
Liang Fang

PERSON RE-IDENTIFICATION WITH DEEP
LEARNING

Information Technology and Communication Sciences (ITC)
Master of Science Thesis

November 2019

i

ABSTRACT

Liang Fang: Person Re-identification with Deep Learning
Master of Science Thesis
Tampere University
Machine Learning and Data Engineering
November 2019

In this work, we survey the state of the art of person re-identification and introduce the basics
of the deep learning method for implementing this task. Moreover, we propose a new structure for
this task.

The core content of our work is to optimize the model that is composed of a pre-trained net-
work to distinguish images from different people with representative features. The experiment is
implemented on three public person datasets and evaluated with evaluation metrics that are mean
Average Precision (mAP) and Cumulative Matching Characteristic (CMC).

We take the BNNeck structure proposed by Luo et al. [25] as the baseline model. It adopts
several tricks for the training, such as the mini-batch strategy of loading images, data augmenta-
tion for improving the model’s robustness, dynamic learning rate, label-smoothing regularization,
and the L2 regularization to reach a remarkable performance. Inspired from that, we propose a
novel structure named SplitReID that trains the model in separated feature embedding spaces
with multiple losses, which outperforms the BNNeck structure and achieves competitive perfor-
mance on three datasets. Additionally, the SplitReID structure holds the property of lightweight
computation complexity that it requires fewer parameters for the training and inference compared
to the BNNeck structure.

Person re-identification can be deployed without high-resolution images and fixed angle of
pedestrians with the deep learning method to achieve outstanding performance. Therefore, it
holds an immeasurable prospect in practical applications, especially for the security fields, even
though there are still some challenges like occlusions to be overcome.

Keywords: deep learning, person re-identification, metric learning, multi-loss, SplitReID

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

CONTENTS

1 Introduction . 1

2 Theory . 3

2.1 Machine Learning . 3
2.1.1 Supervised Learning . 3
2.1.2 Unsupervised Learning . 4

2.2 Deep Learning . 5
2.2.1 Neural Network . 5
2.2.2 Convolutional Neural Network . 8

2.3 Common Convolutional Network Structures 13
2.3.1 ResNet . 13
2.3.2 DenseNet . 15

2.4 Object Detection . 15
2.4.1 Region-based Object Detection . 16
2.4.2 Regression-based Object Detection 18

2.5 Network Training . 19
2.5.1 Loss Function . 19
2.5.2 Learning Rate . 28
2.5.3 Optimization Algorithm . 31
2.5.4 Forward-propagation and Back-propagation 33

2.6 Evaluation Metric . 35
2.6.1 Distance . 36
2.6.2 Mean Average Precision . 37
2.6.3 Cumulative Matching Characteristics 38

2.7 Cross Validation . 39
2.7.1 Hold-Out Method . 39
2.7.2 K-fold Cross Validation . 39
2.7.3 Leave-One-Out Cross Validation . 39

3 Research Methodology . 41

3.1 Dataset . 41
3.1.1 Market-1501 . 41
3.1.2 DukeMTMC-reID . 41
3.1.3 MSMT17 . 42

3.2 Baseline . 42
3.2.1 Backbone . 42
3.2.2 BNNeck structure . 43
3.2.3 Mini-batch . 43

iii

3.2.4 Data pre-processing and augmentation 43
3.2.5 Training aspects . 44

3.3 SplitReID Structure . 46
3.3.1 Training with SplitReID . 46
3.3.2 Inference with SplitReID . 46

4 Results and Analysis . 48

4.1 Results of person re-identification . 48
4.1.1 Results on Market-1501 and DukeMTMC-reID 48
4.1.2 Results on MSMT17 . 49
4.1.3 Results on ResNet and DenseNet 49

4.2 Parameter Reduction . 50

4.3 Demonstration . 50

5 Conclusion . 51

References . 52

1

1 INTRODUCTION

Nowadays, with the rapid development of society, machine learning has been widely used
in many fields of scientific research and every aspect of life with an explosion of informa-
tion such as audio, video, and other formats of data. Moreover, deep learning is the most
powerful and efficient method of machine learning due to the dramatic improvement of
computing power. It has made significant achievements in the field of computer vision
compared to traditional methodologies of machine learning.

As one of the most concerned fields of artificial intelligence, computer vision makes ma-
chines have the capability of perceiving and understanding images and even performs
better than humans in some applications such as face recognition. So it is widely used in
some industries: security, finance, and retail. However, there are still several challenges
with computer vision, such as occlusions, poor resolution images, and bad illumination
conditions. For example, detecting if an image contains objects becomes one of the most
challenging tasks in computer vision, in which the task is named as object detection.

Object detection is one of the core topics in computer vision. It locates objects in an
image with bounding boxes and classifies detected objects. Some traditional approaches
such as Scale invariant feature transform (SIFT) [24], Histogram of oriented gradient
(HOG) [4] and Deformable part model (DPM) [7] were widely used before the popularity
of deep learning. After that, there is a significant improvement of performance in object
detection with the appearance of neural network based on object detectors, such as
Region Convolutional Neural Network (RCNN) [9], You Only Look Once (YOLO) [30] and
Single Shot Multibox Detector (SSD) [23].

Person re-identification is the task that retrieves the same person from a gallery set ac-
cording to the query person based on object detection. It has considerable potential in
urban security or tracking system. However, it faces several challenges, including uncer-
tain angles and orientations of a person captured by different cameras, faces are blurred
due to the distance from people to cameras, the similar color of dressing, and occlusion
of the object. Research of person re-identification starts from the 1990s with some tra-
ditional methods. They extract the single feature, i.e., obtain the histogram of color or
shape from a person image, and make identification with Bayes’ Theorem. The accuracy
has got a significant improvement with the deep learning method Convolutional Neural
Network (CNN) in recent years.

In our implementation of the person re-identification, the model is trained and evaluated

2

on three public person datasets: Market-1501 [44], DukeMTMC-reID [32], MSMT17 [41]
and aim to achieve a competitive performance compared to the state-of-the-art methods.
The main part of work is that we propose a novel structure named SplitReID that performs
competitively on the three datasets with a relatively low computational complexity.

This thesis is structured as follows. Chapter 2 introduces some theoretical backgrounds
and concepts of machine learning and deep neural network firstly. The principle and
alternative components of neural network training, validation methodologies, and eval-
uation metrics would be introduced in the rest of this chapter. Chapter 3 presents the
background of three person datasets, and the implementation details of the BNNeck
and our proposed SplitReID structure. Chapter 4 firstly discusses comparisons about
the performance among our proposed method and some state-of-the-art approaches on
three datasets. Then another comparison among different backbone models is also pre-
sented. Chapter 5 summarizes the highlights of our proposed SplitReID compared to
others’ work, and the work to improve the performance presently.

3

2 THEORY

This chapter introduces the background and concepts of artificial neural network and
machine learning. Besides, alternatives of components of our model are presented in the
rest.

2.1 Machine Learning

Machine learning is a branch of artificial intelligence. It aims to make computers have the
capability of self-learning that machines can make identification or prediction by learning
from large amounts of historical data with algorithms. There is a well-known definition of
machine learning from Tom Mitchell: A computer program is said to learn from experience
E with respect to some class of tasks T and performance measure P, if its performance
at tasks in T, as measured by P, improves with experience E [26].

Machine learning becomes popular again since the 1990s and is now more powerful than
ever before. It has been applied in lots of fields with excellent performance, such as health
care, autonomous vehicles, financial transactions, and internet security. Even in 2016,
AlphaGo produced by Google DeepMind defeated one of the best go players, which is
a milestone that machine overcame humans in the field that is considered as the most
difficult to beat.

Machine learning works as analyzing rules from data and generating results according
to different requirements. It mainly consists of two classes: supervised learning and
unsupervised learning.

2.1.1 Supervised Learning

Supervised learning is a machine learning task that trains a model learned from labeled
training data and make a prediction for new data. In supervised learning, each training
example consists of an input object and an expected output value that the model would
build up a relation between the input and corresponding output. N training examples
(xt,yt) are in the form of {(x1, y1), . . . , (xN , yN)}. A function g would be found by super-
vised learning that the model makes predictions ŷ from test samples x, which is denoted
as ŷ = g(x).

4

In supervised learning, prediction results can be continuous values or discrete values.
Thus, it is divided into regression and classification problems. Figure 2.1 shows an ex-
ample about regression and classification:

(a) (b)

Figure 2.1. Example of supervised learning. (a) Regression. The prediction value (blue
curve) is continuous for fitting samples (blue dots). (b) Classification. It separates sam-
ples (red and yellow dots) into categories.

• In the regression task, the goal is to predict the result with continuous output. For
instance, a problem with predicting the house price when given the size of a house
is a regression problem since the output price is a continuous output.

• Classification is the most common task in machine learning. It aims to find a de-
cision boundary to predict results in the discrete domain, which maps the input
into discrete categories. For example, the given data is about the medical data of
cancer. It contains the size of the tumors and corresponding labels of “benign” or
“malignant” of the tumor. The goal is to predict if the given tumor is benign or ma-
lignant, and this is a classification problem since the prediction results are discrete
categories. The prediction yi ∈ {1, . . . , C}, where i is the number of samples and
C is the number of classes.

2.1.2 Unsupervised Learning

Unsupervised learning refers to learn useful patterns from unlabelled data. Unsupervised
learning algorithms generally learn directly from the original data without any manual
operations such as labeling or feedback. The goal of unsupervised learning is to discover
valuable information that hides in the data, including features, categories, structures, and
distribution patterns.

Clustering is one of the most classic topics of unsupervised learning, and the goal is to
divide a group of samples into different clusters according to specific criteria. A common
rule is that samples in a group are more similar than those among groups. For example,
consumption habit mining is a typical application of unsupervised learning, which clusters
different groups of consumers from consuming features such as purchase frequency, and

5

amount. Consequently, specific marketing plans can be made according to different kinds
of consumers. Figure 2.2 shows an example of unsupervised learning.

Figure 2.2. Example of unsupervised learning. The algorithm clusters samples (blue)
that are without labels into two groups (red and yellow circles) with a specific criteria.

2.2 Deep Learning

Deep learning is a new field of machine learning research, which has brought machine
learning closer to its original goal: artificial intelligence.

Deep learning extracts representative features that can be calculated by computers from
various formats of data such as images or audios based on multi-layer neural network. It
solves a core problem of machine learning that a complex feature could be combined or
extracted from several simple features automatically.

Currently, there are two mainstream neural network structures, which have been proved
that they are beneficial in some fields respectively: convolutional neural network is applied
for spatially-distributed data such as images in image recognition and recursive neural
network deals with time-distributed data such as audio signal in speech recognition and
natural language processing.

2.2.1 Neural Network

The artificial neural network is a network, which consists of processing units (neurons),
and it simplifies and simulates the biological neural network. The information processing
of the neural network is achieved through communication among neurons. The perfor-
mance of prediction depends on the dynamic optimization of weights.

Multiple neurons are connected in a network, one of which can receive various input
signals and convert them into output signals according to specific rules. Because of the
intricate connection and non-linearity of transmission signals among neurons, varieties of
relations can be built from input to output. The artificial neural network is described as a
black box that can give the expression of objective mapping between input and output.

6

Figure 2.3 shows the structure of an aritificial neuron. The input (x1, . . . , xN) and weight
vector (w1, . . . , wN) are denoted as x and w, respectively. The intermediate output z
is obtained with a linear operation

∑
by inner product w · x. Then the final output a is

generated after passing z through an activation function σ. The goal of neural network
training is to adjust weights to make the prediction as accurate as possible.

w1

w2

w3

wn

∑

x1

x2

x3

xn

�

Inputs Weights

Sum

Z

Activation
Function

a

Figure 2.3. Basic structure of a neural network. The input vector x is transmitted for the
linear computation

∑
with weights w, and the output a is obtained from the activation

function σ with previous computation result z.

An artificial neural network consists of multiple neurons, which is usually divided into three
parts: the input layer, the hidden layer, and the output layer. Figure 2.4 is an illustration
of the fully-connected neural network.

• The first layer is the input layer, which receives input vector and passes them into
the neural network model.

• The last layer is the output layer, which generates the final result calculated from
previous layers.

• Layers between the input layer and the output layer are hidden layers. Information
is transmitted among neurons in hidden layers.

Input

Hidden

Output

Figure 2.4. Example of the fully-connected neural network. It contains one layer for the
input layer, the hidden layer, and the output layer, respectively. Each neuron is connected
to every neuron in the previous layer, from input to output. Besides, the number of hidden
layers depends on different requirements.

7

Activation Function

The activation function is to make the linear output to be non-linear, which enables the
neural network model to fit any functions according to the Universal Approximation Theo-
rem [14]. If the neural network is without the activation function, in which case the output
is the linear combination of inputs no matter how many layers the network has, the fi-
nal result equals to that generated from adequate neurons without hidden layers. The
approximation capability of the network is limited.

Similar to the basic idea of calculus: the area under the curve shown in Figure 2.5a can
be divided into an infinite number of rectangles, and the area can be worked out easily
by summing rectangles up. So, activation functions like Heaviside function shown in 2.5b
are needed to “squeeze” the input to approximate curves.

y

x
a b

(a)

x

y

1

0

(b)

Figure 2.5. (a) Illustration of calculus. The area calculation under the curve (shadow)
can be worked out with the integral of the infinite number of rectangles. (b) Heaviside
function. The output equals 1 if the input is greater than 0, and 0 otherwise.

There are three activation functions shown in Figure 2.6 are commonly used so far:

-5-5 -4.5-4.5 -4-4 -3.5-3.5 -3-3 -2.5-2.5 -2-2 -1.5-1.5 -1-1 -0.5-0.5 0.50.5 11 1.51.5 22 2.52.5 33 3.53.5 44 4.54.5 55

0.10.1

0.20.2

0.30.3

0.40.4

0.50.5

0.60.6

0.70.7

0.80.8

0.90.9

11

00

(a)

-5-5 -4.5-4.5 -4-4 -3.5-3.5 -3-3 -2.5-2.5 -2-2 -1.5-1.5 -1-1 -0.5-0.5 0.50.5 11 1.51.5 22 2.52.5 33 3.53.5 44 4.54.5 55

-1-1

-0.8-0.8

-0.6-0.6

-0.4-0.4

-0.2-0.2

0.20.2

0.40.4

0.60.6

0.80.8

11

00

(b)

-5-5 -4.5-4.5 -4-4 -3.5-3.5 -3-3 -2.5-2.5 -2-2 -1.5-1.5 -1-1 -0.5-0.5 0.50.5 11 1.51.5 22 2.52.5 33 3.53.5 44 4.54.5 55

0.50.5

11

1.51.5

22

2.52.5

33

3.53.5

44

4.54.5

55

00

(c)

Figure 2.6. (a) Logistic Sigmoid Function. (b) Tanh Function. (c) ReLU [27] Function.

• Figure 2.6a is the logistic sigmoid function. It maps the wide-range input into the
interval (0, 1). It is effective when the difference of outputs is not particularly large.
It is usually applied in the last layer of a binary classification model to output the
"probability" of each class. The logistic sigmoid function is defined as:

Logistic Sigmoid(x) =
1

1 + e−x
. (2.1)

• Figure 2.6b is the tanh function. It maps the input into interval (−1, 1). It tackles
a problem of logistic sigmoid that the function is not symmetric of the origin, which

8

makes convergence faster than logistic sigmoid. The tanh function is defined as:

Tanh(x) =
2

1 + e−2x
− 1. (2.2)

• Figure 2.6c is the ReLU [27] function. The output equals 0 if the input is less than
0, while the output equals the input otherwise. It solves the vanishing gradient
problem that the gradient attenuates dramatically to approximately zero with the
layer deepens, which makes the training stagnating. ReLU makes the convergence
faster than the logistic sigmoid and tanh. The ReLU function is defined as:

ReLU(x) =

⎧⎨⎩0, x < 0

x, x ≥ 0
. (2.3)

• Softmax is a special activation, which is applied in the output layer of classification
task specifically. It is a extension of the logistic sigmoid, which is utilized in multi-
class classification. The formula of softmax is defined as:

σ(z)j =
ezj∑K
k=1 e

zk
for j = 1, . . . ,K. (2.4)

The prediction result σ(z)j is the probability of j class ∈ (1, . . . ,K) . The softmax
converts a K-dimensional vector z into another K-dimensional vector σ(z) that
each element is in the interval (0, 1), and the sum of all elements equals 1.

2.2.2 Convolutional Neural Network

Fully-connected neural network is not proper in image processing. An image is composed
of multiple pixels. If the fully-connected network is applied for the image task, the number
of parameters would be exploded since neurons are fully connected between layers, and
one iteration of back-propagation would be a tremendous calculation. Figure 2.7 shows
an example of the fully-connected network.

Input	Layer	∈	ℝ⁸ Hidden	Layer	∈	ℝ¹⁵ Output	Layer	∈	ℝ¹⁰

Input	Layers

Hidden	Layers

Output	Layers

0

1

2

3

4

5

6

7

8

9

28	x	28

Flatten

Figure 2.7. Example of a fully-connected network with MNIST [20]. The Input layer con-
tains 784 neurons flattened from a 28×28 image. The hidden and output layers are with
15 and 10 neurons, respectively. Lastly, this network is with 11,935 trainable parameters.

9

Convolutional neural network (CNN) is particularly powerful in image recognition. It re-
duces the number of parameters massively by local connection and weight sharing in
contrast to the fully-connected network. There are three regular components in the con-
volutional neural network, which are the convolutional layer, the pooling layer and the
fully-connected layer that will be introduced in the following. Figure 2.8 illustrates a com-
mon structure of convolutional neural network.

CONVOLUTION POOLING CONVOLUTION POOLING FLATTEN

FULLY
CONNECTED

SOFTMAX

CAR

TRUCK

VAN

BICYCLE

Figure 2.8. Example of convolutional neural network. It makes a classification for the type
of vehicles when given an image. The original image is passed through the convolutional
layer, the pooling layer, and the fully-connected layer gradually with activation functions
to a feature vector for the classification.

Convolutional Layer

“Convolutional neural network” is named from the convolution operation. Image is a kind
of spatial signal that the two-dimensional convolution operation is beneficial to retrieve
the local feature from an image in the convolutional layer.

The convolution operation is to apply a mathematical operation for the original image with
specific feature detectors that are called filters. The definition of original two-dimensional
convolution is as blow, in which f(i, j) and g(i, j) are the original image and the filter,
respectively. “∗” symbolizes the convolution operation:

(f ∗ g)(i, j) =
m=+∞∑
m=−∞

n=+∞∑
n=−∞

f(m,n)g(i−m, j − n). (2.5)

According to the commutative law of convolution, it can be expressed as:

(f ∗ g)(i, j) =
m=+∞∑
m=−∞

n=+∞∑
n=−∞

f(i−m, j − n)g(m,n). (2.6)

In practice, the convolution operation in CNN is flipped from the original convolution that
filters apply the dot product with the original image correspondingly. The definition is as:

(f ∗ g)(i, j) =
m=+∞∑
m=−∞

n=+∞∑
n=−∞

f(i+m, j + n)g(m,n). (2.7)

10

Figure 2.9 shows an example of the convolution for a 7× 7 image with a 3× 3 filter.

0 001 0 01

0 000 0 00

0 100 0 00

0 001 0 01

0 110 1 00

0 000 0 00

0 000 0 00

∗ =

0 10

1 00

0 11

0

Input	Image

Filter

Feature	Map

(a)

0 001 0 01

0 000 0 00

0 100 0 00

0 001 0 01

0 110 1 00

0 000 0 00

0 000 0 00

∗ =

0 10

1 00

0 11

0 1 1 1 0

1 0 1 2 1

1 4 2 1 0

0 0 1 1

0 1 0 0 0

2

Input	Image

Filter

Feature	Map

(b)

Figure 2.9. Example of convolution operation in CNN. (a) First step of the convolution
operation. It applies the filter for the first 3× 3 window with the dot product and obtains 0
as the first element of the result. (b) Result of the convolution operation. The entire result
is worked out, which is a 5× 5 feature map.

Furthermore, multiple feature maps could be obtained by applying different initialized
filters for the original image. Figure 2.10 shows an example of multiple feature maps.

0 001 0 01

0 000 0 00

0 100 0 00

0 001 0 01

0 110 1 00

0 000 0 00

0 000 0 00

Input	Image

Feature	Maps

Figure 2.10. Example of multiple feature maps. A set of feature maps are obtained with
eight different filters, that the dimension of the feature maps is 8× 5× 5.

Besides, a colorful image usually contains RGB three channels. The two-dimensional fil-
ter is extended to be three-dimensional with the depth dimension and applied for the three
channels simultaneously for generating feature maps. Figure 2.11 shows an example of
the filter extended from 2D to 3D.

256 x 256 x 1 256 x 256 x 3

Figure 2.11. Example of the filter extended from 2D to 3D. The filter is 2-dimensional
when given a one channel image and it is extended automatically with the depth of the
given image.

11

Filter kernel is the core component for the feature retrieval, which are not specified with
particular locations. So, the filter kernel can also be applied at arbitrary locations in an
image, which shows the principle of “weight sharing” and reduces the number of trainable
parameters effectively.

Pooling Layer

The pooling layer is usually after a convolutional layer, which is to continuously narrow the
size in two-dimension to reduce the number of trainable parameters and computational
complexity in the network. So, the pooling layer shortens the training time and avoids
over-fitting.

Max pooling layer is the most commonly used pooling layer, which takes the maximum
value in each window. Window size for pooling operation should be specified in advance,
which determines the size of the output feature map. The advantage of the max pooling
layer is that the output maintains even if the image shifts with several pixels. Hence, it is
beneficial for reducing noise. Figure 2.12 shows an example of the max pooling operation
for a 5× 5 feature map with a 3× 3 window.

0 1 1 1 0

1 0 1 2 1

1 4 2 1 0

0 0 1 1

0 1 0 0 0

2

Feature	Map

Max	Pooling
1

Pooled	Feature	Map

(a)

0 1 1 1 0

1 0 1 2 1

1 4 2 1 0

0 0 1 1

0 1 0 0 0

2

Feature	Map

Max	Pooling
1 1 0

4 2 1

0 12

Pooled	Feature	Map

(b)

Figure 2.12. Example of max pooling operation. (a) First step of the max pooling opera-
tion. It takes 1 that is the maximum value in the 2 × 2 window. (b) Result of the maxing
pooling with zero padding. The entire result is worked out with the max pooling opera-
tion at two strides. Notably, zero-padding is applied in the margin of the feature map to
guarantee the 2× 2 max pooling window.

The average pooling layer is also commonly used, which calculates the average value in
a pooling window instead of the maximum number. It is useful for the situation that the
variance of values in the window is large. However, the max pooling is verified as a better
pooling method compared to average pooling through experiments in recent years.

12

Fully-Connected Layer

The fully-connected layer is to “summarize” the feature extracted from previous layers
and map them into the sample space of categories. Therefore the fully-connected layer
is adopted as the last few layers.

Besides, the flatten layer is usually appended before the fully connected layer to ensure
the input shape to the fully-connected layer is a vector. Figure 2.13 shows an example of
the flatten layer.

1 1 0

4 2 1

0 12

Pooled	Feature	Map

Flattening

1

1

0

4

2

1

0

2

1

Figure 2.13. Example of the flatten layer. It flattens a 3 × 3 feature map into a nine-
dimension vector.

Finally, the probability of each class is calculated after the fully-connected layer with acti-
vation functions. Figure 2.14 illustrates an example of the process for a classification task
with a convolutional neural network.

0 001 0 01

0 000 0 00

0 100 0 00

0 001 0 01

0 110 1 00

0 000 0 00

0 000 0 00

Input	Image

Feature	Maps

Pooled	Feature	Maps

Covolution Pooling Flattening

0.9

0.2

0.2

0.1

0.2

1

0.1

0.9

Dog

Cat

Figure 2.14. Example of the process of a classification task. Given a 7 × 7 image, a
set of feature maps are generated from the convolutional and pooling layers. Four fully-
connected layers are adopted after the flatten layer to predict the animal species in the
image with softmax.

13

Two additional fully-connected layers are commonly set before the last fully connected
layers since each fully-connected layer is expected to be responsible for different sub-
features belong to categories. Figure 2.15 is an illustration of four fully-connected layers
for classification..

Flattening Dog

Cat

Figure 2.15. Example of classification with three fully-connected layers. The last layer is
to predict if the image is a dog or cat, and it requires the “local” features, such as face or
leg, detected by the second last layer. Similarly, sub-features from limbs that the third last
layer attempts to retrieve is for the next layer. A suitable number of fully-connected layers
helps improve prediction accuracy effectively.

2.3 Common Convolutional Network Structures

This section presents two widely used CNN structures: ResNet and DenseNet, which are
implemented in our project.

2.3.1 ResNet

ResNet [12] is proposed for solving the degradation problem that both training and test
error rate increases with the number of layers of a network deepens. Figure 2.16 shows
an illustration of degradation problem. The performance of training and test becomes
worse together with the model being deeper, which is not the over-fitting accordingly.

(a) (b)

Figure 2.16. Illustration of degradation problem. Both training (a) and test (b) error with
56 layers (red curve) is higher than that with 20 layers (yellow curve) on CIFAR-10. [12]

14

Degradation problem implies that deep neural network is difficult to optimize when pa-
rameters in previous layers have been tuned properly so that the “identity mapping” that
maps the input directly into the output without manipulation can avoid the degradation
problem happen. ResNet introduces the “residual network” shown in Figure 2.17 as the
basic structure to solve the problem.

weighted layer

weighted layer

+

ReLU

ReLU

�

Identity

��(�)

�(�) + �

Figure 2.17. Illustration of the residual network. It adds a shortcut from the identity
x to the output H(x) = F (x) + x with manipulation F (x). Furthermore, the residual
F (x) = H(x) − x is the object that we expect to optimize instead of the whole result
H(x). In the case that the residual F (x) will be optimized along with H(x) if previous
weights in x are not optimal, while F (x) would be optimized into zero otherwise. [12]

In practical, the architecture of residual networks varies depends on the depth of ResNet.
Figure 2.18 shows two different residual networks.

3 x 3, 64

3 x 3, 64

+

ReLU

ReLU

64-depth �

(a)

+

ReLU

ReLU

256-depth �

1 x 1, 64

3 x 3, 64

1 x 1, 256

ReLU

(b)

Figure 2.18. Illustration of two different residual networks. (a) Building block of residual
network for ResNet-34. It is for ResNet-34 that contains 34 layers of convolutional layer
and fully-connected layer totally. Besides, it consists of two convolutional layers with 3×3
filters.(b) Residual network for deeper versions of ResNet. It is named as “Bottleneck”
building block for ResNet-50/101/152. It contains two convolutional layers with 1 × 1
filters, which are for reducing and increasing the dimensionality of feature maps with the
consideration of computational complexity. [12]

15

2.3.2 DenseNet

DenseNet [15] is proposed for solving the vanishing-gradient problem that occurs with
the increasing depth of networks. The main idea of the solution is to shorten the paths
from the first layers to later layers that DenseNet connects all the layers to ensure the
maximum information transmission between layers. Figure 2.19 illustrates the structure
of DenseNet with a 5-layer dense block.

BN-ReLU-Conv BN-ReLU-Conv BN-ReLU-Conv BN-ReLU-Conv Transition Layer

X1 H1 X2 H2 X3 H3 X4 H4 X5

Figure 2.19. Structure of DenseNet with a 5-layer dense block. Xi, i ∈ {0, . . . , 4} refers to
the inputs for each layer and Hi, i ∈ {1, . . . , 4} indicates the operations of batch normal-
ization, ReLU and convolution in layer. Each layer in the block is connected to previous
ones to maximize the utilization of features processed beforehand. Besides, a transition
layer that contains a convolutional layer and a pooling layer is added after each dense
block to halve the tensor dimensionality. Assume there are L layers in the block, there will
be L connections in traditional networks, while the number of connections in DenseNet
is L(L+1)

2 .

Dense block is the fundamental component and builds up a various depth of DenseNet
depends on the requirement. DenseNet substantially reuses features and further allevi-
ates the vanishing-gradient problem due to the dense-connected relation among layers.
Besides, DenseNet requires a smaller number of parameters compared to ResNet.

2.4 Object Detection

Object detection is in the pipeline of the person re-identification task, where the feature
extraction is based on the detected person images. It focuses on a specific object target
and is the understanding of the foreground and background image, in which targets we
are interested will be separated. In this section, two kinds of object detection algorithms
are presented, which are region-based and regression-based algorithms: the former one
contains two stages that are selecting regions of objects and identify for the detection.
While the latter one combines those two procedures into one, which fastens the detec-
tion. Figure 2.20 shows three tasks of image understanding: classification, detection and
segmentation.

16

(a) (b) (c)

Figure 2.20. Three tasks of image understanding. (a) Classification. It divides objects in
an image into categories. (b) Detection. It highlights objects in an image with a location
that contains coordinates of bounding-boxes. (c) Segmentation. It segments the pixels of
objects in an image. [21]

2.4.1 Region-based Object Detection

The main idea of region-based object detection is to slide different sizes of windows in an
image, then make classification and regression in each area of windows. Windows are
usually set to fit one object with various sizes, and then every object can be detected by
sliding ideally.

R-CNN

R-CNN [9] firstly selects region proposals with external generators such as selective
search [39] that utilizes the hierarchical grouping algorithm to cluster tiny segments into
region proposals with diverse properties of images. Secondly, it adopts the CNN model to
extract features for the object classification and localization. However, the shortcoming of
R-CNN is not efficient since each region proposal needs to be processed independently.
Figure 2.21 is an illustration of how R-CNN works.

CONV

CONV

CONV

Bbox reg SVMs

Bbox reg SVMs

Bbox reg SVMs

Input Image

Region Proposals

Figure 2.21. Process of R-CNN. Firstly, about two thousand region proposals are se-
lected by the selective-search method. Secondly, the CNN model is utilized to retrieve
the feature. Finally, classification and localization are made from those region proposals
with SVM [3] and linear regression method.

17

Fast R-CNN

In fast R-CNN [8], The feature extraction is implemented by CNN for once from the orig-
inal image in contrast to R-CNN. The bottleneck of the fast R-CNN is that the speed of
region proposals generated from the original image is not fast enough. Figure 2.22a is
an illustration of how fast R-CNN works: firstly, the general feature of the original image
is extracted for sharing. Secondly, multiple region proposals generated from the original
image retrieve their corresponding features from the general feature. Thirdly, the Region
of Interest pooling method (RoI pooling) is applied to unify the feature dimension. Finally,
the classification and localization are made with fully-connected layers, in which the clas-
sification is from the softmax, and the bounding box regression is from the fully-connected
layer directly.

Input Image

CONV

FCs

Softmax
for classification

Regression
for Bbox

Region of Interests

RoI Layer

(a)

Input Image

CONV

Feature Map

RoI Pooling

Region Proposal Network

Region Proposals

Classification Regression
for Bbox

Classification Regression
for Bbox

(b)

Figure 2.22. (a) Process of Fast R-CNN. (b) Process of Faster R-CNN.

Faster R-CNN

Faster R-CNN [31] proposes the Region proposal Networks (RPN) as the region proposal
selector instead of the selective-search method. It integrates the feature extraction, re-
gion proposal selection, bounding box regression, and classification into a network, which
accelerates the detection speed dramatically. Figure 2.22b is an illustration of how faster
R-CNN works: firstly, the general feature map is extracted from the original image, which
is the same as Fast R-CNN. Secondly, the corresponding receptive fields in the original
image from each pixel of the general feature map is set for nine anchor boxes with differ-
ent sizes. Thirdly, the Region Proposal Networks selects those anchors that contain an
object as the region proposals. Finally, the chosen region proposals are with the corre-
sponding feature from the general feature map to be made classification and regression
after the RoI pooling.

18

2.4.2 Regression-based Object Detection

Region-based object detection includes two stages that are region proposal selection
and classification-regression, which makes the speed of detection is not fast enough
even though it performs well. Regression-based object detection makes classification and
regression directly, which is usually more efficient and can achieve real-time performance.

You Only Look Once

You Only Look Once (YOLO) [30] divides a image into S × S grids, and predicts B

bounding boxes in a grid and C classes for each grid. For each grid cell, coordinates
of B bounding boxes, the confidence score of containing an object for B bounding boxes
Pr(Object)∗IOU truth

predict and the probability of classes for each grid Pr(Classi|Object), i ∈
{1, . . . , C} are predicted based on GoogleNet [37], then the confidence score of each
class for bounding boxes Pr(Classi) ∗ IOU truth

predict can be calculated by the conditional
probability:

Pr(Classi|Object) ∗ Pr(Object) ∗ IOU truth
predict = Pr(Classi) ∗ IOU truth

predict. (2.8)

Furthermore, the output feature dimension for an image is S × S × (B × 5 + C) , in
which 5 refers to the four coordinates and one confidence score of containing an object.
The final bounding box of each object is optimized with the Non-Maximum Suppression
(NMS) [28]. Figure 2.23 is an example of YOLO.

G
oogLeN

et

Input Image

448 x 448 x 3

14 x 14 x 1024 14 x 14 x 1024 14 x 14 x 1024 7 x 7 x 1024 7 x 7 x 1024

4096 x 1 1470 x 1

7 x 7 x 30

Conv Conv Conv

MaxPo

Conv Resh

FC

FC Resh Detection

Figure 2.23. Example of YOLO. In this example, S,B, and C are set at 7, 2, and 20,
respectively. So the out tensor is 7× 7× 30 from a 448× 448 image through a pre-trained
CNN model. Finally, the dog, car, and bicycle are detected with the optimization of NMS.

Single Shot Multibox Detector

Single Shot Multibox Detector (SSD) [23] is an improvement of YOLO:

• It adopts a “Pyramidal Feature Hierarchy” that yields feature maps with different
sizes for detection, which can fit various images.

• It uses convolutional layers for the classification and regression instead of the last
two fully-connected layers in YOLO.

19

• More anchor boxes with different sizes are designed in a grid cell. The dimension
of the output tensor is (C + 4)× k ×m× n, in which C is the number of classes, k
is the number of anchor boxes in a cell and m× n is the number of grid cells in the
original image. Figure 2.24 is an example of SSD.

VG
G

-16

Input Image

300

Conv

300

3

38

38

512

19

19

1024

19

19

1024

10

10

512

5

5

256

3

3

256 256
1

D
et

ec
tio

n:
 8

73
2

fo
r e

ac
h

cl
as

s

N
on

-M
ax

im
um

 S
up

pr
es

si
on

Conv Conv Conv Conv Conv

Classifier: Conv: 3 x 3 filters for 4 anchor boxs (C classes and 4 offsets)

Classifier: Conv: 3 x 3 x 6 x (C + 4)

Classifier: Conv: 3 x 3 x 4 x (C + 4)

Figure 2.24. Example of SSD. Passed through a VGG [34] model, feature maps with
different sizes are generated with multiple convolutional layers from a 300 × 300 image
for detection. Finally, objects are detected by optimizing with the NMS from 8732 bound-
ing boxes for each class. Notably, feature maps with different sizes are processed with
different number of anchor boxes for each grid cell. [23]

2.5 Network Training

This section introduces essential components, including the learning rate, optimization
algorithm, and loss function for the neural network training. Besides, the basic principles
of the forward-propagation and back-propagation algorithms are presented.

2.5.1 Loss Function

The loss function is for measuring the inconsistency between the prediction of the ma-
chine learning model and the ground truth. It is a non-negative real value function, which
is usually denoted as l(y, hθ(x)). The loss function is the objective function to be opti-
mized in the training procedure. The smaller the loss is, the better the model performs.

Given a training set (x,y) = {(x1, y1), . . . , (xN , yN)} with N samples, in which yi is the
ground truth. ŷi = hθ(xi) is the prediction from a prediction model hθ. The loss is defined
as:

L(x,y) =
1

N

N∑
i=1

l(yi, ŷi). (2.9)

Cross Entropy Loss

Cross entropy loss is the most common loss function for classification. It describes the
distance between two probability distribution, the smaller the cross entropy is, the closer

20

they get to each other. The basic format of cross entropy loss, which is the binary classi-
fication as below:

L = −y log ŷ − (1− y) log(1− ŷ). (2.10)

Figure 2.25 illustrates the relation between ground truth and prediction in cross entropy
loss. With the increasing difference between the prediction and ground truth, the “penalty”
for the loss becomes more serious. Consequently, the model is forced to make the pre-
diction closer to the ground truth.

(a) (b)

Figure 2.25. Illustration of the cross-entropy loss. (a) The ground truth y equals 1. The
cross entropy loss function is L = − log(ŷ), the closer the prediction ŷ is to the ground
truth y, the smaller the loss L will be. (b) The ground truth y equals 0. The cross entropy
loss function is L = − log(1 − ŷ), the further the prediction ŷ is to the ground truth y, the
smaller the loss L will be.

For a binary classification task, the cross entropy loss with N samples is as:

L = − 1

N

N∑
i=1

yi log ŷi + (1− yi) log (1− ŷi). (2.11)

For a multi-label classification task that each sample can be with multiple labels, and each
label is regarded as an independent binary label, so the cross entropy loss of multi-label
classification with N samples and C labels is as:

L = − 1

N

N∑
i=1

C∑
j=1

yij log ŷij + (1− yij) log (1− ŷij). (2.12)

For a multi-class classification that each sample is with one label from several classes,
so the cross entropy loss of multi-class classification with N samples and C labels is as:

L = − 1

N

N∑
i=1

C∑
j=1

yij log ŷij . (2.13)

21

Contrastive Loss

Contrastive loss [11] is a metric learning loss for pair-wise samples. Given (X⃗1, X⃗2) a pair
of input samples. Y is the label for this pair, which equals 0 if they are deemd similar, vice
versa. DW stands for DW (X⃗1, X⃗2) that refers to the euclidean distance between feature
embeddings GW (X⃗1) and GW (X⃗2), where GW is the feature retrieval function:

DW (X⃗1, X⃗2) = ∥GW (X⃗1)−GW (X⃗2)∥2. (2.14)

The general form of contrastive loss for P pairs of samples is defined as:

L(W) =
P∑
i=1

L(W, (Y, X⃗1, X⃗2)
i),

L(W, (Y, X⃗1, X⃗2)
i) = (1− Y)LS(D

i
W) + Y LD(D

i
W),

(2.15)

where LS and LD are the partial loss functions for pairs of similar and dissimilar samples
and required to be specified. The contrastive loss is practically defined in the form as
below, in which m is the hyper-parameter of margin:

L(W, (Y, X⃗1, X⃗2)) = (1− Y)
1

2
(DW)2 + Y

1

2
max {0,m−DW }2. (2.16)

Figure 2.26 is an illustration of the contrastive loss about the relation between the loss L

and the distance DW .

Figure 2.26. Relation between the loss and the distance of a similar pair (red line) and
dissimilar pair (blue line). Y = 0 represents that the pair-wise samples are similar and
the loss function is L = 1

2(DW)2. The loss gets larger with the increasing of the distance.
While, Y = 1 represents that the pair-wise samples are dissimilar, and the loss function is
L = 1

2 max {0,m−DW }2. If the distance of the dissimilar pair is small, the loss increases
to force the model to distinguish the dissimilar hard pair. Margin m is the threshold that
tolerates the distance of a dissimilar pair.[11]

22

Triplet Loss

Triplet loss [33] is initially proposed for face recognition, and it is proved that it performs
well for the person re-identification. In face recognition, the motivation of triplet loss is to
make the faces from the same person as close as possible and different people as far as
possible in the embedding space.

Figure 2.27 shows an illustration of triplet loss. The input is a triplet that consists of
Anchor, Positive, Negative:

• Anchor is the sample selected from the training set randomly.

• Positive is the randomly selected sample of the same class as anchor.

• Negative is the randomly selected sample that is different from anchor.

CNN

CNN

CNN

Shared Weights

Shared Weights

Triplet Loss

Feature Embeddings

Anchor

Negative

Positive

Figure 2.27. Illustration of triplet loss. A triplet of anchor (SpongeBob), positive (Sponge-
Bob), and negative (Patrick Star) images is as the input for extracting feature embeddings
from the CNN model, and triplet loss is calculated from the feature embeddings of the
triplet.

The motivation of triplet loss is to make the embeddings of anchor and positive closer,
while those of anchor and negative further. Figure 2.28 shows an example of the principle
of triplet loss.

Anchor

Negative

Positive

Anchor

Negative

Positive

Training

Figure 2.28. Principle of triplet loss. The negative (red) is close to the anchor (blue),
while the positive (green) is far away from the anchor before training, and their distances
are optimized after training. [33]

23

The definition of triplet loss is as below. (a, p, n) symbolizes the triplet of anchor, posi-
tive, negative. The notation d refers to the distance between two feature embeddings of
samples, and margin is the hyper-parameter that determines the threshold of satisfying
d(a, p) +margin < d(a, n):

L = max (d(a, p)− d(a, n) +margin, 0). (2.17)

The ideal situation of the triplet loss after training is that the distance d(a, p) is close, and
the d(a, n) is far, which implies that the model could distinguish positives and negatives
easily without a tolerance of margin, and the loss is 0. Otherwise, the loss is greater than
0. Generally, triplet loss is optimized with three situations of the triplet introduced below
and illustrated in Figure 2.29:

• Easy negatives: triplet loss L is 0, that is, distance d(a, p) is close and d(a, n) is far
naturally to satisfy d(a, p) +margin < d(a, n).

• Hard negatives: d(a, n) < d(a, p), which implies that the distance between the an-
chor and positive is further than that between anchor and negative.

• Semi-hard negatives: d(a, p) < d(a, n) < d(a, p) + margin, which implies that the
distance between anchor and negative is “margin” further than that between anchor
and positive.

Margin

Semi-hard Negatives

Anchor Positive

Easy Negatives

�(�, �)

Hard Negatives

Figure 2.29. Three situations of triplet loss optimization. The distance d(a, p) is fixed at
the radius of the red circle. The situation that the negative is within the red circle matches
with “hard negatives”. The negative sandwiched in the orange ring with margin diameter
corresponds to the “semi-hard negatives”. The negative in the green area is for the “easy
negatives”.

24

Lifted Structured Loss

Lifted structured loss [29] is proposed based on contrastive loss and triplet loss, which do
not take full advantage of training batches: contrastive loss takes samples randomly as
similar or dissimilar pairs, and the original triplet loss mines triplets of anchor, positive and
negative randomly to form a training batch. However, the pair or triplet lacks a connection
with each other. Lifted structured loss considers the relation between two arbitrary sam-
ples in the training batch. Figure 2.30 is an illustration of the relation among samples for
three loss functions.

�1 �2 �3 �4 �5 �6

(a)
�1 �2 �3 �4 �5 �6

(b)

�1 �2 �3 �4 �5 �6

(c)

Figure 2.30. Illustration of the relation among samples for three loss functions. Red and
blue line denote the positive and negative pair, respectively. (a) Contrastive loss. Loss
calculation is only based on pairs of (X1, X2), (X3, X4) and (X5, X6) without (X2, X3)
or (X4, X5). (b) Triplet loss. No relation is among triplets. (c) Lifted structured loss. Every
two samples form into a pair. [29]

The original lifted structured loss is defined as below, where P̂ and N̂ are the sets of
positive and negative pairs, respectively in the whole training set. (i, j) indicates a pos-
itive pair, and (i, k) and (j, l) represent their neighbor negative pairs. D refers to the
distance between two samples, and max (max

(i,k)∈N̂
α−Di,k, max

(j,l)∈N̂
α−Dj,l) illustrates that

the harder negative pair is selected, in which α is the hyper-parameter of margin.

J =
1

2|P̂|

∑
(i,j)∈P̂

max (0, Ji,j)
2,

Ji,j = max (max
(i,k)∈N̂

α−Di,k, max
(j,l)∈N̂

α−Dj,l) +Di,j .

(2.18)

However, there are two challenges for the implementation of the original lifted structured
loss:

• It is a non-smooth loss function since it utilizes several hinge function max (0, ·),
which is not beneficial for the gradient calculation.

• A lot of redundant calculation: the hardest negative pairs requires to be mined

25

repeatedly with iterating.

The first challenge is addressed by optimizing the original function into a smooth upper-
bound version defined as below, which replaces the hinge operation with the sum opera-
tion:

J̃ =
1

2|P|
∑

(i,j)∈P

max
(
0, J̃i,j

)2
,

J̃i,j = log

(∑
(i,k)∈N

exp {α−Di,k}+
∑

(j,l)∈N

exp {α−Dj,l}

)
+Di,j .

(2.19)

The second challenge is resolved by dividing the training set into several mini-batches
with the stochastic approach, in which the mini-batch division is not random: a few pos-
itive pairs are picked randomly into a mini-batch alongside with their difficult negative
neighbors. It guarantees that the mini-batch contains appropriate combinations of posi-
tive and negative pairs. Then, positive samples respectively compare their difficult neg-
ative neighbors to extract the hardest one. Figure 2.31 illustrates the hardest negative
neighbors mining for a positive pair.

�1 �2 �3 �4 �5 �6

�1 �2 �3 �4 �5 �6

Figure 2.31. Illustration of the hardest negative neighbors mining. X3 and X4 are the
samples of a positive pair and they mine the hardest negative neighbors independently
from X1, X2, X5, X6. [29]

Arcface Loss

Arcface loss [6] is a state of the art loss function for face recognition. It maximizes the
classification boundary in angular space based on the softmax function. The goal is to
achieve the intra-class compactness and inter-class discrepancy. The motivation of the
arcface loss is to combine the advantages of triplet loss and softmax loss that can:

• operate extensive comparison between images and classes. Softmax transfers the
feature embedding into “scores” of each class with the fully connected layer and
into the probability with the softmax function.

• have the hyper-parameter “margin” to control the balance between training difficulty
and performance.

• support easy training with massive classes.

26

The process of forming the arface loss is introduced as below and Figure 2.32 illustrates
the principle of the arcface loss:

Figure 2.32. Illustration of arcface loss. [6]

1. Normalize both the feature vector xi retrieved by CNN model and the weight matrix
Wj , j ∈ {1, ..., n} for each class. Then, the linear operation W T

j xi = ∥Wj∥∥xi∥ cos θj
equals W T

j xi = cos θj since ∥Wj∥ and ∥xi∥ are unit vectors, where cos θj is the
vector of the cosine between xi and each class.

2. Extract the target logit cos θyi that is the ground truth index in cos θj , and calculate
the angle arccos (cos θyi) between the feature vector xi and weight vector Wyi of
corresponding class.

3. Add the margin m for the angle between xi and Wyi , which controls the balance
the performance and training efficiency. Re-scale the cosine with new angle as
s(cos (θyi +m)). Besides, margin m usually ranges from 2 to 3 degree.

4. Finally, obtain the arcface loss by applying the softmax function and cross entropy
loss for outputs, in which N is the number of samples:

L = − 1

N

N∑
i=1

log
es(cos (θyi+m))

es(cos (θyi+m)) +
∑n

j=1,j ̸=yi
es cos θj

. (2.20)

Arcface loss adopts the “margin” to enforce the angle between target weight vector Wj

and the feature embedding of the sample xi to be small, and that between different target
weight vectors to be large. Thus, the goal of intra-class compactness and inter-class
discrepancy is achieved. Figure 2.33 is an illustration of the performance of arcface loss.

Margin

W1 W2

Angle

Class1 Class2

Figure 2.33. Illustration of the performance of arcface loss. After training with arcface
loss, samples in class 1 and 2 are compact with their targets W1 and W2, respectively.
On the other hand, W1 and W2 are dispersed with the margin. [6]

27

Ranked List Loss

Ranked list loss [40] is proposed for solving two problems in other metric learning loss
function:

• One is that negative samples are not entirely utilized since most of them consider
one or two negatives, such as a triplet or pair-wise samples.

• The other is that the intra-class structure is not maintained after training. The model
is trained with a unit of samples instead of a cluster of the class. It makes samples
from one class compact to a point.

Ranked list loss takes all the positive and negative samples with respect to an anchor
sample into consideration, which “pushes” all negatives away from the anchor and “pulls”
all positives over simultaneously. Figure 2.34 is an illustration of ranked list loss.

mar
gin

Training

Figure 2.34. Illustration of ranked list loss. Positives (yellow circle) and negatives (yellow
squares and triangles) are closer and further to the anchor (purple circle) after trained
with ranked list loss. Due to together movement for the positives and negatives, the
intra-class structures are maintained. [40]

Some notations for the introduction of ranked list loss: X = {(xi, yi)}Ni=1 denotes as a
batch of samples that includes N samples, where (xi, yi), yi ∈ {1, 2, . . . , C} is the input
and ground truth from C classes. {xc

i}
Nc
i=1 represents that all samples that are from class

c in the batch and Nc is the number of these samples.

Given a pair of images (xi, xj), the distance between negatives is expected to be higher
than the threshold α, while the distance between positives is smaller than α − m. Fig-
ure 2.35 is an illustration of the performance after training with ranked list loss.

Training

Query

positive set negative set

� − � �

Query

positive
boundary

negative
boundary

� − � �

�

Figure 2.35. Illustration of the performance with ranked list loss. After training with ranked
list loss, negatives (square and triangle) are further than positives (circle) at margin m.
Besides, the distance between two arbitrary positives is within a hyper-sphere with the
radius at α−m. [40]

28

So the pairwise margin loss [40] is defined as below, in which yij = 1 if the pair is positive,
otherwise yij = 0. f is the feature retrieval function from an image, and d is the distance
of two feature embeddings:

Lm(xi;xj ; f) = (1− yij)[α− dij]+ + yij [dij − (α−m)]+. (2.21)

When given an anchor sample xci that from class c, other samples in the batch can be
ranked according to the similarity with xci . Nc − 1 positives except the anchor in the batch
is denoted as Pc,i = {xc

j |j ̸= i}, and Nk negatives is denoted as Nc,i = {xk
j |k ̸= c}. For

positives, the loss function is defined as:

Lp(x
c
i ; f) =

1⏐⏐⏐P ∗
c,i

⏐⏐⏐
∑

xc
j∈P ∗

c,i

Lm(xc
i ,x

c
j ; f). (2.22)

Usually, the number of negatives is large, and the range of loss value is also large.
Wanget al. [40] applies a weight wij for the basic negative loss to balance the perfor-
mance, in which wij is defined as:

wij = exp (T · (α− dij)),x
k
j ∈ N∗

c,i. (2.23)

For negatives, the loss function is defined as:

LN (xc
i ; f) =

∑
xk
j∈|N∗

c,i|

wij∑
xk
j∈|N∗

c,i|wij
Lm(xc

i ,x
k
j ; f). (2.24)

The final ranked list loss for one anchor and all samples in the batch are as:

LRLL(x
c
i ; f) = Lp(x

c
i ; f) + LN (xc

i ; f),

LRLL(X; f) =
1

N

∑
∀c,∀i

LRLL(x
c
i ; f).

(2.25)

2.5.2 Learning Rate

The learning rate is a hyper-parameter that controls how much the weights of the network
vary to reduce the loss. The smaller the learning rate is, the slower the gradient descends.
Even though a low learning rate ensures that the model not to miss any local minima, it
implies that the model would take more time to converge, especially when the loss is
stuck in a plateau region. Formula shown as below illustrates the principle of the gradient

29

descent algorithm:

new_weight = previous_weight+ learning_rate ∗ gradient. (2.26)

Gradient descent is a method to minimize the loss by iteratively updating weights with
gradient. Figure 2.36 shows an illustration of the gradient descent algorithm.

-8

3

-6

2

31

-4

2

θ2

0

1

-2

θ1

-1 0

0

-1

-2

-2

J(
θ 1

, θ
2)

2

-3 -3

4

6

8

10

Different Starting Points

Figure 2.36. Illustration of the gradient descent algorithm. z-axis denotes the loss J(θ0,
θ1), and x-axis and y-axis are for optimized parameters θ0 and θ1. The loss goes down
along the negative direction of the gradient of the loss function and achieves the minima
that can be global or local with different starting points.

In this case, Θ represents the vector of parameters (θ0, θ1)
T mathematically, and the

gradients of the loss function ∆J(Θ) with respect to weights are calculated as:

∆J(Θ) = (
∂J(Θ)

∂θ0
,
∂J(Θ)

∂θ1
). (2.27)

Weights are updated simultaneously with iterations until the loss converges, the formula
of the gradient decent algorithm for this case is as:

θ0 = θ0 − α
∂J(Θ)

∂θ0
,

θ1 = θ1 − α
∂J(Θ)

∂θ1
.

(2.28)

An excessive learning rate may directly make the model back and forth across the minima
and never achieve it. While a too small learning rate makes the training slow and the
model trapped in the local minima easily. The optimum learning rate is usually set through
experiments and experience. Several learning rate methods that accelerate the model

30

convergence are presented in the following. Figure 2.37 shows an illustration of the
performance of the loss with different learning rates.

epoch

loss

good learning

very high learning rate

low learning rate

high learning rate

Figure 2.37. Illustration of the performance of the loss with four different learning rates.
The good learning rate (red curve) makes loss decrease fast at the beginning and con-
verges to a stable value gently. The high learning rate (green curve) makes the model
hover around the minima. The very high learning rate (yellow curve) makes the model
not converge. The low learning rate (blue curve) makes the model converge slowly.

Learning Rate Warm Up

The learning rate warm up method [12] is proposed for initializing the learning rate gradu-
ally: a relatively small learning rate is set with several epochs at the beginning of training
until the model converges with a stable loss, and the training continues with different
learning rate. The experiment is implemented with ResNet110 [12] on CIFAR-10 [18]
dataset: the learning rate for warming up is set as 0.001 until the training error is below
80% with 400 epochs, and the training continues with the learning rate at 0.1. Finally,
The result is satisfying with the method.

Facebook proposes another learning rate warm up method that the learning rate in-
creases from small to large linearly within a few epochs [10]. It resolves the issue that a
sudden increase of training error may occur when a small learning rate abruptly changes
to a large one. Figure 2.38 shows an example of warming up the learning rate linearly:

Figure 2.38. Example of warming up linearly. The learning rate increases from 0 to 0.1
with 15 epochs according to the function η = 1

150 t, where η and t represent the learning
rate and number of epochs, respectively.

31

Learning Rate Decay

Learning rate decay is the approach that continues the training with a specific variation of
the learning rate after warming up. It fastens the convergence of the model into a minima.
There are three basic kinds of learning rate decay: piecewise decay, exponential decay
and cosine decay shown in Figure 2.39.

(a) (b) (c)

Figure 2.39. Example of three different kinds of learning rate decay with 1,000 epochs.
(a) Piecewise decay. The learning rate η decreases with the sequence of {1.0, 0.7, 0.3, 0}
at the epoch point of {0, 300, 600, 900}, respectively. (b) Exponential decay. The learn-
ing rate η decreases with the function η = exp (−0.005× t), where t is the num-
ber of epoch.(c) Cosine decay. The learning rate η decreases with the function η =
1
2(cos (0.001πt) + 1).

• The piecewise decay refers to the learning rate in different periods of epochs are
with different constant. Figure 2.39a shows an example of the piecewise decay.

• The exponential decay refers to the decay learning rate in an exponential curve.
Figure 2.39b shows an example of the exponential decay.

• The cosine decay refers to decay learning rate with a half period of cosine curve.
Figure 2.39c shows an example of the cosine decay.

2.5.3 Optimization Algorithm

The original gradient descent algorithm requires the complete training set for calculating
loss and updating weights with iterations. However, it is impractical for those tasks with
a massive amount of dataset due to the limited hardware resource. Several optimization
algorithms are proposed that trains the model with small batches of samples to converge
effectively.

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is proposed for resolving the issues mentioned pre-
viously: it calculates gradients and updates weights with a stochastic sample from the
training set, which enables training samples to be appended during training. It is defined

32

as below, where Θ and J(Θ, x(i), y(i)) refer to the vector of weights and corresponding
gradients with one training sample (x(i), y(i)) in the stochastic batch:

Θ = Θ− α∆J(Θ, x(i), y(i)). (2.29)

Stochastic Gradient Descent has advantages compared to the original gradient descent
that is named as Batch Gradient Descent:

• The convergence is fast since the Batch Gradient Descent contains redundant cal-
culation, such as the gradient calculation of similar samples.

• Additional training samples can be added during training.

• It is more likely to jump out from a bad local minima and achieve a good one instead.

Mini-batch Gradient Descent

Mini-batch Gradient Descent is a compromise between the Stochastic Gradient Descent
and the Batch Gradient Descent: it takes a subset from the training set for calculating
gradients. It is defined as below, where (x(i:i+n), y(i:i+n)) refers to the n samples in the
mini-batch:

Θ = Θ− α∆J(Θ, x(i:i+n), y(i:i+n)). (2.30)

Mini-batch Gradient Descent only calculates the gradients of samples in a mini-batch in
each epoch, which has not only effective calculation but also converges fast and stably.
It is one of the mainstream algorithms at present.

Momentum

The Momentum algorithm is proposed for tackling the problem of previous algorithms
that the updated direction of weights entirely depends on the direction of gradients, and
that makes the training unstable. The concept of momentum in physics inspires the
Momentum algorithm. It simulates the inertia of an object when it moves: the previous
direction is retained in the current iteration, which enlarges the updated strength in the
current iteration if the previous direction is consistent with the current one, and vice versa.
So the Momentum algorithm integrates with historical gradients. The Gradient Descent
with Momentum is defined as below, where vt is the current updated item, and β is the

33

hyper-parameter for retention:

vt = βvt−1 + (1− β)∆J(Θ),

Θ = Θ− αvt.
(2.31)

Adaptive Moment Estimation

Adaptive Moment Estimation (Adam) [17] is a self-adaptive algorithm. The actual learn-
ing rate is dynamically adjusted through the first and second moment estimates of the
gradient. It makes the actual learning rate within a certain range with bias correction and
the training stable. The first moment estimate mt and second moment estimate vt are
defined as below, where gt and g2t refer to the gradient and its squire with dot production:

mt = β1mt−1 + (1− β1)gt,

vt = β2vt−1 + (1− β2)g
2
t .

(2.32)

The first moment estimate mt and second moment estimate vt are initialized with a bias
to 0, so a bias correction is applied:

m̂t =
mt

1− βt
1

,

v̂t =
vt

1− βt
2

.
(2.33)

Finally, the Adaptive Moment Estimation is defined as, where the hyper-parameters β1,
β2 and ϵ are set as 0.9, .999 and 10e-8 respectively according to the author’s suggestion:

Θ = Θ− α√
v̂t + ϵ

m̂t. (2.34)

2.5.4 Forward-propagation and Back-propagation

Forward-propagation and back-propagation are the algorithms that cooperate to optimize
weights by minimizing the loss in an efficient way.

• Forward-propagation is the process flow that calculates the result, which is from the
input layer with linear operations and activation functions. Neurons among layers
are connected with weight vector θ(l)

i , in which, l refers to the notation of layer and
i is the index of a neuron in the l + 1 layer. The forward-propagation process is

34

summarized as:

1. i-th neuron in the j-th layer z(j)i receives the output a(j−1)
i from previous layer:

z
(j)
i = θ

(j−1)
i a

(j−1)
i . (2.35)

2. After passing through the activation function y = g(x), the output of the i-th
neuron in j-th layer a(j)i is obtained as:

a
(j)
i = g(z

(j)
i). (2.36)

The prediction hΘ(x) in Figure 2.40 could be obtained, which shows an example of
forward-propagation with a fully-connected neural network:

a
(1)
i = xi, i ∈ {1, . . . , 400},

z
(2)
i = θ

(1)
i a(1), i ∈ {1, . . . , 25},

a
(2)
i = g(z

(2)
i), i ∈ {1, . . . , 25},

z
(3)
1 = θ

(2)
1 a(2),

a
(3)
1 = g(z

(3)
1),

hΘ(x) = a
(3)
1 .

(2.37)

In the training process, the loss L(Θ) can be calculated with the prediction hΘ(x)

and the ground truth Y .

(�)ℎ�

�1

�2

�
(2)
1

�400

�
(2)
2

�
(2)
3

�
(2)
25

�
(3)
1

Figure 2.40. Example of forward-propagation. The prediction hΘ(x) is obtained with the
forward-propagation algorithm.

• The back-propagation algorithm is to calculate the gradients of weights in an effi-
cient approach that the model can be optimized by the gradient descent algorithm it-
eratively. Figure 2.41 shows an example of back-propagation based on Figure 2.40.

The goal of back-propagation is to calculate gradients for the weights Θ with follow-

35

(�)ℎ�

�1

�2

�
(2)
1

�400

�
(2)
2

�
(2)
3

�
(2)
25

�
(3)
1

Figure 2.41. Example of back-propagation. The gradients matrices for the first and
second layers Θ(1) and Θ(2) can be obtained with the back-propagation algorithm after
the forward-propagation.

ing the Chain Rule of calculus. The gradients matrices for the weights in the first
and second layers Θ(1) and Θ(2) in Figure 2.41 are calculated as:

∂L(Θ)

∂Θ(2)
=

∂L(Θ)

∂a
(3)
1

∂a
(3)
1

∂g(3)
∂g(3)

∂z
(3)
1

∂z
(3)
1

∂Θ(2)
,

∂L(Θ)

∂Θ(1)
=

∂L(Θ)

∂a
(3)
1

∂a
(3)
1

∂g(3)
∂g(3)

∂z
(3)
1

∂z
(3)
1

∂a(2)

∂a(2)

∂g(2)

∂g(2)

∂z(2)

∂z(2)

∂Θ(1)
.

(2.38)

Furthermore, each term in Equation 2.38 has been calculated through the forward-
propagation in one iteration due to the derivatives calculated with the linear opera-
tion and pre-defined activation functions. Then, Θ could be updated by the gradient
descent algorithm, in which Θ(1) and Θ(2) should be updated simultaneously:

Θ(2) = Θ(2) + α
∂L(Θ)

∂Θ(2)
,

Θ(1) = Θ(1) + α
∂L(Θ)

∂Θ(1)
.

(2.39)

Forward-propagation and back-propagation are interdependent and operational alterna-
tively in the training of a neural network to optimize the weights until the convergence of
the loss.

2.6 Evaluation Metric

This section introduces several metrics for evaluating the quantitative performance of the
model in different aspects, which make the evaluation comprehensive.

36

2.6.1 Distance

The distance metric is the most crucial methodology to evaluate the similarity between
two vectors. Euclidean distance and cosine similarity related to our project are introduced
in the following.

Euclidean Distance

Given two n dimension vectors x = (x1, . . . , xn) and y = (y1, . . . , yn), the euclidean
distance between them is:

euclidean_distance(x,y) =

√ n∑
i=1

(xi − yi)2. (2.40)

In matrix representation, it is as:

euclidean_distance(x,y) =
√

(x− y)T (x− y). (2.41)

Cosine Similarity

Given two n dimension vectors x(x1, ..., xn) and y(y1, ..., yn), the cosine similarity be-
tween them is:

cosine_similarity(x,y) = cos θ =

n∑
i=1

(xi × yi)√
n∑

i=1
x2i ×

√
n∑

i=1
y2i

. (2.42)

In matrix representation, it is as:

cosine_similarity(x,y) = cos θ =
x · y

∥x∥ · ∥y∥
. (2.43)

Euclidean distance reflects the absolute difference of numerical characteristics, while
cosine similarity is sensitive to the direction difference between two vectors. Notably, all
dimensions on the euclidean distance require to be at the same scale to make the result
reliable.

37

2.6.2 Mean Average Precision

Mean Average Precision (mAP) calculates the mean of average precisions from multiple
query samples, in which the average precision refers to the average value of precisions
from positive predictions belong to one query sample. The formula of the mAP is as
below, where N denotes the number of query samples:

mAP =
1

N

N∑
i=1

APi. (2.44)

Precision and Recall

Precision is the ratio between correctly predicted samples and all predicted samples:

Precision =
True Positive

True Positive+ False Positive
.

Recall is the ratio between correctly predicted samples and all correct samples:

Recall =
True Positive

True Positive+ False Negative
.

Figure 2.42 shows an example of the mAP calculation with two queries: query 1 and
query 2, where the corresponding predictions contain 5 and 3 positives, respectively:

Query1

Query2

Recall

Precision

1

5

1

5

2

5

2

5

2

5

3

5

3

5

3

5

4

5

5

5

1

1

1

2

2

3

2

4

2

5

3

6

3

7

3

8

4

9

5

10

Recall

Precision

0

3

1

3

1

3

1

3

2

3

2

3

3

3

3

3

3

3

3

3

0

1

1

2

1

3

1

4

2

5

2

6

3

7

3

8

3

9

3

10

10 ranked predictions

Figure 2.42. Example of the mAP calculation with two queries. Black squares represents
the query 1 and query 2. Ten ranked predictions for each query, where white and gray
squares stand for the incorrect and correct predictions, respectively.

the Average Precision of query 1 and query 2 in Figure 2.42 are calculated as:

Average Precision query 1 = (
1

1
+

2

3
+

3

6
+

4

9
+

5

10
)/5 = 0.62,

Average Precision query 2 = (
1

2
+

2

5
+

3

7
)/3 = 0.44.

Finally, the mean Average Precision of these two queries is:

38

mean Average Precision = (0.62 + 0.44)/2 = 0.53.

Besides, Average Precision is the area under Precision-Recall curve, Figure 2.43 illus-
trates the area under Precision-Recall based on the example in Figure 2.42.

(a) (b)

(c) (d)

Figure 2.43. Illustration of the area under Precision-Recall curve based on the example
in Figure 2.42. (a) and (c) are the original Precision-Recall curves of query 1 and 2,
which are drawn with precisions in the x-axis and recalls in the y-axis. (b) and (d) are
the approximated areas (purple area) of them that it approximates the recall as constant
within each interval of precision, where the intervals are 1

5 and 1
3 .

2.6.3 Cumulative Matching Characteristics

Cumulative Matching Characteristics (CMC) is a method of top-k shot probability to eval-
uate accuracy, in which top-k refers to the first k samples with ranking rules. The model
makes the predictions according to the query sample and ranks them with the similarities
to the query. The CMC top-k accuracy for the query is defined as:

Accuracy =

⎧⎨⎩1, if the top-k ranked predictions contain query identity,

0,otherwise.
(2.45)

39

2.7 Cross Validation

The validation set is for evaluating whether a model is over-fitting with a satisfying per-
formance in training. The main idea of cross validation is to separate the validation set
from the dataset for the over-fitting verification and utilize the rest part for training. This
section introduces three methods of cross validation: the Holdout method, K-fold Cross
Validation, and Leave-One-Out Cross Validation.

2.7.1 Hold-Out Method

The Hold-Out method randomly split the training set for training and validation with a
specific ratio. The Hold-Out is the simplest validation method that is effective if the dataset
is massive. The proportion of validation set in the original training set is usually at 20%-
30%. Strictly, The Hold-Out method is not a method of cross validation since there is no
“cross” idea in it. Besides, the validation result is highly related to the random split of
the validation set, which may have a significant difference in performance with different
separation. Figure 2.44 is an illustration of the Hold-Out method.

Data

Training Validation

Split

Figure 2.44. Illustration of the Hold-Out. The original training set is split into the training
part (blue) and the validation part (orange).

2.7.2 K-fold Cross Validation

The K-fold Cross Validation is to split the original training set into K folds of subsets evenly,
where one of them is for validation, and rest K-1 subsets are for training. Besides, each
subset would be for validation sequentially, and the final result is calculated with the mean
of K validation results. The K-fold Cross Validation is beneficial since the whole dataset is
used for both training and validation and is appropriate for the small dataset. K is usually
greater than two. Figure 2.45 is an illustration of K-fold Cross Validation.

2.7.3 Leave-One-Out Cross Validation

The Leave-One-Out Cross Validation (LOO-CV) is a specific case of the K-fold Cross
Validation. Given N samples in a dataset and the K is set as N, that is, it splits the dataset

40

Data

Split

Training Validation

Figure 2.45. Example of K-fold Cross Validation. The original training set is split evenly
into five folds of subsets, where the blue and orange squares represent for training and
validation subsets.

into N subsets, which takes one sample for the validation and the rest N-1 samples for
the training. The Leave-One-Out Cross Validation has several advantages:

• Nearly all samples in the dataset are utilized for training that the distribution of the
training part is close to the original training set, which makes the result reliable.

• The splitting of the training and validation parts is without random factors, which
makes the result reproducible.

However, the shortcoming is that the computational complexity is high since the training
requires to be implemented as many times as the number of samples with nearly full
dataset wherefore it is inappropriate for the large dataset. Figure 2.46 is an illustration of
the Leave-One-Out Cross Validation.

Data

Split

Training Validation

Performance

Performance

Performance

Performance

Performance

Performance

Performance

Figure 2.46. Illustration of the Leave-One-Out Cross Validation. A dataset contains N
samples is split into N folds evenly, where the blue and orange squares represent for
training and validation subsets.

41

3 RESEARCH METHODOLOGY

This chapter introduces the actual implementation of person re-identification task, which
includes essential components, training and inference process for the baseline model
BNNeck[25] and our proposed method SplitReID1.

3.1 Dataset

In the experiments, three person re-identification datasets are utilized for training and
evaluation: Market-1501 [44], DukeMTMC-reID [32] and MSMT17 [41]. Their introduction
is presented below and the basic statistics are summarized in Table 3.1.

3.1.1 Market-1501

Market-1501 [44] person dataset is collected on the campus of Tsinghua University with
1,501 pedestrians and 32,668 bounding boxes across six cameras. Each pedestrian is
photographed by at least two different cameras. The training set contains 751 pedestri-
ans with 12,936 images, and the test set contains 750 pedestrians and the distractors
annotated with ID “0000” with 15,913 images, respectively. The query set contains 3,368
images that are labeled manually, and the test set detected by DPM is as the gallery.

3.1.2 DukeMTMC-reID

DukeMTMC-reID [32] is a subset of DukeMTMC person dataset, which is collected across
eight cameras. It contains 1,404 people who appear in more than two cameras, and the
rest 408 pedestrians are the distractors that appear only in one camera. The training set
contains 702 pedestrians with 17,661 images, and the test set contains 1,110 pedestrians
with 16,522 images. 2,228 images are randomly selected from the test set for the query,
and the test set is as the gallery

1The paper “SplitReID: Target Re-Identification Made Easy” has been submitted to WACV 2020.

42

3.1.3 MSMT17

MSMT17 [41] is a massive person dataset compared to Market-1501 and DukeMTMC-
reID. It is collected across twelve outdoor and three indoor cameras with different climate
conditions. MSMT17 contains 126,441 images from 4,101 pedestrians. The training and
test set is randomly split into the ratio at 3:1. The training set contains 1,041 pedestrians
with 32,621 images and the test set contains 93,820 images from 3,060 pedestrians. Fur-
thermore, 11,659 and 82,161 images are selected for the query and gallery, respectively.

Dataset Market-1501 DukeMTMC-reID MSMT17

Train and valid samples 12,936 16,522 32,621

Train and valid identities 751 702 1,041

Test query samples 3,368 2,228 11,659

Test gallery samples 15,913 17,661 82,161

Test identities 751 1,110 3,060

Cameras 6 8 15

Table 3.1. Comparison of person and vehicle re-identification datasets.

3.2 Baseline

Our proposed method is extended from the approach introduced by Luo et al. [25], which
is considered as the baseline for our own approach. The essential components and
details for training process of the baseline model is introduced below.

3.2.1 Backbone

In order to be consistent with others’ works for comparison, ResNet50 [12] is selected as
the backbone model for the baseline model, which is initialized with pre-trained weights
on ImageNet [5]. Furthermore, the original ResNet50 model is modified slightly for the
backbone with: firstly, the last fully-connected layer for the classification is removed since
the rest part is utilized for the metric learning with feature vectors. Secondly, the param-
eter “stride” of the first convolutional layer in the last building block is set to 1 from 2.
So, the output feature maps are double-sized from the original set, and it is beneficial for
performance improvement with the higher spatial resolution.

43

3.2.2 BNNeck structure

The BNNeck structure proposed in [25] is shown in Figure 3.1. The feature vector ft

produced from the global average pooling (GAP) layer is utilized for the training with
triplet loss [13]. Besides, a batch normalization layer is added after the GAP layer to yield
feature vector fi for the inference with cosine similarity. Lastly, the fully-connected layer
after the batch normalization layer is set with the number of the identities in the training
set. The output vector fce is for the training with cross-entropy loss.

Notably, the fully-connected layer is without bias term but includes a kernel, which is
initialized from a normal distribution with mean 0.0 and standard deviation 0.001. The
final loss function consists of two losses, where the coefficients of them equal 1.

Luo et al. [25] adopt the batch normalization layer to separate two losses into two feature
embedding spaces, which help improve the performance.

Input Image
256 x 128

Backbone M
odel

R
esN

et50

Global Average Pooling Batch Normalization

Fully-Connected Layer fce for cross-entropy loss in training

fi for inference

ft for triplet loss in training

Feature Embeddings

Inference Training

Figure 3.1. The BNNeck structure proposed in [25]. In the training procedure, the model
is optimized with two losses: triplet loss and categorical cross-entropy loss with different
feature embeddings. In the inference procedure, the output tensor generated from the
batch normalization layer is as the feature embedding.

3.2.3 Mini-batch

Each mini-batch consists of samples that are from both the same and different identities
to give full play to the advantages of the triplet loss function [13, 33] so that positives and
negatives could be exploited with triplet loss.

P denotes the number of identities and K represents the number of samples with each
identity so that the batch size is B = P × K. All samples with the same identity would
be abandoned in the training procedure progresses if the number of remaining samples
from that identity is smaller than K. Furthermore, the training process of one epoch would
complete if the number of remaining identities in the mini-batch is lower than P .

3.2.4 Data pre-processing and augmentation

Firstly, the data pre-processing is to resize the input images into target resolution as 256×
128 (height × width). Secondly, the resized image is processed with the pre-processing

44

method provided by the pre-trained backbone model in frameworks.

Furthermore, several basic transformations for augmentation are applied for the resized
images: images are horizontally flipped with 50% probability. Crop the images that are
zero-padding with margins into the target resolution at random. Last but not the least,
random erasing [49] erases an area of images with ImageNet [5] mean pixel value in
the training process to improve the robustness of the model against the occlusions in
practical cases. The Original image and random-erased images from Market-1501 [44]
dataset are shown in Figure 3.2.

Figure 3.2. Illustration of data augmentation that are processed sequentially with hori-
zontal flipping, zero padding, random cropping and random erasing. Images with orange
border and with blue border are original sample and augmented samples, respectively.

3.2.5 Training aspects

Learning Rate

Luo et al. [25] adopt a variable learning rate. It utilizes the learning rate warm up method
within several epochs in the first phase, which is from 0 to a relatively large learning
rate. Then, the learning rate is divided by ten gradually in the following three phases.
Figure 3.3 shows the learning rate scheduler.

0 20 40 60 80 100
Epoch

0.000000

0.000025

0.000050

0.000075

0.000100

0.000125

0.000150

0.000175

0.000200

lr

lr 0.000002

Figure 3.3. The learning rate scheduler. The warmup strategy prevents the gradient dis-
tribution from being distorted to avoid the convergence problem [22]. Besides, sequen-
tially decreasing the learning promotes the model converge into a better local minimum.

45

Label-smoothing

The label-smoothing [38] method is adopted for the categorical cross-entropy loss to reg-
ularize the one-hot encoding label. y ∈ {1, 2, . . . , N} is the ground truth label of a sample,
and the corresponding one-hot coding label q(i) equals 1 if the index i is compatible with
label y, otherwise it equals 0. The label-smoothing method utilizes an hyper-parameter
ϵ ∈ (0, 1) to balance the one-hot encoding label, which is calculated as:

q′(i) = (1− ϵ)q(i) +
ϵ

N
. (3.1)

The reason for performance improvement is understandable; i.e., given a binary classi-
fication case, the prediction would never achieve 0 or 1 so that the number of weight w
will continuously increase and the over-fitting may occur. While the label-smoothing is
applied for the label, the training procedure would complete once the prediction achieves
the “smoothed” ground truth. Label-smoothing method makes the model less confident
with its predictions and alleviates the over-fitting issue. The hyper-parameter ϵ is set to
0.1. Figure 3.4 shows an example of the label-smoothing example.

0 1 3 4 5 6 7 8 9

1

0.01

0.91

label

index of one-hot encoding

0

Figure 3.4. Example of label-smoothing with ten classes. Blue dots indicate the original
one-hot encoding label that the ground truth is the fifth class shown with orange. Red
dots represent the smoothed label.

L2 regularization

ℓ2 regularization is adopted for the trainable parameters, which are the weight/bias terms
in the convolutional and fully-connected layers, and the γ/β terms in the batch normaliza-
tion layers. The expression is as:

Lλ(w) = L(w) + λ∥w∥22, (3.2)

in which L(w) is the loss without regularization and λ is the regularization factor to con-
trol the “punishment”. ℓ2 regularization forces the model to train with smaller number of
weights so that the over-fitting problem is suppressed. The regularization factor λ is set
to 0.0005.

46

3.3 SplitReID Structure

This section introduces our proposed method SplitReID in the training and inference pro-
cedures, which is inspired by the BNNeck structure and aims to improve the performance
by separating two losses into two different feature embedding spaces.

3.3.1 Training with SplitReID

The SplitReID structure shown in Figure 3.5 contains a splitting layer after the global
average pooling layer to divide the output tensor into two parallel partitions compared to
the BNNeck structure illustrated in Figure 3.1. Instead of the straight flow from input to
output, two splitting feature vector slices are partitioned sequentially and evenly from the
original one, who owns the same dimensionality and could be the input for the following
two parallel branches.

The lower branch shown in Figure 3.5 takes the categorical cross-entropy loss for the out-
put. The batch normalization [16] layer yields the normalized feature vector fi_ce from the
slice. Then the fully-connected layer makes the classification according to the identities
in the training set. The structure in this branch is proposed in [43], which can provide
more a steady gradient. The upper branch in Figure 3.5 is processed with the triplet loss.
Another slice is fed into the triplet loss directly without extra manipulation, that the branch
is implemented with the suggestion in [13, 19].

Input Image
256 x 128

Backbone M
odel

R
esN

et50

Global Average Pooling

Splitting

ft for triplet loss in training

Tensor

Tensor

Tensor

fi_ce for inference

fi_triplet for inference

fce for cross-entropy loss in trainingFully-Connected Layer

Batch Normalization
Inference Training

Triplet Branch

Cross-entropy Branch

Figure 3.5. The SplitReID structure splits the feature vector generated from the global
average pooling layer evenly into two separate branches: one is for categorical cross-
entropy loss and another is for triplet loss.

3.3.2 Inference with SplitReID

When it comes to the inference procedure of the SplitReID. Given an input image X, we
denote yi_ce = fi_ce(X) and yi_triplet = fi_triplet(X) as the feature vectors extracted from
the categorical cross-entropy loss branch and the triplet loss branch, respectively.

Moreover, the query and gallery image sets are denoted as Q = {Q1,Q2, . . . ,Qm} and

47

G = {G1,G2, . . . ,Gn}, so the corresponding feature vectors with respect to two branches
are:

Fi_ce(Q) = {fi_ce(Q1), . . . , fi_ce(Qm)},

Fi_triplet(Q) = {fi_triplet(Q1), . . . , fi_triplet(Qm)},

Fi_ce(G) = {fi_ce(G1), . . . , fi_ce(Gn)},

Fi_triplet(G) = {fi_triplet(G1), . . . , fi_triplet(Gn)}.

(3.3)

When considering two images X1 and X2, we have denotations: di_ce(fi_ce(X1), fi_ce(X2))

and di_triplet(fi_triplet(X1), fi_triplet(X2)) that refer to the distance similarities between the
corresponding feature vectors. Besides, the cosine similarity is adopted according to
practical cases in some works.

Consequently, the m-by-n distance matrix Di_ce between query and gallery sets could be
calculated with di_ce from the outer product of Fi_ce(Q) and Fi_ce(G). The other m-by-n
distance matrix Di_triplet for triplet loss can be obtained in the same way.

To integrate two distance matrices, firstly, we adopt a standardization for the distance
matrices since they are calculated from two feature embedding spaces that may have a
significant difference of scale in value, which is centralized to the origin and scaled to the
interquartile range. Secondly, we take the arithmetic mean matrix of two standardized
distance matrices as the final inference result of the SplitReID model.

48

4 RESULTS AND ANALYSIS

This chapter introduces the experimental result and corresponding analysis of our pro-
posed SplitReID and other state-of-the-art methods on three person datasets. The demon-
stration with our SplitReID structure on three datasets is shown at the end of the chapter.

4.1 Results of person re-identification

4.1.1 Results on Market-1501 and DukeMTMC-reID

Table 4.1 shows the comparison among the BNNeck structure, our proposed SplitReID
structure and recent works on the Market-1501 [44] and DukeMTMC-reID [32] datasets.
ABD-Net [2] achieves the best performance on both datasets, which is composed of a
relatively complicated network with attention mechanism and higher resolution images.
The BNNeck structure proposed by Luo et al. [25] achieves 86.6% and 77.2% mAP on
Market-1501 and DukeMTMC-reID datasets, respectively. Furthermore, our SplitReID
method promotes a noteworthy improvement at 87.2% and 77.9% mAP.

Method Name Backbone Image Size
Market-1501 DukeMTMC-reID

mAP rank-1 mAP rank-1

CNN Embedding [47] ResNet50 227 x 227 59.9 79.5 - -

GAN [46] ResNet50 224 x 224 66.1 84.0 47.1 67.7

PAN [48] ResNet50 224 x 224 69.3 86.7 51.5 71.6

CamStyle [50] ResNet50 256 x 128 71.6 89.5 57.6 78.3

PCB+RP [36] ResNet50 384 x 128 81.6 93.8 69.2 83.3

BoT Baseline [25] ResNet50 256 x 128 85.9 94.5 76.4 86.4

DG-Net [45] ResNet50 256 x 128 86.0 94.8 74.8 86.6

ABD-Net [2] ResNet50 384 x 128 88.3 95.6 78.6 89.0

BNNeck structure ResNet50 256 x 128 86.6 94.1 77.2 86.9

SplitReID structure ResNet50 256 x 128 87.2 94.3 77.9 87.6

Table 4.1. Results on Market-1501 [44] and DukeMTMC-reID [32].

49

4.1.2 Results on MSMT17

Table 4.2 illustrates the comparison of ours and some methods on the MSMT17 dataset,
which is more challenging. Similarly, our proposed SplitReID achieves a competitive
performance at 52.4% mAP and 74.6% rank-1 accuracy, that it is the highest performance
among the methods based on the global feature.

Method Name Backbone Image Size
MSMT17

mAP rank-1

GoogLeNet [37, 41] GoogLeNet - 23.0 47.6

PDC [35, 41] - - 29.7 58.0

GLAD [41, 42] - - 34.0 61.4

ABD-Net [2] ResNet50 384 x 128 60.8 82.3

BNNeck structure ResNet50 256 x 128 51.1 74.4

SplitReID structure ResNet50 256 x 128 52.4 74.6

Table 4.2. Results on MSMT17 [41].

4.1.3 Results on ResNet and DenseNet

For further study about the performance with different backbone models, DenseNet[15]
series models are selected for the comparison to ResNet50. Besides, the experiment
implementation is based on the SplitReID structure with the input image size at 256× 128

(height × width).

Table 4.3 compares the performance with different backbone models alongside with their
number of parameters in the inference. As we can see, the DenseNet201 with a smaller
number of parameters exceeds the performance of ResNet50 on three datasets, which
can be one of the directions to improve the performance in the late work.

Backbone Parameters
Market-1501 DukeMTMC-reID MSMT17

mAP rank-1 mAP rank-1 mAP rank-1

ResNet50 23.60M 87.2 94.3 77.9 87.6 52.4 74.6

DenseNet121 7.04M 85.5 94.1 76.5 87.8 52.0 76.4

DenseNet169 12.65M 86.1 94.3 77.1 88.2 52.4 75.9

DenseNet201 18.33M 87.2 94.5 78.3 88.7 55.2 77.9

Table 4.3. Results on three datasets with ResNet50 [12] and DenseNets [15].

50

4.2 Parameter Reduction

Table 4.4 shows the statistics of the number of parameters between the BNNeck structure
and our SplitReID structure on three datasets. The SplitReID structure requires fewer
parameters since it benefits from the splitting branches, that the dimensionality of the
feature vector for the categorical cross-entropy loss halves into the fully-connected layer
compared to the BNNeck structure.

Dataset
Total Parameters (in millions)

BNNeck SplitReID Reduction

Market-1501 25.1 24.3 3.2%

DukeMTMC-reID 25.0 24.3 2.8%

MSMT17 25.7 24.6 4.3%

Table 4.4. Parameter reduction in the inference procedure.

4.3 Demonstration

Figure 4.1 shows a demonstration of predictions with our SplitReID model on the three
datasets.

Query Gallery 1 Gallery 2 Gallery 3 Gallery 4 Gallery 5

Market-1501

DukeMTMC-reID

MSMT17

VeRi

VERI-Wild

Figure 4.1. Examples of query and top-5 gallery samples on the three datasets predicted
by our SplitReID model. Images with orange, green and red borders are query samples,
correct and erroneous predictions, respectively.

51

5 CONCLUSION

In this work, the pre-trained model ResNet50 provided by TensorFlow [1] is adopted
to train and infer on the three person datasets: Market-1501, DukeMTMC-reID, and
MSMT17. For the person re-identification task, a trained neural network model retrieves
images that are from the same person across multiple cameras in the gallery set when
given a query image. The performance is evaluated with mean Average Precision (mAP),
and Cumulative Matching Characteristic (CMC) rank-k accuracy.

The BNNeck structure aims to train the model with multi-loss in two separated feature
embedding spaces, which inspires us to propose the SplitReID structure. The SplitReID
improves the independence of each feature embedding space that the model could be
optimized by taking full advantage of different losses.

In the experiment, it has been demonstrated that our proposed SplitReID structure out-
performs the BNNeck structure, and reaches a competitive performance on the three
person re-identification datasets with a relatively simple network structure. Furthermore,
in contrast to the BNNeck structure, our proposed SplitReID structure requires fewer
parameters that reduce the computation complexity. Besides, with the replacement of
Denset201, the SplitReID hits a new high on three datasets. Shortly, the performance of
our SplitReID structure could be improved with more separated embedding spaces and
the substitution of more powerful backbone models.

The demonstration in Chapter 4 shows impressive results on three datasets. Although
some issues related to illumination variation and occlusion are to be tackled in the future,
it still has tremendous potential in security fields, such as Intelligent Trace System in
public.

52

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard et al. Tensorflow: A system for large-scale machine learn-
ing. 12th USENIX Symposium on Operating Systems Design and Implementation.
2016, 265–283.

[2] T. Chen, S. Ding, J. Xie, Y. Yuan, W. Chen, Y. Yang, Z. Ren and Z. Wang. ABD-
Net: Attentive but Diverse Person Re-Identification. arXiv preprint arXiv:1908.01114
(2019).

[3] C. Cortes and V. Vapnik. Support-vector networks. Machine learning 20.3 (1995),
273–297.

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. 2005.
[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei. Imagenet: A large-

scale hierarchical image database. 2009 IEEE conference on computer vision and
pattern recognition. Ieee. 2009, 248–255.

[6] J. Deng, J. Guo, N. Xue and S. Zafeiriou. Arcface: Additive angular margin loss for
deep face recognition. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2019, 4690–4699.

[7] P. F. Felzenszwalb, R. B. Girshick, D. McAllester and D. Ramanan. Object detec-
tion with discriminatively trained part-based models. IEEE transactions on pattern
analysis and machine intelligence 32.9 (2009), 1627–1645.

[8] R. Girshick. Fast r-cnn. Proceedings of the IEEE international conference on com-
puter vision. 2015, 1440–1448.

[9] R. Girshick, J. Donahue, T. Darrell and J. Malik. Rich feature hierarchies for accu-
rate object detection and semantic segmentation. Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. 2014, 580–587.

[10] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch,
Y. Jia and K. He. Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv
preprint arXiv:1706.02677 (2017).

[11] R. Hadsell, S. Chopra and Y. LeCun. Dimensionality reduction by learning an invari-
ant mapping. 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’06). Vol. 2. IEEE. 2006, 1735–1742.

[12] K. He, X. Zhang, S. Ren and J. Sun. Deep residual learning for image recognition.
Proceedings of the IEEE conference on computer vision and pattern recognition.
2016, 770–778.

[13] A. Hermans, L. Beyer and B. Leibe. In defense of the triplet loss for person re-
identification. arXiv preprint arXiv:1703.07737 (2017).

[14] K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural
networks 4.2 (1991), 251–257.

53

[15] G. Huang, Z. Liu, L. Van Der Maaten and K. Q. Weinberger. Densely connected
convolutional networks. Proceedings of the IEEE conference on computer vision
and pattern recognition. 2017, 4700–4708.

[16] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015).

[17] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014).

[18] A. Krizhevsky, G. Hinton et al. Learning multiple layers of features from tiny images.
Tech. rep. Citeseer, 2009.

[19] R. Kumar, E. Weill, F. Aghdasi and P. Sriram. Vehicle re-identification: an efficient
baseline using triplet embedding. arXiv preprint arXiv:1901.01015 (2019).

[20] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al. Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86.11 (1998), 2278–2324.

[21] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár and
C. L. Zitnick. Microsoft coco: Common objects in context. European conference on
computer vision. Springer. 2014, 740–755.

[22] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao and J. Han. On the variance of the
adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265 (2019).

[23] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu and A. C. Berg. Ssd:
Single shot multibox detector. European conference on computer vision. Springer.
2016, 21–37.

[24] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision 60.2 (2004), 91–110.

[25] H. Luo, Y. Gu, X. Liao, S. Lai and W. Jiang. Bag of tricks and a strong baseline for
deep person re-identification. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops. 2019, 0.

[26] T. M. Mitchell. Machine Learning. New York: McGraw-Hill, 1997. ISBN: 978-0-07-
042807-2.

[27] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann ma-
chines. Proceedings of the 27th international conference on machine learning (ICML-
10). 2010, 807–814.

[28] A. Neubeck and L. Van Gool. Efficient non-maximum suppression. 18th Interna-
tional Conference on Pattern Recognition (ICPR’06). Vol. 3. IEEE. 2006, 850–855.

[29] H. Oh Song, Y. Xiang, S. Jegelka and S. Savarese. Deep metric learning via lifted
structured feature embedding. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2016, 4004–4012.

[30] J. Redmon, S. Divvala, R. Girshick and A. Farhadi. You only look once: Unified,
real-time object detection. Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016, 779–788.

[31] S. Ren, K. He, R. Girshick and J. Sun. Faster r-cnn: Towards real-time object de-
tection with region proposal networks. Advances in neural information processing
systems. 2015, 91–99.

54

[32] E. Ristani, F. Solera, R. Zou, R. Cucchiara and C. Tomasi. Performance measures
and a data set for multi-target, multi-camera tracking. European Conference on
Computer Vision. Springer. 2016, 17–35.

[33] F. Schroff, D. Kalenichenko and J. Philbin. Facenet: A unified embedding for face
recognition and clustering. Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015, 815–823.

[34] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014).

[35] C. Su, J. Li, S. Zhang, J. Xing, W. Gao and Q. Tian. Pose-driven deep convolutional
model for person re-identification. Proceedings of the IEEE International Confer-
ence on Computer Vision. 2017, 3960–3969.

[36] Y. Sun, L. Zheng, Y. Yang, Q. Tian and S. Wang. Beyond part models: Person re-
trieval with refined part pooling (and a strong convolutional baseline). Proceedings
of the European Conference on Computer Vision (ECCV). 2018, 480–496.

[37] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke and A. Rabinovich. Going deeper with convolutions. Proceedings of the
IEEE conference on computer vision and pattern recognition. 2015, 1–9.

[38] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna. Rethinking the in-
ception architecture for computer vision. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2016, 2818–2826.

[39] J. R. R. Uijlings, K. E. A. Van De Sande, T. Gevers and A. W. M. Smeulders. Se-
lective search for object recognition. International journal of computer vision 104.2
(2013), 154–171.

[40] X. Wang, Y. Hua, E. Kodirov, G. Hu, R. Garnier and N. M. Robertson. Ranked List
Loss for Deep Metric Learning. arXiv preprint arXiv:1903.03238 (2019).

[41] L. Wei, S. Zhang, W. Gao and Q. Tian. Person transfer gan to bridge domain gap for
person re-identification. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2018, 79–88.

[42] L. Wei, S. Zhang, H. Yao, W. Gao and Q. Tian. Glad: Global-local-alignment de-
scriptor for pedestrian retrieval. Proceedings of the 25th ACM international confer-
ence on Multimedia. ACM. 2017, 420–428.

[43] F. Xiong, Y. Xiao, Z. Cao, K. Gong, Z. Fang and J. T. Zhou. Towards good practices
on building effective CNN baseline model for person re-identification. arXiv preprint
arXiv:1807.11042 (2018).

[44] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang and Q. Tian. Scalable person re-
identification: A benchmark. Proceedings of the IEEE international conference on
computer vision. 2015, 1116–1124.

[45] Z. Zheng, X. Yang, Z. Yu, L. Zheng, Y. Yang and J. Kautz. Joint discriminative and
generative learning for person re-identification. Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition. 2019, 2138–2147.

55

[46] Z. Zheng, L. Zheng and Y. Yang. Unlabeled samples generated by gan improve
the person re-identification baseline in vitro. Proceedings of the IEEE International
Conference on Computer Vision. 2017, 3754–3762.

[47] Z. Zheng, L. Zheng and Y. Yang. A discriminatively learned CNN embedding for
person reidentification. ACM Transactions on Multimedia Computing, Communica-
tions, and Applications (TOMM) 14.1 (2018), 13.

[48] Z. Zheng, L. Zheng and Y. Yang. Pedestrian alignment network for large-scale per-
son re-identification. IEEE Transactions on Circuits and Systems for Video Tech-
nology (2018).

[49] Z. Zhong, L. Zheng, G. Kang, S. Li and Y. Yang. Random erasing data augmenta-
tion. arXiv preprint arXiv:1708.04896 (2017).

[50] Z. Zhong, L. Zheng, Z. Zheng, S. Li and Y. Yang. Camera style adaptation for per-
son re-identification. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2018, 5157–5166.

	Introduction
	Theory
	Machine Learning
	Supervised Learning
	Unsupervised Learning

	Deep Learning
	Neural Network
	Convolutional Neural Network

	Common Convolutional Network Structures
	ResNet
	DenseNet

	Object Detection
	Region-based Object Detection
	Regression-based Object Detection

	Network Training
	Loss Function
	Learning Rate
	Optimization Algorithm
	Forward-propagation and Back-propagation

	Evaluation Metric
	Distance
	Mean Average Precision
	Cumulative Matching Characteristics

	Cross Validation
	Hold-Out Method
	K-fold Cross Validation
	Leave-One-Out Cross Validation

	Research Methodology
	Dataset
	Market-1501
	DukeMTMC-reID
	MSMT17

	Baseline
	Backbone
	BNNeck structure
	Mini-batch
	Data pre-processing and augmentation
	Training aspects

	SplitReID Structure
	Training with SplitReID
	Inference with SplitReID

	Results and Analysis
	Results of person re-identification
	Results on Market-1501 and DukeMTMC-reID
	Results on MSMT17
	Results on ResNet and DenseNet

	Parameter Reduction
	Demonstration

	Conclusion
	References

