and of VGG-16 by a factor of 13× without loss in accuracy. They did this by

removing connections below a threshold and retraining the network afterwards using

L2 regularization. This process could be repeated multiple times to achieve final

accuracy and to minimize network complexity. This is also one of the approaches

used in this thesis.

2.3.2 Sparse models

A recent study by Zhu et al. [34] found that sparsified large models consistently

outperform respective dense models of equal memory footprint across many domains.

A particularly relevant class of optimizable models is that of the MobileNets [14],

where Zhu et al. were able to reduce the number of parameters by 50 % with a

1.1 %-point reduction in top-1 accuracy and no reduction in top-5 accuracy.

Pruned weights matrices can be stored as sparse matrices. In this study, com-

pressed row storage (CRS) format is used to represent a sparse matrix. In the format,

the original matrix is encoded as non-zero (nnz) values and nnz indices along a

selected axis. These compressed matrices require 2a+ n+ 1 values where a is the

number of nnz elements and n is either the number of rows or the number of columns

[10].

The format was probably first introduced in 1967 by Tinney and Walker [31]

and first fully described by Buluç et al. [3]. Note that in this work, the CRS/CCS

(compressed column storage) format is used instead of the more general compressed

sparse blocks (CSB) format that Buluç et al. describe. The CRS format allows

efficient computation of the Ax or the ATx matrix-vector product where A is an m

by n sparse matrix and x is a dense vector of length n. Either the Ax or the ATx

computation can be made efficient, depending on if CRS or CCS is used for matrix

storage.

2.3.3 Separable convolutions

Using weights pruning to compress models has been found to be effective for the

weights of the fully connected layers but less so for the kernels of the convolutional

layers. Li et al. achieved inference cost reduction of 38 % on the CIFAR102 training

set with negligible loss in accuracy by pruning out entire filters. He et al. were

able to reach 2 × speed-up on state of the art networks ResNet and Xception but

2https://www.cs.toronto.edu/~kriz/cifar.html

https://www.cs.toronto.edu/~kriz/cifar.html
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with a significant 1.4 % and 1.0 % reduction in accuracy respectively [12]. Kernel

factorization is an alternative to pruning entire channels or filters.

Jaderberg et al. [17] showed that the learned full rank kernels can be approximated

by two rank-1 kernels. For a scene text character recognition application implemented

in Caffe (CPU), this nets a 4.5× speedup with a 1 %-point reduction in accuracy

or a 2.5× speedup with no degradation in accuracy. Their scheme 2 optimization

seems to give best results in practice, as described by Jaderberg et al. [17]. They

also showed that at least in their test case, the separable convolutions optimization

scheme produces slightly better results than FFT based CNN optimizations. Scheme

2 means approximating a single convolutional kernel with two rank-1 basis kernels,

one vertical and one horizontal:

S ? ~x = ~v ? (~h ? ~x).

Here, ? is again used to denote cross-correlation. Rank-1 kernels ~v and ~h are

defined as

~vk ∈ Rd×1×C : k ∈ [1..K], (2.15)

where K is a hand-picked dimension for an intermediate feature map, and

~hf ∈ R1×d×K : f ∈ [1..F ], (2.16)

where F is the number of feature maps in the original unoptimized network.

This optimization scheme reduces the complexity of computation fromO(k2CFH ′W ′)

to O(FKH ′W ′), where W ′ and H ′ are the dimensions of the output feature map.

In deep learning terms, each unoptimized convolutional layer is replaced by

two decomposed rank-1 layers. The separated vertical convolution produces an

intermediate feature map that is then convolved with a set of horizontal kernels.

These kernels are learned by minimizing data reconstruction error, i.e. by aiming to

reconstruct the outputs of the convolutional layers [17]. Jaderberg et al. minimize

data reconstruction error as L2 error:

min
{~hk,f},{~vc,k}

n∑
i=1

F∑
f=1

||W f ? ~al−1(~xi)−
C∑
c=1

K∑
k=1

~hk,f ? ~vc,k ? ~al−1(~xi)||2. (2.17)

Equation 2.17 can be intuitively understood as minimizing the mean squared

error (or L2 error) between the outputs of the unoptimized convolutional layer and

the outputs of the optimized layers. This operation is done layer by layer and

the kernels can be optimized as part of backpropagation. Jaderberg et al. note
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that just replacing the original convolutional layers with the optimized ones for

backpropagation results in model overfitting. Trying to combat the problem with

approaches such as dropout make the model underfit instead [17]. Thus, the best

approach to train the kernels is by data reconstruction as in Equation 2.17.

This optimization is effective if K(F + C) << FCk [17]. For the network under

study, in the first layer F = 32, C = 3, k = 3, and K is selected as K = 7. Thus

K(F +C) < FCk =⇒ 245 < 288. In the second layer: F = 32, C = 32, k = 3, and

K is selected as K = 7. Thus K(F + C) << FCk =⇒ 448 << 3072.

Depthwise separable convolutions

In this study, Jaderberg’s separable convolutions are used to optimize the con-

volutional layers. However, other similar approaches have been developed. An

optimization called the depthwise separable convolution was first introduced in

2014 by Sifre [29]. This means separating the convolution operation into two steps:

depthwise and pointwise convolution. This strategy was used successfully by Howard

et al. in 2017 to optimize convolutional neural networks for resource constrained

platforms [14]. In their paper, they also introduced two simple hyperparameters

that could be used to trade off between network latency and accuracy. Networks

optimized with this strategy are called MobileNets, and they are available as part of

the TensorFlow software library.
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3 Implementation of optimizations

To compare the different optimizations described in Section 2.3, a convolutional neural

network design by Huttunen et al. [15] was selected as a baseline implementation.

The network is described in terms of dataflow programming, which facilitates easy

altering of some aspects of the implementation.

Multiple versions of the different layers of the network were implemented and

combined to get a view on how the optimizations stack up w.r.t. each other. In

this chapter, an outline of the network to be optimized is first given, followed by

descriptions of the implementations of these optimized layers and the final optimized

networks formed of them.

3.1 Use case: a convolutional network for car type recogni-

tion

The network under study is a network for vehicle classification (VCN) by Huttunen

et al. [15]. This is a 5-layer1 CNN with 1.88 million parameters, resulting in a

model size of 7.18 MB. It was trained using 6555 sample images collected originally

in collaboration with Visy Oy2 [15]. An illustration of the general structure of the

network is presented in Figure 3.1. The first two layers are convolutional layers

with max pooling and ReLU as post-processing. The layers three and four are

fully connected layers with ReLU post-processing. The last layer is fully connected,

with softmax to process the values into action probabilities. There are 4 action

probabilities, one for each type of vehicle: bus, car, truck, and van.

Figure 3.1 Illustration of the vehicle classifier network by Huttunen et al. (®2016 IEEE)

The structure and inference implementation of the network for a single image

can be particularly understandably expressed in a Matlab-like pseudo code as in

1The number of adaptive layers of weights is used to count the number of layers in a network [2,
p. 229].

2https://visy.fi/

https://visy.fi/
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Listing 1. Note that as an exception for this code sample, shapes are indexed in

Fortran-order3 as is done in Matlab code.

%% Non-trivial function explanations

% read_jpg(file):

% reads a 3-channel jpg image from a `file` as 32-bit floats

% read_f32s(file):

% reads a series of 32-bit floats from a `file`

% get input and weights

input_image = reshape(read_jpg('image.jpg'),

[96, 96, 3])

conv1_weights = reshape(read_f32s('w_conv1.bin'),

[5, 5, 3, 32])

conv2_weights = reshape(read_f32s('w_conv2.bin'),

[5, 5, 32, 32])

fc3_weights = reshape(read_f32s('w_fc3.bin'),

[24*24*32, 100])

fc4_weights = reshape(read_f32s('w_fc4.bin'),

[100, 100])

fc5_weights = reshape(read_f32s('w_fc5.bin'),

[100, 4])

% layer 1 activations

a1 = relu(convolve(input_image, conv1_weights))

a1_mxp = maxpool(a1)

% layer 2 activations

a2 = relu(convolve(a1_mxp, conv2_weights))

a2_mxp = maxpool(a2)

% layer 3 activations

a2_mxp_reordered = reshape(a2_mxp, [24*24*32, 1])

a3 = relu(a2_mxp_reordered * fc3_weights)

% layer 4 activations

a4 = relu(a3 * fc4_weights)

% layer 5 activations (softmax)

z5 = a4*fc5_weights

a5 = exp(z5)/sum(exp(z5))

Listing 1 Matlab-like pseudo code for single-image inference.

The original network by Huttunen et al. was trained using backpropagation with

3Fortran order: most rapidly changing index first
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learning rate 0.001643. The reported accuracy of the network is based on the weights

selected at 30,000 iterations, though the accuracy of the network seemed to converge

already in 15,000 iterations in 20 minutes on Nvidia Tesla K40t GPU. The dropout

technique was utilized between each layer to reduce the effect of overfitting. [15]

During measurements described in Chapter 4, it was found that the first fully

connected layer of the network is highly redundant. Pruning the fully connected layer

revealed that many parameters can be removed, as a similar network accuracy can

still be achieved with only around 1 in 1000 of the weights retained in the network.

This makes it interesting to test if simple threshold pruning would be an effective

method in quickly and easily eliminating a high amount of least impactful weights.

It is also interesting to see how pruning with L2 regularization affects the network.

L2 pruning was found effective by Han et al. in a very general case [11], and there

is redundancy available in the network under testing. In the 2017 study, Zhu and

Gupta also found that large-sparse networks like this tend to be more effective than

their small-dense counterparts [34].

3.2 Implementation of training

The network under optimization is trained like the original network [15] using

TensorFlow API, with weights for separated convolution attained by minimizing

data reconstruction error, i.e. Jaderberg’s approach. The network is then pruned

with either of the two pruning strategies described next.

3.2.1 Pruning

Two different pruning strategies are used. In threshold pruning, some weights are

periodically and permanently set to zero based on a threshold. These weights are

masked out of the network for the remainder of training. Threshold T (to) is defined

as

T (t0) = min(W l) + t0(max(W l)−min(W l)), (3.1)

where the threshold parameter t0 represents pruning sensitivity. Setting pruning

sensitivity to 0.0 would mean no pruning, and setting it to 1.0 would mean pruning

everything, leaving the model empty. After pruning, the model is retrained until

convergence.

In L2 pruning, the model is regularized, masked as in threshold pruning, and

retrained. It was found via experimentation that early stopping each retraining at

10 epochs allows the model to fit to the training data. Regularization, masking and

retraining is chosen to be applied in steps as follows:

1. load trained weights,
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2. repeat in 10 stages:

(a) eliminate parameters below halfway-through the current weight range:

T = 1
2
(max(W l) + min(W l)),

(b) mask the zeroed weights out of the network,

(c) retrain or tune for 10 epochs with L2-regularization using regularization

term λ.

After each tuning step, the model is accepted if its validation accuracy has

degraded less than 1 %-point from accuracy of the baseline initial unpruned model

on the validation data set. Note that the validation accuracy on the augmented data

set may differ from the baseline accuracy reported previously by Huttunen et al. [15].

Tuned models are saved as long as the validation accuracy keeps increasing.

3.2.2 Assessment of model accuracy and overfitting

The images used for training the network are separated into three sets: training

(90 %, 14108 images), validation (6 %, 898 images) and test set (4 %, 655 images).

The model is first fitted into the training set over a set amount of epochs. Next,

the accuracy of the model on the validation set is assessed, and the accuracy on

the test set is stored with the validation accuracy. The best validation accuracy is

always kept, and the respective test accuracy is what is reported. Divergence of test

accuracy from validation accuracy is also used to assess overfitting.

3.3 Inference optimizations

Every algorithm is run on a specific device. The structure and function of a com-

putational device strongly affects how a layer transformation can be applied most

efficiently. The modern computer processing unit works fastest when input values

are read in the order they are used in the computation, organized into blocks of

appropriate size. In terms of computer memory, an array that is organized like this

without any extra space in between values is said to be contiguous.

A modern CPU is often capable of applying one operation to multiple contiguous

elements, i.e. single instruction, multiple data (SIMD) of Flynn’s taxonomy [25].

Modern graphics processors (GPUs) use a similar model: single instruction, multiple

threads (SIMT). Processors can often combine multiple mathematical operations

together, eg. the multiply-accumulate (MAC) operation and fused multiply-add

(FMA). To leverage these features, some vendors have created their own APIs and

toolkits that can be used to optimize the program code for a particular device.

However, in this thesis, only cross-platform optimization schemes are used: the

LLVM compiler infrastructure and OpenCL.



27

Inference code and benchmarks were written in Rust and OpenCL. Rust is a

relatively new, open-source, systems programming language by Mozilla Foundation.

Rust is compiled with rustc of the LLVM compiler infrastructure. Part of the

inference code was written in OpenCL, that was then compiled by the driver on

each target device. OpenCL is a computing language by Khronos Group, Inc., used

for describing algorithms for GPUs and other highly parallelized processors.

The inference works in two steps: initialization and execution. During initializa-

tion, the OpenCL devices are selected and the OpenCL code is compiled by the

driver for the selected devices. Then the network graph is built into an OpenCL

command queue, and the weights are loaded into the OpenCL buffers.

After the timed execution starts, the input image buffer is loaded onto the

GPU, and the OpenCL command queue is allowed to execute. After operations,

queue.wait() is called on the command queue to wait for the output buffers to

flush and the operations to complete. An implementation for manually executing

the inference graph across multiple devices is given in Listing 2.

In the inference implementation of Listing 2, input is mapped to the GPU buffer.

This code is considered ”unsafe” in Rust, because it uses an underlying C-API to

control OpenCL, and the compiler cannot verify the memory safety of that code.

After mapping inputs, the OpenCL kernels for convolutions 1 and 2 are run. These

can be run on GPU or CPU based on instructions given per measurement. The

buffer is then copied to the secondary device, which may be a GPU or a CPU. This is

a no-op if the primary and secondary devices are the same. Next, the output buffers

are copied onto the host memory for application of the final two fully connected

layers. On the last line, softmax is applied to outputs, and the result is returned.

3.3.1 Sparse matrix multiplication

Training and pruning of weights was implemented using the TensorFlow API via

Python. An optimized inference runtime4 was implemented in Rust. The main

component of the optimized inference runtime is the sparse matrix storage format.

The sparse matrix storage format was first described by Tinney and Walker [31] and

it is used as implemented in the community library Rust crate sprs5.

In the sparse storage format, a matrix containing both zero and nonzero values

(nnz) can be represented as three one-dimensional arrays. The arrays are as follows:

1. nnz values,

2. an accumulating counter of nnz values by row in original matrix, padded with

a zero in the beginning,

4https://github.com/hegza/vcn-inference-rs
5https://github.com/vbarrielle/sprs, license: MIT / Apache 2.0

https://github.com/hegza/vcn-inference-rs
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let mut event_list = EventList::new();

// GPU ops are unsafe

unsafe {

map_to_buf(&input_buf, input_data).unwrap();

// Enqueue the kernel for the 1st layer (Convolution + ReLU)

conv1_kernel.cmd().enq().unwrap();

// Enqueue the kernel for the 2nd layer (Convolution + ReLU)

conv2_kernel.cmd().enq().unwrap();

// Copy GPU buffer to host

conv2_out_buf

.copy(&dense3_in_buf, None, None)

.enew(&mut event_list)

.enq()

.unwrap();

// Enqueue the 3rd layer (fully connected)

dense3_kernel.cmd().ewait(&event_list).enq().unwrap();

}

// Wait for all on-device calculations to finish

cl.cpu_queue.finish().unwrap();

// Read buffer into host memory

let dense3_out = &unsafe { read_buf(&dense3_out_buf).unwrap() };

// Run the 4th layer (fully connected)

let dense4_out = relu(dense4.compute(&dense3_out));

// Run and return the 5th layer (fully connected + softmax)

softmax(dense5.compute(&dense4_out))

Listing 2 VCN inference code.

3. column indices of nnz values.

Consider a matrix with zeroes like0 1 0

7 3 0

0 0 0

 .
This matrix would be stored in three arrays as follows:
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/// computes matrix multiplication in_buf * wgts,

/// when wgts is column-compressed

pub fn sprs_mtx_mul(

wgts: &sprs::CsMat<f32>,

in_buf: &[f32],

out_buf: &mut [f32]) {

let mat = wgts.view();

// creates an iterator over the columns of the matrix

// and associated indices

for (col_idx, vec)

in mat.outer_iterator().enumerate() {

let mut acc = 0f32;

// creates an iterator over the rows of the matrix

for (row_idx, &value) in vec.iter() {

acc += in_buf[row_idx] * value;

}

out_buf[col_idx] = acc;

}

}

Listing 3 Calculating v ×M in Rust with sprs.

// nonzero values

let nnz = [ 1, 7, 3 ];

// number of accumulated nonzeros by row

let nnz_counter = [ 0, 1, 3, 3 ];

// column indices of nonzeros

let col_idxs = [ 1, 0, 1 ];

This matrix is stored in the sprs library as CsMat. In practice, the transpose

of the weights matrix needs to be computed instead of the original matrix. This

is compensated for by using column compression instead of row compression. In a

column compressed matrix, row indices are stored in the third array instead of column

indices. This also changes nnz values to run from top-to-down then left-to-right. A

~v ×M product can be computed using the Rust code of Listing 3.
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3.3.2 Separable convolutions

Weights for separable convolutions were trained using the approach by Jaderberg

et al. by minimizing data reconstruction error in TensorFlow. Intuitively, this

means that the aim is to train the separated rank-1 kernels to produce feature maps

that are as similar as possible to the feature maps produced by the original kernels.

Training is started by having the set of the original trained weights, and a set

of untrained weights for the separable convolutions. The difference between the

feature maps generated by each is then minimized using gradient descent, as shown

in Equation 2.17 in Subsection 2.3.3.

These trained weights are then loaded in the Rust / OpenCL inference code

for benchmarking. OpenCL code for separable convolutions is provided at https:

//github.com/hegza/vcn-inference-rs/blob/master/src/cl/sepconv.cl.

https://github.com/hegza/vcn-inference-rs/blob/master/src/cl/sepconv.cl
https://github.com/hegza/vcn-inference-rs/blob/master/src/cl/sepconv.cl
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4 Measurements

Network performance was measured on multiple different representative platforms.

Platform specifications are presented in Table 4.1.

Table 4.1 Platforms by given name.

Name CPU GPU Operating system

AMD desktop Phenom II X6 1090T Radeon HD 7800 Windows 10
Intel i7 Intel i7-2640M N/A Arch Linux
Mali ARM Cortex-A72×2/-A53×4 ARM Mali T860 Linux Firefly 4.4

Of the platforms presented in Table 4.1, AMD desktop is a typical desktop

computer with a mid-tier GPU with 2 Gb of global memory and an OpenCL work

group size of 256. Intel i7 is an a typical mid-tier laptop and Mali is a representative

embedded platform, used in single-board computers. SoCs of similar performance are

used in contemporary smartphones, like the Samsung Exynos 5422 chip in Samsung

Galaxy S5.

The structures of the trained networks are described in Table 4.2.

Table 4.2 Network structures by given name.

Name L1 L2 L3 L4 L5

VCN Conv Conv FC FC FC
VCN-sepconv SepConv SepConv FC FC FC
VCN-sparse Conv Conv Sparse FC FC

Conv is the baseline implementation of cross-correlation between weights and

inputs. SepConv is the optimized separable convolution implementation. Fully

connected layer (FC ) is the baseline matrix multiplication implementation between

weights and inputs, and Sparse is the pruned fully connected layer. Activations are

rectifier linear unit (ReLU) or softmax.

4.1 Data collection

A set of weights was first trained to baseline accuracy (> 97 %) in TensorFlow,

using a training set of 6555 images augmented to 14108 images by flipping and

Gaussian blurring some of the images at random. The set of images was then

separated to 12555 training images, 898 validation images, and 655 test images,

which were used as-is for L2 pruning methods, but with changes for threshold pruning,

as detailed in Subsection 4.1.1. The trained models were then pruned with three

strategies. The first strategy used threshold pruning that clamps the values below

the threshold T of the range of the weight to be zero, and then eliminates them from
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further training. The second strategy used L2 pruning, as explained in Section 2.2.4.

The third strategy used L2-pruning with 50 % dropout in the pruned layer and

the one following it. The pruned models were then retrained to the training set,

always storing the model with the best validation accuracy, and the respective

accuracy on the test set. After all steps were completed, overfit was assessed using

the test set that was left out of all other steps. The networks were pruned with

multiple pruning thresholds and L2-coefficients λ, to obtain an idea of if and how the

regularization term λ affects parameter count, and how the parameter count affects

network accuracy. Strategies are further illustrated in Figure 4.1.

Figure 4.1 Illustration of the network under pruning. a) threshold pruning, b) L2

pruning, c) L2 pruning with 50 % dropout. [24]

Accuracy on test set is reported for all models, and accuracy on validation set is

reported for L2 pruning methods. To assess model overfit, divergence of test accuracy

from validation accuracy is measured as ”val-test”. The value of overfit is calculated

by subtracting test accuracy from validation accuracy. Overfit is only reported for

L2 pruned models. On threshold pruning, validation accuracy was used to select

the best model like for L2 pruning, but it was not stored for later retrieval. Test

accuracy for threshold pruning can still be used to evaluate effectiveness of strategy

in creating an accurate, compressed model. Baseline model accuracy and size were

retrieved from the study [15] by Huttunen et al. All pruned model sizes account for

CCS storage overhead. All pruning data points are included as Appendix A.
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4.1.1 Threshold pruning

In threshold pruning, the trained model was first pruned to a reduced size based on

a threshold. The pruned model was then retrained to the training set. Issues with

computer memory led to the elimination of the validation set and to the use of test

set for accuracy evaluation in such a way that half of the test set of the 328 images

were used for validation, and 327 were used for test. This led to increased variance

in final model metrics for threshold pruning, and reduced performance of best model

selection algorithm (sa. Section 4.1), but the principle remained the same. Reported

accuracy is the accuracy of the model on the test set, which was not used in selecting

the best model. Using AdamOptimizer for gradient descent, it seemed that the

model was fit on the training set after 10 epochs, and the validation accuracy started

to fall-off after 13 epochs, suggesting overfitting. Threshold pruned models were thus

only retrained for 10 epochs. Figure 4.2 shows model size by pruning sensitivity

t0 on the left, and test accuracy by model size on the right. Models with less than

300 parameters underfit on the training set and were left out of the measurements,

reflected in Figure 4.2 of results (t0 > 0.80, λ > 0.40).
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Figure 4.2 Left: model size by t0 for the threshold pruned model. Right: test accuracy by
model size.

Model size has a relatively small impact on model accuracy with t0 6 0.80. Test

accuracy is < 96 % for all models produced by threshold pruning. Model size may

slightly correlate with model accuracy at this parameter range. Some of the smallest

of the models were inaccurate, and the model was not able to recover on training set

at λ < 0.55.

4.1.2 L2 pruning

In L2 pruning, weights below zero were pruned, then the network was retrained

for 10 epochs with L2 regularization with regularization term λ. This process was
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repeated 10 times. Figure 4.3 shows model size by regularization term λ on the left,

and test accuracy by model size on the right. Figure 4.4 shows how λ and model

size correlate with overfit.
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Figure 4.3 Left: L2 pruned model size by regularization term λ. Right: test accuracy by
model size.

The regularization term seems to have a quadratic correlation with model size.

A larger regularization term λ generally pressures the model to be smaller, but after

a point, the high regularization factor starts gimping the ability of the model to

recover and it starts becoming harder to eliminate parameters from the model.

10−4 10−3 10−2 10−1

1

2

3

4

λ

V
a
l-
te
st

(%
-p
o
in
ts
)

152 154 156 158 160 162 164 166 168

1

2

3

4

Model size (kB)

V
al
-t
es
t
(%

-p
o
in
ts
)

Figure 4.4 Left: L2 pruned model overfit by regularization term λ. Right: overfit by
model size.

Increase in regularization term λ seems to correlate negatively with model overfit.

Stronger regularization may reduce overfit. Model size seems to have a quadratic

relationship with overfit for this model.
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4.1.3 L2 pruning with 50 % dropout

Figure 4.5 shows model size by regularization term λ on the left, and test accuracy

by model size on the right. Figure 4.6 shows how λ and model size correlate with

overfit.
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Figure 4.5 Left: L2 pruned with dropout model size by regularization term λ. Right: test
accuracy by model size.

Increase in regularization term λ seems to correlate with model size. The

implication is that a high regularization term sometimes gimps the ability of the

model to recover while using dropout. Because the model accuracy is generally

slightly higher than that of threshold pruning with similar compression factors, it

seems that a small amount of regularization is helpful for compression of the model

without loss in accuracy. However, results are inconclusive without a more rigorous

statistical analysis.

When model size is the smallest, either test accuracy is the highest, or overfit is

the smallest. One outlier produced a negative overfit, undoubtedly by luck.

Increase in regularization term λ seems to correlate negatively with model overfit.

Stronger regularization may reduce the ability of the model to fit when used with

dropout.

These three pruning strategies all caused the model to lose test accuracy on

average. On average, threshold pruning lost 3.78 %-points, L2 pruning lost 3.6 %-

points and L2 pruning with dropout lost 1.67 %-points. L2 pruning with dropout

produced the smallest, the most accurate, and the least overfit models. Threshold

pruning seems to have no effect on accuracy until the point of collapse at t0 > 0.1.

Assesment of which of the L2 pruned models would be the best for a given application

would be difficult. Picking the model based on the best test accuracy gives a model

that happens to score well on that test set. Picking the model with the highest

validation accuracy gives the most overfit model. Assessment of result goodness can
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Figure 4.6 Left: L2 pruned with dropout model overfit by λ. Right: overfit by model size.

therefore be made based on the average results of the method. Strategy performance

averages are shown in Table 4.3. Averages were calculated based on the results

presented in Appendix A.

Table 4.3 Averages of measurements on pruned models. Baseline model is provided for
reference.

Strategy
Validation
accuracy (%)

Test
accuracy (%)

Over-
fit (%)

Parameters
in 3rd layer

Model
size (kB)

VCN - 97.75 - 1,843,200 7180
Threshold

pruning
- 93.97 - - -

L2 pruning 96.48 94.15 2.32 907 157
L2 pruning

with
dropout

97.24 96.08 1.15 4279 184

On average, L2 pruning with with 50 % dropout produced 39.1× smaller models

(183.82 kB) with 431× less parameters in the third layer (4279 on average) with

1.67 %-point reduction in accuracy. Values for model size are missing in Table 4.3

because parameter count can be arbitrarily chosen as long as the threshold t0 6 0.8.

4.1.4 Performance measurements

Alternative implementations for the fully connected layer were measured to find a

good baseline implementation for the model. The implementations compared were:

• naive host: a double for-loop matrix multiplication in Rust,

• OpenCL (CPU): a vectorized single-loop OpenCL FMA implementation on
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the host CPU as presented at https://github.com/hegza/vcn-inference-

rs/blob/master/src/cl/mtx_mul.cl,

• matrixmultiply: the most used Rust library for matrix multiplication 1,

• cnugteren 10: an efficient OpenCL matrix multiplication algorithm adapted

from an online tutorial2.

Measurements were taken using a benchmark suite of 100 samples over 5050

iterations. Values reported are means after elimination of outliers. Table 4.4

shows that the vectorized OpenCL implementation of matrix multiply for the

CPU was the lowest in latency (sa. https://github.com/hegza/vcn-inference-

rs/blob/master/src/cl/mtx_mul.cl).

Table 4.4 Alternative implementations for fully connected layer.

Latency (ms)
Implementation AMD desktop Intel i7
Naive host 3.47 2.03
OpenCL (CPU) 0.615 0.615
matrixmultiply 3.21 1.60
cnugteren 10 5.37 -

The weights were then input into an inference runtime written in Rust. The

OpenCL code was compiled by the OpenCL driver for a target device, and the Rust

code gets compiled into native CPU code as is the case with C. For comparison, the

baseline variant of the network was run against a version written in C. Results are

presented in Table 4.5. The C-version was compiled with gcc -o main -std=c11

-O3 with -lm, -lOpenCL, and associated flags as required per platform. The OpenCL

implementation targets the GPU on the AMD desktop and the CPU on the i7. All

implementations use the same timing strategy: the clock is started after loading

the inputs into RAM or after inputs have been mapped to the GPU, and before

dispatching the first kernel. The clock is stopped after the final values are in RAM.

Table 4.5 Inference for one image, C and Rust baselines.

Inference time / image (ms) Speedup over C
Implementation AMD desktop Intel i7 AMD desktop Intel i7
C 297 47.9 N/A N/A
C (OpenCL) 2.70 10.6 110× 4.52×
Rust (OpenCL) 1.87 23.0 159× 2.08×

1https://github.com/bluss/matrixmultiply
2https://cnugteren.github.io/tutorial/pages/page1.html

https://github.com/hegza/vcn-inference-rs/blob/master/src/cl/mtx_mul.cl
https://github.com/hegza/vcn-inference-rs/blob/master/src/cl/mtx_mul.cl
https://github.com/hegza/vcn-inference-rs/blob/master/src/cl/mtx_mul.cl
https://github.com/hegza/vcn-inference-rs/blob/master/src/cl/mtx_mul.cl
https://github.com/bluss/matrixmultiply
https://cnugteren.github.io/tutorial/pages/page1.html
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The GPU-utilizing OpenCL versions on AMD desktop run a lot faster than the

plain C version. The OpenCL implementation also attains a speedup running on

the i7.

Separating convolutions with K1 = 7, K2 = 7 to produce a 2.5× reduction to

layer-wise computation complexity reduced accuracy to 96.49 %. The best sparse

weights provide an accuracy of 97.40 %. These two pretrained optimized networks

were then run on the three devices. An efficient OpenCL implementation was

used as baseline (VCN). VCN-sepconv uses separable convolution as explained in

Subsection 2.3.3. VCN-sparse uses a sparse model created with L2 pruning as

explained in Subsections 2.3.1 and 2.3.2. Results are presented in Table 4.6. Results

were obtained by timing the network execution time over the test set of 655 images

and then dividing the total time by 655.

Table 4.6 Per-image inference time by platform, sampled 100 of 5050 runs.

Execution time (ms) / speedup
Platform VCN (97.75 %) VCN-sepconv (97.3 %3) VCN-sparse (97.40 %)
AMD desktop 1.87 1.46 1.28× 0.931 2.01×
Intel i7 23.0 7.67 3.00× 29.8 0.77×
Mali4 120 80 1.50× 66 1.82×

While measuring the i7 performance on the whole test set of 655 images, there

was a significant drop in performance of around 30 % when compared to running the

network on a single image only. This is most likely due to CPU throttling during

benchmark runs. Additionally, all inputs were black-boxed from the compiler on

benchmark runs to prevent cache preloads outside the bench loop.

A network with the sparse CCS matrix storage as the third layer was implemented

and compared to the baseline model. Results are shown in Table 4.7.

Table 4.7 Execution time of VCN and VCN-sparse, and the sparse layer on AMD desktop.
Share of sparse layer of total time is provided as a percentage.

Execution time
Implementation of network of third layer (standalone)
VCN 1.87 ms 615 µs 32.9 %
VCN-sparse 0.931 ms 13.7 µs 1.4 %

With the sparse layer, the model is compressed by 46.6×. The smaller size makes

the network latency twice as low on desktop. As can be seen in Table 4.7, the

pruning process makes the third layer so small that computing it becomes almost

free on desktop (13.7 µs).
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4.2 Analysis of results

These results are compared to previous results in other studies. The original model

for vehicle classification by Huttunen et al. was obtained via optimizing the hy-

perparameters with the aim of producing the model with best predictive power

[15]. However, their hyperparameter space only allowed for fully connected layers,

while large-sparse models have seemed to produce better results [34]. Additionally,

Jaderberg et al. have shown that separable convolutions are an effective technique in

speeding up convolutions with sometimes negligible loss.

4.2.1 Pruning for model size and latency reduction

All tested pruning methods were effective in reducing model size to a fraction of the

original (> 42.1×), while L2 pruning with dropout was the most accurate while being

the least overfit. Notably, returning the original unpruned model to original accuracy

was difficult with the newly chosen training, validation, and test sets. Reorganizing

of the data set may have contributed to the resultant accuracy.

Finding such a threshold t0 for threshold pruning that would result in acceptable

loss in accuracy was difficult with the used data set, as the number of test images was

low enough to cause a relatively high variance in resultant test accuracy. However,

many of the parameters were found to be low-impact for the model in the first place,

and cutting off more than 75 % of the weights can be an effective and easy way

of reducing model size, provided that the model is retrained to the training set

afterwards.

L2 pruning by itself did not retain enough test accuracy either and was overfit.

The deficiency in number of test images may have contributed to loss in accuracy.

Combining L2 pruning with dropout allowed for controlling the overfit while allowing

the model to converge. The model retained accuracy well considering the compression.

The number of parameters was reduced from 1.84 million to around 2-3 thousand.

That is a 720× reduction in parameter count in the first fully connected layer layer.

In addition to model size reduction, pruning allows for a faster inference runtime.

The latency of the pruned 3rd layer is 44.9× lower when compared to the fully

connected layer on AMD desktop. Compared to the baseline OpenCL-accelerated

model, sparse format improved latency by 2.01× on AMD desktop, and 1.82× on

Mali as convolutions then became the bottleneck. Sparse format did not improve

latency on i7 (0.77×).

In the 2015 study by Han et al. [11], the number of parameters in AlexNet was

reduced by 10×, and the number in VGG-16 by 13× with no reduction in accuracy.

In 2016, AlexNet level of accuracy was achieved with SqueezeNet and 50× less

parameters. In 2017, state-of-the-art models were pruned by Zhu et al. [34] for
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compression factors of 10×, while the number of nnz parameters of the network

under study were reduced by a factor of 46.6×. One possible interpretation is that

the third layer of VCN is considerably overparameterized. This may still be taken as

further evidence towards the usability of sparse models for effectively representing

more complex dense models as shown by Zhu et al. [34].

Similar compression factors were achieved on this model, as have been achieved

on state-of-the-art models. The total model size was reduced to 170.72 kB with

L2 pruning with dropout, which is similar in magnitude with SqueezeNet with it’s

500 kB model size. Many less optimized models would likely benefit from a simple

L2 pruning with dropout followed by sparse storage. These results may also indicate

that purposefully creating overparameterized models and then aggressively pruning

them may also be a good approach to creating effective and small deep learning

models. This agrees with results by Zhu et al. [34].

The fastest implementation for the fully connected layer in this network was the

simple OpenCL implementation on CPU. Using that implementation, the baseline

OpenCL optimized model latency is 1.87 ms for the AMD desktop and 23.0 ms

for i7, compared to the 297 ms and 47.9 ms of the plain C-version. This is a 159×
speedup on AMD desktop with GPU and a 2.08× speedup on i7 over the original

model. OpenCL seems to be an effective accelerator for this purpose.

4.2.2 Impact of dropout on pruning with L2 regularization

In this subsection, the influence of dropout on pruning results is illustrated. Figures

combining results from both variants of L2 pruning show how dropout improves the

results of L2 pruning. Figure 4.7 shows how model size is dependent on the chosen

regularization term λ for both variants of L2 pruning.
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Figure 4.7 Model size by regularization term λ for both variants of L2 pruning.

As can be seen in Figure 4.7, dropout tends to make resultant model size larger

when combined with L2 pruning. Figure 4.8 show how the accuracy of the model
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behaves for different model sizes and λ parameters.
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Figure 4.8 Left: test accuracy by model size for both variants of L2 pruning. Right: test
accuracy by λ for both variants of L2 pruning.

Test accuracy is generally higher for models that use dropout. Best trade-off

between model accuracy and size seems to come with dropout, with correctly selected

regularization term λ. Results are inconclusive as to whether regularization is helpful

or not. Measurements on model retraining with 0 regularization would reveal this.

Figure 4.9 shows how dropout impacts overfit for regularization term λ and model

size.
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Figure 4.9 Overfit in both variants of L2 pruning. Left: overfit by λ. Right: overfit by
model size.

Figure 4.9 shows how overfit tends to be lower for models that were retrained

with dropout. All in all, not using dropout tends to result in smaller models, but

with the cost of higher amounts of overfitting.
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4.2.3 Latency across devices

Compared to the baseline OpenCL-accelerated model, separable convolutions im-

prove latency by 1.28× on AMD desktop, 3.00× on i7, and 1.50× on Mali. Pruning

improved latency by 2.01× on desktop and 1.82× on Mali. Pruning did not improve

latency on i7 (0.77×).

Separable convolutions appear to improve latency (3.00× for i7, 1.50× for Mali)

on platforms without a dedicated GPU for a very small reduction in accuracy

(≈ 0.45 %-points). These are similar to the original results by Jaderberg et al. It is

reasonable to assume that their optimization scheme affects their network in a very

similar way to how it affects the VCN, by reducing latency by reducing the total

number of computations. The achieved speedup is dependent on hardware: higher

on a platform without a GPU.

On i7 without GPU, the separable convolutions runtime is the fastest while on

AMD desktop, the pruned runtime is the fastest. This is because on platforms

without a GPU, convolutions become a bottleneck while the fully connected layer is

otherwise the bottleneck.

4.2.4 Combining pruning and separable convolutions

It should be possible to combine pruning with separable convolutions, though no such

experiment was carried out in this thesis. For comparison, Lane and Bhattacharya [1]

sped up VGG by 13.3× on embedded platforms with a similar approach. Speedups

with Jaderberg’s separable convolutions and pruning stay within 2 − 3× due to

bottlenecking. Combining these approaches should in theory result in a speedup

of ≈ 4.5× on the desktop platform. While accuracy cannot be guaranteed without

experimentation, there’s no reason to believe that the network would not be able

to recover from both optimizations via retraining. Further experimentation would

clarify the issue.

4.2.5 Reliability of results

The whole set of images was divided into a test set of 655 images, a validation set

of 898 images and a training set of 14108 images. The low amount of validation

and test images produces a greater variance in the performance metric, especially

for threshold pruning with the modified vailidation and test sets. Because there

were many measurements taken, choosing a higher number of images for test and

validation sets would have produced more consistent results. However, it is fairly

clear that pruning with dropout produces most accurate non-overfitting models.

As presented in Subsection 4.1.4, Table 4.4, the OpenCL implementation of the

first fully connected layer only took a suspicious 615 µs to run on OpenCL on both
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desktop and i7. This matches with the OpenCL kernel dispatch time. However,

verifying and benchmarking the whole network on known inputs and results seems

to suggest that the times are reasonable. The likely explanation is that OpenCL is

able to take advantage of the known size of the inputs, and the fully connected layer

gets executed using vectorized multiply-adds in a small number of steps. This makes

it run in the time it takes to dispatch the kernel.

4.3 Summary of findings

L2 pruning with λ = 0.01 and dropout reduces total model size by 42.1× on average

with minor trade-off in accuracy (0.99 %-points on average). L2 pruning with dropout

in general reduces accuracy on average by 1.67 %-points, while reducing model size by

39.1×. Threshold pruning can easily reduce the model size down to around 180 kB

with a high variance baseline reduction in accuracy of 1–6 %-points, possibly partially

due to validation/test set selection. Latency of the pruned layer is reduced by 44.9×
on AMD desktop. This brings the latency of the whole network to a 2.00× speedup

on AMD desktop and to a 1.82× speedup on Mali. Model size was brought from the

original 7.18 MB to 173.87 kB by use of L2 pruning with dropout. These reductions

indicate that either the first fully connected layer is severely overparameterized or

that large-sparse networks have some intrinsic advantage over small-dense networks.

Results are in close agreement with results by Zhu et al. [34].

Separable convolutions improve latency by 1.28× on AMD desktop, 3.00× on i7,

and 1.50× on Mali, while reducing accuracy by 0.45 %-points. Results agree with

results by Jaderberg et al. [17]. Devices with less GPU-like processors benefit from

separable convolutions the most.
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5 Conclusions

L2 pruning with dropout is clearly the best out of the measured pruning methods,

though it’s inconclusive whether L2 regularization helps or interferes with the result,

while dropout seems instrumental. Using sparse storage of pruned models can

produce great improvement in memory footprint during inference, if the number of

prunable weights is high. Sparse models can also eliminate the CPU bottleneck of

the fully connected layer, when the size of the unpruned model is excessively large.

In this case, a speedup of 44.9× was achieved for the sparse layer. Based on this

small sample, GPU platforms may benefit slightly from use of separable convolutions,

though mileage may vary and sometimes the results are worse. However, separable

convolutions can be used to accelerate convolutions on CPU platforms when using a

GPU is not feasible.

5.1 Discussion

Studies by others have shown that L2 pruning and sparse models seem to be a good

alternative for compressing neural networks [10, 11, 34]. This study has shown that

the techniques are applicable to the CNN [15] by Huttunen et al. When comparing

the effectiveness of L2 pruning on this network and state-of-the-art networks, the

technique is similarly effective. This might be taken as further evidence that the

principles can be applied to other similar networks as well. Application is likely to be

easy and effective for any convolutional neural network with a large fully connected

layer. Latency is also improved, if the fully connected layer is a computational

bottleneck.

With the application of L2 pruning, loss in accuracy is expected. Overfitting and

resultant reduction in test accuracy can be ameliorated by use of dropout. It’s up to

the user and use case whether the reduction in accuracy is acceptable or not. Use of

pruning alone should reduce overfitting of the model, and dropout can be used to

augment the effect.

There is also another possible interpretation for the high compression factor, and

the ability of the model to recover from losing most of the weights. It is possible

that the third layer of the network by Huttunen et al. [15] needed not be so large in

the first place. A counterargument to this is provided by Zhu et al. In their study

[34], they claim that large-sparse models consistently outperform small-dense models.

Considering that, the pruned model is likely to compare favorably with a model

trained from scratch with a smaller third layer.

Separable convolutions always reduce the total number of computations required,
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and thus increase general power efficiency. For devices with less GPU-like processors,

separable convolutions can also effectively improve latency. With the wide adoption

of convolutional networks for image processing tasks, edge computing applications

would surely benefit from the optimization.

Another possible use for the optimizations is to create a minimum-latency model

by applying both techniques on a network. Combining L2 pruning with separa-

ble convolutions should be achievable. There is no obvious obstacle to such a

model performing well, if the model manages to recover and compensate for both

approximations.

5.2 Recommendation

Pruning with dropout seems to be a good strategy for creating a considerably smaller

model with minimal loss in accuracy. Of course, problem domain affects parameter

optimization, and these results should not be taken as proof that all problem domains

can be optimized to work so well with large-sparse models. Pruning does appear to

reduce accuracy slightly.

Separable convolutions can be used to increase power efficiency of hardware

running convolutional neural networks. Separable convolutions are a particularly

good fit for devices that lack GPU-like processors.

The original model by Huttunen et al. [15] can be compressed from 7.18 MB to

around 180 kB by pruning the first fully connected layer. Most effective pruning

results with 0.99 %-point reduction in accuracy were achieved by incrementally

pruning all weights below halfway of weight range per step, with L2 regularization

with λ = 0.01, and by using 50 % temporary dropout on the remaining weights in

the first and second fully connected layer during retraining.

5.3 Future work

Investigating the interaction between dropout and L2 pruning may help understand

whether L2 pruning is necessary, or if threshold pruning with dropout works as-is.

A combination of pruning and separable convolutions may be attempted to further

reduce model size. This combination might also improve latency in applications

where either or both form a bottleneck. Combining optimizations into a single model

may improve performance metrics with acceptable trade-off in accuracy.
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APPENDIX A. Results of model pruning

Results of threshold pruning
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t0 test accuracy size (kB) parameters in 3rd layer

0.55 0.9390 2.270 2.39 · 105

0.55 0.9390 2.270 2.39 · 105

0.55 0.9451 2.270 2.39 · 105

0.60 0.9390 0.473 42,700

0.60 0.9421 0.473 42,700

0.60 0.9201 0.473 42,700

0.65 0.9421 0.267 15,800

0.65 0.9572 0.267 15,800

0.65 0.9421 0.267 15,800

0.70 0.9421 0.188 5,340

0.70 0.9512 0.188 5,340

0.70 0.9360 0.188 5,340

0.75 0.9421 0.159 1,570

0.75 0.9451 0.159 1,570

0.75 0.9421 0.159 1,570

0.80 0.9146 0.150 470

0.80 0.9421 0.150 470

0.80 0.9329 0.150 470
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Results of L2 pruning
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t0

parameters

in 3rd layer

validation

accuracy (%)

test

accuracy (%) size (kB) val-test

1 · 10−4 869 97.77 94.20 157.18 3.57

1 · 10−4 841 96.21 94.35 156.96 1.86

1 · 10−4 1,037 98.33 94.66 158.50 3.67

1 · 10−4 770 97.66 93.59 156.41 4.07

1 · 10−4 770 96.55 94.50 156.41 2.04

1 · 10−3 582 96.33 93.74 154.94 2.58

1 · 10−3 425 96.44 94.96 153.71 1.47

1 · 10−3 392 96.55 93.89 153.46 2.65

1 · 10−3 510 97.22 94.66 154.38 2.56

1 · 10−3 359 96.88 93.59 153.20 3.29

1 · 10−2 502 96.21 94.81 154.32 1.4

1 · 10−2 837 96.88 93.74 156.93 3.14

1 · 10−2 306 93.76 93.28 152.79 0.48

1 · 10−2 381 96.33 93.74 153.37 2.57

1 · 10−2 701 97.33 93.74 155.87 3.59

0.10 1,047 97.33 94.50 158.57 2.82

0.10 1,732 96.33 93.89 163.93 2.43

0.10 1,980 95.32 94.20 165.86 1.12

0.10 2,119 94.99 94.50 166.95 0.49

0.10 1,979 95.10 94.50 165.86 0.6
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Results of L2 pruning with 50 % dropout
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t0

parameters

in 3rd layer

validation

accuracy (%)

test

accuracy (%) size (kB) val-test

1 · 10−4 869 97.77 94.20 157.18 3.57

1 · 10−4 841 96.21 94.35 156.96 1.86

1 · 10−4 1,037 98.33 94.66 158.50 3.67

1 · 10−4 770 97.66 93.59 156.41 4.07

1 · 10−4 770 96.55 94.50 156.41 2.04

1 · 10−3 582 96.33 93.74 154.94 2.58

1 · 10−3 425 96.44 94.96 153.71 1.47

1 · 10−3 392 96.55 93.89 153.46 2.65

1 · 10−3 510 97.22 94.66 154.38 2.56

1 · 10−3 359 96.88 93.59 153.20 3.29

1 · 10−2 502 96.21 94.81 154.32 1.4

1 · 10−2 837 96.88 93.74 156.93 3.14

1 · 10−2 306 93.76 93.28 152.79 0.48

1 · 10−2 381 96.33 93.74 153.37 2.57

1 · 10−2 701 97.33 93.74 155.87 3.59

0.10 1,047 97.33 94.50 158.57 2.82

0.10 1,732 96.33 93.89 163.93 2.43

0.10 1,980 95.32 94.20 165.86 1.12

0.10 2,119 94.99 94.50 166.95 0.49

0.10 1,979 95.10 94.50 165.86 0.6
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