
Pino’ Surace

ANOMALY DETECTION IN CLOUD-NATIVE
SYSTEMS

Faculty of Information Technology and Communications Sciences
Master of Science Thesis

November 2019

i

ABSTRACT

Pino’ Surace: Anomaly Detection in Cloud-Native systems
Master of Science Thesis
Tampere University
Major: Software Engineering - Web & Cloud
November 2019

In recent years, microservices have gained popularity due to their benefits such as increased
maintainability and scalability of the system. The microservice architectural pattern was adopted
for the development of a large scale system which is commonly deployed on public and private
clouds, and therefore the aim is to ensure that it always maintains an optimal level of performance.
Consequently, the system is monitored by collecting different metrics including performance-
related metrics.

The first part of this thesis focuses on the creation of a dataset of realistic time series with
anomalies at deterministic locations. This dataset addresses the lack of labeled data for training
of supervised models and the absence of publicly available data, in fact the data are not usually
shared due to privacy concerns.

The second part consists of an empirical study on the detection of anomalies occurring in
the different services that compose the system. Specifically, the aim is to understand if it is
possible to predict the anomalies in order to perform actions before system failures or performance
degradation. Consequently, eight different classification-based Machine Learning algorithms were
compared by collecting accuracy, training time and testing time, to figure out which technique
might be most suitable for reducing system overload.

The results showed that there are strong correlations between metrics and that it is possible
to predict the anomalies in the system with approximately 90% of accuracy. The most important
outcome is that performance-related anomalies can be detected by monitoring a limited number
of metrics collected at runtime with a short training time. Future work includes the adoption of
prediction-based approaches and the development of some tools for the prediction of anomalies
in cloud native environments.

Keywords: Anomaly Detection, Machine Learning, Empirical Study, Time series, Data Generation

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

PREFACE

This thesis is the final outcome of a work which lasted almost ten months. I would like
to thank all the people who supported me during the thesis project and my studies at the
Tampere University.
In would like to thank the examiners of this thesis, Assistant Prof. Davide Taibi and Post-
doctoral Researcher Valentina Lenarduzzi for providing valuable feedback and guidance
during this work.
Finally, I would like to thank those who are close to me, my family and my girlfriend, who
gave me a great deal of support.

Special thanks to my father, who made this all possible.

Tampere, 10th November 2019

Pino’ Surace

iii

CONTENTS

1 Introduction . 1

2 Background . 4

2.1 Cloud Native Systems . 4
2.1.1 Apache Kafka . 5
2.1.2 Zookeeper . 6
2.1.3 Kubernetes . 6
2.1.4 Prometheus . 7

2.2 Anomaly detection . 8

2.3 Machine Learning Techniques . 9
2.3.1 Logistic Regression . 9
2.3.2 Decision Tree . 10
2.3.3 Random Forest . 10
2.3.4 Extremely Randomized Trees . 10
2.3.5 AdaBoost . 11
2.3.6 Gradient Boosting . 11
2.3.7 XGBoost . 11
2.3.8 Multi-Layer Perceptron . 11

3 Related Work . 12

3.1 Anomaly detection . 12

3.2 Time series generation . 14

4 Data collection and realistic time series generation 16

4.1 Data Collection . 16

4.2 Realistic time series generation . 17
4.2.1 Variational Autoencoder . 17
4.2.2 Implementation . 18
4.2.3 Results . 20

5 Classification-based anomaly detection . 22

5.1 Accuracy . 23

5.2 Training and Testing Time . 24
5.2.1 Context . 25

5.3 Data Collection and Preparation . 25

5.4 Data Analysis . 27

6 Results . 29

7 Discussion . 42

7.1 Discussion . 42

7.2 Threats to Validity . 42

iv

8 Conclusion . 44

8.1 Conclusion . 44

8.2 Future work . 45

References . 46

v

LIST OF FIGURES

1.1 System architecture . 1

2.1 Apache Kafka . 5
2.2 Prometheus Architecture . 7
2.3 Graphic representation of anomalies . 9

4.1 Autoencoder architecture . 17
4.2 Encoder implementation . 19
4.3 Decoder implementation . 19
4.4 2D representation of the latent space . 20
4.5 Autoencoder training output and generated time series with 10% of anoma-

lies . 21

5.1 2D representation of anomalies . 26

6.1 Comparison of algorithms’ accuracy for Min Fetch Rate KPI 30
6.2 Comparison of algorithms’ accuracy for % Network Processor Idling Time

KPI . 31
6.3 Comparison of algorithms’ accuracy for Request Queue Size KPI 32
6.4 Comparison of algorithms’ accuracy for Avg Request Latency KPI 33
6.5 Comparison of algorithms’ accuracy for Max Message Lag KPI 34
6.6 Algorithms accuracy, training and testing time comparison for Min Fetch

Rate KPI . 35
6.7 Algorithms accuracy, training and testing time comparison for % Network

Processor Idling Time KPI . 36
6.8 Algorithms accuracy, training and testing time comparison for Request

Queue Size KPI . 36
6.9 Algorithms accuracy, training and testing time comparison for Avg Request

Latency KPI . 37
6.10 Algorithms accuracy, training and testing time comparison for Max Mes-

sage Lag KPI . 37
6.11 Drop Column algorithm results for Min Fetch Rate KPI 38
6.12 Principal Component Analysis results for Min Fetch Rate KPI 38
6.13 Drop Column algorithm results for % Network Processor Idling Time KPI . . 38
6.14 Principal Component Analysis results for % Network Processor Idling Time

KPI . 39
6.15 Drop Column algorithm results for Request Queue Size KPI 39
6.16 Principal Component Analysis results for Request Queue Size KPI 39

vi

6.17 Drop Column algorithm results for Avg Request Latency KPI 40
6.18 Principal Component Analysis results for Avg Request Latency KPI 40
6.19 Drop Column algorithm results for Max Message Lag KPI 40
6.20 Principal Component Analysis results for Max Message Lag KPI 40
6.21 Variance explained by the 168 KPIs . 41

vii

LIST OF TABLES

4.1 The data collected weekly . 16

5.1 Dependent Variables (KPIs) . 23
5.2 Accuracy Metrics Formulas . 24
5.3 The data collected weekly . 25
5.4 Example of Labeled Data . 27

6.1 Accuracy metrics for Min Fetch Rate KPI . 30
6.2 Accuracy metrics for % Network Processor Idling Time KPI 31
6.3 Accuracy metrics for Request Queue Size KPI 32
6.4 Accuracy metrics for Avg Request Latency KPI 33
6.5 Accuracy metrics for Max Message Lag KPI 34

viii

LIST OF SYMBOLS AND ABBREVIATIONS

API Application Program Interface

AUC Area Under the Receiver Operating Characteristic Curve

HTTP HyperText Transfer Protocol

JSON JavaScript Object Notation

KPI Key Performance Indicator

MLP Multi-Layer Perceptron

PCA Principal component analysis

REST Representational State Transfer

ROC Receiver Operating Characteristics

1

1 INTRODUCTION

In recent years, microservices have gained popularity due to their benefits which include
increased maintainability and higher scalability of the system. Moreover, microservices
help to decrease technical debt [60] and allow teams to develop and deploy their respec-
tive services independently. The motivations why companies are migrating to microser-
vices and the processes adopted for the migration are reported in [67]. Architectural
patterns that should be adopted in microservices-based systems are reported in [68]
and [69] while anti-patterns are reported in [66] and [70]. An “interesting” process to
identify the possible “cuts” for microservices from monolithic systems is proposed in [72]
and then extended with a measurement framework to evaluate the quality of the decom-
position in [71]. The microservice architectural pattern was adopted for the development
of a large scale system which is composed of several microservices running on top of
Kubernetes and communicating using a lightweight message bus (Apache Kafka [39]),
as shown in Figure 1.1.

Kafka Cluster Broker 1 Broker 2 Broker K

ZooKeeper
Microservice 1

Microservice 2

Microservice N

Figure 1.1. System architecture

The size of the system requires to have multiple Kafka brokers and therefore Zookeeper
is needed to coordinate the different Kafka instances. Unlike monolithic architectures, this
system consists of multiple components (orchestrators, load balancers, message buses,
etc.) that could fail and the services are deployed on different machines. In such a com-
plex system, runtime failures are unavoidable [14] and must be kept under control.The

2

system is commonly deployed on public and private clouds. Since private clouds often
have limited resources, the aim is to ensure that the system always maintains an optimal
level of performance. All the services composing the system are actively monitored using
Prometheus [7], which collects 168 different metrics including performance-related met-
rics, hardware failures, and metrics related to the communication between services, such
as throughput and message lags. The purpose of monitoring is not only to check that
all the cloud-native services are up and running, but also to ensure that the customers’
private clouds are not overloaded and to avoid degradation of the overall performance
due to anomalies. This could be achieved by attempting to detect whether resources are
used completely, so that services can respond on time to all the requests, while ensuring
that the communication between services occurs with a very small lag.

The fist part of this study focuses on the creation of a dataset of realistic time series with
anomalies at deterministic locations. This dataset addresses the lack of labeled data
for training of supervised models and at the same time the absence of publicly available
data, in fact the data are not usually shared due to privacy concerns.

The second part consists of an empirical study on the detection of anomalies occurring
in the different services that compose the system. Specifically, the aim is to understand
if it is possible to predict the anomalies in order to perform actions before system failures
or performance degradation.

For example, a service might use an abnormal amount of memory or processors which
will not enable other services to run properly. As another example, a consumer service
might stop sending fetch requests to the broker, which means the service could be stalled
or dead.

The most challenging issue related to anomaly detection is to understand which metrics
can be considered benign anomalies, i.e., anomalies that occur in the case of unusual but
correct execution of the system and do not lead to any failure or performance issue [37].

Different anomaly detection techniques have been proposed in literature. The data-driven
techniques are based on the analysis of data collected at runtime and are designed to
predict anomalies in complex systems based on abnormal system behaviour [31]. In ad-
dition, researchers have proposed both supervised and unsupervised Machine Learning
techniques for anomaly detection. The unsupervised models are trained based on data
from the correct execution of a system, however, they are less accurate than supervised
ones. Instead the supervised models train the model under consideration of both normal
and failing execution data [37][61].

Besides accuracy, another issue that needs to be considered by an anomaly detection
mechanism is the training time required by Machine Learning algorithms [50]. The system
produces a huge amount of data every day, and training the system on this data could
become very expensive in terms of time and resources required. Since the aim is to
reduce the system overload in the customers’ clouds, it is unsuitable to run an anomaly
detection system that will consume more resources than the monitored system itself.

3

Therefore, in order to understand which Machine Learning technique might be most suit-
able for reducing system overload, eight different Machine Learning algorithms were com-
pared.

After that, statistical and machine learning approaches have been applied for the identifi-
cation of the most important metrics and for the identification of redundant information in
the metrics.

This work will contribute to the body of knowledge of industrial experience on anomaly
detection. It will help companies that are working with cloud-native systems based on
similar technologies as well as researchers to understand how the different techniques
perform and to conduct empirical studies in the industry. Moreover, the dataset created
provides labeled metrics that could be used to train machine learning models, to perform
studies and to compare results on the same publicly available dataset.

The remainder of the thesis is divided into seven chapters. In Chapter 2, the basic con-
cepts underlying this work and the main technologies are described. In Chapter 3 related
research on anomaly detection and time series data generation are reported. In Chap-
ter 4 the data collection process and the creation of the dataset are presented. Chapter 5
describes the case study design, research questions, metrics, hypotheses, and the study
context. In Chapter 6, the achieved results are presented. Finally, in Chapter 7 results
and their limitations are discussed and in Chapter 8 conclusions are drawn.

4

2 BACKGROUND

2.1 Cloud Native Systems

Cloud-Native systems [22] are applications built on private or public cloud and they are
characterized by multiple features which include horizontal scaling, vertical scaling and
flowing fault prone-infrastructure. Horizontal scaling means that data are accessed glob-
ally from the internet and replicated so that the latency of services is reduced. Instead,
vertical scaling signify that data are accessed simultaneously by many clients. More-
over Cloud-Native systems are characterized by a flowing fault-prone infrastructure which
means that things break often because of the large horizontal scale. For this reason, se-
curity is part of the architecture design . In addition, upgrade and test occur without
interrupting normal operations.

The first type of Cloud-Native systems developed was Infrastructure as a Service (IaaS).
It replaced infrastructures hosted on-premise by instances running on the cloud. This
solution was not advantageous for massive applications due to security and scalability
issues.

In 2010, Platform as a Service (PaaS) was developed. It allowed the abstraction of data
management and event handling.

In 2013, the microservice pattern was developed. In this pattern, the scalability and relia-
bility goals were achieved by dividing the applications into small units that are managed,
replicated, scaled, upgraded, and deployed independently from each other. Each mi-
croservice has a single function and a limited context with limited responsabilities and de-
pendencies. Microservices are designed to be fluid and restart after each failure. For this
reason, they must be stateless, and the state of the application is stored by using some
persistence layer. Microservices communicate using REST APIs and RPC mechanisms
and they are packaged into containers so that they can be easily started, stopped and mi-
grated. One of the most used standards for containerizing applications is Docker. To take
care of scaling, replicating and restarting failed containers automatically, Cloud-Native ap-
plication deployment services have been developed, such as Kubernetes, Docker Swarm
and OpenStack.

5

2.1.1 Apache Kafka

Apache Kafka [51] [74] [45] is an open-source publish/subscribe messaging system where
data are stored durably and distributed to assure scalability and reliability. The unit of data
used by Kafka is a message, i.e., an array of bytes. Messages can have different formats
such as Javascript Object Notation (JSON) and Extensible Markup Language (XML) that
are written into Kafka in collections of messages called batches. The messages are or-
ganized into topics which are equivalent to folders in a filesystem. Topics are divided into
different partitions which can be hosted in different machines to provide redundancy and
scalability.

Producer A Producer B Producer C

Consumer A Consumer B Consumer C

Kafka Cluster

Figure 2.1. Apache Kafka

As shown in Figure 2.1, Kafka interacts with two kinds of clients: producers and con-
sumers. Producers write new messages to a specific topic, while consumers subscribe
to some topics and read messages in the order they have been produced. Kafka is com-
posed of multiple servers called brokers. Each broker receives the messages from the
producers and stores them on a disk. Usually, brokers are organized in clusters, where
one of them is the controller. The controller takes care of the administration of the cluster
by assigning partitions to broker and monitoring for broker failures. Kafka has many fea-
tures that make it superior to many other producer/consumer messaging systems such
as multiple consumers, multiple producers, strong retention, scalability, and high perfor-
mance under high load.

6

2.1.2 Zookeeper

Apache ZooKeeper [38] is an open source project and it was developed to handle the
coordination tasks for distributed systems such as master server election, group mem-
bership management and metadata management. These tasks can be of two types:
cooperation tasks, when processes need to do something together, and contention when
two processes cannot work in parallel, so one must wait for the other. ZooKeeper ex-
poses a simple API that provides numerous benefits such as high consistency, ordering
and durability, simpler implementation synchronization primitives and simpler handling of
concurrency tasks.

2.1.3 Kubernetes

Kubernetes [29] is an orchestrator for the deployment of containers and realiable and
scalable cloud systems. It was developed at Google and nowadays it is developed and
maintained by a large open source community. Most of the cloud distributed systems,
because of their nature should have high availability and scalability, in fact the system
should not crash even if a part of it would fail and it should increase its capacity when the
resources are not enough. Containers orchestrated by Kubernetes allow to build realiable
and scalable systems in addition to several other benefits.

One of those benefits is velocity, measured in terms of features shipped while maintaining
high available service. In fact containers and Kubernetes can provide tools to move
quickly while staying available. This is possible due to the three fundamental concepts:
immutability, declarative configuration, and self-healing. Immutability refers to the idea
of having immutable containers. This means that instead of having incremental changes
of the image, a new image is built. In this way a new image will always replace the
former one with a single operation and in case of a problem it is possible to rollback to the
previous image easily unlike with incremental updates. Declarative configuration refers to
the declaration of the state of the system in contrast to imperative configuration where the
desired state of the system is achieved by executing a set of instructions. In Kubernetes
everything is a declarative configuration object, therefore it is very easy to declare the
desired state of the system and the rollback is easy. Moreover, it helps with the source
control, code reviews and unit tests. Self healing refers to the property of Kubernetes
which constantly ensures that the current state is exactly as the desired state by taking
actions such as killing or restarting containers. In this way the developers should not
waste time by taking care and monitoring that everything is working, but instead they can
focus on creating value.

In addition, Kubernetes accomodates scaling software and teams by encouraging a de-
coupled architecture, where each service is independent from the others and communi-
cate using APIs and load balancers. Kubernetes provides multiple abstractions and APIS

7

for the developement of decoupled microservice architectures, such as Pods, load bal-
ancing, naming, service discovery and namespaces. Decoupling via APIs allows to scale
the teams because each team can focus on a microservice without need of cross-team
communication. Decoupling via load balancers allows to scale the capacity without touch-
ing other layers of the service. Furthermore, by abstracting the infrastructure, Kubernetes
separates developers from specific machines and allows high portability.

2.1.4 Prometheus

Prometheus [7] is an open-source alerting and monitoring system developed by Sound-
Cloud. It is widely used and it has many features such as a multidimensional data model,
multiple dashboards modes support, HTTP based time series collection and gateway
supported pushing of time series. One of the most important benefits Prometheus pro-
vides is the high reliability on microservices monitoring.

Service
Discovery

Scraping

Storage

Rules and
Alerts

Exporter

Client
Library

Services

Application

Prometheus

3rd Party
Application

Alertmanager

Dashboards

Email, Chat, etc.

Figure 2.2. Prometheus Architecture

Figure 2.2 shows the architecture of Prometheus and its components. The Client Library
takes care of instrumenting and producing metrics in the Prometheus text format in re-
sponse to HTTP requests. The Exporter is a software that runs close to another software
and gets the requests from Prometheus, gathers the metrics from the other software and
returns them to Prometheus in the correct format. It is used where it is not possible to
use directly the client library in the software. The Service Discovery is used to discover
applications in dynamic environments such as cloud systems. The Scraping sends and
HTTP request called a scrape to fetch the metrics. The response is parsed and stored

8

into Storage. Scrapes happen regularly, usually every 10 or 60 seconds. The Storage
is a customized database that provides high reliability. Dashboards can be produced by
leveraging the HTTP APIs provided by Prometheus. Rules and Alerts are PromQL ex-
pressions that are evaluated regularly and in case of alerts they will be raised and sent to
the Alertmanager which receives alerts from the Prometheus server and turns them as
notifications such as email or chat applications like Slack.

2.2 Anomaly detection

Anomaly detection [11] addresses the problem of finding patterns in data with unexpected
behavior, called anomalies or outliers (an example can be seen in Figure 2.3). Anomaly
detection is applied to multiple domains such as fraud detection, intrusion detection and
health care. Because each domain has different data and different approaches, during
the years many different techniques have been developed and they can be summarized
into six categories: classification-based, clustering-based, nearest neighbor-based, sta-
tistical techniques, information theoretic techniques and spectral techniques. The choice
of the techniques is affected by multiple factors which include nature of input data, type of
anomalies, data labels and output. Data types can be divided into three categories which
include binary data, categorical data and continuous data. There are multiple types of
anomalies which include point anomalies, collective anomalies and contextual anoma-
lies. Point anomalies occur when instances of data can be considered abnormal respect
to the others. Collective anomalies occur when a subset of related data instances is ab-
normal respect to the entire data set. Contextual anomalies take place when the data is
anomalous into a specific context.

Based on data labels there are three categories of anomaly detection techniques. Super-
vised, when labels are available for both normal and anomalous data. Semisupervised,
when labels are available only for the normal class. Unsupervised, when there are not
labels, but it is assumed that normal data are more frequent in the dataset. There are
two different types of outputs: scores and labels. Scores will give a percentage to which
the data instance is considered anomalous. Instead, labels will identify data instances as
anomalies or normal without any accuracy degree.

Because of the nature of data, one-class classification-based techniques have been used
in this study. These approaches are the most used ones in anomaly detection, consist
of algorithms that learn a model from a set of labeled data instances (training) and clas-
sify test data using the learned model. The main advantages of the Classification-based
techniques are a fast testing phase and the availability of powerful algorithms for classi-
fication. The main disadvantages are the need for accurate labels and that the output is
only a label and therefore it is not possible to have a score.

9

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5 4 4 . 5

normal anomalous

Figure 2.3. Graphic representation of anomalies

2.3 Machine Learning Techniques

In this study eight Machine Learning models were used for classification and were com-
pared.

2.3.1 Logistic Regression

One of the simplest algorithms used in Machine Learning is Logistic Regression [16]. In
contrast to linear regression, which is used to predict a numerical value, Logistic Regres-
sion is used for predicting the category of a sample. In particular, a binary Logistic Re-
gression model is used to estimate the probability of a binary result (0 or 1) given a set of
independent variables. Once the probabilities are known, they can be used to classify the
inputs into one of the two classes based on their probability of belonging to either of the
two. Like all linear classifiers, Logistic Regression projects the P -dimensional input x into
a scalar by a dot product of the learned weight vector w and the input sample: w ·x+w0,
where w0 ∈ R the constant intercept. To have a result which can be interpreted as a
class membership probability—a number between 0 and 1—Logistic Regression passes
the projected scalar through the logistic function (sigmoid). This function, for any given
input x, returns an output value between 0 and 1. The logistic function is defined as

σ(x) =
1

1 + e−x
.

10

Finally, the class probability of a sample x ∈ RP is modeled as

Pr(c = 1 | x) = 1

1 + e−(w·x+w0)
.

Logistic Regression is trained through maximum likelihood: the model’s parameters are
estimated in a way to maximize the likelihood of observing the inputs with respect to
the parameters w and w0. This model was chosen to be used as baseline due to its
simplicity and its easy implementation: by requiring few computational resources, it is
easy to implement and fast to train. Moreover, it doesn’t need the inputs to be scaled nor
it needs to be tuned.

2.3.2 Decision Tree

One of the most frequently used models in Machine Learning is a Decision Tree classifier
[9]. The tree structure is characterized by multiple nodes: the root node and the internal
nodes, which represent the inputs, and a series of leaves, which correspond to the out-
puts. All these nodes are connected via branches. A specific path through the branches
represents an output.

2.3.3 Random Forest

Decision trees tend to have overfitting problems, as they cannot learn to generalize the
data properly. For this reason, also a Random Forest model [8] was tested. This is
an ensemble model, as it uses a set of simpler models to solve the assigned task. In
this specific situation, it uses multiple decision trees. Each decision tree is trained on a
different subset of the data. The results of all the decision trees in the Random Forest
are averaged to obtain a single output.

2.3.4 Extremely Randomized Trees

To increase the randomization degree of the Random Forest algorithm, the Extremely
Randomized Trees (ExtraTrees) model [23] was used: Besides randomly splitting the data
for each of the individual trees, the optimal split for each node is also randomized in the
ExtraTrees model. This model is less computationally expensive while its generalization
capabilities are increased.

11

2.3.5 AdaBoost

Another class of ensemble algorithms used in this study is based on boosting [63]. One of
these models is AdaBoost [20]. AdaBoost creates individual decision trees sequentially
and assigns a weight to each training set sample, which is modified during the training. It
keeps on creating decision trees and adjusting the weights until the model can no longer
be improved in terms of accuracy.

2.3.6 Gradient Boosting

Besides AdaBoost, the Gradient Boosting algorithm [21] was included in the analysis.
Unlike AdaBoost, it grows one tree at a time in order to minimize loss. This process
continues until the loss function can no longer be improved.

2.3.7 XGBoost

Due to the heavy computational expense of training the Gradient Boost model, we also
considered XGBoost [13]. This model is merely a better performing implementation of
the Gradient Boosting algorithm, allowing faster computation and easier parallelization.
This allows it to perform better and to be more easily scaled to bigger datasets.

2.3.8 Multi-Layer Perceptron

The last classifier used is based on a Multi-Layer Perceptron (MLP) [58]. A classifier
based on MLP is a supervised learning model that, through training, learns a non-linear
function in order to classify a set of inputs. To do so, it uses backpropagation: During
each training cycle, the error of the output is propagated backwards to update the weight
of the nodes of the MLP. This is done until the error in the output is minimized.

12

3 RELATED WORK

This chapter describes extensively the related research conducted respectively on anomaly
detection in the cloud and on time series generation.

3.1 Anomaly detection

Anomaly detection has been investigated in several domains in recent years by applying
probabilistic [26] and statistical [35] approaches.

Hochenbaum et al. [30] proposed two statistical approaches for automatic anomaly detec-
tion in cloud infrastructure data. Indeed, the proposed methods apply statistical learning
for anomaly detection in system and application metrics. Seasonal decomposition is used
to filter trends and seasonal components of the time series. Moreover statistical metrics
such as median and median absolute deviation (MAD) are employed to accurately detect
anomalies, despite of seasonal spikes.

Solaimani et al. [65] proposed a Chi-square based anomaly detection approach on het-
erogeneous data by leveraging the high processing power of Apache Spark.

Smrithy et al. [64] developed an algorithm based on Kolmogorov-Smirnov goodness of fit
test for anomaly detection of access requests at runtime in cloud enviroments.

Wang et al. [77] proposed statistical techniques for online anomaly detection. The pro-
posed approaches are lightweight and based on Tukey and Relative Entropy statistics.

Roy et al. [57] developed PerfAugur, a system for the detection of anomaly behaviors
using data mining algorithms in service logs.

Statistical models perform well in identification of anomalies and they do not require a big
amount of data for training models. Despite this, the main obstacle of these techniques is
the production of biased results in case of inaccurate hypothesis on the data. This leads
to many false positives and makes statistical approaches not suitable for real applications.

On the other hand, machine learning approaches are capable of inferring distribution of
normal and anomalous behaviors, and determine anomalies by using supervised, semi-
supervised, unsupervised, or deep learning techniques [32]. Supervised techniques
need labeled data for normal and anomalous behavior and can be extremely precise,
but perform poorly in detecting anomalous behaviors not previously encoded in the train-

13

ing set. Unsupervised techniques, instead, can infer patterns encoded in the unlabeled
data, but they often detect anomalies not related to failures. For this reason, they need a
big amount of data and long training process to increase the precision.

Ahmed et al. [2] proposed a sequential anomaly detection technique based on the kernel
version of the recursive least squares algorithm. This approach can be used effectively
also for multivariate data.

Lakhina et al. [46] presented an anomaly detection approach based on the division of
the high-dimensional space represented by a set of metrics into disjoint subspaces cor-
responding to normal and anomalous behaviors. To perform the separation, Principal
Component Analysis has been employed successfully.

Ibidunmoye et al. proposed two methods, PAD [33] and BAD [34], based on statistical
analysis and kernel density estimation (KDE) applied to unbalanced data. The perfor-
mances of these methods are affected by the window size used for the estimation.

Thill et al. [75] proposed SORAD, an anomaly detection approach based on regression
techniques.

Ahmad et al. [1] presented a real-time anomaly detection algorithm based on Hierarchi-
cal Temporal Memory (HTM) and suitable for spatial and temporal anomaly detection in
predictable and noisy environments.

Hochenbaum et al. [30] developed two statistical approaches for anomaly detection in
cloud infrastructure data. Their first method called Seasonal-ESD combines seasonal de-
composition and the Generalized ESD test, for anomaly detection.The second approach
called Seasonal-Hybrid-ESD (S-H-ESD) adds statistical measures such as median and
median absolute deviation (MAD) to the previous algorithm.

Mi et al. [49] developed CloudDiag, a tool for performance anomaly detection based on
unsupervised learning.

Dean et al. [17] developed UBL, a distributed and scalable anomaly detection system
for Infrastructure as a Service (Iaas) cloud environments based on unsupervised learn-
ing. It leverages the power of Self-Organizing Map (SOM) to detect performance-related
anomalies to provide suggestions on possible issues.

Tan et al. [73] developed PREPARE, a performance-related anomaly prevention system
for virtualized cloud computing infrastructure. It combines attribute value prediction with
supervised anomaly classification methods to perform resource scaling for performance
anomalies prevention.

Guan et al. [24] implemented an unsupervised proactive failure management framework
for cloud infrastructures based on a combination of Bayesian models to perform anomaly
detection with high true positive rate and low false positive rate.

Gulenko et al. [25] proposed an event-based approach to real-time anomaly detection
in cloud-based systems with a specific focus on the deployment of virtualized network

14

functions. They applied both supervised and non-supervised classification algorithms,
obtaining good results in the idenfication of anomalies.

Monni et al. [50] proposed an energy-based anomaly detection tool (EmBeD) for the cloud
domain. The tool is based on a Machine Learning approach and is able to reveal failure-
prone anomalies at runtime. EmBeD exploits the system behavior using the raw metric
data, classifying the relationship between anomalous behavior and future failures with a
good level of accuracy (in terms of very few false positives). Moreover, Monni et al. [50]
also defined an energy-based model to capture failure-prone behavior without training
with seeded errors. They identified important analogies regarding the nature of complex
software systems, complex physical systems, and complex networks.

Sauvanaud et al. [61] applied machine learning approaches such as Neural Networks,
Naive Bayes, Nearest Neighbors, and Random Forest for anomaly detection at metric
level.

3.2 Time series generation

Data generation has been applied to different domains and multiple techniques have been
adopted to achieve good results. For example, Alzantot et al. [3] proposed a deep learn-
ing based architecture for sensory data generation. Ledig et al. [48] presented SRGAN,
a generative adversarial network (GAN) for photo-realistic high resolution images.

Reed et al. [56] used a GAN model for the generation of images of birds and owers from
detailed text descriptions.

Bowman et al. [6] introduced an RNN-based variational autoencoder for text generation.

The first studies have been applied mostly to images, but recently promising results have
been presented in studies that apply similar techniques to the time series in different
domains.

Hartmann et al. [28] proposed an approach based on GAN trained on a 128-electrode
electroencephalograph (EEG) data set for the generation of time series EEG data.

Esteban et al. [18] proposed a technique for time series generation combining time series
sinusoidal data and physiological metrics such as oxygen saturation, respiratory rate,
heart rate, and mean arterial pressure. This method can generate sequences of 30 data
points by adopting recurrent conditional generative adversarial networks (RCGAN).

Brophy et al. [10] proposed a simplified approach for time series data generation by
leveraging image-based GAN techniques.

Hahmann et al. [27] proposed a feature-based generation method for large-scale time
series.

Forestier et al. [19] introduced a framework for generating synthetic time series under

15

Dynamic Time Warping.

Iftikhar et al. [36] proposed a supervised machine learning approach for meter data gen-
eration. It has been developed using Apache Spark it allows generation of scalable data
sets on a cloud infrastructure.

Kang et al. [40] developed a method for time series data generation with controllable
characteristics. This technique allows to explore all the feature space so that it is possi-
ble to generate time series similar to the original or generate time series with particular
features. This approach is very useful for generating data for training models so that they
do not over-fit to the original data set.

Kegel et al. [42] [43] presented a general and simple technique for the generation of
what-if scenarios on time series data. This method gathers descriptive features from
data and allows the user filtering and modification operations.

Kegel et al. [44] implemented Loom, an application that generates synthetic time series
data by using mathematical models and given time series.

Pesch et al. [54] proposed an innovative methodology for synthetic wind power time series
generation based on Markov-chain statistical model.

Schaffner et al. [62] proposed two approaches for the simulation of traffic rate generated
by tenants sending requests to a server cluster.

Kang et al. [41] presented an innovative technique for efficient time series generation,
based on Gaussian mixture autoregressive (MAR) models for non-Gaussian and nonlin-
ear time series simulation. This approach has been implemented in a shiny application
for time series generation [12].

Bagnall et al. [4] implemented a simulator that generates time series data from different
shape settings for time series classification algotrithms evaluation purpose.

Vinod et al. [76] generated ensembles for time series data using a maximum entropy
bootstrap technique. This approach allowed to preserve multiple features such as shape
of data and peaks of the original data. This make them suitable for statistical inference.

16

4 DATA COLLECTION AND REALISTIC TIME
SERIES GENERATION

This chapter focuses mainly on the data set creation and on the techniques adopted
to generate realistic time series data. The first part gives an introduction to the data
collection process and describes the metrics collected. The second part describes the
time series generation and the generation of anomalies for the dataset creation.

4.1 Data Collection

Time-series data were collected from the services by querying Prometheus server using
its HTTP API. The data collected cover four weeks of time and time series data have
steps of 60 seconds.

A total of 168 metrics were collected from the different tools which include Apache Kafka
(120 metrics collected from Kafka brokers, producers, and consumers), Apache ZooKeeper
(22 metrics collected from ZooKeeper nodes), Java Virtual Machine (16 metrics from
threads, classes, and memory of JVMs), Process (6 standard metrics from processes)
and Java Management Extension (4 metrics from JMX configurations).

Each of these metrics is exposed by multiple instances (microservices). All the metrics
have been collected, merged and aligned in time in a table which has a column for each
KPI exposed by each instance. After the collection process, it was discovered that many
instances were not producing relevant data because they were idle. Therefore, data were
cleaned by removing constant metrics and null values.

The resulting table had 168 KPIs exposed by 25 instances for a total of 4200 columns
plus the timestamp. An example of the table is illustrated in Table ??.

Time

Variables (168)

Kafka ZooKeeper Others

MK1 ... MK120 MZ1 ... MZ22 MO1 ... MO26

I1 ... I25 ... I1 ... I25 I1 ... I25 ... I1 ... I25 I1 ... I25 ... I1 ... I25

01/01/19
11:00:00

3 ... 4 ... 1 ... 2 7 ... 5 ... 2 ... 3 1 ... 9 ... 7 ... 8

... ...

07/01/19
11:00:00

4 ... 8 ... 1 ... 6 8 ... 4 ... 9 ... 6 6 ... 9 ... 1 ... 9

Table 4.1. The data collected weekly

17

4.2 Realistic time series generation

The study researched the availability of data sets with labeled time series regarding cloud-
native systems’ metrics. The research concluded that this kind of data are difficult to find
because they can only be produced in large environments and companies are not will-
ing to share them for privacy concerns. Moreover, the unavailability of labeled data is
one of the greatest challenges when applying machine learning because data labeling
is not automatic and therefore usually very expensive. In the field of anomaly detection,
one of the most common ways of generating an anomaly is by picking from the distri-
bution D a set of anomaly features F such as the magnitude m and the duration d of
the anomaly. This way is straightforward but it restricts the types of anomalies that can
be created, leads to the problem of over-fitting the models to the synthetic training set,
and usually performs poorly on the test set because the synthetic and test set are rarely
similar. Recently, an innovative method has been proposed at Facebook[47] that consists
of leveraging the features of Variational autoencoder to generate realistic time-series wih
outliers at predefined points.

4.2.1 Variational Autoencoder

Variational autoencoder is the generative counterpart of the deterministic autoencoder.
As shown in Figure 4.1, it has the same architecture that is based on two models, an
encoder and a decoder, but it applies a probabilistic interpretation to them.

ො𝑥

𝓏

𝑥

Decoder

Encoder

Input data

Features

Reconstructed
input data

(a) Compact view

𝓏

𝑥

𝜇𝓏|𝑥 ∑𝓏|𝑥

𝜇𝑥|𝓏 ∑𝑥|𝓏

ො𝑥

(b) Expanded view

Figure 4.1. Autoencoder architecture

It assumes that the data set {x(i)}Ni=1 is composed of N i.i.d. samples of some variable

18

x. Moreover, it assumes that data are generated by a random process with continuous
latent variable z and x is generated by the conditional distribution pθ (x|z), where pθ is a
probability distribution with parameters θ. This provides a probabilistic interpretation of
the decoder network, that given a latent variable z, generates a a sample x in the data
space.

The role of the encoder is to take a sample x from data space and generate z, a latent
sample from the posterior density distribution pθ (z|x).

The training objective of Variational autoencoders is a tractable lower bound to the log-
likelihood:

log pθ (x) ≥ Eqϕ(z|x)

[
log

pθ (x, z)

qϕ (z|x)

]
= − (x) (4.1)

(x) = DKL (qϕ (z|x) ||pθ (z))− Eqϕ(z|x) [log pθ (x|z)] (4.2)

Where:

• DKL is the Kullback-Leibler divergence.

• Eqϕ(z|x) [log pθ (x|z)] is the reconstruction error and represents that likelihood that
the input data would be reconstructed by the model.

• DKL (qϕ (z|x) ||pθ (z)) is the Variational regularization term and represents the KL-
divergence between the encoder-induced latent distribution and the true prior on
the latent distribution. This term encourages the approximate posterior qϕ (z|x) to
be close to pθ (z).

In Variational auto-encoder, z is sampled from a normal distribution parametrized by the
mean and the variance. After training the model, new time series could be generate by
sampling from latent space z.

4.2.2 Implementation

The varational autoencoder was implemented in the Python language using Keras [15].
It is composed of two elements, the Encoder and the Decoder. The encoder maps se-
quences of 100 data points into points in the latent space and the details about its neural
network architecture layers can be seen in Figure 4.2.

19

Figure 4.2. Encoder implementation

The decoder, on the other hand, decodes the samples taken from the latent space into
sequences of 100 data points and the details about its neural network architecture layers
in Figure 4.3.

Figure 4.3. Decoder implementation

For each KPI, first the autoencoder is trained using the time series data of the respective
KPI as input. This process generates the latent space, a space where each sample is
encoded by forming a multidimensional Gaussian distribution. The latent space created
has 16 dimensions. A two-dimensional representation of the latent space can be seen in
Figure 4.4.

20

Figure 4.4. 2D representation of the latent space

The algorithm operates by sampling the latent space z randomly from the normal and ab-
normal distribution. Since the percentage of anomalies was set to 10%,the latent space
has been sampled from the outlier region 10% of the times, creating anomalies at deter-
ministic locations. The 90% of the times, the latent space z was sampled from the normal
distribution.

4.2.3 Results

The result is a dataset with 168 KPIs having 100k data points and labeled having 10% of
anomalies (10k data points). Figure 4.5 shows some examples of the original time series
and the time series generated, with 10% of anomalies. The figures on the left show the
original time series in blue, and the respective prediction made by the autoencoder in
orange, to be sure the autoencoder has learned accurately. The figures on the right show
the generated time series in blue, with the highlighted anomalies in red.

21

(a) Example 1: original (b) Example 1: generated

(c) Example 2: original (d) Example 2: generated

(e) Example 3: original (f) Example 3: generated

Figure 4.5. Autoencoder training output and generated time series with 10% of anomalies

22

5 CLASSIFICATION-BASED ANOMALY DETECTION

This chapter presents the empirical study which is a case study based on the guidelines
defined by Runeson and Höst [59]. The objective of this study has been formulated by
using the Goal/Question/Metric (GQM) template [5].

With respect to the quality attributes accuracy, training and testing time, the following
questions were derived:

Accuracy-related Questions

Q1 Is there a Machine Learning algorithm that can accurately detect performance-
related anomalies in cloud-native systems?

Q1.1 Which Machine Learning algorithm has higher accuracy in detecting performance-
related anomalies in cloud-native systems?

Training- and Testing-Time-related Questions

Q2 Which Machine Learning algorithm can accurately detect performance-related anoma-
lies with the shortest training time?

Metrics Importance-related Questions

Q3 What are the most important metrics to be considered when detecting performance-
related anomalies?

Q4 How many components are necessary to accurately detect performance-related
anomalies?

In order to answer to these questions, a set of metrics that are symptoms of performance
anomalies need to be identified. For this purpose, six KPIs have been identified. These
KPIs are considered to be fundamental to the system and their thresholds should not be
exceeded (see Table 5.1).

23

Table 5.1. Dependent Variables (KPIs)

Metric Description Threshold

Min Fetch Rate The minimum rate at which the consumer
sends fetch requests to the broker. If a con-
sumer is dead, this value drops to roughly 0.

> 0.5

% Network Proces-
sor Idling Time

Average fraction of time the network processor
threads are idle. The values are between 0 (all
resources are used) and 1 (all resources are
available).

> 0.3

Max Message Lag Maximum lag in messages between the fol-
lower and leader replicas.

< 50

Avg Request La-
tency

Amount of time it takes for the server to re-
spond to a client request (since the server was
started).

< 100

Request Queue
Size

Number of requests queued in the server. Goes
up when the server receives more requests
than it can process.

< 10

Pending Sync The number of pending syncs from the follow-
ers.

< 10

Each question will be further explained in the following sub-sections.

5.1 Accuracy

To assess the detection accuracy of the different Machine Learning algorithms, we per-
formed a 10-fold cross-validation dividing the data into ten parts. In other words, we
trained the models ten times, always using 1/10 of the data as a testing fold. The data
were split into ten sequential parts, thus respecting the temporal order and the proportion
of data for each project. The models were trained iteratively on groups of data preceding
the test set. Furthermore, the temporal order was also respected for the groups included
in the training set: For example, in fold 1 we used group 1 for training and group 2 for
testing. In fold 2 groups 1 and 2 were used for training and group 3 for testing, and so
forth for the remaining folds.

As accuracy metrics, precision and recall were calculated at first. However, as suggested
by [55], these two measures present some biases as they are mainly focused on positive
examples and predictions, and therefore do not capture any information about the rates
and kinds of errors made.

The contingency matrix (also called confusion matrix) and the related f-measure help to

24

overcome this issue. Moreover, as recommended by Powers [55], the Matthews Correla-
tion Coefficient (MCC) should also be considered to understand any potential disagree-
ment between the actual values and the predictions, as it involves all four quadrants of
the contingency matrix. From the contingency matrix, were retrieved multiple measures
which include the true negative rate (TNR), the false positive rate (FPR) and the false
negative rate (FNR). The TNR measures the percentage of negative samples correctly
categorized as negative. The FPR measures the percentage of negative samples mis-
classified as positive. The FNR measures the percentage of positive samples misclassi-
fied as negative. The true positive rate (TPR) measure was left out as it is equivalent to
the recall.

The way these measures were calculated can be found in Table 5.2.

Table 5.2. Accuracy Metrics Formulas

Accuracy Measure Formula

Precision
TP

FP + TP

Recall
TP

FN + TP

MCC
TP ∗ TN − FP ∗ FN√

(FP + TP)(FN + TP)(FP + TN)(FN + TN)

f-measure 2 ∗
precision ∗ recall
precision+ recall

TNR
TN

FP + TN

FPR
FP

TN + FP

FNR
FN

FN + TP
TP: True Positive; TN: True Negative; FP: False Positive; FN: False Negative

Finally, the Receiver Operating Characteristics (ROC) and the related Area Under the
Receiver Operating Characteristic Curve (AUC) were calculated. The ROC curve repre-
sents the probability that a classifier will rank a randomly chosen positive instance higher
than a randomly chosen negative one and has been calculated and plotted using the
”roccurve()” function of the scikit-learn [53] library.They .

5.2 Training and Testing Time

Regarding this aspect, the training and testing time (in seconds) were collected and com-
pared for each algorithm. The aim was to be able to select one algorithm that can be
trained with the shortest training time and with a high level of accuracy.

25

5.2.1 Context

The system is composed of several microservices running on top of Kubernetes and
communicating using a lightweight message bus (Apache Kafka). The size of the system
requires multiple Kafka brokers and therefore the use of Zookeeper to coordinate the
different Kafka instances.Different metrics were collected from Kafka, Zookeeper, and
other tools.

5.3 Data Collection and Preparation

From the dataset created previously, data have been merged grouping by metric name.
An example of the resulting table is reported in Table 5.3.

Table 5.3. The data collected weekly

Variables (168)

Kafka ZooKeeper Others

Time stamp MK1 ... MK120 MZ1 ... MZ22 MO1 ... MO26

01/01/19-11:00:00 2.00 ... 6.34 8.56 ... 1.27 3.87 ... 2.01

...

07/01/19-11:00:00 5.11 ... 8.00 4.33 ... 3.04 6.72 ... 9.20

Data have been labeled considering anomaly values for the six metrics exceeding the
default thresholds (Table 5.1). Unexpectedly, one of the dependent variables (# Pending
Sync) never exceeded the threshold in the monitoring time frame. Therefore, we only
considered the remaining five dependent variables for the analysis. Figure 5.1 shows a
graphycal representation of the data. The green points are normal values, instead the
red points are anomalous values.

26

(a) Request Queue Size (b) Avg Request Latency

(c) Min Fetch Rate (d) Max Message Lag

(e) % Network Processor Idling Time (f) # Pending Sync

Figure 5.1. 2D representation of anomalies

27

The result of this process consisted of five tables, which were used to train and test the
Machine Learning algorithms. Table 5.4 shows an example of the data represented in
one of the five csv files.

Table 5.4. Example of Labeled Data

Dependent Variable Independent Variables

Time stamp DM1 M1 M2 ... M167

01/01/19-11:00:00 1 1.27 3.87 ... 2.01

...

07/01/19-11:00:00 0 4.57 3.86 ... 2.90

5.4 Data Analysis

This phase consists of multiple analyses performed on the data set in order to answer
the research questions formulated earlier. In this phase the eight algorithms described in
Section 2.3 have been applied to each of the five data sets in order to verify whether there
are dependencies between each dependent variable based on the independent ones.
During this process the accuracy, training time and test time were collected from each
algorithm, so that it was possible to compare their accuracy by means of the accuracy
measures reported in Section 5.1 in addition to their training and test time. In order
to answer to the third research question (which are the metrics that contribute more to
the prediction of anomalies) two different methods were applied: one statistical method
the Principal Component Analysis (PCA) and one regarding Machine learning, the drop-
column algorithm.

Principal component analysis is a statistical algorithm that reduces data dimension while
retaining most of the information by creating new components that summarize the data.
It is widely used in data mining for datasets investigation. In PCA, new orthogonal com-
ponents (latent variables or principal components) are obtained by maximising the data
variance. The total of the principal components (factors) is usually much lower than the
total of original variables, so that the data can be visualised in a low-dimensional space.
While principal components analysis decreases the space dimension, it does not de-
crease the number of the original components, as it uses all of them for the generation
of the new latent variables (principal components). This aspect of PCA is leveraged to
figure out the importance of features. In fact, features with the highest contribution to
these components are the most important.

Drop-column mechanism [52] is a simplified alternative of the exhaustive search tech-
nique [78], which iteratively tests every subset of variables for their classication perfor-
mance. The full exhaustive search is very time-consuming, because it requires 2X train-
evaluation steps, where X is the dimension of the feature space. Instead, in the drop-

28

column technique, individual features are dropped one at a time, instead of all possible
groups of features. This means that a model is trained X times for a X-dimensional fea-
ture space, iteratively removing one feature at a time, from the first to the last of the data
set. The difference in cross-validated test accuracy between the newly trained model and
the baseline model (the one trained with the full set of features) defines the importance
of that specific feature. The more the accuracy of the model drops, the more important
is the specific feature for the classication. The importance of the metrics was not calcu-
lated for all the machine learning models described, but only for the most accurate model
(cross-validated with all X features), because the feature importances of a classier with
lower accuracy performance were likely to be less reliable.

29

6 RESULTS

The data extracted from four weeks reported more than 800k rows, resulting in a 700MB
csv file. Since the data were collected from a real industrial system, they cannot be
shared in this thesis.

The eight Machine Learning algorithms were executed using a Linux Ubuntu machine
with 24 cores and 90GB RAM.

In the next sub-sections, the results obtained after analyzing the collected data are pre-
sented.

Q1: Is there a Machine Learning algorithm that can accurately
detect performance-related anomalies in cloud-native
systems?

All the accuracy measures adopted reported consistent results.

Only three variables can be predicted with an accuracy (AUC) higher than 90%, while two
variables can be predicted with an accuracy (AUC) higher than 80%. The comparison of
the accuracy of the different Machine Learning models revealed that XGBoost is the most
accurate model for four out of five KPIs, while in one case, ExtraTrees performed better
than the others. Below the accuracy measures for each metric are reported in addition to
charts representing the AUC comparison for each model.

30

Min Fetch Rate

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

XGBoost (AUC = 95.60 %)
AdaBoost (AUC = 87.11 %)
RandomForest (AUC = 79.12 %)
LogisticRegression (AUC = 71.94 %)
GradientBoost (AUC = 67.24 %)
ExtraTrees (AUC = 65.19 %)
DecisionTrees (AUC = 54.87 %)
MLP (AUC = 49.94 %)

Figure 6.1. Comparison of algorithms’ accuracy for Min Fetch Rate KPI

Classifier TNR FNR FPR Recall Prec f-meas MCC

AdaBoost 95.14 77.91 4.86 22.09 66.78 23.20 30.85

DecisionTrees 88.49 78.67 11.52 21.32 34.95 11.45 15.70

ExtraTrees 89.51 92.16 10.49 7.83 54.33 4.01 9.83

GradientBoost 90.31 57.94 9.69 42.06 55.84 31.51 35.44

LogisticRegression 87.76 81.25 12.24 18.75 26.67 7.21 9.93

MLP 98.00 99.91 2.00 0.09 0.01 0.01 -0.21

RandomForest 89.85 91.14 10.14 8.86 65.06 5.90 13.15

XGBoost 97.38 81.41 2.61 18.58 64.37 17.39 24.99

Table 6.1. Accuracy metrics for Min Fetch Rate KPI

31

% Network Processor Idling Time

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

XGBoost (AUC = 98.18 %)
AdaBoost (AUC = 86.41 %)
RandomForest (AUC = 82.93 %)
ExtraTrees (AUC = 73.32 %)
GradientBoost (AUC = 67.21 %)
LogisticRegression (AUC = 65.80 %)
DecisionTrees (AUC = 61.15 %)
MLP (AUC = 51.09 %)

Figure 6.2. Comparison of algorithms’ accuracy for % Network Processor Idling Time
KPI

Classifier TNR FNR FPR Recall Prec f-meas MCC

AdaBoost 96.16 82.67 3.842 17.33 11.95 10.60 11.84

DecisionTrees 92.43 70 7.566 30 22.71 13.86 15.79

ExtraTrees 99.05 96 0.95 4 1.18 1.82 2.14

GradientBoost 93.35 56.67 6.65 43.33 32.80 16.30 21.64

LogisticRegression 87.56 88 12.44 12 0 0.01 -0.01

MLP 98.20 100 1.80 0 0 0 -0.04

RandomForest 98.79 91.33 1.21 8.67 4.12 3.90 4.84

XGBoost 99.96 83.33 0.03 16.67 23.15 10.94 14.41

Table 6.2. Accuracy metrics for % Network Processor Idling Time KPI

32

Request Queue Size

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ExtraTrees (AUC = 86.60 %)
RandomForest (AUC = 86.12 %)
DecisionTrees (AUC = 67.43 %)
XGBoost (AUC = 61.70 %)
GradientBoost (AUC = 60.12 %)
LogisticRegression (AUC = 59.20 %)
AdaBoost (AUC = 57.85 %)
MLP (AUC = 48.06 %)

Figure 6.3. Comparison of algorithms’ accuracy for Request Queue Size KPI

Classifier TNR FNR FPR Recall Prec f-meas MCC

AdaBoost 90.09 85.31 9.91 14.69 14.55 28.11 0.59

DecisionTrees 84.37 49.50 15.63 50.50 7.29 14.76 3.93

ExtraTrees 91.77 54.48 8.23 45.51 5.93 10.93 3.98

GradientBoost 82.10 50.20 17.90 49.80 7.34 14.01 3.35

LogisticRegression 96.79 84.91 3.21 15.09 5.20 9.47 1.42

MLP 97.67 99.38 2.32 0.62 10.88 18.25 -0.36

RandomForest 91.72 69.32 8.28 30.68 5.91 10.09 2.47

XGBoost 98.05 86.89 1.95 13.11 3.51 6.99 1.33

Table 6.3. Accuracy metrics for Request Queue Size KPI

33

Avg Request Latency

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

XGBoost (AUC = 83.70 %)
AdaBoost (AUC = 80.36 %)
GradientBoost (AUC = 75.41 %)
LogisticRegression (AUC = 59.99 %)
ExtraTrees (AUC = 59.19 %)
DecisionTrees (AUC = 54.81 %)
MLP (AUC = 54.43 %)
RandomForest (AUC = 52.00 %)

Figure 6.4. Comparison of algorithms’ accuracy for Avg Request Latency KPI

Classifier TNR FNR FPR Recall Prec f-meas MCC

AdaBoost 94.00 85.30 5.99 14.70 25.49 10.97 12.01

DecisionTrees 78.85 69.18 21.14 30.81 41.37 10.87 15.31

ExtraTrees 85.27 65.81 14.73 34.19 41.28 12.33 18.02

GradientBoost 80.33 79.86 19.67 20.14 21.26 2.97 3.37

LogisticRegression 79.42 96.99 20.58 3.01 0.18 0.28 -4.20

MLP 99.89 94.78 0.11 5.22 3.28 4.03 4.05

RandomForest 92.28 65.54 7.72 34.46 51.96 24.27 29.63

XGBoost 93.92 85.88 6.08 14.11 22.83 10.88 11.16

Table 6.4. Accuracy metrics for Avg Request Latency KPI

34

Max Message Lag

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

XGBoost (AUC = 95.99 %)
AdaBoost (AUC = 74.86 %)
LogisticRegression (AUC = 69.11 %)
RandomForest (AUC = 68.35 %)
GradientBoost (AUC = 61.92 %)
DecisionTrees (AUC = 56.59 %)
ExtraTrees (AUC = 49.63 %)
MLP (AUC = 46.40 %)

Figure 6.5. Comparison of algorithms’ accuracy for Max Message Lag KPI

Classifier TNR FNR FPR Recall Prec f-meas MCC

AdaBoost 94.25 69.38 5.75 30.62 59.36 28.72 33.75

DecisionTrees 80.36 67.11 19.64 32.89 31.88 11.52 14.98

ExtraTrees 76.55 84.47 23.45 15.53 40.18 5.95 8.39

GradientBoost 88.37 64.87 11.63 35.12 37.49 19.62 23.50

LogisticRegression 85.20 70.91 14.80 29.09 14.42 5.43 7.55

MLP 97.30 100 2.70 0 0 0 -0.37

RandomForest 80.14 71.93 19.86 28.07 40.45 11.42 14.32

XGBoost 99.23 57.17 0.77 42.82 67.36 41.30 46.73

Table 6.5. Accuracy metrics for Max Message Lag KPI

35

Q2: Which Machine Learning algorithm can accurately detect
performance-related anomalies with the shortest training
time?

The training time of all the techniques except Logistic Regression was very short. For the
other techniques, in some cases, some sub-optimal technique required a shorter training
time than the optimal technique. For example, the testing time of Random Forest was
much shorter than the one spent for training XGBoost. However, the difference is in the
range of a few minutes. Since the plan is to train the system once a week, the time
differences can be considered negligible. The comparisons of the training time, testing
time, and AUC for each metric are reported in the tables below.

Min Fetch Rate

0

5000

10000

15000

20000

25000

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Se
co

n
d

s

A
cc

u
ra

cy

Classifiers

AUC

Training time

Test time

Figure 6.6. Algorithms accuracy, training and testing time comparison for Min Fetch Rate
KPI

36

% Network Processor Idling Time

0

5000

10000

15000

20000

25000

30000

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Se
co

n
d

s

A
cc

u
ra

cy

Classifiers

AUC

Training time

Test time

Figure 6.7. Algorithms accuracy, training and testing time comparison for % Network
Processor Idling Time KPI

Request Queue Size

0
2000
4000
6000
8000
10000
12000
14000

0

0.2

0.4

0.6

0.8

1

Se
co

n
d

s

A
cc

u
ra

cy

Classifiers

AUC

Training time

Test time

Figure 6.8. Algorithms accuracy, training and testing time comparison for Request Queue
Size KPI

37

Avg Request Latency

0
5000
10000
15000
20000
25000
30000

0

0.2

0.4

0.6

0.8

1

Se
co

n
d

s

A
cc

u
ra

cy

Classifiers

AUC

Training time

Test time

Figure 6.9. Algorithms accuracy, training and testing time comparison for Avg Request
Latency KPI

Max Message Lag

0

5000

10000

15000

20000

25000

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Se
co

n
d

s

A
cc

u
ra

cy

Classifiers

AUC

Training time

Test time

Figure 6.10. Algorithms accuracy, training and testing time comparison for Max Message
Lag KPI

38

Q3: What are the most important metrics to be considered
when detecting performance-related anomalies?

The two methods adopted, Principal Component Analysis and drop-column mechanism,
reported different results. This can be expected due to their different approaches. Below,
the first ten most important metrics are reported for both the techniques. The blue lines
represent the importance of each feature for the prediction of the respective KPI.

Min Fetch Rate

KA FKA_NETWORK_SOCKET SERVER_NETWORKPROCES SORAVG ID L E PERCENT

ZOOKE EP ER_QUORUMS I Z E

KA F KA_ LOG_LOGC LEANER_MAX_C L EAN_T IME_S EC S_VA LUE

ZOOKEEP ER_M INS E S S IONT IMEOUT

KAFKA_S ERVER_REP L I CAMANAGER_ I S RE XPANDS_TOTAL

ZOOKE E P ER_T I C K T IME

KAFKA_S ERVER_REP L I C AMANAGER_UNDERM IN I S RPART I T I ONCOUNT

JVM_C LA S S E S _ LOADED_TOTAL

KAFKA_LOG_LOGMANAGER_OF F L INE LOGD I RECTORYCOUNT_VALUE

KAFKA_S ERVER_S E SS IONEXP I R E L I S T ENER_ZOOKEEPEREXP I R E S _TOTAL

Figure 6.11. Drop Column algorithm results for Min Fetch Rate KPI

ZOOKE EP ER_E L E C T IONTYPE

ZOOKE E P ER_ S YNC L IM I T

ZOOKE E P ER_ JUT EMAXBUFF E RS I Z E

ZOOKEEP ER_QUORUMS I Z E

ZOOKEEP ER_T I C K

ZOOKE EP ER_ IN I T L IM I T

ZOOKE EP ER_MAXS E S S IONT IMEOUT

ZOOKE E P ER_T I C K T IME

ZOOKEEP ER_M INS E S S IONT IMEOUT

ZOOKEEP ER_PACKET SS ENT

Figure 6.12. Principal Component Analysis results for Min Fetch Rate KPI

% Network Processor Idling Time

KA FKA_S ERVER_REP L I C AMANAGER_UNDERM IN I S RPART I T I ONCOUNT

KAF KA_S E RVER_KA FKAS E RVER_BROKERS TAT E

KA F KA_C LUS T ER_PART I T I ON_UNDERRE P L I CA TED

ZOOKEEP ER_E L EC T IONT IMETAKEN

JVM_C LA S S E S _ LOADED

KA FKA_S ERVER_DE LA YEDFE TCHMETR I C S _EXP I R E S PERSEC_F E TCHERT YP E_CONSUMER

KAFKA_S ERVER_DE LA YEDOPERAT IONPURGATORY_NUMDE LAYEDOPERAT IONS_DELA Y EDOPERAT ION_TXN_MARKER_PURGATORY

KA F KA_S ERVER_F E TCHS ES S IONCACHE_NUMINCREMENTAL F ET CHPART I T I ONSCACH ED

KAFKA_S ERVER_DE LAYEDPRODUCEMETR I C S _EXP I R E S_TOTAL

KAFKA_S ERVER_S E SS IONEXP I R E L I S T ENER_ZOOKEEPERREADONLYCONNECTS _TOT A L

Figure 6.13. Drop Column algorithm results for % Network Processor Idling Time KPI

39

ZOOKE EP ER_E L E C T IONTYPE

ZOOKE EP ER_T I C K

ZOOKE E P ER_ S YNC L IM I T

ZOOKE E P ER_ JUT EMAXBUFF ERS I Z E

ZOOKEEP ER_QUORUMS I Z E

ZOOKE EP ER_ IN I T L IM I T

ZOOKE EP ER_MAXS E S S IONT IMEOUT

ZOOKE E P ER_T I C K T IME

ZOOKEEP ER_M INS E S S IONT IMEOUT

ZOOKEEP ER_PACKET SS ENT

Figure 6.14. Principal Component Analysis results for % Network Processor Idling Time
KPI

Request Queue Size

JMX_CONF IG_RE LOAD_FA I LURE _TOTA L

KA FKA_CONTROL L ER_CONTROL L ERS TATS _TOP I CDEL E T IONRAT EANDT IMEMS

KAFKA_S ERVER_DE LA YEDOPERAT IONPURGATORY_PURGATORY S I Z E _DE LA YEDOPER AT ION_TXN_MARKER_PURGATORY

KAFKA_CONTROL L ER_CONTROL L EREVENTMANAGER_EVENTQUEUE S I Z E

KA FKA_S ERVER_REP L I CA FE TCHERMANAGER_MAXLAG

ZOOKE EP ER_E L E C T IONT IMETAKEN

JVM_MEMORY_POOL_BY T E S _COMMIT T ED

KAFKA_NETWORK_REQUE STMETR I CS _REQUES TQUEUET IMEMS

J VM_THREADS_DEADLOCKED_MON I TOR

KAFKA_LOG_S I Z E

Figure 6.15. Drop Column algorithm results for Request Queue Size KPI

ZOOKE EP ER_E L E C T IONTYPE

ZOOKE EP ER_T I C K

ZOOKE E P ER_ S YNC L IM I T

ZOOKE E P ER_ JUT EMAXBUFF ERS I Z E

ZOOKEEP ER_QUORUMS I Z E

ZOOKE EP ER_ IN I T L IM I T

ZOOKE EP ER_MAXS E S S IONT IMEOUT

ZOOKE E P ER_T I C K T IME

ZOOKEEP ER_M INS E S S IONT IMEOUT

ZOOKEEP ER_PACKET SS ENT

Figure 6.16. Principal Component Analysis results for Request Queue Size KPI

40

Avg Request Latency

KAFKA_NETWORK_REQUE STMETR I CS _REQUES TQUEUET IMEMS

ZOOKE EP ER_PACKET SS ENT

KA FKA_S ERVER_DE LA YEDOPERAT IONPURGATORY_NUMDE LAYEDOPERAT IONS_DELA Y EDOPERAT ION_HEARTBEAT

KAFKA_CONTROL LER_CONTROL LEREVENTMANAGER_EVENTQUEUE S I Z E

KA FKA_S ERVER_S E SS IONEXP I R E L I S T ENER_ZOOKEEPERD I SCONNECT S_TOTAL

PROCE S S _OPEN_FDS

JVM_THREADS _DEADLOCKED

JVM_MEMORY_BY T E S _US ED

J VM_THREADS_DAEMON

ZOOKEEP ER_MAXC L I ENTCNXNSP ERHOST

Figure 6.17. Drop Column algorithm results for Avg Request Latency KPI

ZOOKE EP ER_E L E C T IONTYPE

ZOOKE EP ER_T I C K

ZOOKE E P ER_ S YNC L IM I T

ZOOKE E P ER_ JUT EMAXBUFF ERS I Z E

ZOOKEEP ER_QUORUMS I Z E

ZOOKE EP ER_ IN I T L IM I T

ZOOKE EP ER_MAXS E S S IONT IMEOUT

ZOOKE E P ER_T I C K T IME

ZOOKEEP ER_M INS E S S IONT IMEOUT

ZOOKEEP ER_PACKET SS ENT

Figure 6.18. Principal Component Analysis results for Avg Request Latency KPI

Max Message Lag

KA FKA_CONTROL L ER_CONTROL L ERS TATS _MANUAL L EADERBA LANCERATEANDT IMEM S

KAFKA_S ERVER_DE LA YEDOPERAT IONPURGATORY_NUMDE LAYEDOPERAT IONS_DELA Y EDOPERAT ION_DE L E TERECORDS

KA FKA_S ERVER_DE LA YEDOPERAT IONPURGATORY_PURGATORY S I Z E _DE LA YEDOPER AT ION_TOP I C

KAFKA_S ERVER_REP L I CAMANAGER_ I S R SHR INKS _TOTA L

JMX_SCRAPE_DURAT ION_S ECONDS

KA FKA_S ERVER_KA FKAS ERVER_YAMMER_METR I CS _COUNT

KAF KA_ LOG_LOGC LEANERMANAGER_T IME_S INC E_ LA S T_RUN_MS_VA LUE

KA F KA_CONTROL L E R_CONTROL L E RS TATS _AUTOLEADERBA LANCERATEANDT IMEMS

KAFKA_S ERVER_DE LAYEDOPERAT IONPURGATORY_NUMDE LAYEDOPERAT IONS_DELA Y EDOPERAT ION_REBA LANCE

PROCE S S _RE S I DENT_MEMORY_BY T ES

Figure 6.19. Drop Column algorithm results for Max Message Lag KPI

ZOOKE EP ER_E L E C T IONTYPE

ZOOKE EP ER_T I C K

ZOOKE E P ER_ S YNC L IM I T

ZOOKE E P ER_ JUT EMAXBUFF ERS I Z E

ZOOKEEP ER_QUORUMS I Z E

ZOOKE EP ER_ IN I T L IM I T

ZOOKE EP ER_MAXS E S S IONT IMEOUT

ZOOKE E P ER_T I C K T IME

ZOOKEEP ER_M INS E S S IONT IMEOUT

ZOOKEEP ER_PACKET SS ENT

Figure 6.20. Principal Component Analysis results for Max Message Lag KPI

41

Q4: How many components are necessary to accurately
detect performance-related anomalies?

By performing the Principal Component Analysis for dimensional reduction on the data,
it was possible to see how many components are necessary and how many can be re-
moved for the prediction of the six KPIs.

Figure 6.21. Variance explained by the 168 KPIs

Since the six charts produced are exactly identical, only one of them is reported in Figure
6.21. Based on these results it is possible to see that 100 components are enough to
have around 95% of information. Instead, 120 factors are needed to have almost 100%
of information.

42

7 DISCUSSION

7.1 Discussion

The application of the eight Machine Learning techniques on the data collected at runtime
from the cloud-native system showed important dependencies between performance-
related KPIs and the metrics collected in the system.

The most important outcome is that performance-related anomalies can be detected by
monitoring a limited number of metrics collected at runtime. Some techniques require
excessive training time (Logistic Regression). However, other techniques, such as XG-
Boost, provide a very high level of accuracy in four out of five cases with a brief training
time. In the case of the Request Queue Size KPI, ExtraTrees algorithm permormed better
than the others.

As for the metrics that can be used to predict the anomalies, the PCA reported the metric
”zookeeper-ElectionType” as the most important predictor for all the five KPIs. Instead
the drop-column algorithm reported that ”Server replica manager - underminisr partition
count” is the best predictor for % of network processor idling time, ”manual leader bal-
ance rate and time” for max message lag, ”% of network processor idling time” for min
fetch rate, ”Request Queue Time” for Avg request latency, and ”Number of Configuration
Reload Failures” for request queue size.

The final result is that the number of components used for the training can be easily re-
duced to 120 preserving the same amount of information for the prediction of the anoma-
lies. This result is important because by reducing the number of features, training and
testing performances will improve.

The result of this study could help other companies to understand how to monitor cloud-
native systems and especially how to detect whether some KPIs they consider relevant
are dependent on other metrics they can collect.

7.2 Threats to Validity

This work has several limitations. It is not excluded that different implementations of the
Varational Autoencoder could have yielded better results and that a larger amount of data
or a longer time span, could have produced different results. There is also the possibility

43

that other statistical or Machine Learning approaches might have yielded similar or even
better accuracy, than modeling approaches adopted in this work. It is not excluded the
possibility of other metrics predicting one of these KPIs better, but at the moment, it is not
possible to change the configuration of the monitoring systems and to add more metrics.

44

8 CONCLUSION

8.1 Conclusion

This thesis concentrated on contributing to the improvement of the monitoring system
and approaches in cloud native systems by analyzing 168 metrics collected from a huge
system built by using the microservices architectural pattern.

The first problem addressed was the lack of publicly available datasets that include met-
rics collected from large scale projects composed by many components such as orches-
trators, load balancers and message buses. For this reason a dataset of realistic time
series was created by leveraging an approach based on the Varational Autoencoder.
Moreover, by applying a sampling technique proposed at Facebook, it has been possible
to generate anomalies at deterministic locations, creating in this way a dataset of labeled
time series that could be used to training machine learning models.

The second part of this thesis focused on understanding whether it is possible to predict
anomalies from the different services composing the system that can degrade the system
performance, so as to take actions before performance decreases significantly or before
the system fails.

For this reason an empirical study was performed by comparing the accuracy of eight
different machine learning models and their training and testing time. The six most im-
portant metrics were used as labels and the rest as features for anomalies classification.
The results showed that there are strong correlations between metrics and that it is pos-
sible to predict the anomalies in the system with approximately 90% of accuracy. The
best performing algorithm was XGBoost, because it had the highest accuracy and the
shortest training and testing time in the majority of the cases.

Moreover statistical and machine learning approaches were applied to identify the most
important metrics and to identify redundant information in the metrics.

Consequently, the most important metrics were identified and it was disocvered that the
168 metrics can be meged into 120 components without losing any information. This will
make the training process much faster and the models less prone to overfitting.

45

8.2 Future work

On this topic there are multiple opportunities for future improvements. In the future, the
amount of data collected and the number of metrics should be increased for improving the
completeness of the data set. Regarding the data set creation, different implementations
of the varational autoencoder or even completely different approaches can be investi-
gated. Moreover, the dataset of realistic time series must be updated and refactored by
adding more KPIs and increasing the time range from one month to one year. The cre-
ation of an automatic tool for metric collection and time series generation for continuous
improvements can be considered.

Regarding the empirical study on anomaly detection, further work should include the
application of different machine learning algorithms and the application of unsupervised
techniques for real time anomaly detection. Moreover, suitable techniques for the predic-
tion of the fault-proneness of the different metrics must be investigated and implemented.
The final goal will be the development of a tool or a set of plugins for Prometheus for
prediction of anomalies in cloud native environments and a set of dashboards similar to
Grafana to help the user in the monitoring of the system.

46

REFERENCES

[1] S. Ahmad, A. Lavin, S. Purdy and Z. Agha. Unsupervised real-time anomaly detec-
tion for streaming data. Neurocomputing 262 (2017), 134–147.

[2] T. Ahmed, M. Coates and A. Lakhina. Multivariate online anomaly detection us-
ing kernel recursive least squares. IEEE INFOCOM 2007-26th IEEE International
Conference on Computer Communications. IEEE. 2007, 625–633.

[3] M. Alzantot, S. Chakraborty and M. Srivastava. Sensegen: A deep learning archi-
tecture for synthetic sensor data generation. 2017 IEEE International Conference
on Pervasive Computing and Communications Workshops (PerCom Workshops).
IEEE. 2017, 188–193.

[4] A. Bagnall, A. Bostrom, J. Large and J. Lines. Simulated data experiments for
time series classification Part 1: accuracy comparison with default settings. arXiv
preprint arXiv:1703.09480 (2017).

[5] V. R. Basili, G. Caldiera and H. D. Rombach. The Goal Question Metric Approach.
Encyclopedia of Software Engineering (1994).

[6] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz and S. Bengio. Gener-
ating sentences from a continuous space. arXiv preprint arXiv:1511.06349 (2015).

[7] B. Brazil. Prometheus: Up & Running: Infrastructure and Application Performance
Monitoring. " O’Reilly Media, Inc.", 2018.

[8] L. Breiman. Random forests. Machine learning 45 (2001).
[9] L. Breiman, J. Friedman, C. J. Stone and R. Olshen. Classification and regression

trees Regression trees. 1984. ISBN: 978-0412048418.
[10] E. Brophy, Z. Wang and T. E. Ward. Quick and Easy Time Series Generation with

Established Image-based GANs. arXiv preprint arXiv:1902.05624 (2019).
[11] V. Chandola, A. Banerjee and V. Kumar. Anomaly detection: A survey. ACM com-

puting surveys (CSUR) 41.3 (2009), 15.
[12] W. Chang, J. Cheng, J. Allaire, Y. Xie, J. McPherson et al. shiny: Web application

framework for r, 2015. R package version 1.0 (2018), 14.
[13] T. Chen and C. Guestrin. XGBoost: A Scalable Tree Boosting System. 2016.
[14] X. Chen, C. Lu and K. Pattabiraman. Failure Analysis of Jobs in Compute Clouds:

A Google Cluster Case Study. International Symposium on Software Reliability En-
gineering. Nov. 2014, 167–177.

[15] F. Chollet et al. Keras. 2015.
[16] D. R. Cox. The Regression Analysis of Binary Sequences. Journal of the Royal

Statistical Society. Series B 20.2 (1958), 215–242. ISSN: 00359246.
[17] D. J. Dean, H. Nguyen and X. Gu. Ubl: Unsupervised behavior learning for pre-

dicting performance anomalies in virtualized cloud systems. Proceedings of the 9th
international conference on Autonomic computing. ACM. 2012, 191–200.

47

[18] C. Esteban, S. L. Hyland and G. Rätsch. Real-valued (medical) time series gener-
ation with recurrent conditional gans. arXiv preprint arXiv:1706.02633 (2017).

[19] G. Forestier, F. Petitjean, H. A. Dau, G. I. Webb and E. Keogh. Generating synthetic
time series to augment sparse datasets. 2017 IEEE international conference on
data mining (ICDM). IEEE. 2017, 865–870.

[20] Y. Freund and R. E. Schapire. A Decision-Theoretic Generalization of On-Line
Learning and an Application to Boosting. Journal of Computer and System Sci-
ences 55.1 (Aug. 1997), 119–139.

[21] J. H. Friedman. Greedy Function Approximation: A Gradient Boosting Machine.
Annals of Statistics 29 (2000), 1189–1232.

[22] D. Gannon, R. Barga and N. Sundaresan. Cloud-native applications. IEEE Cloud
Computing 4.5 (2017), 16–21.

[23] P. Geurts, D. Ernst and L. Wehenkel. Extremely randomized trees. Machine Learn-
ing 63.1 (Apr. 2006), 3–42.

[24] Q. Guan, Z. Zhang and S. Fu. Ensemble of bayesian predictors for autonomic fail-
ure management in cloud computing. 2011 Proceedings of 20th International Con-
ference on Computer Communications and Networks (ICCCN). IEEE. 2011, 1–6.

[25] A. Gulenko, M. Wallschläger, F. Schmidt, O. Kao and F. Liu. A System Architecture
for Real-time Anomaly Detection in Large-scale NFV Systems. Procedia Computer
Science 94 (2016), 491–496.

[26] Z. Guo, G. Jing, H. Chen and K. Yoshihira. Tracking Probabilistic Correlation of
Monitoring Data for Fault Detection in Complex Systems. Int. Conf. on Dependable
Systems and Networks. 2006, 259–268.

[27] M. Hahmann, C. Hartmann, L. Kegel and W. Lehner. Large-Scale Time Series
Analytics. Datenbank-Spektrum: Vol. 19, No. 1. Berlin Heidelberg: Springer Nature,
2019, 17–29.

[28] K. G. Hartmann, R. T. Schirrmeister and T. Ball. EEG-GAN: Generative adversarial
networks for electroencephalograhic (EEG) brain signals. arXiv preprint arXiv:1806.01875
(2018).

[29] K. Hightower, B. Burns and J. Beda. Kubernetes: Up and Running: Dive Into the
Future of Infrastructure. " O’Reilly Media, Inc.", 2017.

[30] J. Hochenbaum, O. Vallis and A. Kejariwal. Automatic Anomaly Detection in the
Cloud Via Statistical Learning. eprint. arXiv 1704 (2017).

[31] O. Ibidunmoye, F. Hernández-Rodriguez and E. Elmroth. Performance Anomaly
Detection and Bottleneck Identification. ACM Comput. Surv. 48.1 (July 2015), 4:1–
4:35.

[32] O. Ibidunmoye, F. Hernández-Rodriguez and E. Elmroth. Performance anomaly de-
tection and bottleneck identification. ACM Computing Surveys (CSUR) 48.1 (2015),
4.

[33] O. Ibidunmoye, T. Metsch and E. Elmroth. Real-time detection of performance
anomalies for cloud services. 2016 IEEE/ACM 24th International Symposium on
Quality of Service (IWQoS). IEEE. 2016, 1–2.

48

[34] O. Ibidunmoye, A.-R. Rezaie and E. Elmroth. Adaptive anomaly detection in perfor-
mance metric streams. IEEE Transactions on Network and Service Management
15.1 (2017), 217–231.

[35] T. Idé and H. Kashima. Eigenspace-based Anomaly Detection in Computer Sys-
tems. Int. Conf.on Knowledge Discovery and Data Mining. 2004.

[36] N. Iftikhar, X. Liu, S. Danalachi, F. E. Nordbjerg and J. H. Vollesen. A scalable smart
meter data generator using spark. OTM Confederated International Conferences"
On the Move to Meaningful Internet Systems". Springer. 2017, 21–36.

[37] S. Jin, Z. Zhang, K. Chakrabarty and X. Gu. Changepoint-based anomaly detection
in a core router system. International Test Conference (ITC). Oct. 2017, 1–10.

[38] F. Junqueira and B. Reed. ZooKeeper: distributed process coordination. " O’Reilly
Media, Inc.", 2013.

[39] A. Kafka. A high-throughput distributed messaging system. URL: kafka. apache.
org as of 5.1 (2014).

[40] Y. Kang, R. J. Hyndman and K. Smith-Miles. Visualising forecasting algorithm per-
formance using time series instance spaces. International Journal of Forecasting
33.2 (2017), 345–358.

[41] Y. Kang, R. J. Hyndman, F. Li et al. Efficient generation of time series with di-
verse and controllable characteristics. Tech. rep. Monash University, Department
of Econometrics and Business Statistics, 2018.

[42] L. Kegel, M. Hahmann and W. Lehner. Feature-driven Time Series Generation.
Grundlagen von Datenbanken. 2017, 54–59.

[43] L. Kegel, M. Hahmann and W. Lehner. Generating what-if scenarios for time series
data. Proceedings of the 29th International Conference on Scientific and Statistical
Database Management. ACM. 2017, 3.

[44] L. Kegel, M. Hahmann and W. Lehner. Template-based Time Series Generation
with Loom. Citeseer.

[45] J. Kreps, N. Narkhede, J. Rao et al. Kafka: A distributed messaging system for log
processing. Proceedings of the NetDB. 2011, 1–7.

[46] A. Lakhina, M. Crovella and C. Diot. Diagnosing network-wide traffic anomalies.
ACM SIGCOMM computer communication review. Vol. 34. 4. ACM. 2004, 219–
230.

[47] N. Laptev. AnoGen: Deep Anomaly Generator. Tech. rep. Technical Report. Face-
book. https://research. fb. com/wp-content/uploads . . ., 2018.

[48] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A.
Tejani, J. Totz, Z. Wang et al. Photo-realistic single image super-resolution using a
generative adversarial network. Proceedings of the IEEE conference on computer
vision and pattern recognition. 2017, 4681–4690.

[49] H. Mi, H. Wang, Y. Zhou, M. R.-T. Lyu and H. Cai. Toward fine-grained, unsuper-
vised, scalable performance diagnosis for production cloud computing systems.
IEEE Transactions on Parallel and Distributed Systems 24.6 (2013), 1245–1255.

49

[50] C. Monni, M. Pezzè and P. Gaetano. An RBM Anomaly Detector for the Cloud.
International Conference on Software Testing. 2019.

[51] N. Narkhede, G. Shapira and T. Palino. Kafka: the definitive guide: real-time data
and stream processing at scale. " O’Reilly Media, Inc.", 2017.

[52] T. Parr, K. Turgutlu, C. Csiszar and J. Howard. Beware Default Random Forest
Importances. March 26 (2018), 2018.

[53] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot and E. Duchesnay. Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[54] T. Pesch, S. Schröders, H. Allelein and J. Hake. A new Markov-chain-related sta-
tistical approach for modelling synthetic wind power time series. New journal of
physics 17.5 (2015), 055001.

[55] D. M. W. Powers. Evaluation: From precision, recall and f-measure to roc., informed-
ness, markedness & correlation. Journal of Machine Learning Technologies 2.1
(2011), 37–63.

[56] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele and H. Lee. Generative ad-
versarial text to image synthesis. arXiv preprint arXiv:1605.05396 (2016).

[57] S. Roy, A. C. König, I. Dvorkin and M. Kumar. Perfaugur: Robust diagnostics for
performance anomalies in cloud services. 2015 IEEE 31st International Conference
on Data Engineering. IEEE. 2015, 1167–1178.

[58] D. E. Rumelhart, G. E. Hinton, R. J. Williams et al. Learning representations by
back-propagating errors. Cognitive modeling 5.3 (1988), 1.

[59] P. Runeson and M. Höst. Guidelines for Conducting and Reporting Case Study
Research in Software Engineering. Empirical Softw. Engg. 14.2 (2009), 131–164.

[60] N. Saarimäki, F. Lomio, V. Lenarduzzi and D. Taibi. Does migrate a monolithic sys-
tem to microservices decreases the technical debt?: arXiv preprint arXiv:1902.06282
(2019).

[61] C. Sauvanaud, M. Kaâniche, K. Kanoun, K. Lazri and G. D. S. Silvestre. Anomaly
detection and diagnosis for cloud services: Practical experiments and lessons learned.
Journal of Systems and Software 139 (2018), 84–106.

[62] J. Schaffner and T. Januschowski. Realistic tenant traces for enterprise DBaaS.
2013 IEEE 29th International Conference on Data Engineering Workshops (ICDEW).
IEEE. 2013, 29–35.

[63] R. E. Schapire. The Strength of Weak Learnability. Machine Learning 5.2 (1990),
197–227.

[64] G. Smrithy and R. Balakrishnan. A statistical technique for online anomaly detection
for big data streams in cloud collaborative environment. 2016 IEEE International
Conference on Computer and Information Technology (CIT). IEEE. 2016, 108–111.

[65] M. Solaimani, M. Iftekhar, L. Khan and B. Thuraisingham. Statistical technique for
online anomaly detection using spark over heterogeneous data from multi-source

50

vmware performance data. 2014 IEEE International Conference on Big Data (Big
Data). IEEE. 2014, 1086–1094.

[66] D. Taibi and V. Lenarduzzi. On the definition of microservice bad smells. IEEE soft-
ware 35.3 (2018), 56–62.

[67] D. Taibi, V. Lenarduzzi and C. Pahl. Processes, motivations, and issues for migrat-
ing to microservices architectures: An empirical investigation. IEEE Cloud Comput-
ing 4.5 (2017), 22–32.

[68] D. Taibi, V. Lenarduzzi and C. Pahl. Architectural Patterns for Microservices: A Sys-
tematic Mapping Study. CLOSER. 2018, 221–232.

[69] D. Taibi, V. Lenarduzzi and C. Pahl. Continuous Architecting with Microservices and
DevOps: A Systematic Mapping Study. International Conference on Cloud Comput-
ing and Services Science. Springer. 2018, 126–151.

[70] D. Taibi, V. Lenarduzzi and C. Pahl. Microservices Anti-Patterns: A Taxonomy. arXiv
preprint arXiv:1908.04101 (2019).

[71] D. Taibi and K. Systä. A Decomposition and Metric-Based Evaluation Framework
for Microservices. arXiv preprint arXiv:1908.08513 (2019).

[72] D. Taibi and K. Systä. From Monolithic Systems to Microservices: A Decomposi-
tion Framework based on Process Mining. 8th International Conference on Cloud
Computing and Services Science, CLOSER. 2019.

[73] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani and D. Rajan. Prepare: Pre-
dictive performance anomaly prevention for virtualized cloud systems. 2012 IEEE
32nd International Conference on Distributed Computing Systems. IEEE. 2012,
285–294.

[74] K. Thein. Apache kafka: Next generation distributed messaging system. Interna-
tional Journal of Scientific Engineering and Technology Research 3.47 (2014),
9478–9483.

[75] M. Thill, W. Konen and T. Bäck. Online anomaly detection on the webscope S5
dataset: A comparative study. 2017 Evolving and Adaptive Intelligent Systems
(EAIS). IEEE. 2017, 1–8.

[76] H. D. Vinod, J. López-de-Lacalle et al. Maximum entropy bootstrap for time series:
the meboot R package. Journal of Statistical Software 29.5 (2009), 1–19.

[77] C. Wang, K. Viswanathan, L. Choudur, V. Talwar, W. Satterfield and K. Schwan.
Statistical techniques for online anomaly detection in data centers. 12th IFIP/IEEE
International Symposium on Integrated Network Management (IM 2011) and Work-
shops. IEEE. 2011, 385–392.

[78] H. Yoon, K. Yang and C. Shahabi. Feature subset selection and feature ranking
for multivariate time series. IEEE transactions on knowledge and data engineering
17.9 (2005), 1186–1198.

	Introduction
	Background
	Cloud Native Systems
	Apache Kafka
	Zookeeper
	Kubernetes
	Prometheus

	Anomaly detection
	Machine Learning Techniques
	Logistic Regression
	Decision Tree
	Random Forest
	Extremely Randomized Trees
	AdaBoost
	Gradient Boosting
	XGBoost
	Multi-Layer Perceptron

	Related Work
	Anomaly detection
	Time series generation

	Data collection and realistic time series generation
	Data Collection
	Realistic time series generation
	Variational Autoencoder
	Implementation
	Results

	Classification-based anomaly detection
	Accuracy
	Training and Testing Time
	Context

	Data Collection and Preparation
	Data Analysis

	Results
	Discussion
	Discussion
	Threats to Validity

	Conclusion
	Conclusion
	Future work

	References

