
Teemu Orava

TECHNICAL DEBT MANAGEMENT IN
SMALL AND MEDIUM-SIZED

ENTERPRISES

Information Technology
Master of Science Thesis

August 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/280341186?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

ABSTRACT

Teemu Orava: Technical Debt Management in Small and Medium-sized Enterprises
Master of Science Thesis
Tampere University
Software Engineering
August 2019

The need to release our products under tough time constraints has required us to take short-
cuts during the implementation of our products and to postpone the correct implementation,
thereby accumulating Technical Debt.

In this work, we report the experience of a Finnish SME (Small and Medium-sized Enterprise)
in managing Technical Debt (TD), investigating the most common types of TD they faced in the
past, their causes, and their effects. The case company is a spin-off which sells one product. Its
development was outsourced in the beginning and later continued with external developers.

We set up a focus group in the case-company, involving different roles. The results showed
that the most significant TD in the company stems from disagreements with the supplier and lack
of test automation. Specification and test TD are the most significant types of TD. Budget and
time constraints were identified as the most potential root causes of TD.

TD occurs when time or budget is limited or the amount and content of work are not understood
properly. However, not all postponed activities generated ”debt”. Sometimes the accumulation of
TD helped meet deadlines without a major impact, while in other cases the cost for repaying the
TD was much higher than the benefits. From this study, we found out that learning from customers,
careful estimations and continuous improvement could be potential strategies to mitigate TD.

These strategies include iterative validation with customers, efficient communication with stake-
holders, improvement of meta-cognition in estimations, and value orientation in budgeting and
scheduling.

Keywords: Case Study, Empirical Study, Technical Debt, Small and Medium-Sized Enterprise

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Teemu Orava: Teknisen velan hallitseminen pk-yrityksissä
Diplomityö
Tampereen yliopisto
Ohjelmistotuotanto
Elokuu 2019

Tarve julkaista tuotteitamme tiukalla aikataululla on vaatinut meitä käyttämään oikopolkuja
tuotteidemme kehityksessä ja viivästyttää oikeellista toteutusta, mikä on kerryttänyt teknistä vel-
kaa.

Tässä työssä raportoimme suomalaisen PK-yrityksen kokemuksia teknisen velan hallinnasta,
tutkien heidän kohtaamansa teknisen velan yleisempiä tyyppejä, syitä ja vaikutuksia. Kohdeyritys
on spin-off, joka myy yhtä tuotetta, jonka kehitys aluksi ulkoistettiin ja jota sittemmin jatkettiin
ulkoisten kehittäjien kanssa.

Teimme kohdeyritykselle fokusryhmähaastattelun, johon osallistui eri rooleissa olevaa henki-
löstöä. Tulokset näyttivät, että yleisin tekninen velka on seurannut erimielisyyksistä toimittajan
kanssa ja testiautomaation puutteesta. Määritelmien ja testien tekniset velat ovat yleisimpiä tek-
nisen velan tyyppejä. Budjetti- ja aikarajoitteet tunnistettiin potentiaalisimmiksi teknisen velan juu-
risyiksi.

Tekninen velka aiheutuu, kun aika tai budjetti on rajallinen tai kun työn määrää ja sisältöä ei
ole ymmärretty oikein. Kaikki viivästetyt aktiviteetit eivät kuitenkaan luonneet “velkaa”. Joskus tek-
nisen velan kertyminen auttoi kohtaamaan aikarajat ilman merkittäviä vaikutuksia, kun taas muis-
sa tapauksissa teknisen velan takaisinmaksamisen kulu oli paljon suurempi kuin hyödyt. Tässä
työssä havaitsimme, että asiakkailta oppiminen, varovaiset arviot ja jatkuva parantaminen ovat
potentiaalisia strategioita teknisen velan vähentämiseen.

Nämä strategiat kattavat iteratiivisen validoinnin asiakkaan kanssa, tehokkaan viestinnän si-
dosryhmien kanssa, metakognition parantamisen arvioissa ja arvolähtöisyyden budjetoinnissa se-
kä aikataulutuksessa.

Avainsanat: Tapaustutkimus, Empiirinen tutkimus, Tekninen velka, PK-yritys

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.

iii

PREFACE

I want to thank my supervisor, Davide Taibi, for guiding me to the path of researching
technical debt, the concept which I have been long aware and concerned, and learned
to understand better and better during the process of writing. I want to thank our case
company for providing their experiences to our knowledge. I want to thank all who con-
tributed to my work. I want to thank my loved ones; my fiancée and my family who stood
for me during my quest. I hope our work can make this important concept recognized
even wider, resulting better quality, better usability, better management, better business
and better software. May you wisen in the management of your technical debt.

In Tampere, 19th August 2019

Teemu Orava

iv

CONTENTS

1 Introduction . 1

2 Related Work . 3

2.1 Technical debt . 3
2.1.1 Motivation . 3
2.1.2 Types . 6
2.1.3 Impacts . 8

2.2 Technical Debt Management . 9
2.2.1 Identification . 9
2.2.2 Measurement . 9
2.2.3 Prioritization . 9
2.2.4 Monitoring . 10
2.2.5 Repayment . 10
2.2.6 Communication . 11
2.2.7 Prevention . 11

2.3 Project Management . 12
2.3.1 Kanban . 12
2.3.2 Agile Software Development . 13
2.3.3 Contracts . 16
2.3.4 Continuous Improvement . 16

3 Focus Group . 18

3.1 Research Questions . 18

3.2 Planning the Study . 19

3.3 Data Analysis . 21

4 Results . 24

4.1 Perceived Debt . 24

4.2 Research Questions . 30
4.2.1 RQ1. What Are the Most Common Types of TD? 30
4.2.2 RQ2. What Are the Main Causes of the Accumulated TD? 30
4.2.3 RQ3. How to Mitigate TD? . 32

5 Threats to Validity . 33

6 Discussion . 34

6.1 Learning from Customer . 35

6.2 Careful Estimation . 37

6.3 Continuous Improvement . 38

7 Conclusion . 41

References . 43

v

LIST OF TABLES

3.1 Table of TD types and their details . 22

4.1 Perceived TD by interviewees and total points 29
4.2 Perceived TD types and sum of points . 29
4.3 Count of TD motivations presented . 29

vi

LIST OF SYMBOLS AND ABBREVIATIONS

ASD Agile Software Development

ATAM Architecture Trade-off Analysis Methodology

CFO Chief Financial Officer

CMO Chief Marketing Officer

CTO Chief Technology Officer

LSD Lean Software Development

MVP Minimum Viable Product

OD Organizational Debt

PoC Proof of Concept

ROI Return of Investment

RQ Research Question

SME Small and Medium-sized Enterprise

SUT System Under Test

TD Technical Debt

TDD Test-Driven Development

TDM Technical Debt Management

UI User Interface

UX User Experience

VOC Voice of the Customer

WIP Work in Progress

1

1 INTRODUCTION

Companies commonly spend time on activities that improve software quality. These ac-
tivities include refactoring aimed at removing technical issues that are believed to impact
software qualities. Many factors can lead to technical debt; they can be internal, related
to the business or the environment, or they can be external to the company [51], [10].

Technical Debt (TD) is a metaphor from the economic domain that ”refers to different
software maintenance activities that are postponed in favor of the development of new
features in order to get short-term payoff” [17]. According to N. Brown et. al., TD is a gap
between current state and ideal state where system would perform optimally in desired
environment [14].

Technical issues include any kind of information that can be derived from the source
code and from the software process, such as usage of specific patterns, compliance with
coding or documentation conventions, architectural issues, and many others. For exam-
ple, when a new feature does not fit the current architecture, the incompatibility might
solved with an immature implementation [17] than will be fixed in the future implementing
a proper solution.

Researchers have investigated different aspects of TD and its management (TDM), and
proposed different approaches for repayment. However, only few works have investigated
concrete cases and identified the root causes of Technical Debt in companies.

In this work, we report on an empirical study we performed in our company, a Finnish
SME that operates in Business-to-Business sector and develops a web application for
managing sales channels.

The application’s development started four years ago outsourced to a vendor. Users
can manage leads of the whole organization and see statuses of all the leads at once.
Significantly, the first version had no possibility to define products for the leads but it was
later added because of the customer demand.

In the beginning, the development of the product was outsourced to an external supplier.
The product was developed as a Minimum Viable Product (MVP) [42] which acted as a
PoC (Proof of Concept). Startup companies can find building a MVP beneficial to validate
their business idea. According to E. Ries, the author of lean startup, the product has to
be pivoted when it matures meaning that it has to be modified to meet new requirements
[60]. According to E. Klotins et. al. limited resources force startups to make technical

2

compromises [38]. An inflexible MVP can create TD and slow down the development.

We identified cases where we postponed different activities and then analyzed the rea-
son(s) for the postponement, the issues generated by the postponement, and how the
postponed activities were implemented later. We also highlight the overhead generated
by the postponement of the activities themselves (the interest).

The results of this work can be beneficial not only for the scientific community but also for
other companies. As other companies can understand the reasons why we postponed
some activities, and the issues generated by the postponement, they can make more
informed decisions in similar situations. The results of this work confirm that TD can
cause significant economic losses if payback is postponed. Also, postponing activities -
even if it is beneficial in the short term - can often be an economic disadvantage.

We investigated our company’s TD with a focus group involving five members of the
company. Our main goal was not to regret past losses, but to understand what happened
in the past and find ways to prevent similar situations.

The remainder of this paper is structured as follows. Section 2 reports on related work.
In Section 3, we introduce the empirical study design and report the results in Section 4.
The discussion is presented in Section 6 and conclusions are drawn in Section 7.

3

2 RELATED WORK

Related work in software and management fields is explored in light of TD. Its usefulness
for its part in mitigating TD is estimated later in Discussion, section 6.

2.1 Technical debt

W. Cunningham introduced the concept, later to be known as technical debt, in his article
from 1992 by stating "shipping first time code is like going into debt". He claimed the mo-
tivation to take TD by stating "a little debt speeds development so long as it is paid back
promptly with a rewrite". The risk of TD lies in the postponement of repayment, which
increases the interest of debt. TD bankruptcy can be considered as situation where "un-
consolidated implementation" has brought the whole organization "to a stand-still". He
saw waterfall development cycle, "working out a program in detail before programming
begins", as a cure to software crisis, however questioned how it fits to object-oriented pro-
gramming. He stated that polymorphism with objects had allowed flexibility for changes.
[17]

On every epoch, there has been faith on the help of current trends. However, as stated by
F. Brooks in 1986, there still does not exist a silver bullet; "there is no single development,
in either technology or management technique, which by itself promises even one order
of magnitude improvement within a decade in productivity, in reliability, in simplicity" [13].
Technology push and market pull has generally exceeded the supply of well-managed,
high-quality software. Answering to demand may require taking TD, and uncontrolled ac-
cumulation of TD creates risks. Thus, TD has to be identified and communicated through-
out the organization. The nature of future risks cannot be predicted, whereupon technical
debt management requires risk management and acknowledgement of the existence of
unknown through e.g. cost-benefit-analysis, and cause and effect analysis [69] [30].

2.1.1 Motivation

According to Z. Li et. al., technical debt occurs when technical shortcuts are taken to
gain short-term benefits that are harmful for the system in the long term [49]. There
are several reasons that lead to technical compromises, such as unrealistic schedule,
budget constraints, or estimation errors. Highly indebted products become inflexible and

4

unprofitable, and the accumulation of debt eventually leads to technical debt bankruptcy
whereupon the system has to be replaced with a new one.

E. Tom et. al. found out in their exploratory case study that reasons to take TD are
pragmatism, prioritization, processes, attitudes, ignorance and oversight. Pragmatism
is typical for small companies that implement MVP to conquer the markets and taking
TD is only way to survive. In prioritization, insufficient budget is given to maintenance,
because its value is not seen. For instance, if a PoC or a throwaway prototype, that was
not intended to be scaled for production, is adopted as working product, it calls for taking
TD. Lack of processes can hide TD and increase risk of taking it unknowingly. Code
reviews decrease risk of accidental TD, because they encourage to internal audit and
self-inspection. A good process will aim to identify and mitigate TD. Excessive complexity
will be avoided if it needs to be explained. Attitude can have positive or negative impact
to TD. Developer’s fear can prevent an attempt to repay TD. However, their recklessness
can lead to taking TD. Ignorance and oversight are sources of inadvertent debt, which
consequences are not understood [27]. Oversight might prevent developer to see the
future needs. Ignorance, lack of domain knowledge or technical knowledge, can lead to
poor decisions. [73]

According to E. Tom. et. al., bankruptcy happens when system is not scalable or flexible
enough, and rewrite takes less time than improving existing code. Tactical, incremental
and inadvertent debt, which is not under control, is most likely to lead to bankruptcy. [73]
According to systematic literature review by A. Ampatzoglou et. al., bankruptcy happens
when project is cancelled or completely rewritten due to large maintenance costs caused
by accumulated TD [4].

Klinger et al. [37] interviewed four software architects to understand how decision-making
regarding TD was conducted in an enterprise environment. The results showed that the
decisions related to TD issues were often informal and ad-hoc, which prevented track-
ing and quantifying the decisions and issues. Moreover, just as in our work, this study
also reported that there was a large communication gap between technical and business
stakeholders in the discussions related to TD.

Recently, De Toledo et al. [19] conducted an exploratory case study with a large company
on a project with about 1,000 services. They investigated Architecture Technical Debt in
the communication layer. The study combined an analysis of existing documentation and
interviews to identify issues, solutions, and risks, providing a list of architectural issues
that generate technical debt.

N. Ernst et. al. find architectural issues the most important cause for TD. Architectural
issues are difficult to manage, because they might become submerged in long term.
Furthermore, developers usually consider TD more critical than managers. [25] ATAM
(Architectural Trade-off Analysis Methodology) [36] can be used to make optimal archi-
tectural decisions by hearing all stakeholders. Meanwhile, profitability of decisions has to
be considered. [65]

5

In a complex software, modularity helps to handle the complexity. Modules should be
loose-coupled to decrease dependencies. Modularity should be organized according to
communication structure. [6] However, as suggested by K. Beck et. al. in Agile Manifesto,
self-organized teams are most efficient [9]. To ease development’s burden, organizations
should ensure that developers are provided with proper facilities for development [9] not
to have excessive cognitive load from meta-work. Architectural decisions should be done
carefully. ATAM can help to find possible trade-offs in architecture decisions hearing
formally all stakeholders [36].

One cause of TD related to specification issues is lack of validation. According to E. Ries,
startups fail when they make plans too carefully while market is actually unpredictable.
Instead of speculating they should go to the field and understand how to satisfy customer
needs iteratively. In lean startup, validated learning and pivoting when needed helps to
keep product up-to-date with customer needs. [60] Having its roots in Customer Develop-
ment coined by S. Blank [11][12], goal is to develop what customer actually needs and to
avoid Organizational Debt (OD) which accumulates when customer needs are not met.
Customer Development differs from an approach which tries to predict customer need.
Best information lies in interacting with customers. Validating can be integrated as part
of development process. Similarly, in quality function deployment (QFD) introduced by Y.
Akao, voice of the customer (VOC) is basis of the value chain in product development [1].

According to M. Christel et. al., issues that occur in requirements elicitation are problems
of scope, problems of understanding and problems of volatility. Customers can be uncer-
tain of their needs and technical boundaries. Consequently, requirements elicitation has
to be started early and kept simple. [15]

Even with iterative validation, undesired TD can still occur. Estimation errors are one rea-
son leading to accumulation of TD. Underestimation leaves little time and budget for the
company to deliver its promises and can eventually force it to take TD. Dunning-Kruger
effect can explain estimation errors. According to J. Kruger et. al., a small amount of
knowledge leads to overconfidence of own competence which explains why complexity
of tasks is underestimated [41]. Overconfidence caused by underestimation helps to pro-
ceed with the task but it’s harmful when budgeting and scheduling are based on these
estimations. As M. Fowler stated, development of every system requires learning [27]. In
Dunning-Kruger effect, the meta-cognition of own competence is faulty and it improves
as experience of the task increases. Until then, skepticism against the accuracy of esti-
mations helps.

Optimism bias and wishful thinking can lead to taking TD. According to E. Allman, Mur-
phy’s law should be taken in account on taking TD: “anything that can go wrong, will go
wrong”. Developers are rewarded for avoiding TD but for fast delivery. Developer is often
the one who takes or is forced to take TD. He might be the only one who is aware of TD
and consequences. However, developer might not be the one who repays interest. At
latest, consequences of TD might only became evident in customer loss. TD manage-
ment requires proactivity, and repayment has to be pre-scheduled. Furthermore, in the

6

beginning, the team seldom has comprehends the problem fully. Waterfall model expects
sequential development to finalize requirements, design and development in order. How-
ever, the consequences of TD will be emphasized because changing of requirements is
inevitable during the sequential process, which hopes to freeze requirements that are un-
stoppable. Thus, he suggests an iterative, agile process which plans for change, and a
working prototype is used for customer tests continuously. [2]

Allman states that TD affects all stakeholders in different ways; customers, help desk, op-
erations, engineers, marketing and management. Customers seem the ones who force to
take TD but they also suffer the consequences when usability decreases. However, they
don’t have control on TD. Thus, customer should be advised about the risks of TD when
deciding about budget and schedule. Nor does help desk have control on TD but they
are the first to interact with the customer when problems occur, for instance caused by
TD. Pressure to help desk from customers will even increase by time, and time to fix the
problem is increased by accumulation of TD. Operations as well suffer from the conse-
quences of TD without having a possibility to affect to its causes. However, DevOps has
increased the cooperation between development and operation. Thus, operation’s per-
spective and long-term maintainability has become more considerable factor. Engineers
include developers and maintainers. Developers who implement all the functionality as
soon as possibly are often favored over developers who also see from the perspective
of long-term maintenance and take possibly longer time while developing maintainable,
reliable code. Consequences of intentional TD may not be realized, and unintentional
TD is not even recognized; “in its early days technical debt is almost invisible, because
the interest payments haven’t started coming due yet.” Thus, developers who are also
experienced maintainers are most reliable in TDM. [2]

Furthermore, marketing, pressured by sales, often give promises to customers of fast
delivery and maximum functionality. However, when proven impossible by delays and the
decrease of quality, they also need to negotiate with the customer. Bug fixes for their
part steal time from new functionality when failure demand surpasses value demand.
Marketing at its best can also communicate quality. Management can be sub-optimizing
if it favors certain departments. If marketing is favored over others, management goes
along marketing, and tries to increase sales and thus increase TD. When TD accumu-
lates, management has to survive from impacts of TD to sales and public relations, when
it decreases quality and increases response times. Allman states, “good management
understands risk management and balances out the demands of all departments”. Man-
agement can understand technical debt in analogy of financial debt. Technical people
can help others to understand consequences of “mismanaging” TD. [2]

2.1.2 Types

Ampatzoglou et al. [3] conducted a multiple case study in the embedded systems industry
in order to investigate the expected lifetime of components affected by TD and the most

7

frequently occurring types of TD. They considered seven embedded systems industries
from five different countries. The results showed that in order to increase the expected
lifetime of components, maintainability plays a major role. Moreover, they found the most
frequent types of TD to be test, architecture, and code.

Documentation is a common type of TD, because it gets easily compromised on account
of more visible work that brings more direct value to customer. Documentation keeps
software understandable between developers as complexity increases. A complex soft-
ware can be impossible to comprehend fully. Documentation removes bottleneck caused
by communication. Documentation reduces tacit knowledge and thus, it decreases the
risk to lose knowledge.

Documentation can form the foundation for software and help developers to hold con-
sensus. Documentation doesn’t have to be all-inclusive as it may become out-of-date.
Like mentioned in Agile Manifest, working software has higher importance than compre-
hensive documentation [9]. At simplest, documentation can consist of code comments
describing each class method. Design by contract (DbC) expects compatibility of classes.
It also allows to prioritize on conforming behavior instead of increasing complexity to pre-
pare for non-occurring situations. In opposite to DbC, in defensive design, components
prevent violations of preconditions which can improve safety in API (Application Program-
ming Interface).

According to M. Poppendieck [57], automated tests also act as documentation as they
communicate the intention of system’s functionality unambiguously, give feedback of the
system’s health to prove the integrity and provide scaffolding for refactoring and changes
in the last responsible moment.

S. McConnell separates TD to 2 main types, intentional and unintentional TD. Intentional
TD is taken for short-term benefit and is under control. Unintentional TD is caused by
low quality and is harmful, because its consequences are not known. Intentional TD can
be divided to short-term and long-term TD. Short-term TD is reactive and tactical while
long-term TD is proactive and strategical. Short-term TD can be focused or unfocused.
Focused TD is trackable and manageable while unfocused TD is difficult to identify and
manage. Focused TD consists noticeable larger-scale decisions while unfocused TD
are smaller-scale decisions which can exist as hundreds of shortcuts in the code. In-
complete work that doesn’t require interest payment is not debt. Postponed, cancelled or
in-complete features should not be considered as TD. [52]

According to M. Fowler, even the best teams deal with TD, but they also understand their
consequences. He identifies 4 TD types. Prudent debt does not have severe conse-
quences. Deliberate debt means that team understands its consequences while reckless
debt means that team does not care about the consequences. Inadvertent debt means
that team does not understand its consequences. Since most teams deal with prudent
and deliberate debt, taking reckless and inadvertent debt on top of them is unsustainable.
Only debt that yields short term benefit should be taken and repaid as soon as possible.

8

He claims that development of every system requires learning and thus, optimal solution
is seldom reached on the first attempt. [27]

2.1.3 Impacts

According to E. Tom et. al., TD impacts to team morale, productivity, product quality and
project risk. Developers, who take pride of their code, might find their morale deterio-
rate when they end up in a vicious cycle of TD, where they are given no time to repay
previous TD and will become careless of the consequences. TD hinders maintenance
and kills productivity. TD is financially analogous, and as its interest it will lower team
velocity in long-term for short term acceleration. Immediate value is important especially
for startups. If TD repeatedly slows down productivity, it tempts team to take more TD
when new deadlines approach, increasing risk of TD bankruptcy. TD impacts on product
quality and its decline might become noticeable for customers. TD obfuscates inten-
tion of code whereupon defects will be more difficult to notice. Quick solutions fail to
support integrity. Unnoticeable TD such as inadvertent debt and incremental debt are
most likely to increase risk. Solution is to identify occurred debt whereupon unknown
unknown becomes known unknown. However, as deadlines approach, fixing TD might
introduce more project risk. Hence, time has to be found to mitigation of TD. [73] Con-
sequently, proactivity over reactivity in TDM (Technical Debt Management) is favorable to
avoid risks.

Difficulty in measuring monetary cost of TD provides a challenge to proactivity in TDM.
It is because developer’s workload caused by TD is difficult to predict. [73] M. Stochel
et. al. suggest that TD’s return on investment (ROI) and profitability should be mea-
sured to understand its consequences and help prioritization. Furthermore, to avoid sub-
optimization, TD’s impacts has to be considered on all levels; design, architecture and
portfolio. Value-basis provides bridge between business and engineering. They found
out that TD’s consequences are problems in maintenance and increased number of de-
fects. Thus, TD value is good measure for future quality. [65]

T. Sedano et. al. conducted an empirical study for eight software companies to reveal
wasteful activities that don’t produce any value to customer. They revealed that TD can
cause extraneous cognitive load which is considered as a waste. When TD accumulates,
TD adds complexity of software and makes software harder to comprehend or modify,
which slows down team’s response time. When customer demands changes or new
features, there is no time left to refactor TD. Development tasks require learning capabil-
ity which will be handicapped by extraneous cognitive load caused by TD. Furthermore,
approaching deadlines cause distress, also a waste, which can lead to making poor de-
cisions, of which TD can be considered as an example. [62]

9

2.2 Technical Debt Management

Z. Li et. al. in their systematic mapping study collected 9 TDM (Technical Debt Man-
agement) activities: identification, measurement, prioritization, prevention, monitoring,
repayment, representation and communication [49]. These activities are described in
subsections below. Some of these activities are emphasized in our case study.

2.2.1 Identification

Especially unintentional TD requires to be identified to become visible. According to Z. Li
et. al., code analysis is most studied TD identification approach. TD can also be iden-
tified with code analysis, dependency analysis, check list and solution comparison. In
code analysis, code issues, lack of tests, and design or architecture issues implied by
code are analyzed and identified. In dependency analysis, component dependencies are
analyzed. In check list, predefined scenarios are utilized to identify TD. In solution com-
parison, actual solution is compared to optimal solution dimensionally using technique
such as cost-benefit analysis, where the distance shows the criticality of TD. [49]

2.2.2 Measurement

According to Z. Li et. al., calculation model is most studied TD measurement approach.
Criticality of TD can also be measured with code metrics, human estimation, cost cate-
gorization, operational metrics or solution comparison. In calculation model, TD is calcu-
lated using "mathematical formulas or models". In code metrics, metrics are applied to
source code. In human estimation, expertise is utilized. In cost categorization, cost types
of handling incurred TD are estimated. In operational metrics, TD is indicated by "quality
metrics of product operation". Solution comparison is described above. [49]

2.2.3 Prioritization

Especially limited budget requires prioritizing repayment of TD. According to Z. Li et. al.,
prioritization approaches are cost-benefit analysis, high remediation cost first, portfolio
approach and high interest first. In cost-benefit analysis, TD with highest cost-benefit
ratio of repayment is repaid first. In high remediation cost first, TD with highest repay-
ment cost is repaid first. In portfolio approach, repayment of TD, new features and bugs
are compared as risks and assets, and collected as asset set, maximizing ROI (Return
of Investment) and minimizing the investment risk [29]. In high interest first, TD items
"incurring higher interest should be repaid first". [49]

10

2.2.4 Monitoring

Understanding accumulation of TD requires monitoring. TD can be monitored with threshold-
based approach, TD propagation tracking, planned check, TD monitoring with quality
attribute focus and TD plot. In threshold-based approach, thresholds for TD quality met-
rics are defined, issuing warnings when not met. In TD propagation tracking, influences
in through dependencies between parts containing TD and other parts are tracked. In
planned check, change of identified TD is regularly measured and tracked. In TD mon-
itoring with quality attribute focus, changes of quality attributes that harm TD, such as
stability, are monitored. In TD plot, temporal trends in aggregated measures of TD are
observed. [49]

2.2.5 Repayment

According to Z. Li et. al., refactoring is most studied TD repayment approach. In refactor-
ing, code, design and architecture is altered to improve internal quality while preserving
external behavior. [49] According to M. Poppendieck, refactoring is not rework, because
it avoids waste, provides business value to customers and increases team velocity. As
customer needs change during life-cycle, software has to be designed to be easily refac-
tored, and excessive complexity can be considered as TD. [57]

Other approaches mentioned are rewriting, automation, re-engineering, repackaging, bug
fixing and fault tolerance. In rewriting, code containing TD is rewritten. In automation,
manual work, e.g. manual tests, manual builds or manual deployment, are automated.
In reengineering, existing software is evolved for new behavior, features or operational
quality. In repackaging, cohesive modules with manageable dependencies are grouped
to simplify the code. In bug fixing, known bugs are resolved. In fault tolerance, runtime
expections are placed strategically to avoid TD. [49]

S. McConnell claims that technical debt is easier to pay back gradually than entirely at
once. He states that technical debt should be paid back when team velocity and response
time to emergency decreases, or when quality starts to suffer from TD and customers
notice the shortcuts [52]. However, debt amnesty can be achieved if debt will become
written out. Also, debt can retire at the end of system’s life-cycle. Companies should
focus on TD that doesn’t require repayment. Shortcuts that accumulate in code by time
are most likely to avoid repayment. Developers are less motivated to repay unfocused
TD, because benefit is not as evident as in focused TD, that are larger decisions that
have bigger impact. [73]

11

2.2.6 Communication

Communication of identified TD is important to increase the recognition in the organi-
zation, spanning to decision-making in management-level. According to Z. Li et. al.,
communication approaches are TD dashboard, backlog, dependency visualization, code
metrics visualization, TD list and TD propagation visualization. In TD dashboard, TD
items, types and amounts are displayed in dashboard to inform all stakeholders of their
existence. In backlog, TD items are handled equally in backlog along with known bugs
and WIP features. In dependency visualization, undesirable dependencies, e.g. complex
dependencies of components are visualized. In code metrics visualization, low measured
quality of software, e.g. code complexity is visualized. In TD list, identified TD items are
listed and made visible for all stakeholders. In TD propagation visualization, connections
between TD items are shown. [49]

2.2.7 Prevention

There are several ways to prevent a product becoming indebted. Z. Li et. al. mentioned
development process improvement, architecture decision making support, life-cycle cost
planning and human factors analysis. In development process improvement, process is
improved to prevent TD from occurring. In architecture decision making support, architec-
ture design options are chosen by lowest potential risk of TD. In life-cycle cost planning,
cost-effective plans are developed to minimize overall life-cycle TD. In human factors
analysis, unintentional TD caused by human factors, e.g. indifference and ignorance, is
minimized. [49]

Furthermore, M. Fowler suggests that software should be designed to be strangled, i.e.,
to be surpassed by new versions easily [26], while according to Cunningham, utilizing the
modularity of objects allows developing flexible software [17]. However, sometimes debt
cannot be avoided and in order to avoid rising costs, the generated debt should be paid
back as soon as possible.

K. Tate claims that in sustainable software development, cost of change is kept constant
by keeping number of defects low. If defects accumulate, eventually cost of change will
increase, team velocity will decrease, and ability to respond will collapse. Defect burden is
caused by poor decisions and accumulation of TD. Principles are favored over practices
which would not sustain the complexity. Development is kept sustainable by following
four principles: continual refinement of practices, working product, continual investment
in design and valuing defect prevention over defect detection. [70]

12

2.3 Project Management

According to Z. Li. et. al., TDM as part of project management is challenging because
business value of TD is difficult to measure. Developers are more aware of TD’s value and
consequences. Arguing its significance to management is challenging. In agile develop-
ment, scheduling both TD prevention and repayment is challenging. Decision making in
TDM requires identifying, measuring, and formalizing cost and benefit of TD. [49] Next,
we summarize management frameworks and their relation to TDM.

By following existing management frameworks, companies can become more efficient
in getting work done and mitigating TD. Especially startups deal with uncertainty where
requirements are not yet clear and they still have to deliver value. An iterative model is
most beneficial for a company dealing with high uncertainty. According to D. Taibi et. al.,
companies without any process are slowest to deliver [67].

2.3.1 Kanban

Delivering value on time and removing wasteful work that doesn’t bring value requires
managed framework. As a solution, kanban was introduced in just-in-time production
by T. Ohno [54]. He lists defects and over-processing in seven wastes of JIT [54]. As
TD hinders development and can cause new defects, it can be considered as a waste
[65]. According to T. Sedano, TD is waste, because it causes extraneous cognitive load.
Furthermore, when refactoring it skipped because of approaching deadlines, it leads to
rework, which is also waste. [62] In simplest usage of kanban in software development,
statuses of tasks are being tracked with kanban cards in a shared system. Work burns
down as tasks are being moved from to-do status to done. Kanban cards provide visibility
of tasks and their statuses to all personnel.

Kanban is focuses on decreasing work in progress (WIP). It provides more relaxed frame-
work than Scrum and may lower the lead time [64]. Compared to Scrum, where develop-
ment is time-boxed, in kanban, the development, changes and delivery are continuous.
It bases development on customer pull instead of schedule push [57]. According to D.
Taibi et. al., combination of Scrum and kanban decrease the need for communication
[67] which otherwise would be taken away from available resources. Kanban helps to
compress the value stream and to deliver as fast as possible. Kanban cards should be
based on user story provided by customer and prioritized according to customer need
[57].

Unfinished work, i.e. work-in-progress (WIP) is considered as a waste which only has
value until it is finished and delivered successfully. Thus, companies need to deliver fast
to decrease risk of obsolescence. It requires breadth-first approach instead of depth-
first, and concurrent development instead of sequential development. When developers
consider options before diving into details, development won’t create waste while require-

13

ments become clearer. With fast delivery, they will be able to decide as late as possible
when there is enough concreteness for fact-based decisions which removes the need for
speculation. [57]

Openness is critical work the business. Organizations should avoid tacit knowledge and
extraneous cognitive load caused by inefficient issue tracking. Lack of communication of
tasks and their statuses hinders work allocation. To improve visibility, kanban cards can
be used also for issue tracking. This can be seen as a way to follow lean methodology.
When a defect is noticed, it is not memorized but fixed or delegated immediately. Efficient
tracking system works as an information radiator which provides everyone visibility to is-
sues [57]. It eventually increases value demand, decreases failure demand and improves
quality, because issues will not be forgotten and they are seen by everyone. [59]

2.3.2 Agile Software Development

Based on Agile Manifesto by K. Beck et. al., Agile software development (ASD) puts
emphasis on iterative collaboration with customers instead of following well-defined pro-
cesses and plans. Like Occam’s razor [23], it focuses on simplicity to deliver only what
customers need and diminish the entropy caused by changes. A small company might
want to avoid excessive processes and instead focus on getting work done. However, as
in Conway’s law, results of work are always affected by management of work.

By emphasizing self-organized teams, ASD expects teams to collaborate and make de-
cisions independently without management intervention [9]. Like W. Deming has stated,
teams must collaborate to share information about development. When quality is inte-
grated to product which is continuously improved, there’s no need for measurements
and management by objective. The whole system should be estimated for improvement
instead of individual contribution. [20]

Scrum is used in ASD as a framework to manage development in sprints as time-boxed it-
erations whereupon it provides a well-controlled process. Retrospective after every sprint
gives an opportunity to improve the development process based on team’s learnings.

According to P. Kruchten et. al., ASD provides a framework to repay TD in iterations,
but ASD is still likely to attract TD. In rapid development, decisions are not considered in
long term and systematic testing might be missing. Thus, TD is more likely to increment.
In waterfall model and Big Design Up Front, risks are better considered, however, future
changes are not carried. In ASD, TD can be avoided by identifying it and thus, including
only intentional, prudent or deliberate TD and excluding inadvertent and unintentional TD.
[40]

As an ASD method, M. Poppendieck et. al. presented following 7 simple rules for Lean
Software Development (LSD) based on lean principles [57]. In below, we list these rules
and their benefits in mitigating TD.

14

First, eliminate waste means eliminating all processes that don’t bring value to customer.
All unfinished work is waste, because it doesn’t bring value to customer until it satisfies
the customer need. In software development, following 9 wastes can be identified closely
to wastes (muda) of lean philosophy. First, building the wrong feature or product means
that company is not focusing on tasks valued by customer. Second, mismanaging the
backlog means that company fails in attempt to prioritize on most important tasks. Third,
rework occurs when company has not build valid features in the first place. Fourth, un-
necessarily complex solutions are made when company doesn’t maintain simplicity. Fifth
extraneous cognitive load, sixth psychological distress and seventh waiting/multitasking
occur when team roles are not clear enough. Eighth, knowledge loss is caused by lack
of documentation. Ninth, ineffective communication occurs because of lack of team col-
location or ineffective communication media. [57]

Eliminating waste and bringing customer value as a permanent aim prevents TD from
occurring. Customer value has to be understood and prioritized in whole organization.
According to M. Poppendieck et. al., companies need to identify types of their demand.
Failure demand is taken away from value demand. If companies need to focus on fix-
ing failures reported by their customers, they are taking less time to bring new value to
customers and thus, they become less competitive. [59] Therefore, amplifying learning is
crucial.

Second, amplifying learning requires short learning cycles to get regular feedback which
create valuable knowledge for development. This is achieved with iterative delivery. When
developer works close to customer they maximize their understanding of customer need.
Developers also need to be synchronized with each other. Integration in small batches
and regular builds with smoke tests synchronize development in overall and avoid re-
gression. In set-based development, communicating possible solutions and constraints
to stakeholders eventually saves time. [57]

Theory of causation and effectuation introduced by S. Sarasvathy explains importance of
team collaboration [61]. Companies can try to causate what they consider valuable, but
then they fail to consider their available resources. Developers have best understanding
of technical boundaries and are able to effectuate value based on the existing resources.
[57]

Third, decide as late as possible means that decisions are based on facts instead of
speculation. Late decisions are possible when system is designed as flexible for change.
In comparison to sequential development, concurrent development follows breadth-first
approach instead of depth-first. It allows to postpone costly decisions until system is
mature enough to receive feedback from customers. Instead of trying to build it right
the first time, deciding as late as possible will defer bulk of decisions and prevent cost
escalation. [57]

Fourth, deliver as fast as possible leads to less work in progress and less risk. It is a way
to tolerate variability in the process. Value stream is compressed when backlog is deter-

15

mined by market pull instead of schedule push. Backlog visibility enables self-direction
for developers, increasing performance compared to intervention of micromanagement.
As in theory of constraints, team’s performance is measured by its responsivity to value
demand, where a team spending its capacity to failure demand is inefficient. [57]

Fifth, empowering team leads to better team efficiency and better results. Managers can
help the team by representing VOC. Team has the best information of development status
and empowering them to make decisions will have the basis of best available knowledge.
Responsibility is a source of job satisfaction [31]. Feeling of progress is a source of
intrinsic motivation [71]. Empowering team in LSD differs from CMM (Capability Maturity
Model) and CMMI (Capability Maturity Model Integration) in a way that it does not aim
on planning and evaluating capability in difficultly standardized work, but instead bases
improvement on learning by empowering the team. [57]

Sixth, building integrity in is required to have consistency between product functionality
and customer’s objectives. Perceived integrity, relevancy to customer, is reflected by
integrity of information flow from customers to developers. In sequential development,
information flow is cut, because customer requirements cannot accommodate nor predict
perceived integrity as a whole. When technical personnel communicate with end users
and have continuous visibility customer values, design decisions and trade-offs they do
are more favorable to perceived integrity. Managers don’t necessarily have best available
knowledge [33]. Short iterations provide frequent feedback loops and avoid feedback
gaps [33]. [57]

Conceptual integrity, cohesiveness of system’s central concepts, requires architecture to
be efficient and flexible for future changes in perceived integrity. Components that are
loosely coupled but have high cohesion retain maintainability and flexibility [33]. Refac-
toring complex design is required to pay back TD. Refactoring avoids waste and helps to
respond to customer need and maintain quality, to deliver value as fast as possible which
is the most important goal. As in lean production, development of new features should
wait until root causes of complexity and problems in internal integrity are fixed. [57]

Automated tests enable refactoring as they act as a documentation and prove integrity
by providing feedback of system health. Developer tests, consisting of unit, system and
integration tests maintain conceptual integrity while customer tests maintain perceived
integrity. [57]

Finally, seventh rule, seeing the whole is required to serve common good of the system.
Sub-optimization decreases overall performance. It occurs because the real cause and
effect is not seen or because factors that do not necessarily influence to success are
being measured [5]. When management wants to measure performance in unstructured
work that can be measured only partially or not at all, it leads to sub-optimization and
decisions based on false information. [57]

When performance measurements are replaced with information measurements, atten-
tion is shifted from individuals to root causes of the defects. Performance measurements

16

shift the burden by focusing on symptoms and discourage cooperation. [57] Instead, P.
Senge recommends following T. Ohno’s Five Whys [54] to find root causes [63]. Accord-
ing to W. Deming, 20% of quality defects are rooted to employees while 80% are rooted
to system [20]. Focusing on root causes of the defects helps to remove the obstacles of
development, and to mitigate TD.

2.3.3 Contracts

Outsourcing can help companies to reach their goals on time while focusing on their core
competence. Contract form is critical to build trust between parties and to make them
work towards mutual benefit. According to M. Poppendieck et. al. [57] and K. Beck [8],
an optional-scope contract will be most likely to match required work to the schedule and
budget. It gives both sides an incentive to keep in the target-cost and target-schedule by
limiting the scope. It differs from fixed-price contract in the sense that the vendor will not
attempt to do less than required while keeping the fixed price. It differs from time-and-
materials contract in the sense that the vendor will not attempt to do more than required,
vice versa.

According to M. Poppendieck et. al. [57] and F. Thompson [72], when vendors bid a
fixed-price contract, the lowest bid tends to come from the vendor which either does not
understand the complexity or tries to win. The lowest bid is also the most tempting one for
the customer, but it often leads to the situation where the vendor fails to deliver what was
required. Expenses increase as the vendor needs to do the changes. An optional-scope
contract encourages vendor to understand the problem in detail, decreasing the risk of
TD.

2.3.4 Continuous Improvement

Continuous improvement of quality can follow PDSA cycle (Plan, Do, Study, Act) popu-
larized by W. Deming. It increases standard iteratively by planning the process and its
objectives, doing the changes, studying and examining the results, and acting and im-
proving the process for next iteration. [21] Frequent feedback from customers and status
updates from developers act as the source for the process.

According to D. Wood and Y. Yakup et. al. organizations tend to measure only the tip of
the iceberg of quality costs while most significant costs are less visible and lie under the
surface [78][79]. Thus, understanding TD in depth helps to mitigate it.

Mitigating TD can follow quality improvement models. There are competing views for
quality improvement. Traditional model suggests that quality costs increase as level of
conformity increases. According to C. Ittner, in continuous improvement quality costs
eventually decrease as conformity increases because of learning opportunity. Traditional

17

model can be viewed as a static cost model while continuous improvement model is a
dynamic model. [34]

Traditional model is useful for static, short-term analysis. Costs may increase temporar-
ily but dynamic model helps to see quality improvement as an investment which pays
back as increased knowledge and routine. Continuous improvement supports organiza-
tional learning and lowers the learning curve [81]. Continuous improvement provides a
learning opportunity to developers to find better, project-specific design approach, since
programming is learning as stated by M. Fowler [27].

C. Ittner mentions opportunity costs of poor quality as motivation for continuous improve-
ment. Consequences of defects are farther than local. Continuous improvement ensures
customer satisfaction which is risked if quality is not maintained. Dissatisfactory creates
stronger Word of Mouth (WOM) than satisfactory, harming the business. In addition,
he mentions indirect impacts of internal failure costs to productivity and variability, both
affecting to customer response times and customer satisfaction. [34]

18

3 FOCUS GROUP

In this section, we describe the design of our study, including the goal, the research
questions, the study context and procedure, and the data analysis.

The case company is a spin-off micro-enterprise. It has less than 10 employees and
less than 2 million turnover, and falls into category of SME (Small and Medium-sized
Enterprises). The case product is company’s only product, a sales channel management
tool offered as a SaaS (Software as a Service). The product has been developed for 4
years starting from January 2015. It was first outsourced to a vendor and later developed
within the company. It is based on JavaScript and NoSQL and it is developed to MEAN
stack (MongoDB, Express.js, AngularJS and node.js).

The product is a web application for managing sales channels. User can add products to
which he can add sales leads. Users with different roles can be assigned to leads. Leads
have contact information, contact personnel, question forms, statuses, reports, deadline
dates and appointment dates. Products have KPI’s (Key Performance Indicators) which
can be controlled with quantitative questions. All lead data can be viewed in a grid. Leads
are shown as dots in map in dashboard. Chosen KPI question controls the size of dot.
Lead status controls the color of dot. This way the whole organization can see statuses of
sales leads and have visibility to company’s business. The version developed by supplier
could have lead only for one product and it had to be copied to others. Later, external
developers finished a feature where leads can be in multiple products.

3.1 Research Questions

We formulated the goal as follows, using the Goal/Question/Metric (GQM) template [7]:

Purpose Analyze

Issue occurrence of

Object technical debt

Viewpoint from the company’s viewpoint

Based on the aforementioned goal, we derived the following Research Questions (RQs):

• RQ1: What are the most common types of TD?

19

• RQ2: What are the main causes of the accumulated TD?

• RQ3: How to mitigate TD?

RQ1 aims to determine the most common types of TD in the company and their impact
on business. Its purpose is to identify the existing TD items and their criticality for the
business.

RQ2 aims to investigate the causes of the TD identified in the company. It also intends
to discover the root causes of TD in the company. The RQ’s purpose is to understand
reasons for the occurrence of TD.

RQ3 aims to identify ways to prevent TD from occurring in the future based on the knowl-
edge gained by RQ1.

3.2 Planning the Study

As suggested by Kontio et al. [39], we planned a focus group to last from two to three
hours. We identified a number of issues to be covered that were sufficient for having a
meaningful discussion and interaction between the participants.

We selected five participants: the Chief Technology Officer (CTO), the Chief Financial
Officer (CFO), the Chief Marketing Officer (CMO), and two developers. Different respon-
sibilities of the participants provides a wide perspective and enables multifaceted discus-
sion. All participants voluntarily participated in the study, as they were interested in how
to avoid facing similar situations as in the past and wanted to understand which activities
should not be postponed.

The session was moderated by one of the authors. Before the session, the moderator
introduced the goals and the rules of the focus group. Then he presented the following
six discussion topics:

T1: Which activities have been postponed in the past?
This topic was investigated in two steps: First, the participants answered this ques-
tion individually, reporting the activities on post-it notes. Then the moderator asked
them to read their list of activities and grouped the same activities on the white-
board.

T2: Which type of Technical Debt was generated by the postponed activities?
The participants grouped the postponed activities based on the type of TD. We
adopted a classification of eleven categories.

As our TD identification approach we used a check list as in [16] [49]. To discuss
TD comprehensively, we included ten TD categories proposed by Li et. al. [49]
(Requirement TD, Architectural TD, Design TD, Code TD, Test TD, Build TD, Doc-
umentation TD, Infrastructure TD, Versioning TD, Defect TD). As a relevant detail,
vendor lock-in was added to Infrastructure TD.

20

In addition, related to TD, we wanted to discuss organizational factors and manage-
rial decisions guided by organizational and environmental forces. Thus, we added
one new category (Organizational Debt) as proposed by S. Blank et. al. [12].

The complete list of TD categories is reported in Table 3.1.

Requirement TD refers to implementation’s distance from requirements specifica-
tion [24].

Architectural TD refers to compromises in internal quality caused by architectural
decisions.

Design TD refers to technical shortcuts in the design.

Code TD refers to code that does not apply best coding practices.

Test TD refers to shortcuts in tests.

Build TD refers to issues in build process.

Documentation TD refers to documentation that is lacking or does not serve its
purpose.

Infrastructure TD refers to sub-optimal configuration that hinders development.

Versioning TD refers to issues in versioning.

Defect TD refers to defects and bugs in the system. [49]

Organizational Debt refers to compromises done in the organization [12].

T3: What were the reasons for postponement?
Regarding this topic, the participants discussed the motivations for the postpone-
ment of the activities and then reported them on the activity post-it notes created in
T1.

T4: How were the activities then implemented?
In this task, the participants reported the solutions adopted to implement the post-
poned activities and reported them on the activity post-it notes.

T5: What problems did the postponement cause?
The participants collaboratively discussed the problems that caused the postpone-
ment, including economic, technical, and organizational ones. In this case as well,
they reported them on the activity post-it notes.

T6: Ranking the importance of the problems.
In this task, each participant received ten votes, in the form of adhesive ”dots”, and
was asked to vote on the most harmful problems. The participants were free to
distribute their votes as they liked, for example, assigning all ten votes only to one
activity or distributing them evenly among the activities.

Except for Topic 1, the participants were not limited to using only one post-it note per
activity. If needed, the moderator allowed them to use extra post-it notes connected to

21

the same activity.

3.3 Data Analysis

The causes of TD were examined in order to better understand the causality of TD and
to prevent TD from recurring. We followed the technique of the 5 Whys introduced by
Ohno [54].

22

Table 3.1. Table of TD types and their details

TD Type TD Detail

Requirements TD Over-engineering

Specification issues

Other, please specify

Architectural TD Architecture smells

Architectural anti-patterns

Complex architectural behavioral dependencies

Violations of good architectural patterns

Architectural compliance issues

System-level structure quality issues

Other, please specify

Design TD Code smells

Complex classes or methods

Grime

Incomplete design specification

Other, please specify

Code TD Low-quality code

Duplicate code

Coding violations

Complex code

Other, please specify

Test TD Low code coverage

Deferring testing

Lack of tests

Lack of test automation

Residual defects not found in tests

Expensive tests

Estimation errors in test effort plan

Other, please specify

Build TD Bad dependencies

Manual build process

Flawed automatic building

Build visibility debt

Other, please specify

Documentation TD Out-of-date documentation

Incomplete documentation

Insufficient documentation

Lack of code comments

Other, please specify

23

TD Type TD Detail

Infrastructure TD Old technology in use

Old supporting tools in use

Lack of continuous integration

Lack of automated deployment

Poor release planning

Vendor lock-in

Other, please specify

Versioning TD Unnecessary code forks

Multi-version support

Other, please specify

Defect TD Defects/bugs

Organizational Debt Scheduling issues

Communication issues

Work allocation issues

Prioritizing issues

Budgeting issues

Other, please specify

24

4 RESULTS

In this section, we will first report the perceived TD issues highlighted by the participants,
together with the problems the issues generated and their causes. Finally, we will answer
our research questions.

Personnel who participated the focus group were CFO (Chief Financial Officer), CMO
(Chief Marketing Officer), CTO (Chief Technology Officer) and one developer. The focus
group was conducted as following sessions:

• 5 minutes interview with CFO, CMO, CTO and one developer

• 2 hour 24 minutes interview with CFO and CTO

• 15 minutes interview with CTO and one developer

Input from CMO and one developer was only partial because they were not present in the
longest session.

4.1 Perceived Debt

The participants if of focus group identified 10 different types of Technical Debt (TD items).

Organizational and Product Management Issues

TD1 Product customization, as different customers wanted to use the system for different
purposes. (Requirements TD, Organizational TD) The prioritization of the features
and tasks as well as the estimation of the cost and other effects of the customer-
specific tailoring became difficult. The application originally did not identify lead’s
product which customer became to demand.

The feature became more expensive than thought as stated by CFO: "Developer
came up with idea that no it’s fine, we can do multiple products, it’s not a big deal
and the client paid us 14 000 for the customization and between our hours and what
we paid to do that modification I think it costed like 150 000-170 000 euros to turn
around. We accepted the specification but we totally did not understand how much
would it actually cost and how much time it would take because it was done in a
rush. [..] But thanks to that it was an investment in future and thanks to that we
have been able to have other clients, some of the clients we have now because we

25

had made that change. Without that change we would not have been able to get
those clients so eventually it was good but it was a big problem in our budget."

The recognized causes where Specification issues, Budget constraints, Estimation
issues and Time constraints (e.g. related to Fast Delivery).

TD2 Disagreement with supplier about the Minimum Viable Product (MVP). (Require-
ments TD) The first version of the system was subcontracted from an external ven-
dor that wanted to implement the initially agreed specification instead of iterative
development and adapting to improved understanding of the customer needs.

The company and the supplier did not agree about the approach as CTO stated
"basically they wanted to do this minimum viable product so that we could test the
market and so on. It was fine but still asking that why actually do the architecture of
the application in such manner. Even let say that if the answer is yes then you would
have to change it afterwards basically much to get this vertical merging done. It
does not still at least entirely clarify for me that they chose to do system architecture
most probably the easiest way but if it means that then we get good results then we
have to do from many parts all over again coding-wise. Even that we are proofing
the concept I think the structure should be something that it’s then for the future. So
in this sense I think I’m in opinion still they should have listened to our point of view
of having this exact thing differently then."

The company was aware of poor extensibility of MVP as CTO stated "MVP is actu-
ally most visible when it comes to these use cases and functionality that you have
certain functionality in its easiest and minimum way that you can actually achieve
the end result wanted. But I don’t think that MVP should be taken into question
when you actually do the foundation of the system. That should be still done so that
you can actually build whatever on top of it."

The supplier did not provide a feature, that the company considered important,
to MVP version. Multiple products were implemented after it was requested, but in
addition, the system was supposed to allow leads to have interchangeable products.
CFO stated, "the supplier did what they wanted to do and not what we needed them
to do and that has created the problem why we don’t have the vertical merging [the
feature] because if they would have started with this vertical merging which we
needed from them we wouldn’t have to do it now three years and a half later. [..]
That was why we were so upset with them because the plan was to have something
not so solid in the back end but we could have a couple of customers to actually
test. Problem is that they chose not to give us that we had to wait two years before
to able to have a customer to test MVP and that was their big mistake. In that sense
you’re right, it really penalized us."

CTO stated, "I remember couple of tight discussions that it was a little bit like that it
didn’t go anywhere that basically we had our own view and they had their view."

CFO also stated that there was a communication gap between the supplier, who

26

had technical knowledge but lacked domain knowledge, and the company, who
had domain knowledge but lacked technical knowledge: "I think that they kind of a
undermined the views and what we needed. It was a little undermined by them be-
cause we were not knowledgeable of the coding world and the development world
so basically they understood what they understood although they did not know any-
thing about our world and what the clients needed. But because they are the ones
with the technical knowledge they were thinking that we do it this way because that’s
the way it has to be done. I don’t think they took that really much time in understand-
ing because in every meeting we repeated the same. It was very important and in
the specification, written specification and even in the contract they signed this was
written."

Developer who was working at the supplier stated "the team was not able to con-
vince that and explain the idea really well. Reason is being that the domain knowl-
edge, the deficiency on the supplier’s side."

The recognized causes where Specification issues, Budget constraints and Estima-
tion issues.

Architectural Issues

TD3 Lack of multitenancy causes budgeting increase and lack of flexibility (Infrastruc-
ture TD). The products are delivered as SaaS services, but server maintenance is
currently outsourced and forces a totally separated installation for each customer.
This raises the operation and infrastructure costs. Multitenancy was not originally
the highest priority and then the need of introducing it is costly. CFO described the
issue followingly:

"We don’t have multitenancy and costs us more because if we would have multi-
tenancy we could actually create new servers and everything ourselves. It would
be easy. We could do it directly without interference of technicality. So that’s why
also the maintenance costs us a little bit more because they [the supplier] know that
when we need to add or reduce a server they need to use their expensive time for
technicality to actually bring us server up or down. If we would have multitenancy
we would not have that cost. We could do it ourselves or even the customers could
do it themselves easily."

The recognized cause was Budget constraints.

TD4 Hard to maintain a simple User eXperience (UX) with the growth of functionalities.
(Design TD) The UX was designed by the supplier that did not want to redesign
it anymore, creating issues in adding new features while maintaining a good user
experience.

The issue is also reoccurring because of limited time to maintain UX, as stated by
CFO "what comes to design we have incomplete design specifications and we have
had from the beginning because it was more a guideline. After this initial thing any

27

modification we had to do even in the very beginning did not have updated design.
I think it has not been a big problem because I think the main design was still very
nice and user-friendly and all. But I think now it starts becoming a problem as we
create new pages."

According to CFO, the incurring complexity of UX affects also to customers at worst:
"if we think about the experience as well, not only the looks but even the experience
as well to make it we would need maybe some redesign now because it starts to be
very complex. [..] The biggest problem when the design is not well planned is that
it’s affecting the way the potential customers, all the customers see your product.
So if they see your product, if the design is not good they have the feeling that the
product is very complex and it’s going to take them too much time to use it and to
learn how to use it. So right away they are like ’No, too complicated. I don’t want to
buy’. So it’s actually a huge problem to commercialize a product that does not have
a proper design. To be honest, we are getting there that we have some people who
are like ’whoa, it looks so complicated’. We have had that comment a few times
which we did not have a couple of years ago. Everyone was like ’oh, it’s so simple’."

The recognized cause was Time constraints.

Development and Testing issues

TD5 Lack of automatic testing costs more in the future (Infrastructure TD). The testing
budget was too low to enable the creation of automatic testing during development
since the company did not even have enough time to concentrate on fast delivery
to the client, as stated below by CFO.

"Testing budget was too low to enable, to create a long side development automated
testing. Then we had the time constraint. We needed to prioritize the delivery in
a shorter time. When you create automated tests the long side development takes
longer. [..] Testers don’t understand the business case so it takes longer for them to
create anyway any test scenarios. At the latest stage when we are going to do the
automated testing which is very important anyway it’s going to costs us quite a lot
because we need to dig into the old code of the application so we need to go back."

Testers lacked domain knowledge which decreased efficiency of testing, as stated
by CTO: "testers we have had from the Supplier don’t understand what the context
the software is being used in. They can test this kind of dummy things that okay,
button click does not give you the result but then they don’t understand what the
end user wants from it. [..] It has lowered the efficiency of the testing in my opinion.
Let’s say it’s efficient to the certain point where they cannot anymore actually know
that is this behaving like it should or not."

The recognized cause were Time constraints.

TD6 Testing is expensive. (Test TD) The company lacked dedicated testers and had
human resourcing challenges, as stated by CFO "when the coder is not dedicated

28

[in testing] it’s less efficient because that increases the cost naturally".

The focus group was not able to find the actual cause of this TD.

TD7 Low code coverage in tests causes risks in development and additional work. (Test
TD) Supplier’s testers lacked domain knowledge and testing took longer than es-
timated. Budget was limited for tests. CTO stated that customer is ready to pay
only for the application part visible to them and if less visible costs are included,
customer won’t buy.

The recognized causes were Estimation issues, Communication issue and Budget
constraints.

Source Code Maturity Issues

TD8 Lack of code documentation. (Documentation TD) Developers have been too busy
to create code documentation as new features has usually highest priorities. It
has resulted tacit knowledge which is harmful in collaborative work, as stated by
CTO: "we at least to some extent have this technical debt about not having the
documentation when you [developer] came and for example we did these bug fixes
during the autumn and we still do. Had there been these I think it would have been
a little bit easier to you."

CFO stated "we are uncovering issues when we do the things the cheapest way
possible and we have no budget to fix those. Let’s say you [developers] would work
full time you could actually take the time to uncover document [documentation].
You could fix yourselves that we have couple of hours per day to do this kind of
administrative issues so we get something a little bit cleaner."

The recognized cause was Time constraints.

TD9 Technical shortcuts (Code TD) These TD items are present mostly due to lack of
time as stated by CFO "[technical shortcuts still happen because of] lack of time and
money. In this case it would be more lack of time at this point because Developer is
so busy and there is kind of long deadline".

The recognized causes were Time constraints and Budget constraints.

TD10 Duplicated code (Code TD) Developers failed to follow DRY (Don’t Repeat Yourself)
principle and modularize the implementations. Instead they duplicated the code
because they were in hurry. In some case, the company had no time to extend or
generalize the existing code. The focus group was not able to find the actual cause
of this TD.

29

Table 4.1. Perceived TD by interviewees and total points

TD Description Points

TD2. Disagreement with supplier 7

TD5. Lack of automatic testing 7

TD1. Product customization 3

TD0. Technical shortcuts 3

TD6. Expensive tests 2

TD3. Lack of multitenancy 2

TD8. Lack of code documentation 2

TD7. Low code coverage in tests 2

TD10. Duplicate code 2

TD4. Hard to maintain simple UX 0

Table 4.2. Perceived TD types and sum of points

TD Type Points

Test TD 11

Requirements TD 10

Code TD 5

Organizational TD 3

Infrastructure TD 2

Documentation TD 2

Design TD 0

Architectural TD 0

Build TD 0

Versioning TD 0

Defect TD 0

Grand Total 30

Table 4.3. Count of TD motivations presented

Possible cause of motivations Count

Budget constraints 5

Time constraints 5

Estimation issues 3

Specification issues 2

Communication issues 1

Design issues 1

30

4.2 Research Questions

4.2.1 RQ1. What Are the Most Common Types of TD?

The focus group considered the Test TD (11 points) and Requirements TD (10 points) as
clearly more significant than other types of TD, as reported in Table 4.2.

4.2.2 RQ2. What Are the Main Causes of the Accumulated
TD?

The possible root causes were analyzed with 5 Whys technique [54] by asking why ap-
proximately five times for each cause to find the origin of the problem. For each motivation
for postponement, we reported possible reasons separated with arrows. Note that a TD
item can be postponed for multiple reasons. Possible causes and their counts are sum-
marized in 4.3.

1. Budget constraints (TD1, TD2, TD3, TD7, TD9) and time constraints (TD1, TD4,
TD5, TD8, TD9) are the most recurring reasons. Estimation issues (TD1, TD2,
TD7) is also a significant cause and closely related to budgeting and timing.

2. Time-related causes (Time constraints), usually related to fast delivery, recurred
almost as frequently as budget constraints. It can be speculated that the lack of
time depends on the budget.

3. Other causes were not as significant.

4. In some cases, the causes of the TD remain unknown.

• TD1: Implementing multiple versions of the same product (Requirements TD, Or-
ganizational Debt)
Causes

– The customer wanted to use the system for different purposes than originally
thought (Specification issues) → Specification issues

– Prioritizing issues in testing (Prioritizing issues) → Laborious tests → Time
constraints → HR constraints → Budget constraints

– We did not understand the total cost of the change (Budgeting issues) → Bud-
geting issues → Estimation issues

– No project management coming from development partners (Budgeting is-
sues) → Budget constraints

– The bug fixing was much bigger task than thought (Budgeting issues) → La-
borious bug fixing → Estimation issues

31

– Initial part of project was rushed (Budgeting issues) → Time constraints →
Fast delivery

• TD2: Disagreement between supplier and team about the Minimum Viable Product
specifications and requirements (Requirements TD: Specification issues)
Causes

– Budget constraints → Budget constraints

– Small budget → Budget constraints

– Big requirement → Estimation issues

– The UI was designed and supplier did not want to redesign it anymore →
Specification issues

• TD3: Lack of automatic testing costs more in future (Test TD: Lack of test automa-
tion)
Causes

– Testing budget was too low to enable creation of automatic testing while devel-
oping → Budgeting issues

– Lack of time to concentrate on delivering fast to client → Fast delivery

• TD4: Lack of multitenancy causes budgeting increase and lack of flexibility (Infras-
tructure TD: Other)
Causes

– Not the highest priority → Prioritizing issues → Budget constraints

– Lack of budget → Budget constraints

• TD5: Lack of code documentation (Documentation TD: Lack of code comments)
Causes

– Time constraint → Time constraints

– Developer does not take the time → Developers busy → Prioritizing issues →
Time constraints

• TD6: Low code coverage in tests causes risks in development and additional work
(Test TD: Lack of tests)
Causes

– Hard to estimate budget and schedule → Estimation issues

– Hard to allocate time → Allocation issues → Estimation issues

– Iceberg issue → Communication issues

– Developers being testers → HR constraints → Budget constraints

• TD7: Technical shortcuts (Code TD: Other)
Causes

– Lack of time and money → Budget constraints, Time constraints

32

– Not enough dedicated workforce → HR constraints → Budget constraints

• TD8: Hard to maintain simple UX (Design TD: Incomplete design specification)
Causes

– Hard to find time to redesign UX when functions accumulate → Allocation
issues → Time constraints

– Hard to balance easiness and functionality → Design issues → Complexity

• TD9: Duplicated code (Code TD: Duplicated code)
No causes identified

• TD10: Expensive to test (Test TD: Expensive tests)
Causes

– No dedicated testers → HR constraints → Budget constraints

4.2.3 RQ3. How to Mitigate TD?

Based on the discussion of the focus group three main aspects that could be improved to
mitigate TD were highlighted.

1. Learning from customers. First, organizations have to understand what should be
built using prototypes and validation with customers.

2. Careful estimation. Second, the whole organization should understand the tech-
nical boundaries to avoid estimation errors. They should use previous tasks to
improve their effort estimation regarding the development of new tasks. Underesti-
mation can cause additional expenses for company. Customers should pay for the
overall costs of the system; they tend to pay only for visible costs, which are only
the tip of the iceberg. The costs of testing and documentation, which tend to be
under the surface, should be made visible to them. The company has to find the
right pricing balance in order to remain competitive. Underestimating the amount of
work can lead to compromises in less visible costs.

3. Continuous improvement. Third, organizations can gradually improve the quality.
Deficiencies in development areas should not be postponed. Companies should
invest in testing and documentation because their TD’s are hindering development
and ultimately take up a lot of the developers’ precious time. A lack of tests in-
creases the need for manual testing and the risk of regression. Lack of documenta-
tion diminishes knowledge and adds tacit knowledge. Evanescence of knowledge
will accumulate the costs of testing and documenting over time. Companies have
to find the critical point in mitigating TD where benefit is bigger than cost.

33

5 THREATS TO VALIDITY

In this Section, we will introduce the threats to validity, following the structure suggested
by Yin [80] and discussing construct validity, internal validity, external validity, and relia-
bility. Moreover, we will also present the different tactics adopted to mitigate them.

Construct validity is about the correct identification of measures adopted in the mea-
surement procedure (e.g., the questionnaires we used in the studies). Our focus group
was based on a comprehensive systematic mapping study of TDM [49].

Internal validity refers to the factors that may have influenced our study. Considering the
respondents, interviewed developer had limited time to respond to statements regarding
the development. As mentioned in Section 4, CMO and one developer were present only
limited time in the focus group. Thus, the personnel are only partly heard and technical
issues are only superficially investigated.

External validity are related to the generalization of our findings. Analysis of occurred
TD is unreliable because all the aspects cannot be taken into account. Only speculative
root causes can be presented and some root causes might not be correct ones. For ex-
ample, budget constraints can be consequences from estimation errors and specification
errors. Estimation errors lead to economical losses. Specification errors lead to rework
or useless work. Reasons for specification issues can be communication issues or insuf-
ficient knowledge on the subject. In these cases deeper cause is left unsolved. As its
weakness, root cause analysis only covers causes that are known. It is expected that the
communication in the company is transparent and all the possible causes are mentioned.
However, some things are always left unspoken or are forgotten by time. Thus, there can
still be causes that remain unknown.

Conclusion validity focuses on how sure we can be that the tasks we adopted are re-
lated to the actual outcome we observed [77]. To mitigate this threat, the questionnaires
were checked by three experts on empirical studies. Moreover, it was ensured that the
subjects of both groups had similar backgrounds and knowledge regarding software de-
velopment.

34

6 DISCUSSION

Identifying TD and investigating its possible root causes helped the company to under-
stand their most critical TD items. Conversation helped to determine the causes of ac-
crued TD to enable mitigating TD in the future. Ways to mitigate TD were explored based
on the results. Considering all identified TDs, it could be implied that the company has
mainly intentional TD. However, intentional TD can be reckless debt taken by developers.
Increment of TD is typical especially for SMEs with tight schedule and budget. Neverthe-
less, based on focus group, the company seems to be transparent and thus, aware of the
consequences of its TD. Budget constraints and time constraints (including fast delivery)
were considered as most critical root causes of TD.

According to M. Poppendieck et. al. [57], schedule and budget are equal when there are
no changes in the personnel. Time constraints can be related to budget constraints when
they are caused by HR constraints. However, they do not always relate to budget as
more employees do not automatically remove time constraints. According to FP. Brooks
[13], work distribution follows Amdahl’s law. Thus, the more work is distributable, the
more time is saved by adding developers. The required learning curve and the need for
more communication lessen the benefit of having more employees. As proven in TD8,
level of documentation effects to efficiency of new employees. In addition, lack of tests
reduce traceability of requirements and their conformity [57]. Thus, even if the budget
is sufficient, time constraints can remain until learning curve is surpassed and the team
reaches its optimal performance in group development. As reported by B. Tuckmann
[74], in addition to surpassing the learning curve, a new team has to get through forming,
norming and storming before getting into performing optimally.

Lowering learning curve, improving group dynamics and improving understanding of the
customer can be seen as enablers of continuous improvement. Like in the dynamic
model of quality improvement [34], focusing on value demand instead of failure demand
decreases the quality costs. In Section 4, we suggested Learning from customer, Care-
ful estimations and Continuous improvement as ways to mitigate TD. In this section we
discuss them further.

35

6.1 Learning from Customer

Learning from the customers is the first answer to RQ3 regarding how to mitigate TD.
As stated by one developer, when the organization knows the customer’s needs, it helps
them to go in the right direction. When there are many customers, User Experience
Design becomes more important as a generalized solution has to be created that satisfies
everyone’s needs at the same time. "We are kind of having it done by experimenting and
communicating more with the customers to understand what they need and we are doing
it in an iterative way to solve the customer’s problem, but this works until we have only
handful of customers."

Managers can represent VOC to empower the team [57], and increase team efficiency.
As stated by a developer, UX designers lacked domain knowledge, and there was a
communication gap between managers and designers. Later, CTO helped to remove the
gap. "The domain knowledge is the biggest issue. So even when they started with the UX,
the domain knowledge that the UX persons had was not that great I guess so that might
be the reason. But we have spent their money for UX design only once. The UX was
refactored purely by the developers which means that the guys who does not have sales
knowledge at all have refactored the UI based on the comments [from the management].
[..] There is a mismatch. The understanding is different. [..] Communicating what they
want is not really reaching the developers well. Then having CTO between helps in that
way because he understands quite fine so CTO can tell like they get information [from
the management] and he translates to software as a UX requirement. Then it’s fine.
Otherwise there was a big issue until CTO was arranged to this setup."

Idea validation could follow validated learning as suggested by E. Ries [60], prototyping
iteratively to get feedback from end-users. According to M. Christel et al. [15], require-
ments cannot only be gathered, but the customer has to be supported in requirements
elicitation iteratively because the customer’s understanding is limited. However, the CTO
stated that the customer should be consulted only for major decisions and should not be
bothered with every minor detail. In TD2, disagreement of MVP requirements, depth-first
approach caused waste, because feedback loop was lacking. Instead, iterative breadth-
first approach, similar to validated learning, ensures continuous feedback [57].

Prototyping helps to concretize the customer need. According to A. Davis, throwaway
prototypes and evolutionary prototypes are commonly used in prototyping [18]. In throw-
away prototyping, validation can be as simple as usage of paper prototypes. However,
a complex system could be only apprehended with functional high quality prototypes. In
web development, separation of concerns in front and back ends allow dividing the de-
velopment work. Companies can avoid waste with top-down design where back end can
be first abstracted with a mock-up while front end can be used to validate the idea. How-
ever, it has to be made sure that technical boundaries are understood in the back end to
avoid estimation errors. Thus, top-down and bottom-up approaches can be used simul-
taneously and progressively. In evolutionary prototyping, requirements are implemented

36

comprehensively and iteratively. Then, there exists a risk that immature prototype ends
up in the end product and causes TD for its part. Therefore, quality has to be maintained
while validating with users. Development can be incremental while separate features
are eventually merged into one. Evolutionary prototyping has been used in the subject
company successfully.

Problems caused by a lack of validation were emphasized when the case company out-
sourced their software development. Sections that are more important for the business
than strategically can be outsourced. Outsourcing can allow companies to focus on their
core competence, but suppliers have their own interests and all the decisions have to
be well-reasoned. The CFO stated about TD2 in Section 4 that the company and the
supplier did not agree about the approach of MVP implementation. The company ex-
perienced that user tests took two years to implement, which was too long time, and
valuable information about user needs was missed during that time. The exact reason of
disagreement is not known.

When contracts are well-planned, they ensure mutual benefit in the relationship of vendor
and customer. As mentioned in Section 2, a fixed-price contract can lead to vendor
delivering less than wanted while optional-scope contract could help to avoid the problem
and give an incentive to vendor to learn from customer. [57]

Planning and learning from customer requires good communication. Stakeholders should
make sure they consider every aspect of new features, utilizing, for example, ATAM to find
possible trade-offs in architecture decisions by formally listening to all stakeholders [36].
A customer approaches the product from a top-down perspective. They cannot see all the
technical details related to the implementation of a feature. On the other hand, developers
are able to see the bottom-up perspective and know all the technical aspects quite well.
However, they might have deficiencies in domain knowledge and cannot value all the
customer’s needs. Both parties become victims of the Dunning-Kruger effect [41] when
they fail to look below the surface. Stakeholders should make sure that they understand
each others and all terms discussed have same meanings to everyone.

According to J. Macnamara, 80% of dialogue in organizations is unidirectional speech
[50]. Within teams and with stakeholders, monologue fails to take interlocutor in account.
It could be said that it loses the opportunity to utilize effectuation, usage of available
resources. Instead, it guides to causation, trying to achieve an outcome that might not
be optimal for particular environment. Monologue-orientation loses the opportunity to
utilize existing information in the organization when the aim to learn from interlocutors
can create more optimal results. Giving orders compares to planning ahead with a small
amount of information instead of continuously gathering new information and learning
from it.

37

6.2 Careful Estimation

Careful estimation is the second answer to RQ3. SMEs need to use their budget wisely.
A limited budget forces a company to generate TD which it hopes to pay back as soon
as possible. Payback time can be when the company gets enough funding. The risk
of a roadblock through a technical debt bankruptcy increases when new requirements
emerge and need attention. These roadblocks lead to the rewriting of existing features,
which should be avoided by estimating the costs of TD. Moreover, outsourcing part of
the development to consultants, also increase the risk of requirement TD [43] related to
misunderstandings [68] and increase the communication overhead [66].

For an SME, budget constraints are inevitable and the company needs ways to cope with
its budget. Considering the life-cycle of companies, Nilsson et al. [53] claimed that in the
pre-deployment phase, architectural and structural TD should be avoided. Other types of
TD such as test and documentation TD can be incurred in that phase. Communication is
important especially at the beginning in order to avoid wrong decisions that later become
TD.

Any historical analysis of budget constraints is speculative and thus no single reason
can be named. Inadequacy in terms of specification validation can drain the budget.
TD2, disagreement with the supplier, was considered as one of the most important TD
items. The CFO stated that concrete prototypes could have helped validation. Lack of
prototyping led to speculation, which wasted time and caused bitterness. Decisions made
were not optimal in the long term and caused TD.

Developer claimed that disagreement occurred because of the deficiency in supplier’s
domain knowledge. According to CFO, the company for their part had a deficiency in
technical knowledge. According to developer, repetition of the requirements was not
helpful but requirements should have been explained better. Companies outsource on
areas where they have lacking knowledge, such as technical areas, but to communicate
their perspective to supplier, clients need to ensure that suppliers obtain required domain
knowledge; a comprehensive understanding of the customer need. A formal framework
such as ATAM [36] can help to prioritize decisions while considering all the perspectives.

Just as with suppliers, companies face challenges in justifying the work to be done with
customers. As found out in the results, customers do not see the less visible costs, which
should be communicated to them as they improve the long-term health of the system. In
addition to their goals, customers have unrecognized needs that the product has to fulfill.
Quality increases customer satisfactory and thus, increases customer loyalty. Therefore,
customer has to have motivation to pay for a product that is not only usable and effective
in completing the goals but is also efficient and provides satisfying UX. The CFO gave
the following example: "We had an issue that one of our customers wanted to modify the
questions. [...] It was quite a big change and they said that ’no, we won’t pay that much’
and then we said we cannot do it. They were not very happy but we had no choice. It

38

was too expensive and the client did not see any value in that."

Careful estimation avoids risks. In addition to communication issues, estimation errors
can be reasons that drain the budget. As mentioned in Section 4, underestimation is un-
profitable for the company. Estimation errors occur because of unpredictable complexity
of a task. Developers might not see all the sub-tasks concerning a new task when doing
the estimation at the beginning of the development of a new task. Every new task is
unique and has little in common with the previous tasks. A little knowledge of the sub-
ject makes developers overconfident, which leads to them underestimating the amount of
work. Again, only the tip of the iceberg is seen and a new task is seen as simpler than it
actually is in the end.

Dunning-Kruger effect [41], overconfidence of own competence, can explain occurrence
of inadvertent and reckless debt. Developers might give too optimistic estimations, and
when they are found not to be met, taking TD becomes relevant. Furthermore, developers
might fail to predict overall consequences of their decisions. TD and the effort it causes
will be underestimated. Awareness of cognitive biases helps to mitigate TD.

When pricing and schedule are unrealistic, development will focus only on the most crit-
ical areas. Pessimism in estimation could help to improve quality, but the challenge is to
maintain competitiveness with bigger companies that have economies of scale and can
use their capital to fund all the various aspects. Companies can find estimation challeng-
ing, as stated by the CFO about TD1, where the total cost was approximately 10 times
bigger than the estimated cost.

Companies can improve in finding critical point in estimates by time meanwhile preparing
for estimation errors. Float (or slack) in task estimates help to form realistic critical path
for the work. As in Parkinson’s law [55], task duration might be overestimated since
after some point, finishing a task requires the same time regardless of the allocated
time. Meanwhile, as in Hofstadter’s law [32], task duration might be underestimated
since a task requires more time than estimated although the estimator would be aware of
estimation challenges.

6.3 Continuous Improvement

Continuous improvement is the third answer to RQ3. As continuous improvement is a
dynamic cost model, improvement activities provide learning opportunity which lowers
quality costs [34], and helps developers to improve their design approaches [27]. It is
wise for companies to find time for TD repayment, because TD is a waste, as it hinders
development, and causes additional work [65] and extraneous cognitive load [62]. Ignor-
ing TD increases incremental debt, and presence of TD decreases productivity through
decay of maintainability and extensibility [73]. Response time to customers increases
as failure demand is taken away from value demand [59]. Furthermore, product qual-
ity affects to brand image [73]. Prioritization of TD repayment could follow cost-benefit

39

analysis, portfolio approach and TD value estimates [4].

Focus group considered Test TD as most important TD type closely followed by Re-
quirements TD. According to a developer, the quality of the code has suffered from a
lack of unit tests. Testing is needed to validate conformance to requirements, which for
its part also prevents Requirements TD. Tests provide scaffolding for development and
communicate intention [57]. Knowledge loss in personnel changes and as time passes
causes relearning [58] [62], which can be avoided with proper tests and documentation.
Existence of tests confirms that development is going to right direction. One developer
stated: "Requirements were not written anywhere and if you touch and you happen to
break something it’s even hard to regulate what’s broken until it gets into the customer’s
hands."

Lack of tests create new risks which could be avoided by gradual implementation of tests.
However, SMEs can find difficult to afford tests although their benefits would exceed costs
in long term, as focus group stated regarding Test TD5, TD6 and TD7 in the results.
The company outsourced software development in the beginning and the supplier had
personnel with certain roles such as developer, tester and designer. As mentioned in
TD5, the company experienced that testers did not understand the context of use, and
lacked domain knowledge. It can be said that cooperative, cross-functional team might
obtain required domain knowledge easier, because they work in a wider area.

According to E. Dijkstra [22], an efficient developer should not introduce bugs in the first
place but write provable code that complies with the requirements. TDD as an extreme
approach requires simultaneous development of features and their tests. Benefit is that
features will comply to requirements from the start. However, most important is to itera-
tively validate new features and testing can be done only when conformity to the customer
need is confirmed. Nevertheless, testing and development, in the same manner as de-
sign and implementation, should not be separated but should actively share information
with each other [22]. Cooperation also decreases time wasted on queuing [57].

As changes in requirements are inevitable, software needs to be designed for change
[59] with modularization, separation of concerns and information hiding as stated by D.
Parnas [56].

Companies need to find the golden mean in quality improvement. Testing can be seen
as a way to maintain software quality. Testing, documenting, and bug fixing are ways
to reduce waste in software development. As stated by CFO about TD5 in the results,
testing and fixing bugs become more difficult over time when software entropy increases.

Test automation might not be affordable for SMEs because of high upfront costs. How-
ever, as in TD7, low code coverage in tests caused additional work and thus additional
costs. SMEs can consider different factors affecting to profitability of test automation. Ac-
cording to a systematic mapping study by V. Garousi et. al., test automation is profitable
most importantly when frequent regression testing is needed (mentioned in 44 studies),
tests bring economic benefits (43 studies), and interfaces to tests are unlikely to change

40

(39 studies). Test automation might not be profitable when the System Under Test (SUT)
faces major modifications in the future (39 studies). Neither when tests have risk of
computer errors (28 studies) or require a lot of maintenance (18 studies). Nor when orga-
nization has tight schedule, budget pressure or large change resistance (11 studies), or
when tests require human judgment or have fragile comparison (10 studies). Last, when
SUT is tightly integrated or complex (6 studies). [28]

Risk management can help in considering importance of test automation. If lack of tests
risks usability, reliability or business, then systematic testing is considerable. In long term,
test automation saves time compared to manual testing. However, based on findings by
V. Garousi et. al. [28], amount of work required by implementation of test automation
depends on development process. In agile process, changes are frequent which desta-
bilizes the system. Companies can aim to stabilize the system by maintaining tests when
changes occur. Nevertheless, based on TD5, TD6 and TD7, SMEs find difficult to find
time and budget for test automation if customers don’t see the benefit. Cost-benefit anal-
ysis can help to communicate long term benefit to customers.

When TD occurs, its payback is related to quality improvement; the critical point is found
through cost-benefit analysis. Quality can be improved gradually. Cost-benefit analysis
can help to improve Pareto efficiency in similar ways as in [76]. Finding the golden mean
where the cost-benefit ratio is the lowest can be the most beneficial goal.

41

7 CONCLUSION

In this work, we performed an empirical study to understand the main reasons for Tech-
nical Debt in a SME company, the problems it created, and how we mitigated it. The goal
was to understand what happened in the past, so as to avoid making the same mistakes
again, or to make reasoned choices. As seen in table 4.1, our participants considered
the most significant TD items to be disagreement with supplier (7 points) and lack of
creation of test automation (7 points). The most significant types of TD were Test and
Requirements. Possible root causes named for these TD items were budget constraints,
estimation issues, specification issues, and fast delivery. Overall, as seen in table 4.3, the
most important root causes were considered to be budget constraints (5 occurrences),
time constraints (5 occurrences), and estimation issues (3 occurrences).

Finding consensus requires building bridges within teams and between stakeholders. The
goal is to understand the reasons behind occurred TD and ways to mitigate it. Motivation
to mitigate TD comes from the reason that the consequences of TD is emphasized in
SMEs which have limited budget. SMEs are also more liable to take TD than bigger
companies because limited budget forces them to make more sacrifices. However, TD is
only harmful when it’s left unpaid as stated by W. Cunningham [17].

Attempting to build a connection to management theory helps to understand the issue of
TD in depth. Based on the analysis of the results and related work, the following methods
can be used to mitigate TD:

• Learning from customers - prototyping with the customers to find the right direction
and communicating efficiently with the stakeholders;

• Careful estimation - improving meta-cognition to learn estimation;

• Continuous improvement - using limited budget and time wisely to bring value.

Another interesting result from our study occurred in TD2, disagreement with the supplier.
Requirements were not validated properly with the company nor their customers at the
beginning when the product was outsourced to an external supplier. Communication
issues and contract form were most potential reasons we found. Both parties need to
be motivated to understand each others’ perspectives. Using an optional-scope contract
encourages to seek for common good and in-depth understanding of customer need,
learning from customers. [57].

Furthermore, during outsourcing the company experienced that the supplier’s personnel

42

lacked domain knowledge. The personnel had certain roles as developers, testers and
designers, and did not have wide enough knowledge of the context of use. Coopera-
tive, self-directed cross-functional team could perform better, since it can obtain domain
knowledge easier, performing in different roles. Empowering the team and giving the per-
sonnel more responsibility provides the whole organization required understanding for the
current situation [57] and proactivity for the future, creating an ambidextrous organization
[75].

Moreover, estimation issues hindered future development in TD1, product customization.
Developers underestimated the time needed for testing and bug fixing. As estimation
errors are harmful to budgeting and scheduling, careful estimation, awareness of one’s
own competence and transparency in communication can avoid risks in the future.

Ultimately, continuous improvement and learning is beneficial in long term. The company
found several areas for improvement without finding resources for them. SMEs have tight
budget and schedule whereupon TD prioritization is particularly important. Related work
provides several ways, using e.g. cost-benefit analysis or portfolio approach. Opportuni-
ties and risks has to be seen. However, ROI or costs of TD can be difficult to define and
thus, risk management is required for prioritization. Nevertheless, taking prudent TD has
enabled progression for the company’s business.

This work provides an overview of the main issues related to Technical Debt in our com-
pany. However, we are aware of different threats that may have influenced the results.
Some participants might not have reported some Technical Debt issues for different rea-
sons. The presence of the company’s technical management (CTO, CFO, and CMO)
could have influenced the answers of the developers. The focus group was conducted
over a period of two hours, and therefore we probably have not reported all the issues
that occurred during the history of the company, but only the most recent or the most
significant ones.

Further studies are needed to create a stronger bond between the effects of valida-
tion and estimation on the one hand and budgeting and scheduling on the other hand.
Benchmarks of our estimations with existing dataset [45] and adopting TD management
tools widely used by competitors [47][46] could be a viable solutions to mitigate this
threat. Understanding these laws also requires interdisciplinary studies that combine
computing, quality management, and psychology. A continuous quality management ap-
proach [35][48] could help to prevent TD. Moreover, management studies help to develop
better processes, while psychology and organizational studies can explain why estima-
tion errors occur. Understanding root causes by looking at them through these fields will
result in better knowledge of TD and help SMEs avoid pitfalls, thereby enabling them to
be even more successful.

The results of this work have been published to the ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM) [44].

43

REFERENCES

[1] Y. Akao. QFD: Past, present, and future. International Symposium on QFD. Vol. 97.
2. 1997, 1–12.

[2] E. Allman. Managing technical debt. Commun. ACM 55.5 (2012), 50–55.
[3] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, P. Avgeriou, P. Abrahamsson,

A. Martini, U. Zdun and K. Systa. The Perception of Technical Debt in the Embed-
ded Systems Domain: An Industrial Case Study. MTD ’16. Oct. 2016, 9–16.

[4] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou and P. Avgeriou. The financial
aspect of managing technical debt: A systematic literature review. Information and
Software Technology 64 (2015), 52–73.

[5] R. D. Austin. Measuring and managing performance in organizations. Addison-
Wesley, 2013.

[6] S. E. Bailey, S. S. Godbole, C. D. Knutson and J. L. Krein. A Decade of Conway’s
Law: A Literature Review from 2003-2012. 2013 3rd International Workshop on
Replication in Empirical Software Engineering Research. IEEE. 2013, 1–14.

[7] V. R. Basili, G. Caldiera and H. D. Rombach. The Goal Question Metric Approach.
Encyclopedia of Software Engineering (1994).

[8] K. Beck and D. Cleal. Optional Scope Contracts. White Paper, Three Rivers Institute
(1999).

[9] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,
J. Grenning, J. Highsmith, A. Hunt, R. Jeffries et al. Manifesto for agile software
development. (2001).

[10] T. Besker, A. Martini, R. E. Lokuge, K. Blincoe and J. Bosch. Embracing Technical
Debt, from a Startup Company Perspective. ICSME 2018. 2018.

[11] S. Blank and B. Dorf. The startup owner’s manual: The step-by-step guide for build-
ing a great company. BookBaby, 2012.

[12] S. Blank and P. Newell. What your innovation process should look like. Harvard
Business Review (2017).

[13] F. P. Brooks Jr. The mythical man-month (anniversary ed.) (1995).
[14] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim, A. MacCormack,

R. Nord, I. Ozkaya et al. Managing technical debt in software-reliant systems. Pro-
ceedings of the FSE/SDP workshop on Future of software engineering research.
ACM. 2010, 47–52.

[15] M. G. Christel and K. C. Kang. Issues in requirements elicitation. Tech. rep. Carnegie-
Mellon Software Engineering Inst, 1992.

[16] A. Clay Shafer. Infrastructure Debt: Revisiting the Foundation. Cutter IT Journal
23.10 (2010), 36.

44

[17] W. Cunningham. The WyCash portfolio management system. SIGPLAN OOPS
Messenger 4.2 (1993), 29–30.

[18] A. M. Davis. Operational prototyping: A new development approach. IEEE software
9.5 (1992), 70–78.

[19] S. De Toledo, A. Martini, A. Przybyszewska and D. Sjoberg. Architectural Technical
Debt in Microservices. A case study in a large company. TechDebt 2019. 2019.

[20] W. E. Deming. Out of the Crisis. MIT press, 2018.
[21] W. E. Deming. The new economics for industry, government, education. MIT press,

2018.
[22] E. W. Dijkstra. The humble programmer. Commun. ACM 15.10 (1972), 859–866.
[23] P. Domingos. The role of Occam’s razor in knowledge discovery. Data mining and

knowledge discovery 3.4 (1999), 409–425.
[24] N. A. Ernst. On the role of requirements in understanding and managing techni-

cal debt. Proceedings of the Third International Workshop on Managing Technical
Debt. IEEE Press. 2012, 61–64.

[25] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord and I. Gorton. Measure it? manage
it? ignore it? software practitioners and technical debt. Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering. ACM. 2015, 50–60.

[26] M. Fowler. StranglerApplication. 2004. URL: https://www.martinfowler.com/
bliki/StranglerApplication.html..

[27] M. Fowler. Technical debt quadrant. Martin Fowler (2009), 14–.
[28] V. Garousi and M. V. Mäntylä. When and what to automate in software testing? A

multi-vocal literature review. Information and Software Technology 76 (2016), 92–
117.

[29] Y. Guo and C. Seaman. A portfolio approach to technical debt management. Pro-
ceedings of the 2nd Workshop on Managing Technical Debt. ACM. 2011, 31–34.

[30] S. Hajikazemi, A. Ekambaram, B. Andersen and Y. J. Zidane. The Black Swan–
Knowing the unknown in projects. Procedia-Social and Behavioral Sciences 226
(2016), 184–192.

[31] F. Herzberg et al. One more time: How do you motivate employees. 1968.
[32] D. R. Hofstadter et al. Gödel, Escher, Bach: an eternal golden braid. Vol. 20. Basic

books New York, 1979.
[33] A. Hunt and D. Thomas. The Art in Computer Programming. The Pragmatic Pro-

grammers, LLC (2001).
[34] C. D. Ittner. Exploratory evidence on the behavior of quality costs. Operations Re-

search 44.1 (1996), 114–130.
[35] A. Janes, V. Lenarduzzi and A. C. Stan. A Continuous Software Quality Monitoring

Approach for Small and Medium Enterprises. International Conference on Perfor-
mance Engineering Companion. 2017.

[36] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson and J. Carriere. The
architecture tradeoff analysis method. Inter. Conference on Eng. of Complex Com-
puter Systems. 1998, 68–78.

https://www.martinfowler.com/bliki/StranglerApplication.html.
https://www.martinfowler.com/bliki/StranglerApplication.html.

45

[37] T. Klinger, P. Tarr, P. Wagstrom and C. Williams. An Enterprise Perspective on Tech-
nical Debt. MTD ’11. 2011, 35–38.

[38] E. Klotins, M. Unterkalmsteiner, P. Chatzipetrou, T. Gorschek, R. Prikladnicki, N. Tri-
pathi and L. Pompermaier. Exploration of technical debt in start-ups. 2018 IEEE/ACM
40th International Conference on Software Engineering: Software Engineering in
Practice Track (ICSE-SEIP). IEEE. 2018, 75–84.

[39] J. Kontio, J. Bragge and L. Lehtola. The Focus Group Method as an Empirical Tool
in Software Engineering. Guide to Advanced Empirical Software Engineering. Ed.
by F. Shull, J. Singer and D. I. K. Sjøberg. 2008, 93–116.

[40] P. Kruchten, R. L. Nord and I. Ozkaya. Technical debt: From metaphor to theory
and practice. Ieee software 29.6 (2012), 18–21.

[41] J. Kruger and D. Dunning. Unskilled and unaware of it: how difficulties in recogniz-
ing one’s own incompetence lead to inflated self-assessments. Journal of person-
ality and social psychology 77.6 (1999), 1121.

[42] V. Lenarduzzi and D. Taibi. MVP Explained: A Systematic Mapping Study on the
Definitions of Minimal Viable Product. 42th Euromicro Conference on Software En-
gineering and Advanced Applications (SEAA). 2016, 112–119.

[43] V. Lenarduzzi and D. Fucci. Towards a Holistic Definition of Requirements Debt.
13th International Symposium on Empirical Software Engineering and Measure-
ment. Sept. 2019.

[44] V. Lenarduzzi, T. Orava, N. Saarimäki, K. Systä and D. Taibi. An Empirical Study
on Technical Debt in a Finnish SME. 13th International Symposium on Empirical
Software Engineering and Measurement. Sept. 2019.

[45] V. Lenarduzzi, N. Saarimäki and D. Taibi. The Technical Debt Dataset. Int. Conf.
on Predictive Models and Data Analytics in software engineering (PROMISE’19).
Sept. 2019.

[46] V. Lenarduzzi., A. Sillitti and D. Taibi. Analyzing Forty Years of Software Main-
tenance Models. International Conference on Software Engineering Companion
(ICSE-C). 2017.

[47] V. Lenarduzzi, A. Sillitti and D. Taibi. A Survey on Code Analysis Tools for Software
Maintenance Prediction. Software Engineering for Defence Applications - SEDA.
2019.

[48] V. Lenarduzzi, C. Stan, D. Taibi, D. Tosi and G. Venters. A Dynamical Quality Model
to Continuously Monitor Software Maintenance. 11th European Conference on In-
formation Systems Management. 2017.

[49] Z. Li, P. Avgeriou and P. Liang. A systematic mapping study on technical debt and
its management. Journal of Systems and Software 101 (2015), 193–220.

[50] J. Macnamara. Creating an “architecture of listening” in organizations. The basis
of engagement, trust, healthy democracy, social equity, and business sustainability.
University of Technology Sydney, Sydney (2015).

46

[51] A. Martini, J. Bosch and M. Chaudron. Investigating Architectural Technical Debt
accumulation and refactoring over time: A multiple-case study. Information and
Software Technology (2015), 237–253.

[52] S. McConnell. Managing technical debt. Construx Software Builders, Inc (2008),
1–14.

[53] H. Nilsson and L. Petersson. How to Manage Technical Debt in a Lean Startup.
2013.

[54] T. Ohno. Toyota production system: beyond large-scale production. crc Press, 1988.
[55] C. N. Parkinson and R. C. Osborn. Parkinson’s law, and other studies in adminis-

tration. Vol. 24. Houghton Mifflin Boston, 1957.
[56] D. L. Parnas. On the criteria to be used in decomposing systems into modules.

Communications of the ACM 15.12 (1972), 1053–1058.
[57] M. Poppendieck and T. Poppendieck. Lean Software Development: An Agile Toolkit:

An Agile Toolkit. Addison-Wesley, 2003.
[58] M. Poppendieck and T. Poppendieck. Implementing lean software development:

From concept to cash. Pearson Education, 2007.
[59] M. Poppendieck and T. Poppendieck. Leading lean software development: Results

are not the point. Pearson Education, 2009.
[60] E. Ries. The lean startup. Crown Books, 2011.
[61] S. D. Sarasvathy. Causation and effectuation: Toward a theoretical shift from eco-

nomic inevitability to entrepreneurial contingency. Academy of management Re-
view 26.2 (2001), 243–263.

[62] T. Sedano, P. Ralph and C. Péraire. Software development waste. Proceedings
of the 39th International Conference on Software Engineering. IEEE Press. 2017,
130–140.

[63] P. M. Senge. The fifth discipline fieldbook: Strategies and tools for building a learn-
ing organization. Crown Business, 2014.

[64] D. I. Sjøberg, A. Johnsen and J. Solberg. Quantifying the effect of using kanban
versus scrum: A case study. IEEE software 29.5 (2012), 47–53.

[65] M. G. Stochel, M. R. Wawrowski and M. Rabiej. Value-based technical debt model
and its application. ICSEA 2012, The Seventh International Conference on Soft-
ware Engineering Advances. 2012.

[66] D. Taibi, V. Lenarduzzi, M. O. Ahmad and K. Liukkunen. Comparing Communication
Effort Within the Scrum, Scrum with Kanban, XP, and Banana Development Pro-
cesses. 21st International Conference on Evaluation and Assessment in Software
Engineering. EASE’17. 2017.

[67] D. Taibi, V. Lenarduzzi, M. O. Ahmad and K. Liukkunen. Comparing communica-
tion effort within the scrum, scrum with kanban, xp, and banana development pro-
cesses. Proceedings of the 21st International Conference on Evaluation and As-
sessment in Software Engineering. ACM. 2017, 258–263.

[68] D. Taibi, V. Lenarduzzi, A. Janes, K. Liukkunen and M. O. Ahmad. Comparing Re-
quirements Decomposition Within the Scrum, Scrum with Kanban, XP, and Banana

47

Development Processes. Agile Processes in Software Engineering and Extreme
Programming. 2017.

[69] N. N. Taleb. The black swan: The impact of the highly improbable. Vol. 2. Random
house, 2007.

[70] K. Tate. Sustainable software development: an agile perspective. Addison-Wesley
Professional, 2005.

[71] K. W. Thomas and B. A. Velthouse. Cognitive elements of empowerment: An “in-
terpretive” model of intrinsic task motivation. Academy of management review 15.4
(1990), 666–681.

[72] F. Thompson. Public economics and public administration. PUBLIC ADMINISTRA-
TION AND PUBLIC POLICY 65 (1998), 995–1064.

[73] E. Tom, A. Aurum and R. Vidgen. An exploration of technical debt. Journal of Sys-
tems and Software 86.6 (2013), 1498–1516.

[74] B. W. Tuckman. Developmental sequence in small groups. Psychological bulletin
63.6 (1965), 384.

[75] M. L. Tushman and C. A. O’Reilly III. Ambidextrous organizations: Managing evo-
lutionary and revolutionary change. California management review 38.4 (1996), 8–
29.

[76] S. H. Vathsavayi and K. Systä. Technical Debt Management with Genetic Algo-
rithms. 2016 42th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA). Aug. 2016, 50–53. DOI: 10.1109/SEAA.2016.43.

[77] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson and. A. W. B. Regnell. Experimentation
in Software Engineering: An Introduction. 2000.

[78] D. C. Wood. The executive guide to understanding and implementing quality cost
programs: reduce operating expenses and increase revenue. ASQ Quality Press,
2007.

[79] A. D. Yakup and Z. Sevil. A theoretical approach to the concept of the costs of
quality. International Journal of Business and Social Science 3.11 (2012).

[80] R. Yin. Case Study Research: Design and Methods, 4th Edition (Applied Social
Research Methods, Vol. 5). 4th. SAGE Publications, Inc, 2009.

[81] W. I. Zangwill and P. B. Kantor. Toward a theory of continuous improvement and
the learning curve. Management Science 44.7 (1998), 910–920.

https://doi.org/10.1109/SEAA.2016.43

	Introduction
	Related Work
	Technical debt
	Motivation
	Types
	Impacts

	Technical Debt Management
	Identification
	Measurement
	Prioritization
	Monitoring
	Repayment
	Communication
	Prevention

	Project Management
	Kanban
	Agile Software Development
	Contracts
	Continuous Improvement

	Focus Group
	Research Questions
	Planning the Study
	Data Analysis

	Results
	Perceived Debt
	Research Questions
	RQ1. What Are the Most Common Types of TD?
	RQ2. What Are the Main Causes of the Accumulated TD?
	RQ3. How to Mitigate TD?

	Threats to Validity
	Discussion
	Learning from Customer
	Careful Estimation
	Continuous Improvement

	Conclusion
	References

