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Biomembranes are thin, encapsulating, lipid-based double-layered films prevalently
crowded by membrane proteins, and the interactions between the lipids and the
embedded proteins are an active field of study with vital relevance for cell biol-
ogy and biomedicine. Many of these studies approximate lipid bilayers as flat pla-
nar structures, even though highly curved membranes, such as membrane tethers
and buds, vesicles and liposomes, and in structures like cristae in mitochondria
are prevailing. So far, it has been sufficient for scientists to answer simpler ques-
tions regarding biomembranes by focusing mainly on planar lipid bilayers. However,
the advancements in experimental and computational methods allow and call for a
deeper understanding also on how membrane curvature can affect the properties of

membranes.

This thesis sheds light on the diffusion of proteins and lipids in curved lipid mem-
branes. By presenting the first molecular dynamics simulations on the diffusion of
transmembrane proteins in membrane tubes, the dynamics of the lateral diffusion in
curved environments are studied in detail. The presented results highlight the im-
portance of nanoscale curvature and compare the effect to macromolecular crowding,
another currently confirmed factor related to lateral diffusion in lipid membranes.
After a careful comparison between the results of this thesis and both experimental
and computational work performed previously, pointers are given on how membrane

curvature facilitated effects on lateral diffusion can be studied in the future.
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Solujen kalvorakenteet ovat ohuita, kapseloivia, lipideista koostuvia ja padosin kalvo-
proteiineilla ahdattuja kaksoiskelmuja, ja naiden proteiinien ja lipidien vélisten vuo-
rovaikutuksien ymmartaminen on aktiivinen tutkimusala, jolla on sekd solubiolo-
gista ettd biolddketieteellistd merkitystd. Monet asiaan liittyvit tutkimukset app-
roksimoivat lipidikaksoiskalvojen olevan laakeita tasokalvoja, vaikka voimakkaasti
kaareutuneet kalvot, kuten esimerkiksi putkimaiset kalvokytkokset ja -rakkulat,
vesikkelit, liposomit sekd soluelinrakenteet kuten mitokondrioiden kristat ovat val-
litsevia. Téahén asti tutkijoille on ollut pitkalti riittavaa vastata yksinkertaisem-
piin solujen kalvorakenteita koskeviin kysymyksiin keskittymalla laakeisiin lipidikak-
soiskalvoihin, mutta kokeellisessa ja laskennallisessa tutkimuksessa tapahtunut edis-
tys mahdollistaa ja haastaa tutkimuksen keskittyma&n myos siihen, miten kalvon

kaarevuus voi vaikuttaa kalvojen muihin ominaisuuksiin.

Tamé opinnédytetyo selkeyttad proteiinien ja lipidien mobiliteettia kaarevilla lipidi-
kalvoilla. Tésséd tyossé esitetyt ensimméiset kalvotuubeilla tehdyt transmembraa-
niproteiinien diffuusioon keskittyvat molekyylidynamiikkasimulaatiot paneutuvat
yksityiskohtaisesti lateraaliin diffuusioon kalvoilla kaareutuneissa olosuhteissa. Tyon
tulokset korostavat nanoskaalan kaarevuuden merkitysté, jota verrataan makro-
molekulaariseen ahtautumiseen, joka on toinen jo tunnettu lipidikaksoiskalvojen
lateraaliin diffuusion vaikuttava tekija. Huolellisen tulosten tarkastelun ja aiem-
paan seka kokeelliseen etté laskennalliseen tutkimukseen tehdyn vertailun pohjalta
tassa tyossa ideoidaan mahdollisia jatkohankkeita kalvon kaarevuuden aiheuttamien

vaikutusten selvittamista varten.
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PREFACE

The work for this thesis was conducted in the biological physics research group
lead by the Professor Ilpo Vattulainen, first in the physics department of Tampere
University of Technology and later in Helsinki University, during the period between
the end of 2015 and the middle of 2019. For a Master’s thesis project, this research
study that you are reading at the moment has been an exceptionally long process.
This is partly due to my intervening exchange year in Japan, however, most of
the challenges that this project has faced originate from the novelties related to it.
The simulation structures I had to prepare were unique, and there were few tools
that I was able to use to build them. It proved to be a difficult task to make my
models stable and, because of the untraditional shape of my structures, most of the
advanced analysis tools implemented in this work had to be made. Still, because of
the resulting seemingly endless back and forth trial and error, the finished product,

at least to me, is satisfying to both look at and to look back on in the end.

I have learned a lot during this project, but the single most important thing is
perseverance. At times, it discouragingly seemed to me that if I ever was able to
finish the project, the results would turn out to be dissatisfying, and all my efforts
would be in vain. This could have very well been the case, since as always when
doing exciting new science, you don’t know what to expect, but in my case, I had
hardly any reference that I would have been able to confidently compare my results
to. This made it vexing to ponder whether my results were right at all. Despite
this, from the very beginning of this project, I knew that I wanted to go through
this alone as far as I could to prove my self-worth. In this, I feel I succeeded. The
most important lesson one can learn from hardships such as this is that as long as
one has the determination and motivation for progress, there are no concepts too
complicated to be grasped or obstacles to be overcome that one wouldn’t be able to

achieve the unachievable.

Needless to say, I still did not write this thesis in solitude; above all else, it was
assuring to be aware that I had always the possibility to consult my superiors,
something I, of course, did take advantage of. The other examiner of this thesis and
my main supervisor Matti Javanainen is an expert in his field of molecular dynamics
simulations and the physics of biomembranes, and I tried to take his knowledge and

teachings to heart the best I could. Every time after our discussions had ended, I
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had a renewed zeal to explore further and to try to understand the analysis results
that I had obtained. It was a privilege to be able to work with someone as driven,

motivated, and intelligent person as him.

Like Matti, the other examiner of the thesis, my employer Professor Ilpo Vattulainen
was a significant contributor to the success of this project. Before the project had
even started, he could foresee the potential impact my thesis could have in scien-
tific discussion, for it has been only quite recently that I have noticed emerging
interest for nanoscale biomembrane curvature. Through consultations and throw-
ing around thoughts and ideas, he has guided this project to answer its original
research question, ultimately turning this thesis to be a coherent, thorough, and
thought-provoking piece of science. After being my superior for several years, I have
learned to appreciate his eagerness to be updated on the progress of the project
while still temperately understanding to let his students take most of the responsi-
bility for their work, making them learn of the experience. He is an instructor who
truly wishes for what is best for his students, even if it would be contradicting his

interests, and this is something that makes him truly stand out in my eyes.

Alongside Matti and Ilpo, I wish to thank all the members of Ilpo’s research group
and the people working close to it. The mind-stimulating discussions, the countless
laughs, the boozy get-togethers, and boisterous travels are all something I will not
cease treasuring. With a heavy heart, I will move on to new challenges after taking
care of the rest of my projects in the group, but I am hopeful we will keep in touch.
Also, my family deserves an honorable mention for they have done their part in
helping me get this far in my studies. Yet, my advancements anything but stop
here, and although I usually find radical changes in life, such as the end of this
project, quite stressful, this time I feel differently; I have come to know that I have
a lot to give and after realizing this, it has become clear that the end of this research

project is, above all else, a new beginning for me.

Helsinki, 14th July 2019

Petri Kaurola
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1 INTRODUCTION

Cell membranes are an integral, interesting, and intensively researched branch of cell
biology. For instance, by mediating the signaling of the cell with its surroundings,
cell membranes are in a key position in determining all activity inside cells, making
them and any related signaling proteins an attractive target for many drug-based
treatments. Due to the vast complexity and small length and time scales of bio-
logical systems in general, the study of cells, and membranes in particular, have
proven to be dauntingly challenging. Because it is expected that answering many
of the unexplained questions dealing with cell membranes could greatly improve
our understanding in illnesses tormenting human society, such as Alzheimer’s dis-
ease, diabetes, and cancer, the motivation in exploring biological systems remains

enduring.

Membrane curvature is one of the currently exciting themes dealing with biomem-
branes. Unlike what many simplified illustrations of planar lipid bilayers (the core
of cell membranes) lead to believe, curvature in cell membranes is abundant and has
been shown to be relevant for many essential cell processes. As an example, mem-
brane curvature has been shown to sort G protein-coupled receptors, transmembrane
signaling proteins embedded in the cell membrane [1], which has consequences on the
function of these proteins dependent on the membrane environment. BAR domains,
on the other hand, have been identified as highly conserved curvature-sensitive mod-
ules of several disease-associated proteins [2|. Curvature-mediated effects are not
only limited to cell membranes, but concern all the other biomembranes inside the
cell as well. ATP synthases, proteins in a pivotal role in the energy production of
cells, are known to form long oligomeric rows at the tips of the cristae in the in-
ner mitochondria membrane [3], which are known to be strongly curved membrane
environments, further promoting the idea that membrane curvature should be a

fundamental component when lipid-protein interactions are concerned.

Experimental techniques excel in finding and observing these thought-provoking cur-
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vature mediated effects, but often lack in the ability to explain these phenomena.
In order to examine how membrane proteins are influenced by the membrane cur-
vature, one should be able to monitor these proteins in their natural condition at a
nanometer spatial scale and in micro- to nanosecond temporal resolution. This is
not usually possible in current experiments. Fortunately, the advancements in com-
puting technology have allowed the development of computational tools, with which
proteins can be simulated in their native environment at the required precision.
In particular, molecular dynamics simulations have become an essential augmen-
tation to traditional experiments [4], and by complementing each other these two
approaches together are able to scrutinize lipid-protein systems, even when dealing

with curved membranes.

In this study, a focus has been made on the dynamics of lipids and membrane-
embedded proteins in curved lipid bilayers. By simulating tubular membranes with
a controlled radius of curvature, it has been possible to isolate curvature medi-
ated effects on the lateral diffusion, showing concretely how curvature is related
to the diffusion of membrane particles. These are the first recorded molecular dy-
namics simulations which extensively tackle the transmembrane protein diffusion in
highly curved membranes. Another topic related to diffusion, namely macromolec-
ular crowding that is known to be a cause for the observed hindered anomalous
diffusion [5, 6, 7, 8], has also been implemented in this work by creating simulations
with varying protein concentrations, with an attempt to compare the crowding ef-

fects with the ones caused by membrane curvature.

The core of this thesis is comprised of seven chapters, which are complemented by
an appendix presenting the graphs that support the discussions and results of this
work. Following this introduction, the most important features of biomembranes
are compactly briefed in chapter two. To expand it, macromolecular crowding and
membrane curvature along with many publications related to them are reviewed,
laying out some of the scientific background this study relies on. In chapter three, the
focus sharpens to the lateral diffusion in membranes. The basics of two-dimensional
normal diffusion are covered, after which anomalous diffusion in lipid membranes,
an observed deviation from the idealistic diffusion, is discussed. Also, the approach
of calculating displacement on cylindrical surfaces is explained, a quintessential step

in studying diffusion with simulations.

In chapter four, the methodology of molecular dynamics simulations is presented.
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Essentially, this includes an introduction to the theory of all the key components
to consider when preparing simulations. Also, a special-type of modelling method
called coarse-graining has been implemented in this study and thus is given attention
in the discussion. Following this, the applied tools, methods, parameters, and other

simulation and analysis details are given in chapter five.

The sixth chapter gathers the results of the thesis based on the data in the appendix,
and this is where the main discussion of the study is done. The validity of the results
is contemplated and a comparison with previous studies will be made along with
comments on them. The final seventh chapter summarizes the key findings of this
thesis. Based on the reflection on earlier research and current knowledge, feasible

future steps in membrane curvature studies are conceptualized.



2 MEMBRANES IN CELLS

To ultimately understand the lateral diffusion of proteins and lipids in lipid bilayers
mimicking biological conditions, it is first fruitful to review biomembranes in general.
We start by examining their structure, composition, and function, after which we
pay attention to the crowding effects caused by high protein concentrations present
in living cells. Finally, we will provide examples of ways how to quantify curvature

and of biologically relevant situations where membrane curvature is significant.

2.1 Structure and Function of Biological Membranes

All information in this section can be found from the reference [9] unless mentioned

otherwise.

Cells are the smallest individual living units of which all known life forms are
formed. Although the appearance, size, habitat, and specialized functions of cells
vary greatly, on a fundamental level they are microscopic assemblies of biomolecules
within which biochemical reactions take place unceasingly. Some of these reactions
aim to utilize exterior energy sources, such as nutrients, chemicals, or radiation,
while some of them employ this energy accompanied by other biomolecules. These
reactions are the foundation of cell metabolism, which enables interaction with the
surrounding environment as well as the preservation of these reactions facilitating
cell’s survival. This desire for a cell to thrive and to preserve the continuity of
life manifests in cell motility, growth, reproduction, adaptation, and the intake of

nutrients as well as the export of cell waste.

Most of the fundamental chemical reactions occur inside the cells, within an aqueous
solution called cytoplasm. It is a concentrated mixture of chemicals, molecules,
macromolecules, and cell organelles that carry out specific yet crucial tasks such as
energy production. The cytoplasm is enclosed and separated from the environment

by a thin and elastic membrane structure known as the plasma membrane or the cell
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membrane. The isolation of the cytoplasm is discriminatory, meaning that although
in principle the plasma membrane is impermeable — particularly to larger molecules
— some specific molecules are either free to flow through it or they are actively
transported from one side of the plasma membrane to the other. This selective
transportation enables cells to conserve the cytoplasm but it simultaneously allows
signaling molecules, nutrients, and waste flow through the membrane in a controlled

manner.

The main two constituents of plasma membranes, as well as other biomembranes,
are molecules called lipids and proteins. Lipids form the bulk of the membrane,
a lipid bilayer, in which integral membrane proteins are embedded. Lipid bilayers
tend to be approximately five nanometers in thickness and the different layers or
leaflets in the bilayer may be asymmetrical in composition, as is in the case of
plasma membranes. In animal cells, lipids and membrane proteins comprise almost
equally the total mass of the membrane; however, since proteins can be significantly
larger than lipids, the number of proteins in a bilayer is only a fraction of the
number of lipids. In addition to lipids and proteins, carbohydrates are present in
a coating called the carbohydrate layer adjacent to the noncytosolic side of plasma
membranes as glycosylations in the proteins and lipids, forming compounds such
as glycolipids, glycoproteins, and proteoglycans. The carbohydrate gives protection
against mechanical and chemical damage and it makes the cell distinguishable to
other cells as a result of unique arrangements of sugar monomers in branched chains.
A schematic and highly simplified illustration of a cell membrane can be seen in
Figure 2.1 [10].

Membrane proteins can be divided by either their structure or function. As depicted
in Figure 2.1, integral membrane proteins can be thought to be structural protein
components of the membrane being embedded in the membrane irreversibly, either
on one leaflet or both. Polytopic integral membrane proteins, also known as trans-
membrane proteins, can directly interact in the case of plasma membrane with both
the cytosol and the extracellular matrix. Peripheral membrane proteins on the other
hand are reversibly associating with only one of these sides without penetrating the
membrane. Alternatively, and perhaps more prominently, membrane proteins can be
categorized according to their functional roles. Enzymes are proteins which catalyze
biochemical reactions and while they do not need lipid bilayer by definition, some of
them — such as transferases in the endoplasmic reticulum — are attached to it since

the bilayer can provide an essential interface for the catalysis. Transporter proteins
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Integral
membrane protein

Lipid bilayer

Integral or peripheral
membrane protein

Figure 2.1 A model figure illustrating a cropped section of a simplified plasma membrane.
Integral membrane proteins are embedded irreversibly in an elastic lipid bilayer and can be
further divided into polytopic (transmembrane) or monotopic depending on whether they
span the lipid bilayer completely or associate only with one leaflet. Peripheral membrane
proteins interact with the membrane without being embedded in it and are able to disassoci-
ate from it. Glycosylations and all the details of the proteins have been left out for clarity.
Modified from the reference [10].

and channels enable selective transportation of molecules through membranes while
receptor proteins deliver signals into and out from the cell. Anchor proteins enhance
the physical rigidity of the membrane by covalently bonding to macromolecules on
either side of the membrane. An example of this is the spectrin meshwork, in which
spectrin and actin proteins are linked to anchor proteins and make up a net of pro-
tein strings on the membrane surface. This structure improves yield strength and
allows active bending and reshaping of the membrane, Also, the meshwork compart-
mentalizes proteins to restricted regions on the membrane, limiting the accessible

surface area membrane proteins can diffuse to on the membrane.

Although proteins are the main source of the biological activity in cells, lipids are the
foundation of the biomembranes, for without them cytosol could not be separated

from the surroundings and membrane proteins would remain without structural
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support. What makes many lipids excellent constituents for membranes is the fact
that in the water phase they form membrane structures spontaneously. This is
because lipids are amphipathic molecules, consisting of hydrophilic head groups and
hydrophobic hydrocarbon tails, and when in contact with the water phase, the lipids
assemble in two stacks of leaflets where hydrophilic headgroups face the water face
and the ends of hydrocarbon chains face each other, thus, forming a bilayer. This
minimizes the interface between hydrophobic hydrocarbons and the water phase
in order to maximize entropy. Due to the hydrocarbons, lipid bilayers are highly
hydrophobic, making it unfavorable for water-soluble molecules to passively diffuse
through it. Though the spontaneous formation of membrane structures can seem as
if entropy is decreasing due to the ordering of lipids, for the whole system entropy
is increasing since the water molecules can freely form hydrogen bonds between
each other. As a consequence, maintaining or even building lipid assemblies out
of individual lipid molecules requires no energy, which is from the cell’s point of
view highly profitable. It is worth noting, though, that lipid bilayers are just one of
the possible energetically favorable membrane structures along with, for example,

micelles, liposomes, and — as more relevant for this thesis — membrane tubes.

Besides being the body of biomembranes, many of the lipids are in direct contact
with the embedded membrane proteins. These lipid-protein interactions affect the
stability of the protein structures, and ultimately the functionality of the interacting
proteins [11|. It remains still debatable, whether specific and long-lasting lipid
interactions or the dynamical effects of the membranes as a whole are the dominant
effects governing protein functionality, but for now, it can at least be said that both
are important. For example, in the case of G protein-coupled receptors, beta-2
adrenergic receptor (SAR), a model example of GPCRs, has been shown to have
strong binding pockets for cholesterol along its surface [12], while it is also known
that the lipid composition and ordering affects the partitioning of 2 AR in a lipid
bilayer [13|. Related to this, it has been suggested that biomembranes contain
transient nanoscale domains called lipid rafts [14], which would due to different
lipid compositions and ordering effects be distinguishable from the rest of the bulk,
further promoting the heterogeneity of membranes. Though they have not been
explicitly proven to exist, they would have relevance for lipid-protein interactions

due to the sensitivity and proximity of the proteins towards the lipids.

One more point worth mentioning about lipids is the plethora of different lipid types.

The possible different backbones and head groups (when they can be unambiguously
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identified), the lengths of hydrocarbon chains and the locations of double or even
triple bonds in the case of unsaturated lipids are all variables that make the list
of potentially existing lipids almost limitless. Commonly, lipids are divided based
on their backbones (for example glycerol, phosphoglycerol, or a type of a sphin-
goid) and their head groups (in the case of phosphoglycerols, for example, choline,
ethanolamine, or serine) [15]. Some lipids are very common, such as phosphatidyl-
cholines, which in mammalian cells account for more than half of all the lipids, while
most lipids are found in much smaller concentrations, usually fulfilling a role in sig-
naling pathway. When faced with the complexity of the different lipid types, it is
tempting to try to focus only on a few most prevalent and universal lipid types, but
even the differences between two very similar lipids can be relevant; any abnormal-
ities in the expression of a specific lipid can be a cause for a disease, which tells us
that in the case of lipids, details matter [16].

2.2 Crowding

As mentioned already in the earlier section, proteins and carbohydrates are major
components in addition to lipids in a biological membrane. In particular, the pres-
ence of proteins and other macromolecules is a major contributor to the properties
of membranes, but only for the last few decades the abundance of large entities in
membranes, known as crowding, has been acknowledged as a notable factor. Theo-
ries exist saying that by being packed with macromolecules, cells are able to enhance
slow processes limited by state-transitions because proteins can interact for longer
times this way, while faster processes related to diffusion are slowed down by the
obstructing macromolecules [17]. Regardless of the benefits, it is important to rec-
ognize that partly due to the crowding effect, the experimental results acquired in
dilute in wvitro conditions are not directly transferrable to biological conditions, since

these two environments differ drastically.

The first experiments on crowding focused on testing the Saffman—Delbriick theory
(discussed further in section 3.3) at the beginning of the eighties [18, 19]. Though it
could not be explicitly proven whether the theory holds or not, the results about the
hindering effects of protein crowding on lateral diffusion were indisputable. A few
years later, the first simulations attempting to understand protein crowding were
made, by using simple Monte Carlo models focusing on diffusion in the presence of
mobile obstacles |20], and the findings were similar. In the nineties, the differences

of enzyme kinetics in dilute and crowded conditions also gained interest [21], and
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though no diffusion models, which would directly take crowding into account, had

been proposed, theoreticians also acknowledged the relevance of crowding [22].

During the last ten years, crowding studies have gained further popularity from many
aspects; in addition to more traditional single-particle tracking (SPT) or other meth-
ods related to diffusion like fluorescence correlation spectroscopy (FCS), atomic force
microscopy has been used to study motions of unlabelled membrane proteins [23],
new extensions to diffusion models introducing correlated membrane protein mo-
tion and protein crowding in the means of effective membrane viscosity have been
suggested [24], and several molecular dynamics and mesoscopic simulations of both
proteins and lipids have revealed various effects. These include anomalous diffusion
effects lasting for milliseconds [8], explicit quantifications of crowding-mediated im-
pacts on diffusion coefficients, the hindrance of lipid diffusion with respect to the
distance from obstructing membrane proteins [25], and the hindrance of protein dif-
fusion with lengthy water-soluble parts [26]. All the proceedings in the crowding
studies have provided enough information for comprehensive reviews, highlighting
the role of crowding in membrane deformation and intracellular trafficking, the for-

mation of transient lipid-protein assemblies and the slowdown of diffusion [5].

Recently with simulations, crowding has been shown to promote non-Gaussian dis-
placement probability distributions [27], bringing diffusion in crowded conditions
further away from normal Brownian motion regime, and more complicated and het-
erogeneous crowded membrane simulation models have been made to incorporate
both protein crowding and protein size effects proposed by the Saffman—Delbriick
theory [28]. At the moment, it appears that when moving from dilute to concen-
trated physiological conditions (from 400:1 to 50:1 lipids (per leaflet) to protein
ratio), the protein mobility decreases gradually but non-linearly, and the decrease
can be even an order of magnitude, particularly with the smaller sized proteins.
This does not take into account, for example, restricting spectrin meshworks, water-
soluble domains of proteins or heterogeneity of lipid bilayers, not to mention mem-
brane curvature, suggesting that even more drastic slowdowns caused by crowding

are possible.

2.3 Membrane Curvature

Lipid bilayers are viscoelastic, meaning that they can bend and stretch like rubber

would, but instead of being solid they are resilient viscous fluids. Syrup could
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be thought to be an analogous substance with similar properties, however, lipid
bilayers are quasi-two-dimensional (surfaces with a non-zero thickness) and have a
lot of compositional variety, making such comparison misleading. Being nanoscale
structures, they are in the constant bombardment of thermal fluctuations, which
inevitably causes the membranes to deform even when in energetically favorable
structures like planar bilayers or liposomes. Therefore, unlike what is usually shown
in cell biology textbooks, curvature is abundant in cell membranes. Besides, cellular
mechanisms make great use of this membrane moldability, allowing for example
endocytosis, exocytosis, and cell division, promoting the importance of the curved

structures in lipid bilayers as an active player rather than a thermal consequence [29].

Mathematically, curvature can be characterized extensively. For starters, it is impor-
tant to understand that the curvature of a two-dimensional surface usually varies
depending on the direction on the surface. At an arbitrary point of the surface,
called the center of curvature, two circles can be drawn so that their curves are
superimposed with the membrane tangent and they orthogonally cross each other
at the center of curvature. The circles form so-called normal and osculating planes.
The radii of these circles, Ry and Ry (the line along the principal normal from the
center of curvature to the center of the circle of curvature or the osculating circle)
define in one way the curvature at the center of curvature. This is illustrated in Fig-
ure 2.2. Though these circles can be drawn in any direction, they are by convention
drawn along the principal axes, which specify the directions where the curvature is

the largest and the smallest. Further details are found from reference [30].

Since for planar membranes the radii of curvature are infinite, it is mathematically
more appropriate to work with the respective inverses, the principal curvatures,
defined as ¢; = Ry and ¢; = R;'. The values and signs of principal curvatures
specify what kind of shape the surface has at the center of curvature, and if the
values remain the same throughout the surface, the shape of the object is completely
described. Alternatively, the total curvature J and the Gaussian curvature K can
be used for compact surface shape description, defined as J = ¢; + ¢ and K = ¢ycs.
Figure 2.3 shows different surface shapes and the parameters describing them, along
with examples where such shapes are present in cell biology. Also, another useful and
powerful measurable for the membrane curvature is the mean curvature H, where
the curvatures at a center of curvature are integrated over all the angles around the
center on the surface. This can be used when studying whether a protein can induce

membrane curvature upon interaction, as done in the reference [32].



2.3. Membrane Curvature 11

Figure 2.2 An illustration of the quantification of membrane curvature. At the center
of curvature, two planes perpendicular to the orthogonal tangents on the membrane plane,
drawn in the directions of the maximum and minimum curvature, specify the principal azes.
The radii of circles drawn on top of these planes, which align with the membrane surface
at the center of curvature, are the radii of curvature Ry and Rs, and the inverses of these
are the principal curvatures c1 and co. The figure is modified from reference [31].

Tubular membrane structures are of particular interest in this study. They exist in
cell organelles such as Golgi apparatus, mitochondria, and endoplasmic reticulum
being involved in intra- and extracellular exchange processes, spanning from the
radius as small as tens of nanometers to the lengths as long as several hundred mi-
crons [33, 34, 35]. Also, the axons extending from neurons, interconnecting to other
neurons with synapses to form neural circuits, are myelin covered membrane tubes
with a radius as small as one micron [36]. Tubes can be made and observed exper-
imentally and they are structurally more stable compared to unsupported vesicles,
which makes them appropriate for studying membrane curvature mediated effects

on membrane dynamics.

Only quite recently, membrane curvature in nanoscale has become accessible for ex-
perimental methods to study. In the early years of the current millennium, it was
discovered by pulling membrane tubes from liposomes that membrane curvature

ordered membranes by sorting lipids [37]. Also, proof had started to accumulate
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Figure 2.3 Principle, total, and Gaussian curvatures of different surface shapes accompa-
nied by examples from cell biology. a) Planar membranes have no curvature at all. The flat
bilayers to which clathrin lattices, bundles of proteins interacting with actin, retain their
planar shape. b) Cylindrical membranes have curvature only along one principal azis. Such
membranes can be found for example when dynamin proteins polymerize on the membrane
surface, creating a dynamin coated tubular neck during bud formation in the endocytic
pathway. c¢) Saddles have curvature in both directions of principal azes, but the surface
s concave in one direction and convexr in the other. Saddles are present in the necks of
budding vesicles. d) Spheres have uniform curvature in all directions. Occasionally, small
vesicles can take a form close to spherical, but clathrin cages made in vitro keep their
spherical shape. The figure is modified from reference [31].
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that proteins were able to induce membrane curvature [31]. At the same time, both
experimentalists and theoreticians had an emerging interest in understanding lipid
dynamics in curved membranes [38, 39|. In particular, interestingly from the point
of view of this thesis, a theory extending the Saffman-Delbriick diffusion model to
curved membranes like membrane tubes was presented by Rob Daniels and Matthew
Turner [40] (discussed further in chapter 3). The first experimental study focusing
on membrane dynamics, done by a research group led by Prof. Patricia Bassereau,
where it was possible to effectively control membrane curvature in the range of tens
of nanometers, was done by using SPT on tubular membranes [41]. The study sup-
ported the well-established hydrodynamic Saffman—Delbriick diffusion model and
its later extensions by Daniels and Turner by showing that a smaller tube radius
strongly hindered the lateral diffusion of transmembrane proteins on curved mem-
branes compared to flat ones, though the used tracing particles had relatively large
domains in the water phase and it was not possible to monitor diffusion around the
tube axis. An extension to this study, where the possible method biases were ad-
dressed and tube radius was increased to hundreds of nanometers by using neurites,
showed that the curvature effects on lipid dynamics on a larger scale were almost
diminished [42]. When using these results to understand living cells, it is noteworthy
that by studying other factors of membrane dynamics, such as bending modulus or
friction, the dynamics between synthetic lipid bilayers and plasma membranes were
known to differ, especially in the presence of cytoskeleton [43], so the results acquired
so far were not universally applicable. Regardless, at this point it seemed that by
ranging the tube radius from tens to hundreds of nanometers, a logarithmic increase
in the lipid and protein diffusion coefficient in the longitudinal direction could be
observed in the systems from highly curved tubes to effectively almost planar ones.
For lipids, the diffusion along a planar bilayer could be approximately three times

faster, whereas for proteins a five-fold boost was detected.

In recent years, the interplay between proteins and membrane curvature has be-
come more evident. Similarly to lipids, curvature was experimentally shown to
sort proteins as well [44]. So far, as according to the Saffman-Delbriick theory,
the protein size was thought to be the major factor in protein mobility, however,
the shape of protein was also found to have an effect on the membrane dynamics,
possibly through membrane tension [45]. From the membrane’s point of view, a
random-walk-free computational study suggested that the protein sorting could be
a solely geometrical effect in tubes, although many contributed factors such as dif-

fusing particle size and tube radius dependent hydrodynamics were not considered.
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A state-of-the-art piece of knowledge about the relation between curvature and pro-
tein sorting is the finding that adenosine triphosphate (ATP) synthase dimers in
inner mitochondrial membrane induce membrane curvature, further proving that
ATP synthase dimers self-assemble at the edges of cristae into rows [46]. Because
curvature effects on the nanoscale have become relevant in experimental cell biol-
ogy to this extent, it has also become reasonable to attempt to find accurately the

magnitude of these effects.
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3 LATERAL MEMBRANE DIFFUSION

Diffusion is a physical process caused by thermal energy which drives the motion
of small particles in liquid or gas phase substances. Because of diffusion, separate
constituents of solutions or gas mixtures can blend spontaneously, giving rise to
entropy in agreement with the second law of thermodynamics. In biological systems,
it is well-suited to be employed as an effective and effortless mean of transportation
of molecules in cells and is thus critical for the overall cell function, even though
the thermal fluctuations are random. Mathematically, diffusion can be formulated
in several different ways and it may applied to many fields beyond cell biology. One
of the more practical approaches is to observe a particle of interest for a relatively
long time and follow its trajectory. This is known as single-particle tracking and

has been implemented in the work of this thesis.

Although diffusion occurs usually in three dimensions, the particles can be physically
restricted in a way that reduces the degrees of freedom for translation. For example,
in contrast with traditional fluids and gases, transmembrane proteins embedded
in a lipid bilayer can only diffuse along the dimension parallel to the membrane
surface, since the dissociation of the proteins into the water phase is not energetically
favorable. This two-dimensional movement is better known as lateral diffusion.
This is how lipids and proteins can distribute evenly on lipid bilayers, at least
when obstructions such as cytoskeleton or the oligomerization of proteins are not

considered.

In this chapter, the ideal theory behind Brownian motion in two-dimensions is elu-
cidated, after which one of the main focuses of the thesis — the Saffman—Delbriick
theory — is introduced, along with some relevant experiments, improvements, and
discussions found in the literature. Finally, a derivation is made for how the dis-
placements of particles on a curved, tubular membrane surface can be calculated,

relevant to the practical approach of this thesis.
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3.1 Brownian Motion in a Two-dimensional Space

Brownian motion is known as the diffusion of a single micro- or nano-scale particle
in a solution of considerable smaller particles acting as a fluid environment. First
discovered experimentally by Robert Brown in the 19th century [47], it was formu-
lated by Albert Einstein almost one hundred years later by applying a random walk
model, also known as the Wiener process [48, 49]. It is a solution to the Einstein
equation of diffusion or essentially the Fick’s second law:

2

0 0

—P (x,t) = D=—P (x,1), 3.1
CP (1) =D P () (31)
where the factor D corresponds to the diffusion coefficient, a value describing the
rate of diffusion, = is the particle position, ¢ is time, and P (x,t) is a probability
density function for the particle position, a function of both space and time [50].
Next, two-dimensional Brownian random walk will be derived in accordance with

reference [47], in which a more thorough derivation is available.

Let us first derive a formula for a one-dimensional random walker and then extend
it to a two-dimensional case. A particle takes a step k;L where k; has an equal
chance of being either 1 or -1 and L > 0 is a constant step length. This describes a
situation, where at each time step a random walker takes a step of length L to either
to the left or ot the right. At step j, the position is x; and if the initial position is
set to be xg = 0, we get vy = k1L, x9 = x1 + koL and ultimately as a general rule
xj =x;_1 + kL.

On average, this yields the total displacement to be zero; if the particle has an equal
chance of either moving to the left or to the right, after N steps the mean of the
displacements results in the particle’s initial location. However, by calculating the

mean of displacements squared after N steps, we get

((@n)?) = ((@n-1 + kv L)?) = {(@v-1)") + 2L(znakn) + L¥((kn)?). (32)

The last term equals L?, because ((ky)?) equals 1. The middle term equals 0,
since no square is taken of the displacement in that term, resulting in an average
displacement of zero. Therefore, according to the acquired formula after each step

the square displacement increases by L?. In other words, after N steps the mean
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squared displacement can be written as
{(zn)?) = NL*. (3.3)

Now, if we let the random walker move for time ¢, the number of steps N = t/At,

where At is the duration of a single step, which is considered to be constant. Let

us declare diffusion coefficient as D = QL—;. By replacing N in equation ( 3.3) by
N = %, we get
{(zn)?) = 2DL. (3.4)

This is the diffusion law of a one-dimensional random walker: the mean squared
displacement (MSD) after N steps is linearly proportional to the time ¢. In reality,
random movement does not necessarily happen in steps as this model assumes, but
since the length of the step can be arbitrarily chosen to be infinitesimally small, the
movement can be thought to be smooth and fluent instead of discrete, modeling the

translation of real particles more accurately.

When deriving the MSD for a two-dimensional random walker, two approaches can
be taken. The displacements can simply be thought to be the diagonals of squares,
where the sides of the squares are x- and y-direction displacements (constants).
The diagonals are of length v/2L, and when following the earlier derivation, a dif-
fusion law is obtained, where the proportionality is doubled compared to the one-

dimensional case:
{(zn)?) = 4Dt. (3.5)
Alternatively, the displacements in x and y directions can be considered separately:

((X)%) = ((zx) + (yv)*) = ((&n)*) + {(yn)*) (3.6)

leading to the same derivation as before and ultimately to the same result of
{(ry)?) = 4Dt.

Similarly, with the help of the random walker model, MSD can be derived in 3
dimensions. One might mistakenly argue, that the three-dimensional MSD model
should be employed instead of the two-dimensional model in this work; after all,

although lipid bilayers are two-dimensional surfaces, in the case of a membrane tube
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the bilayer is connected to itself, forming a three-dimensional object. While this is
true, the proteins diffuse only in two-dimensional space, along the membrane surface.
Three-dimensional movement would require that the transmembrane protein could
detach from the tube altogether. This will be further elucidated in section 3.4.

3.2 Anomalous Diffusion

The Brownian motion discussed so far describes a theoretical case where the mean
squared displacement of a diffusing particle is directly proportional to the elapsed
time. In reality, this is not necessarily the case: instead of being a perfect linear
curve, MSD can behave as a power law with respect to time, where the curve may
experience both momentary decreases (sub-diffusion) or increases (super-diffusion)

in the slope of the curve. This behavior is known as anomalous diffusion.

At the beginning of the millennium, when it had become clear that the effects of
macromolecular crowding on diffusion could not be neglected [51, 52|, more atten-
tion was brought into finding more accurate models describing diffusion in crowded
environments [7], although the first signs of non-linear diffusion time-dependence
were from as early as 1926 [53], and first simulations from the early nineties [54].
Traditional experiments — while doable and even successful — proved to be a chal-
lenging way to study diffusion mechanisms [6, 55|, but on the other hand, molecular
dynamics simulations were capable of capturing all the relevant dynamic details of
particle motion, either supporting or rejecting the prevalent anomalous diffusion
models [56, 57]. It had become apparent that the measurement results of mean

squared displacement and diffusion coefficients were significantly time-dependent.

Many suggested models trying to explain anomalous diffusion exist, examined ex-
tensively in several review papers during the last decade [7, 50, 58], to which the
only common factor is the acknowledgment of the non-Brownian form of the mean
squared displacement curves, resulting from the central-limit theorem not applying
to anomalous diffusion. This is argued to be because — unlike what simple diffusion
models assume — diffusing particles experience persistent displacement correlation.
Therefore, the main goal for the developed diffusion models is to include these cor-
relations so that anomalous diffusion is achieved. For example, fractional Langevin
equation (FLE) — an extension to the ordinary Langevin equation, which models
particle diffusion as a combination of a driving force and a stochastic white noise

resulting from thermal fluctuations — includes Gaussian noise correlations so that
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anomalous diffusion is produced. Another example is the continuous-time random
walk (CTRW) model, where unlike in the regular Brownian motion, particle dis-
placement lengths follow a given probability distribution, and the same can hold
for the jump rate of the displacements. With this modification, anomalous diffu-
sion is achieved when for example the jump rate distribution is defined so that the
characteristic waiting time between jumps (the mean of the jump rate distribution)
is mathematically infinite. The FLE model has acquired support from molecular

dynamics simulations [57], but so far, universal conclusions cannot be made.

Though this thesis is not aiming to support or disprove any of the diffusion mech-
anism models, some focus on the anomalous diffusion behavior is given for two
reasons. Firstly, in this work, it has been acknowledged that diffusion coefficients
acquired by approximating the motion to be Brownian is generally invalid, and by
observing the anomalous diffusion exponent « in the power-law form of the two-

dimensional Brownian motion, given by the equation
(MSD) = 4Dt*, (3.7)

it can be said how much trust can be put on the acquired diffusion coefficients. Sec-
ondly, by comparing the diffusion exponent o between curved and crowded systems,
it is possible to tell if curvature could promote subdiffusion as strongly as crowding

is known to.

3.3 The Saffman-Delbrick Theory

When studying cellular functions, liquid phase systems tend to be easier to exam-
ine compared to membrane systems. After all, membranes are surrounded by an
aqueous solvent, making them nanoscale two-phase systems which are far more con-
voluted compared to plain liquid solvent. This complexity applies specifically to the
membrane proteins, because they have both hydrophobic and hydrophilic surfaces,
and they tend to be more flexible than proteins in an aqueous solvent [59]. It is
also not appropriate to isolate the membrane proteins from their native membrane
environment, since this procedure would most likely affect the protein conformation
of interest. Due to the difficulty of dealing with membrane proteins experimentally,
all alternative methods of providing insight into unresolved properties of membrane

proteins are welcome.
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In the pioneering work by Philip Saffman and Max Delbriick, published in the sev-
enties, a hydrodynamic model describing the dynamics of cylindrical membrane
inclusions were introduced as an attempt to find a two-dimensional analogue to
the famous Stokes-Einstein equation describing the three-dimensional diffusion of
a Brownian particle [48, 49, 60, 61|. The result was the Saffman—Delbriick the-
ory, which assumed a solid cylinder embedded in an incompressible hydrodynamical
continuum (the membrane) of equal height as the cylinder (protein), surrounded
by much less viscous solvent (for example, cytoplasm). Also, the model assumes
a no-slip boundary condition, meaning that the velocity or the current of the sur-
rounding continuum reaches zero at the surface of the inclusion due to friction. The
equations for translational and rotational diffusion are given separately, but from
the point of view of this research, only the prediction for the translational diffusion

is of particular interest:

kgT 2L
Dy = 1 — .
sd 4,Umh |: n ( N ) ’7:| ) (3 8)

where Dy is the Saffman—Delbriick translational diffusion coefficient, kg is the Boltz-
mann constant, 7' is the temperature, pu,, is the dynamic membrane viscosity, h is
the thickness of the membrane, Ly = hpm/2p¢ is the Saffman-Delbriick length,
where p is the viscosity of the surrounding fluid, a is the radius of the cylindrical
inclusion, and + is the Euler—-Mascheroni constant (= 0.57721). The benefit of using
a notation for Saffman—Delbriick length comes from the approximation of the model,
which requires that the inclusion radius a should be significantly smaller than the
Saffman—Delbriick length. In practice, inclusions are of the same size as the mem-
brane thickness, and thus, in theory, Saffman—Delbriick can describe the motion of
nanoscale particles. Still — if proven to be correct — the theory could be helpful in
estimating the sizes of membrane-embedded inclusion by observing the dynamics of

the inclusion with relatively simple microscopy.

A few years later, the theory had inspired experimental research and was initially
supported by fluorescence after photobleaching (FRAP) experiments in model mem-
branes studying the effect of protein size on the diffusion coefficient [62]. Another
model membrane study came to the same conclusion but specifically pointed out that
the lipid to protein ratio should be taken into account [18]. A review study suggested
that lateral tracer diffusion in a membrane could be divided into two regimes based
on the size of the particle: the hydrodynamical Saffman—Delbriick theory for con-

siderably larger inclusions compared to lipids and a free volume theory for particles
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with a size equivalent to the lipids, where instead of considering the membrane as
a continuum, lipids are assigned in two-dimensional space a non-compressible area
based on the space they occupy [63]. Before the end of the nineties, alternative
approaches and modifications to the Saffmann—Delbriick theory were done with the
help of both experiments and simulations in order to include the lipid to protein
ratio into the theory [64, 65].

In 2005, an experimental study showed considerable deviations for the observed diffu-
sion coefficients compared to the Saffman—Delbriick theory, gaining further evidence
in 2009, which once again attracted attention into developing the model [66, 67]. Tt
appeared that the diffusion coefficient of a membrane inclusion had a 1/R relation
to the inclusion radius similarly to the three-dimensional Stokes—Einstein equation,

given by

kT

= B 3.9
Gl (3.9)

rather than a weaker logarithmic dependence as suggested by the Saffman—Delbriick
model. A simulation study attempted to solve the issue, and for the smaller parti-
cles Saffmann—Delbriick was supported, however, for larger particles even stronger
1/R? dependence was observed [68]. It was suggested that the failure of Saffmann-
Delbriick could be due to local membrane deformation caused by the proteins [69].
Attempts were made in order to move on by omitting Saffman—Delbriick by im-
proving a more complicated numerical but still hydrodynamical model by Hughes et
al [70, 71], which was supported particularly for cases with hydrophobic mismatch
between the membrane and the inclusion [72|. Later on, another experimental study
using giant unilamellar vesicles supported the logarithmic dependence with a lin-
ear decrease in diffusion coefficient when moving to crowded conditions, initially
claiming that the observed 1/R dependence is a result of sample preparation when
using surface-supported bilayers [73]. However, further studies with other proteins
showed both 1/R and logarithmic dependencies, which also led to conclusions that
the scaling can be affected by protein-dependent membrane deformations [74|. The
latest experimental study from 2013 on both vesicles and bilayers strongly supports
the Saffman-Delbriick theory |75], but the previous disagreeing results remain unex-

plained, and simulations from 2017 still show 1/R scaling in crowded conditions [28].

Despite its issues, the simplicity and established status of the Saffman—Delbriick

model had made it still appealing for further development. A theoretical derivation
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for it, expanding the model for membrane tubes and tethers, was made by Daniels

and Turner [40], given by

kBT =1 ma ma

D= e () eos (57) (3.10)
o kBT T
= 47r,umh[log(a+0(1) +O(a/r)+ ..., (3.11)

where O(z) is the big O notation for a growth function, essentially considered as an
error term of the model with an a/r scaling, when the series is cut after the O(1)
term. Though this model made no distinction between the radial and longitudinal
directions for the diffusion, something that intuitively could be relevant, it gave
grounds for the testing of the Saffman—Delbriick model experimentally, as discussed

in section 2.3, and computationally in this thesis.

3.4 Displacements on a Cylindrical Surface

Because the displacements of diffusing particles in this thesis occur mainly on the
curved surfaces of cylinders, the calculation of these displacements deserves some
clarification. For completeness, although the derivation is fairly straightforward, the
method for calculating displacements in cylindrical coordinates is demonstrated in

this section.

In Figure 3.1, an example of a set of trajecteries for transmembrane proteins in the
simulated tubular membranes has been shown for illustration and in Figure 3.2 a
schematic of a particle displacement on cylinder is drawn for displaying the vari-
ables in the displacement calculation. Starting from the point x;, during an ideally
infinitesimally small time step, the particle moves to the point x5 via the trajectory
Ax, which is the relevant displacement along the surface of the cylinder. Because
the displacement occurs on a curved surface, it is not linear. This displacement can
be decomposed into components along the tube axis, a straight line denoted with
Az, and around the tube axis, an arc denoted with AL, which can be calculated by
taking the product between the displacement angle ¢ and the tube radius r, which
is considered to be a constant. There is a right angle between these components
and together with Ax, they form a right triangle. With the Pythagorean theorem,
the total displacement Az can also be solved, in addition to the already calculated

parallel (Az) and perpendicular (AL) components.
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Figure 3.1 Diffusion trajectories of simulated proteins on a membrane tube demonstrat-
ing two-dimensonal displacements. Five arbitrarily chosen proteins (each corresponding to
a different color) have been allowed to diffuse for 2 us, and the trajectory of each pro-
tein’s center of mass has been drawn on a tubular lipid bilayer showcased by a mesh-type
representation.

It is noteworthy that the displacement calculation is simple because the radius r has
been set to be constant. If this was not the case, the Az would still be solvable, but
would require more complicated calculation when solving the length of displacement
in the radial direction, including either parametrizing the displacement path when

r is changing or solving the length of an arbitrary arc in polar coordinates with the

AL = /{: \/r (6)* + (drd—(:)ycw, (3.12)

where 6, is the angular coordinate in the beginning and 6, in the end of a displace-

following equation [76]

ment in the cylindrical coordinate system, and r (6) is described by a line equation
if the change in radius would be assumed to be directly proportional to the angular

displacement:

Mm:Z:Z

0+ T, (313)
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Figure 3.2 Displacements on a cylindrical surface in polar coordinates. Ax is the total
displacement between points X1 and Xo, 0 is the angular displacement, v is the radius
of the tube, AL is the displacement arc in angular direction (AL = rf), and Az is the
displacement along the tube longitudinal azis.

where 7y is the radius at the beginning and 7 at the end of a displacement. Special
attention would be required when the displacements occur at the angles of 6 ~
—7 <> m. Solving these derivatives and integrals during each displacement would
be computationally heavy for diffusion calculations, where numerous displacements
are calculated. In all of the membrane tube simulations, the tube radius changed a
maximum of a half a nanometer during the entire simulation, and at shorter time
intervals the radius remained insignificant. This makes the approximation for the
use of a single value of r justified. Still, it is arguably more precise to use the mean
of tube radii between the beginning and the end of the displacement rather than r,

which is the approach used in this thesis.
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4 MOLECULAR DYNAMICS SIMULATIONS

To complement experimental tools in various fields, the development of computers
and their computing power have revolutionized the way science is done. Computers
have been employed to perform calculations, improve algorithms, produce simula-
tions and trajectories, analyze statistics, and much more. Particularly in cell biology,
drug development, and materials research, molecular dynamics simulations of vary-
ing precision, as well as quantum mechanical calculations, have become an integral
part of the state-of-the-art research. Providing an artificial microscope-type of ap-
proach with an infinite resolution and possibilities for analysis, simulations can help
answer research questions for which experimentalists lack the tools to study. Al-
though simulations still battle the challenges such as the accuracy of the simulation
models and for example in the case of atomistic simulations the lack of computing re-
sources for reaching longer time-scales, the encouraging progress in the development
of computer hardware and the deeper understanding in simulation methods and pa-
rameters give all the reason to suspect that computers have even more importance

in research in the future.

In this chapter, the theory of molecular dynamics (MD) simulations, the main re-
search tool of this thesis, will be discussed. Though the principles of performing
these simulations are universal, an emphasis will be on the software package GRO-
MACS [77], since it has been used to carry out the simulations of this thesis. In
addition, we will look into some more simulation tools relevant to this work, such as
coarse-grained models. All the information in this chapter is based on reference [78§],

unless mentioned otherwise.

4.1 Structures and Topologies

Creating a simulation starts with the preparation of the system to be simulated.
When simulating for example proteins on an atomistic scale, the systems used as

an input for the simulation can be the result of experimental work trying to resolve
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the three-dimensional structure of a protein. Experimental methods aiming for this
include nuclear magnetic resonance (NMR), X-ray crystallography, and cryogenic
electron microscopy (Cryo-EM). Typically, before starting a simulation, the system
requires heavy modifications, and a plethora of tools exist to aid users in setting
up their structures for simulations. At first, the system is described essentially by
a file containing only the coordinates of each particle (usually atom) of the system,
however, they alone are not enough to describe any system fully. Other required
properties are listed in the topology of the system, in which each whole molecule is

fully characterized.

When it comes to individual atoms of molecules, instead of defining only the element
of the atom, the atom type is required. Atoms can behave quite differently depending
on the bonds they have with other atoms, and this gives reason to differentiate
between atoms of the same element depending on their environment, although the
atom types only directly affect the nonbonded forces (discussed later). Also, partial
charges of atoms depend on bonded interactions, and if one wishes, the masses of

particles can be changed to account for possible atom isotopes.

In the topology description of each molecule, all the particles are assigned an index
number to keep track of the particles separately, which makes it easier to define the
interconnectivity of the molecule. This includes bonds and angles, which describe
arguably the most intuitive bonded interactions. In addition, lists of all four con-
secutive bonded atoms are made, of which the first three and the last three can be
thought to form two separate planes, and the angle between these planes, called the
dihedral angle, has relevance in describing how freely a bond can rotate. This is
important, for example, when distinguishing between single and double bonds. The
bonds, angles, and dihedral angles are illustrated in Figure 4.1. Also, depending
on the simulation model, the pairs of particles which are three bonds apart (the
last particles of the dihedral angle), so-called 1-4 interaction can be included in the
topology if the interaction between such pairs is calculated differently compared to
other bonded and nonbonded interactions. This depends on the choice of the force

field, which is discussed shortly.

It is worth noting that even though the particle positions and their connections would
be properly described, in the beginning, the particles have no velocities. To make

the start of the simulation more realistic, the velocities can be generated according



4.2. Force Fields 27
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(a) Bond length (b) Bond angle

(c) Dihedral angle

Figure 4.1 An illustration of bond and angle definitions in a topology. A bond is charac-
terized by its length and stiffness, a bond angle by the angle and its rigidity between three
consecutively bonded atoms, and a dihedral angle by the angle between two planes formed
by two consecutive bond angles.

to the Maxwell-Boltzmann distribution function:

(v:) m; ( mi|v|2>
Vi) = ex - )
P 27T]€BT P QkBT

where p is the probability of a certain velocity v;, m; is the mass of a particle 7, and
T is the given temperature. The system also has to be confined inside a simulation
box before any simulations can be prepared, this will be discussed at the end of this

chapter.

4.2 Force Fields

A force field consists of a set of equations that are used to calculate the potential
energies of the particles in a system, as well as the parameters for each particle and

the interactions between them. With the description of the topology, appropriate
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parameters are retrieved by the simulation software from the folder describing the
force field, many of which are readily bundled with the GROMACS, and to which
the user can extend a force field not available on default. The equations for potential
energies can be divided into three groups: nonbonded interactions, bonded interac-
tions and restraints, of which some simple yet important examples will be provided.
The choice of the force field is one of the most crucial ones when designing a simu-
lation model. Depending on the system and research question, some force fields are
particularly designed to reproduce the relevant measurables accurately according to
experimental results, while others can lack the relevant parameters altogether, mak-
ing them completely unsuitable to be used for modeling. Familiarizing oneself with
different options for the force field can be daunting but still inevitable for acquiring

reliable results from the simulations.

The two most important nonbonded interactions are described by the Lennard-
Jones potential V1 ; and the Coulomb potential V.. The Lennard-Jones potential is
an approximation describing the interactions between two neutral atoms. It contains
a repulsive term originating from the Pauli repulsion of the electron orbitals and an
attractive term describing van der Waals or dispersion forces when the atoms form

temporary electric dipoles. The Lennard-Jones potential is given by

Vis(ry;) = dei; ((%)12 - (%)6) (4.1)

Tij
where €;; is the depth of the Lennard-Jones potential well between particles 7 and
J and o;; is the equilibrium distance between the interacting particle pair. These
parameters are either pre-calculated based on the atom types of interacting particles
with geometric average or Lorentz—Bertholt combination rules or the interactions are
listed for all the atom pairs in a matrix of Lennard-Jones parameters from where
they are retrieved. Coulomb interaction is the result of two particles with partial
electric charges, modeling the average charge distribution of a molecule, which makes
the particles either attract or repel each other depending on the signs of the partial

charges. The Coulomb interaction is then given by

I qiqo
dmey €145

Ve(rij) = (4.2)
where €, is the vacuum permittivity constant, ¢; and ¢s are the charges of interacting
particles, €, is the permittivity of medium and r;; is the distance between the atom

pair ij. It is noteworthy that the nonbonded interactions consist of the sum of
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both Lennard-Jones and Coulomb potential. Otherwise, for example in the case
of charged attracting particles, there would be no repelling potentials between the
particles, and they would end up on top of each other, which is both artificial and

unsought for.

Bonded potentials can be defined in many ways, and the choice is affected by the
force field, Typically, the potentials include simply the already mentioned bonds,
bond angles, dihedral angles, but also improper dihedral angles. Other than ordinary
dihedral angles, these can be described with the potential of a harmonic oscillator.

For bond stretching, the equation is

1
Vi(rij) = 51?%(7%’3' —bij)%, (4.3)
where kfj is a force constant and r;; — b;; is the difference between the observed bond

length and the reference bond length. For bond angle bending, we have

1
Va(Oijr) = §ki9jk<9ijk’ — 0)?, (4.4)

where kfjk is a force constant, ¢;;; is the angle between atoms 7, j and &, and H?jk is
the reference angle between the same atoms. The values of force constants used in
these harmonic oscillator models are based on quantum mechanical calculations and
experiments so that the bond lengths and angles as well as experimental observables
are reproduced in atomistic simulations as well as possible. Improper dihedral angles
are used to force some structures into some specific dihedral angle, and therefore, the
angle deviation can be thought to have a maximum of 180 degrees, which is similar to
angle bending, where the angle can be anything from 0 to 180 degrees. For example,
in the case of aromatic rings [79], they need to be forced into planar structures and
thus require improper dihedrals. Also, if there is a concern for structure flipping into
its mirror image, this can also be prevented with improper dihedrals. The harmonic

potential of an improper dihedral angle is described by:

Via(€in) = She(Gom — 50" (4.5)

where k¢ is a force constant, & is the angle between the two planes formed by

atoms 7, 7, k and [, and ¢, is the reference angle between the same planes.

For proper dihedral angles, the potential landscape has to be continuous at and

beyond 180 degrees, so it has to be modeled differently. One choice for this is the
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following periodic potential Vy (¢;jx):

Vi (dijir) = kg (14 cos (noijm — ¢s)) , (4.6)

where k, is a force constant, n is an integer representing angular rotations, ¢,z the

is the between the two planes formed by atoms i, j, k and [, and §%kl is the reference

angle between the same planes.

Finally, with restraints, the user can interact with the system in many ways. Dy-
namics which include restraints are called steered molecular dynamics, and the main
difference between such and ordinary dynamics is that although simulations can
in principle always be thought to be artificial, steered molecular dynamics contain
forces that are not physical, pushing them even further from describing real systems.
Still, the user can have a requirement to make a molecule stay in place, within some
distance of another object, or intervene in angle or dihedral angle potentials, and

all of this can be done with the restraints.

When the bonded interactions, nonbonded interactions, as well as possible restraints
are combined with the structure and the topology, the system is ready for the first
type of simulation, the energy minimization. However, before moving on, it is
important to look into a specific type of force field used in this thesis which, unlike

what has been discussed so far, does not contain atoms as its elementary particles.

4.3 Martini Coarse-Grained Force Field

One of the main limitations of atomistic molecular dynamics simulations is the
reachable simulation time-scales available with current computing resources. For
example, activation mechanisms of signaling proteins can take milliseconds, but
currently, millisecond-scale simulations, although being the state-of-the-art, can al-
ready be quite costly. Also, the proper mixing and equilibration of multicomponent
lipid bilayers can be slow and time-consuming, which makes the study of mechanic
and dynamic properties of membranes on an atomistic scale expensive. To tackle
the time-scale limitations, a concept called Martini was developed to speed up the
simulations of biological systems by omitting the atomistic scale of the model by
uniting groups atoms into larger sized beads [80, 81, 82, 83|. This drastically re-
duces the number of computations needed to be performed. The principle idea of

the mapping of atoms into beads in Martini force field is demonstrated in Figure 4.2.
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Figure 4.2 A schematic picture elucidating the idea of coarse-graining. In the figure, it
has been drawn how atoms of an atomistic scale dipalmitoylphosphatidylcholine (DPPC)
lipid have been grouped to spheres representing the beads in a Martini force field. The
beads representing the lipid hydrocarbon tails are in orange, glycerol backbone in brown,
and the choline head group is modeled by two different bead types in green and blue. In this
case, the number of particles is reduced from 130 to 12. In general, approximately 4 heavy
atomistic atoms are mapped to a single bead in the Martini model (the hydrogen atoms in
the atomistic model have been hidden for clarity).

What kind of consequences does coarse-graining have? First of all, the dynamics
of Martini simulations are accelerated by 3—4 orders of magnitude compared to
common atomistic models. This is due to the considerable reduction in the degrees
of freedom in the system; there are less internal degrees of freedom absorbing energy,
and therefore any energy that a molecule receives is more likely to take a form
in the translational or rotational energy of the whole molecule, speeding up the
system. Another advantage of the Martini model is the significantly smaller number
of parameters required to describe the system since essentially the beads in Martini
are divided only into four different groups, where they are either polar (hydrophilic),
apolar (hydrophobic), nonpolar (miscible in both water and organic solvents), or
charged beads. Though each of these groups is further divided into varying levels of

interaction strengths, the number of different particle types is still very manageable.

When atomistic models are coarse-grained, one naturally loses the atomistic reso-
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lution. This means that for example hydrogen bonds, crucial attracting forces in
water solvated systems cannot be modeled accurately. As a result, Martini simula-
tions cannot be used to study, for example, specific protein interactions, which can
be highly relevant for the protein’s correct function and folding. In fact, excluding
loops, Martini fixes the secondary structures with dihedral potential energy func-
tions and it also introduces an artificial elastic network connecting the heavy atoms
in the tertiary structures of proteins to keep them from unfolding, which makes
it impractical to study conformational changes of proteins with Martini. Another
effect of coarse-graining is that modeling water accurately with beads is challenging
(4 water molecules are mapped to a single water bead). As an example, it was no-
ticed that water in the Martini model began to freeze at higher temperatures than
it was supposed to. To prevent this, the user is advised to replace a fraction of
water beads with anti-freeze water particles, which have a higher Lennard-Jones o
parameter, which disturbs the crystallization of ordinary water beads. Also, when
protein modeling was made possible in Martini besides lipids, it was found that
proteins interacted with each other too strongly, causing almost irreversible protein
aggregation [84]. This issue is expected to be resolved in the future releases of the
Martini force field. Meanwhile, multiple proteins can be modeled without aggrega-
tion by scaling down the protein-protein interactions [85], although this is quite an

unsatisfying brute-force approach to correct the force field.

Similarly to atomistic force fields, in Martini the nonbonded interactions are char-
acterized by the Lennard-Jones and Coulomb potentials, although long-range inter-
actions are omitted for better computing performance, and bonds and angles can be
described with harmonic potentials. However, the reduction of degrees of freedom
also directly decreases the system’s entropy, which on the other hand increases the
acquired values of free energy. To tackle this, Martini force field compensates the
lost entropy with a reduced term for enthalpy so that the acquired free energies
and other measurables would match the results of experiments and atomistic mod-
els. This sets Martini apart from atomistic force fields, which do not contain such

artificial correction [86].

Regardless of all of Martini’s drawbacks, it is particularly well suited for studying
membrane dynamics, since specific nanoscale interactions are irrelevant and vast
amounts of simulation statistics can be produced efficiently and relatively cheaply.
When studying protein dynamics, the down-scaling of protein interactions is an

appropriate approach, and the simulation results should not be impaired by the
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limitations of Martini. This makes it a highly suitable force field for studying trans-
membrane protein diffusion, and therefore, it has been employed in all of the simu-

lation models of this thesis.

4.4 Energy Minimization

After having a well-characterized structure with a topology and a force field, the
system is in principle ready for simulations. However, due to possibly quite rough
and intrusive building steps of system preparation, most of the particles in the
system are most likely very far from equilibrium. The bonds may be too stretched,
bond angles unnaturally twisted, or atoms superimposed and starting a simulation
from such a state easily leads to an error when the simulation software can tell that

the system is strained beyond what can be tolerated.

The relaxation of the system before producing any physical dynamics requires energy
minimization. The system has a multidimensional energy landscape with countless
energy minima, and it is analytically impossible to find the global energy minimum
of the system. The nearest local minima, however, can easily be found. One of the
possibilities is to use a steepest descent algorithm, where partial derivatives of the
potential energies of all particles are calculated, which yields forces. By following
the direction of the negative gradient, the direction of the driving force, all the
particles can be lead towards the local minimum. By doing this iteratively in small
steps for all the particles, the strained structures of the system can be relaxed so
that they are ready for simulations based on the laws of physics. The benefits of
the steepest descent method include its robustness, simplicity and swiftness, and
while the global minimum will most likely not be found with this method, this is

completely acceptable for it is not the aim of the energy minimization anyway.

In the steepest descent method, the forces affecting all the particles are calculated

first. Then, the new positions are calculated according to the following formula:

F,

I (4.7)

Tpy1 =TIy +
where r,, is the initial position of a particle, to which a term is added proportional
to F,, which is the initial force of a particle, scaled by the maximum force of all

particles max(|F,|) and a term h, corresponding to the maximum displacement
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allowed during each iteration. The algorithm has finished when either the user-
specified number of iterations have been calculated or when the absolute value of

the maximum force in the system is lower than a threshold value given as an input.

4.5 Equations of Motion

The next step is where an actual molecular dynamics simulation is produced. A
trajectory for all the particles in the system is calculated according to the Newton’s

second law of motion

821'1‘
m;——+
ot?

where m; is the mass of the ith particle, F; is the total force acting on the particle,

~F, i=1...N, (4.8)

r; is the particle’s position and N is the number of all the particles in the system.

The forces are calculated as follows:

oV

where the potential energy function V' is partially differentiated for all particles in
each dimension. These two equations are solved in concession while keeping the
pressure and the temperature constant, and the resulting new particle positions
are saved. After this, the new energy landscape and the acting forces need to be
recalculated for the new positions, resulting in a looping algorithm for calculating a

trajectory.

Newton’s second law of motion is a second-order differential equation, and ana-
lytically solving particle positions via integration is impossible. The integration is
done numerically, which requires that time is made discrete by creating time interval
called a time step, which is essentially sets the time resolution of a simulation. There
are many different algorithms for a numerical integrator to choose from, but the in-
tegrator is preferred to be symplectic (conserves the total energy of the system) and
time-reversible (integration back and forth in time will result in an identical sys-
tem). One commonly used group of integrators fulfilling these requirements is the
Verlet integrators. A modified version of Verlet-integrators is the leapfrog algorithm
used in this thesis. By using two coupled equations for the position and the velocity
of a particle, these two values are calculated alternately with a half a time step
difference, and compared to an ordinary Verlet-integrator, only one set of positions

and velocities needs to be stored at once. Leapfrog algorithm can be written out as
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follows: . . Ar
o = ts
v (t + §Att3) =v (t 2Att3> +— F(t) (4.10)
r (t —+ Atts) = I‘(t) —+ Attsv (t + %Atts> s (4].1)

where Aty is the duration of the time step. The time step is preferably as long as
possible in order to maximize the length of the resulting simulation while minimizing
the number of calculations needed to produce it. However, when using a too long
time step, the total energy of the system may not be preserved, and the particle
displacements between each step may be too great for the simulation to withstand.
As a rule of thumb, the time step should be shorter than the shortest-lived phe-
nomenon in the simulation system, which in molecular dynamics simulations is the
bond vibrations. Coarse-grained models can reach time steps as large as tens of
femtoseconds, but for atomistic simulations, a time step of 1 or 2 femtoseconds is
appropriate due to the fast vibrations in the covalent bonds of hydrogen. A bond
constraint algorithm like LINCS [87] is usually implemented in order to stabilize
bond vibrations enough that the time step of a few femtoseconds does not cause the

simulation to crash.

So far, the basic steps of creating a molecular dynamics simulation have been intro-
duced. Figure 4.3 illustrates the workflow for the discussed elements. Next, other

relevant parts of running these simulations are discussed.

4.6 Thermostats and Barostats

As in real experiments, the temperature and the pressure are usually maintained
constant in molecular dynamics simulations. This is done with temperature and
pressure coupling by using algorithms called thermostats and barostats. Some of

the most common ones are discussed here.

Three examples of temperature coupling algorithms are the Berendsen, the stochas-
tic velocity-rescaling, and the Nosé-Hoover thermostats. The Berendsen weak cou-
pling thermostat can be considered to be an external heat bath with a temperature
Ty which drives the system towards the preferred temperature by the following for-

mula:

dT Ty —T
dt_ Tt ’

where T is the temperature of the system and 7; is a time constant with which the

(4.12)
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Figure 4.3 A schematic demonstrating the workflow of molecular dynamics simulation
calculation. First, the user needs the structure of the model with particle positions and
velocities (which can be generated), and a topology describing the molecules in the system
in detail. Parameters for interactions are provided by the force field. In a simulation, the
forces acting on particles are calculated by differentiating the potential energy. With an
integrator, new positions and velocities are calculated by integrating Newton’s equations of
motion. After this, if the calculation has been done as many times as the user has specified,
the simulation will end and the user can start to work on analyzing the trajectory, otherwise
new forces will be calculated to solve the new positions and the loop continues.
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coupling time can be adjusted. The Berendsen thermostat can be used with systems
far from equilibrium and the strength of temperature coupling is set by the user.
It will suppress kinetic fluctuations, failing to result in a correct canonical NV'T
ensemble, and does not preserve the total energy of the system. However, in the
early phases when the system is still equilibrating, Berendsen is a robust choice.
An improved version of it is the velocity-rescaling thermostat which introduces an

additional stochastic term to enhance the kinetic energy distribution.

After the system is relaxed, a more advanced temperature coupling, the Nosé-Hoover
thermostat, is recommended for enabling proper canonical ensemble. Essentially, the
Hamiltonian of the system is extended to include terms for a heat bath, similarly
to the weak-coupling scheme thermostats like the Berendsen and velocity-rescaling
thermostats, but also a friction term proportional to the velocities of the particles.
Compared to the Berendsen, which has a strong dampening effect when adjusting
the temperature, the Nosé-Hoover has a gentler oscillating approach, and hence it
takes far longer for it to bring the temperature to the desired value if initially the
system is far from it. The Nosé-Hoover thermostat is discussed in more detail in
the reference [88] and in the GROMACS manual.

Barostats in the pressure coupling are the equivalents of thermostats but meant for

pressure control. The Berendsen algorithm for pressure is given by:

P P,—P
a 1,

(4.13)

where F is the target pressure matrix, P is the pressure matrix of the system, and 7,
is an adjustable pressure coupling time constant. Unlike when using the Berendsen
thermostat, the barostat allows the size of the simulation box (discussed in more
detail shortly) change. This is done by something called the scaling matrix, which
rescales not only the box dimensions but all the coordinates of the particles in the
system. For example, in the presence of high pressure, the simulation box will shrink
and make the system more compact. In the case of semi-isotropic simulation systems
such as lipid bilayers, it is possible and advised to control the pressures separately
in the parallel and orthogonal directions with respect to the membrane. As a rule
of thumb, the symmetry of the system determines the symmetry of the barostat as
well. A semi-isotropic barostat allows the box to simultaneously stretch and squeeze,
which can be required for example for the lipids to reach the equilibrium area per
lipid.
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Similarly to the thermostats, another more sophisticated barostat, the Parrinello—
Rahman barostat, is meant to be used after the system has moved closer to the
equilibrium. In theory, Parrinello-Rahman produces the correct NpT ensemble,
which can be difficult to do for the Berendsen barostat especially in the case of
small simulations. Similarly to Nosé-Hoover, the Parrinello-Rahman approach in-
troduces extensions to the Hamiltonian of the system, and adjusts the pressure in an
oscillating fashion. If used when being too far from the equilibrium pressure, these
oscillations can be great enough to make the simulation crash, thus, the Berendsen is
a preferable choice for equilibrating. The Parrinello-Rahman algorithm is discussed
more in the reference [89] and in the GROMACS manual.

4.7 Long-Range Interactions and Periodic Boundary Condi-
tions

The nonbonded Coulomb and Lennard-Jones interactions comprise the long-range
interactions in molecular dynamics simulations. To make their calculation feasible,
GROMACS uses a cut-off limit beyond which these interactions are omitted; in
the case of the Coulomb potential, this makes sense since it has 1/r? scaling after
all. The interactions at the borders of the simulation box, however, require special

attention.

As already discussed, part of the simulation setup is the specification of the restricted
area, a simulation box, within which all the particles reside. The shape does not
necessarily have to be a cuboid; when simulating proteins solvated in water, rhombic
dodecahedron is a much more economical choice for shape since it eliminates the
unnecessary water particles at the corners of the system. Still, a cuboid is usually
preferred for the simplicity of designing analysis tools for trajectories simulated with

this box shape.

To make the simulation model as physical as possible, the borders of the box are
treated with periodic boundary conditions (PBC), meaning that on the other side
of the box border, there is a perfect translated system replica, with which all of the
particles can interact with and which makes the model mimic an infinite system.
This is why it is common to call the simulation box as a PBC box. An efficient
algorithm for the calculation of electrostatic interactions, the particle mesh Ewald
method, is compatible with the PBC, making it a natural choice to treat the system

boundaries this way. Figure 4.4 demonstrates the concept of periodic boundary
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conditions.

Figure 4.4 An illustration of periodic boundary conditions in molecular dynamics simula-
tions. In the middle, there is one of the model tube structures studied in this thesis. On the
other sides of the faces of the cuboid, there are periodic images of the system, with which
the tube structure can interact with. This creates the illusion of an infinite system. Images
exist above and below the tube as well, however, they have been left out for clarity.

The PBC are a good representation of a continuous system without artificial edges
and is still computationally efficient. Yet, it causes its share of artifacts, unphysical
errors resulting from the simulation model. Primarily, it is important to ensure
that the periodic images preserve the symmetry of the system and that the box
size in all dimensions is greater than the cut-off radius of long-range interactions.
Otherwise, all the particles would be interacting with their own periodic boundary
images. In addition, according to the minimum-image convention, interactions are
always calculated only with the closest periodic image. Another noteworthy point is
that PBC has been noticed to hinder diffusion rates of molecules proportionally to
the PBC box size |90, 91, 92, 93|. This has been argued to be due to the anisotropic
scaling of the simulation box. In this thesis, diffusion has been studied by analyzing
long simulations where particles are allowed to cross the PBC border multiple times,
which makes this artifact crucial to be acknowledged. The artifact is greater the
smaller the box is, and fortunately, in this thesis, the simulation boxes for the tubular
structures are relatively large. Also, for ordinary bilayer simulations, tools exist for
correcting the obtained diffusion coefficients by taking the PBC box dimensions into

account [94]. Regardless, when discussing the results of this thesis, the PBC artifacts
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must not be ignored.

40
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5 MODEL AND SIMULATION DETAILS

In this chapter, the practical execution of this study is discussed. First, it is ex-
plained how the model membrane structures were prepared. Next, the relevant
simulation parameters, such as the physical conditions of the simulation models and
the simulation production parameters are given, and finally, the process of data
analysis is explored. All the system preparation and simulation was done with the
GROMACS version 4.6.7 unless mentioned otherwise.

5.1 Building the Tubular Bilayers

The lipid used in the membranes of this thesis is dipalmitoylphosphatidylcholine, or
DPPC, which allows direct comparison with earlier simulation results. The struc-
tural formula of DPPC is presented Figure 5.1. The protein chosen for the study is
a monomeric outer membrane porin G or OmpG [95], available at the Protein Data
Bank with code 2F1C [96, 97, 98|. It is found in Escherichia coli and it mediates the
translation of ions and nutrients across membranes. In this study, the protein parts
extending to the solvent have been removed to eliminate hindering effects caused by

water. The protein is appropriate for its size, symmetry, and hydrophobic match.

The structures and topologies for Martini coarse-grained lipids, including DPPC,
are part of the force field distribution and downloadable from the Martini website.

Martini force field version 2.2 was used throughout this study. The modified and
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Figure 5.1 A structural formula of the dipalmitoylphosphatidylcholine lipid. It is a rela-
tively short saturated lipid with two palmitic acids as hydrocarbon chains.
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coarse-grained protein structure and topology, used in a previous study [28], were
provided by the examiner Matti Javanainen. The protein-protein interactions were

reduced to 80 % in order to prevent protein aggregation [84, 85]|.

With the lipid and protein structures, the tubular structures were built by using
PACKMOL software [99]. The PACKMOL runs were not able to converge to proper
structures when both lipids and proteins were given as an input, and therefore, lipid
tubes and protein tubes were built separately, after which these structures were
superimposed. Lipids were present in excess, and all the clashing lipid molecules
were removed. Nine tubes were built in total with varying protein concentrations and
tube radii. In addition, five planar membranes with varying protein concentrations
were built for reference by using membrane structures provided by Javanainen. The

planar membranes are shown in Figure 5.2 and tubes in Table 5.1.

Figure 5.2 Rendered pictures of the planar membranes studied in this thesis. The lipid
per leaflet to protein ratios range from dilute (400:1) to concentrated (50:1).

The structure specifics are listed in Table 5.2. In tubular membranes, some lipids
were found to be trapped inside the proteins, and thus they were removed from the
structure in the early stages of simulations. Therefore, the number of lipids in the
tubular systems do not match the exact lipid to protein ratios that the thesis aimed
for. Also, the 5- and 10-nanometer tubes equilibrated to structures with slightly
larger tube radii than what was designed. However, considering the aim of this
thesis to find the relation between diffusion rates, curvature, and protein crowding,

these deviations are not significant.
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Table 5.1 Rendered pictures of the tubular membranes studied in this thesis. The radius of
the tubes varied from approximately 5 nanometers to 15 nanometers, and the lipid to protein
ratios from approximately 400:1 to 50:1. The exact values can be found from Table 5.2.
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5.2 Simulation Runs and Related Parameters

The tubular and planar membrane structures were thoroughly energy minimized
by using the steepest descent algorithm during each system preparation step, which
included the solvation, addition of ions to neutralize the charge of the system and the
replacement of 10 % of water particles with anti-freeze water particles. The planar
membranes were then simulated for 45 s and the tubular membranes with proteins
for 145 ps, both with a leap frog integrator and a time step of 20 fs. The first 100 us
of the tubular membrane simulations were done with isotropic Parrinello-Rahman
pressure control of 1 bar and with a time-constant of 50 ps, for this prevented
the tubes from collapsing and allowed water to flow through the transmembrane
porin proteins in order to equilibrate the water pressures between the inside and the
outside of the tube. For the planar membranes and for the rest of the remaining
simulation time of tubular membranes, semi-isotropic pressure control was used
with the same values of pressure and time-constant. Out of the total simulation
time, only the last 30 us was used for data analysis. The tube without proteins was
simulated for 15 ps, of which the first 5 us was omitted, and because this system was
made from the 10-nanometer tube with 400 to 1 lipid to protein ratio by removing
the proteins, this was sufficient. The temperatures were controlled with a velocity-
rescaling thermostat at a temperature of 315 K to keep the DPPC bilayer fluid,
with the temperatures of the membrane and the solution controlled separately, with
a time constant of 1 ps. The Coulomb and van der Waals interactions were cut off
at 1.1 nm. LINCS algorithm was used to constrain the bead bond lengths between
position updates [87].

5.3 Analysis Tools

By using GROMACS implemented manipulation tools, the center of mass motion
trajectories of all the membrane molecules (lipids and proteins) in each system were
produced. This was done in order to export the particle motions to an external pro-
gram because GROMACS is not able to calculate diffusion coefficients for particles
confined to cylindrical surfaces like in this thesis. An analysis script was written
with Matlab, and to verify its accuracy, it was also used to calculate the diffusion
coefficients in planar membranes, something that GROMACS can do. The result
comparison confirmed that the script worked correctly. To simplify further analysis,
the PBC treatment was removed with GROMACS before moving on to MATLAB

analysis.
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Water System M(.embr‘ane M.easu.red
height lateral size <>jlicgs(')18%;) Cifgi;ggt
0

( £2%) (nm) (£2%) (nm) (poise cm)  (430%) (%)

400:1 6.8 27.8 1.2 x1078 1.08 x10~7

2 200:1 7.0 26.1 2.0 x1078%  0.62 x1077
< 100:1 6.8 19.3 3.0 x1078  0.42 x1077
£ 751 6.8 18.8 4.0 x107®%  0.29 x1077
50:1 9.1 19.8 4.0 x107®  0.10 x1077
400:1 6.8 27.8 1.2 x10°8 6.21 x10°7

5 200:1 7.0 26.1 2.0 x1078  5.14 x1077
‘B 100:1 6.8 19.3 3.0 x107®  3.87 x1077
= 751 6.8 18.8 4.0 x107®  3.19 x1077
50:1 9.1 19.8 4.0 x1078 1.83 x10~7

Table 5.3 The parameters used for correcting diffusion coefficients calculated from the
MSD curves. In the brackets, relative errors (taken into account during the PBC free dif-
fusion coefficient estimation) and the units for the parameters are given. For proteins,
hydrodynamic radius of 2.18 nanometers, based on the effective radius argued in the sup-
plementary information of the reference [28] was used, and for lipids, the value of 0.45
nanometers was used as advised by the method author [94], both with 10 % error. The used
values for membrane viscosities were educated estimations, however, the error margins were
given to be so large that the input values were irrelevant, and the method succeeded in pro-
ducing reasonable diffusion coefficient estimates regardless. For all the systems, the water
viscosity was set to be 0.007+5 % poise, interleaflet coupling to 2.4-104%:26, and the num-
ber of iterations to 200000. Note that the membrane viscosity, as in the Saffman—Delbrick
formula, has been multiplied with the membrane thickness, hence the unit.

The main analysis included the calculation of mean squared displacement graphs
for proteins and lipids in all of the systems. In a basic MSD analysis, all the
particle displacements are both time and ensemble averaged, meaning that for a
single particle the time averaged mean square displacement W is calculated as
follows [27]

B 1
B 7—Icot - At

57 (A)

(2

Tiot—AL
/ (r: (£ + AF) — 13 (£)) d,

where T}, is the total simulation time and At is the displacement time. The en-
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semble average over these time averages, calculated with

G @) = TG,

is the MSD used for the diffusion analysis. To the acquired MSD graphs, the equa-
tions ( 3.5) and ( 3.7) were fitted in order to solve the diffusion coefficients and
the anomalous diffusion exponents. Also, when appropriate, the Saffman—Delbriick
formula extension was fitted to the obtained data. The time-dependent diffusion
exponents were calculated by making a linear fit on the logarithm data of the mean
squared displacement and by extracting the slope. The simulated diffusion coeffi-
cient values for planar membranes were fixed according to the bayesian approach
explained in the reference [94] with the parameters listed in Table 5.3. Finally, the
hydrodynamic properties of water were studied with GROMACS tools, to explore
the confining effects of the membrane, and to discuss whether it might have an
impact on the lateral diffusion coefficients in the tubes. All of the figures represent-
ing molecular dynamics structures in this thesis have been rendered by using VMD

(Visual Molecular Dynamics) software [100].
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6 RESULTS AND DISCUSSION

In this chapter, the analysis results of the coarse-grained simulations are discussed.
This includes the acquired diffusion coefficients of both proteins and lipids, decom-
posed into the radial and longitudinal directions in the case of tubular membranes,
as well as anomalous diffusion exponents. The results for diffusion coefficients are
finally presented as a function of membrane curvature, answering the original re-
search question of how the curvature affects the mobility of embedded membrane

proteins.

6.1 The Viscosity of Water

Before jumping into the lipid and protein diffusion results, it is interesting to discuss
the viscosity of water in the systems with tubular membrane shapes. According to
the Saffman-Delbriick formula ( 3.8), an increase in the viscosity of the surrounding
fluid decreases the Saffman—Delbriick length, resulting in lower diffusion coefficients
predicted by the theory. In membrane tubes, the mobility of water is confined by
the membrane itself, and this should be reflected on the water viscosity according to
the Stokes—Einstein equation ( 3.9). This is obvious in the perpendicular directions
to the tube longitudinal axis, but the effect should be present to some degree even in
the longitudinal direction due to the drag caused by the membrane surface (similarly
to the no-slip condition for the flow of liquid at the liquid-solid interface used in the

modeling of fluid dynamics).

In Figure 6.1, a heatmap comparing the diffusivities of water in the longitudinal
direction in the tubular membranes is presented. In the case of smaller tubes with a
tube radius around 5 nanometers, the water inside the tube experiences a noticeable
decrease in the diffusion coefficient, which can be interpreted as an increase in the
viscosity. If the Saffman—Delbriick theory is to be applied for membrane tubes that
confine the solvent to this extent, it is worth to consider whether the used value

for solvent viscosity has relevance for the results. Luckily, tubes with such a small
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Figure 6.1 Density plot of the diffusion coefficients and viscosities of solvent along the
longitudinal axis, also sepag‘ately for water inside and outside of the tube. Units of diffusion
coefficient D are in 1072 <™= and dynamic viscosity py in mPa-s (0.01 poise). The viscosities

S
have been calculated by using the Stokes—FEinstein equation (formula 8.9), where as the

radius of the particle r the Lennard-Jones equilibrium distance r = 26 - 0 =~ 0.48 nm has
been used, where o = 0.43 nm, a parameter of the Martini force field. For reference,
Martini water has been measured to have a dynamic viscosity of 0.7mPa - s, close to the
experimental result of 0.55mPa- s [101].

radius are not prevalent, and therefore, in general, the changes in water viscosity

can be assumed to be negligible.

6.2 Diffusion Coefficients and Exponents

The main results of this thesis — the lateral and decomposed diffusion coefficients
and diffusion exponents of proteins and lipids in tubular and planar membranes —
are presented next. All the diffusion coefficients have been obtained by fitting the
formula ( 3.5) to the mean squared displacement data, which is both time and
ensemble averaged. The MSD data is presented in the appendix A, with the fit-
ting starting from the displacements time of 100 nanoseconds and ending at 2000
nanoseconds. The values for the diffusion exponents have been acquired by fitting
the formula ( 3.7) to the same data, and from which only the exponent has been
extracted. In addition, the graphs for the time evolution of the diffusion exponents
are given in the appendix A. When applicable, the GROMACS software package
tools for calculating the diffusion coefficients have been used to ensure and prove

the correctness of the MSD calculation and the diffusion analysis tools used for
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Plnar (or 0! GrOMACS

400:1 [ 0.93+£0.03 248 (2.11-2.83) 1.08+0.10

2 200:1 | 0.6140.03 1.68 (1.43-1.92)  0.6240.18
£100:1 | 0.394£0.05 1.50 (1.29-1.72)  0.42+0.11
& 751 [ 0244001 1.16 (0.98-1.33) 0.29+0.05
50:1 | 0.10 £0.01 0.47 (0.25-0.65)  0.10 £ 0.03
400:1 | 6.19£0.01 8.39 (7.24-9.48) 6.214+0.01

2 200:1 | 5.154+0.02 729 (6.24-8.23) 5.13+£0.07
& 100:1 [ 3.90+0.01 6.19 (5.35-7.02) 3.87 £0.03
= 751 |3.1440.03 5.34 (4.586.06) 3.19+0.03
50:1 | 1.86 £0.07 3.23 (1.69-4.56) 1.83+£0.24

Table 6.1 The protein and lipid diffusion coefficients in planar membranes, units in
10_86—”512 for proteins and 10_7‘3—7‘?2 for lipids. In the Planar column, the slopes of the
MSD curves have been divided with 4 according to the formula of the MSD of a Brownian
particle in two-dimensional space. In the Planar corrected column, the results of Planar
colummn have been extrapolated for correcting the PBC artifacts. In the GROMACS column,
the uncorrected diffusion coefficient from lateral MSD has been calculated with GROMACS
package for comparison.

5 nm 10 nm 15 nm
400:1 1.52+0.05
CED, 200:1 | 1.13£0.01 1.174+0.02 1.50=£0.03
< 100:1 0.97 £ 0.01
& 751 [0.394+0.03 0.60+0.01 0.61=+0.05
50:1 0.45 £ 0.00
o0:1 7.31 £ 0.07
. 400:1 6.59 £0.01
% 200:1 | 5.56 £0.04 5.87+0.03 6.00£0.05
5 100:1 4.51 +0.02
75:1 [ 3.244+0.04 3.45+0.04 3.5440.06
50:1 2.28 £0.03

Table 6.2 The protein and lipid diffusion coefficients in tubular membranes, units in
10*8‘3—’;12 for proteins and 10*”—7;‘2 for lipids. The slopes of the MSD curves have been
divided with 4 according to the formula of the MSD of a Brownian particle in a two-
dimensional space.
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5 nm 10 nm 15 nm Planar
400:1 1.02 £ 0.03 0.92+0.03
200:1 | 1.00+0.03 0.9540.02 1.0240.01 0.90 + 0.02
100:1 0.98 +0.01 0.87 +0.08
75:1 [ 0.87+0.01 0.8940.03 0.87+0.02 0.87 «+0.02
50:1 0.93 +0.02 0.71 +0.05
4001 7 1.05 £ 0.04 —
2 2001z [1.024£0.01 0.97+0.04 1.05+0.02 —
£ 100:1 z 1.01 + 0.01 —
& 751z [09040.04 0.90+0.05 0.88+0.05 —
50:1 7 0.94 + 0.02 —
400:1 0 0.92 £0.02 —
200:1 6 | 0.88+£0.03 0.87+0.02 0.96 + 0.02 —
100:1 6 0.86 =+ 0.02 —
75:160 | 0.714£0.02 0.85+0.01 0.81 4 0.00 —
50:1 6 0.84 + 0.05 —
oo:1 1.00 + 0.01
400:1 1.00 + 0.00 1.00 + 0.00
200:1 [ 0.98+0.00 0.9940.00 1.00+0.01 0.99 «+ 0.00
100:1 0.99 =+ 0.00 0.98 £ 0.01
75:1 [ 0.9540.00 0.9540.01 0.95+0.00 0.96+0.01
50:1 0.92 +0.02 0.88 +0.01
501 7 1.00 £ 0.02 —
_400:1 7 1.01 + 0.00 —
= 200:1z [ 0.99£0.00 0.95%0.01 1.0140.01 —
= 100:1 7 1.01 4+ 0.01 —
75:17 | 0.9740.01 0.95+0.02 0.96+0.00 —
50:1 7 0.95 + 0.02 —
5010 1.00 = 0.00 —
400:1 6 0.99 =+ 0.00 —
200:1 6 | 0.97+£0.00 0.99+0.00 0.99 + 0.00 —
100:1 6 0.97 +0.01 —
75:160 | 0.93+£0.01 0.94+0.01 094+ 0.01 —
50:1 6 0.86 =+ 0.02 —

Table 6.3 The protein and lipid diffusion exponents, also separately for longitudinal and
radial directions. The values have been acquired by extracting the diffusion exponent when
the formula 3.7 has been fitted to the MSD data. The time evolution of the diffusion
exponents can be seen in the plots in the appendiz A.
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the tubular membranes. The GROMACS results are not used for other purposes.
Particularly in the cases where the MSD curves are not ideally linear, the small
deviations between some of the results given by the GROMACS and the tubular
membrane diffusion analysis tool for diffusion coefficients are explained by the fact
that in the linear regression, GROMACS implements higher weights for short dis-
placement times since there is more data available for that region of the MSD curve.
The choice of fitting method is a matter of taste, and both of these approaches
have their slight advantages and disadvantages, with no significant impact on the
analysis. For planar membranes, the PBC corrected diffusion coefficients are also
presented. The diffusion coefficients in planar membranes are given in Table 6.1,
the lateral diffusion coefficients in tubular membranes in Table 6.2, the decomposed
diffusion coefficients for tubular membranes in Table 6.4, and all the diffusion expo-
nents in Table 6.3. In Figures 6.2 and 6.3, the obtained diffusion coefficients have
been plotted as a function curvature and in figures 6.5 and 6.4 as a function of
membrane curvature. All the error bars in tables and Figures are 95 % confidence
intervals, and since only one replica of each system has been studied, the statistical

errors are in many cases too small to be visible in the plots.

In the planar systems, the hindering effects on diffusion caused by crowding are sim-
ilar to what was found in previous simulations [28|, even though the used protein
composition was heterogeneous in those systems. With a gradual decrease in diffu-
sion coefficient as the system becomes crowded, the mobility of lipids is reduced to
almost one-third and for proteins to almost one-fifth of the dilute system diffusion
(when focusing on the PBC corrected coefficients). The comparison of the precise
values between the studies is not fruitful, even though the same protein, lipid bilayer
composition, and coarse-grained force field were used. This is not so much because
of the protein heterogeneity in the previous study, but due to the difference in the
size of the simulation box. For example, the uncorrected diffusion coefficient in a
dilute system was previously found to be approximately 2-10~"cm? /s, while in this
study, as shown by the Table 6.1, the value is 0.93 - 10~"cm?/s, but because the
length of the side of the simulation box in the lateral direction was in the earlier
study 61 nanometers, while being 27.8 nanometers in the system of this thesis, obvi-
ous PBC artifacts are present. Though the same values for the diffusion coefficients
are unachievable, the physics of membrane crowding effects are reproduced. This
applies also for the diffusion exponents, where a 0.21 (-23 %) decrease is observed
for proteins in planar systems and 0.1 £ 0.05 (from 8 to 14 %) for both lipids and

proteins in all tubular systems. However, since the exponents are extracted from
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Figure 6.2 The two-dimensional diffusion coefficients of proteins and lipids in systems of
varying radii as a function of lipid per leaflet to protein ratio. The data for planar mem-
branes has been PBC corrected. The established hindering effect on diffusion in crowded
planar membranes is reproduced in curved membranes.
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the same MSD data without PBC correction, the direct comparison of the values
should be avoided.

When it comes to the lateral diffusion of proteins and lipids in tubular membranes,
the effects of curvature on diffusion become evident. Though the effects on lipids
are expectedly more subtle, the protein diffusion in a system with the 75:1 lipid to
protein ratio and 15 nanometer radius of curvature is over 50 % faster compared
to b-nanometer tube, and for a system with the 200:1 lipid to protein ratio, the
difference is also over 30 %, as shown by Table 6.2 and Figure 6.2. If compared
to planar membranes, the difference would be even greater, but since the planar
systems are PBC corrected unlike the tubular systems, this comparison should not
be done for the total lateral diffusion. When decomposed into longitudinal and radial
components, the longitudinal diffusion can be seen to be consistently faster for both
lipids and proteins in all systems compared to the radial diffusion. Although it
has not been extensively tested on tubular membranes, it can be assumed that PBC
effects are not as considerable in the radial direction of the diffusion compared to the
longitudinal, since the absolute displacements remain short in the radial direction
(even though it has been shown that PBC affects even the rotational diffusion [93]).
If a comparison between the PBC corrected planar diffusion and the uncorrected
radial diffusion in tubes for proteins is just, the diffusion along the direction of
curvature is shown to be considerably slower; the radial diffusion of proteins in a
5-nanometer tube is slowed to one-fifth in the case of 200:1 lipid to protein ratio
system and to almost one-tenth in 75:1 system compared to planar membranes,
illustrated in Figure 6.2. This means that the slowdown in diffusion caused by

nanoscale curvature is comparable to the effects caused by protein crowding.

6.3 Longitudinal and Radial Diffusion

When examining the effect of curvature on the longitudinal diffusion, presented
in Figure 6.4, no obvious dependence can be seen. The 5-nanometer system with
75:1 lipid to protein ratio seems to experience relatively strong hindering in the
diffusion, which may be due to the environment being both crowded and curved
simultaneously. In general though, it seems that the diffusion in radial direction
is primarily affected. By intuition, this is sensible since one may assume that the
membrane properties in the longitudinal direction should not necessarily depend
on the curvature in the radial direction. However, this is in striking contrast to

earlier experimental studies by the research group of Prof. Bassereau, discussed in
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5 nm 10 nm 15 nm
100:1 2 247 +0.13
200:1z | 2.00£0.03 1.84+£0.04 2.2940.07
100:1 z 1.66 =+ 0.02
s 751z | 067004 0984002 0.97+0.09
S 5011z 0.80 & 0.00
S TA00:1 0 057 +0.03
B~ 200:1 0 0.2640.02 0494002 0.71+0.02
100:1 6 0.29 & 0.01
75:160 | 0.1240.02 0.22+£0.01 0.25 4 0.02
50:1 6 0.10 & 0.02
x 4001 z 248 £ 0.31
S 2001z | 1724018 2244014 2.14+0.14
% 100:1 z 1.47+0.15
Z 751z | 0.68+£0.08 1.014+0.03 1.0340.23
S 5017 0.78 + 0.08
0o:1 7 8.2140.13
400:1 7 7.53 4 0.02
200:1z | 6.624+0.02 6.79+£0.04 6.86%0.10
100:1 z 5.45 4 0.05
_ Thilz [ 3.83£0.04 4.10£0.03 4.1640.07
g 501z 3.02 4 0.01
= "ol 6.41 £ 0.02
400:1 6 5.64 & 0.02
200:1 0 | 4.514+0.06 4.96+0.02 5.11 % 0.00
100:1 6 3.57 4 0.01
75:160 | 2.654+0.05 2.80+0.04 2.92+40.05
50:1 0 1.53 £ 0.06
o ool z 8.22+0.33
O 400:1 z 7.49 4 0.09
g 200:1z | 6.4240.03 6.89 £0.03 6.78 +0.03
o 100:1 z 5.18 4 0.02
S 751z 3844008 4164007 4.21+0.19
50:1 z 3.00 & 0.08

95

Table 6.4 The protein and lipid diffusion coefficients in tubular systems, separated into

radial (6) and longitudinal (z) dimensions, units in 10~°

ch
S

for proteins and 10*7‘3—’?2 for

lipids. The slopes of the MSD curves have been divided with 2, according to the formula of
the MSD of a Brownian particle in one-dimensional space. Since GROMACS can calculate
diffusion in the longitudinal dimension, these results have been included for both lipids and
proteins for comparison and result verification.
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section 2.3, where the longitudinal diffusion for both proteins and lipids — even
in the absence of proteins — was observed to be several times slower in highly
curved membranes compared to planar membranes. The disagreement between the
simulations and experiments is beyond something that could be explained by the
PBC artifacts in the simulations. As a matter of fact, if the longitudinal diffusion
in the tubular membrane simulations could be corrected, this would only increase
the acquired diffusion coefficients in curved membranes, opposite to what it would

require to make the results between the simulations and experiments match.

To understand this, it has to be established that because the results are so profoundly
conflicting, either the results by the simulations or the experiments are incorrect, or
there is some other aspect that has been neglected completely, inducing contrasting
curvature mediated effects in different experiments. Considering the simulations,
in addition to problems caused by the PBC, it is fair to question if the systems
are properly equilibrated and whether the presented simulations provide sufficient
data for reliable diffusion analysis. With a semi-isotropic barostat, long simulation
time, and porin proteins allowing water pressure to equalize between the inside and
the outside of the tube, the tubes should be properly equilibrated. In order to
observe any instability, the tube radius and shape were monitored throughout the
simulation, but no considerable changes were seen, indicating that the systems were
equilibrated to an extent that they were not driven to change form in any way.
When it comes to the acquired data in general, the MSD plots in the appendix A
show close to linear curves for all the systems, implying that there should be enough
data for accurate fitting. In addition, the alpha exponents in Table 6.3 indicate that
the MSD curves are not far from linear. It is worth mentioning though, that for
proteins the data is not nearly as ideal as for lipids due to the low number of proteins,
leading to less statistics and poorer curve fitting. Naturally, the anomalous diffusion
also makes the fitting of the Brownian diffusion model to the data challenging. For
example, when Figure 7.6 in the appendix A is examined closely, the slope of the
MSD curve for the longitudinal diffusion of proteins in a system with 10-nanometer
radius and 200:1 lipid to protein ratio is greater at shorter displacement times of a
few hundred nanoseconds compared to longer times, This causes problems in curve
fitting and a noticeable difference can be seen in the acquired diffusion coefficient
values calculated by the GROMACS and by the written analysis tools for tubular
membranes, displayed in Table 6.4. One may also question, whether there is some
other issue in the system causing the outlying diffusion coefficent, but since the

acquired lipid diffusion coefficient is in line with the other results, this is unlikely.
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Figure 6.3 The one-dimensional diffusion coefficients in longitudinal and radial directions
of proteins and lipids in systems of varying radii as a function of lipid to protein ratio. The

planar data has been PBC' corrected. Regardless of crowding, the difference in longitudinal
and radial diffusion is persistent.
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Figure 6.4 One-dimensional diffusion coefficients of proteins and lipids separately in longi-
tudinal and radial directions in systems of varying crowdedness as a function of the inverse
of radius. The diffusion is affected in the radial direction strongly by membrane curvature,
but no similar effect can be observed for the longitudinal direction.

Nevertheless, these simulation related issues do not seem to be enough to explain

the opposing results compared to experiments.

Meanwhile, the authors of the experiments have addressed several factors that might

have affected data. The three possibly most relevant of these are the control of tube
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radius with membrane tension, the inability to differentiate longitudinal and radial
diffusion, and the use of large labeled tracers for tracking. Although in the sup-
plementary information of the reference [41] it was declared that membrane tension
should not affect lateral diffusion, this might require a more thorough both exper-
imental and computational study. Monitoring radial diffusion in thin membrane
tubes is dauntingly challenging, but if ever possible, results of such experiments
would clearly indicate the curvature mediated effects, since the difference between
longitudinal and radial diffusion could be studied simultaneously and a reliable com-
parison could be made. Also, the use of large tracer particles in SPT experiments
has been shown to at least reduce the correlation between the diffusing membrane
protein and the attached tracer particle within microsecond time scales [102], an

issue that may be even more severe on curved surfaces.

If the results of both the simulations and experiments would be assumed to be cor-
rect, there has to be some other key factor affecting the lateral diffusion of proteins
in curved membranes. The obvious differences between the simulations and exper-
iments are the proteins and lipids used in the experiments; while the protein used
in this work was a modified aquaporin, staying in an upright position in the mem-
brane, the protein in the experimental work by the group of Prof. Bassereau was
a slightly smaller voltage-gated potassium channel, which according to the Protein
Data Bank prefers a tilted orientation in the membrane. Also, the simulations were
set to have 315 K temperature in order to keep the saturated DPPC lipid membrane
fluid, while the experiments were done in room temperature by using a mixture of
unsaturated lipids. As discussed in section 3.3, it has been heavily speculated that
the protein shape and membrane mismatch can in the planar membranes determine,
whether the diffusion of proteins has a scaling according to the Saffman—Delbriick
theory or the Stokes—Einstein equation. Similar effects could be present in curved
membranes as well. To test the possible importance of protein shape, simulations
could be done by using, for instance, conical proteins, and a comparison of the re-
sults could be made with the cylindrical proteins used in this work. According to
Prof. Bassereau, the PI of the reference [41], it was discussed (on 10th of June 2019)
that it is plausible that curvature facilitated protein-protein interactions cause the
hindering in diffusion, and the strength of the effect or the absence of it is depen-
dent on the shape or the type of the protein. However, the experiments observed the
slower longitudinal lipid diffusion in curved membranes containing no proteins. In
this work, DPPC lipid with saturated fatty acid chains was used, but in the exper-

iments, a mixture of unsaturated phosphatidic acid and phosphatidylcholine with
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tracer labels was used. Therefore, both experiments and simulations with varying
lipid compositions could be prepared to further investigate the effect of lipid type

on the longitudinal diffusion in curved membranes.

6.4 The Extension to the Saffman—Delbruck

Anyhow, the ability of the theory by Daniels and Turner to match transmembrane
protein diffusion and membrane curvature was also tested in this work. The theory
does not differentiate the diffusion between the longitudinal and radial directions,
and therefore the formula ( 3.10) (with the index m ranging from 1 to 10) has been
fitted to the total diffusion data of proteins in Figure 6.5. This is arguably problem-
atic since the diffusion in tubular systems has not been PBC corrected in the longitu-
dinal direction, and therefore, caution is required when interpreting the data. Still,
the fit described by the equation matches the data surprisingly well. The dynamic
membrane viscosities, the free parameters acquired from the fits are reasonable 0.10
Pas for the system with 200:1 lipid to protein ratio and 0.18 Pas for 75:1, which are
in good correspondence with earlier results for membrane viscosities in lipid bilayers
in Martini models, considering that membrane crowding increases the membrane
viscosity (for example, neg/h =~ 4.73 - 107! Pas - m/(5- 1079 nm) ~ 0.01 Pas and
Nt/ ~ 5-1071% Pas-m/(5-1079 nm) ~ 0.1 Pas, where the effective dynamic mem-
brane viscosity 7. has been divided by an approximate membrane thickness to make
the values comparable to the membrane viscosities used in this thesis [103, 104]).
Thus, with reservations due to the PBC artifacts, this study supports the theory by
Daniels and Turner since the derived formula seemingly predicts the total diffusion

of transmembrane proteins in curved membranes accurately.

The examination of the anomalous exponents shows that the curvature has very
little effect on the anomalous nature of diffusion, while the crowding effects are very
similar to the planar membranes, as shown by Table 6.3 and the plots in the ap-
pendix A. There is also no noticeable difference between the anomalous diffusion
exponents between the radial and longitudinal diffusion. Therefore, the curvature
does not seem to interfere with the already established anomalous diffusion induced
by crowding. It appears that the curvature mediated anomalous diffusion is the
strongest in the longitudinal direction in small tubes particularly for lipids at dis-
placement times shorter than 100 nanoseconds. This effect is very faint in the pure
lipid tube with 10-nanometer radius, but already noticeable in dilute protein con-

centrations at short displacement times. However, after a few hundred nanoseconds
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Figure 6.5 Two-dimensional diffusion coefficients of proteins and lipids in systems of
varying crowdedness as a function of the inverse of the radius of curvature. The planar
data have been PBC corrected. For proteins, the formula for diffusion in curved membranes
derived by Daniels and Turner has been fitted to the data (dashed line). For the system
with 200:1 lipid to protein ratio, the obtained dynamic membrane viscosity is 0.10 Pas and
for 75:1 0.18 Pas. The lipid data have been added for completeness, although the formula
by Daniels and Turner is derived for larger membrane inclusions, and thus no fitting has
been done.
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the subdiffusion in the longitudinal direction ceases almost completely, and as a
consequence, the curvature effects on anomalous diffusion appears to be weak and

short-lived compared to those by crowding.



63

7 CONCLUSIONS

In this thesis, the effect of membrane curvature on the lateral diffusion of trans-
membrane proteins was studied for the first time with extensive molecular dynam-
ics simulations. Numerous computational and experimental studies have focused
on the dynamics in planar membranes, meanwhile, it is also known that curved
membrane structures are frequent in cells, and the impact of this curvature on lat-
eral diffusion has so far not been properly recognized. In addition, since it has been
agreed that macromolecular crowding is a significant inducer of anomalous diffusion,
a comparison between the effects of crowding caused by transmembrane proteins and
membrane curvature was made in order to investigate whether curvature had any

similar significant contributions to the anomalous diffusion.

The study was done by preparing coarse-grained simulation models of membrane
tubes with a varying radius of curvature and protein crowdedness. By analyzing the
diffusion motion of the lipids and proteins, it was found that while the diffusion in
the longitudinal direction of the tube was mostly unaffected by the curvature, the
diffusion in the radial direction experienced a significant slowdown. Protein crowding
hindered the diffusion in curved membranes similarly to what has been seen with
planar membranes earlier, and in the radial direction, the magnitude of the effect of
nanoscale curvature was comparable to the difference in mobility between a dilute
and a crowded membrane. Based on the anomalous diffusion exponents in the mean
squared displacement curves of both proteins and lipids, anomalous diffusion was

concluded to be mainly a result of crowding instead of membrane curvature.

Startlingly, the observed unaffected diffusion along the tube’s longitudinal axis is
not in line with diffusion experiments in tubular membranes. Though the systems
of this thesis are smaller than what has been experimentally achievable, and this
length scale difference complicates direct comparison between the simulations and
experiments, the result of multiple times faster diffusion of proteins and lipids in

planar membranes compared to tubes was not reproduced in this work. To investi-
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gate this, the role of the shape of a protein requires focus in the future, for it has
been suspected in earlier studies using planar membranes, that sterical effects such
as membrane mismatch can affect transmembrane protein mobility drastically. Also,
since the results between simulations and experiments for pure lipid tubes and pla-
nar membranes differ considerably, the role of lipid type and saturation also requires
more elucidation. Since the hypothesis of protein shapes and lipid types being major
factor in curvature dependent diffusion is easily testable, this work sparks interest

in further experimentation on the mobility in curved lipid membranes.
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APPENDIX A: MSD AND ANOMALOUS EXPONENTS

(a) MSD of proteins
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Figure 7.1 Diffusion in planar membranes. Figures 7.1a and 7.1b show the MSD of the
proteins and lipids respectively. In plots 7.1c and 7.1d, the MSD has been plotted on a
log-log axis, along with a dashed line indicating normal diffusion. All of the 2 us of data
plotted in the graphs have been used for the diffusion coefficient fitting. Figures 7.1e and
7.1f show the evolution of the diffusion exponents of proteins and lipids on a semi-log axis.



Bibliography

100 +

MSD (nm?)

MSD (nm?)

50

(a) 200:1 L:P ratio

5 nm
—10 nm
— 15 nm

40 |

500 1,000 1,500 2,000
At (ns)
(c) 75:1 L:P ratio
—— 5 nm

— 10 nm
— 15 nm

MSD (nm?)

Figure 7.2 Mean squared displacement of proteins in tubular membranes.
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(b) 200:1 L:P ratio
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In Figures

7.2a,7.2b,7.2¢c, and 7.2d, the MSD data of proteins in tubes of varying radii and with lipid
to protein ratios of 200:1 and 75:1 are shown in normal and log-log plots. In Figures 7.2e
and 7.2f, the MSD data is plotted for 10 nm systems with varying crowdedness in a normal
and a log-log plot. All of the 2 us of data plotted in the graphs have been used for the fitting
of the MSD diffusion law.
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Figure 7.3 Similarly to Figure 7.2, the diffusion of lipids is plotted in normal and log-log
plot for systems with varying crowdedness and tube radius.
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Figure 7.4 Diffusion exponents of proteins and lipids in tubular membranes. Protein dif-
fusion exponents are plotted on the left hand side and lipid diffusion exponents on the right.
Plots have been made separately for systems with both 200:1 (7.4a 7.4b) and 75:1 (7.4¢ 7.4d)
lipid to protein ratio, as well as for systems with 10 nm tube radius (7.4e 7.4f).
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Figure 7.5 Diffusion of proteins in tubular membranes of varying radii separated in radial
and longitudinal dimensions. The MSD and diffusion exponent for systems with 200:1
lipid to protein ratio have been plotted in Figures 7.5a and 7.50 and the same for 75:1 in

Figures 7.5¢ and 7.5d.
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Figure 7.6 Diffusion of proteins in tubular membranes of varying crowdedness separated
i radial and longitudinal dimensions. The MSD of proteins in tubes with 10 nm radius
has been plotted in Figure 7.6a and the diffusion exponent in Figure 7.6b.
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Figure 7.7 Similarly to the Figure 7.5, the diffusion of lipids is plotted for tubular mem-

branes of varying radii in radial and longitudinal dimensions.

The diffusion in both the

systems with a 5-nanometer radius is noticeably anomalous but the effect is short-lived.
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Figure 7.8 Similarly to the Figure 7.6, the diffusion of lipids is plotted for tubular mem-
branes of varying crowdedness in radial and longitudinal dimensions.
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