
Shanshan Wang

Online Speaker Separation Using
Deep Clustering

Faculty of Information Technology and Communication Sciences (ITC)
Master’s thesis

November 2019



Abstract
Shanshan Wang: Online Speaker Separation Using Deep Clustering
Master’s thesis
Tampere University
Master’s Degree Programme in Data Engineering and Machine Learning
November 2019

In this thesis, a low-latency variant of speaker-independent deep clustering method is
proposed for speaker separation. Compared to the offline deep clustering separation
system, bidirectional long-short term memory networks (BLSTMs) are replaced with
long-short term memory networks (LSTMs). The reason is that the data has to be
fed to the BLSTM networks both forward and backward directions. Additionally, the
final outputs depend on both directions, which make online processing not possible.
Also, 32 ms synthesis window is replaced with 8 ms in order to cooperate with low-
latency applications like hearing aids since the algorithmic latency depends upon the
length of synthesis window. Furthermore, the beginning of the audio mixture, here,
referred as buffer, is used to get the cluster centers for the constituent speakers in the
mixture serving as the initialization purpose. Later, those centers are used to assign
clusters for the rest of the mixture to achieve speaker separation with the latency
of 8 ms. The algorithm is evaluated on the Wall Street Journal corpus (WSJ0).
Changing the networks from BLSTM to LSTM while keeping the same window
length degrades the separation performance measured by signal-to-distortion ratio
(SDR) by 1.0 dB, which implies that the future information is important for the
separation. For investigating the effect of window length, keeping the same network
structure (LSTM), by changing window length from 32 ms to 8 ms, another 1.1 dB
drop in SDR is found. For the low-latency deep clustering speaker separation system,
different duration of buffer is studied. It is observed that initially, the separation
performance increases as the buffer increases. However, with buffer length of 0.3 s,
the separation performance keeps steady even by increasing the buffer. Compared to
offline deep clustering separation system, degradation of 2.8 dB in SDR is observed
for online system.
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1 Introduction
Single channel speech separation aims to recover the target speech from mixture
audio signals [1]. Separating the constituent speakers in the mixture signal consisting
of multiple speakers seems easy to human auditory system while challenging for
machines to do this task, which is commonly called ’auditory scene analysis’ or
’cocktail party problem’ [2].

Speech separation has been widely used in many other field such as mobile com-
munications [3], machine translation [4], automatic speech recognition [5], and es-
pecially for hearing aids application [6]. For example, in machine translation, given
an audio signal which consists of speeches from multiple speakers and background
noise, the machine will be able to ’listen’, ’translate’ correctly and efficiently only
if the target speech is not interfered by other speakers’ speech and the background
noise [4].

There has been many studies to solve the ’cocktail party problem’. Before deep
learning approaches, there has been model based approaches [7] and matrix factor-
ization such as NMF [8]. Recently, deep learning methods have been widely used
in signal processing related problems including source separation [9, 10]. In [11],
authors proposed using deep neural networks to predict the masks in a supervised
learning manner. Later, quite a few neural network structures have been studied
like convolutional neural networks (CNN), LSTM, and convolutional recurrent neu-
ral networks (CRNN) [12]. However, those supervised learning approaches come into
problems of speaker dependency. In other words, networks are able to separate mix-
ture signals only if speakers are seen during the training. Unfortunately, it fails to
separate when networks meet unseen speakers. For solving the speaker dependency
problems, another approach named deep clustering [13] has been proposed recently
to achieve speaker independency. Unlike supervised learning approaches predicting
the masks, or the target speakers in a supervised manner, deep clustering method
generates a higher dimensional embedding vector for each time-frequency bin, then
the clustering method like k-means is used to cluster the embedding vectors into
clusters. Later, CRNN has been studied [14], and better objective loss function has
been also studied [15]. More recently, deep attractor networks has further been
studied [16].

However, the deep clustering approach proposed in [13] is not practical for online
separation system due to the fact that clusters will not be estimated until the whole
sentence completes. Applications like hearing aids [6] and cochlear implants [17]
require restrictive latency. It is found that the subjective disturbance is experienced
by the listeners (e.g., [18]). When the latency is between 3 to 5 ms, it will be
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noticed by hearing-impaired people. However, if the latency is above 10 ms, it will
be unbearable [19]. Thus, an online variant deep clustering method is in need.

The contributions of this thesis are listed as follows. First of all, the usage of
LSTM networks instead of BLSTM networks allows one to make online processing
possible. Secondly, in the offline deep clustering system, normally analysis-synthesis
window with the length of 32 ms is employed. However, in low-latency speaker
separation system, 8 ms analysis-synthesis window lengths are preferred to ensure
the low latency. Lastly, instead of predicting the embedding vectors for the complete
sentence, the buffer is proposed to get cluster centers in the beginning of the mixture.
Furthermore, estimated masks are obtained by using those cluster centers to assign
clusters for the rest of the embedding vectors.

The thesis is organized as follows. Chapter 2 recaps the theoretical background
including the audio basics and machine learning basics. In chapter 3, related works
are discussed. Chapter 4 describes the proposed algorithms for low-latency deep
clustering separation system. Evaluation part is given in the chapter 5. Finally,
chapter 6 concludes the whole thesis.
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2 Theoretical Basics
In this chapter, the general basics are discussed. First section introduces audio
basics. In the latter section, basics related to machine learning are discussed.

2.1 Audio Basics

In this section, some basic audio knowledge are discussed. In the first subsection,
spectral feature used in this thesis by calculating the short-time Fourier transform
(STFT) is discussed. In the last subsection, the technique used for source separation
(time-frequency (TF) masking) in this thesis is discussed.

2.1.1 Short-Time Fourier Transform

In this thesis, the STFT [20] features of signals are used to represent how frequencies
in the signal change over time. The convenience of easily inversible and computa-
tionally fast of the STFT features makes itself widely used. The calculation of
the STFT consists of three parts, segmenting, windowing and calculating discrete
Fourier transform (DFT) in each frame [1]. x(t, n) is denoted as the segmented,
windowed signal shown as

x(t, n) = x(n+ n0 + tM)wa(n), (2.1)

where t ∈ [0, T −1] denotes the tth frame, n ∈ [0, N−1] represents the nth sample in
a frame, n0 is the 1st sample in the 1st frame, M is the number of frame advance in
samples, and wa(n) is the analysis window. The DFT is applied to each windowed
frame as

X(t, f) =
N−1∑
n=0

x(t, n)e−2jπnf/F , f ∈ [0, F − 1], (2.2)

where X(t, f) denotes the spectrogram, F is the number of frequency bins and j is
the imaginary part.

For example, a signal is given in the Figure 2.1. As the signal is shown in the
time domain, it can only be seen roughly how the amplitude changes over time.
However, the frequency information inside the signal is not clear. By applying the
discrete Fourier transform (DFT) to the signal, the frequency information can be
clearly seen as shown in the Figure 2.2. A peak at 20 Hz is shown in the spectrum.
However, how the frequency changes over time is not clear yet in the spectrum. By
applying the STFT, this feature can be clearly seen as shown in the Figure 2.3. We
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can see that the signal has consistent frequency of 20 Hz along all the time.
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Figure 2.1 An example of a signal in the time domain having only one frequency 20 Hz
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Figure 2.2 DFT features of the signal above in the frequency domain, having one peak
at 20 Hz
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Figure 2.3 The STFT features of the signal above represented in the time-frequency
domain. The color depicts the amplitude of the frequency.

2.1.2 Time-Frequency Masking for Source Separation

Ideal Binary Mask

As described above, masking is done in the time-frequency domain in order to sepa-
rate the mixture. Ideal binary mask (IBM) [21] is one of the commonly used masks.
An ideal binary mask tells which source dominates in the mixture spectrogram for
each time-frequency bin. The jth source magnitude X̂j(t, f) at time t and frequency
f is defined as

X̂j = |Xj(t, f)|, (2.3)

where || denotes the magnitude of the spectrogram, Xj(t, f) is calculated as the
Eqaution 2.2. The IBM is calculated as

Mj(t, f) =

1, if X̂j > τ
∑

k ̸=j X̂k

0, otherwise
, (2.4)

where Mj(t, f) refers to the jth source mask at time t and frequency f , and τ is the
threshold.

For example, mixture spectrogram is shown in the Figure 2.4 (a), spectrogram
of source signal 1 is shown in the Figure 2.4 (b), and spectrogram of source signal
2 is displayed in the Figure 2.4 (c). From those two source signals’ spectrogram,
it can be clearly seen that, at around 1.5 s, higher frequencies are dominated by
source 1 and lower frequencies are occupied by source 2, which can also be seen in
the binary masks of source signal 1 shown in the Figure 2.4 (d) and source signal 2
shown in the Figure 2.4 (e).
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Ideal Ratio Masks

The value of the binary mask is either 0 or 1, which is quite hard assignment for each
time-frequency bin. Thus, a smooth version of the binary mask is ratio mask [22].
Instead of assigning 0 or 1 to each time-frequency bin, ratio mask assigns values
between 0 and 1. The IRM is calculated as

Mj(t, f) =

(
X̂p

j∑
k X̂

p
k

)v

, (2.5)

where p and v are the parameters for tuning the shape of the ratio mask. Specifically,
when p = 2 and v = 1, it is called the Wiener filter. The same source signals’ (refer
to Figure 2.4 (b) and (c)) ideal ratio masks are shown in the Figure 2.5 (a) and (b).
By comparing Figure 2.4 (d) and (e) with Figure 2.5 (a) and (b), respectively, it
can be seen that the IRMs are smoother than IBMs.
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(d) (e)

(a)

(b) (c)

Figure 2.4 Illustration of IBMs. Part (a) shows the spetrogram of the mixture, the
spectrograms of source 1 and 2 are shown in the part (b), (c), respectively. Part (d), (e)
display the corresponding IBMs.
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(a) (b)

Figure 2.5 Illustration of IRMs. Part (a) shows the IRM for the source signal 1, and
part (b) represents the IRM for the source signal 2.

The Process of Time-Frequency Masking for Source Separation

The term “source” is used to refer to the clean and single component signal like
one speaker’s speech or one type of music component (the guitar sound). Acoustic
mixtures consist of multiple sources. Hence, source separation aims to recover the
constitutive sources from the mixtures. There are instantaneous mixing [23] from
the sources shown as

xi(n) =
∑
j

sj(n)aij + bi(n), (2.6)

where sj(n) denotes the jth source signal, aij represents the gain of the jth source sig-
nal in the mixture xi(n), and bi(n) indicates the noise. There are also convolutional
mixing [23] of source signals shown as

xi(n) =
∑
j

∑
τ

sj(n− τ)aij(τ) + bi(n), (2.7)

where aij(τ) refers to the response of the jth source signal to the ith microphone,
bi(n) states the noise, and the mixture is xi(n).

Mostly, separation is processed through masking in the time-frequency domain
instead of the time domain. The reasons are listed as follows, firstly, in the time do-
main, only how the amplitude changes over time can be visualized and the structure
of the sound is not clear. However, in the time-frequency domain, the structure of
the natural sound is more clear than in the time domain like where the harmonics
are. Secondly, the convenience of taking the STFT to frequency domain and its
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inverse short-time Fourier transform (ISTFT) back to time domain makes it handy.
Thirdly, the fact that the convolution mixing in the time domain equals to the mul-
tiplication in the time-frequency domain makes computation feasible. Lastly, for the
separation tasks, the less overlap in the mixture, the easier to separate the sources.
In the time domain, signals are more overlapped with each other. However, in the
time-frequency domain, the different sources are more sparsely distributed.

Given a mixture signal x(n), firstly, the STFT features X(t, f) are calculated as
Equation 2.2. Secondly, mask Mj(t, f) (IBM) for the jth source is calculated using
Equation 2.4 during training process. In the testing case, masks are predicted by
DNNs. The estimated spectrum Ŝj(t, f) of the jth source follows

Ŝj(t, f) = X(t, f)Mj(t, f). (2.8)

Further, the inverse DFT (IDFT) is taken as

ŝj(t, n) =
1

F

F−1∑
f=0

Ŝj(t, f)e
2jπnf/F , n ∈ [0, N − 1], (2.9)

where ŝj(t, n) denotes the time domain signal of the tth frame. Finally, the complete
time domain signal ŝj(n) is overlap-added from the previous windowed frames as

ŝj(n) =
T−1∑
t=0

ŝj(t, n− n0 − tM)ws(n− n0 − tM), (2.10)

where ws(n) denotes the synthesis window.
The diagram of this process is shown in the Figure 2.6.

Mixture
STFT

masking/filtering

ISTFT

s1

s2

Figure 2.6 Illustration of masking in the time-frequency domain. Spectral features of the
mixture signal is calculated by the STFT, filtering process happens afterwards, separated
source signals are reconstructed back to time domain by the ISTFT.
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2.2 Machine Learning Background

In this chapter, the basics related to machine learning are discussed such as the
clustering, recurrent neural networks, and activation functions. Finally, one of the
common problems in machine learning (overfitting) is discussed.

2.2.1 Clustering Method

Cluster analysis [24] is to group the data into a few clusters with high similarity in
the same clusters and high dissimilarity between different clusters as shown in the
Figure 2.7. Two lines separate the plane into four parts, one part groups the green
data points into one cluster, one part clusters red data points into one cluster, one
for black data points and another part separates the yellow data points.

Figure 2.7 Example of clustering. The green dots, red dots, black dots, and the yellow
dots represent different groups.

Clustering is an unsupervised learning approach in machine learning, which does
not require the labels for each data. The mostly commonly used clustering method
is k-means clustering [25], which groups the data into k clusters and minimizes the
distance (squared Euclidean distances) within the same cluster. Given a set of data
Z = {zi} where i = 1, ...m and zi denotes the ith sample, k-means tries to group m

observations into k clusters S = {sj} where j = 1, ...k, sj denotes the jth cluster and
k ≤ m. It follows

argmin
S

k∑
i=1

∑
Z∈Si

∥Z − µi∥2, (2.11)
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where µi denotes the mean of the cluster si.

2.2.2 Recurrent Neural Networks

Recurrent neural network (RNN) [26] is a type of artificial neural network. What
makes a RNN different from feedforward deep neural networks (FDNNs) is that at
the time step t, the input consists of both current input and the previous output,
which takes the past information into account. Especially, the RNN is widely used
in sequential data like speech [27] or robot control [28]. The common structure of a
RNN is shown in the Figure 2.8. In the forward pass, the RNN follows

ht = tanh(Wihxt + bih +Whhht−1 + bhh),

yt = Whoht,
(2.12)

where h0 = {0}. We denote the weight matrix from the input to the hidden layer
as Wih, the weight matrix from hidden layer to the next hidden layer Whh, and the
weight matrix from the last hidden layer to the final output layer Who.

X = [x1 ,... xt , ....xT]

RNN

Y = [y1 ,... yt' , ....yT']

x1

RNN RNN RNN

 y1

h1

x2

 y2'

...

xT

 yT'

h2 ht-1

Wih

Who

Whh

Figure 2.8 Structure of RNN. The input vector is X, and output vector Y , Wih represents
the weights from the input layer to the hidden layer, Whh represents the weights from the
hidden layer to the hidden layer, Who represents the weights from the hidden layer to the
output layer.

Long-Short-Term-Memory Networks

RNNs suffer from the vanishing gradients [29], which makes the model stop learning
during the training process. Small gradients lead to exponentially shrinkage while
large gradient cause exponentially increment. For solving this problem, long-short-
term-memory networks (LSTM) have been proposed in [30]. LSTM is similar to the
vanilla RNN other than it has three gates inside the hidden cell, one is input gate,
one is forget gate [31], and another one is output gate. The input gate controls
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what information should be inputted to the cell and what to block out, forget gate
forgets the unnecessary information, finally output gate regulates the final output.
The illustration how information forwards through LSTM networks is shown as

it = σ(W xixt +W hiht−1 +W cict−1 + bi),

ft = σ(W xfxt +W hfht−1 +W cfct−1 + bf ),

ct = ftct−1 + ittanh(W
xcxt +W hcht−1 + bc),

ot = σ(W xoxt +W hoht−1 +W coct + bo),

ht = ottanh(ct),

(2.13)

where it denotes the input gate at time t, ft denotes the forget gate at time t, ct
denotes the cell state at time t, ot denotes the output gate at time t, ht denotes the
final hidden output at time t.

Bidirectional Long-Short-Term-Memory Networks

Bidirectional long-short-term-memory networks (BLSTM) [32] is another type of
RNN which is pretty much similar to LSTM other than it has both forward LSTM
and backward LSTM. BLSTM network structure is shown as the Figure 2.9.

x1

BLSTM BLSTM BLSTM

 y1

x2

 y2'

...

xT

 yT'

Figure 2.9 BLSTM network structure. The input vector is X, and output vector Y .
The BLSTM block represents the BLSTM cell, the arrow shows how information flows. It
has two directions, one forward and one backward direction.
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2.2.3 Activation Function

Activation functions build the bridge between one layer to the next layer. It is very
critical in machine learning in a sense that activation functions decide which output
and how much portion of the output from the last layer should go to the next layer.
It functions as a gate. The mostly common used activation functions are Sigmoid
function, Hyperbolic Tangent function (tanh), and Rectified Linear units (ReLu).

Sigmoid Function

The formula of sigmoid function [33] is shown as

f(x) =
1

1 + e−x
, where x ∈ R. (2.14)

The visualization of sigmoid function is displayed in the Figure 2.10. It can be seen
that the value of this function is between 0 and 1 and 0 centered shown in the orange
vertical line.

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
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Figure 2.10 Sigmoid function. The values are bounded between 0 and 1.
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Hyperbolic Tangent Function

This non-linear function tanh [34] is bounded between -1 and 1 as shown in the
Figure 2.11 and it is mathematically represented as

f(x) =
2

1 + e−2x
− 1. (2.15)
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y

Figure 2.11 tanh function where values are bounded between -1 and 1.

Rectified Linear units

ReLu [35] has also been used a lot especially along with convolutional neural net-
works. Relu is defined as follows

f(x) = max(0, x) (2.16)

which takes the maximum value between 0 and its value. The vivid Figure 2.12
shows the property of Relu activation function, which only passes positive values.
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Figure 2.12 Relu function where values are between 0 and infinity.

2.2.4 Overfitting

In deep learning, the most common problem is overfitting problem [36] that the
model fits the training data so well that it does not work on the testing data, which
indicates that the model does not generalize but overfit the training data. As shown
in the Figure 2.13, the red dots shows the distribution of the data. It can be clearly
seen that the data are linearly increasing shown as the green line. However, if the
model overfits the data, it tries to cover all the data points shown the blue line
instead of trying to find the patterns behind the data and generalizing the data.

To avoid the overfitting problem, splitting the data into three parts is needed,
normally, 70 percent of data is used for training, 20 percent for cross validation [37],
and 10 percent for testing. On top of that, early stopping technique [38] can also be
used to avoid overfitting problem. It stops the training process when the validation
loss does not decrease for a certain number of the epochs (patience). Another way
to solve overfitting problem is that using large amount data if the condition can be
satisfied to train the networks so that it can not memorize every single data point
instead of generalizing the features behind the data. Also, if there is not enough
data, complicated networks should not be used.
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Figure 2.13 Illustration of overfitting problem. The green line shows the general distri-
bution of the red dots input values and the blue line overfits the data.
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3 Related Works
In this chapter, the related works are discussed. In the first section, the DNNs based
methods for source separation is talked. In the next section, low latency require-
ments of some application are discussed. In the last section, the recent technique,
deep clustering, for source separation is discussed.

3.1 DNN Based Methods for Speech Separation

In this subsection, denoising autoencoder for source separation is firstly discussed,
followed by the time-frequency masking prediction for separation.

3.1.1 Denoising Autoencoders for Source Separation

Autoencoder

Autoencoder [39] is a neural network which outputs the same as the input. It consists
of two parts, one is the encoder part which maps the input to the code, normally,
some lower dimensional features, and another one is decoder part which decodes
the code and reconstruct the features back to the input itself. It is an unsupervised
learning method due to its fact that it does not require the labels for the input
data. The basic autoencoder is shown in the Figure 3.1. We denote that encoder
as function ϕ, and decoder as function θ, such that

ϕ : X −→ H

θ : H −→ X ′
(3.1)

and the loss function is calculated in a way such that the distance between the
output of the autoencoder network and the input is minimized. The loss function is
calculated as follows

L = ∥X −X ′∥2, (3.2)

where X is the input and the X ′ is the output of the autoencoder system.
One of the main applications of the autoencoder is dimensionality reduction [40],

which is essential to many tasks like classification [41]. What we are interested most
in autoencoder network is the output of the encoder part which represents some es-
sential lower dimensional features [41] of the input, which is enough to reconstruct
back the signal by the decoder. Another application of autoencoder is anomaly de-
tection [42] which trains on the normal data. It learns the most common features
of the normal data and reconstruct back by the decoder. When it encounters out-
liers, the model will fail to reconstruct them back, which can be used to detect the



18

abnormal data.

Input x

Encoder

Decoder

Output x'

H

Figure 3.1 Autoencoder. Input X firstly goes to the encoder part to H, and the output
X ′ is returned back by the decoder part.

Denoising Autoencoder

The mechanism of denoising autoencoder is similar to autoencoder other than dif-
ferent rules of reconstruction [40]. For the autoencoder [41], the input is X, and
the target is also X while for denosing autoencoder, the input is noisy X, and the
target output is clean X, which can be used as the denosing system.

The denosing autoencoder process is shown in the Figure 3.2. It also has two
parts, one is the encoder part, a function of ϕ, and decoder part, a function of θ

such that

ϕ : X ′ −→ H

θ : H −→ X.
(3.3)

The loss function is calculated to minimize the output X̂ and the clean input X,
shown as follows

L = ∥X − X̂∥2, (3.4)

where X is the input and the X ′ is the output of the denoising autoencoder system.
The simplest denoising autoencoder could be the feedforward neural networks

(FNNs). However, for audio source separation problems, the input features nor-
mally are the spectrogram with one axis of spectral features and another axis of
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the temporal information. FNNs autoencoders have limitations of capturing both
dimensional information. Hence, convolutional denoising autoencoders have been
proposed in single-channel source separation [43].

Input x

Add noise/Mixture
creation

X'

Encoder

Decoder

H

X̂
Figure 3.2 Denosing Autoencoder. Input X is firstly added noise to create mixtures
X ′, encoder part encodes the noisy X ′ to the code H, the output X̂ of the system is
reconstructed back through the decoder part.
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3.1.2 Time-Frequency Mask Prediction

There are quite a few approaches to predict the time-frequency masks using DNNs
[9]. For example, DNNs can be trained to predict the masks provided that the
masks are known beforehand. Then after training, it is assumed that masks are
well-learned to filter the mixtures during the testing time. For this approach, DNNs
are trained to predict the time-frequency masks. As it is shown in the Figure
3.3, during training procedure, firstly, features are extracted form the time domain
mixture signals normally by calculating its STFT. Secondly, features are inputted to
the DNNs to predict the masks. Loss is calculated in a way such that the difference
between the ground truth masks and the estimated masks is minimized as shown as

L = ∥M − M̂∥2 (3.5)

where M is the groundtruth masks and M̂ denotes that the estimated masks form
the DNNs.

Figure 3.3 Mask prediction using DNNs. Spectral features are calculated by the STFT
firstly. DNNs predict the masks in a supervised manner. Separated source signals are
reconstructed back to the time domain by using the ISTFT.



21

3.2 Low-Latency Requirements

Low latency is very important for applications like hearing aids as reported in [6],
cochlear implants [17]. Especially, for hearing aids, the latency is quite restrictive
for the reason that sound is perceived by the listener both through the direct path
also the hearing aids. As shown in the Figure 3.4, the black arrow represents the
sound propagates through the direct path and the red arrow shows that the sound
is also perceived by the listener through the hearing aid. Suppose the time for the
sound reaches the listener through the direct path (black arrow) is t1, and the t2

denotes the time for the listener to receive the processed sound through the hearing
aid. The differences between these two times is denotes as ∆t shown

∆t = |t1− t2|. (3.6)

Ideally, the less value of ∆t is, the better experience that the hearing-impaired
listeners have. Hence, the values for the ∆t have been studied in [19], it is found
that the delay of these two time as low as 3 ms to 5 ms can be noticeable, while
more than 10 ms, objectionable.

Figure 3.4 Illustration of the hearing aids. The purple color shows the hearing aids
device, and the black arrow shows the direct path of the sound. The red line means the
sound path through the hearing aid device.
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The latency restrictions of applications like hearing aids have been discussed
above. In source separation, what causes latency of the system is the synthesis
window length from the algorithmic point of view. As shown in the Figure 3.5, given
a mixture in the time domain, features are calculated from the chunk of mixtures
windowed by the analysis window, multiplied by the FFT. Spectrum is then inputted
to the DNN to get the masks. Estimated source spectrum is obtained by multiplying
the mixture spectrum with the masks, which the IFFT later converts back to the
time domain. Final separated sources are overlap-added with the previous windowed
frames. It is noted that the latency of this scheme depends upon the synthesis
window explained in the Equation 2.10.
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DNN
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Separated Speech
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Figure 3.5 Illustration of separation process. Mixture is firstly divided into a sequence of
segments by overlapped analysis windows, which are multiplied by the FFT to get the spec-
trum features. DNNs predict the masks for the mixtures. The estimated source spectrum
is obtained by masking the mixture spectrum. The IFFT converts the spectrum back to
time domain. Final output is the results of windowed and overlap-added from the previous
frame.

⊗
denotes the element-wise multiplication, and OLA is for overlap-add.
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3.3 Offline Deep Clustering for Speech Separation

For source separation, deep learning related methods have shown great improve-
ment. However, there are also many limitation while using these methods based on
supervised learning like speaker dependency. For solving the generalization prob-
lem, a method named deep clustering has been proposed in [13]. Deep clustering
is a combination of supervised learning and unsupervised learning method. For the
traditional method based on deep learning, the networks output the time-frequency
masks or the factors used for calculating the masks in a supervised learning man-
ner. While for deep clustering method, it generates a high dimensional embedding
vector for each time frequency bins in a supervised learning manner and then a
clustering method is used to cluster those embedding vectors in order to get the
time frequency masks in a unsupervised way. Those embedding vectors are trained
in a such way that the distance for the same speaker is minimized while maximized
for the different speakers.

Given a mixture signal in the time domain x(n), firstly, features are extracted
by calculating the magnitude of its STFT. Secondly, features are inputted into
BLSTM networks to get embedding matrix V . During the training phase, the loss
is calculated in a way such that the difference between the embedding affinity matrix
V V Tand the ideal binary affinity matrix Y Y T is minimized shown as

L = ∥V V T − Y Y T∥2. (3.7)

As shown in the Equation 3.7, T denotes the transpose of the matrix. V is the
embedding matrix with the dimension of (T ∗F,D), where T denotes the time with
units of s, F represents the frequency with the unit of Hz and D is the dimension
of the embedding (here D is 40). Y is the IBMs with dimension of (T ∗F,C), where
C denotes the number of the speakers in the mixtures (here 2 is used). If the loss
calculation is based on the Equation 3.7, the computation would be costly as the
dimensions of V V T and Y Y T are quite high which makes training process difficult.
Hence, a better representation of the loss function [13] is

L = ∥V TV ∥2 − 2∥V TY ∥2 + ∥Y TY ∥2. (3.8)

During the loss calculation as only those bins with magnitude greater than the VAD
threshold (here, we set the threshold to 40 dB with respect to the maximum mag-
nitude), voice active detection (VAD) technique is used to mask out those inactive
time-frequency bins. In this way, the computation burden is decreased again for
accelerating the training process. The flowchart of deep clustering method has been
shown in the Figure 3.6 and Figure 3.7.
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Figure 3.6 Framework of Deep Clustering method. Spectral features of the mixture is
calculated by the STFT are inputted into the BLSTM networks. Embedding vectors for each
time-frequency bins are outputted from the networks. Networks are trained in a supervised
manner. Clustering methods are used to cluster the embedding vectors into masks in an
unsupervised manner. Finally, the separated source signals are converted back to the time
domain by the ISTFT.

Figure 3.7 Illustration of Deep Clustering method. The red blocks in the time-frequency
bins represent the bins where the speaker 1 is dominant, and the yellow blocks shows the
bins where the speaker 2 is dominant.
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In the testing phase, given a mixture in the time domain x(n), firstly, features
are extracted by calculating the magnitude of its STFT as the training process,
then features are inputted to the well-trained deep clustering networks to get the
embedding vectors. VAD is also used to mask out those inactive time-frequency
bins. Finally, k-means clustering method is applied to the embedding vectors by
assigning value 1 to one cluster and 0 to another cluster. In this way, the estimated
binary masks are obtained. After obtaining the time-frequency masks, those masks
are applied to the mixture spectrogram and the ISTFT is used to reconstruct back
to the time domain signals.
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4 Low-Latency Deep Clustering for Speech
Separation
Deep clustering method has shown great improvement for source separation. How-
ever, the usage of BLSTM networks and larger window length 32 ms make it diffi-
cult for applications like hearing aids. Thus, a low-latency version of deep clustering
method is proposed in this thesis. In order to make deep clustering method cooper-
ate with low latency, three main changes [44] have been done explained as follows.

Firstly, the networks should allow online processing by the usage of LSTM net-
works instead of BLSTM networks shown in the Figure 4.1. Due to the fact that
BLSTM networks consist of two parts, one is forward LSTM and another one is
backward LSTM. One has to wait until the whole utterance finishes, which makes
online processing not practical. Secondly, shorter window length is required as low
as 10 ms, here we are using 8 ms window length shown in the Figure 4.2.

Figure 4.1 LSTM networks show how the information flows through it.

Thirdly, a speaker model in short time is also needed. For offline deep cluster-
ing method, it outputs the embedding vectors for the complete utterance, then a
clustering method is applied to the embedding vectors and get the time-frequency
masks by assigning different clusters. In order to make this method cooperate with
low latency algorithm, here we proposed to get the embedding vectors only from
the beginning of the mixture referred as buffer length, then clustering method like
k-means is used to cluster those embedding vectors from the buffer duration to the
cluster centers. Furthermore, those cluster centers are used to assign the clusters
for the rest of the mixture in order to get the time-frequency masks.
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Figure 4.2 The first block represents the first frame which is 8ms, and the second block
having the same length 8 ms overlaps with the first block with 4 ms.

Given a mixture x(n) in time domain, firstly, the As shown in the Figure 4.3,fea-
tures are extracted from the beginning of the mixture, for example, the first 0.3 s, by
calculating the magnitude of its STFT. Secondly, features from the buffer length are
inputted to the well-trained networks and output the embedding vectors. Thirdly,
k-means is used to cluster the embedding vectors to get the cluster centers as shown
in the Figure 4.3, the yellow group represents one cluster and the black cross is the
center of the yellow group. Similarly, the red group displays another cluster and the
green cross is the cluster center of the red group. Finally, for the rest of the mixture,
features are extracted by calculating the magnitude of its STFT and inputted to
the networks to get the embedding vectors as how it is done for the buffer length.
Those centers from the buffer length are used to assign the clusters for the rest of
the embedding vectors and get the estimated time-frequency masks.

It should be noted that in order to get the reasonable cluster centers from the
beginning of the mixture, both speakers should be active during the buffer length,
which is not the always case in practical. Thus, silence in each mixture is removed in
order to cooperate with buffer length idea, which indicates that there will be more
overlapped signals and make the separation challenging. Additionally, in order to
keep the testing material the same for the different buffer length, it is proposed by
using clustering utterance from the same speaker pair as the testing utterance to
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get the cluster centers and centers are used to predict the time-frequency masks for
the testing utterance. The details of those method are explained in the section 5.
The flowchart of online deep clustering method for speech separation is shown in
the Figure 4.4.

Figure 4.3 Illustration of low-latency deep clustering method. The first 0.3s in the
mixture are firstly extracted features by the STFT. LSTM networks output the embedding
vectors. K-means clusters the embeddings into two clusters. Centers from those two
clusters are used to predict the masks for the rest of the mixture.
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Figure 4.4 The block diagram of the proposed low-latency deep clustering method.
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5 Evaluation
In this chapter, low-latency deep clustering method is evaluated. In the section,
dataset used in this thesis is introduced. In the next section, the metrics for evalu-
ation are discussed. The experiment setup is discussed in the third section. In the
last section, the results are displayed.

5.1 Data

In this section, it consists of three subsections, the first one tells about the structure
of the dataset. In the next subsection, preparing the data is introduced. The creation
of the data is discussed in the last subsection.

5.1.1 Dataset

The dataset used to evaluate this separation system is Wall Street Journal Corpus
(wsj0) [45]. Data inside the si_tr_s folder are used to develop the system and the
data inside si_dt_05, si_et_05 folders are used to evaluate the system. For the
training dataset mentioned above, there are altogether 101 speakers including 50
male speakers and 51 female speakers. For the testing dataset, there are 18 speakers
including 10 male speakers and 8 female speakers. One should note that, those 18
speakers used for testing the system are not seen during the developing the system,
which is meant to test if the separation system is speaker-independent or not.

5.1.2 Data Preparation

Firstly, The wsj0 dataset is NIST SPHERE format-wv1 format, for the later con-
venience of the usage, all the data are firstly converted to WAV format by using
toolbox sph2pipe. Secondly, the data is resampled to 8 kHz from 16 kHz for the
purpose of reducing the computational burden.

5.1.3 Data Creation

The script used for generating 2-speaker mixtures is the same as in [13] for fair
comparison. For the training data, 20,000 mixtures are randomly selected from
different speakers in si_tr_s folder containing around 30 hours audio material.
Similarly, for the cross validation data, 5,000 mixtures are created from the same
speakers as the training dataset containing around 7.5 hours audio material. Finally,
for the testing data, 3,000 mixtures are created from si_dt_05, si_et_05 folders
containing 18 speakers which are different from the training dataset lasting 5 hours.
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On top of that, another form of the same testing data is created by grouping the
3,000 mixtures into 306 groups according to the speaker pair information. The latter
version of testing data is used to evaluate the low-latency deep clustering system.
Additionally, in order to investigate the effect of different buffer duration, silence
in the beginning of the cluster utterances is removed ensuring that both speakers
are active during the buffer. Furthermore, in this way, two cluster centers can be
formed so that they can be used to assign clusters for rest of each time-frequency
bin in the rest of the mixture.

It is noted that, firstly, before mixing them together, all the data have been nor-
malized using a function called ’actilev’ in voicebox, MATLAB. Secondly, a random
positive value ranging from 0 to 2.5 of gain (dB) is added to speaker 1. Then the
corresponding negative value of gain is added to another speaker to form a mixture.
This ensures mixtures are created at the range of signal-to-noise ratio (SNR) from
-2.5 dB to 2.5 dB.

Additionally, after creating the mixture, all the sources and the mixtures are
scaled by the same scaling factor, which ensures that the absolute value of the
signal is no more than 1. Lastly, there are two ways of trimming the signals to the
same length, one is that keeping the maximum duration of the signals and pad zeros
to those signals which are not. Another way is to keep the minimum duration of
the signal and trim the rest to the same length. In this thesis, the minimum length
method is taken. One should note that in this way, there will be more overlaps
compared to taking the maximum length. The following Figure 5.1 has shown the
details of how the data is created.

5.2 Evaluation Metrics

For evaluating the performance of the system, BSS-EVAL toolbox [46] is used.
It consists of three metrics which are source-to-distortion ratio (SDR), source-to-
interference ratio (SIR), source-to-artifact ratio (SAR).

SDR is defined as

SDR := 10 ∗ log 10 ||Starget||2

||einterf + enoise + eartif ||2
. (5.1)

SIR is defined as
SIR := 10 ∗ log 10 ||Starget||2

||einterf ||2
. (5.2)

SAR is defined as

SAR := 10 ∗ log 10 ||Starget + einterf + enoise||2

||eartif ||2
. (5.3)



33

S1 S2

Resample to 8 kHz Resample to 8 kHz

S1 S2

Normalization Normalization

S1 S21.5 dB -1.5 dB

S1

S1: = S1 * 10^(1.5/20)

S2

S2: = S2 * 10^(-1.5/20)

min_len=min(len(s1),len(s2))

Mixture

Mixture

mix = s1[:min_len] + s2[:min_len]

mix = scaling_facor * mix

Figure 5.1 The diagram of data creation. All data are firstly resampled to 8 kHz and
normalized. Random number of SNR varying from -2.5 to 2.5 dB is added to the mixtures.
Mixture is created from two different sources with the length of the minimum over two
sources.

From the equations above, it is clearly seen that the higher value these three met-
rics are, the better separation performance of the system has. In order to evaluate
the separation system properly, a baseline metric which is the initial SDR (0.1dB)
showing the result without any separation system.
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5.3 Experiment Setup

In this thesis, three experiments have been conducted in order to analyze 1) the
effect of different neural networks which are BLSTM vs LSTM for the offline deep
clustering system, 2) the usage of the different window length, which are 32ms and
8ms window length for the offline deep clustering system, 3) the effect of different
buffer duration for low-latency deep clustering system.

For the experiment setup 1) BLSTM networks, firstly, features are extracted from
time domain signals by computing the STFT using librosa library [47]. Hanning
window function is used and the window length for this experiment is 32ms, which
has 256 samples. Hop length having 8ms, 64 samples, is used. After extracting its
STFT, a decibel version is computed as

features := 20 ∗ log 10|STFT (x)|. (5.4)

Secondly, voice active detection (VAD) technique is used during calculating the loss
function, which ensures the deep clustering system not to assign the embedding
vectors for those inactive time-frequency bins. VAD is computed on the base of
equation above as follows

V AD := feature > (max(feature)− Threshold), (5.5)

here, threshold is set to 40 dB. Thirdly, the normalized features are sent to the neural
networks by subtracting its mean and dividing its standard deviation as follows

normalized_features :=
features−mean(features)

std(features)
. (5.6)

Finally, Keras [48] framework and tensorflow [49] are used for implementing this
system. However, a pytorch version [50] of this system is also implemented. Here,
we mainly talk about the keras version. The network consists of 4 layers BLSTM
with 600 units in each layer, followed by a time-distributed Dense layer having the
number of the units which is the product of embedding dimension, here, 40 is used,
and the number of frequency bins, 129 is used. Hyperbolic tangent (tanh) activation
function in this dense layer is used. Additionally, L2 normalization is applied to each
embedding vector for the purpose of making each embedding vector to unit norm.
Furthermore, sequence length of 100 is set up. During training, 100 epochs are
set to train the networks, however, in order to avoid overfitting problems, early
stopping [38] technique is utilized by monitoring the validation loss. The patience
is set to 30 epochs, which indicates that if the validation loss does not decrease
for consecutive 30 epochs, then the training process will be stopped. The networks
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structure, number of the trainable parameters have been shown in Table 5.1.

Table 5.1 network structure and parameters

Layers (Type) Output Shape Param #
InputLayer (None,100,129) 0

Bidirectional LSTM 1 (None,100,1200) 3504000

Bidirectional LSTM 2 (None,100,1200) 8644800

Bidirectional LSTM 3 (None,100,1200) 8644800

Bidirectional LSTM 4 (None,100,1200) 8644800

TimeDistributed Dense 4 (None,100,5160) 6197160
Total Params: 35,635,560

Trainable Params: 35,635,560

Non-trainable Params:0

From the Table 5.1, we can seen that the networks are quite heavy and there
are 35,635,560 parameters to be trained. After each epoch, the training loss and the
validation loss are saved to find the best model which minimize the validation loss.
The following Figure 5.2 depicts how both training loss and validation loss go with
the epochs. From the loss shown in the Figure 5.2, we can see that early stopping
technique is used during training because it stopped at around 58th epoch instead
of waiting up to 100 epochs. On top of that, we can also see that both training and
validation loss converge at around 10th epoch.

In order to analyze the effect of factor 1), another the experiment setup is im-
plemented. The only difference from the setup 1) is that the networks consist of 4
layers of LSTM instead of BLSTM. Other parameters are set to the same as the
first setup. Factor 2) is analyzed by another experiment. On top of the second ex-
periment setup, a shorter window length having 8 ms, 64 samples, 4 ms hop length,
32 samples, is used while extracting the features from the time domain signals. Ad-
ditionally, the sequence length is set to 200, which makes 200 ∗ 4 = 800ms. The
reason for doubling the sequence length is because in the setup 2 , 100 ∗ 8 = 800ms

is inputted to the network during training. In this way, factor 2) can be compared
precisely and fairly. Other parameters are kept the same as the setup 2.

For analyzing factor 1) and 2), same testing setup is used. In the test case, given a
mixture, firstly, features and the VAD are extracted as the way how training process
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does, and then inputted to the well-trained networks to get embedding vectors.
Then the embedding vectors are multiplied by its VAD so that those inactive time-
frequency bins are not assigned any embedding vectors. Furthermore, k-means in
scikit-learn [51] is used to cluster the embedding matrix to 2 clusters. The estimated
masks are obtained by assigning one cluster to 1 and the other cluster to 0. Finally,
masks are applied to the spectrogram of the mixtures with its own phase information
and time domain signals are reconstructed back using the ISTFT in librosa [47].

For the factor 3), it has the same setup as the third setup during training,
however, it has different testing setup. What differs from the offline testing setup
most is that k-means clustering method is applied to the first few seconds in the
beginning of each mixture (buffer) to get clusters centers instead of clustering on
the complete signal and those centers are used to assign the clusters for the rest
of the mixture. As it is described in the data section, for testing the online deep
clustering system, 306 groups of data are formed according to the information of
the speaker pair. While testing, for each testing utterance, a clustering utterance
is randomly selected from the same group, as it is shown in Figure 5.3, and the
silence in the mixture signal to trimmed so that 2 clusters can be formed during the
buffer, as shown in Figure 5.4. Those centers are used to assign the clusters for the
the testing utterance. In this way, the effect of the different buffer length can be
precisely investigated. The detailed parameters of these three networks can be seen
from Table 5.2.

Table 5.2 networks and feature parameters for offline and online deep clustering exper-
iments.

BLSTM LSTM low-latency DC
Window length 32 ms 32 ms 8 ms
Hop length 8 ms 8 ms 4 ms
Sequence length 100 100 200
Window function Hanning
Sampling frequency 8 kHz
FFT size 256
Number of layers 4
Number of units in each layer 600
Embedding dimension 40
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Figure 5.2 The loss of the BLSTM networks, where the orange line depicts the validation
loss and the blue line shows the training loss.

Figure 5.3 Online testing setup explanation

5.4 Results and Discussion

The average of SDR, SIR, and SAR are calculated from the 3, 000 test mixtures.
The results are seen from the Table 5.3. From the first line of the Table 5.3 which
corresponds to experiment setup 1, it can be seen that the highest performance is
achieved with 7.9 dB in SDR, 15.6 dB in SIR, and 9.2 dB in SAR. The violin plots
are seen from the Figure 5.7. From the second line of the Table 5.3 regarding to
experiment setup 2, it can be concluded that by only changing the network from
BLSTM to LSTM, the performance dropped 1 dB in SDR.
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Figure 5.4 The mixture is formed from the trimmed two different source signals.

For the experiment setup 3, both offline test setup and online test setup have
been conducted. Additionally, from the third line of the Table 5.3, we can seen that
by shortening the window length to 8 ms from 32 ms, another 1.1 dB drop in SDR is
observed compared to the second experiment setup. Figure 5.5 shows an example of
the spectrogram of the 32 ms window length, it can be clearly seen that, the larger
window length, better resolution and fine structure of the spectrogram has, which
explains the dropped performance.

Finally, for the online deep clustering system with 1.5 s buffer, from the last of
the Table 5.3, another 0.7 dB in SDR is found compared to the second last line of
the Table 5.3. On top of that, the effect of the buffer length is investigated and
the results are seen from the Figure 5.6. It can be concluded from the Figure 5.6
that separation performance increases with buffer duration increases. However, it
stops at the 0.3 s and after that the performance keeps steady, which indicates that
a relative good separation performance can be achieved from quite as short as 0.3 s
buffer.

One example of the low-latency deep clustering method for separation is shown
in the Figure 5.8. As it is shown, the separated sources are very close to the
groundtruth.

Table 5.3 Evaluation metrics (dB) of different system setup

Window length Hop length SDR SIR SAR
BLSTM 32 ms 8 ms 7.9 15.6 9.2
LSTM 32 ms 8 ms 6.9 14.5 8.4
LSTM 8 ms 4 ms 5.8 13.6 7.2
Online LSTM 8 ms 4 ms 5.1 12.6 6.7
(1.5s buffer)
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Figure 5.5 An example of spectrogram of a signal with 32 ms window length
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Figure 5.6 Evaluation metrics with different buffer length. The blue line depicts the
SDR metric (dB), the red line shows the SIR metric (dB), and the green line represents
the SAR metric (dB).

Figure 5.7 The distribution of the result for BLSTM networks. The left one represents
the distribution of SDR metric, SIR is shown in the middle panel, and SAR is displayed
in the right side.
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Figure 5.8 Examples of online DC method. The upper part shows the mixture in the
time domain. In the second row, the left most depicts the estimated source1 shown in the
red line and the corresponding groudtruth source1 shown as the blue line. The right most
represents the estimated source2 shown as the red line and the groudtruth source2 shown
as the blue line.
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6 Conclusions and Future Works
In this thesis , a low-latency variant for speech separation based on deep clustering
method is proposed. Specifically, three different network setups are investigated in
order to analyze three factors, the usage of different networks, window length, and
buffer length. The first experiment setup consists of 4 Layers of BLSTM with larger
window length, the second setup is formed by 4 layers of LSTM with larger window
length (32 ms) features, and the last one studies the 4 layers of LSTM with shorter
window length (8 ms) features.

It is found that separation performance achieves the highest by using BLSTM
networks and 32 ms window length. Additionally, 1 dB drop in SDR is noticed
by only changing networks from BSLTM to LSTM while keeping other parameters
the same, which indicates that the future information is crucial to the separation.
Furthermore, it is found another 1.1 dB drop in SDR by shortening the window
length to 8 ms from 32 ms compared to the experiment setup 2. From this, it
can be explained that the spectrogram of signals with the shorter window length
have poorer frequency resolution compared to the signals with larger window length.
Finally, for the online deep clustering separation system, it is discovered that the
separation performance improves as the buffer length increases and keeps steady
after 0.3 s. This tells that after a buffer of 0.3 s, the speaker separation system is
able to operate with the latency of 8 ms.

As for the future work, there are many things which are worth of exploration.
For example, shown as the experiment results, the separation performance on the
same gender mixtures is worse than the cross gender mixtures. Regards to this,
it is necessary to investigate on improving the performance of the same gender.
Additionally, performance of low-latency separation system is still far behind the
offline separation system so it is worth of study on improving the performance of
online system. For example, various frequency resolution can be tried out to improve
the online DC separation performance. Furthermore, as deep clustering method is
speaker-independent, language independent, experiments like applying it to some
other language dataset or even some other more universal source separation problems
can also be studied.
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APPENDIX
In chapter 3.3, for offline deep clustering separation system, the loss is defined as
the Equation 3.7. However, in the real implementation, Equation 3.8 is employed.
The mathematical prove is given as follow.

L = ∥V V T − Y Y T∥2

= tr[(V V T − Y Y T )T (V V T − Y Y T )]

= tr[(V V T − Y Y T )(V V T − Y Y T )]

= tr[V V TV V T − V V TY Y T − Y Y TV V T + Y Y TY Y T ]

= tr[V V TV V T ]− tr[V V TY Y T ]− tr[Y Y TV V T ] + tr[Y Y TY Y T ]

= tr[(V V T )T (V TV )]− tr[(V TY )T (V TY )]− tr[(V TY )T (V TY )] + tr[(Y TY )T (Y TY )]

= ∥V V T∥2 − 2∥V TY ∥2 + ∥Y TY ∥2
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