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ABSTRACT 

Patrik Borenius: Lignin and hemicellulose in dispersions – as surfactants and functional ma-

terials 

Master of Science thesis, 80 pages, 2 Appendix pages 
Tampere University 
Master’s Degree Program in Engineering and Natural Sciences Technology 
Major: Chemistry 
Examiners: Adj. Prof. Terttu Hukka and Prof. Jurkka Kuusipalo 
Advisors: Dr. Hanne Wikberg and Adj. Prof. Terttu Hukka 
October 2019 

The aim of thesis was to understand how lignins and hemicelluloses work as plasticizers, dis-
persing agents, emulsifiers and stabilizer in dispersion applications from the chemistry point of 
view. An alkali-O2 oxidation (LigniOx) of lignins was discussed in more detail because relevance 
to the applied part of this thesis.  

In the applied part, two organosolv and soda lignins provided by Fortum, and oxidized by VTT 
Technical Research Centre of Finland, were evaluated in special carbon black and titan dioxide 
dispersions. Rheological measurements and optical microscopy were used as analysis methods. 
The aim of the applied part was to increase the knowledge of the new type of lignin-based dis-
persants and give background information for the development of Fortum’s lignins as dispersants 
in paint, coating, ink, plastic and other dispersion-related applications. 

The research literature of lignins and hemicelluloses in different dispersion-related applica-
tions is broad. However, this does not directly translate to broad amount of developed and existing 
applications. Hemicelluloses have chemical analogies, such as gums and other hydrocolloids, 
which are commercially used for example as texture modifiers in foods and cosmetics. The public 
research of hemicelluloses as dispersants and texture modifiers in other dispersion applications 
than foods and cosmetics is however still in early phases. 

The research of new lignin-based dispersants has focused on the applications in which ligno-
sulfonates are already commercially utilized, such as cement plasticization. In these cases, the 
new lignin-based dispersant should perform better than lignosulfonates, especially if the produc-
tion costs are higher for these new lignin-based dispersants. Alternatively, new dispersion appli-
cations should be found, in which lignosulfonates have not been used or do not work well. 

In the applied part of the thesis, the rheological measurements and complementary optical 
microscopy imaging showed that alkali-O2 oxidized (LigniOx) lignins have potential as dispersants 
especially in carbon black dispersions and to an extent in the titan dioxide dispersions. All the 
oxidized organosolv and soda lignins had very similar behavior in these dispersions. The optimum 
amounts of lignin dispersants (7.5-20 wt% lignin of carbon black) in carbon black dispersions were 
slightly lower compared to commercial lignosulfonate and synthetic polymer references. The lig-
nin dispersants were especially suitable for the special carbon black dispersions because good 
dispersing performance and no visible change in the color of the dispersions even with high 
amounts of lignin dispersants.  

In the case of titan dioxide dispersions, the required amount of lignin dispersants was lower 
(0.125-0.5 wt% lignin of titan dioxide) compared to the references. However, the brown color of 
lignin affects the color of titan dioxide dispersions to an extent and the storage stability of titan 
dioxide dispersions with lignin dispersants needs to be further investigated. 
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Tämän diplomityön tarkoituksena oli perehtyä ligniinien ja hemiselluloosien käyttöön disper-
gointiaineina, emulgaattoreina ja pinta-aktiivisina aineina erilaisissa teknisissä dispersioissa. Eri-
tyisesti alkali-happi hapetettuja ligniinejä (LigniOx) ja niiden käyttöä dispersioissa tarkasteltiin lä-
hemmin. 

Diplomityön kokeellisessa osassa Fortumin kahta organosolv ja kahta sooda ligniiniä, jotka 
olivat hapetettu Teknologian Tutkimuskeskus VTT:n toimesta, testattiin erikoishiilimusta ja titaa-
nidioksidi dispersioissa. Hiilimustan ja titaanidioksidin dispersioita tutkittiin reometrin ja valomik-
roskoopin avulla. Kokeellisen osan tarkoituksena oli lisätä tietoa uudentyyppisten ligniini-disper-
gointiaineiden käytöstä ja antaa Fortumin ligniineistä perustietoa jatkotutkimuksille. 

Ligniinien ja hemiselluloosien käyttöä erilaisissa dispersioissa ja sovelluksia on tutkittu paljon. 
Laaja perustutkimus ei kuitenkaan ole suoraan johtanut laajaan sovellusten jatkokehitykseen ja 
kaupallistumiseen. Hemiselluloosien tapauksessa samankaltaisia yhdisteitä kuten erilaisia luon-
nonkumeja, on kaupallisessa käytössä esimerkiksi sakeuttamisaineina ja koostumuksen paran-
tajina ruoka- ja kosmetiikkateollisuudessa. Hemiselluloosien julkinen tutkimus muissa kuin ruoka- 
ja kosmetiikkateollisuuden dispersiosovelluksissa on kuitenkin vielä varhaisessa vaiheessa. 

Uusien ligniini-dispergointiaineiden tutkimus on keskittynyt sovelluksiin, joissa lignosulfonaat-
teja käytetään kaupallisesti, esimerkiksi betonin notkistimina. Uusien ligniini-dispergointiaineiden 
täytyy toimia paremmin kuin lignosulfonaatit, varsinkin jos tuotantokustannukset ovat korkeammat 
näille uusille ligniinipohjaisille dispergointiaineille. Uusien sovellusten löytäminen, joissa lignosul-
fonaatteja ei käytetä tai ne eivät toimi halutulla tavalla, on toinen mahdollisuus uusille ligniinipoh-
jaisille dispergointiaineille. 

Kokeellisessa osassa havaittiin reologisten mittausten ja valomikroskopian avulla, että alkali-
happi hapetetut ligniinit ovat potentiaalisia dispergointiaineita vesipohjaisille erikoishiilimusta ja 
titaanidioksidi dispersioille. Kaikki alkali-hapetetut organosolv ja sooda ligniinit toimivat ja käyttäy-
tyivät samankaltaisesti hiilimusta- ja titaanidioksididispersioissa. Alkali-hapetettujen ligniinien op-
timaaliset määrät suhteessa pigmentteihin olivat alhaisemmat kuin verrokki dispergointiaine lig-
nosulfonaatilla ja synteettisellä polymeerillä. Hiilimustadispersioissa optimaalinen määrä alkali-
hapetettua ligniiniä oli 7.5-20 p.% ligniiniä hiilimustasta ja titaanidioksididispersioissa 0.125-
0.5 p.% ligniiniä titaanidioksidista. Erityisesti hiilimustan dispersioissa alkali-hapetetut ligniinit toi-
mivat hyvin ja ligniinin ruskea väri ei vaikuttanut hiilimustadispersioissa. Titaanidioksididispersi-
oissa alkali-hapetut ligniinit värjäsivät dispersioita isoilla pitoisuuksilla ja dispersioiden säilyvyys 
vaatii lisää tutkimusta. 
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1. INTRODUCTION 

The search for novel uses of biomass, biochemicals and replacing of petroleum-chemi-

cals is more intensive than ever. The reasons for this search are for example the climate 

change, plastic pollution, increasing awareness of the limited fossil feedstocks and over-

all need to develop sustainable global economy [1]. Economic reasons for the develop-

ment are for example volatile crude oil and petrochemical prices, the desire to reduce 

dependency on crude oil imports [2], decline in conventional paper demand and possi-

bility to make profit out of all components of the biomass and not just cellulose. 

Lignin and hemicelluloses are polymers produced in millions of metric tons for example 

in conventional pulp mills [3]. However, currently these byproducts are mostly burned to 

recover the pulping chemicals and to provide energy for the mill. As major components 

of woods and plants, lignin and hemicellulose have further potential to be feedstock for 

variety of applications. Lignin is an aromatic phenolic polymer, characterized by its re-

calcitrance chemical structure and light brown-to-dark black color. [4] Hemicelluloses are 

class of polysaccharides in woods and plants that are not cellulose. Similar polymers 

have already established commercial applications as hydrocolloids and gums for exam-

ple in food and cosmetic industries. 

New technologies apart from conventional sulfate and sulfite processes to fractionate 

biomass allow cellulose, hemicellulose and lignin to be obtained in high purity and qual-

ity. This creates the demand to develop and find commercial applications for all three 

chemicals, especially for the new raw materials hemicellulose and lignin. There are ex-

isting applications for natural polymers similar to hemicellulose and lignosulfonates as 

surface active materials, dispersants, emulsifiers, rheology and texture modifiers. This 

indicates that there are promise and possibilities for new type of hemicelluloses and lig-

nins for example in dispersion-related applications. 

To find new application possibilities for biorefinery hemicellulose and lignins, this thesis 

concentrates on the use of hemicellulose and especially lignin as surface active and 

functional materials. The relevant theoretical background of dispersion and surfactants 

are discussed in Chapter 2. In the Chapter 3, different lignins and their physicochemical 

properties relevant to dispersions are discussed. The Chapter 3 is concluded by intro-

ducing few of the proven and potential applications of lignin-based dispersants. Chap-

ter 4 discusses the wood- and straw-based hemicelluloses, xylans and mannans, in a 
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similar manner to lignins in Chapter 3. Chapter 5 is the applied part of the thesis and 

focuses on the preliminary study of novel alkali-oxygen oxidized (LigniOx) lignin disper-

sants in carbon black and titan dioxide suspensions.  
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2. DISPERSIONS AND SURFACTANTS 

This chapter introduces the main concepts of the thesis. Dispersions, surfactants and 

functional materials and their properties, requirements and chemistry are discussed. The 

focus is on the liquid-containing dispersions and polymeric surfactants, as the main sub-

jects of the thesis are biopolymers. 

2.1 Dispersion 

Dispersion is by definition a two-phase system, in which discontinuous, but finely di-

vided, substance particles (gas, liquid or solid) are dispersed in a continuous phase that 

is different composition or state from the dispersed phase. The substance that is dis-

persed in the continuous phase is called the dispersed phase or discontinuous phase. 

[5, 6]  Different dispersions can be discussed by phrasing dispersed phase-in-continuous 

phase. For example, a solid-in-water dispersion means that the dispersed phase is solid 

phase particles dispersed in the continuous phase consisting of water. 

Dispersion contains the dispersed phase particles with sizes of 1 nm–1000 µm [7]. If the 

dispersed phase particles have at least one dimension in range 1 nm–1 µm, the disper-

sion can be referred as a colloid [5, 6, 7]. The dispersed phase particles are aggregates 

of multiple molecules [8]. 

While particle size is one way to identify and characterize dispersions, other properties 

are also helpful. Dispersions are not stable indefinitely and can separate to different 

phases over time. Dispersions can be separated by centrifugation or filtration. Further-

more, dispersions are often opaque, turbid and scatter light. [8] 

Dispersions can be considered as ‘’solutions of greater particle size’’ in which the chem-

ical structure of the dispersed phase still matter. As dispersions are formed by partly 

immiscible chemicals, there are unattractive forces between the molecules of the dis-

persed phase and continuous phase. The dispersed phase and continuous phase tend 

to minimize the unattractive forces by decreasing the interfacial area between the 

phases. [7, 9] The tendency of substances to decrease the surface area is often charac-

terized by quantity called surface or interfacial tension, γ (mN m-1). Higher the surface 

tension, more strongly the substance tries to minimize its surface area. [6] 
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Dispersions appear in wide variety of applications, products and industrial processes, 

either as a desired or undesired phenomena. The stability of dispersion means that dis-

persion has constant properties and appearance for the desired time. A look at the 

amount of different dispersions and combinations of dispersed and continuous phase 

reveal the complexity of the subject of dispersions and their stability (Table 1). The most 

familiar and common dispersions are those in which liquid is the continuous phase: 

foams, emulsions and suspensions. 

2.1.1 Emulsion 

An emulsion is by a definition a dispersion in which the dispersed phase and the con-

tinuous phase are immiscible liquids [5, 6, 7]. The dispersed phase particles of emulsion 

are often referred as droplets, emphasizing their liquid state [5, 6]. 

The typical emulsion is combination of water and hydrophobic liquid, often referred 

simply as oil [7]. The oil can vary from vegetable and food-related lipids to petroleum 

crude oils. As emulsions contain often water either as the dispersed or continuous phase, 

emulsions are often categorized as oil-in-water (O/W) or water-in-oil (W/O) emulsions 

(Table 2). In the O/W emulsion, water is the continuous phase and oil is the dispersed 

phase, and in the W/O emulsions vice versa. [6, 7] 

Emulsions are a subclass of dispersions and therefore behave as such: they are gener-

ally cloudy or turbid in appearance because the average droplet size of the dispersed 

phase is large enough [10], typically 0.1–100 µm in diameter [11]. However, emulsion 

can be transparent to the naked eye, but still be an emulsion and for example cause light 

scattering. 

Table 1. Type of dispersions. Adapted from [7]. 

Dispersed 
Phase 

Continuous 
Phase 

Name Example 

Liquid Gas Liquid aerosol Hair sprays 

Solid Gas Solid aerosol Smoke 

Gas Liquid Foam Shampoos, fire foams  

Liquid Liquid Emulsion Foods, cosmetics, latex 

Solid Liquid Suspension Paints, pesticides, cement 

Gas Solid Solid foam Polyurethanes, styrofoams 

Liquid Solid Solid emulsion Gelatin, silica gel 

Solid Solid Solid suspension Dried concrete, alloys 
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As almost all dispersions, emulsions are unstable and tend to separate to two separate 

liquids during storage [10, 12], even though the time for separation can be long 

(minutes to years). The separation of an emulsion to distinct phases (for example water 

and oil) is called demulsification or breaking of the emulsion [6, 7]. Flocculation, coa-

lescence, creaming and sedimentation of the dispersed phase are the mechanisms 

that decrease the interfacial area between the phases in emulsions and cause demulsi-

fication (Figure 1). 

Emulsions, as all dispersions, occur in variety of products, processes and disciplines. 

Emulsions can be the desired outcome, for example in cosmetic creams and lotions, but 

also unwanted and costly problem, such as water emulsions in crude oil upgrading (Ta-

ble 2). [7] 

Industry Application Type 

Environmental and agri-

culture 

Insecticide and herbicide formulations 

Water and sewage treatment emulsions 

Oil spill emulsions 

O/W 

O/W 

W/O, O/W 

Home and personal care Hair and skin creams and lotions 

Hair dye emulsions 

O/W, W/O 

W/O 

Materials science Asphalt (paving) emulsions 

Latex paint, polish, coating emulsions 

Metal working fluid emulsions 

O/W 

O/W 

O/W 

Medicine Emulsion encapsulated drugs 

Vesicles 

O/W, W/O 

W/W 

Petroleum industry Drilling emulsions 

Reservoir emulsions 

Heavy-oil pipeline emulsions 

Well-stimulation emulsions 

Enhanced oil recovery emulsions 

Emulsified fuel 

Oli-flotation froth 

O/W, W/O 

W/O 

O/W 

O/W, W/O 

O/W 

O/W, W/O 

O/W 

Mineral and mining in-

dustries 

Emulsion flotation O/W 

Foods Milk, creams, soft drinks, mayonnaise 

Butter, margarine, salad dressings 

O/W 

W/O 

 

Table 2. Examples of emulsion applications in different industries. O/W = oil-in-water emul-
sion, W/O = water-in-oil emulsion. Adapted from [7]. 
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2.1.2 Suspension 

Dispersion of a solid substance (dispersed phase) in a liquid (continuous phase) is 

known as a suspension [5, 7]. The solid dispersed phase is in form of particles and the 

particles have dimensions of 1 nm–100 µm [7]. The particles can be single molecules or 

aggregates of these primary particles. Furthermore, the shape of the particles in suspen-

sion can be variant: circles, rods, plates or any kind of loose aggregate shape. [7, 13] 

The unstable suspended particles tend to minimize the surface area in contact with con-

tinuous phase by increasing the average particle size. Examples of the mechanisms that 

can increase the particle size and decrease amount of suspended particles, are sedi-

mentation and flocculation (Figure 1) [6]. When suspension is set undisturbed for enough 

time, the solids tend to separate out of the continuous phase. Alternatively, the suspen-

sion can be separated by centrifugation or filtration. 

In addition to the stability, suspensions must be well-flowing and workable, and sus-

pended solid particles must have the right surface charge and average particle size in 

various applications (Table 3). To understand the details of the application and type of 

suspension are important, as suspensions can be desired or undesired phenomena. For 

Kinetically stable emulsion 

Creaming Sedimentation Flocculation Coalescence 

Figure 1. Illustrative mechanisms of dispersion breaking. 
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example, sedimentation is sometimes desired in the waste water treatment, while in 

paints or coatings the suspension must be well-flowing and stable over long periods of 

time. [7] 

2.2 Small-Molecule Surfactants 

Surface active agent (surfactant) is a chemical which at low concentration is adsorbed 

at the different interfaces and lowers the surface tension of the medium in which it is 

dissolved (for example water) or the interfacial tension between two or more phases (for 

example oil and water) [5, 14]. Surfactants are amphiphiles, while not all amphiphiles 

exhibit surface active properties. An amphiphilic molecule exhibits affinity towards differ-

ent phases [14, 15].  

An organic amphiphilic molecule consists of at least two parts: lyophobic (solvent-re-

jecting) and lyophilic (solvent-preferring) parts, which describe the interactions with dif-

ferent phases and solvents. If water is part of the system, then terms hydrophobic (wa-

ter-rejecting) and hydrophilic (water-preferring) are used, respectively [6, 7]. The am-

Table 3. Examples of suspension applications in different industries. S/W = solid-in-water 
suspension, S/L = solid-in-liquid (other than water) suspension. Adapted from [7, 9]. 

Industry Application Type 

Environmental and agri-

culture 

Suspended soils and sediments 

Insecticide and herbicide suspensions 

S/W 

S/W, S/L 

Home and personal care Exfoliating scrubs 

Facial Masks 

Lipsticks, lip balms and glosses 

S/W 

S/W 

S/L 

Materials science Cellulose fiber pulp slurries 

Pigment and dye containing paints 

De-inking pulp slurries 

S/W 

S/L 

S/W 

Medicine Polymer encapsulated drugs 

Biodegradable drug suspensions 

Diagnostic suspensions 

S/W 

S/W 

S/W 

Petroleum industry Drilling fluid (mud) suspensions 

Hydraulic fracturing suspensions 

Well cementing slurries 

Oil-sand slurries in bitumen recovery 

Migrating fines in reservoir or oil recovery 

Asphaltene suspensions in crude oils 

S/W 

S/W 

S/W 

S/W 

S/W 

S/W 

Mineral and mining in-

dustries 

Mineral-processing slurries 

Mineral-flotation froths 

Mineral-tailing slurries and ponds 

S/W 

S/W 

S/W 
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phiphiles have strong tendency to migrate to surfaces and interfaces. Amphiphiles ori-

entate so that hydrophilic part is in contact with the more polar phase, such as water, 

and hydrophobic part is in contact with the nonpolar phase, such as oil or air. [14, 15] 

The polar, hydrophilic, portion of amphiphile often contains heteroatoms, such as oxy-

gen, sulfur, nitrogen or phosphorus in form of functional groups like alcohol, thiol, sulfate, 

sulfonate, ether, ester, carboxylic acid, phosphate, amine or amide (Figure 2). This polar 

portion has strong affinity for polar liquids, especially water. On the other hand, the non-

polar, hydrophobic portion of amphiphile is generally an alkyl or alkylbenzene type, with 

possible halogen or non-ionizable oxygen atoms. [14, 15] 

The term tenside is used as a synonym to a surfactant, which highlights the (surface) 

tension lowering property of the surfactant. [15] To highlight the other functions of sur-

factants, surfactants are described according to use, function or dispersion structures 

(Figure 3). 

While classifying surfactants based on their use and function is sensible from the com-

mercial point of view, the division does not tell about chemistry of the surfactants. From 

the chemical point of view surfactants are classified based on the type and structure of 

the hydrophilic part and behavior of surfactants in water. [15]  Surfactants are classified 

to anionic, cationic, nonionic and amphoteric surfactants [14, 15].The ‘’fifth’’ class of sur-

factants is sometimes introduced: surface active polymers (polymeric surfactants) [15, 

16]. Polymeric surfactants obey the similar rules as classical small molecule ionic be-

cause (1) the same functional groups and structures that are present in small molecule 

surfactants, are present in multiples in polymeric surfactants. Furthermore, (2) the divi-

sion between single molecule and polymeric surfactant is sometimes labile. 

Figure 2. Examples of small molecular surfactants. Adapted from [15]. 



9 

 

2.2.1 Anionic Surfactant 

Anionic surfactants dissociate in water as an anionic amphiphile (actual surfactant), 

with the counter ion being alkaline metal, such as K+, Na+, or a quaternary ammonium. 

The most common anionic surfactants are based on carboxylates, sulfonates, sulfates 

and phosphates. [15, 16] 

Anionic surfactants are the most widely used surfactants [15, 16] because relatively low 

cost of manufacturing and their wide range of applications in the food, chemical and 

petroleum industries [10]. Anionic surfactants have distinctive uses and properties, such 

as solubility in alkaline and acidic solutions, hydrophilicity, chemical stability against hy-

drolysis and resistance to hardness of water (Mg2+ and Ca2+ ions). [16] Examples of 

anionic surfactants are alkylbenzene sulfonates (Figure 2), soaps (fatty acids), lauryl sul-

fates (foaming agents) and lignosulfonates (dispersants) [15]. 

2.2.2 Nonionic Surfactant 

Nonionic surfactants do not dissociate to ions in aqueous solutions, because they con-

tain hydrophilic parts that are less easily ionizable, such as hydroxy, ether, ester and 

amide functional groups. The common hydrophilic part is poly(ethylene glycol) chains, 

and corresponding nonionic surfactants are called (poly)ethoxylate surfactants (Figure 

2). 

Nonionic surfactants are the second most used surfactant type after anionic surfactants 

[15] and there is great variety in nonionic surfactants. Ethoxylate, sorbitan and alkyl pol-

yglycoside (APG) surfactants are examples of nonionic surfactants [15]. Especially APG 

surfactants have gained interest in the last decades because of low toxicity [15] and 

various production possibilities from different renewable feedstocks [17]. 

Surfactants classified by use and 
function

Soap

Detergent

Dispersant

Wetting 
Agent

Emulsifier

Foaming 
Agent

Bactericide

Antistatic 
Agent

Structures which 
surfactants aid to form

Micro-
emulsions

Liposomes/
Bilayers

Gel

Liquid 
crystallines

Figure 3. Example functions of surfactants other than decreasing surface or interfacial ten-
sion and different structures surfactants help to build. [15, 16] 
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2.2.3 Cationic Surfactant 

Cationic surfactants dissociate in water as an amphiphilic cation with the counter ion 

being often a halogen, such as Cl- or Br-. Almost all cationic surfactants are amine salts 

and quaternary ammoniums. The properties, such as water solubility, of cationic surfac-

tants depend on the amount of hydrophobic long fatty alkyl substituents attached to the 

nitrogen. [15] 

Cationic surfactants are less widely used than anionic or nonionic surfactants, mainly 

because more expensive manufacturing. Therefore cationic surfactants are only used in 

applications in which (1) no cheaper substitute is available, such as biocides, or as pos-

itively charged substances that adsorb to negatively charge substrates to provide anti-

static effects or corrosion inhibition. [15] Examples of cationic surfactants are N-dodecyl 

pyridinium chloride (Figure 2) and 1-hexadecylpyridinium chloride (cetylpyridinium chlo-

ride). 

2.2.4 Amphoteric Surfactant 

Amphoteric or zwitterionic surfactants are single molecules that exhibit both anionic 

and cationic dissociation in water [15]. The hydrophilic part of the amphoteric surfactant 

contains both the negatively and positively charged functional groups, often only sepa-

rated by a few carbon atoms. The hydrophobic part is similar to other surfactants, for 

example a long alkyl chain. 

Amphoteric surfactants are based on synthetic betaines or sulfobetaines and natural 

compounds, such as amino acids or phospholipids, such as lecithins. The ionizable func-

tional groups and properties, such as water solubility and surface activity, of amphoteric 

surfactants can be pH insensitive (sulfobetaines) or pH sensitive (amino acids). 

Amphoteric surfactants are generally expensive and therefore used (1) as co-surfactants 

to modify and improve the performance of a primary surfactant because compatibility 

with both anionic and cationic surfactants [17]. Other uses are (2) when biocompatibility 

and low toxicity override the higher price of surfactant, such as in cosmetics [15]. An 

example of amphoteric surfactant is dodecyl betaine (Figure 2). 

2.3 Polymeric Surfactants 

Surface active polymers (polymeric surfactants) are macromolecules which are sur-

face active and have multiple polar hydrophilic and nonpolar hydrophobic parts, and are 

surface active [15]. The location and segregation of the nonpolar and polar functional 
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groups is not however as well-defined as for small molecule surfactants. [15] The de-

tailed chemical structure of especially bio-based polymers and to an extent of synthetic 

polymers varies more than for small surfactant molecules. 

Polymeric surfactants can be either polyelectrolytes or nonionic polymeric surfactants. 

Polyelectrolytes are polymers with ionizable anionic, cationic or amphoteric functional 

groups, such as poly(carboxylate ethers) (PCE) (Figure 4). 

Polymeric surfactants can be divided to block and graft polymers (Figure 4). In the block 

polymer, hydrophilic monomers (H) are linked to each other and lipophilic (L) monomers 

have done the same. In graft-polymers different functional groups and small segments 

of other monomers are attached to the main polymer chain. [15, 18] While the graft pol-

ymers are the more common type of a polymeric surfactant [15], synthetic polymeric 

surfactants can be block or graft polymers. 

Polymeric surfactants are a loose class of surfactants that can be divided to synthetic, 

petroleum-based, polymeric surfactants and to bio-based surfactants. The petroleum-

derived polymeric surfactants are made from well-defined monomers, for example eth-

ylene oxide, while bio-based polymeric surfactants are extracted and modified from nat-

ural sources as the main- or byproduct. 

2.3.1 Synthetic Polymeric Surfactants 

Homopolymers such as polyethene or polypropene have poor surface activity, especially 

at liquid/liquid interfaces. This is because simple polymers made from one monomer 

does not have hydrophilic and hydrophobic parts [18]. The common synthetic polymeric 

Figure 4. Types and examples of polymeric surfactants. Adapted from [15]. 
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surfactants are made from two or more monomers that provide hydrophobic and hydro-

philic parts.  

Synthetic polymers are the most used polymeric surfactants. Main examples of synthetic 

polymeric surfactants are poly(ethylene oxide)-block-poly(propylene oxide copolymers, 

PCEs [15, 18], ethoxylated or sulfonate condensates [15], such as naphthalene sulfonate 

condensates (Figure 4). 

2.3.2 Bio-Based Polymeric Surfactants 

A bio-based polymeric surfactant means a natural or slightly modified polymer that is 

derived from non-petroleum origins. Bio-based polymeric surfactants can be loosely de-

scribed as graft-type polymeric surfactants with more complex structures than synthetic 

polymeric surfactants. 

Commercially used examples of bio-based polymeric surfactants are lignosulfonates, 

(modified) polysaccharides, such as starch, carboxymethyl and carboxyethyl cellulose, 

gum arabic, xanthan gum and pectin. [15] Especially derivatives of polysaccharides have 

been studied and applied as bio-based polymeric surfactants [19]. The polysaccharides 

have monosaccharides linked by glycosidic bonds to form the main chain of the polymer 

and multiple graft-like substituents attached to the main polymer chain. Even as complex 

polymers as lignins have three monomers that repeat throughout the polymer, covalently 

bonded in different ways and to which different functional groups are attached, depend-

ing on the botanical origin but also on the extraction process. 

2.4 How Surfactants Work and Why Are They Needed? 

The migration and adsorption of a surfactant to the surface alters the Gibbs free energy 

of the surface. All surfaces have surface or interfacial tension (γ) that describes how easy 

or difficult it is to increase the surface area. Substances that have high surface tension, 

such as water in contact with air, have high attractive, intermolecular forces between the 
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molecules of the substance. As surfactants adsorbs to the interfaces, they break these 

intermolecular interactions and decrease the surface or interfacial tension. The surface 

tension changes depending on (1) how much surfactant is adsorbed to the surface and 

(2) orientation of the surfactant molecules on the surface. A lower surface tension means 

that it requires less energy to increase surface area of a substance. [16]  

Surface and interfacial phenomena are crucial in dispersions. As dispersion is mixture of 

small particles of one substance (dispersed phase) evenly spread in other substance 

(continuous phase), there is huge interfacial areas between the two phases [7]. While 

surfactants decrease the interfacial tension and therefore allow for more surface area 

between different phases, the thermodynamics most often favor the decrease in surface 

area. [16] How can dispersions then seem stable for extended periods of time and how 

to prevent sedimentation, creaming, flocculation or coalescence that are caused by in-

termolecular forces between dispersed phase particles?  

Surfactants can stabilize a dispersion by forming activation energy barriers for the dis-

persion breakdown (Figure 5). To counteract attractive forces between dispersed phase 

particles, it is necessary to create repulsive forces between them that, which make stable 

dispersions. [16]  

There are two main types of stabilizing repulsions that surfactants can facilitate between 

the dispersed phase particles: electrostatic repulsion and steric repulsion (Figure 6). 

Electrostatic repulsion is a mechanism that prevents aggregation of dispersed phase 

particles by electrostatic forces and prevents the attractive shorter-distance intermolec-

ular forces [5]. The electrostatic repulsion is an especially important phenomenon for 

aqueous dispersions and ionic surfactants. The role of the electrostatic repulsion with 

Figure 5. Schematic representation of (free) energy path for dispersion breakdown. Solid and 
dashed line indicate breakdown without and with surfactants, respectively. Adapted from [16]. 
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nonionic surfactants or non-aqueous dispersion is more unclear. On the other hand, ste-

ric repulsion is related to all polymeric and nonionic surfactants, which adsorb to the 

surface of the dispersed phase particles. Steric repulsion caused by large polymeric sur-

factants works by volume-restriction and making the approach of dispersed phase parti-

cles energetically unfavorable. [7, 16] The type and structure of surfactants have signifi-

cant effect whether electrostatic, steric or both mechanisms are important for dispersion 

stability. 

2.4.1 How Polymeric Surfactants Work? 

For polymeric surfactants to work as efficient surfactants and to be able to stabilize dis-

persions, they must fulfill certain criteria: (1) they must adsorb strongly to the surface of 

the dispersed phase particles, (2) completely cover the dispersed phase particles with 

proper orientation, (3) strong solvation of the relevant parts of the polymeric surfactant 

in the continuous phase to stabilize dispersions and (4) reasonably thick adsorbed layer 

of polymeric surfactant. [18]  

Firstly, to work as surfactants polymers need to adsorb on the surface of the dispersible 

particles [18, 20]. Polymeric surfactants are adsorbed to interfaces by different intermo-

lecular interactions, such as van der Waals forces, hydrogen bonding and ion exchange. 

The combination and strength of the different adsorption forces depend on the surface 

of the dispersed phase particles and type of the polymeric surfactant. 

Secondly, adsorbed polymeric surfactants must cover the interface completely to provide 

dispersion stability [18]. Polymeric surfactants cannot pack as many molecules and as 

tightly to the interfaces as small molecule surfactants. With uncomplete coverage of the 

dispersed phase particle, a single polymer has room to adsorb to the surface of two 

Figure 6. Schematic presentation of repulsion mechanisms to stabilize dispersed phase par-
ticles; on the left, electrostatic repulsion and on the right steric repulsion. 
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different dispersed particles and thus link the dispersed particles. In this case, bridging 

flocculation and breakdown of dispersion can happen instead of repulsion and dispersion 

stability. [7, 13] The bridging is a desired phenomenon for example in waste-water treat-

ment or other sedimentation processes, but not when stable dispersions are desired. 

Because less tight packing of polymeric surfactants to the surfaces, polymeric surfac-

tants are not as good as small molecule surfactants in decreasing the surface or interfa-

cial tension [10]. High concentrations of polymeric surfactant is required to achieve sim-

ilar reduction in surface tension as small molecule surfactants [19]. Polymeric surfactants 

are also less optimal in applications in which kinetics and fast reduction in interfacial 

tension are important [10], such as manufacturing of dispersion with small particle sizes 

in short time. Polymeric surfactants might not reach adsorption-desorption equilibrium at 

the surface of dispersed particle instantly, especially if polymeric surfactants have low 

diffusion rates and electrical charges are involved [21]. However, polymeric surfactants 

excel when long-term dispersion stability is important. While polymeric surfactants re-

duce interfacial tension only to an extent, electrostatic repulsion, steric stabilization and 

viscosity are the primary mechanisms how polymeric surfactants stabilize dispersions. 

The most significant factor that affect the steric stabilization is the thickness of the ad-

sorbed polymeric surfactant layer on the surface of the dispersed phase particles [7]. 

Often polymeric surfactants, especially polyelectrolytes, cause both electrostatic and ste-

ric repulsion (electrosteric stabilization) and the more dominant mechanism for disper-

sion stability depends on myriad of factors [6, 7]. The structure, type and concentration 

of the surfactant and dispersion, but also temperature, pH and electrolyte content affect 

dispersion stability [22]. 

Polymers also often affect the bulk viscosity of the dispersions. Higher viscosity of dis-

persions reduce the rate of creaming and sedimentation and thus increase the dispersion 

stability. [7, 16] Sometimes the main function of a polymer in a dispersion is to work as  

‘’viscosity enhancer’’ [7, 15]. An example of a polymeric surfactant that work mainly as 

thickening agent is carboxymethyl cellulose [15]. Other hydrophilic biopolymers, gums, 

that work by modifying the rheology and texture of dispersions are often referred as hy-

drocolloids especially in food and cosmetic products [7, 13, 23]. 
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The discussed mechanisms (interfacial tension, electrosteric stabilization, viscosity) for 

dispersion formation and stability are those related to surfactants. Moreover, there are 

various other factors that affect stability, structure and other properties of dispersions 

(Figure 7). There is also correlation and interplay between different phenomena of dis-

persions. For example, solubility of a surfactant and viscosity of dispersion are temper-

ature related phenomena. 

•Surface/interfacial tension

•Electrostatic repulsion

•Steric repulsion

•Bulk viscosity and rheology

•Affinity/solubility of surfactant to dispersed phases

Surfactant related parameters

•Temperature

•pH

•Salinity

• Impurities (proteins, etc.)

•Unadsorbed polymers and amphiphiles

Dispersion ’’environment’’ related parameters

•Particle size of dispersed phase

•Dispersity

Dispersion preparation related parameters

•Dispersion type (emulsion, suspension, foam)

•Density difference between phases

•Ratio of dispersed phase to continuous phase

Dispersion phase related parameters

Figure 7. Parameters that affect stability of dispersions. There is correlation between differ-
ent parameters, for example temperature affects solubility of surfactants. 
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3. LIGNIN 

Lignin is a complex amorphous, phenolic biopolymer found in the cell walls of lignocellu-

losic biomass, such as woods and annual plants [4, 24]. It is the main constitute of ligno-

cellulose, alongside cellulose and hemicellulose [4] and the most abundant natural aro-

matic polymer [24, 25]. Amount of lignin is 24–33 wt% (weight percent) of dry mass in 

softwoods (gymnosperms), 18–28 wt% in hardwoods (angiosperms) and 15–25 wt% in 

cereal straws, bamboo or bagasse [4, 26]. The biochemical function of lignin in cell walls 

is to provide rigidity, aid in water transport and to provide resistance to degradation by 

micro-organisms [26]. 

Lignin is a polymer of 3 precursors (monolignols): coniferyl, sinapyl and p-coumaryl al-

cohols. In lignin polymers, the monolignols are referred as guaiacyl (G), syringyl (S) and 

p-hydroxyphenyl (H) units, respectively (Figure 8). The amount of these monolignols vary 

depending on the botanical origin of the lignin. Softwood lignins contain mainly G-units 

and little H-units (Figure 9), while hardwood lignins contain mixture of G- and S-units. 

Straws and grasses have greater mixture of all the three monolignols. [4, 17, 27] 

There are various covalent bonds between the different monolignols to form the lignin 

polymer, but the bonds can be roughly divided to carbon-carbon (C-C) or carbon-oxygen 

(C-O) bonds [27]. The C-O bonds in lignin are alkyl or aromatic ethers or ester bonds, 

and the most abundant bond type is the aryl ether β-O-4 linkage (Figure 10), which is 

the main covalent bond susceptible to pulping, bleaching and biological degradation [24, 

Figure 8. Chemical structures of lignin precursors (monolignols).  
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27]. The C-C linkages are more difficult to break without significant fragmenting of the 

lignin structure [27]. 

Lignin contains naturally many functional groups, which of phenolic and aliphatic hy-

droxy, methoxy, carbonyl and carboxylic acid functional groups have the greatest impact 

on the reactivity of lignin. The type and amount of different functional groups, and other 

features of lignin, depend on the botanical origin but also on the pulping technology. [27, 

28] 

Figure 9. Illustration of hardwood lignin structure. Adapted from [157]. 

Figure 10. Illustration of softwood lignin structure. Adapted from [157]. 
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3.1 Technical Lignins 

Lignocellulosic biomass contains cellulose, hemicellulose and lignin, which are tightly 

bounded together in the plant cell walls. The lignin crosslinked with celluloses in woods 

and other lignocellulosic biomasses is often referred as a native lignin. Fractionation of 

lignocellulose to its main components is required to obtain isolated cellulose, hemicellu-

lose and lignin, which have a technical and commercial value. The lignins obtained from 

different pulping and fractionation processes are referred as technical lignins [26] and 

the fractionation processes can be physical, chemical, biochemical or thermomechanical 

treatments [24]. 

Chemical fractionation technologies are utilized to fractionate lignocellulose to cellulose, 

hemicellulose and lignin. Chemical fractionation technologies are often referred as pulp-

ing processes or technologies. At the commercial scale the main pulping technologies 

are sulfite and sulfate (kraft) pulping (Figure 11) [4, 25], while soda pulping is used in 

some small pulp mills for non-wood feedstocks [25]. In addition to the sulfur-based pulp-

ing technologies, there are under renewed development interest alternative pulping tech-

nologies [25]. The alternative pulping technologies aim to separate cellulose, hemicellu-

lose and lignin with good yields and qualities, avoid wasting any material and thus create 

increased value [24] compared to conventional pulp mills, that focus mostly on cellulose 

(pulp) recovery, while the rest of the biomass is typically burned for energy as a form of 

black liquor. However, the existing sulfite and sulfate pulp mills are also increasingly 

Figure 11. Representation of chemical pulping technologies, example pulping conditions and 
chemicals, and what type of lignin is obtained. Depending on the pulping technology, lignins can 

be water-soluble (lignosulfonates), alkali lignins or organosolv lignin. Adapted from [24]. 
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developed towards the ‘’biorefinery’’ concept, with extraction and recovery of other lig-

nocellulosic components than just cellulose. The commercial examples of other compo-

nents produced during the conventional pulping processes are technical lignin, turpen-

tine and tall oils. The global production volume of different lignins by chemical pulping 

technologies was 50–70 x 106 metric tons per year (Mta), of which only 1–2 % is actually 

is isolated from the black liquor [24, 25]. 

While lignin is produced during the chemical pulping processes, residual lignins are also 

available as a by-product from bioethanol production and steam explosion technologies 

[4]. These technologies and residual lignins are however quite different in their chemical 

structure compared to lignins obtained from chemical pulping processes and are thus 

not considered further in this thesis.  

The chemical pulping technologies aim to dissolve lignin from the lignocellulosic matrix 

with aid of heat and chemicals [29]. Lignins from different pulping processes are different 

in terms of their chemical structure and properties. Terms like lignosulfonate, organosolv 

lignin, kraft and soda lignin (alkali lignins) are used to classify and highlight the differ-

ences between the lignins and pulping processes (Figure 11). Different lignins are dis-

cussed in greater detail in subsections, but overview of the lignins is presented in Table 

Table 4. Comparison of some physicochemical properties of technical lignins. SW = soft-
wood, HW = hardwood, annual = grasses, straws. LS = lignosulfonate, KL = kraft lignin, SL = 

soda lignin, OL = organosolv lignin. 

 LS KL SL OL 

Feedstock SW, HW, annual SW, HW HW, annual SW, HW, annual 

Production Scale Industrial Industrial Industrial Demonstration/Pi-

lot 

Separation methods Ultrafiltration Precipitation (pH), 

Ultrafiltration 

Precipitation (pH), 

Ultrafiltration 

Precipitation, Dis-

solved air flota-

tion 

Solubility (example solvents) Water Alkali, DMF, Pyri-

dine, DMSO, 2-

methoxyethanol 

Alkali Alkali, organic 

solvents 

Mw (103 g mol-1) 3-150 1.5-5.0 0.8-3.0 1.0-8.0 

Đ 4.0-8.0 2.0-4.0 2.5-3.6 1.5-2.7 

Total phenolic OH (mmol g-1) 3.0-4.0 3.2-5.6 2.2-2.7 3.3-4.0 

Total carboxyl (mmol g-1) 0.4 0.4-0.9 0.6-1.0 0.3-0.4 

Acid soluble lignin (wt%) - 1-5 1-11 1-8 

Polysaccharides (wt%) 

0-28 0-14 1-7 1-5 
Monosaccharides (wt%) 

Sulfur (wt%) 4-9 1-3 traces traces 

Nitrogen (wt%) 0.02 0.05 0.2-1.0 0-0.3 

Sources [24, 30, 55, 107] [24, 30, 107] [3, 24, 30] [24, 25, 26, 30] 
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4, from the perspective of few physicochemical properties relevant to dispersion appli-

cations and use of lignins as polymeric surfactants. 

3.1.1 Lignosulfonates 

Lignosulfonates (LSs) are water-soluble polyelectrolytes obtained from sulfite pulping 

of lignocellulosic biomasses. Extracted LSs are commercially available with multiple es-

tablished applications [4, 30] as dispersants, binders, dust-control agents, adhesives and 

antioxidants [24]. Of the isolated ~2 Mta of lignins globally, the vast majority are ligno-

sulfonates, with approximate volume above 1 Mta [26, 29]. 

Sulfite (SO3
2-) and bisulfite (HSO3

-) ions are the reactive species in sulfite pulping [31], 

because of the pulping chemical sulfurous acid (H2SO3) and its salts. Sulfite pulping can 

be done in various conditions, but typically acidic conditions (pH 1–5) are used. At a 

temperature of 140 °C [24], lignin is depolymerized by acidic cleavage of ether bonds 

[31], but mainly lignin is dissolved to white liquor by introduction of sulfonate functional 

groups to the structure of lignin. LSs are generally soluble in a wide pH range (2–12) and 

thus recovered from black liquor by ultrafiltration, ion exchange or in the special cases 

by excess lime precipitation (Howard process) [26, 32]. 

Lignosulfonates (LSs) are unique compared to other lignins because they are soluble in 

alkaline but also acidic solutions in a wide pH range [24, 26, 30]. LSs are also soluble in 

some highly polar organic solvents and amines [26]. LSs are soluble in aqueous solu-

tions because high degree of ionizable sulfonate functional groups, mainly attached to 

the aliphatic side chain of monolignols (Figure 12) [24, 31]. 

Figure 12 Illustrative structures of lignosulfonates and kraft lignins. M in lignosulfonate indi-
cates counterion, such as Na+ or Ca2+. Adapted from [26, 29, 30]. 
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Types and quality of different lignosulfonates vary largely. LSs have high number (Mn) 

and weight average molar masses (Mw) and dispersity (Đ = 6–8) compared to other lig-

nins [24, 26]. LSs can have Mw as high as 150 000 g mol-1, but more typical is 5 000–

20 000 g mol-1 [26]. Unpurified LSs have lignin contents of ~70–75 wt% of the dry matter 

[26]. Contamination by the carbohydrate residues [25, 26], cations used in the sulfite 

pulping (Na+, NH4
+, Ca2+, Mg2+) and ash affect the properties, reactivity and hence usa-

bility of LSs [24, 25, 26]. Furthermore, compared to kraft lignins, LSs contain more sulfur 

[24, 26], mainly in form of aforementioned sulfonate functional groups. High amounts of 

inorganic sulfur is undesirable, as its removal add environmental problems and expenses 

to the sulfite process and lignin extraction. [26] 

Lignosulfonates are well-established components in formulations of various dispersants, 

plasticizers and other surface- and dispersion-related applications. The water solubility 

and anionic sulfonate functional groups allow LSs to be readily used in dispersion appli-

cations. As a high molar mass polymer, adsorption and thus dispersion performance of 

LSs is however hindered in specific applications. 

3.1.2 Kraft Lignin 

Lignins from sulfate pulping are referred as sulfate lignins or kraft lignins (KLs). Sulfate 

pulping is the dominant pulping technology of the pulp and paper industry, but KLs iso-

lated from black liquor are only available in quantities of 100–200 x 103 metric ton per 

year (kta). [4] Most of the lignin is burned for energy in the recovery boiler [29]. However, 

if the recovery boilers are the bottleneck of the pulp production, there is incentive for 

lignin extraction. Additional driver for lignin production is the desire to sell lignin for higher 

value applications than burning and energy. 

Sulfate pulping uses mainly sodium hydroxide (NaOH) and sodium sulfide (Na2S) as 

pulping chemicals [24]. Lignin is partially depolymerized in the alkaline conditions at tem-

peratures of 150–180 °C for 2 hours and thus dissolved in the white liquor [4, 26]. KL is 

isolated from black liquor by different extraction technologies consisting of acid (CO2 and 

H2SO4) precipitations and ultrafiltrations [26, 33]. Few commercially available extraction 

technologies focusing on KL extraction are for example Lignoforce™ and Lignoboost™ 

(developed by Innventia, owned by Valmet) [33]. 

KLs are characterized by small amount of sulfur (1–3 %) covalently bound to lignin [24, 

26] in form of aliphatic thiol (-SH) groups (Figure 12), which give KLs a characteristics 

odor especially during heating [25]. The thiol functional groups are introduced mainly to 

β-carbons of KLs [29] because of sulfide (S2-) and polysulfide chemicals used in the sul-

fate pulping [34]. Episulfide and subsequent thiol functional groups increase the sulfur 
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content of KLs, but these functional groups are unstable and easily lost during the pulping 

processes [35], and thus KLs have lower sulfur content than LSs [24, 35]. 

Incorporation of thiol (pKa = 13) and phenolic hydroxy functional groups (pKa = 10) [24, 

25], and high amounts of condensed structures [24], KLs are poorly soluble in anything 

else but alkaline solutions and few selected organic solvents [25], such as pyridine, di-

methyl sulfoxide (DMSO) and dimethylformamide (DMF) [30]. The presence of hydrox-

ide, sulfide and bisulfide (HS-) ions during sulfate pulping also cause decrease in Mw of 

KL by cleaving the ether bonds of lignin [34], especially the β-O-4 bonds. 

Few commercial applications have been developed for KLs in the recent years. KLs can 

replace for example phenol in phenol-formaldehyde resins used for plywood, laminated 

veneer lumber and oriented strand board gluing. Other potential high value applications 

are for example carbon fiber production, biocomposites and energy storage applications. 

3.1.3 Soda Lignin 

Alkaline or soda pulping is used to produce soda lignins (SLs), mainly from annual 

plants, such as straws, bagasse and flax, and to some extent from hardwoods [24, 25, 

29]. Soda pulping with NaOH is used in small capacity commercial pulp mills utilizing 

agricultural residues or annual plants as feedstocks. Because of the smaller size of con-

ventional soda pulp mills compared to sulfate and sulfite pulp mills, soda pulp mills can-

not develop capital-intensive systems for handling and recycling large amounts of spent 

cooking chemicals. However, the recovery of lignin could reduce the environmental im-

pact of these smaller mills. In addition to the conventional soda pulping, new pilot scale 

(modified) soda pulping technologies have emerged with concept to produce high quality 

cellulose, hemicellulose and lignin as a primary focus. [25] The global production volume 

of these new SLs is 5-10 kta [29]. 

In soda pulping NaOH is used fractionate lignocellulosic biomass at pH = 11–13 and 

temperatures of 150–170°C [24]. Lignin is partially depolymerized and dissolved to the 

white liquor, of which it can be extracted by acid precipitation with mineral acids, followed 

by subsequent purification steps, similarly to kraft lignin [24, 25]. Soda lignins do not 

contain covalently bound sulfur and only trace amounts of sulfur, if SL is acid-precipitated 

in the isolation process with H2SO4. Structurally SLs are relatively unmodified especially 

compared to KLs and LSs [30], but also even to organosolv lignins, because lack of 

harsh reactive chemicals like sulfate or sulfite ions or organic acids (Figure 13). 

Solubility of SLs is quite similar with those of other alkali lignins, such as KL [24]. SLs 

are soluble in alkaline solutions [24] and in selected organic solvents. Absence of sulfur, 
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low average molar masses, low Đ, high phenolic hydroxy content are some of the prop-

erties that make SLs attractive towards high-value applications. [24, 25]. 

3.1.4 Organosolv Lignin 

In the organic solvent processes water-soluble organic solvents are used to fractionate 

lignocellulosic biomass. The main products of organosolv processes are cellulose and 

organosolv lignin (OL) [24, 29]. Depending on the details of the organosolv process, 

hemicelluloses in form of monosaccharides and other side products, such as furfural, are 

possible. While utilization of organic solvents for pulping of biomass has been proved at 

a demonstration scale since the 1989 [25, 26], in recent years the field has gained re-

newed interest and more demonstration scale facilities because emergence of biorefin-

ery concepts. Currently, there are handful of pilot and demonstration scale organosolv 

pulping processes under development, and small quantities of OLs are available (~3 kta) 

[29]. 

Organosolv pulping technologies vary on the choice of organic solvents, catalysts and 

temperatures. For example processes based on ethanol, formic acid and acetic acid are 

proven at pilot scales. [24] Organic acids and bases with organic solvents or water are 

often used to enhance pulping rates. Process temperatures of 100–220°C, pressures of 

1–5 bar and reaction times of 1–4 h indicate the variance in organosolv processes. OLs 

are extracted from the black liquor by adjustment of pH or temperature and solvent dis-

tillation. [26] 

Figure 13. Illustrative structures of soda and organosolv lignins. Adapted from [26, 29, 30]. 
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Organosolv lignins do not contain sulfur in their structure [30], because the process is 

done without sulfur-containing chemicals (Figure 13). OLs are hydrophobic, and thus 

mainly soluble in nonpolar organic solvents and to some extent in alkaline solutions. [24, 

25] The physicochemical properties and potential applications of OLs are quite similar to 

other alkaline soluble lignins, such as soda and kraft lignins  [24, 25] 

3.2 Lignins As Surfactants and Relevant Physicochemical 

Properties 

Lignins can be described as grafted polymers that have hydrophobic, aromatic backbone 

and grafted hydrophilic functional groups. Thus lignins show properties of amphiphilic 

polymeric surfactants, similar to other anionic polyelectrolytes. [19, 21, 36]  

Kraft lignins can reduce surface tension of water down to 45–65 mN m-1, depending on 

concentration (0.01–2 wt%) and Mw of the KL [37, 38]. With high concentration of KLs 

(10 wt%), surface tensions as low as 30–35 mN m-1 have been achieved [19, 39], while 

typical surface tension values are higher. KLs show the most surface activity in the first 

10–20 minutes, but equilibrium activity and adsorption are reached only after 3–20 h [19, 

37]. This kinetic behavior is similar to other polymeric surfactants, such as LSs [37], 

which show slow diffusion rate and kinetics of adsorption to the surfaces. Adsorption of 

KLs as surfactants is suspected to be irreversible [19]. 

Soda lignins show surface activity in alkaline solutions, with surface tensions of 45–

70 mN m-1. The surface tension decreases more with increase in concentration (0.01–

5 wt%) and pH (7–10) of the alkaline solution. As for KLs and LSs, the complete equilib-

rium surface activity is achieved after about 10 h for SLs. The pH of acid-precipitation 

and drying of the SL during the isolation of SL from the pulping processes have none or 

minor effects on the dispersion performance of SLs. As higher Mw lignin polymers are 

precipitated first at higher pHs because less ionizable functional groups per polymer, the 

effect of low Mw lignin polymers precipitated at lower pH have no significant additional 

effect on the dispersion performance or surface activity of the SLs. Thus, the alkaline 

black liquor and dried SL have quite similar surface activities. [21] 

Lignosulfonates reduce surface tension to values of 40–65 mN m-1 at concentrations of 

0.1–10 wt% [40, 41, 42], indicating weak surface activity. While increase in concentration 

of LS decrease the surface tension, the dependence of surface tension on pH is not as 

clear as for alkali lignins. Reduced surface tension caused by LSs is constant for pH 

range 7–12 and decrease when pH decrease below 5–7. [40, 41] Similarly to other lig-

nins, the static (equilibrium) surface tension is achieved only after 1 hour or later. [40] 
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In addition to the increased water solubility compared to alkali lignins, the sulfonate func-

tional groups of LSs influence the adsorption and dispersion performance of lignosul-

fonates [43, 44, 45] and thus can result in different dispersing behavior than caused by 

alkali lignins. Adsorption of LSs to the surface of dispersed phase particles is important 

for the overall dispersion performance of LSs and stability of dispersions. LSs have ani-

onic sulfonate functional groups, in addition to carboxyl functional groups found in all 

technical lignins, that provide dispersion stability via electrostatic repulsion. Furthermore, 

hydrophobic and aromatic phenyl propane structures found in all lignins can facilitate pi-

interactions with aromatic hydrophobic dispersed phases particles, such as disperse 

dyes or carbon blacks. [46] 

3.2.1 Purity 

Purity of lignins depend on the botanical origin, pulping conditions [28] and washing of 

the lignin in isolation processes. Main impurities of lignins are ash, mainly in form of 

silicates and metallic cations, carbohydrates and proteins. Sulfur is not a significant nat-

ural constituent of lignin, but more of a result of sulfite and sulfate pulping and isolation 

processes of lignins [25]. 

The ash content of different dry alkali lignins varies between 0.2–13.7 wt% [28], while 

LSs can have ash and impurity contents as high as 18–33 wt% [28, 42]. Especially alkali 

lignins and organosolv lignins obtained from non-wood feedstocks, such as rice straws, 

contain large amounts of silica. Silicates can co-precipitate with the lignin for example 

during the acid precipitation of alkali lignins [25]. Inorganic content can be reduced by 

efficient washing of raw material feedstock before the pulping and further washing of the 

isolated lignin. 

The carbohydrates in form of (hemi)celluloses and monosaccharides can affect how lig-

nins perform in dispersions as polymeric surfactants. The amount of monosaccharides 

in the technical lignins are typically below 3 wt% (Table 4) [28, 36], while amount of oligo- 

and polysaccharides can be higher. A low carbohydrate content is important when lignin 

is used for example as a concrete plasticizer, as sugars can retard the hardening of 

cement or concrete. Typically, carbohydrates contents below 2 wt% in LSs is desired for 

these applications [28]. On the other hand, less purified LSs show more decrease in 

surface tension of water. [36, 40]. Thus, the role of carbohydrates in lignins used as 

polymeric surfactants is application dependent and not yet clear. 

Another impurity found in lignin can be proteins, which can be coextracted from lignocel-

lulosic biomass during the pulping and fractionation processes. The amount of amino 

acids and proteins in lignins can be up to 7–8 wt% [28], especially when non-wood based 
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feedstocks, such as wheat and rice straw, are used. How protein residues and other 

contaminants affect the dispersion performance of lignins is application dependent and 

often unclear [25]. 

3.2.2 Solubility 

Lignins can be divided to two classes based on their solubilities in water at different pHs. 

Sulfonated lignins (mainly lignosulfonates) are water-soluble because they contain sul-

fonic functional groups [25], which have pKa less than 2. On the other hand, alkali lignins 

including kraft and soda lignins, and organosolv lignins are completely soluble in alkaline 

solutions when pH is above 10. Alkali and organosolv lignins have phenolic hydroxy 

groups (pKa = 9–10) as the main ionizable functional groups, which when deprotonated, 

make alkali lignins soluble in water. [25, 47] Presence of other functional groups, such 

as carboxyl functional groups (pKa = 4–5) [48] and possible thiol functional groups 

(pKa = 13), molar mass, average particle size and degree of condensation are few of the 

other parameters that affect lignin solubility in different solvents. 

The higher the pH of aqueous solution, more surface active and better dispersants alkali 

lignins are [21, 38, 39]. Higher the pH of the solution, more of the ionizable phenolic 

hydroxy and carboxyl functional groups of alkali lignins are deprotonated. This makes 

alkali lignins more water-soluble, increases electrosteric repulsion potential of lignins as 

surfactants and possibly allow for improved adsorption of lignin at the surface of dis-

persed phase particles.  

3.2.3 Molar Mass 

Weight average molar masses (Mw) of technical lignins vary depending on the pulping 

process. LSs have Mw = 5 000–150 000 g mol-1, while KLs, SLs and OLs have typically 

Mw below 10 000 g mol-1. Dispersity (Đ) of lignins can be significant [49] and mainly de-

pendent on the pulping process and post-treatments, but also to some extent on botan-

ical origin of the lignin. Softwoods have generally higher Mw than hardwoods [37] and 

often LSs have higher Đ (=4–8) than alkali and organosolv lignins (Table 4). 

Surface activity and dispersing performance of KLs and LSs are dominated by their av-

erage molar masses (Table 4) [38, 49]. Higher Mw lignins are better at reducing surface 

tension [19, 37, 38] and for example as dye dispersants [49, 50], because increased 

adsorption to surface of the dispersed phase particles than lower Mw lignins [49]. Fur-

thermore higher Mw lignins have more favorable hydrophobic and hydrophilic balance 

caused by aromatic lignin backbone and ionizable functional groups, respectively [38]. 

Higher Mw of lignin can however increase the time to reach adsorption equilibrium [19, 
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37], because of increased size of lignin molecules and therefore decreased diffusion 

rate. To further add complexity, the correlation between Mw and surface activity of lignins 

is most certainly application dependent and cannot be extended cases where lignins are 

chemically modified. 

3.3 Chemical Modifications of Lignin to Dispersants 

Lignins contain variety of functional groups suitable for chemical modifications and there-

fore lignins are potential raw materials [24] to produce polymeric surfactants. The chem-

ical modifications can include sulfonations (lignosulfonate-like structures), oxidations, 

carboxyalkylations, grafting with poly(ethylene glycol), hydroxyoxylations and many 

more. [20] 

Alkali lignins are hydrophobic, which make their utilization difficult in water-based appli-

cations [20, 24]. Dispersions often involve water as a continuous phases or dispersed 

phase, and alkali lignins are insoluble in aqueous solutions below pH ~10, which are 

typically required for many dispersion applications. Improved water solubility is achieved 

by introducing hydrophilic and ionizable functional groups, and altering the Mw and Đ of 

lignins. Furthermore, chemical modifications can for example increase the adsorption of 

lignins to the surface of the dispersed phase particles and improve stability of dispersion 

by enhancing the electrosteric repulsions. Overall, lignins need to be modified to be used 

in high-value dispersion applications [51]. 

In comparison to for example cellulose, which has more well-defined and understood 

structure, the modifications of lignins are however challenging due to structural complex-

ity and steric hindrance. The most reactive positions for chemical modifications of lignins 

are free, non-condensed, phenolic hydroxy functional groups and unsubstituted aromatic 

ortho-positions next to those phenolic hydroxy groups, aliphatic hydroxy groups and α-

carbons of phenyl propane monomers (Figure 8). [52] 
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Summary of few of the chemical reactions to produce water-soluble and better perform-

ing polymeric surfactants and dispersion additives from lignins, is presented in Table 5. 

These class of reactions are chosen based on the different technological readiness lev-

els and type of lignins they produce. The different oxidations and especially alkali-oxygen 

oxidation (LigniOx technology) is discussed in more detail, because of its relevance to 

this thesis. 

3.3.1 Oxidations 

To obtain sulfur-free and high-performing lignin dispersants, other modifications than 

sulfonations need to be considered. Alkali lignins can be oxidized to improve solubility of 

lignins in aqueous solutions below pH 10 [35, 53] and make lignins more suitable as 

 

Table 5. Summary of the few potential chemical reactions to modify lignins towards disper-
sion applications. Oxidation reactions are discussed further in the subsections. 

Modification Sulfonation Oxidation Carboxyalkyl-

ation 

Amination 

Purpose Introduce sulfonate 

functional groups and 

slightly changes to 

molar mass and dis-

persity of lignin. 

Introduce carboxyl 

functional groups to 

the lignin, with con-

trolled degradation of 

lignin. 

Introduce carboxyl 

functional groups to 

lignin without degra-

dation of lignin. 

Introduce cationic 

amine functional 

groups to lignin and 

make lignin a cationic 

dispersant. 

TRL and scale 7-9 

Commercial scale at 

least in the past 

5-7 

Pilot and demonstra-

tion 

3-4 for lignin  

(9 for cellulose) 

1-3 

Reagents Na2SO3, formalde-

hyde 

O2 or H2O2 or O3 Chloroacetate Non-tertiary amine, 

formaldehyde 

Solvent Alkaline solution Alkaline solution Water, ethanol Water, dioxane 

Reaction conditions 50-140 °C 

pH 9-12 

2.5-4.0 h 

25-100 °C 

pH 2-14 

0.1-3.0 h 

40-90 °C 

 

1.0-4.0 h 

50-100 °C 

 

2.0-4.0 h 

Pros Makes lignin water-

soluble. 

Well-known, similarity 

to lignosulfonates. 

Improve dispersion 

performance of alkali 

lignins by introducing 

ionizable sulfonate 

groups. 

No pressure re-

quired. 

Makes lignin water-

soluble. 

Can be done with 

known bleaching 

chemicals and even 

with environmentally-

friendly oxygen. 

Can be done directly 

from alkaline black 

liquor. 

Sulfur-free can be an 

advantage. 

Short reaction time. 

Controllable degree 

of substitution. 

No degradation of 

lignin. 

Sulfur-free can be an 

advantage. 

No pressure. 

Reaction known at 

industrial scale from 

carboxymethylcellu-

lose production. 

Produces cationic 

surfactant for possi-

bly higher value ap-

plications. 

No degradation of lig-

nin. 

Sulfur-free can be an 

advantage. 

No pressure. 

Cons Toxic formaldehyde 

as one of the rea-

gents. 

Sulfonated lignins are 

not the best perform-

ing dispersants. 

Economical attractiv-

ity can be questiona-

ble. 

Requires separation 

of lignin from black 

liquor. 

Pressure required. 

Small molecule acidic 

degradation byprod-

ucts. 

Long reaction times. 

and poor reactivity 

(degree of substitu-

tion). 

Possible alcohol sol-

vents. 

Chloroacetic acid is 

hazardous alkylating 

agent. 

Low degree of substi-

tution and reactivity. 

Possible non-water 

solvents. 

Low TRL. 
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dispersants for aqueous solutions. [54] The improved water solubility can be caused by 

introduction of carboxyl functional groups either as substituents to the lignin structure or 

via depolymerization and oxidation reactions [35]. Different reagents, such as ozone (O3) 

and hydrogen peroxide (H2O2) in alkaline conditions have been used to oxidize lignins. 

Alkali lignins can be oxidized with ozone (O3). Alkali lignins can be used directly, as part 

of the black liquor, in oxidation reactions or lignins can be acid-precipitated and resolu-

bilized with NaOH, before following oxidiation with ozone. Typical ozone consumption is 

10–40 wt% of lignin and with increasing degree of ozonation, the pH of the aqueous 

solution in which lignin is soluble decreases (as low as pH 2). The increased solubility is 

mainly caused by formation of ionizable carboxylic functional groups followed from O3 

consumption. [54, 55] On the other hand, the Mw of ozonated kraft lignin increased from 

5000 g mol-1 up to 10 000 g mol-1 with steady increase of O3 consumption (10–40 wt% 

of lignin) [55]. While lignin undergoes oxidative cleavage of the aliphatic side chains and 

aromatic structures during the initial stages of the oxidation, the dehydrogenative repol-

ymerization of phenolic fragments occur during the ozonation by oxygen radicals; super-

oxides (·O2
-) and hydroperoxyl radicals (·OOH) at pH 10.5–12.4 and hydroxyl radicals 

(·OH) at pH 8.1–8.7. The increase in the amount of incorporated carboxylic acid func-

tional groups to the lignin and small degradation products decrease the pH steadily dur-

ing the ozonation if pH is not kept constant by steady addition of an alkali. [48, 55] 

Lignins can be also oxidized with another strong oxidizer, hydrogen peroxide (H2O2). 

The oxidation with H2O2 can be done in acidic [56] or alkaline conditions to dissolve lignin 

and to promote hydroperoxyl formation and thus oxidation efficiency of H2O2 [53]. 

The endothermic oxidation reaction with H2O2 is done at 60–100 °C, for 0.5–4 h, but it is 

suspected that oxidation with H2O2 is a fast process and reaction time can be shorter 

(Table 6). The oxidation with H2O2 increase the carboxyl group content and thus charge 

density of lignin and causes slight de- and repolymerization of the lignin, without affecting 

average molar mass significantly (Figure 14). [53, 56] As a result of the oxidation with 

H2O2, oxidized lignin becomes soluble in pH as low as 5. Side reactions include H2O2
 

Figure 14. Hydrogen peroxide oxidation products of alkali lignins. R indicates the rest of the 
lignin polymer. Adapted from [53, 56]. 
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decomposition and formation of quinone chromophores, which cause dark color of lignin 

(Figure 14 (3)). [53] 

According to a study, the estimation of raw material costs other than lignin to produce 

oxidized lignin with H2O2
 from kraft lignin are $358–$845 per product metric ton, assum-

ing that no chemicals are recycled [53]. Hydrogen peroxide has the advantage of being 

used already in the bleaching of cellulosic pulp and therefore widely available and known 

among the pulp and paper industry [53, 56]. 

While oxygen (O2) is not as strong oxidizers as ozone or hydrogen peroxide [59], tech-

nologies based on O2 in alkaline conditions have been developed due to economic and 

environmental interests. One of these technologies is discussed in the next section in 

more detail.  

3.3.2 Alkali-Oxygen Oxidation – LigniOx Technology 

LigniOx technology, an alkali-oxygen oxidation of lignins towards dispersant applications 

is developed and patented by VTT Technical Research Centre of Finland Ltd [57, 58]. 

The LigniOx oxidation increases hydrophilicity and solubility of various technical lignins 

in water and makes lignin suitable for example as a plasticizer in concrete and as a 

dispersant for TiO2, CaCO3 and gypsum suspensions [59, 60, 61]. Oxygen is environ-

mentally friendly oxidizing agent and widely used in the modern pulp bleaching industry 

[62]. 

In the LigniOx technology, dissolved lignin is oxidized under alkaline conditions by oxy-

gen (O2). The reaction conditions are represented in Table 6 and compared to other 

oxidation reagents and reactions discussed previously. 

Alkali-oxygen oxidation causes degradation of the lignin and increases the amount of 

carboxyl functional groups in the lignin macromolecule. The formation of the ionizable 

Table 6. Lignin oxidation conditions by different oxidation reagents and conditions. LigniOx 
technology is patented by VTT Technical Research Centre of Finland Ltd. 

Process LigniOx  H2O2 O3 

Temperature (°C) 60-80 25-100 25-100 

Time (h) 0.1-0.8 0.1-4.0 1.0-3.0 

Lignin concentration (wt% of solution) 0.75-25 10-24 1-25 

Oxidizer load (wt% of lignin) 12-50 12-60 - 

Oxidizer consumption (wt% of lignin) 8-13 - 10-40 

NaOH (wt% of lignin) 23-45 6-50 20-40 

Reaction pH 10-14 2-12 3-7 

Sources [60, 62] [53, 56] [54, 55] 
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functional groups in the lignin is mainly to due to conversion of the phenolic hydroxy 

functional groups to carboxylic acid functional groups. [20, 60] In the alkaline conditions, 

O2 reacts with phenolates (Figure 15 (2)) to form phenoxyl radicals (3). The phenoxyl 

radicals of the lignin are further oxidized to a short-living hydroperoxide anion (4) key 

intermediate (pKa = 12–13) that rearranges to primary oxidation products, resembling 

muconic acid or carbonyl structures. [62]  

Control of the pH above or below 12 determines the protonation of hydroperoxide anions 

of lignin and thus further degradation to secondary oxidation and small molecular prod-

ucts (Figure 15) [62]. The protonation of hydroperoxide anions (6, 7) of lignins occur 

below pH 12 and results in decomposition back to phenoxyl radicals (4) [62], which with-

out further oxidation can cause lignin condensation by 5-5 coupling reactions (5, 10) [35, 

62]. On the other hand, above pH 12, the degradation and depolymerization continues 

to secondary and small molecule degradation products. [62] Condensation by 5-5 cou-

pling does not consume phenolic hydroxyl groups in lignin, which are thus still able to 

react with O2 (10) [62]. 

The charged functional groups caused by LigniOx oxidation should preferably be part of 

the lignin polymers [35, 62], mainly in form of muconic acid-type structures (Figure 15 (8)) 

[62]. In addition, there are degraded small molecule acids that have also ionizable car-

boxyl functional groups which make LigniOx lignin solutions more hydrophilic. The 

amount of these low molar mass acids contributing to the charge measurements of lignin 

Figure 15. Lignin reaction schemes in alkali-oxygen oxidation. Reaction path is pH depend-
ent; below pH 12 condensation reactions occur and above pH 12 degradation reactions. 

Adapted from [164]. 
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maybe up to 10 wt% of the LigniOx lignins at pH 6. [60, 62] It is argued that alkali-oxida-

tion should minimize the degradation of lignin to small molecule non-lignin products; min-

imize condensation of lignin to less water-soluble material; and maximize the formation 

of carboxylate functional groups in the lignin structure [35]. 

While alkali-oxygen oxidation causes minor degradation of lignin, there are possible con-

densation reactions in form of 5-5 coupling (Figure 15 (5, 10)) [35, 62]. In addition to the 

choice of pH during the oxidation, the increase in lignin concentration (from 0.75 wt% to 

25 wt%) cause increase in Mw and Đ, which are indicators of the condensation reactions. 

[60, 62] The high lignin concentration favors the condensation coupling reactions be-

cause phenoxyl radicals are closer to each other during the oxidation [62]. Furthermore, 

increasing the lignin concentration makes the reaction solution more viscous, which 

makes diffusion of O2 harder and restricts availability of O2 taking part in degradation 

reactions during the reaction. This can result in higher pressures required during the 

oxidation. However, the high lignin concentration is desired if the product LigniOx lignin 

solution is used as such for example as a concrete plasticizer [62] and to reduce the 

production costs. 

Properties of unoxidized and LigniOx oxidized soda lignins and commercial dispersants 

are presented in Table 7. LigniOx oxidation increase the solubility of oxidized lignins 

down to pH 4–6 [62, 63]. The solubility of oxidized lignins increased despite the increase 

in Mw and Đ, because the increase in amount of ionizable carboxylic functional groups 

attached to the lignins [62]. Furthermore, the LigniOx lignins had similar or lower Mw and 

Đ as commercial lignosulfonate (WRDA 90D) and synthetic polycarboxylate dispersant 

(Glenium C151). 

Table 7. Weight average molar mass (Mw), dispersity (Đ) and charge density of unmodi-
fied and LigniOx oxidized soda lignins (LigniOx SL), commercial lignosulfonate (WRDA 90D, 

Grace) and synthetic polycarboxylate (Glenium C151, BASF) dispersants. [62] 

Dispersant Mw Đ Negative charge 

(at pH 6) 

Units g mol-1  mmol g-1 

Soda lignins 3800 1.9 1.5 

LigniOx soda lignins 3200-7300 1.9-2.8 3.2-6.9 

WRDA 90D 3000 1.8 - 

Glenium C151 16000 3.1 - 
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3.4 Applications of Lignins in Dispersions 

Polymeric surfactants are used in various applications and for example in cosmetics, 

paints, pharmaceuticals, oil drilling muds, cement, ceramics, asphalt, scale/corrosion 

prevention and waste water treatment. Besides synthetic polymers, sulfonated lignins 

are also used commercially as dispersants in some of these applications, such as in 

cement dispersing [52], dust control and pesticide formulations as a binder. [20] Kraft, 

soda and organosolv lignins are still under development phase towards dispersion ap-

plications and used in much less quantities than for example lignosulfonates. 

The dispersion applications where anionic polyelectrolytes are used are currently the 

most promising choice for lignin-based dispersants. Current examples of commercially 

used polyelectrolytes are different poly(carboxylate ethers) (PCEs), poly(acrylic acids) 

(PAAs), naphthalene sulfonate condensates and lignosulfonates. Dispersion applica-

tions which use lignosulfonates or have active patents related to other lignins are dis-

cussed in more detail below. However, as mentioned, there are myriad of other applica-

tions in which lignin-based dispersants could possibly be used.  

In the final section, oxidized LigniOx lignins and their potential, researched, applications 

are discussed separately because of relevance to this thesis. 

3.4.1 Cement and Concrete Plasticization 

Concrete is a mixture of aggregates (sand and coarse inorganic substances), cement, 

water and additives [60, 62]. Water is an essential part of the concrete mixture and plays 

a dual role: it provides concrete mixture a paste-like form that can flow easily, but also 

reacts with the cement to set and strengthen the concrete via hydration reactions [60]. 

While high amount of water is required for well-flowing concrete, low water-to-concrete 

ratio is required for strong and durable concrete [60, 62]. Therefore, a dispersant is 

added to a cement mixture to provide a well-flowing concrete, while the water-to-concrete 

ratio can be kept as small as possible [60]. An ideal dispersant would not affect any other 

properties than those desired; better flow and more even cement dispersion. However, 

any real dispersant causes unwanted side-effects such as, retardation of hydration re-

actions or introduction of air to the concrete mixture.  

Currently water-soluble sulfonated lignins are utilized in concrete as plasticizers. While 

the term plasticizer is often used when discussed about concrete formulations, the mode 

of action of lignin-based surfactants is to work as a dispersant of the cement. The com-

mercial dispersants for cement and concrete in order of decreasing performance: syn-

thetic PCEs > naphthalene sulfonate condensates > lignosulfonates [28, 62]. These are 
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anionic polyelectrolytes (polymeric surfactants) that adsorb to the surface of the cement 

particles (calcium aluminates and calcium silicates). Dispersing of the cement particles 

is caused by electrostatic repulsion of carboxylic and sulfonic functional groups of the 

adsorbed polyelectrolytes, while the branched and polymeric structure of these polyelec-

trolytes cause steric repulsions between the cement particles. [60, 62, 64] It is suspected 

in a study that steric repulsion is more effective mechanism of dispersion compared to 

electrostatic repulsion in cement and concrete applications [20]. The steric repulsion was 

the dominant plasticizing mechanism for PAA dispersants, but for naphthalene sulfonate 

condensates the electrostatic repulsion was more dominant dispersive mechanism of the 

cement particles [64]. 

3.4.2 Carbon Black and Kaolin Dispersions 

Special carbon blacks (CBs) are used as black color pigment for example in paints, inks 

and plastics. Amount of CB in a pigment suspension is 1–40 wt%, depending on the 

application. [20, 65] CB contains mainly carbon but is often grouped with other inorganic 

pigments, such as titan dioxide (TiO2) [66]. There is great variation on manufacturing 

process, particle size, color, exact composition and surface functional groups of different 

CBs [67]. 

Dispersants used for CB dispersions are anionic polyelectrolytes, for example PAA [20], 

LS [20, 65], naphthalene sulfonate condensates and alkyl benzene sulfonates [65]. Non-

ionic dispersants have been also used for CB suspensions [65]. The amount of disper-

sant in CB suspension varies between 0.02–30 wt% of the suspension [65, 66], depend-

ing on the application and the dispersant. 

Kaolin is a major clay mineral used in paper [68], mining and ceramic industries, for 

example as a pigment and a filler. Kaolin is aluminosilicate and the kaolin particles have 

both positive and negative surface charges over wide pH range (3.5–8.5). The commer-

cial dispersants for kaolin suspensions can be inorganic or organic [52]. Inorganic dis-

persants include sodium silicates, sodium carbonates and inorganic polyphosphates 

[52], while organic dispersants are PAAs [52, 61, 68], naphthalene sulfonate conden-

sates and LSs [68]. Examples of the chemical modifications to make lignin more suitable 

for dispersing kaolin are carboxymethylation [69], sulfomethylation [52] and oxidation 

[61, 63]. 
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3.4.3 Disperse Dyes 

Disperse dyes are hydrophobic dyes, that are insoluble in aqueous solutions [9, 70, 71]. 

They are azobenzene or quinone derivatives [50, 72] and used as dyes to color hydro-

phobic natural and synthetic fibers (polyesters) [50]. 

A great amount dispersant is required to form small particle size and stable dye suspen-

sions. Furthermore, the dispersant solution also work as a diluent of the dye. [50] During 

the dyeing process, only the dye should exhaust itself onto the fiber, while dispersant 

and other components should be left in the waste liquor [47, 50]. Dispersant should ex-

hibit excellent heat stability, coupled with low dye reducing and staining properties [9, 

47, 72]. Furthermore, dispersant should also minimize foaming [9, 72] and reduce or 

maintain low viscosity of the dye dispersion [47, 72]. Usually, there is no single dye dis-

persant that is capable of performing all the above mentioned traits and thus there is 

demand for different dye dispersants [47]. 

Weight ratios of 0.75–2 (dispersant to dye) are preferred in the dye dispersions [49, 71]. 

The current dye dispersants are LSs, naphthalene sulfonate condensates [49, 50] and 

phenol-formaldehyde condensates [49]. Various lignin dispersants for dye dispersions 

have been patented. Chemical modification reactions to make lignin dye dispersants in-

clude, but are not limited to, ozonation [54], Mannich reactions [70], sulfonation [47], 

crosslinking with epoxide [47] and reaction with methylol hydroxybenzene [72]. 

LS dispersants have the advantages of being readily available [50] and having a high 

temperature stability [49, 50, 72], which is achieved with a lower degree of sulfonation. 

Nevertheless, the temperature behavior of LSs is complex and at the dyeing tempera-

tures (130–220 °C) LSs can cause possible dye reduction and fiber staining [9]. Other 

disadvantages of LSs as dye dispersants are high dispersity [71], which results in poor 

dispersion performance [49], fiber staining resulting from the dark color of lignin, which 

limits lignin applications with light-colored dyes [50, 72] and possible dye reduction [72], 

especially at the elevated dyeing temperatures. To reduce the fiber staining and dye 

reduction of LS dispersants, the free phenolic hydroxy functional groups should be 

blocked, for example by etherification or crosslinking through phenolic hydroxy functional 

groups [49, 71, 72]. 

3.4.4 Asphalt Emulsions 

An asphalt emulsion consists of asphalt (50–80 wt%), water (~40 wt%) and emulsifier 

(1–2 wt%) [73, 74]. Emulsifiers are required in preparation of asphalt emulsions, but also 
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to improve the storage stability of the asphalt emulsions [74, 75]. Multiple type of surfac-

tants can be used as asphalt emulsifiers, but most commonly used ones are cationic 

polymers, such as alkyl amide polyamines [74], ammonium lignin derivatives [73, 74, 75] 

or resin acids [74]. 

Lignin has been incorporated to asphalt formulations as a binder to replace bitumen at a 

demonstration scale. However, currently lignin is more expensive than bitumen, but price 

increase and quality decrease of bitumen and improving economics of the lignin produc-

tion can shift the balance in 5–10 years. [76] The higher value application of lignin can 

be as an emulsifier for asphalt emulsions. 

Various alkali lignins have been used as asphalt emulsifiers, such as lignin quaternary 

ammonium salts [75] and ethylene amine/formaldehyde lignins [75, 77]. These are slow-

set asphalt emulsifiers, that allow for maximum mixing time,  longer workability and flow 

of the asphalt [77]. 

Various lignin emulsifiers require that lignin adsorbs to the surface of dispersed phase 

bitumen droplets or particles. After the adsorption, the cationic lignins cause electrostatic 

repulsion, but also steric stabilization that prevent aggregation of bitumen particles. [75] 

An emulsifier is required to keep asphalt emulsion applicable and workable, but when 

asphalt emulsion is laid for example as a pavement, the asphalt emulsion needs to break 

down and harden for example via water evaporation [34]. 

The interfacial tension between asphalt and water is around 40 mN m-1. When emulsifier 

is adsorbed to the asphalt-water interface, the interfacial tension decreases to 10–

20 mN m-1. [75] Various quaternary ammonium and amine lignins had surface tensions 

of 34–56 mN m-1 [75, 77] and caused average asphalt particle size to be 0.8–10 µm in 

the asphalt emulsions. The decrease in interfacial tension with addition of hydrophobic 

dodecyl functional group to the quaternary ammonium lignin structure causes decrease 

in the asphalt particle size. The optimal asphalt particle size in asphalt emulsions is 1–

20 µm. [75] 

The doses of quaternary ammonium and amine lignins in the asphalt emulsions had 

optimum around 0.8 wt% according to emulsifying performance and storage stability. 

With insufficient amount of lignin emulsifier, the adsorbed layer of emulsifier is too thin 

and results in too little electrostatic repulsion between the bitumen particles. On the other 

hand, lignin concentrations higher than 1.1 wt% also cause decrease in electrostatic re-

pulsion due to excess counter-anions in the diffuse layer around the asphalt drop-

lets. [75] 
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3.4.5 Pesticides 

Pesticides are hydrophobic compounds that are solids or liquid at room temperatures. 

[46, 78] Typical pesticides are for example thiocarbamates [78, 79, 80], haloacetanilides, 

nitroanilines [78], organophosphates [78, 80], pyrethroids [78], strobilurins [78, 79] and 

dimethomorph [79, 81].  

Pesticides have to be dispersed to form concentrated suspensions (solid pesticide) or 

emulsions (liquid pesticide) in water, which allow for easy application of the pesticides 

for example by spraying [78, 82]. Furthermore, the dispersion can be dried to produce 

powder or granule pesticide, in which for example LS can work as water-soluble matrix 

allowing for redispersion at the later time with readdition of water. [78] Wet alkali lignin 

concentrates have been patented in the past as dispersants in flowable, organic solvent-

containing pesticide formulations [80]. Alkali lignins without sulfonation are less re-

searched as pesticide dispersants. Other techniques than sulfonations to make alkali 

lignins suitable as pesticide dispersants have been grafting and crosslinking lignin with 

epichlorohydrin-poly(ethylene glycol) to make water-soluble and more hydrophilic lignin. 

[83] 

Lignins are used as dispersants of pesticides to provide dispersion stability and possible 

solvent-soluble matrix for granule or powder pesticides [78, 79]. LSs with Mw = 40 000–

60 000 g mol-1 were patented as dispersants for concentrated pesticide suspensions 

(less than 44 wt% water) [78], while concentration of LS is up to 10 wt% of the suspen-

sion [78, 81]. Furthermore, LSs with Mw > 10 000 g mol-1 were found to be better disper-

sants for fungicide suspensions that lower Mw LSs. The dispersion performance of LSs 

increased with increase in Mw, because increased adsorption of LSs on the surface of 

hydrophobic pesticides and improved steric repulsion between the pesticide particles. 

[44, 46, 84] Increased steric repulsion caused by higher Mw is related to the increased 

adsorption layer thickness when Mw of lignin increases [85]. 

Also charge density was found to be an important for effectiveness of LSs, indicating 

importance of the electrostatic repulsion as dispersion mechanism of lignosulfonates [84, 

85]. If the Mw is too high, it is possible that some of the sulfonate functional groups are 

screened by intertwined and bundled lignin polymers and cannot effectively cause elec-

trostatic repulsion between the dispersed pesticide particles [44, 85]. Different cations of 

LSs did not have significant effect on properties of pesticide dispersions [86]. 
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3.4.6 Coal-water Slurries 

While the invention of a coal-water slurry is old, the modern day coal-water slurries are 

coming to use in heat generation facilities as an alternative to natural gas and heavy fuel 

oils [87, 88]. The main advantage of the coal-water slurry as a fuel is low cost ($35–$50/t 

[89]), with comparable heat values of 15–20 kJ kg-1 to more expensive natural gas and 

fuel oils [87]. 

A coal-water slurry is concentrated suspension of finely dispersed coal (50–75 wt%) in 

water (25–48 wt%). Purpose of adding water and formation of slurry from coal is to make 

coal a safe fuel in terms of explosion and fire hazard, reduce emissions [87] and convert 

coal to heavy fuel oil-like liquid [45]. 

Manufacturing of a coal-water slurry consists of 1) preliminary crushing of coal slag to 3–

12 mm particles, 2) wet grinding the coal particles to size of 3–150 µm in a ball mill 3) 

and homogenization of the coal-water slurry suspension and addition of dispersants [87]. 

Dispersants are mandatory in coal-water slurries, as coal is a hydrophobic material [90] 

and viscosity [87, 90, 91], yield stress and stability of coal-water slurry are important [87, 

90]. A single dispersant cannot be used to achieve all the desired properties, such as 

good dispersion and long-term stability, so the final coal-water slurry is usually compro-

mise between the low viscosity and good slurry stability [90]. 

At the industrial scale, nonionic and anionic polymers with molar masses of 10 000–

80 000 g mol-1 are used as coal-water slurry dispersants in amounts of 1 wt% [90, 91]. 

Examples are polystyrene and naphthalene sulfonate condensates, humic acids [45, 90, 

92] and PAAs [90]. For purpose of stabilizing coal-water slurries, high molar mass poly-

saccharides, such as gums, are also used [90]. Dispersants work by adsorbing to the 

surface of the coal particles, rendering them more hydrophilic and improving their wetta-

bility [45, 90, 92]. While anionic dispersants adsorb less densely on the coal surfaces 

compared to nonionic dispersant, they are much stronger dispersants for coal-water slur-

ries [90], as they cause electrostatic repulsion in addition to the steric repulsion [90, 92]. 

Lignosulfonates have been found as potential dispersants of coal-water slurries. Sodium 

LSs with Mw
  of 10 000–30 000 g mol-1, Đ = 2.9 and overall charge den-

sity of 2.6 mmol g-1 were found as optimal to reduce viscosity of a coal-water slurry. [91] 

Oxidized and sulfomethylated hardwood KL (Mw = 21 300 g mol-1, Đ = 1.3 and 

4.4 mmol g-1) [92] and wheat straw alkali lignin [43] have also shown to work as coal-

water slurry dispersants. For coal-water slurry suspensions, the lignin dispersant with 

Mw > 10 000 g mol-1, high anionic charge (> 2.0 mmol g-1), and possibly low Đ seems to 

be desired [45, 92]. 
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3.4.7 Enhanced Oil Recovery 

Extraction of crude oil from underground reservoirs is complex process consisting of 

multiple steps. Primary and secondary recovery steps have combined recovery factor of 

35–45 %. To obtain 5–15 % more crude oil from the oil reservoir, tertiary or enhanced oil 

recovery methods are utilized; one of them being chemical enhanced oil recovery or 

chemical injection. The process involves use of surfactants, polymers or alkali flooding 

to reduce the interfacial tension between oil and water and increase the viscosity of water 

to improve oil recovery. Furthermore, cost-effective and cheap co-surfactants and poly-

mers, referred as sacrificial agents, are used to reduce the undesired adsorption of pri-

mary surfactants and flooding chemicals during the enhanced oil recovery. [31, 93] Ex-

amples of sacrificial agents used in the oil industry are alkalis, cellulose and starch de-

rivatives [93], lignosulfonates [31, 93], polyglycol ethers, petroleum sulfonates [31] and 

poly(carboxylic acids) [93]. 

Lignosulfonates and black liquors from sulfate process have been used as the low cost 

sacrificial agents in the enhanced oil recovery since 1977 [31]. However, even these low-

cost lignins have shown to sometimes outperform the primary chemicals used in chemi-

cal enhanced oil recovery. [93] Therefore, lignins can be considered as a potential poly-

meric surfactants with high performance for enhanced oil recovery. 

Alkali lignin (0.4 wt%), octadecylamine (0.3 wt%) and sodium dodecyl sulfate 

(SDS) (1.3 wt%) surfactant blend showed lower, but decent performance with 11.1 % of 

oil recovery, compared to standalone 2 wt% of SDS surfactant (17.4 % oil recovery) [94]. 

Furthermore, sulfonated KL (1.2 wt%), hexamethylenetetramine (0.2 wt%) and sodium 

dodecylbenzenesulfonate (0.6 wt%) surfactant blend showed oil recovery of 15 %, while 

sodium dodecylbenzenesulfonate alone (2 wt%) recovered only 5 % of the oil [95]. 

While decreased interfacial tension between water and oil can generally predict improved 

oil recovery, other factors are also important after certain interfacial tension has been 

reached (0.001–10 mN m-1) [94, 95, 96]. For example, alkali amount (0.2–1.0 wt% 

NaOH) affects the interfacial tension of lignin-based surfactant blends and thus oil re-

covery [96]. 

3.4.8 Applications of Alkali-Oxygen Oxidized LigniOx Lignins 

While the dispersing mechanisms of LigniOx lignins is similar to commercial cement dis-

persants [20], LigniOx lignins have comparable or better dispersion performance than 

commercial lignosulfonate [62]. LigniOx lignins caused less retardation of the strength-

ening hydration reaction and increased the slump of concrete compared to reference 
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LS. [60, 62] The air content in the concrete was slightly increased compared to LS when 

LigniOx lignins were used. The addition of defoaming agent, tributylphosphate (2.5 wt% 

of lignin) [20, 62] reduced the air content of concrete to the level of high performing PCE 

dispersants [62].  

Compared to commercial PCE dispersants with concentration of 0.2 wt%, similar or bet-

ter plasticizing performance of concrete was obtained for LigniOx lignin with concentra-

tion of 0.4 wt% [63]. In another studies, LigniOx OL and KL showed equal or increased 

plasticizing than PCEs, naphthalene sulfonate condensates or LSs with equal amounts 

of plasticizer (0.6 wt% on cement) [20]. 

LigniOx kraft and hydrolysis lignins of different Mw have been tested as dispersants 

(0.25–7.5 wt% of CB) in specific special carbon black (10 wt%) suspensions. At disper-

sant concentration of 2.5 wt% of CB, LigniOx lignins decreased viscosity of suspension 

more than reference PAA and similarly as commercial LS. Storage for 7 days did not 

affect the viscosity of LigniOx dispersed suspensions. [20] When dispersant doses was 

decreased to 0.75 wt% of CB, separation in performance between LigniOx lignins was 

found. The 7000 g mol-1 LigniOx KL showed still low viscosity compared to PAA and LS. 

Furthermore, LigniOx KLs also facilitated smaller particle size of CB in suspension com-

pared to PAA and similar to LS, which agree with the viscosity results. [97, 20] 

TiO2 is used as a white pigment in white paints but also in colored paints due to the 

excellent opaqueness it provides. The LigniOx lignins do not alter the white color of TiO2 

suspensions and showed similar shear stress as PAA dispersant with concentrations of 

0.05–0.06 wt% [61, 63]. LS was not able to disperse TiO2 paste (70 wt%) enough to 

measure the shear stress [61]. 

LigniOx lignins showed decreased shear stress compared to commercial LSs in calcium 

carbonate (CaCO3) suspensions. Compared to PAA with 0.5 wt% concentration, LigniOx 

lignins were comparable at concentration of 1.0 wt%. [61, 63] However, the brown color 

of LigniOx lignins affected the color of white CaCO3
 suspension at lignin concentration 

of 0.25–1 wt%. Unmodified alkali lignins did not provide decent dispersions of CaCO3 

[61]. 

In gypsum (CaSO4·2H2O) plasters, lignin-based chemicals can work as plasticizers or 

set retardants. In the gypsum plaster mix LigniOx SL was comparable to commercial 

dispersants, such as citric acid or polycarboxylate. Compared to LSs, the time to maximal 

exothermic heat flow caused by the hydration reaction rate increased by 65 minutes 

when LigniOx SL is used, which is equal to the synthetic PCE dispersant. This allows for 
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long working time of the gypsum plaster. When comparing LigniOx SL to the best per-

forming dispersant and set retardant (citric acid) in gypsum plaster, dispersion perfor-

mance and total heat released from hydration are comparable, while maximal hydration 

reaction rate is slightly lowered. [61, 63] 
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4. HEMICELLULOSE 

Hemicelluloses are heteropolysaccharides found mainly in woods, grasses and other 

plants and are the main constituent of plant cell walls (20-30 %), along cellulose and 

lignin. [98] Hemicelluloses are the second most abundant class of polysaccharides after 

cellulose [99, 100, 101] and chemically similar to various gums (hydrocolloids) and cel-

lulose, while being less complex than gums, but more complex than cellulose [102]. 

Hemicelluloses are polysaccharides with O-glycosidic linked backbones of different pen-

tose and hexoses. The sugars in the backbone chain of hemicellulose include xylose 

(xylan hemicelluloses), mannose (mannans) and glucose (glucans), while substituents 

can be arabinose, galactose and methyl glucuronic acids (MeGAs). [102, 103] The struc-

ture of hemicelluloses and the exact sugar composition depend on the plant species 

[103, 104], on the extraction and isolation processes [98] and even on the analysis tech-

niques. The compositions of the hemicelluloses are listed in the Table 8.  

4.1 Hemicellulose Types 

Scheller et al. have suggested that hemicelluloses should be defined as those polysac-

charides that contain mainly equatorial β-(1→4)-linked backbone structure of pentoses 

Table 8. Composition of the selected hemicellulose in different feedstocks. In parenthe-
ses are the values of Fortum’s hemicelluloses. 

Components in hemicel-

luloses (wt%) 

Birch Softwood Wheat straw 

Arabinose 0-1 

(0-1) 

2  

(8) 

6-30 

(7-14) 

Galactose 1 

(3) 

11 

(9) 

1-5  

(4) 

Glucose 6 

(2-3) 

10-16 

(10) 

1-15 

(7-11) 

Mannose 1-2 

(2) 

30-68 

(33) 

0-1 

(1-2) 

Xylose 45-60 

(54-55) 

5-25 

(14) 

55-70 

(36-42) 

Uronic acids 5 

(5-9) 

1-2 

- 

2-6 

- 

Ash 1 

(1-2) 

0-1 

- 

9 

(4-5) 

Phenolics 0-7 0-5 2-7 

Sources [162] [131] [141, 161] 
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and hexoses. Therefore, hemicelluloses can be divided to four groups based on the 

structure [104, 105]: 

• xylans 

• mannans 

• xyloglucans 

• mixed-linkage β-glucans. 

In subsections only the relevant hemicellulose to the scope of the thesis are discussed. 

These include hemicelluloses that can be found in different woods (hardwoods and soft-

woods), wheat straw, rice straw and bamboo. Only those hemicelluloses that are present 

in significant amounts and extractable from applications perspective are discussed fur-

ther. The hemicelluloses of interest are mannans and xylans (Table 9), and even among 

them there is great variety in type of substituents and glycosidic linkages [104]. 

4.1.1 Xylans 

Xylans are one of the most abundant class of naturally occurring polysaccharides be-

sides cellulose, and an important renewable biopolymer source [103, 106]. Different xy-

lans are the major hemicellulose in hardwoods, softwoods [107] brans and cereals [98, 

108] and certain algae [109]. The variety of different xylans is immense, but the xylans 

discussed in greater detail are different glucuronoxylans and arabinoxylans, which are 

important woods, straws and bamboos [102, 110]. 

All xylans constitutes of β-(1→4)-linked D-xylopyranose units [98, 107, 109]. There is 

however structural variation in xylans, such as different substituents attached to the main 

backbone [106]. Main substituents are acetyl, glucuronosyl and arabinosyl residues [98, 

108] and depending on different substituent abundance, the xylans are classified further. 

Table 9. Estimates of types and amounts of polymeric hemicelluloses (of total hemicellu-
lose content) in selected feedstocks. In parentheses are the values of Fortum’s hemicellu-

loses. SW = softwood, WS = wheat straw, RS = rice straw. 

Type of hemicellulose 

(% of total hemicellu-

lose) 

Birch SW WS RS Bam-

boo 

Glucuronoxylan 60-90 

(86) 

5-15 

(-) 

- 

(-) 

- 

(-) 

- 

(-) 

(Glucurono)arabinoxylan trace 

(trace) 

15-50 

(30) 

70 

(~90) 

85-95 

(~95) 

~90 

(~95) 

(Galacto)glucomannan 2-5 

(14) 

35-90 

(70) 

5  

(9) 

5 

(5) 

2 

(3) 

Sources: [104, 111] [98, 111] [161] [163] [122, 160] 
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Glucuronoxylan (GX) is the main hemicellulose found in various hardwood species, 

such as beech [102] and birch [111]. The amount of GX of hardwood hemicellulose is 

60-90 wt% [98]. The main substituents are 4-O-methylglucuronic acid and acetylated 

derivative of it, attached to the backbone of β-(1→4)-linked D-xylopyranose units (Figure 

16) [98, 105]. 

The substitution occurs at regular intervals with glucuronic acids (GAs) joined to the xy-

loses by α-(1→2)-linkages. The ratio of different glucuronic acid substituents to xylose 

monomers is about 0.7–2.5 : 10, corresponding to the degree of substitution (DS) of 

0.07–0.25. [97, 108, 111] This means that on average every 10th D-xylose monomer is 

substituted with a GA substituent. 

As is common for many hemicelluloses, various hydroxy functional groups of main D-

xylose chain and substituents sugars are acetylated [98]. In GXs the degree of acetyla-

tion is 0.4-0.7 [111, 107], but deacetylation occurs readily in alkaline conditions, while 

hot-water treatments can preserve the acetyl functional groups [111]. 

GXs are soluble in alkaline solutions and partly soluble in dimethyl sulfoxide (DMSO). 

The β-(1→4)-linkages between D-xylose units in GXs are easily hydrolyzed by acids, 

whereas the α-(1→2)-linkages between 4-O-MeGAs and xyloses are quite resistant to 

hydrolysis. [107] 

Xylans that contain many L-arabinose monosaccharides attached to the D-xylose back-

bone are known as arabinoxylans or (glucurono)arabinoxylans. The distinction is not al-

ways clear between the two, and depending on the botanical origin different degrees of 

substituents are present in different (glucurono)arabinoxylans. 

(Glucurono)arabinoxylans (GAXs) are quite similar to glucuronoxylan of hardwoods 

[104]. However, GAXs are found in wheat straws, softwoods, lignified grasses and an-

nual plants [112], rather than in hardwoods [107]. 

Figure 16. Illustrative scheme of glucuronoxylan (GX) structure found in hardwoods. 
Adapted from [104, 105]. 
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Softwood hemicelluloses are 20–40 wt% of GAXs [98, 107, 111], only galactoglucoman-

nans being more abundant of softwood hemicelluloses. The DS by arabinose units is 

0.13 in GAXs of softwoods, while DS of GA substituents is 0.2. GAXs found in softwoods 

are soluble in alkaline solutions, and partly soluble in neutral water and DMSO [107]. 

GAXs are the dominant hemicellulose for example in lignified grasses, straws, cereal 

grains and bamboos. There is great variation in the ratio of GA : xylose : arabinose units 

(3–9 : 10 : 1–10), and degree of acetylation. In a contrast to the GAXs found in soft-

woods, GAXs in grasses, straws and other lignified annual plants are more heterogene-

ous, with greater variance in the degree of substitution. [104, 108] For example, disub-

stitution of arabinose units to C2 and C3 of a same xylose monomer is possible [104, 

108]. Furthermore, GAXs of grasses have presence of ferulic acid esters mainly attached 

to O-5 of the arabinofuranosyl residues (Figure 17) [104, 105]. 

Part of GAXs in annual plants are soluble in water, but the main fractions are soluble in 

alkaline solutions. The solubility of GAXs in water depend on the amount and distribution 

of α-L-arabinofuranose substituents. For water-insoluble GAX, the DS is 0.2–0.35, while 

for water-soluble GAX, the DS is 0.5–0.9 [104], meaning that more α-L-arabinofuranose 

substituents, more branched and more water-soluble the GAX. 

4.1.2 Mannans  

Mannans can be divided to two groups: galactomannans and (galacto)glucomannans 

[104, 107]. The classification between different (galacto)glucomannans is not exact and 

is based on the amount of substituents and botanical origin [107]. The amount of D-

galactose substituents varies depending on the botanical origin and extraction tech-

niques of the (galacto)glucomannans. 

(Galacto)glucomannans (GGMs) are the dominant hemicellulose in most softwoods 

[12, 111] and part of the structural cell walls of softwoods [12]. The amount of different 

Figure 17. Illustrative scheme of (glucurono)arabinoxylan (GAX) structure found in lignified 
grasses and straws.  Adapted from [104, 105]. 
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GGMs is 60-90 wt% of softwood hemicelluloses [105, 111]. The backbone of GGM con-

sists of randomly distributed β-(1→4)-linked D-glucopyranose and D-mannopyranose 

units (Figure 18) [98, 107]. GGMs have monosaccharide ratios of 0.2–1 : 1 : 2–6 (galac-

tose : glucose : mannose) [104, 98, 107]. 

The main substituent of GGM is α-D-galactose, which is linked to both D-glucose and D-

mannose units via α-(1→6)-glycosidic linkages [98, 113]. In contrasts, some suspect that 

α-D-galactose substituents are attached only to D-mannose units [104, 111] and that 

also β-D-galactose is a possible substituent [113]. In addition to the D-galactose substit-

uents, the typical degree of acetylation of GGMs is 0.15–0.4 [107, 111] and acetylation 

occurs at C2 and C3 hydroxy functional groups of D-mannopyranose units [22, 111, 113, 

114]. The acetylation does not occur in the D-glucose units [114]. 

Those (galacto)glucomannans with low amount of D-galactose are often called just glu-

comannans. While the GGMs are found in softwoods, glucomannans with lower 

amounts of D-galactose substituents are found in softwoods and to some extent in hard-

woods in amounts of 5–20 wt% of hemicellulose composition (Figure 18) [104, 107, 111]. 

Glucomannans have monosaccharide ratios of 0.1 : 1: 1–4 (galactose : glucose : man-

nose), depending on the softwood or hardwood species [104, 114]. The DS by D-galac-

tose units is lower in glucomannans of hardwoods compared to GGMs of softwoods. The 

degree of acetylation is 0.2–0.3 for water-soluble glucomannans of birch [114]. 

Glucomannans are more difficult to dissolve than GGMs, because cellulose-like back-

bone of glucomannans [104] with strong intramolecular hydrogen bonding. The glyco-

sidic bonds between mannose units are more readily hydrolyzed by acids than corre-

sponding glucosidic bonds, but overall glucomannans are easily depolymerized by acidic 

Figure 18. Illustrative schemes of glucomannan (above) and (galacto)glucomannan (be-
low). Adapted from [104, 105, 107]. 
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conditions [107]. As with all hemicelluloses, GGMs are easily extracted by alkaline treat-

ment from delignified or lignocellulosic biomasses [104]. 

4.1.3 Antisolvent Precipitation of Hemicelluloses 

Hemicelluloses are the most readily extracted and hydrolyzed constituent of the ligno-

cellulose [115]. Examples of technologies to obtain hemicelluloses from wood and straw 

biomass are pressurized hot-water extractions, alkaline extractions, purification and con-

centration of thermomechanical pulp process waters and pre-hydrolysis of hardwood 

dissolving pulp. [111] As for all components of the lignocellulose, the extraction technol-

ogy affects the physicochemical properties of the hemicelluloses. Some of the properties 

that are affected are the weight average molar mass (Mw), degree of polymerization (DP) 

and exact chemical structure and functional groups of the hemicelluloses, such as de-

gree of acetylation [115]. 

While hemicelluloses can be used as such from the abovementioned processes, differ-

ent aftertreatment purification and isolation technologies can be used to alter for example 

the purity, Mw and DP of hemicelluloses. Spray-drying and ethanol precipitation are few 

of the purification, isolation and drying techniques of hemicelluloses, especially used for 

hardwood GXs and softwood GGMs. 

Ethanol precipitation (EtOH-precipitation) is used to isolate or further fractionate hem-

icellulose, such as GX [111] or GGM [116], into high, medium and low molar mass frac-

tions [111]. The EtOH-precipitation can also increase the purity of the hemicellulose [111, 

116, 117], by removing lignin-related compounds and extractives (triglycerides and fatty 

acids) [117]. A water-miscible organic solvent, such as ethanol, will first precipitate poly-

meric hemicelluloses and leave oligo- and monomeric hemicelluloses dissolved [116]. 

Methanol, C3-C4 alcohols, acetone and methyl tert-butyl ether are other water-miscible 

organic solvents suitable for the precipitation [117, 118], while ethanol has the advantage 

of cost-effectiveness, availability and low toxicity. If hemicellulose are precipitated from 

impure compositions containing for example cellulose and lignin, hydrogen peroxide or 

another oxidizing compound can be added during the precipitation or as a separate step 

to improve purity and color of the hemicellulose [118]. 

The ratio of ethanol to hemicellulose concentrate determines the yield and properties of 

the precipitated hemicellulose [111, 119, 120]. For softwood (GGM) and hardwood (GX) 

hemicelluloses, high molar mass fractions precipitate first at lower ethanol-to-hemicellu-

lose ratios, followed by precipitation of lower molar mass fractions with increase in etha-

nol volume [111, 120]. On the other hand, an opposite trend was observed for GAXs of 
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grasses, such as bagasse and bamboo, meaning that higher Mw GAXs were observed 

with higher ethanol-to-supernatant ratios (0.2–3) [121, 122]. 

In EtOH-precipitation of aspen hemicelluloses, with increase in ethanol-to-supernatant 

ratios (1–4), EtOH-precipitated galactoglucomannans (GGMEtOHs) contained more 

mannose and less xylose, galactose and to an extent arabinose units [114]. In the an-

other study of pine hemicellulose GGMs, similar trend was observed for amount of man-

nose and xylose, but amount of galactose increased with increase of ethanol (0.2–9 ra-

tios). The amount of arabinose in precipitated GGMEtOH had no clear trend with ethanol 

volume. [120] 

For GAXs of grasses and straws, the amount of xylose decreased and arabinose : xylose 

ratio increased with increase in ethanol volume [121, 122, 123, 124]. The higher arabi-

nose-to-xylose ratio indicates more branched GAXs, which are more soluble in water 

and thus require higher ethanol volumes to precipitate [122, 123]. 

4.1.4 Spray Drying of Hemicelluloses 

Spraying drying is a drying technique for a wide variety of biomolecules and biopolymers, 

such as proteins and carbohydrates. Spray drying has a few advantages over other dry-

ing technologies of sensitive polymers, such as freeze drying [125], refractance window-

drying and radiant zone-drying [126]. Spray drying produces dry powders of spherical 

particles [125, 126], with controllable particle size, morphology and density in a single 

process step. Drying techniques cannot often control the morphology of powder particles 

and therefore further process steps are required, such as crushing and screening. [125] 

Spray drying causes also only minor color alterations to the dried the mannan polysac-

charide, compared to other industrial drying techniques [126]. 

Yields and structure of polysaccharides are altered during different industrial drying pro-

cesses, and thus also during the spray drying. The drying temperature, drying time and 

heat transfer mechanism, but also initial extraction techniques affect the structures and 

properties of dried hemicelluloses. For example, drying causes decrease in galactose 

content and degree of acetylation of GGM-like polysaccharides. [126] However, if hemi-

celluloses are extracted by alkali or hot-water treatments from the lignocellulosic bio-

mass, degree of acetylation is already reduced to an extent and drying might not alter 

the structure or properties of hemicelluloses much further. 

The purity of EtOH-precipitated hemicelluloses is higher than those of spray dried hem-

icelluloses. The content of phenolic compounds and extractives are more abundant in 
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spray dried (1–11 mg/g) than EtOH-precipitated hemicelluloses (0.1–1 mg/g). [111] How-

ever, whether these ‘’impurities’’ affect positively or negatively the surface activity and 

other dispersion-related effects of the hemicellulose fractions is unclear. 

4.2 Hemicelluloses in Dispersions and Physicochemical Prop-

erties 

Hemicelluloses are considered as potential emulsifiers, dispersants and foam stabilizers 

[103]. Hemicelluloses work in dispersions mainly by increasing the viscosity of the dis-

persion media, which reduce the rate of creaming, flocculation and coalescence of the 

dispersed phase according to the Stokes’ Law. [102, 127]. In addition to the changes in 

viscosity, purified and modified hemicelluloses act by forming multimolecular films 

around dispersed particles or droplets [103] and thus can cause steric stabilization [115, 

127]. This hydrophilic barrier between the oil- and water-phases stabilize the O/W emul-

sions, which hemicelluloses most often form [102, 127]. The dispersing mechanisms of 

hemicelluloses in dispersions are combination of macromolecular hydrocolloids (gums) 

that affect the rheology of the dispersions and those of classical surfactants [111]. 

There are certain challenges in using hemicelluloses as surfactants and rheology modi-

fiers. In general, polysaccharides have lower surface activity than other biopolymers, 

such as proteins. This is characteristic to hydrophilic polymers with monotonic structures. 

[113] Only a modest decrease in the interfacial and surface tension is achieved with 

wood hemicelluloses, such as spruce GGM and birch GX [127]. 

Another challenge of hemicelluloses are batch-to-batch variation, which might relate to 

variation in the feedstock source and the extraction technology [102]. Susceptibility to 

microbial contamination is also an important consideration when hemicelluloses are 

used in dispersions as texture modifiers or polymeric surfactants, as this reduces the 

shelf-life of the products containing hemicellulose [102] and limits the potential applica-

tions with strict regulations (pharmaceuticals, foods and cosmetics). Hemicelluloses are 

also more susceptible to chemical degradation by oxidiation and hydrolysis [102], than 

for example lignin and cellulose, which might limit use of hemicellulose in high tempera-

ture and acidic conditions. 

Xylans have shown to exhibit emulsifying properties [103, 127] and foam stabilizing ef-

fects [103]. Different xylans produce stable O/W emulsions, comparable to nonionic pol-

ymeric polysorbate surfactant (Tween 20) [127, 128]. As expected, hardwood GXs de-

crease the surface tension of water only slightly, to 61 mN m-1, and cannot form micelles 

[128]. Similar results were found for birch GXs in O/W emulsions, in which reduction of 
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interfacial tension was only 0.4 mN m-1 [127]. GAXs obtained from barley straws provided 

equal average droplet size (diameter 1–3 µm) and 7 day stability in O/W emulsions as 

corn fiber gum [124]. 

Hardwood GXs have been shown to work in dispersions via combination of mechanisms 

that are common to hemicellulose: 1) steric repulsion which is typical for polymeric sur-

factants, 2) increase in viscosity of continuous phase which prevents dispersion break-

down 3) possibly electrostatic repulsion, as GXs contain ionizable glucuronic and galac-

turonic acids as substituents. [127] Hence, GAXs are not classical surfactants that work 

by reducing the surface or interfacial tension, but combination of surfactant, dispersion 

stabilizers and rheology modifier. 

Mannans have been shown to work as emulsifiers, emulsion stabilizers and to extent as 

rheology modifiers. GGMs are assumed to work as surfactants by increasing viscosity of 

dispersions, but also by adsorbing to the surface of oil droplets and thus providing steric 

stabilization. [127] The accumulation of mannans around hydrophobic droplets in O/W 

emulsions maybe be explained by limited water solubility or by conformational changes 

of mannans in the solution giving mannans hydrophobic sites that can interact with hy-

drophobic dispersed phase droplets. [115] The effects of proteins [23], phenolic com-

pounds and other extractives [111] attached to hemicelluloses are also possible factors 

in the performance of mannans in dispersions [23]. Proteins can work as the hydrophobic 

anchor of hemicellulose-protein complex, which attach the complex to the surface of the 

hydrophobic dispersed phase particles. 

GGMs overall show only minor changes in surface and interfacial tensions as is typical 

for polymeric surfactants. Spruce GGMEtOHs decreased the interfacial tension of O/W 

emulsions by 0.4–1 mN m-1 [127]. In another study, spray dried (galacto)glucomannan 

(GGMSpDr) and GGMEtOH did not show significant reduction in surface tension. 

GGMSpDr reduced the surface tension of water to 65 mN m-1 at concentration of 

5 wt%. [113] In another studies of thermomechanical pulp and hot-water extracted 

GGMSpDrs, the surface tension was reduced to 42 mN m-1 and 50 mN m-1, respectively, 

at 5 wt% concentrations. Spray dried hemicelluloses reduced surface tension more than 

EtOH-precipitated hemicelluloses. It was suspected that higher amount of hydrophobic 

extractives and phenolics (impurities) of spray dried hemicelluloses improved their sur-

face activity. [111] It is important to note that to significantly change water’s surface ten-

sion of 71.1 mN m-1 at 25 °C, concentrations of GGMs up to 5 wt% are required. 
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Overall, the addition of GGMEtOH and GGMSpDr (0.003–0.03 wt%) enhanced the O/W 

emulsion (0.16 wt% oil) formation and stability compared to other mannans like galac-

tomannan (guar gum) during 14 day test period, at temperatures of 4–25 °C. The optimal 

concentration of GGM was dependent on the Mw of GGM and botanical origin, and re-

quirements of the O/W emulsion storability. Storage at an elevated temperature (45 °C) 

caused rapid emulsion breakdown with all mannans. [12]  

GGMEtOHs show good O/W emulsion stability over 30 days with O/W ratios of 0.05–

0.6, measured by the average particle size increase of the oil droplets and rheological 

measurements [11]. At low concentrations of oil (0.16 wt%) and GGMs (0.008–0.03 wt%) 

O/W emulsions stabilized by GGMEtOH had greater turbidity and stability than the 

GGMSpDr-containing emulsions. As there was no difference in contaminants between 

the GGMEtOH and GGMSpDr, it was suspected that harsher conditions associated with 

spray drying than EtOH-precipitation caused the difference in their emulsion stabilizing 

performance. [12] GGMEtOH and carboxymethylated GGMEtOH (1 wt%) provided bet-

ter O/W emulsion stability and smaller average particle size than gum arabic or corn fiber 

gum [11]. 

As can be seen, the åhysicochemical characteristics and dispersion-related properties 

of hemicelluloses depend on purity, average molar mass (Mw), degree of polymerization 

(DP) and substituents of hemicelluloses [98], and will be discussed in more detail. 

4.2.1 Hemicellulose Purity 

While the carbohydrate composition of hemicellulose is determined by botanical origin, 

purity of hemicelluloses is controlled by extraction technologies of the biomass [111].  

The presence of covalently or physically bound proteins are suspected to be responsible 

for some dispersion stabilizing effect of hemicelluloses [104, 124]. However, there are 

conflicting results on the role of residual proteins on the surface activity and stability of 

dispersions when hemicelluloses are used [12, 115]. The protein content is naturally 

higher in grass- and straw-based lignocellulosic feedstocks, than in softwoods and hard-

woods, and thus can affect the amount of proteins in final hemicellulose fractions. GAXs 

of rice or wheat straws can therefore contain higher amounts of proteins than GGMs of 

softwoods or GXs of hardwoods. 

Residual lignin, phenolics and other extractives can also be advantage in hemicellulose 

emulsifiers and foam stabilizers [104, 111]. Proteins, phenolics and other extractives 

bound to hemicelluloses can provide the anchor or hydrophobic character required to 

adsorb to the surface of oil droplets or other hydrophobic surfaces [111]. 
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4.2.2 Solubility 

For hemicellulose to work as emulsifiers and surfactants in dispersion, they must be at 

least partly soluble in water or oil. Solubility of hemicelluloses is affected by monosac-

charide composition, degree of substitution and acetylation, branching and average mo-

lar mass. These properties of hemicelluloses are controlled by the choice of feedstock, 

extraction conditions and possible aftertreatments, such as ultrafiltrations, precipitations 

or spray drying. 

For xylans of annual plants and hardwoods, the ratio of arabinose-to-xylose indicate the 

degree of branching. The water solubility of GAXs increase with increase in arabinose-

xylose ratio, which correspond to a higher DS and branching. [122] The formation of 

extensive hydrogen bonding in GAXs, especially with less branched GAXs, result in par-

tial solubility or even in insolubility of GAXs in water [129]. 

As for most hemicelluloses, deacetylation of xylans is caused by alkaline extraction con-

ditions [122, 130], while hot-water treatment or steam extraction partially preserve the 

acetyl functional groups [103]. However, while the degree of acetylation affects the water 

solubility of xylan, it did not correlate with emulsion performance of GXs (8 wt%) in O/W 

alkyd resins emulsions [111]. 

GGMs are soluble in alkaline solutions, while only smalls fractions are soluble in neutral 

water. [104, 116] It is suspected that differences in solubilities of GGMs of the same 

botanical origin are caused by the extraction and isolation technologies affecting the 

structure of GGMs and uncertainties in analytical methods used to characterize GGMs 

[116].  

Solubility of GGMs relate to the amount of galactose and acetyl substituents and overall 

surface area of the GGM polymer [113]. The degree of acetylation is especially critical 

for solubility of GGMs, as GGMs will retain their solubility even though galactose substit-

uents, but not acetyl functional groups, are removed from the polymer [116]. Deacety-

lated GGMs are less water soluble than acetylated GGMs and form more ordered and 

compact structures [115]. Deacetylation of the GGMs can cause flocculation of the 

GGMs in water, because of the decreased water solubility [113]. The amount of galac-

tose substituents in GGMs did not affect the emulsion performance in O/W emulsions 

[115]. 

Deacetylation of GGMs by alkali extraction conditions [107, 115] occur more readily than 

in acidic conditions. Alkali (NaOH) concentration above 0.05 wt% is enough to deacety-

late GGMs [116]. On the other hand, in the acidic conditions GGMs hydrolyze more read-

ily than in alkaline conditions. Especially the galactose substituents [107, 116], but also 
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mannose units in the main polymer chain hydrolyze easily in acidic conditions [116] and 

result in residual monosaccharides. 

4.2.3 Molar Mass 

It is argued that average molar mass of hemicelluloses is considered to be one of the 

main properties controlling the dispersing performance of hemicelluloses [111]. For a 

non-ionic organic polymer to provide emulsion stability via steric repulsions, Mw greater 

than 10 000 g mol-1 is typically required. This is because polymer dimensions are then 

comparable or greater than range of attractive intermolecular forces between the dis-

persed phase particles [131]. The typical DP of hemicelluloses is 50–300 [108, 132], 

corresponding roughly to molar masses of 7 500–50 000 g mol-1. 

In alkaline conditions the Mw of xylans decrease from 10 000–50 000 g mol-1 down to 

10 000–20 000 g mol-1 [130], with dependence on the alkali concentration. Increase in 

the alkali concentration decrease the Mw of xylans. [133] However, the extraction condi-

tions, botanical origin, impurities and even analysis technique alter the Mw, meaning that 

the Mw values should be taken as estimates and rough guidelines. 

Unfractionated GGMs have Mw = 20 000–78 000 g mol-1, indicating that GGMs have 

wide molar mass distributions. As for other structural features of GGMs, the biomass 

feedstock and extraction and isolation technologies strongly affect the Mw. 
 [116] 

It is the Mw of GGMs that mainly affect their effectiveness in O/W emulsions [115]. In 

alkyd resin O/W emulsions, higher Mw of the hemicellulose was one of the properties that 

improved the O/W emulsion. It was suspected that the higher Mw was required for the 

hemicellulose polymers to have large enough dimensions to cause steric stabilization 

between the dispersed phase particles. [111] The GGMEtOH with higher Mw 

(61 900 g mol-1) was associated more at the O/W interface than the lower Mw GGMs [11]. 

GGMs with Mw above 30 000 g mol-1 were able to stabilize wood resin O/W emulsions 

[131]. 

4.3 Chemical Modifications of Hemicellulose for Dispersion 

Applications 

Properties of hemicelluloses for dispersion application can be altered by various chemi-

cal modifications [102, 134]. The variation in monosaccharide composition, glycosidic 

linkages, substituents and abundance of hydroxy functional groups offer possibilities for 

the chemical modifications [103, 134]. The amorphous character, relatively low Mw and 
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better water solubility imply that chemical reactivity of hemicelluloses is better compared 

to other lignocellulosic components, such as cellulose and lignin [132]. 

Hemicelluloses have been successfully modified for interfacial and dispersion applica-

tions by altering their ionizable functional groups (cationic or anionic), solubility in water 

[102, 109, 132], viscosity and thermal properties [102, 109]. The chemically modified 

hemicelluloses are also more resistant to microbial and chemical degradations, while 

providing better emulsifying properties [103]. Examples of the chemical modifications are 

various esterification, alkylation, crosslinking and grafting reactions [102, 134]. The most 

relevant chemical modifications for dispersing performance and surface activity of hem-

icelluloses are introduced in the following subsections, and with different ionizable func-

tional groups (anionic, cationic, nonionic). 

Carboxyalkylation and amination are chemical modification that alter hemicelluloses to 

anionic and cationic polymeric surfactants, respectively. The alkyl polypentosides, made 

either from D-xylose or different xylans, are a promising alternative to small molecule 

nonionic surfactants. Alkyl polypentosides allow hemicellulose valorization to wider 

range of dispersion applications, for example in cosmetics, detergents and food applica-

Table 10. Summary of the discussed chemical reactions to modify hemicelluloses towards 
dispersion applications. 

Modification Carboxyalkylation Amination Alkyl polypento-

sides 

Purpose Introduce ionizable carboxyl 

functional groups to hemicel-

luloses. 

Introduce cationic amine func-

tional groups to hemicellu-

loses. 

To transform polymeric xylans 

or D-xylose to a small mole-

cule nonionic surfactant. 

TRL 2-4 for hemicellulose 

(9 for cellulose) 

1-3 6-9 

(8-9 for glucose and starch) 

Reagents Chloroacetate Chlorine- or epoxide-contain-

ing amines. 

C4-C22 n-alcohols 

Solvent Isopropanol, water Alkaline solution C4-C22 n-alcohols, water 

Reaction conditions 25-65 °C 

1-5 h 

25-75 °C 

2-22 h 

80-130 °C 

1-6 h 

Pros Controllable degree of substi-

tution. 

Makes hemicellulose anionic 

and polyelectrolyte. 

Low reaction temperature. 

No degradation or changes in 

molar mass of hemicellulose. 

No pressure. 

Reaction known at industrial 

scale from carboxymethyl-

cellulose production. 

Produces cationic surfactant 

for possibly higher value ap-

plications. 

No degradation or changes in 

molar mass of hemicellulose. 

No pressure. 

Water as a solvent. 

Produces small molecule 

nonionic surfactants. 

High TRL. 

Flexibility of raw material (xy-

lan or monosaccharides). 

No pressure. 

Alkyl polyglucosides are al-

ready a niche surfactant prod-

uct with established produc-

tion technologies. 

Cons Long reaction times and poor 

reactivity (degree of substitu-

tion). 

Isopropanol solvent is re-

quired. 

Chloroacetic acid is hazard-

ous alkylating agent. 

Possible long reaction times. 

Possible low reactivity. 

Low TRL. 

High temperature and reac-

tion time. 

Different feedstocks can affect 

the final product quality. 
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tions, to function as foaming and wetting agents and degreasers. Summary of the differ-

ent ‘’modifications’’ are presented in Table 10. Once again, it is important to note these 

are only a few selected, but promising, modification technologies of hemicelluloses. 

4.3.1 Carboxyalkylation 

Carboxyalkylations are common chemical reactions to modify polysaccharides. The well-

known example is carboxymethyl cellulose, which is used a thickener, filler and stabilizer 

in food and cosmetic products, with E number E 466. Carboxyalkylation introduces ani-

onic carboxyl functional group to natively nonionic hemicelluloses and the modification 

have been done at laboratory and pilot scales for hemicelluloses, such as xylans and 

mannans [11, 22, 106, 135]. 

The most common carboxyalkylation is carboxymethylation (Figure 19). Carboxymethyl-

ation introduces carboxymethyl substituents onto the hydroxy groups of hemicelluloses. 

The reaction is done in alkaline (NaOH) isopropanol or water solvent with sodium mon-

ochloroacetate at temperatures of 25–65 °C for 1–5 h. [22, 136, 135] The degree of sub-

stitution by carboxymethyl functional groups is 0.25–1.3 [11, 136, 137], depending on 

the solubility of the hemicellulose in isopropanol or alkaline solution, ratios of xylan, so-

dium monochloroacetate and NaOH, concentration of NaOH, reaction temperature and 

time [135]. The dominating positions of substitution are C6 primary hydroxy groups of 

glucose and mannose units [11, 22], followed by hydroxy groups at C2 and C3 in all 

hemicelluloses [11, 22, 135]. Monosubstitution by carboxymethyl functional groups was 

the most dominant form of substitution [22], but disubstitution was also possible depend-

ing on the exact reaction conditions [135]. 

Carboxymethylated GGMEtOH with DS of 0.25 gave stable O/W emulsions at concen-

tration of 3–7 wt%, even after 7 days and at temperatures up to 60 °C. On the other 

hand, carboxymethylated GGMEtOHs with DS = 0.1 and DS = 0.5–1.5 did not produce 

stable O/W emulsions. [22] Carboxymethylated GGMEtOH (1 wt%) was found to be 

comparable emulsifier to unmodified GGMEtOH and better than arabic gum or corn fiber 

gum in O/W emulsions [11].  

Figure 19. The reaction scheme of carboxymethylation of xylan.  
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Carboxymethylated GXs reduced interfacial tension by 15 mN m-1 compared to unmod-

ified GX [136]. Carboxymethylated GAXs from different feedstocks and with different DS 

reduced surface tension of water by 15–27 mN m-1 as 1 wt% solutions. Furthermore, 

carboxymethylated GAXs were water-soluble and showed dispersion viscosity of (8–

140 mPa s) at concentrations of 5 wt%. [135] The average molar mass of GXs is not 

significantly affected by carboxymethylation [137]. 

4.3.2 Amination 

In the cationization reactions, positively ionizable functional groups are introduced to the 

hemicellulose polymers. The most common cationic functional groups in surfactants are 

nitrogen containing amines and ammonium salts. 

Various reagents can be used to functionalize xylans with amine functional groups. While 

the exact structure of the ammonium-reagent differ, the chemical reactions are similar. 

The hydroxy functional groups of xylans react as nucleophiles with an epoxide- or a chlo-

rine-containing ammonium reagents [109]. With the epoxide electrophiles, such as glyc-

idyltrimethylammonium chloride [109, 132] or 3-hydroxypropyltrimethylammonium chlo-

ride [129, 138], which reacts in situ with NaOH to an epoxide structure, the reactions are 

ring-opening etherifications (Figure 20). 

Reactions are done in aqueous solution with NaOH catalyst, at 25–70 °C for 2–22 h [109, 

129, 138]. For poorly water soluble GAXs, hot-water pretreatment can improve the swell-

ing and homogeneity of GAXs in the aqueous solution, which facilitate better reactivity 

Figure 20. Different amination reactions and reagents to make cationic xylans. Adapted from 
[132, 138]. 
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[129]. The chemically modified hemicellulose product is often isolated by precipitation 

with ethanol [132, 138]. 

Concentrations and ratios of hemicellulose, ammonium reagent and NaOH, the reaction 

time and reaction temperature affect the degree of substitution (0.19–1.2) and cationic 

charge of the modified hemicellulose [109, 129, 138]. The botanical origin and corre-

sponding minor differences in the structure of GAXs had no significant influence on the 

reactivity towards the amination reaction. The amination reaction did not degrade the 

polymeric structure of xylans [129]. The cationic hemicelluloses have been patented and 

studied as paper additives [129], paper sizing agents [109, 138] and coagulant aids in 

water treatment [132]. 

4.3.3 Alkyl Polypentosides 

Alkyl and alkenyl polypentosides (APPs) are a subclass of alkyl polyglycosides (APGs) 

surfactants, which are non-ionic surfactants used as foaming agents and detergents. 

While APGs are dominantly alkyl polyglucosides based on D-glucose, the main APPs 

are alkyl polyxylosides, based on D-xylose. [139, 140, 141] The alkyl polyxylosides are 

gaining increased interest as surfactants, as a result of the valorization of agricultural 

residues, such as wheat straws. The availability of high quality and pure non-food hem-

icelluloses, such as xylans and hydrolysis products of them, have been previously una-

vailable in significant quantities. [139] 

Alkyl polyxylosides can made from D-xylose by glycosylation, using the same reactions 

as APGs or by catalyzed telomerization of butadiene [139]. While telomerization with 

butadiene is an attractive reaction to produce alkenyl polyxylosides from xylose, the tech-

nique is still is in early laboratory phase and is not considered further here. 

The direct and easy route to obtain alkyl polyxyloside surfactants are from D-xylose mon-

osaccharides via glycosidation, similar to APGs. Use of C4-C22 alkyl alcohols and acidic 

catalyst with xylose results in alkyl polyxylosides, either by direct glycosidation or 

transglycosidation after use of short chain alkyl alcohols, such as butanol (Figure 21). 

[140, 142] The Fischer glycosidation is an equilibrium reaction that needs to be thermo-

dynamically driven with excess of aglycone (alcohol), while controlling the reaction tem-

perature to avoid degradation of sugars. The Fischer glycosidation is applied at an in-

dustrial scale to glucose, but also in a lesser extent to xylose. Furthermore, the reaction 

remains more productive than enzymatic processes to obtain APGs and APPs. [139] 
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Pentoses (xylose) and hexoses (glucose) have different reactivity in alkyl polyglycoside 

reactions. Pentoses are more reactive towards glycosidation and require lower temper-

atures than glucose. [108, 139] Preparation of alkyl polyglucosides are done at temper-

atures of 100–150 °C [139, 140], while APPs can be done in milder conditions (80 °C), 

which reduce degradation of sugars [108, 139] and staining of the final product [140]. 

Therefore, it is possible to obtain higher quality surfactants in a more cost-effective man-

ner from xylose than glucose. Furthermore, it is easier to control DP of alkyl polyxylosides 

than DP of alkyl polyglucosides [108, 139]. This is an important characteristic when ap-

plications of APGs are considered, as the DP affects the electrolyte stability, surface 

activity and foaming behavior of APGs [108]. 

Use of xylose for a surfactant production require an effective hydrolysis of hemicelluloses 

from biomass to monosaccharides, and isolation and purification of the resulting mono-

saccharides. Therefore, there is an interest in using low cost materials, such as starch 

and polymeric xylans that are rich in xyloses, but in still polymeric form, to produce APPs. 

It would ideal to produce APPs with directly from the corresponding polymers (xylan) by 

Figure 21. Reaction schemes of alkyl polypentosides from xylan. Polymeric xylan can be di-
rectly converted to different glycosides (transglycosidation) or via hydrolysis to monosaccha-

rides and subsequent Fischer glycosidation. R = long alkyl or alkenyl chain, HA = acid catalyst. 
Adapted from [143]. 
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transglycosidation reactions (Figure 21), with reduction in production costs and steps. 

[139, 143]  

Wheat bran containing 13–25 wt% of xylan has been used directly to convert xylan to 

alkyl polyxylosides with decanol or hexadecanol and an acid catalyst, at 90–130 °C and 

reaction times of 1–5 hours [99, 143]. Similar reactions as above have been done with 

oat spelt xylan (containing 53 wt% of D-xylose) and butanol, octanol or decanol [144], 

hardwood beech xylan (60 wt% of D-xylose) with decanol [141] and wheat straw with 

decanol [101] and hexadecanol [99]. With the increase in n-alcohol chain length, the 

required reaction temperatures and times increased [99, 144]. A small amount of water 

is required for production of alkyl xylosides from polymeric xylan materials to facilitate an 

effective rate limiting hydrolysis reaction of the polymeric xylan [101, 144]. 

Decyl xylosides showed similar critical micelle concentration and surface tension, in-

creased foaming ability [144, 143] and wetting time compared to decyl xylosides obtained 

from pure D-xylose [101, 143]. All these results were obtained even though the APPs 

obtained from polymeric xylans had less pure starting materials, contained more impuri-

ties and mixture of xylosides, arabinosides and glucosides than alkyl xylosides made 

from pure D-xylose sources [99, 101, 144].  

GAXs of different botanical origin and extraction technology show different reactivity to-

wards the APP reaction. The botanical origin influences the details of monosaccharide 

composition (xylose, arabinose and glucose), amounts of substituents (uronic acids and 

acetyl groups) and ash, which can affect the reactivity of GAXs toward APP formation. 

[141] An increased amount of arabinose substituents make GAXs more soluble in n-

alcohols and the arabinose substituents are also readily glycosylated, thus allowing bet-

ter glycosylation of GAXs under milder conditions. The rate of different alkyl glycoside 

formation from GAXs is in a decreasing order: alkyl arabinosides > alkyl xylosides ≈ alkyl 

glucosides [99, 101, 141]. On the other hand, increased glucuronic acid content makes 

GAXs more resistant to mild acid hydrolysis. For above mentioned reasons, hardwood 

GXs with higher glucuronic acid and lower arabinose substituents require higher temper-

atures to gain similar yields than non-wood GAXs. However, the formed APP surfactants 

from different xylans are equal in terms of their surfactant properties (critical micelle con-

centration, foaming and reduction in the surface tension). [141] The hydrophobic chain 

length of alkyl polyxyloside also affects the emulsifying properties (stability and foaming). 

An increase in the chain length seems more favorable for emulsions and the optimal 

chain length was found to be 10 carbons (decyl xylosides). [100] 
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Despite the similarities of alkyl polyglucosides and alkyl polyxylosides as non-ionic sur-

factants, there are difference in their properties (Figure 22). Alkyl polyxylosides are more 

lipophilic than alkyl polyglucosides, which result in lower critical micelle concentration. 

[108, 139] Furthermore, in applications where the oil solubility of the surfactant is im-

portant, alkyl polyxylosides are superior to alkyl polyglucosides because of increased 

lipophilicity. Commercial alkyl polyxylosides also show good wetting power and degreas-

ing ability when compared to alkyl polyglucosides and alcohol ethoxylate surfactants. 

[139] Furthermore, APPs obtained directly from wheat bran GAXs showed better wetting 

than APGs [101, 143]. 

Alkyl polyxylosides are not considered acutely toxic or harmful and can therefore be used 

in agrochemicals, laundry detergents, cosmetics and cleaning products, with comparable 

biodegradability to conventional surfactants. [108] 

4.4 Potential Applications of Hemicelluloses in Dispersions 

Non-food hemicelluloses as dispersants, emulsifiers and stabilizers in technical applica-

tions have not been fully commercialized. Overall, only few products based on xylans 

(alkyl polyxylosides) have been commercialized [103]. However, many food-based or 

gum-type hydrocolloids such as galactomannans, konjac glucomannan and tamarind xy-

loglucan are commercially utilized in foods and cosmetics [104]. 

The current status of hemicellulose commercialization and utilization is assumed to 

change for a few reasons. First, there is an increased knowledge and (economical) mo-

tivation to create biopolymer-based materials and surfactants. Secondly, the availability 

of non-food hemicelluloses is increasing steadily as increased valorization of the non-

Figure 22. Comparison of dispersion-related properties of the alkyl polyglucosides and al-
kyl polypentosides. Adapted from [139]. 
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food biomass and development of the biorefinery concepts. There is commercial and an 

economical interest and demand to make valuable products of all the components of 

lignocellulose and not just cellulose. [103] Thirdly, the use of the non-food hemicellu-

loses, such as xylans from hardwoods and annual plants and GGMs from softwoods, do 

not compete with food production like some other commercially used polysaccharides, 

such as starch [141, 143]. 

The following subsections further discuss those applications for which different xylans 

and wood-based GGMs are considered promising in light of existing patents. Food hy-

drocolloids and thickeners are not discussed here, as they are out of the scope of this 

thesis. 

4.4.1 Paper Sizing Formulations 

Hemicelluloses have potential in dispersions of sizing agents, which are used in the pa-

permaking and the textile production. Common sizing agents used in paper making are 

alkyl ketene dimers and alkenyl succinic anhydride, which improve the glaze, printing 

and other surface properties of papers. Sizing agents are introduced to papers as aque-

ous dispersions, and therefore dispersion stabilizers are required. Depending on the 

temperature, sizing agents can form emulsions or suspensions. Cationic starch and guar 

gum (galactomannan) are commonly used stabilizers for dispersions of sizing agents 

and as surface sizing agents themselves. However, both polysaccharides are source of 

nutrition and therefore non-food hemicelluloses, like GAXs or arabinogalactan has been 

considered as alternatives. [109] 

Ammonium cationized xylan and arabinogalactan as stabilizing agents in sizing formula-

tions have a granted patent, assigned in 2018. A decreased water adsorption of paper 

and reduced concentration of dispersion stabilizer in sizing formulations are advantages 

of cationic xylans and arabinogalactans over cationic starch. [109] 

4.4.2 Films and Coatings 

Hemicelluloses are a potential raw material for films used for example in food and cos-

metics packaging and biomedical films. Hemicelluloses are mostly researched as the 

main material in the packaging films, but the same physicochemical properties of hemi-
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celluloses are important as for dispersion- and surfactant-related applications of hemi-

celluloses. The water solubility and hydrophilicity of hemicelluloses and the chemical 

modifications to alter these properties are important, whether the application of hemicel-

lulose is films, surfactants or texture modifiers. 

Required properties of flexible packaging films are low oxygen or water permeability, 

mechanical strength and flexibility. In the food packaging applications it is also desired 

that films are transparent and of low cost. [134, 145] While mechanical strength and 

flexibility are required, the water- and oxygen permeability of hemicellulose films is the 

biggest hurdle currently (Table 11). The oxygen-barrier properties of hemicellulose films 

are favorably comparable to poly(vinyl alcohol), poly(lactic acid) and poly(hydroxyalka-

noate) films and packaging materials. [134] Hemicelluloses with higher molar masses 

are more suitable to produce films with desired properties. However, with increase in 

molar mass of hemicellulose, the handling of increasingly viscous hemicellulose solu-

tions and production of films become increasingly difficult. The oxygen barrier films made 

from xylans with molar masses of 8 000–50 000 g mol-1, mixed with plasticizer, cellulose 

or poly(vinyl alcohol) oligomers have been patented. [145] 

Films and coatings produced from different GAXs, using mainly glycerol as a plasticizer, 

have higher water vapor permeabilities and transfer rates compared to the commercial 

petroleum-based plastics, such as poly(ethylene terephthalates). Chemical modifications 

or addition of hydrophobic compounds via mixing or emulsifications are ways to decrease 

the hydroscopicity of GAX films. On the other hand, compared to other bio-based deriv-

atives, such as cellulose and starch derivatives (amylose and amylopectin), films made 

from GAXs have comparable or decreased water vapor permeability (Table 11). [134] 

Table 11. Water vapor permeability (WVP) and water vapor transfer rate (WVTR) of films 
produced from different synthetic and bio-based materials. Adapted from [134]. 

Material WVP WVTR 

Units 10-11 

g m-1 Pa-1 s-1 

10-3  

g m-2 s-1 

Low-density Polyethene (LDPE) 0.2 6.2 

Poly(ethylene terephthalate) (PET) 0.28 0.04 

Polystyrene (PS)  0.42 0.06 

Poly(lactic acid) (PLA) 1.34 0.18 

Hydroxypropyl methylcellulose (HPMC) 10.0 - 

Cellophane 6.9 6.2 

Amylose 120 - 

Amylopectin 115 - 

Different Xylans (GAXs) 2.3–21 1.5–9.3 
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In a different approach to produce hemicellulos films, water-soluble films made from xy-

lans have been patented. Composition includes hydroxyalkylated xylan, glycerol as a 

plasticizer and water as a solvent. The solution is cast on a synthetic polymer web, for 

example polypropene, at which the film is dried on and subsequently separated from. 

Potential applications are heat sealable packages and water-soluble detergent, food and 

pharmaceutical films. [146] 

4.4.3 Primer Compositions and Alkyd Resins 

Primer compositions are used to precoat or undercoat for example paper before liquid 

toner can be applied via laser printing [102]. Also in various other applications primer 

compositions are used to precoat surfaces like plastics and woods to ensure better ad-

hesion of a paint and increase durability of the paint, and to provide additional protection. 

Xylans have been used in water-based primer compositions containing mainly dispersed 

silica, starch and xylan varnish. Most preferably GAX is used in amounts of 4 wt%. Other 

hemicelluloses, such as mannans, are also possible in the primer dispersions. [102] 

Alkyd resins are polyesters made by a condensation polymerization of polyols, fatty acids 

or triglycerides and polyprotic acids. They are viscous and tacky materials which make 

them difficult to handle as such. Emulsification of the alkyd resins in water solutions fa-

cilitate their handling and use as coatings or paints. [111] 

Ethanol-precipitated hemicellulose and hemicelluloses as such have been researched 

as emulsifiers in alkyd resin W/O emulsions. Only whole fraction GX, high molar mass 

part of GX and GGMEtOH were able to function as alkyd resin (40 wt%) emulsifiers 

(8 wt%). The low and medium molar mass part of GX and GGM did not form emulsions 

as the alkyd resins and hemicellulose solutions separated into liquid and semi-solid 

phases. The main properties that governed the emulsifier performance were combination 

of high Mw of hemicellulose and some impurities or extractives, such as phenolics in the 

hemicellulose. [111] 

4.4.4  Wood Resin Emulsions 

Wood resin is a term used for lipophilic extractives that occur in pulp and paper pro-

cesses [131]. Stability of the wood resin emulsion is an essential part of the pulp and 

paper making processes, as collapse of the wood resin emulsion causes pitch and de-

posit problems on the processing equipment [116]. Components of the wood resin are 

fatty acids and triglycerides. 
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GGMs are able to stabilize wood resin emulsions against NaCl and CaCl2-induced ag-

gregation, while lowering the agglomeration of wood resin droplets, at GGM-to-resin 

weight ratios of 0.7–1.1 [116, 131]. Deacetylated GGM (60 °C, pH 11, 1 h, dialyzed 

Mw = 12 000–14 000 g mol-1 [115]) is not able to stabilize wood-resin emulsion [115] or 

W/O emulsions [22]. It was suspected that deacetylated GGM cannot accumulate around 

wood resin droplets or cannot extend far enough into the solution when adsorbed to the 

surfaces of the resin droplets, and therefore cannot cause adequate steric repulsion. 

[115] However, there are conflicting results of deacetylated GGMs being able to stabilize 

wood resin emulsion as well as acetylated GGM, indicating that interfacial phenomena 

of wood resin emulsions and polysaccharides are complex [131]. Proteins [115, 131], 

lignin-carbohydrate complexes, residual poly(galacturonic acids) (pectins) and effect of 

bleaching are few of the phenomena which can affect wood resin emulsions [131]. 

GAXs are able to stabilize wood resin O/W emulsion more effectively than guar gum 

(galactomannan). Even at 5 parts per million concentrations xylans were able to stabilize 

wood resin emulsions completely. [115] 

4.4.5 Other Proven Applications 

Most commonly non-wood based polysaccharides and hemicelluloses (gums) are used 

in food applications to provide texture, viscosity, dispersion stability and other rheological 

properties for the food products. 

In cosmetics, utilization of wood-based hemicelluloses, such as GAXs or GGMs is still 

scarce. One main reason has been lack of good quality and pure hemicelluloses from 

softwood and hardwood feedstocks. However, there are some examples in using (hy-

drolyzed) xylans obtained from hardwoods in cosmetic products as ‘’moisturizing the skin 

and preserving the barrier function’’ [147]. 

Monosaccharide xylose and its hemicellulose precursor, xylan, have gained interest in 

production of various APP surfactants. Similar technologies as in existing large scale 

and optimized production of APGs can be used to produce APPs. Various APG and APP 

surfactants with long hydrophobic alkyl parts can be used as foam boosters in cosmetics, 

skin-care products and shampoos, as degreasing agents in detergents [141, 144] and 

as wetting agents in paper impregnation resins [148]. APGs and APPs are a potential 

substituent for widely used nonionic ethoxylate alcohol surfactants [99]. 
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5. APPLIED PART 

The applied part of the thesis aimed to increase the knowledge of the new type lignin-

based dispersants and give background information for the development of Fortum’s 

lignins as dispersants in paint, coating, ink, plastic and other dispersion-related applica-

tions. Lignins were alkali-O2 oxidized (LigniOx) organosolv and soda lignins and they 

were evaluated as dispersants in special carbon black (CB) and titan dioxide (TiO2) 

pastes. The lignins were property of Fortum and the alkali-O2 oxidation technology 

(LigniOx) is property of VTT Technical Research Centre of Finland. 

Some of the materials were provided specifically for this thesis by different companies. 

LignoStar Group BV, Altana Group and Penta Carbon GmbH are acknowledged for their 

contributions. 

5.1 Materials and Methods 

The materials, instrumentation and measurements are described in this Chapter. Mate-

rials include carbon black and titan dioxide used to prepare the pigment suspensions 

(pastes). The studied dispersants are alkali-O2 oxidized lignins and commercial refer-

ences. The methods to prepare the samples and instrumentation for the rheological and 

optical microscope measurements are also introduced.  

5.1.1 Materials 

The overview of the materials used in this thesis are presented in Table 12. The carbon 

black (CB) and titan dioxide (TiO2) are used to prepare the aqueous CB- and TiO2-sus-

pensions, respectively.  

Special carbon blacks are utilized in various applications, such as inks, plastics and coat-

ings, as a coloring, ultraviolet-protection and conductivity agent. The CB used in this 

thesis is a powder special carbon black with the brand name P-200Z, by Penta Carbon 

GmbH. [149] Some of the technical specifications of the P-200Z are presented in Table 

13. 

Titan dioxide is used as white pigment in white paints but also in colored paints due to 

the excellent opaqueness TiO2 provides. Moreover, TiO2  is found in different forms in 

plastics, paper, inks, cosmetics, pharmaceuticals, foods and cosmetics. The TiO2 used 
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in this thesis is a pigment-grade titan dioxide-104 by Uula Color Oy. The published prop-

erties of TiO2 are presented in Table 13. 

The commercial polymeric dispersants used in this thesis as references are partly desul-

fonated sodium lignosulfonate (Vanillex N) and synthetic ‘’high molecular weight block 

copolymer with pigment affinic groups’’ (Disperbyk-190). The technical specifications of 

these references are presented in Table 14. 

Table 12. Overview of the materials used in the applied part. The A and B indicate the frac-
tionation process to produce the lignin and ‘’b’’ = birch and ‘’s’’ = straw indicate the botanical 

origin. All the new lignin-based dispersants were concentrates, with lignin contents of 10–
15 %. 

Material Type Use 

Penta Carbon P-200Z Powder Special Carbon Black Main material in the pigment 

suspensions 

Uula Titan Dioxide 104 Powder Titan Dioxide Main material in the  pigment 

suspensions 

Disperbyk-190 Block co-polymer Reference dispersant 

Vanillex N Sodium lignosulfonate Reference dispersant 

JH101-Bb Alkali-O2 oxidized soda-wheat 

straw lignin concentrate 

New lignin-based dispersant 

JH104-Bs Alkali-O2 oxidized soda-birch 

lignin concentrate 

New lignin-based dispersant 

JH111-As Alkali-O2 oxidized organosolv-

wheat straw lignin concentrate 

New lignin-based dispersant 

JH113-Ab Alkali-O2 oxidized organosolv-

birch lignin concentrate 

New lignin-based dispersant 

 

Table 13. Relevant technical specification of studied carbon black (P-200Z) and titan di-
oxide (Uula 104 TiO2 Pigment). DBP = dibutyl phthalate, BET = Brunauer-Emmett-Teller. 

ASTM D standards are for the carbon black P-200Z. 

 Standard P-200Z TiO2 

Manufacturer  Penta GmbH Uula Color Oy 

Type  Powder Powder 

Density (kg dm-3)   1-1.5 

DBP absorption number 

(0.01 cm3 g-1) 

ASTM D 2414; - 116±5  

Relative Tint Strength 

(%) 

ASTM D 3265; - 116±5 %ITRB  

pH-value ASTM D 1512; - 6–10 6–8.5 

Iodine absorption num-

ber (g kg-1) 

ASTM D 1510; - 121±5  

Ash content (%) ASTM D 1506; - 0.45  

 



68 

 

The technical lignins used in this thesis are manufactured by pilot and demonstration 

scale processes. The technical lignins are named by their manufacturing process as A 

and B. The A process is a organosolv process which uses mixture of organic acids and 

water. The lignin is separated by solvent evaporation and pH adjustment from the black 

liquor. On the other hand, the B process is a modified soda process in which hemicellu-

loses are hot-water extracted before the pulping process. The lignin is precipitated from 

the black liquor with pH adjustment. Both A and B lignins are obtained from two feed-

stocks: birch and wheat straw. 

Both the A and B lignin are soluble in water at pH ~10. They must be chemically modified 

to increase their water solubility at lower pH and to produce high-performing dispersants 

for aqueous dispersions. The LigniOx technology, an alkali-oxygen oxidation, is devel-

oped and patented by VTT Technical Research Centre of Finland Ltd [57, 58]. The oxi-

dation alters the average molar mass, dispersity and amount of ionizable functional 

groups of the lignin, depending on the amount of oxygen, NaOH, pH, reaction time and 

pressure. The oxidized A and B lignins are concentrates (Table 12), received and used 

as such in the dispersion tests. The concentrates are brown thick solutions and contain 

10–15 wt% of lignin according to the ultraviolet measurements at wavelength of 280 nm. 

5.1.2 Methods 

The experimental part of the thesis was done at VTT Technical Research Centre of Fin-

land, in the rheology laboratory in Espoo, Finland. The work included preparation of the 

Table 14. Commercial reference dispersants. 

 Disperbyk-190 Vanillex N 

Manufacturer Altana Group Nippon Paper Group 

Type Synthetic block copolymer Purified, partly de-sulfonated 

sodium lignosulfonate 

Phase Viscous aqueous liquid Water-soluble solid 

Dry Matter (%) 40 > 95 

Density (kg m-3, 20°C) 1060 700 

pH (5 % solution) - 7.5–8.5 

Mineral ashes (%) - 22 

Sodium (%) - 10 

Inorganic salts (%) - 9 

Weight average molar mass 

(103 g mol-1) 

- 2–10 

Sugar derivatives (%) - 8 

Acid value (mg KOH g-1) 10 - 

 



69 

 

CB and TiO2 pastes and their rheological measurements. The pigment pastes were also 

characterized by optical microscopy. 

The CB pastes were prepared from Penta Carbon P-200Z. The concentration of CB was 

15 wt% in the pastes, which was chosen based on the earlier studies of LigniOx disper-

sants [97]. 5–30 wt% of CB is the typical concentration for CB in aqueous suspensions 

[66]. Estimates of required dispersants doses were done based on the earlier studies of 

LigniOx dispersants with different CBs. For the reference, the required dispersant de-

mand can be estimated from the surface area of the pigments. Dibutyl phthalate value 

(DBP) or Brunauer-Emmett-Teller (BET) value are typically used techniques to measure 

the surface area of pigment particles. [150] 

The procedure used to prepare the carbon black suspensions (overall 20 g) is pre-

sented below: 

1. Weighted required amount of distilled water into the mixing container 

2. Added 15 % CB (3 g) into the water in 3 portions, with shake between each ad-

dition 

3. Added dispersant solution to final weight of 20 g of suspension 

4. Shook and left the mixture wet for 15 minutes under parafilm 

5. Mixed with Heidolp Diax 600 Laboratory Stirrer for 2 minutes 

6. Mixed with OCI Instruments Omni Mixer Sorvall for 3 minutes 

7. Suspension/paste was left to cool down for 10–30 minutes in a closed container 

before rheological measurements and optical microscopy analysis 

Figure 23. The equipment used for mixing of suspensions and rheometer. Left: Omni 
Mixer Sorvall, middle: Heidolph Diax 600,  right: Texas Instruments AR-G2 rheometer. 
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The TiO2 suspensions were prepared from the TiO2-104 powder by Uula Oy. The con-

centration of 75 wt% TiO2 was chosen based on the earlier work done at VTT. The con-

centrations of dispersant for inorganic pigments, such as TiO2, are usually lower than for 

CBs [150], in range of 0.1–2.0 % dispersant active matter of TiO2
 weight. 

The procedure used to prepare the TiO2 suspensions (overall 20 g) is presented below: 

1. Weighted calculate amount of distilled water into the mixing container 

2. Added required amount of dispersant solution 

3. Added 75 % TiO2 (15 g) into the water/dispersant solution in 3 portions, with 

shake between each addition and making sure the TiO2 is not floating on the top 

of the mixture 

4. Shook and left the mixture wet for 15 minutes under parafilm 

5. Mixed with OCI Instruments Omni Mixer Sorvall for 2 minutes 

6. Suspension/paste was left to cool down for 10–30 minutes in a closed container 

before rheological measurements and optical microscopy analysis 

The rheological measurements were done to evaluate the flow properties of the CB and 

TiO2 suspensions with different dispersants and doses. The rheometer was AR-G2 rhe-

ometer by Texas Instruments (Figure 23). The measurements were conducted with a 

Peliter plate steel cone geometry (40 mm diameter and 2.0° angle). For pourable sus-

pensions the amount of paste for the rheological measurements was 600 µl. For non-

pourable pastes, the amount of paste was estimated so that the paste spread to cover 

the surface area of the rheometer head.  

The rheological measurement procedure was a logarithmic sweep, with 1 minute soak 

time, shear rate between 6–600 s-1, 5 points per decade and averaging time of 30 s at 

each measured shear rate. CB and TiO2 suspensions were measured similarly, except 

for TiO2 pastes, the edges of the paste on the rheometer plate were covered with small 

layer of silicone oil (1 Pa s) to avoid drying of the paste during the measurement. The 

rheological measurements were done at 25 °C. 

Each paste was measured twice, except in the cases were the paste was clearly unstable 

(measured only once) or the two first measurements showed clear variance, in which 

case a third measurement was made. Each paste was measured right after preparation 

(day 0) and after 7 days, while storing the paste in a closed container. Before the day 7 

measurements, the pastes were mixed by hand. 
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The optical microscopy samples were prepared by diluting the original suspensions. 

First, about 100 µl of suspensions was diluted in 900 µl of water. Secondly, from this 

1:10 dilution, 200 µl sample was diluted in 800 µl of water, giving a total dilution of 1:50. 

Small drop of the diluted sample was placed between the glass plates and sealed with 

varnish to avoid drying of the sample. The optical microscope was Zeiss Axio Imager M2. 

5.2 Results and Discussion 

This chapter presents the observations and results obtained during the sample prepara-

tions, rheological measurements and optical microscopy analysis of CB and TiO2 pastes. 

5.2.1 Carbon Black Pastes 

Viscosity of pigment dispersions is often measured as a function of stress, shear rate 

and dispersant concentration (dose) [151]. To find the optimum dispersant concentration 

for the specific pigment, a ladder study was performed [150]. Three-to-four doses of dis-

persant was estimated for each dispersant to see if the L-shaped viscosity curve could 

be achieved (Figure 24).  

Firstly, the required doses of dispersants were typical for aqueous CB suspensions. Spe-

cial CBs require high doses of dispersants and the exact amount depends on the specific 

application. The typical doses are 5–50 wt% active matter of dispersant of CB weight 

[152]. Secondly, the L-shaped curves were incomplete, indicating that even higher doses 

(+30 wt% of CB) are required to confirm the optimum doses. Thirdly, while the minimum 

Figure 24. Viscosity (Pa s) vs. dispersant dose (wt% of pigment) at 95 1/s shear rate in 
15 % carbon black suspensions. 
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dispersant dose in final application is desirable from the economic perspective, the opti-

mum dose of dispersant depends also on the type of the dispersant and other properties 

of the suspension [150]. Dispersant affects for example the pigment color, gloss and 

storage stability, which are important properties in the final product and also determine 

the optimum dose of dispersant. 

The JH104-Bb, JH101-Bs, JH111-As and JH113-Ab oxidized lignins had lower optimum 

doses of dispersant compared to reference dispersants. However, the viscosities were 

quite similar for all dispersants at their respective optimum doses (7.5–15 wt% of CB for 

lignins) and (+15 wt% of CB for references). Viscosities of 0.01 Pa S at a shear rate of 

95 1/s were achieved for all the dispersants at their respective optimum doses.  

Figure 25. Viscosity (Pa s) vs. shear rate (1/s) at different doses of dispersant (active matter 
wt% of carbon black).  (a) 7.5 wt%, (b) 15 wt%, (c) 20 wt%, (d) 15 wt% at day 7. The scales are 

logarithmic. 
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Viscosity vs. shear rate at different doses of dispersant are presented in Figure 25. Over-

all, all the CB dispersions showed (slight) shear thinning behavior. Newtonian behavior 

was observed at small shear rates for specific doses of dispersant. Similar rheological 

behavior has been observed for CB suspensions with ~8500 g mol-1 polyacrylate disper-

sant [151]. Moreover, the LigniOx oxidized kraft lignins show shear thinning behavior at 

doses of 0.75 wt% of CB, in 10 % CB suspensions [97].  

With low doses of dispersants (below 7.5 wt% of CB), the viscosities were high, espe-

cially at low shear rates (Figure 25 (a)). The suspensions were more viscous and showed 

heterogeneity after the rheological measurements, when the dispersant dose was too 

low (Appendix B, Figure 34 (a) and (d)). The average particle size of CB was also larger 

in the optical microscope images when the dispersant dose of lignin dispersants is 

2.5 wt% of CB (Figure 26). Larger agglomerates of carbon black indicate that the amount 

of dispersant is insufficient. 

The viscosities measured at day 7 were equal or lower than at day 0 for nearly all dis-

persants when the CB suspensions were pourable, wet and liquid-like (Figure 25 (d) and 

Appendix A, Figure 32). The lower viscosity at day 7 can be a result of sedimentation, 

which decreases the CB amount in the actual suspension. The light remixing without 

high energy mixers is probably not enough to completely disperse the CB particles after 

7 days of storage. 
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The optical microscopy images were taken to see if there is relation between the high 

viscosity and particle size of CB particles. The optical microscopy images had no greater 

differences except at low dispersant doses (2.5 wt% for lignins). At these low dispersant 

doses the average CB particle sizes were larger than at more optimal dispersant doses 

of 7.5–20 wt% of CB (Figure 26 and Appendix A, Figure 31). Furthermore, the shape of 

the CB particles with JH113-Ab dispersant was different compared to the other disper-

sants. The suspensions with higher particle sizes were more uneven and thicker in their 

appearance (Appendix B, Figure 34). The effect of diluting the CB suspensions (1:50) 

for the optical microscopy study is unknown and requires further studies. 

5.2.2 Titan Dioxide Pastes 

For the 75 % TiO2 suspensions, the viscosity vs. dispersant dose (of pigment) at shear 

rate of 95 1/s is presented in Figure 27. The L-shaped curves are visible for all disper-

sants, except for Disperbyk-190. The suspension with 0.25 wt% Disperbyk-190 of TiO2 

was done, but the suspension was unmixable and dry, and the rheological measurement 

could not be done. 

Figure 26. Optical microscopy images of carbon black suspensions with different doses of 
lignin dispersants. In all images, the black scale bar is 200 µm. The suspensions with lignin dis-

persant doses of 2.5 % show large agglomerates of carbon black. 
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Lignin dispersants had lower optimum doses than the reference dispersants (Figure 27). 

The optimum dose of lignin dispersants was around 0.15–0.3 wt% lignin of TiO2 and 

there was no clear difference between types of lignins. These doses are within the lower 

range (0.01–3 wt%) of typical dispersant amount used in TiO2 suspensions [150]. The 

lignin dispersants showed the greatest differences at dispersant doses of 0.05 wt% of 

TiO2, but these differences are likely insignificant. The 0.05 wt% dose was below the 

optimum dose and the suspensions with this dose were dry, thick and unstable (Appen-

dix B, Figure 33) For the reference dispersants (Vanillex N and Disperbyk-190), the op-

timum doses of dispersant were +0.6 wt% of TiO2, which is higher than for oxidized lig-

nins, but still within the typical doses used for TiO2 pastes (Figure 27). 

Figure 27. Viscosity (Pa s) vs. dispersant dose (wt% of pigment) at 95 1/s shear rate 
in 75 % TiO2 suspension. 
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The viscosity vs. shear rate of TiO2 suspensions are presented in Figure 28. Similar 

viscosity vs. shear rate behavior have been observed for aqueous TiO2 suspensions with 

sodium hexametaphosphate (0.15 wt% of TiO2) [153] and dethylenetriamine alkylamide 

(0–5.0 wt% of TiO2) dispersants [154]. In these studies it is suspected that pH 

between 5–13 affects the rheological behavior of TiO2 suspensions significantly [153]. 

When oxidized lignin dispersants were tested at dispersant doses of +1.0 wt% of pig-

ment, the TiO2 paste began to get brownish shade. Similarly to the oxidized lignins, lig-

nosulfonate Vanillex N at higher dispersant doses of 1.0 wt% and 1.5 wt% affected the 

white color of TiO2. For Disperbyk-190, color of TiO2 was bright white for all the tested 

doses of dispersant (0.4–1.5 wt%). A slight color change with the lignin dispersants can 

be seen in the images of Appendix B, Figure 33 (b) and (d). 

The optical microscopy analysis of TiO2 suspensions do not show large difference in the 

particle size of TiO2 agglomerates between different dispersants and different doses. 

However, Vanillex N and JH111-As at day 0 and JH113-Ab at day 7 showed brown spots 

in the microscopy images, with dispersant doses of 0.05 wt% and 0.125 wt% of TiO2 

(Figure 29). The brown spots are most likely droplets of lignin solution. Possible reasons 

Figure 28. Viscosity (Pa s) vs. shear rate (1/s) at different doses of dispersant (wt% of TiO2). 
(a) 0.125 wt%, (b) 0.5  wt%. The scales are logarithmic. 
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for these are (1) unproper mixing of the TiO2 suspensions, which were thick and dry to 

begin with, or (2) incompatible of the dispersants with TiO2 at low doses of dispersant. 

Some incompatability between the lignin-containg dispersants (LigniOx lignins and 

lignosulfonates) were seen even at higher doses of dispersants after storing the TiO2 

pastes for 7 days. All the lignin-containing TiO2 suspensions had slight layer of brown 

liquid on the top of the TiO2 pastes after 7 days, but in nearly all cases the phases were 

Figure 29. Optical microscopy images of TiO2 suspensions with dispersant doses of 
0.05 wt% of TiO2. The JH111-As and JH113-Ab lignin at 0.05 wt% dose show brown, large 

spots, in addition to fine small TiO2 particles  found in all other samples. The brown spots are 
most probably unmixed lignin dispersant. The lignin dispersant dose of 0.05 wt% is below the 
optimum dispersant amount for TiO2 pastes, but similar spots were obtained with lignin doses 

of 0.125 wt% of TiO2. 

Figure 30. Suspension with 75 % TiO2 and 0.5 wt% JH113-Ab of TiO2 after storing of 7 days 
and before remixing. 
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remixable by light shaking. 0.5 wt% JH113-Ab of TiO2 had the most clear separation of 

brown layer and TiO2 suspension, as seen in Figure 30. 
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6. CONCLUSIONS AND OUTLOOK 

The aim of thesis was to understand how lignins and hemicelluloses work as plasticizers, 

dispersing agents, emulsifiers and stabilizer in dispersion applications from the chemistry 

point of view. The options to modify and alter the structure of lignins and hemicelluloses 

to be more suitable surfactants and dispersants were introduced shortly. An alkali-O2 

oxidation (LigniOx) of lignins was discussed in more detail because relevance to the 

applied part of this thesis. In the applied part, two organosolv and two soda lignins pro-

vided by Fortum and oxidized by VTT Technical Research Centre of Finland were eval-

uated in special carbon black and titan dioxide dispersions. Rheological measurements 

and optical microscopy were used as analysis methods. The aim of the applied part was 

to increase the knowledge of the new type of lignin-based dispersants and give back-

ground information for the development of modified Fortum’s lignins as dispersants in 

paint, coating, ink, plastics and other dispersion-related applications. 

Firstly, the literature about use of lignins and hemicellulose in different dispersion-related 

applications is broad. However, this does not directly translate to myriad of existing ap-

plications that would have been developed past the initial tests. Hemicelluloses have 

chemical analogies, such as gums and other hydrocolloids, which are commercially used 

for example as texture modifiers in food and cosmetic-related applications. The public 

research of hemicelluloses past the food- and cosmetics is however still in the early 

phases. 

The research of new lignin-based dispersants has focused on the applications in which 

lignosulfonates are already commercially utilized, such as in cement plasticization. In 

these cases, the new lignin-based dispersants should perform better than lignosul-

fonates if the production costs are higher for the new lignin-based dispersants. Alterna-

tively, new dispersion applications should be found in which lignosulfonates have not 

been used or do not work efficiently. 

In the applied part of the thesis, the rheological measurements and complementary op-

tical microscopy imaging showed that alkali-O2 oxidized LigniOx lignin dispersants have 

potential especially in carbon black dispersions and to an extent in the titan dioxide dis-

persions. All the oxidized organosolv and soda lignins of Fortum had very similar behav-

ior in the dispersions. The optimum amounts of lignin dispersants (7.5—20 wt% of carbon 

black) were slightly lower compared to commercial lignosulfonate and synthetic polymer 

references. The lignin dispersants were especially suitable for the special carbon black 
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dispersion, because of good dispersing performance and no visible change in the color 

of the dispersion even with high amounts of lignins.  

In the case of titan dioxide dispersions, the required amount of lignin dispersants was 

lower (0.125—0.5 wt% of titan dioxide) compared to the references. However, the color 

of lignin-containing titan dioxide dispersions with high amounts of lignin dispersants and 

stability of the dispersions over 7 days need further optimization. 

The experimental work performed here is the background and initial research on the new 

lignin-based dispersants in pigment applications. Therefore, extensive further research 

is needed and only few of the topics are mentioned as suggestions for future research. 

It would be worthwhile to  

• study how the new alkali-oxygen oxidized lignin-based dispersants work in car-

bon black and titan dioxide dispersions when other chemicals and components 

of the common pigment formulations are added. 

• study how pH and elevated temperature affect the dispersing performance of the 

new alkali-oxygen oxidized lignin-based dispersant and stability of the carbon 

black and titan dioxide dispersions. 

• perform the draw-down and rub-out tests to evaluate color, gloss and opacity of 

the dispersions when the new alkali-oxygen oxidized lignin-based dispersants 

are used. 

The experimental findings of this thesis should give the basepoint for the further re-

search. 
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APPENDIX A 

Figure 32. Percentage change in viscosity of carbon black suspensions at shear rate of 95 
1/s between day 0 and day 7 rheological measurements. The suspensions were remixed by 

hand-shaking for 1 minute before the measurements at day 7. 

Figure 31. Optical microscopy images (10x magnification) of carbon black suspensions with 
different doses of reference dispersants. In all images, the black scale bar is 200 µm. The sus-
pensions with lignin dispersant doses of 2.5 % (of carbon black) show large agglomerates of 

carbon black. 
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APPENDIX B 

Figure 34. 15 % carbon black suspensions on the rheometer plate after the measurements. 
Dispersant in (a) is Disperbyk-190 (7.5 wt% of carbon black), (b) JH111-As (20 wt%), (c) 

Vanillex N (7.5 wt%), (d) JH104-Bs (2.5 wt%). When the dispersant dose is significantly below 
the optimum, the suspension is heterogenous and shows clear separation after the measure-

ment, as in (a) and (d). 

Figure 33. 75 % TiO2 suspensions. (a) JH104-Bs (0.5 wt% of TiO2), (b) from left, first four 
contain JH101-Bb at doses of 0.05–0.5 % of TiO2, on right Disperbyk-190 (0.5 wt%), (c) 

JH104-Bs (0.05 wt%), (d) left: JH101-Bb (0.5 wt%), right: Disperbyk-190 (0.5 wt%). There is 
slight color difference between the lignin dispersants and synthetic dispersant (Disperbyk-

190). The brown color increases with doses of lignin above 0.5 wt% of pigment. 


