

Bahareh Sadeghian Boroujeni

DEVELOPMENT OF A SHARED AUTHENTICA-
TION SYSTEM – A MICROSERVICE APPROACH

Faculty of Information
 Technology and Communication

 Sciences
Master of Science Thesis

11/2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/280342734?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

ABSTRACT

Bahareh Sadeghian Boroujeni: Development of a shared authentication system – a microservice
approach

Tampere University

Master of Science Thesis

11/2019

Major: Pervasive Computing

Examiners: Professor Kari Systä and Professor Davide Taibi

In the current market of business applications, Fatman Ltd. as a provider of several business
services drew a conclusion that merging two related business services brings a competitive ad-
vantage to their market. Nevertheless, the integration of existing applications has some implica-
tions such as handling the cross-cutting concerns.

The authorization and authentication of the new system is a cross-cutting concern that needs
to be resolved in the early stages of developing the application’s integration. In addition, as a
consequence of having a unified system a new user administrator tool is required to manage the
users of different applications from a single place.

The purpose of this thesis is to find a solution for authorization and authentication by utilizing
the microservices paradigm. Microservices is selected as an inspiration model due to the similar-
ities of cross-cutting concern challenges in microservices and the new system.

The solution of giving access to users of different applications is developed as a single sign-
on mechanism. This mechanism handles the user authentication of different systems and enables
the user to have access to both applications through a single login.

In addition, to following up on the user authentication solution, the implementation of a new
user management tool is demonstrated in the end. The new user management tool is designed
to tackle the administrator users’ problems which have been emerged by unifying the applications.
The solution is made by following the domain-driven design and separation of concerns approach
to simplify solving complex problems in monolithic applications.

The decisions on designing the new user access mechanism found to be well suited for the
new system. The single sign-on mechanism serves the company for the upcoming development
modernization plans as well as market enhancement. Moreover, the outcome of implementing
the user management tool is evaluated by quantifying the number of service desk tickets regard-
ing the lack of a proper user administrating tool.

Keywords: Microservices architecture, Single sign-on, Domain-driven design, Separation of

concerns, Monolithic

ii

PREFACE

This thesis has been done to carry out Master’s degree studies in Information Technol-

ogy with a major in Pervasive Computing. The thesis was written as an assignment for

Fatman Ltd.

I would like to thank Fatman for providing this opportunity and support to conduct this

research. I would like to thank prof. Kari Systä for all his guidance and support during

the studies and writing my thesis.

I want to especially thank my family and friends who supported me during this work.

Helsinki, 12 November 2019

Bahareh Sadeghian Boroujeni

iii

CONTENTS

1. INTRODUCTION... 1

1.1 Motivation .. 1

1.2 Structure of the thesis .. 2

2. THEORETICAL BACKGROUND ... 4

2.1 Company and products portfolio... 4

2.2 System requirements ... 5

2.2.1 Business requirements.. 5
2.2.2 Functional requirement ... 6
2.2.3 Nonfunctional requirements .. 6

2.3 Microservice architecture ... 7

2.3.1 History of microservices .. 9
2.3.2 Some characteristics of microservices .. 9

2.4 Fatman database structure .. 11

2.5 Microservices architecture analogies to Fatman integrated system

architecture .. 14

2.5.1 Authorization and authentication ... 15
2.5.2 Data management .. 17

3. METHODS AND MATERIALS... 18

3.1 Research methodology .. 18

3.2 Authorization and authentication technical solutions 18

3.2.1 Distributed session management .. 19
3.2.2 Client token ... 19
3.2.3 Federated identity management, SSO and technical solutions 21

4. SYSTEM DESIGN... 24

4.1 Authorization and authentication .. 24

4.2 User data management .. 30

5. IMPLEMENTATION OF USER MANAGEMENT TOOL 34

5.1 Data mapping ... 34

5.2 Repositories implementation .. 35

5.3 Controller with dependency injection .. 38

5.4 Service layer .. 41

5.5 Unit testing ... 43

6. EVALUATION ... 46

6.1 Meeting thesis goals .. 46

6.2 Meeting business requirements.. 47

6.3 Meeting functional requirements .. 47

6.4 Meeting nonfunctional requirements .. 48

7. CONCLUSION .. 49

iv

2. REFERENCES ... 51

3. APPENDIX A: SCRIPT FOR MAPPING USERS OF DIFFERENT DATABASES

USING SQL .. 55

v

LIST OF FIGURES

Figure 1. A monolithic application consists of different components 7
Figure 2. Microservices with independent components ... 8
Figure 3. Decentralized data storage in monolithic vs microservices 11
Figure 4. Multi-tenant application .. 12
Figure 5. Shared database for authorization and authentication 12
Figure 6. Separate databases for authentication in different applications 13
Figure 7. Fatman products database architecture ... 13
Figure 8. Authorization and send a request in a monolithic system 16
Figure 9. Central authentication domain mechanism [18] .. 20
Figure 10. A typical SSO mechanism [18] ... 23
Figure 11. Use case diagram of using different business applications side by side 26
Figure 12. Separation of identity provider component in the new integrated

system ... 27
Figure 13. Single Sign-on in Fatman products .. 28
Figure 14. Fatman products using IDP for authorization and authentication 29
Figure 15. The relationship between repositories, aggregates, and database

tables [35] .. 32
Figure 16. Using repositories as an abstraction layer between database context

and controller with a unit of work possibility .. 33

file:///C:/Users/bahareh/Documents/hihi4.docx%23_Toc24550575
file:///C:/Users/bahareh/Documents/hihi4.docx%23_Toc24550575

vi

LIST OF PROGRAMS

Program 1. User aggregate interface .. 36
Program 2. User repository class .. 36
Program 3. Implementation of user DTO... 37
Program 4. Method’s declarations in the user interface aggregate 37
Program 5. Implementation of general methods in the user repository 38
Program 6. Building dependency by accessing the user repository from the

controller .. 39
Program 7. Accessing repositories using dependency injection 39
Program 8. Configuring dependencies using Ninject framework 40
Program 9. Implementation of get request in controller ... 40
Program 10. Implementation of service layer interface.. 42
Program 11. Implementation of the updateUser method in the service layer 43
Program 12. Implementation of a mock repository .. 44
Program 13. Create a function in the user repository .. 44
Program 14. Implementation of unit test methods on user creation 45

vii

LIST OF SYMBOLS AND ABBREVIATIONS

API Application program interface
CM Contract management
CRUD Create, read, update, delete
CSS Cascading style sheets
DB Database
DDD Domain-driven design
DI Dependency injection
DTO Data transfer object
ESB Enterprise service bus
HTTP Hypertext transfer protocol
IAM Identity access management
IDP Identity provider
JSON Javascript object notation
JWT JSON web token
Ltd Limited
MRP Maintenance resource planning
ORM Object-relational mapper
RFC Request for comments
SaaS Software as a service
SAML Security assertion markup
SoC Separation of concerns
SSO Single sign-on
XML Extensible markup language

.

1

1. INTRODUCTION

Today’s businesses are application-driven and organizations would not function suffi-

ciently without software applications. As the Market Dynamics changes constantly, it is

crucial to keep the applications up-to-date in order to witness expansion in business and

gain an upper hand over the competitive market. In the era of ever-changing technology,

innovative approaches in application management are rewarded as the applications

must keep pace with the business strategy changes.

The enterprise application modifications often provide the capability of having a compet-

itive advantage in the business market. For instance, providing a unique ability to a busi-

ness application that enables the connection of disparate systems. This feature makes

the business operation more efficient, eliminates manual work and accordingly, brings a

competitive advantage to the market.

However, for the enterprise software vendors, the successful application modification to

cater to the requirements of businesses while adhering to the high-quality standard of

new technologies is challenging. Enterprise applications are complicated systems and

the development of these applications requires delicate planning.

The enterprise applications have always been growing over the years in order to accom-

modate the new market tendencies. When the application gets too large it is hard to

maintain and critical to make any functional changes to it. As a result, the idea of com-

ponentizing the large applications has emerged to face the challenges of maintenance

and scalability in these systems [1].

1.1 Motivation

As a result of the consistent evolution of the market in business applications, Fatman

Ltd. has decided to provide a competitive advantage to its software product. Hence, it

has been decided to offer a unified system from separate applications with the matching

look. These applications have related business use cases and integration of them ena-

bles Fatman to sell them as one product.

In order to fulfill this objective, the users of different applications should be able to have

access to the whole system using a single credential. In addition, the administrator user

2

of the system should be able to manage the users of different applications from a single

user management tool. Therefore, the implementation of a federated authentication for

the integrated system with an associated user management tool is inevitable.

On the other hand, due to the size and complexity of the existing applications, the mainte-

nance and scalability of the system became challenging. Accordingly, in this thesis, de-

spite searching for a solution to the user management issues of the unified system, the

overall improvement of the software is also considered. it is attempted to solve the user

management issue while not making the current system more complex.

The user management issues in the unified system are similar to the challenges of adapt-

ing to the known architecture model, Microservices, and can be solved in the same way.

The microservices approach can be pursued not only to solve the user management

problems of the integrated system but also to be utilized for software modernization pur-

poses.

Regarding the integration of existing applications, the thesis will strive to find solutions

to the following questions:

• How to handle the user authentication and authorization of different applications

in the integrated system by utilizing microservices?

• How to integrate the user management tool of the new system, considering the

history of different applications?

• What are the best practices for the implementation of new features that support

the software maintainability?

1.2 Structure of the thesis

In the theoretical background chapter, firstly the company products and portfolios will be

introduced. Moreover, the different requirements of the system will be explained to pro-

vide a better understanding of the thesis purpose. Thereafter, the microservices archi-

tecture and its analogies to the new integrated system will be discussed.

Once the theoretical backgrounds are introduced, the third chapter will provide the meth-

ods and materials which will be carried out in the following chapters. In addition, the

evaluation of methods, their advantages, and drawbacks will be introduced.

In the system design chapter, the applicability of the provided solutions in the integrated

system will be discussed. Next, the chosen solutions and design by considering the given

requirement of the new system will be demonstrated.

3

In the fifth chapter, the implementation of the user management tool will be provided in

more detail. In the end, the resulting product will be evaluated to determine how well the

new features serve the initial requirements and finally, the last chapter will summarise

the thesis details and goals.

4

2. THEORETICAL BACKGROUND

The first section introduces the background information of the company and the product’s

portfolio. The second section specifies the software requirements which are provided as

the business, functional and nonfunctional requirements. The third section gives instruc-

tions to the microservices model. In the 4th chapter, the database structure of Fatman

products is provided to clarify the descriptions of the last section. In the last section, the

similarities of microservices with the new integrated system as stated in the introduction

will be specified.

2.1 Company and products portfolio

Fatman Ltd. provides enterprise applications to enhance the life cycle management of

different businesses. The main products are maintenance resource planning (MRP) and

contract management (CM). These applications are working on everyday devices, plat-

forms, and browsers.

The MRP program, named Fatman frame, is designed to be used mainly by service

companies, real estate owners, house managers, facility managers, and industrial com-

panies [2].

The main features of the MRP application are composed of the basic information of real

estates, plots and buildings; handling service requests of properties in a centralized sys-

tem, forwarding service requests to the company suppliers, maintenance task schedul-

ing, renovation planning, reporting and recording the meter data. The features are used

based on different customer’s business requirements.

Contract Management is another product provided by Fatman. It is a comprehensive tool

for handling real estate and tenant information. Contract management's main functional-

ities are comprised of creating and sending invoices, fetching payment information from

banks, managing ledgers, managing leasing contracts and creating bookkeeping mate-

rial directly from the contracts. Moreover, this program is designed to work with MRP

systems seamlessly.

In addition to the above-mentioned products Fatman also provides an application pro-

gramming interface (API). This tool enables communication with other systems in case

a customer has an own tool which requires data sharing with the Fatman frame.

5

2.2 System requirements

A large amount of business-critical systems that are vastly used by enterprises are leg-

acy [3]. Fatman as a provider of several facility management systems is facing chal-

lenges of software modernization. The MRP system, Fatman framework, had been writ-

ten in 2010. It has been converted from an old tool that became obsolete in early 2019.

The other product, Contract Management has been in use for over 20 years. These ap-

plications have been growing over the years and the new functionalities were being

added by the time of customer’s need. As the applications grow, the maintenance and

evolution of software applications become increasingly complex.

In this regard, despite specifying the business and functional requirements of the system

it is advantageous to keep an eye on the overall improvement of the software as non-

functional requirements. In this respect, the different requirements of the system are pro-

vided as follows.

2.2.1 Business requirements

The MRP application is mainly used by companies of real estate business. These com-

panies are usually willing to have the contract management tool alongside. Currently,

over half of the customers are using both applications and this number is increasing.

At this stage, the market of the MRP system has reached the point where Fatman is

required to merge the contract management tool to the MRP system to offer the products

as one. Therefore, Fatman demands an integrated system where two applications are

merged with the matching look. By unifying the applications, the end-user is able to have

access to both systems by a single login.

This unique feature in the market of business applications provides the opportunity of

offering a comprehensive product that makes the business operations more efficient,

eliminates manual work of end-user and enhances the user experience.

From a broader perspective, this approach will lead the company to attain a new future

model for building and adding new tools. For instance, if it is managed to provide a solu-

tion that allows running multiple applications together as a whole, future features can

either be an extension of the existing applications or alternatively an entirely new appli-

cation.

6

2.2.2 Functional requirement

As explained in the business requirement, many customers of the Fatman products are

using the MRP and CM applications alongside. Considering customer's demand for us-

ing two relevant applications side by side, some inconveniences have arisen to the users

and administrators of the systems. For example, a single user has access to two different

applications and is required to use both tools in order to accomplish a task. With the

same credentials and roles, the same actions need to be taken repeatedly in order to

authorize and navigate to the intended features.

The aforesaid issues bring some functional requirements for the users and administrator

users of the system as bellow:

• The end-user of different tools should be able to have access to both systems as

a whole.

• The user should have access to the comprehensive system by a single creden-

tial.

• The administrator user should be able to manage the users from a single user

management tool.

• The user data should be consistent in all subsystems after the data modification.

• Navigation between the subsystems should be intuitive and easy to operate.

The above-mentioned requirements can be grouped into two categories. First, the user

authentication in the unified system and second user data management.

2.2.3 Nonfunctional requirements

MRP and CM applications consist of several components. For example, considering the

MRP system, it is made from different modules including handling of service requests,

scheduling the maintenance tasks and planning renovations. Despite application com-

prises different modules, it is built and deployed in a single process, Figure 1.

In this single executable application, any changes to the system require the building and

deploying a new version of it which is known as monolithic style. When the monolithic

application grows, due to the size and complexity of the code it is hard to make any

changes that ought to only affect a particular module. Accordingly, the scaling is required

for the entire application rather than a single module. As a consequence, the mainte-

nance and scaling of the application become challenging [4].

7

Correspondingly, in Fatman products, the maintenance of monolithic systems became

challenging in particular when it comes to adding new features. Therefore, it is required

to find a way out from enlarging the existing code whenever a new feature needs to be

added.

In addition to the size and complexity of the code, the technologies used for developing

the system become obsolete when the enterprise application becomes old. By sticking

with the outdated technologies it is not feasible to improve the performance and user

experience of the system. Hence, it is also required to figure out a solution by which the

new features can be added using modern technologies. This approach would direct the

development of products towards software modernization as a long-term investment.

Figure 1. A monolithic application consists of different components

Considering the above-mentioned requirements, it is advantageous to study particular

solutions which have made for similar architectural style. The next section introduces

microservices architecture and its solutions to comparable issues.

2.3 Microservice architecture

Microservices architecture style describes an approach in software development in

which designing of applications developed as a set of independently deployable services.

The services are running on their own process and communicate with each other through

a lightweight mechanism. [4]

The microservices approach has become a trend in the last decades due to the common

reasons amongst many organizations. A large number of software companies possess

big applications that have been growing in many years. They were building technical

8

debt over the years and at some stage, it is realized that the maintenance and scalability

of the systems are getting highly complex. Consequently, they need an approach by

which enhance the maintenance and scalability of their products. As a result, the ideas

developed around splitting the applications up into smaller components running on their

own process and talk to each other through the lightweight mechanism. In this way, the

independently deployable services can be scaled and tested individually and thrown

away if needed without affecting the whole system. The microservices can be written in

different languages and own their individual datastore. This manner enables software

companies to take advantage of continuous delivery and scaling applications in different

axes. [1]

One of the principles of microservices is to have a single responsibility for each service,

Figure 2. A single responsibility can be defined as functional, non-functional or cross-

functional responsibility. However, occasionally a single responsibility can become quite

large. For instance, a payroll system in an online shopping application has a single re-

sponsibility but also not simple.

Figure 2. Microservices with independent components

9

2.3.1 History of microservices

The “Microservices” term has been used extensively since March 2012 [5]. Some indi-

viduals from the microservice community claim that microservices demonstrate a new

architecture style, while proponents from Service Oriented Architecture believe that mi-

croservices are an implementation approach to SOA.

SOA is defined in various contradictory ways by different groups. For instance, SOA for

the community who have been into enterprise systems expresses an enterprise service

bus (ESB). ESP is a vital component of SOA that is a pattern in which a centralized

software component executes integrations in the background and make them available

as a service interface to be reused by other applications [6]. On the other hand, Martin

Fowler from microservices society defines SOA in a broad term and indicates that the

microservices term can be a label as a subset of operation in SOA. However, some

microservice advocates rejecting the label entirely.

Nevertheless, the microservice approach has been done by people under the name of

SOA for at least a decade before emerging the microservice term widely. [7]

2.3.2 Some characteristics of microservices

There is no solid definition that can outline the microservices. However, there are com-

mon characteristics amongst the different microservice systems that are retrieved to de-

scribe the title. In the following sections, some common characteristics of microservices

that are relevant to this thesis are selected. These characteristics are explained by Martin

Fowler as following.

Componentization by services

Looking at the software industry over the years reveals that there has always been a

desire to build systems by putting components together as in the physical world. Com-

ponents are units of software that can be replaced or upgraded independently. In terms

of software, there are two forms of components: services and libraries.

Libraries are pre-written codes that are obtained from third parties and linked to the pro-

gram. Most of the programming languages have a collection of libraries which has been

growing through the last decades considerably. Libraries are a part of the process and

in order to call them, we are using in-memory functions. Replacing or upgrading the li-

braries does not demand a significant code changing.

Services, on the other hand, are different types of components that are running on their

own process. Unlike the libraries, which are using in-memory functions, services use the

10

inter-process transmission such as web service calls. Services are more independent

than libraries. For upgrading a library, the system should be compatible with the library

version while services are independent components running in an independent process.

Upgrading a service would not have any conflict with the other service components.[4]

Product development methodology

Studying the division model of large applications, such as enterprise systems, reveals

that dividing the application into the parts commonly leads to splitting the software based

on the technology layers. A common model is to form three different teams associated

with each layer as front-end, back-end, and the data storage teams. In this model, even

small changes in the code would lead to decision making across the teams. For example,

a minor change in the server-side requires other team's approval.

Contrary, in microservices this type of management is fundamentally different. The ser-

vices are built around the business capabilities and any individual team focuses on one

service. The developers of these teams must fulfill the requirements around all the tech-

nology layers. Hence, every developer in the team is required to have full stack skills

including the user experience, server-side and database management.

In monolithic applications, it is possible to divide the system into several modules based

on business capabilities. In fact, the teams in developing monolithic applications are in-

tended to split up themselves based on business boundaries. However, it is unlikely to

end up with an optimal way of working in large systems. The main reason is when the

business boundaries around the modules expand, all the members are imposed to re-

member the functionality of each business logic all over the system. This becomes prob-

lematic since it is not feasible for individuals to fit a large number of business-logic to

their short memory. Thereby, more explicit separation of boundaries is required to clarify

and enforce each team’s boundaries.[4]

Decentralized data management

In the monolithic architecture, a single database is used across the system in the interest

of data persistency. However, in microservices decentralization is applied in many differ-

ent ways as well as data storage. In this architecture, each service is allowed to have its

own datastore as Figure 3. The approach is known as polyglot persistence. Polyglot per-

sistence implies that it is permitted to have multiple data storage in one system which

can also be implemented in different technologies. The data storage technology for each

service is entirely up to the individual service. [8]

11

Having each service to be responsible for its own data may remove the complex integra-

tion through the databases. Moreover, it also enables us to choose a datastore technol-

ogy for each service based on its compatibility with the corresponding component.

However, decentralizing the data storage across the system has some implications

which will be discussed later.

Figure 3. Decentralized data storage in monolithic vs microservices

2.4 Fatman database structure

Fatman Ltd. as a provider of the MRP system is following the Software as a Service

(SaaS) delivery model. In the SaaS model, a single application is rented to multiple ten-

ants as in Figure 4. In other words, each customer makes payments to the software

company as a rent. In SaaS enterprise systems they provide customers a web-based

software program with a more affordable pricing structure. As a result of the application

being hosted by a service provider, the infrastructural costs are belonging to the vendors

while the organizations only pay for the features they use [9].

There are different tenancy models in SaaS applications. Fatman products possess a

pattern of multi-tenant applications with a database per tenant. In this pattern, a new

database is made for each tenant (customer). The advantage of this model is the possi-

bility of customization and optimization of databases per tenant since each customer has

its own version of the database.

12

Figure 4. Multi-tenant application

Although each customer has its own version of the database, in Fatman products similar

to the majority of enterprise systems, a single database is shared across multiple appli-

cations, Figure 5. The reason for that is the decisions made by commercial models of

suppliers around licensing for this type of system. [10]

Figure 5. Shared database for authorization and authentication

13

While several applications are sharing a single database, separate databases containing

the authorization and authentication information are in use by each application as in Fig-

ure 6. These databases are including the user's basic information, the company’s infor-

mation, roles, filters, permissions, messaging, etc.

Figure 6. Separate databases for authentication in different applications

Hence the database structure, considering the users and products DBs resembles as

Figure 7.

Figure 7. Fatman products database architecture

14

The user management tools of different applications only use the information from the

corresponding authorization database. Considering the integration of two applications, a

new user management tool needs to be developed by which it is possible to reach the

information of both databases.

2.5 Microservices architecture analogies to Fatman integrated

system architecture

In a microservices architecture, the system is componentized. Components are inde-

pendent services that are designed to work together. As explained before, this software

architecture model brings many benefits to the software system. On the other hand, at

the same time, many problems of distributed systems, such as cross-cutting concerns

arise. One of the main challenges is the production of a secure and efficient authorization

and authentication mechanism.

Similarly, in Fatman, the unified system composed of different independent applications

that are running on their own processes. Even though the applications are not small

services, it has been decided to make them work together as a unified system. Thereby,

the same challenges of authorization and authentication apply in this case.

Besides the authorization mechanism, there is another similarity between microservices

and the integrated system. In microservices keeping the datastores consistent while the

data is modified from various places is a concern. The concern results from the fact that

each service has its own database and the same data can be stored in several data-

bases.

As explained in the previous chapter, Fatman products possess different databases for

authorization and authentication of each application. Imposing the applications to be a

unified system demands the data consistency of user’s data which are stored in two

different databases. The user's data is modified from various places; hence, it is needed

to consider data consistency when moving to the new architecture.

In the following, these challenges are explained further.

Cross-cutting concerns

A system consists of several functionalities that are implemented by the main logics

along with the tangled code. These functionalities are divided into primary and secondary

based on the purpose they are made for. The secondary functionalities are related to

some part of the code which is not associated with the main logic, for example, logging.

Logging and the main code are from a different concern. A concern is determined as a

15

domain which is decomposed on the basis of the functionality. Concerns are usually

found in different parts of the code but sometimes they overlap in one area. These con-

cerns are known as cross cutting-concerns. Other examples of cross-cutting concerns

are authorization, authentication, and configurations. [11]

Cross-cutting concerns are scattered across the whole system; hence a single function

is repeated in several places. In monolithic applications, code duplication can be easily

prevented. The solution is to locate the repeated code in a shared place that can be

reused from various parts of the system. In contrast, in microservices, this cannot be an

optimal solution due to the dependency that common code makes amongst the compo-

nents. Therefore, cross-cutting concerns are problematic in microservices since it pro-

duces code duplication, chaotic architecture and complex maintainability.

There are several different primary cross-cutting concerns in microservices such as log-

ging, exception handling, configuration management, monitoring, authorization, and au-

thentication. In authorization and authentication as an example, each service should im-

plement an identity authentication and authorization mechanism on its own due to the

fact that services are independent processes. These functionalities are scattered

throughout the entire system and make the architecture unorganized.

Hereinafter, the crosscutting concerns of microservices that are similar to the integrated

system are explained more closely.

2.5.1 Authorization and authentication

In a monolithic application, when the user logs in through the security module of the

system, a session ID is created for the user and sends it to the client. The client, which

is the browser, restore this unique session ID associated with the user as a cookie. The

session contains information about the user such as usernames, roles, and permissions.

From this moment whenever a user sends a request to the server the session id is also

sent to the application to verify the user’s identity and permissions. Thus, the user doesn’t

need to enter the username and password for each request, Figure 8.

16

Figure 8. Authorization and send a request in a monolithic system

In microservices, a request to service can happen from an external or internal call. De-

pending on the design of software these requests can be authenticated either to a group

of services or each service separately. If the authentication is made for a group of ser-

vices, the internal calls do not necessarily require authentication.

Considering the similar situation az in monolithic systems, in microservices, each exter-

nal request to the service needs to be authenticated and authorized due to the separation

of processes in each service. For example, imagine a user who logs into a service that

handles the service requests. This user also wants to create an invoice for the request

which is handled in invoicing service. In this situation, the user needs to be authorized to

the invoicing service along in order to accomplish the task.

17

Having a system with microservices architecture demands a mechanism for authoriza-

tion and authentication which either gives access to the group of services or a single

service depending on the external or internal service call types.

According to the above-mentioned issues, there are some challenges in the authoriza-

tion and authentication of microservices:

• Authorization and authentication need to be handled in each service which

causes duplication all over the code.

• Reusing a part of the code to avoid duplication causes dependency between the

components.

• In microservices the rule of single responsibility per service must be followed,

thus authorization and authentication responsibility needs to be handled in a sep-

arate component. [12]

2.5.2 Data management

In the microservices approach, decentralization applies to all aspects of software design.

Decentralization not only guides the business logic organization of the system but also

leads the data management. The decentralized data management is one of the basic

principles of microservices which is presented in many ways.

The most abstract way of decentralizing data is to define a conceptual model for each

component. This can occur when the application is split into separate components. A

good example of approaching the system componentization is through the Domain-

Driven Design of the bounded context (DDD). DDD divides up a complex domain into

different bounded contexts and maps the relation amongst them. [10]

Apart from the conceptual models of data decentralization, in microservices, the data

storage is also decentralized. Unlike the monolithic architecture that the whole system

shares a single database, in microservices, each service manages its own data. The

notion is known as polyglot persistence where multiple data storages with different tech-

nologies are used in a single application in order to take advantage of suitable tech-

niques. [8]

Decentralizing repositories across microservices has some implications. The distributed

approach to managing data causes duplication and data redundancy across the data-

bases. Data redundancy leads to the problem of lacking data integrity and consistency.

Unlike traditional data modeling, each entity can appear in several places and managing

updates in this situation become troublesome. [13]

18

3. METHODS AND MATERIALS

This chapter explores the best practices and methods to follow up with the thesis objec-

tives. The first section introduces the adopted research methodology to carry out the

procedure in the thesis. The second section investigates the user authorization and au-

thentication solutions to come up with the design in the next chapter.

3.1 Research methodology

This thesis strives to focus on the development and application of the task’s knowledge

in order to design artifacts rather than gathering theoretical information and solutions.

Therefore, the “Design science” approach is utilized to accomplish outcome-driven re-

search.

In the Design science methodology, unlike the Natural science, the main concern is

about "devising artifacts to attain goals" [14]. Thus, the main concern is about functional

performance improvement in the artifact. The design science products are evaluated

against utility criteria. Hence, design science composed of two activities, build and eval-

uate. The building is the procedure of developing an artifact for a particular goal and the

evaluation indicates the procedure of determining the wellness of the artifact perfor-

mance [15].

The aim of this research is to design an artifact that will be developed and implemented

and eventually evaluated against the requirements.

3.2 Authorization and authentication technical solutions

As described before, one of the challenges of adapting to the microservices is that with-

out having a proper authentication and authorization mechanism, the global logic of au-

thorization and authentication needs to be handled in each service. On the other hand,

the principle of handling one business logic per service must be followed to keep the

components simple. Accordingly, authorization and authentication functionalities should

be centralized in one service. This service has one responsibility which is handling the

user’s authentication and authorization. Considering this situation, some solutions are

provided as in the following.

19

3.2.1 Distributed session management

There are several options to maintain the user login status after the user is authenticated.

One way is to save the user data on the server as a session. In this way, when moving

between the services, each request from the server remembers the user’s identity status.

There are several options to implement this procedure:

• The sticky session, by which, it is ensured that all the requests from a user are

handled through the server which has handled the first request. Accordingly,

whenever a request is sent to the server from any service, the server remembers

the user’s identity [16]. However, this solution may fail by the load balancer. If the

load balancer decides to force the user to switch to another server, the user’s

session will be lost, and the user will be thrown out of the system.

• Session replication, which is a mechanism used to replicate the session be-

tween different instances of servers which are part of the same cluster. In this

mechanism when the session data is changed, it is needed to go through all the

instances for synchronization. [17] The synchronization may cause bandwidth

shortage. The greater number of instances makes more overhead to the band-

width.

• Centralized session storage in a sense of having a shared place where the

session is stored and each service will have access to the session. The downside

of this solution is the lack of security. In this solution, special protection to the

shared session is needed. [12]

Despite the above-mentioned drawbacks, in all the stated solutions the server must be

stateful. Having a stateful server impacts the horizontal scaling of the system. Moreover,

for security reasons, there is the concept of the “same-origin policy”. The same-origin

policy is enforced by the browser to dictate the cookies to be accessed only by its creator.

In other words, when there are different applications and each one has a different do-

main, the cookies of one domain cannot be accessed from another domain [18]. For this

reason, another solution to share the session information across the domains needs to

be identified.

3.2.2 Client token

Another option to share the login information is to generate Tokens to record the user’s

login status. The difference between tokens and the sessions is the place where they

are stored. The sessions are kept by the server while the tokens are remained by the

user. In this way, the server does not need to be stateful. The tokens are either stored

20

directly in the web store or in the cookies. Considering the tokens contain the user’s

credentials and carry sensitive information, they have to be treated cautiously. [19]

JSON Web Token (JWT) is an open standard (RFC 7519) that defines a compact and

self-contained way for securely transmitting information between parties as a JSON ob-

ject. The JWT tokens are digitally signed and encrypted to ensure that information is

verified and trusted. [20]

In order to share the authentication information across the different domains, a central

domain is needed to perform the authentication. When the user is authenticated, a

signed JWT token is generated in the central domain which will be shared with the other

domains. This token contains the required information to identify the user in any other

domain. Considering the token information is encrypted, the content cannot tamper along

the way.

Figure 9. Central authentication domain mechanism [18]

As demonstrated in Figure 9, whenever the user goes to a domain for authentication, he

will be redirected to the authentication domain. The user inserts the credentials and as

soon as he is authenticated, he will be redirected to the original domain. From this mo-

ment the token is generated, and the user has access to the other domains as well. As

a result, if the user wants to use another domain, the authentication will be verified by

the authentication domain and the user is redirected to the second domain.

As described earlier, for the purpose of taking full advantage of microservices features,

it is beneficial to distinct the user login responsibility in a separate service. In order to

https://tools.ietf.org/html/rfc7519

21

address this objective, the Federated identity management approach is introduced as

bellow.

3.2.3 Federated identity management, SSO and technical solutions

Federated identity management is defined as a system that enables the user’s identifi-

cation data to be usable across distinct identity management systems. In this manner,

each identity management system is able to acquire access to the network of all appli-

cations in the group. [21]

Accordingly, from the end-user point of view, federated identity management establishes

single sign-on access to all the applications across heterogeneous domains. Meanwhile,

there is no need for the development of homogeneous databases for identity information.

Each application maintains its own data store to be used for authorization and authenti-

cation.

Federated identity system handles several concerns namely, authentication, authoriza-

tion and user management. Authentication refers to validating the user’s credentials and

generating the identity of the user. Authorization indicates the user’s access restrictions

and user management is related to the administration of the user accounts.

Single sign-on (SSO) refers to the authentication part of the federated identity system

and has a simple context. It implies that whenever the user has authenticated to the

application with a domain A, he also has access to the other application in domain B.

This can be applied in a network of applications meaning that the access can be given

to all the subsystems of a comprehensive system. This task is done based on the mech-

anism of each user-oriented request should go through the authentication service. If SSO

approves the request, it grants a session to the user to access the intended application.

This session is generated in a form of aforementioned JWT token. [18]

Single sign-on is a common solution to authentication and authorization in microservices.

The federated identity system functionality is encapsulated in a microservice to avoid

duplication and dependency between the services. Thereby, any changes to the service

do not affect the other components of the system.

There are many ways to implement the SSO mechanism, in the following the more de-

tails are explained.

SSO technical solutions

With the aim of having a federated identity, it is needed to decide about an authentication

protocol to transfer the authentication data. There are different authentication protocol

22

options that are used in federated identity. As of today, there are two protocols that are

most adopted and popular in modern web applications, OpenID and SAML. [22]

SAML Security Assertion Markup Language is an XML based set of standards that are

designed to be used in SSO. It provides a data format to exchange information about

authorization and authentication between the identity provider and the service pro-

vider. [23] SAML is a product of the OASIS security services technical committee from

2001 [24].

OpenId Connect is an identity protocol that allows users to be authenticated using iden-

tity providers. It defines an ID token for returning the user information. It is an interoper-

able secure identity layer on top of OAuth 2.0 specification which allows the authentica-

tion session information to be accessible across several applications. [22]

OAuth2 is a generic access authorization protocol that enables applications to get limited

access to the user's accounts on HTTP services. OpenId Connect is an OAuth extension

for defining the id token. Thus, OAuth2 grants authorization while OpenId connect de-

fines an ID Token for authentication.[25][26]

There are some benefits to choose OpenID in preference of SAML.

• OpenID easily uses identity token and the client receives this token in a JWT

format, known as id token. The benefit of having the ID token encoded by JTW

is the wide range of signature and encryption algorithms it claims.

• OpenID uses the OAuth2 protocol which has its own benefits. OAuth2 is used by

clients to get the ID token. It means that a single protocol can be used for authen-

tication and authorization.

• OpenID is yet simple to use despite its capability.

• OpenID is simple to integrate with basic applications while offering security which

is crucial for enterprise systems.

• OpenID has security options that can meet enterprise requirements. [27]

A typical SSO mechanism is illustrated in Figure 10 as below.

23

Figure 10. A typical SSO mechanism [18]

24

4. SYSTEM DESIGN

In the theoretical background chapter, the problems of authorization and authentication

in microservices and its similarities to the Fatman framework are described. In the pre-

vious chapter, some solutions to the authorization and authentication of the distributed

systems are introduced. The following sections evaluate the applicability of the provided

solutions in the Fatman framework and provide the architectural decisions with respect

to the microservice’s paradigm.

As previously stated, it has been decided to integrate the MRP and CM applications. Due

to the size and complexity of the existing monolithic applications in addition to the vital

business processes in the customer organizations, refactoring a large amount of code is

not an optimal solution for the accomplishment of this task. It is rather more beneficial to

revamp the existing code by inspiring from the Microservices architecture to make the

existing applications work together.

Making the existing tools work together to provide a holistic experience while avoiding

refactoring, enables the development of a new architecture model. In this model, a new

tool can be added without interfering with the existing tools. Therefore, it is not necessary

to lock with the old technologies, the new tools or features can be added to the compre-

hensive system whenever needed with a desirable technology stack.

As previously stated, the Fatman integrated application consists of two independent sub-

systems with identical identity management mechanisms. Each identity management

system uses a separate database for handling the authorization and authentication.

Accordingly, each application has a separate user management tool to be used by the

administrator of each system. Considering this situation and the aiming of integrating two

applications, firstly a new mechanism for authorization and authentication and secondly

a new implementation of user management tool is provided.

4.1 Authorization and authentication

The MRP and CM products are created to serve different businesses but also they have

some related business use cases. For example, consider a user from a maintenance

company who has access to both MRP and invoicing applications. Due to the associated

businesses, the user is required to use them together in order to complete the desired

task.

25

In this use case, the user wants to first use the MRP system to create a new service

request. Afterward, an invoice needs to be created for the customer who the service is

requested for. In order to perform the task, there are several actions to be taken:

• Authenticating to the MRP system

• Making a new service request

• Logging out

• Authenticating to the invoicing system

• Making the invoice

• Logging out

The similar steps need to be taken by the maintenance personnel in order to follow up

on the service request’s tasks as illustrated in Figure 11.

26

Figure 11. Use case diagram of using different business applications side by side

27

As can be seen from the diagram, some actions, like the process of authentication, can

be more complex when the user has forgotten the passwords or the credentials are in-

serted incorrectly. Another example is when the user realizes some basic information in

the service request needs to be modified after invoice creation. Evidently, the whole sys-

tem can be improved due to the following reasons:

• Avoiding repeated actions for authentication, navigation and browsing the differ-

ent domains.

• Eliminating the credential validation for several times.

• Preventing password fatigue which entitled to the experience of remembering

several passwords.

• Reducing the probability of user error while switching between applications.

• Avoiding poor user experience and loss of time.

In order to eliminate the troublesome actions mentioned above, we need to find a way to

share the user’s login status to the other application whenever the user is authenticated

from any one of them. Hence, we need a new authorization and authentication mecha-

nism. With respect to the componentization principle from microservices, this mechanism

should be encapsulated in a separate component to handle only the responsibility of user

authentication and authorization. In this way, we will have a separate process for han-

dling user authentication which is easier to scale and maintain, Figure 12.

Figure 12. Separation of identity provider component in the new integrated system

28

In this case, it is required to share the login information between the applications of dif-

ferent domains. In the previous section, the different solutions to a similar issue in micro-

services are explained. Likewise, in Fatman products, a central domain should be imple-

mented in order to generate a JWT token to share the session information amongst the

subsystems safely.

In this way, when the user logs in to any service provider, instead of providing the cre-

dentials to each application, the credentials are provided to the Identity Provider (IDP).

The IDP is trusted by the applications and the user’s credentials are validated by IDP.

Hence, the IDP federates the service providers and deliver an SSO mechanism.

Figure 13. Single Sign-on in Fatman products

As can be seen from Figure 13, when the user browses the MRP.com, he will be redi-

rected to the shared domain which is IDP.com. The user needs to enter the credentials

in the shared domain. The credentials are validated by IDP and a token is generated.

Afterward, he will be redirected to MRP.com to be authenticated with the JWT token.

Later, when the user navigates to CM.com, he would have access to the application

already. The same process happens if the user first browses to CM.com or in the future

from any other domain. [28]

29

Having SSO in the Fatman unified system ease the process of adding new applications

to the distributed system without worrying about internal authentication. Implementing

the IDP in a separate service provides the possibility of independent development and

deployment without interfering with the complex monolithic applications. This solution is

a proper fit in Fatman since it can also ease the future plans of software modernization.

Figure 14. Fatman products using IDP for authorization and authentication

In order to follow the solution of having federated identity management, there are three

main functionalities to be implemented:

• User mapping: Considering the existing users who already have access rights to

either of the applications. There should be a mechanism to map the existing ac-

counts of different applications to be used in the federated identity provider.

Therefore, by signing in to the identity provider, they can automatically sign in to

the relevant applications.

• User registration: The new user accounts should have the default access to both

systems. In other words, the user must be able to use this account to have access

to both systems. The user’s authority to the different modules of the application

should be handled in the authorization.

• User authentication: This function provides the user identity authentication. When

the user signs in to the identity provider, an access token is created to be shared

with the applications afterward.

The user authentication process is described as in microservices and the solution to the

user’s mapping and registration will be discussed in the following sections. Later, the

implementation of user mapping and registration will be introduced in more detail in the

next chapter.

30

4.2 User data management

By implementing the federated identity management and unifying the systems some im-

plications come into begin. The unified system is encountered as a single product and

the user information databases are decentralized. Undercover, there are different sche-

mas and configurations for each system. The configuration settings and user manage-

ment tools are scattered and modifying a user through one of the tools, results incon-

sistency between databases.

In the new system, the administrator user should be able to add or remove users as well

as modifying their information and give them access and rights to different parts of the

system. These requirements could be fulfilled simply when they only have the MRP sys-

tem without Contract management addition.

Nevertheless, In the new system, the user modification operations only affect the user in

one system and remain the equivalent user in the other application intact due to the

decentralized data stores.

In this situation, there are several problems arisen as below:

• Overload of work for the service desks of the company associated with setting up

and modifying a user in different databases.

• Using several tools for setting up an identical user.

• Twice the effort for any conventional user management operations.

• Redundant data due to the distributed data stores.

• Using manual scripts constantly for maintaining data consistency between the

applications.

• Overload of work for development on error occurrence due to data inconsistency.

Consequently, user management in this system is time-consuming, error-prone and lack

of access control causes difficulties in the future.

An entirely fresh design of the user administrator tool is not ideal in the current situation

because of the following reasons. Fatman has several administrator tools, the company-

level admin tool, as well as the user management tool which is used by customers. These

tools are essential for everyday usage of project managers, service desks and system

administrators. Malfunctioning of these tools causes critical problems to the end-users

such as preventing users to access the applications. Designing a fresh application to be

a separate component requires a lot of resources and is time-consuming.

31

Considering this situation, it is more beneficial to implement a mechanism for managing

users with new technologies while being able to reuse the existing code. Reusing the

existing code and minimizing the load of refactoring, speeds up the process of user man-

agement implementation with less amount of resource consumption. Moreover, it will be

implemented in a certain way that does not have confliction with the future plans of soft-

ware modularization and loosely coupling.

According to the studies, in microservices architecture, a successful design is made by

modern advanced web application development and recent software engineering para-

digms in particular Domain-driven design [29]. DDD is a model-based development ap-

proach that is guided by rules such as bounded organization contexts and continues

software integration [30].

Domain-driven design solves the problems of applications by breaking down the

knowledge and turning the chaotic information into a practical model. A model-driven

design connects the model and the implementation closely by using Ubiquitous Lan-

guage which is a common, rigorous language between developers and users. Thereby,

the result is software that provides robust functionality based on a basic understanding

of the core domain. [31]

DDD acknowledges that "total unification of the domain model for a large system will not

be feasible" [31]. For this reason, DDD divides up a large system into Bounded Contexts,

each of which can have a unified model. Bounded Context is a core pattern in Domain-

Driven Design. In fact, the focus of DDD's strategic design to deal with large models and

teams is bounded context. DDD divides the large models into different Bounded Contexts

and makes the interrelationship explicit. [32]

In microservices, as well as decentralized decisions about abstract models, the data

storage decisions are also decentralized. [10] One of the main structural patterns en-

countered in DDD is the Repository Pattern. When a persistent domain model is created,

it is needed to retrieve the objects from an encapsulated data store. Repository Pattern

introduced as a part of DDD in Eric Evan’s book when it published in 2004 [31].

Repository pattern

Repositories pattern introduced as a part of Domain-Driven Design which provides an

abstraction to the logic of accessing the data. In the complex domains with a large num-

ber of classes and heavy querying, it is worthwhile to have a layer of abstraction to cen-

tralize data access and present better maintainability. It also encapsulates the technol-

ogy used to access the data from the domain layer and aids with loose coupling in addi-

tion to minimizing the duplication of queries. [33]

32

As Martin Fowler describes: “A repository performs the tasks of an intermediary between

the domain model layers and data mapping, acting in a similar way to a set of domain

objects in memory” [34]. On the client-side, the objects make queries declaratively and

send them to repositories to fetch the data. The repositories encapsulate the data stored

in a database and their operations in a set of objects. The repositories support the sep-

aration of the work domain and data mapping as illustrated in Figure 15. [35]

Figure 15. The relationship between repositories, aggregates, and database tables
[35]

Advantages:

• Repositories make the unit testing easier. Having the repositories as an abstrac-

tion of the infrastructure makes it possible to test the infrastructure which is not

possible in the unit test.

• In the legacy data access pattern, the data access object directly accesses data

storage and makes the operations against the storage. In the repository, it marks

the data with the operations in the memory of the unit of work and doesn’t perform

the operations immediately.

• Using a repository pattern with a unit of work leads to better performance and

consistency. The unit of work refers to a single transaction that contains multiple

operations of Create, Read, Update and Delete (CRUD). It runs the operations in

a single transaction. [35]

33

As indicated earlier, there are several tools and features that apply modifications to the

user information. In particular, the user management tool and user profile in the MRP

system and the company-level user administrator tool. Consequently, there are dupli-

cated functions for the same operations all over the code. In this situation, it is beneficial

to centralize these operations in a commonplace that can be used from different control-

lers.

In the repository’s pattern, it is common to implement a higher Service layer as demon-

strated in Figure 16 to interact between the controllers and the data access layer. Imple-

menting a service layer aids, to have a single place for business logic and avoid dupli-

cation in the lower layers. The service layer which uses the repositories is middleware

where we can implement the required functions for user management and call the re-

positories to access the correct database for CRUD operations. This service layer is in

a shared library and independent of any application.

Figure 16. Using repositories as an abstraction layer between database context and
controller with a unit of work possibility

The implementation of repositories and the service layer from the diagram in Figure 16,

is not dependent on any application and can be used from several places. In this regard,

it does not prevent the decomposition of the user management tool in the future. In the

next chapter, the implementation of the illustrated diagram is presented in detail.

34

5. IMPLEMENTATION OF USER MANAGEMENT
TOOL

This chapter describes the development of the user management tool with the adopted

decisions and designs introduced in the previous chapter. The tool is developed to meet

some part of functional requirements by considering the software modernization ap-

proach which will be pursued further in the company's future plans.

The project is implemented in C# language using ASP.NET framework in server and

client-side applications. HTML, CSS and JavaScript are utilized in front-end develop-

ment. The process of tracking the changes of source code is done by Git version control.

SQL Server Management Studio is used for managing databases and building scripts

for primitive data mapping.

The development consists of building the user mapping script and implementation of

repositories. It continues to the development of business logic layers and in the end, unit

testing development is introduced in order to validate each unit’s design.

The architecture decisions for implementing the user management tool in the following

sections are given by the senior developers with respect to the current system architec-

ture and aiming of using new technologies. The implementation of the new tool is the

thesis work which is demonstrated as follows.

5.1 Data mapping

In order to implement the user management tool in the unified system, primarily it is

needed to provide a list of all users of the customer in the main user management view.

The users belonging to each company are classified into three different groups. First, the

users who only have access to the MRP system, second, the users who only have ac-

cess to the CM system and third the users who have access to both applications. Con-

sidering the third group, users who are included in both databases need to be mapped

and displayed as a single user.

In order to gather all the above-mentioned users, there are two proposal methods:

• Fetching the list of users from each database individually in the code, mapping

the third user groups and finally create a list of user’s objects and apply the op-

erations.

35

• Mapping the users of different databases by building a script and thereafter in-

serting them into a new table. The list of all the users from different applications

can be fetched directly from a single table. This table would be used as a link to

the original tables in order to apply operations.

Creating a new table assists us with risk mitigations as below:

• In an identity provider, it can be verified that both users of different applications

are using the same database in case the table has corrupted data.

• The data could be a sanity check in the table by joining both the user’s structure

and comparing the connection strings.

Because of the mentioned reasons, it is decided to build a script in which the users of

different databases are mapped and inserted to a new table. The mapping is done

through the connection strings and the unique login value of users. The new table will be

in use for Identity Access Management (IAM). The simplified user mapping script is pro-

vided in appendix A.

5.2 Repositories implementation

As explained in the previous chapter, the repository pattern is selected as an infrastruc-

ture persistence layer in the new tool. In addition to the infrastructure persistence, repos-

itories support the separation of dependencies within the work domain and the data map-

ping. That is to say, with the implementation of the repository layer, the data layer has a

clean separation from the business layer. By splitting the responsibilities of each layer,

a clean example of Separation of Concerns (SoC) is achieved [35].

To start with repositories implementation, it is necessary to define one repository per

aggregate. The aggregate or aggregate root is the entity that behaves like a parent for

other sets of related entities. In the domain-driven design, the only way to communicate

with the database is through the repository since an aggregate has a one to one rela-

tionship with the repository. In this way, the repository controls the aggregate transac-

tional consistency. [35]

In the MRP authorization database, there are four specified aggregate roots as users,

companies, roles, and filters. In CM authorization database these aggregates exist as

users, groups, and companies.

Repositories are written as classes that encapsulate the data access logic. Given that

each repository is implemented per aggregate, the type of the entity that a particular

36

repository is working with should be enforced. As a result, the repositories are imple-

mented with the interface classes. Each repository has its own interface and communi-

cates with the business layer through the corresponding interface. The user aggregate

interface is written as Program 1:

namespace MRP.Repository.Authorization
{
 public interface IUserRepository
 {
 //...
 }
}

Program 1. User aggregate interface

And the user class to implement the user interface is written as following Program 2:

namespace MRP.Repository.SqlServer.Authorization

{
 public class UserRepository: IUserRepository
 {
 //...
 }
}

Program 2. User repository class

After implementing repositories with their interfaces, we create the models to represent

the domain-specific data. The model in repositories should encapsulate the data to trans-

fer them between the subsystems. Therefore, we are using the Data Transfer Objects

(DTO) in models to represent the data in the domain as in Program 3. In this manner,

the persistence model is decoupled from the service layer model. In other terms, the

DTOs are not containing any business logic, rather they transfer data through the entity

bean and the higher service layer [36].

37

namespace MRP.Repository.Authorization
{
 public interface IUserRepository
 {
 //...
 }

 public partial class UserDto
 {
 public int ID { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Login { get; set; }
 public string Email { get; set; }
 //...
 }
}

Program 3. Implementation of user DTO

Repositories considered as a set of domain objects in memory. Consequently, any busi-

ness logic implementation in the repository layer should be avoided. For this reason, only

a set of generic functionalities are allowed to be implemented which perform the CRUD

operations [35]. The example methods are defined in the interface as Program4:

namespace MRP.Repository.Authorization
{
 public partial interface IUserRepository
 {
 UserDto[] GetUsersById(int Id);
 UserDto[] GetAllUsersForCompany(int MRPCompanyId);
 int DeleteUser(int Id);
 //...
 }

public partial class UserDto
 {
 public int ID { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Login { get; set; }
 public string Email { get; set; }
 //...
 }

}

Program 4. Method’s declarations in the user interface aggregate

In order to query and manipulate data from a database and using an object-oriented

paradigm, we are using Object Relational Mapper (ORM). ORM provides maintainability

and loosely coupling as a layer between a software application and the database. The

ORM maps database tables to the C# entities and abstracts DB systems. There are

38

different libraries that can serve this purpose. Dapper is a simple object mapper with an

optimal performance amongst the other ORM libraries. Dapper maps .NET objects from

the application to a relational database and vice versa. [37]

Thereby Dapper is chosen as an ORM layer between the applications and databases.

Here is the implementation of methods in a repository class using Dapper in Program 5:

namespace MRP.Repository.SqlServer.Authorization
{
 public class UserRepository: IUserRepository
 {
 public UserDto[] GetUsersById(int Id)
 {
 using (var connection = GetDbConnection())
 {
 return connection.Query<UserDto>($@"select {AllSqlColumns}
 from [User]
 where UserID=@Id",
 new { UserID})?.ToArray() ?? new UserDto[] { };
 }
 }

 public UserDto[] GetAllUsersForCompany(int MRPCompanyId)
 {
 using (var connection = GetDbConnection())
 {
 return connection.Query<int>($@"select {AllSqlColumns}
 from [User]
 where CompanyID=@MRPCompa-
nyId",
 new { MRPCompanyId}).ToArray();
 }
 }

 public int DeleteUser(int Id)

 {
 using (var connection = GetDbConnection())
 {
 return connection.Execute(@"Update [user] SET IsActive = 0
WHERE UserId = @Id", new {Id });
 }

 }
 }
}

Program 5. Implementation of general methods in the user repository

5.3 Controller with dependency injection

After completing the repository’s implementation, they are ready to be used from the

other layers to execute CRUD operations. The repositories classes can be accessed

from the controller class to communicate with the data access layer. In order to access

39

the repository’s methods, we need to instantiate a class with a “NEW” keyword as Pro-

gram 6.

public class controller
{
 public void Update (int id)
 {
 UserRepository userRepository = new UserRepository();
 userRepository.GetUserById(id);
 }
}

Program 6. Building dependency by accessing the user repository from the control-
ler

In this way, we are creating a dependency between the controller class and the reposi-

tory class. By creating dependencies in the components, we lose flexibility. In other

words, in the case of reimplementing or having multiple implementations of repositories,

it is not possible to swap out the dependency easily and it makes the classes be depend-

ent on each other. [38]

To avoid dependency between classes and respect the loose coupling we need to im-

plement the Dependency Injection into our controller. Dependency injection (DI) is a de-

sign pattern that allows loosely coupling of the software components and makes it pos-

sible to manage the maintainability and complexity of source code.

The dependency injection happens in three different ways: Constructor injection, prop-

erty injection and setter injection. Here the easiest and the most popular type of DI,

namely, constructor injection is implemented. In the constructor DI, a dependency is

passed through the constructor of the class. [39] The controller class with the injected

repositories is written as Program7:

public class UsersController
 {
 private readonly IUserRepository userRepository;
 private readonly IRoleRepository roleRepository;

 public UsersController(IUserRepository userRepository, IRoleRe-
pository roleRepository)
 {
 this.userRepository = userRepository;
 this.roleRepository = roleRepository;
 }
 }

Program 7. Accessing repositories using dependency injection

In the next step, we need to pass in the concrete implementation of the IUserRepository

from where the controller is called. When the number of dependencies increases, using

40

a framework is beneficial to handle them and decreases the complexity of the manual

work. Here we have chosen the Ninject framework which is lightweight and easy to op-

erate. [40]

After setting up the Ninject framework, it configures the dependencies at run time as

Program 8:

 private static void RegisterServices(IKernel kernel)
 {
 kernel.Bind<IUserRepository>().To<UserRepository>().InSingle-
tonScope();
 kernel.Bind<IRoleRepository>().To<RoleRepository>().InSingle-
tonScope();
 }

Program 8. Configuring dependencies using Ninject framework

The next move is to add the action methods into the controller. The controller is respon-

sible for answering the requests coming from the view, so the action methods in the

controller are responsible for returning the results [41]. Therefore, initially, we need action

to create a list of all the users from different databases. The users can be fetched from

the new table (IAM) that has been illustrated in the first section. As all the users are now

in a single place, we just need to inject the corresponding aggregate to the controller.

Afterward, the user’s repository provides the list of users to the method.

The IAM table contains both user’s ids from different user’s tables of different databases.

Therefore, it acts as a link where the user’s information from the original tables can be

fetched. The user's list view model is the iamDto class. Therefore, the action returns the

iamDto object to the view as Program 9.

public ActionResult UsersList()
 {
 var userInfo = userProvider.GetUserInfo();
 var userListItemViewModels =
 iamUserRepository
 .GetAllIamUsersForMRPOrCMCompanyId(userInfo.ActiveMRPCompa-
nyId, userInfo.CMActiveCompanyId)
 .Select(item => new UsersListItemViewModel
 {
 IamUserDto = item
 }).ToList();

 return View(userListItemViewModels);
 }

Program 9. Implementation of get request in controller

41

Once the list of users is exposed in the main view of the user management tool, we need

to implement the user modification functionalities. The edit user view model contains the

user information which is stored in different tables. For example, user roles and rights

which are fetched from a different table than the newly created IAM table. As explained

earlier, the new table keeps the user IDs of original tables as MrpUserId and CmUserId.

In this way, the user’s relations to the other tables, in particular roles table are still valid.

Since the edit view model has information about different tables, it is necessary to map

the view model to each repository DTO object. The edit view model uses the IAM table

user-id as user identification. Therefore, we need to fetch the users from each database

by their corresponding user IDs. This will happen by calling read functions in each re-

pository. Afterward, we can apply the updated information to each repository in different

databases.

There are several places where the user’s data can be modified as stated before. Hence,

it is preferred to centralize the create, delete and edit operations in a commonplace. In

this way, these actions can be reached from the other projects and any changes to the

mechanism of these functions would only apply in a singular place. In order to accom-

plish this task, we are using the Service layer.

5.4 Service layer

The repository layer gives abstraction over the data access layer and exposes the CRUD

operations. All the database logic goes to the repository for separation of concerns. For

example, listing the users as UsersList function is implemented in the repository and the

user repository has all the information needed for accessing data. The controller uses

the repository layer in the action methods and does not contain any database logic.

Hence, separation of concerns appears, as repositories are responsible for data access

logic, and the controller is in charge of controlling the logic of application flow. In this

case, we need to take a position for business logic.

Aforementioned, the CRUD operations should happen against the tables in different da-

tabases at the same time to persist the consistency. On the other hand, there are a few

tools and features which are manipulating the user’s data. Considering this situation, a

commonplace is a good solution to centralize user data modification. One option is using

a service layer. The Service layer refers to the part of the system which is located in the

middle of a multi-tier architecture and mediates the interaction between the controller

and the repository layer. The service layer can be used for validation and other business

logic operations [42].

https://en.wikipedia.org/wiki/Multitier_architecture

42

The identity access management service layer interface is implemented as Program 10:

namespace Fatman.Service
{
 public class IamUserAggregate
 {
 public IamUserDto IamUserDto { get; set; }
 public MRPUserDto MRPUserDto { get; set; }
 public CMUserDto CMUserDto { get; set; }
 }

 public interface IIamUserService
 {
 IamUserAggregate CreateUser(IamUserDto iamUser);

 IamUserAggregate UpdateUser(IamUserDto iamUser);

 }
}

Program 10. Implementation of service layer interface

The implementation of the update user method is written Program 11:

public IamUserAggregate UpdateUser(IamUserDto iamUserDto)
 {
 var result = new IamUserAggregate();

 result.IamUserDto = _iamUserRepository.Update(iamUserDto);

 if (iamUserDto.CmUserId.HasValue)
 {
 var ecenterUserDto =
 _CmUserRepository.GetCMUserBy-
CMUserId(iamUserDto.CmUserId.Value);
 if (CmUserDto != null)
 {
 CmUserDto.Email = iamUserDto.Email;
 CmUserDto.Username = iamUserDto.Login;
 CmUserDto.Name = iamUserDto.FirstName + " " +
iamUserDto.LastName;
 CmUserDto.Phone = iamUserDto.Phone;
 /..
 }
 result.CmUserDto = _CmUserRepository.UpdateC-
mUser(CmUserDto);
 }
 if (iamUserDto.MrpUserId.HasValue)
 {
 var MrpUser = MrpUser.MrpUserReposi-
tory.GetUser(iamUserDto.MrpUserId.Value}).FirstOrDefault();

 MrpUser.Email = iamUserDto.Email;

 MrpUser.FirstName = iamUserDto.FirstName;

 MrpUser.LastName = iamUserDto.LastName;

43

 MrpUser.Login = iamUserDto.Login;
 //..
 result.IamUserDto.MrpUserId = MrpUserReposi-
tory.SetUser(MrpUser);
 }

 return result;
 }

Program 11. Implementation of the updateUser method in the service layer

The service should be injected into the controller in order to talk to the service layer. In

this way, the business logic is moved to the service layer and the service layer isolated

from the controller. As a result, it is possible to reach the service layer’s methods from

any application and apply the changes to the user’s data in a unique way.

Program 11 demonstrates one example feature of editing user basic information from

the database layer to the controller. The other functionalities required for the administra-

tor of the user management tool is developed with the same logic. The repository classes

are implemented for relevant aggregates of each application such as users, roles, rights,

filters, and companies.

5.5 Unit testing

The repository pattern makes it easier to unit test the application. The unit testing refers

to a software testing method, in which any individual component of the software is tested.

These units are the smallest testable piece of software. The aim of unit testing is to

ensure that each component of the system performs as designed [43].

After implementing the required features, in order to test the repository’s performance,

we will write some unit tests. By implementing the repositories in the domain layer, the

application layer is not directly dependent on the infrastructure layer where the reposito-

ries are implemented. As a result, after making the dependency injections to the control-

ler, it is possible to create the mock repositories.

As can be seen from Program 12, the Mock object is a fake object which simulates the

behavior of a real object. The Mock repository returns the fake data rather than the real

data from the database. This is useful when the real data are impractical to be manipu-

lated. [44]

44

For the purpose of writing the unit testing, a new test project with dependency on the

repository's implementation is created. Thereafter, the test class and the mock repository

object is implemented as Program 12:

 public class UserRepositoryTest
 {
 private readonly IUserRepository repository;

 public IamUserRepositoryTest()
 {
 var repositoryMock = new Mock<IUserRepository>();
 repository = repositoryMock.Object;
 }
}

Program 12. Implementation of a mock repository

Following that, it is possible to inherit the mocked repository and use it in the classes for

each method being tested. For example, for the Create method in User repository we

have the class Create as Program 13:

public class Create : UserRepositoryTest
 {
 private readonly string login;

 public UserDto user { get; }

 private readonly UserDto resultUser;

 public Create()
 {
 login = $"UnitTest{DateTime.UtcNow}";
 user = new UserDto(login:login, frameCompanyId:2);
 resultUser = repository.Create(user);
 }
}

Program 13. Create a function in the user repository

As can be seen, the mocked user is created, and the resulting user is ready to be tested.

In testing, the readability should be considered as one of the most important aspects.

The reason is that the expected result should be explicitly extracted from the code read-

ing. Hence, the method names should represent the scenario of what being tested and

the expected result out of it. This also aids in providing documentation. Thereby, only by

reading the name of the test, the behavior of it is interpreted. In this manner, whenever

the test is failed, it is easy to understand what scenario does not fulfill the expectations.

As an illustration, some test methods on user creation are provided as Program 14:

45

 [Fact]
 public void UserShouldBeReturned()
 {
 Assert.NotNull(resultUser);
 }

 [Fact]
 public void UserShouldHaveAnId()
 {
 Assert.True(resultUser.Id > 0);
 }

 [Fact]
 public void UserActiveIsTrue()
 {
 Assert.True(resultUser.LastLoginIsSet);
 }

Program 14. Implementation of unit test methods on user creation

46

6. EVALUATION

This chapter evaluates the implementation of user authentication and user management

tool. The outcome is evaluated by reflecting on how well the business requirements and

system requirements are met. In addition, the compatibility of the results with the com-

pany’s future plans is discussed.

6.1 Meeting thesis goals

In terms of meeting the thesis objectives, a new mechanism for user authentication and

authorization is implemented by utilizing the microservices paradigm. The implementa-

tion of user authentication and authorization is followed by developing a new user man-

agement tool.

As stated in the previous chapters, the new federated identity management is imple-

mented in a separate application without attempting to make the existing source code

more complex and harder to maintain. Componentizing the authorization and authenti-

cation responsibility is inspired by handling the microservices cross-cutting concerns.

Accordingly, similar methods for the implementation of an identity provider is conducted.

In the new system, it is managed to implement a new mechanism of authorization and

authentication, in a manner that new tools and applications can be added to the current

products. The new tools and applications can be added to the comprehensive system

without worrying about the existing services and user login, similar to microservices ar-

chitecture.

This approach can be developed further without interfering with monolithic applications

utilizing modern technologies. Migration to the microservices architecture model is a

trend for modernizing the existing monolithic applications [45]. Accordingly, the new

mechanism of user authentication facilitates the architectural decisions in the future

model of Fatman products to migrate to the microservices model.

The user management tool is implemented by following the domain-driven design ap-

proach. The separation of concerns in the design of the tool is accomplished in the im-

plementation Which also refers to a crucial principle in microservices.

The new user management tool allows the unit testing against the database which is not

feasible in other data access patterns. This feature is beneficial in particular for user

47

modification functionalities due to the importance of user’s and the company’s sensitive

information.

6.2 Meeting business requirements

The business requirements reflect the decisions made by management on enhancing

the company’s products. The marketing plan of Fatman business has come to a conclu-

sion of offering unique software to the market. The idea of having maintenance resource

planning with the addition of a contract management system is a unique offer on the

table of enterprise companies.

Having the federated identity management aids the company to make this offer feasible.

However, the implementation of federated identity management is not adequate to fulfill

the business requirements. As explained before, the lack of user access control causes

the overload of work to the service desk and development which is costly for the com-

pany. The new user management tool eliminated the number of task tickets to these

teams caused by the mentioned issues.

6.3 Meeting functional requirements

In respect to the functional requirements, the users of both applications do not need to

attempt for logging several times in the new unified system. The access to both applica-

tions is given by a single login which eliminates password fatigue, potential user errors

and time consumption.

In the new application, the whole system is presented as a uniform while there are sep-

arated subsystems under the hood. From the end-user perspective, the style and design

of subsystems are matched and moving between the subsystems is possible through

shared sidebar navigation. As a result, moving between the subsystems is user-friendly

and easy to operate.

Moreover, the administrators of software are able to create or modify users in the com-

prehensive application. In the new tool, it is possible to give access and rights of each

intended subsystem to the user. Hence, the user management of the new unified system

is feasible without Fatman service help desk interference.

Given the unified user management tool, the user data is consistent and changing the

information from any feature of the program applies in all the corresponding tables sim-

ultaneously.

48

The entire additional features are implemented in a reasonable time frame that fulfills the

customer’s requirements, enhances the user experience and accordingly improves client

satisfaction.

6.4 Meeting nonfunctional requirements

The implementation of the identity provider to handle the authorization and authentica-

tion of the integrated system is made in a separate component. Therefore, this compo-

nent can be scaled and maintained independently.

Encapsulating this feature in a separate module prevents making the existing code more

complicated and larger. The separate component can be modified without affecting the

other applications. It is also possible to deploy this new module separately.

Having the identity provider enhances the performance and user experience of the sys-

tem. By managing to make the separate applications work together, a new future model

for building and adding new tools is attained. In this way, it is possible to add the new

features and tools to the existing system as a separate component with the preferred

technology selection.

49

7. CONCLUSION

The central goal of this thesis was to design a mechanism that enables the federation of

user authentication, authorization, and management of different monolithic applications.

These monolithic applications are legacy business software that has been growing over

the years. Accordingly, developing additional critical requirements for these systems

makes the maintenance and scalability of the system more challenging. Consequently,

we were seeking a solution that allows the development of user authorization and man-

agement of our business systems utilizing new technologies.

As stated in chapter three, in this research it is attempted to concentrate on the develop-

ment of the tasks in preference to gathering the theoretical solutions. Therefore, in this

thesis firstly the development of the new features is accomplished and secondly, the

evaluation against the wellness of the features is performed.

The challenges of implementing the new user management tool and user authorization

and authentication are known as cross-cutting concerns. Based on the existing re-

searches and own analysis, the cross-cutting concerns of Fatman products are similar

to the concerns of adapting to the microservices architecture model. In this regard, it has

been decided to utilize the microservices model to enhance the development of new

mechanisms. This approach can be followed further in the future plans of the company

to modernize the whole architectural design of the system by moving to the micro-

services.

In order to follow the microservices principles, firstly, the similarities of both systems are

clarified and secondly, the applicability of the comparable solutions is discovered. The

main characteristics of microservices that aids us in this project are associated with the

componentization by services and decentralized data management. In this regard, the

main concepts and solutions to data management and user authentication are extracted

from microservices and utilized in designing the corresponding tools.

After establishing methods to achieve the accomplishment of a federated identity man-

agement system, the implementation of a new user management tool is demonstrated

in detail. The implementation of the tool initiated by illustrating the Fatman product's high-

level database architecture and primary user data mapping between the databases. The

implementation followed by demonstrating a lower layer of data accession. Afterward,

the implementation of business logic is explained according to the design. Eventually,

50

the implementation of unit testing against the database is demonstrated to assure each

unit is functioning as designed.

In respect to following the design science approach, it is required to make the evaluation

against the performance of implemented artifacts. In this context, the list of various re-

quirements and objectives of the thesis is recorded, and the wellness of each result is

clarified.

51

2. REFERENCES

[1] X. Larrucea, I. Santamaria, R. Colomo-Palacios, and C. Ebert, “Microservices,”

IEEE Softw., vol. 35, no. 3, pp. 96–100, 2018.

[2] “Fatman.” [Online]. Available: https://fatman.fi/en/. [Accessed: 07-Nov-2019].

[3] M.Rouse, “What is legacy application? - Definition from WhatIs.com.” [Online].

Available: https://searchitoperations.techtarget.com/definition/legacy-application.

[Accessed: 02-Nov-2019].

[4] M.Fowler, “Microservices.” [Online]. Available:

https://martinfowler.com/articles/microservices.html. [Accessed: 02-Nov-2019].

[5] D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, Motivations, and Issues for

Migrating to Microservices Architectures: An Empirical Investigation,” IEEE Cloud

Comput., vol. 4, no. 5, pp. 22–32, 2017.

[6] “What is an ESB (Enterprise Service Bus)? | IBM.” [Online]. Available:

https://www.ibm.com/cloud/learn/esb. [Accessed: 07-Nov-2019].

[7] C. Pautasso, O. Zimmermann, M. Amundsen, J. Lewis, and N. Josuttis,

“Microservices in Practice, Part 1: Reality Check and Service Design,” IEEE

Softw., vol. 34, no. 1, pp. 91–98, 2017.

[8] M.Fowler, “PolyglotPersistence.” [Online]. Available:

https://martinfowler.com/bliki/PolyglotPersistence.html. [Accessed: 02-Nov-

2019].

[9] “Multi-tenant SaaS patterns - Azure SQL Database | Microsoft Docs.” [Online].

Available: https://docs.microsoft.com/en-us/azure/sql-database/saas-tenancy-

app-design-patterns. [Accessed: 02-Nov-2019].

[10] M.Fowler, “Decentralized Data Management.” [Online]. Available:

https://martinfowler.com/articles/microservices.html#DecentralizedDataManage

ment. [Accessed: 02-Nov-2019].

[11] A. El-Hokayem, Y. Falcone, and M. Jaber, “Modularizing behavioral and

architectural crosscutting concerns in formal component-based systems –

Application to the Behavior Interaction Priority framework,” J. Log. Algebr.

Methods Program., vol. 99, pp. 143–177, 2018.

[12] M.Ayoub, “Microservices Authentication and Authorization Solutions.” [Online].

52

Available: https://medium.com/tech-tajawal/microservice-authentication-and-

authorization-solutions-e0e5e74b248a. [Accessed: 02-Nov-2019].

[13] A. Furda, “On Multitenancy, Statefulness, and Data Consistency,” IEEE Softw.,

pp. 63–72, 2018.

[14] A. C. Michalos and H. A. Simon, The Sciences of the Artificial, vol. 11, no. 1. 1970.

[15] S. TAKEBAYASHI, T. HASHIGUCHI, S. TANAKA, and S. ISHIZU, “on Botryoid

Sarcoma (Mesodermal Mixed Tumor) in the Perineal Region in Infant.,” Gan No

Rinsho., vol. 10, pp. 501–509, 1964.

[16] P. Jausovec, “What are sticky sessions and how to configure them with Istio? -

DEV Community ????” [Online]. Available: https://dev.to/peterj/what-are-sticky-

sessions-and-how-to-configure-them-with-istio-1e1a. [Accessed: 13-Nov-2019].

[17] “High Availability with Sticky Session Replication | Jelastic Dev Docs.” [Online].

Available: https://docs.jelastic.com/session-replication. [Accessed: 11-Nov-2019].

[18] S.Peyrott, “What Is and How Does Single Sign-On Authentication Work?” [Online].

Available: https://auth0.com/blog/what-is-and-how-does-single-sign-on-work/.

[Accessed: 02-Nov-2019].

[19] P.Otemuyiwa, “JSON Web Tokens vs. Session Cookies: In Practice.” [Online].

Available: https://ponyfoo.com/articles/json-web-tokens-vs-session-cookies.

[Accessed: 02-Nov-2019].

[20] “JSON Web Token Introduction - jwt.io.” [Online]. Available:

https://jwt.io/introduction/. [Accessed: 02-Nov-2019].

[21] C. Guo and Y. Wang, “Application of federated identity management in ERP

system,” Proc. 2008 IEEE Int. Conf. Serv. Oper. Logist. Informatics, IEEE/SOLI

2008, vol. 2, pp. 1971–1974, 2008.

[22] “OpenID Connect | OpenID.” [Online]. Available: https://openid.net/connect/.

[Accessed: 02-Nov-2019].

[23] K. K. and M. K. A. Banati, E. kail, “Authorization and Authentication orchestrator

for micoservice-based software architetures,” pp. 1180–1184, 2018.

[24] “OASIS Security Services (SAML) TC | OASIS.” [Online]. Available:

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security.

[Accessed: 02-Nov-2019].

[25] “OAuth 2.0.” [Online]. Available: https://oauth.net/2/. [Accessed: 02-Nov-2019].

53

[26] K.Casey, “Understanding OAuth 2.0 and OpenID Connect — Runscope Blog.”

[Online]. Available: https://blog.runscope.com/posts/understanding-oauth-2-and-

openid-connect. [Accessed: 02-Nov-2019].

[27] “Dev Overview of OpenID Connect.” [Online]. Available:

https://developers.onelogin.com/openid-connect. [Accessed: 02-Nov-2019].

[28] P.Otemuyiwa, “SSO Login: Key Benefits and Implementation - DZone Security.”

[Online]. Available: https://dzone.com/articles/sso-login-key-benefits-and-

implementation. [Accessed: 02-Nov-2019].

[29] O. Zimmermann, “Microservices tenets: Agile approach to service development

and deployment,” Comput. Sci. - Res. Dev., vol. 32, no. 3–4, pp. 301–310, 2017.

[30] P. Jamshidi, C. Pahl, N. C. Mendonca, J. Lewis, and S. Tilkov, “Microservices:

The journey so far and challenges ahead,” IEEE Softw., vol. 35, no. 3, pp. 24–35,

2018.

[31] E. Evans, “Domain-Driven Design: Tackling Complexity in the Heart of Software:

Amazon.de: Eric J. Evans: Fremdsprachige Bücher,” vol. 7873, no. 415, p. 529,

2003.

[32] M.Fowler, “BoundedContext.” [Online]. Available:

https://martinfowler.com/bliki/BoundedContext.html. [Accessed: 02-Nov-2019].

[33] “Repository Pattern A data persistence abstraction.” [Online]. Available:

https://deviq.com/repository-pattern/. [Accessed: 02-Nov-2019].

[34] M. Fowler, Patterns of Enterprise Application Architecture, 1st editio. Addison-

Wesley Professional, 2002.

[35] “Designing the infrastructure persistence layer | Microsoft Docs.” [Online].

Available: https://docs.microsoft.com/en-

us/dotnet/architecture/microservices/microservice-ddd-cqrs-

patterns/infrastructure-persistence-layer-design. [Accessed: 02-Nov-2019].

[36] M.Fowler, “P of EAA: Data Transfer Object.” [Online]. Available:

https://martinfowler.com/eaaCatalog/dataTransferObject.html. [Accessed: 02-

Nov-2019].

[37] “Dapper ORM Tutorial and Documentation.” [Online]. Available: https://dapper-

tutorial.net/. [Accessed: 02-Nov-2019].

[38] “Dependency Injection.” [Online]. Available:

https://www.tutorialsteacher.com/ioc/dependency-injection. [Accessed: 02-Nov-

54

2019].

[39] I.Ilin, “All Dependency Injection Types.” [Online]. Available:

https://medium.com/@ilyailin7777/all-dependency-injection-types-spring-

336da7baf51b. [Accessed: 02-Nov-2019].

[40] “Ninject - Open source dependency injector for .NET.” [Online]. Available:

http://www.ninject.org/. [Accessed: 02-Nov-2019].

[41] “Dependency injection into controllers in ASP.NET Core | Microsoft Docs.”

[Online]. Available: https://docs.microsoft.com/en-

us/aspnet/core/mvc/controllers/dependency-injection?view=aspnetcore-2.2.

[Accessed: 02-Nov-2019].

[42] “Validating with a Service Layer (C#) | Microsoft Docs.” [Online]. Available:

https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions-1/models-

data/validating-with-a-service-layer-cs. [Accessed: 02-Nov-2019].

[43] P. Hamill, Unit Test Frameworks: Tools for High-Quality Software Development.

2009.

[44] “Best practices for writing unit tests - .NET Core | Microsoft Docs.” [Online].

Available: https://docs.microsoft.com/en-us/dotnet/core/testing/unit-testing-best-

practices. [Accessed: 02-Nov-2019].

[45] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices Architecture Enables

DevOps: Migration to a Cloud-Native Architecture,” IEEE Softw., vol. 33, no. 3,

pp. 42–52, 2016.

55

3. APPENDIX A: SCRIPT FOR MAPPING USERS
OF DIFFERENT DATABASES USING SQL

with MRP_CTE
 ([Login],
 [column1],
 [column2],
 [column3])
 as (
 Select
 [Login],
 [column1],
 [column2],
 [column3],
 MRPConnectionString
 from (
 SELECT
 fui.[Login]
 ,c.[column1]
 ,fu.[column2]
 ,fu.[column3]
 ,lower ('Server=' + c.[Server] + ';Database=' + c.[Dbase]) as MRPCon-
nectionString
 FROM
 [MRP_AuthorizationDB].[dbo].[UserInfo] as fui
 join [MRP_AuthorizationDB].[dbo].[User] as fu on fui.ID = fu.UserInfoID
 join [MRP_AuthorizationDB].[dbo].[UserCompany] as uc on fu.UserID =
uc.UserID
 join [MRP_AuthorizationDB].[dbo].[Company] as c on uc.CompanyID= c.ID
)
 SQ
)
,
CM_CTE ([Login], [column1], [column2], [column3])
AS
(
 SELECT [username], [column1], [column2] , [column3], CMConnectionString
from (
 SELECT
 eu.[username]
 ,eu.[colum1]
 ,eu.[column2]
 ,eg.[column3]
 ,lower ('Server=' + ead.[server] + ';Database=' + ead.[dbase]) as
CMConnectionString

 FROM [CM_AuthorizationDB].[dbo].[user] as eu
 join [ECENTER].[dbo].[group] as eg on eu.groupid = eg.id
 join [ECENTER].[dbo].[company] as ec on ec.id = eg.companyid
 join [ECENTER].[dbo].[accessDescription] as ead on ec.[de-
faultCID]=ead.cid
) as SQ
)

56

,
CM_only_CTE (CM_Login, CM_column1, CM_column2, CM_column3, CM_Connection-
String, MRP_Login, MRP_column1, MRP_column2, MRP_column3, MRP_Connection-
String)
as (
 select CM.[Login] CM_Login
 CM.[ConnectionString] CM_ConnectionString,
 MRP.[ConnectionString] MRP_connectionString,
 MRP.[Nickname],
 MRP.[GroupID],
 MRP.[WorkTitleId]
 from CM_CTE e
 left join MRP_CTE f on CM.[Login]=MRP.[Login] and MRP.[Connection-
String]= CM.[ConnectionString]
 where MRP.[Login] is null
)
,
MRP_and_both_CTE (CM_Login, CM_FirstName, CM_LastName, CM_Email, CM_Connec-
tionString, MRP_Login, MRP_FirstName, MRP_LastName, MRP_Email, MRP_Connec-
tionString)
as (
 select CM.[Login] CM_Login
 ,CM.[FirstName] CM_column1
 ,CM.[LastName] CM_column2
 ,CM.[ConnectionString] CM_ConnectionString
 ,MRP,[Login] MRP_Login
 ,MRP.[FirstName] MRP_column1
 ,MRP.[LastName] MRP_column2
 ,MRP.[ConnectionString] MRP_connectionString

 from MRP_CTE f
 left join CM_CTE e on CM.[Login]=MRP.[Login] and MRP.[Connection-
String]=CM.[ConnectionString]
)

,
iam_user_cte (CM_Login, CM_column1, CM_column2, CM_ConnectionString,
MRP_Login, MRP_column2, MRP_column3, MRP_connectionString)
 as (
 select * from CM_only_CTE
 union all
 select * from MRP_and_both_CTE
)

 INSERT INTO [MRP_AuthorizationDB].[iam].[User]
 ([Login]
 ,[column1]
 ,[column2]
 ,[column3]
)

 select
 case when MRP_Login is not null then MRP_Login else CM_Login end
 ,case when MRP_column1 is not null then MRP_column1 else CM_column1
end
 ,case when MRP_column2 is not null then MRP_column2 else CM_column2
end
 ,case when MRP_column3 is not null then MRP_column3 else CM_column3

57

end
 from iam_user_cte

