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Abstract
In this paper we describe the cumulative distribution function of excess returns conditional on
a broad set of predictors that summarize the state of the economy. We do so by estimating a
sequence of conditional logit models over a grid of values of the response variable. Our method
uncovers higher-order multidimensional structure that cannot be found by modeling only the first

two moments of the distribution.

We compare two approaches to modeling: one based on a conventional linear logit model, the
other on an additive logit. The second approach avoids the “curse of dimensionality” problem of
fully nonparametric methods while retaining both interpretability and the ability to let the data
determine the shape of the relationship between the response variable and the predictors.

We find that the additive logit fits better and reveals aspects of the data that remain undetected
by the linear logit. The additive model retains its superiority even in out-of-sample prediction and
portfolio selection performance, suggesting that this model captures genuine features of the data

which seem to be important to guides investors’ optimal portfolio choices.

Keywords: Asset pricing, generc.ized additive models, nonparametric methods.



1 Introduction

This paper is an empirical investigation of the distribution of excess returns on a wide stock market
portfolio. We define the rate of return on this portfolio as the ratio of its liquidation value at the
end of a month (price plus dividends) to the purchasing value of the asset at the end of the previous
month. Figure 1 shows the monthly rates of return on the equally-weighted portfolio of New York
Stock Exchange common stocks and on the one-month U.S. Treasury bill and their difference — the
excess returns — from April 1960 to July 1992.

Empirical analysis of excess returns is important to guide investors’ choices in the face of
uncertainty about future returns. For an investor with a one-month horizon, the uncertainty about
future excess returns comes entirely from the uncertainty about the rate of return on stocks since
the rate of return on the one-month Treasury bill is known in advance. This is because the Treasury
bill is purchased at a discount from the stated value which the government pays in one month to
the holder of the bill. Figure 1 shows the difficulty of identifying patterns in excess returns: there
is no evidence of trends and hardly any of autocorrelation. In fact, traditional views of market
efficiency held that past excess rizurns should not help explain their future values.

Indeed, there is now evidence that both the mean and the variance of excess returns change
through time in a way that can be predicted using information which goes beyond past excess
returns [see Fama (1991) and Bollerslev, Chou, and Kroner (1992) for a review of the evidence on
conditional first and second moments respectively]. This evidence is understood to be consistent
with efficient markets when productivity and risk evolve in a predictable manner.

Two assumptions have played a significant role in shaping empirical analysis to date. One is

that conditional first and second moments of asset returns are sufficient to inform investors’ choices.



The other is that these moments have a known parametric form. Besides their appeal as measures
of location and dispersion, mean and variance are central to the intuition of modern portfolio theory
and the Capital Asset Pricing Model of Sharpe (1964) and Lintner (1965). The higher the risk,
as measured by variance, the higher the average returns investors demand to hold stocks rather
than riskless Treasury bills. Unfortunately, mean-variance analysis is adequate to guide investors’
choices only under special assumptions, such as multivariate normality of asset returns or quadratic
utility function of investors. In general, a precise definition of risk and an unambiguous ranking
of portfolio strategies requires the entire distribution of future returns [Rothschild and Stiglitz
(1971)]. Our study suggests that modelling the entire distribution may improve predictions for
portfolio choice.

Several recent studies have recognized the importance of avoiding rigid assumptions about the
data. Examples include the autoregressive conditional heteroskedasticity (ARCH) models reviewed
in Bollerslev, Chou, and Kroner (1992), and the nonparametric approaches of Pagan and Hong
(1991). The main difference between these studies and ours is their emphasis on moments, as
opposed to the entire distribution.

In this paper, we develop and implement two distinct ideas. First, instead of limiting ourselves
to the first two moments, we describe in detail the cumulative distribution function of excess returns
conditional on a broad set of predictors, including dividend-price ratios, interest rates, and rates
of growth of employment and money. Second, we propose a method of estimating the cumulative
distribution function that avoids the need of strong parametric assumptions.

A fully nonparametric estimation of the conditional distribution is out of the question with more

than two or three predictors, because of the well known “curse of dimensionality” problem. We



attempt to capture the complex relation between future returns and a broad array of predictors with
a representation based on methods developed for generalized additive models. This representation
avoids the curse of dimensionality problem that makes it difficult to extend classical scatterplot
smoothers, such as kernel regression, to high dimensions. The goal is similar to that of the density
estimation approach of Gallant and Tauchen (1992), who use a quadratic polynomial Hermite
expansion of the conditional density. One advantage of our approach is interpretability, as the use
of an additive specification makes it easy to think of the effects of different predictors on the excess

returns in terms of “derivatives.”

2 The statistical model

We interpret the data on excess returns as the realization of a time-series {Y;}:2,, which is itself
a component of a strictly stationary k-dimensional time-series {X:}{2,. Because of the strict
stationarity assumption, the cumulative distribution function of Y;41 given X; is well defined and
is time invariant, that is, F(y|z) = Pr(Yi+1 < y|X: = z) does not depend on the time index ¢.

Under the strict stationarity assumption, knowledge of F(y|z) represents the complete solution
to the problem of predicting Y;,, given X, for it contains all the information relevant for predic-
tion, irrespective of the particular loss function that the analyst may be using. If X is suitably
defined, the conditional distribution function F(y|z) may also be related to the transition probabil-
ity function impﬁed by the class of Markov models of asset prices studied, among others, by Brock
(1980) and Duffie and Singleton (1993).

In this Section we outline a flexible method for estimating F(y|z).



2.1 Approaches to modeling

Suppose that we want to estimate the conditional probability of future excess returns falling below
some threshold y. For example, we may be interested in the conditional probability of negative
excess returns. The natural approach is to introduce a binary random variable Z,,;, taking value
one if excess returns are below y and value zero otherwise. Estimating F(y|z), viewed as a smooth
function of z for fixed y, is then equivalent to fitting a model for the conditional mean of Z;; given

X:. If we reparameterize the problem in terms of the log odds-ratio

_ 1y (=)
"7(93) - 1 1— F(y|$)’

the estimation problem reduces to fitting a logistic regression model to Z;;1.

We propose to extend this approach and estimate not just one but J distinct functions Fj(z),
.oy Fy(z), where Fj(z) = F(yj|z), and —00 < 33 < ... < yy < oo are distinct points in the
support of Y;4;. This entails fitting a separate logistic regression to each binary random variable
Zipr1 = I—ooy;)(Yes1), 5 = 1,...,J, where I4(-) denotes the indicator function of the event A.
After selecting a model for the loo odds-ratios 7;(z) = In[Fj(z)/(1 — Fj(z))], estimation may be
carried by maximum likelihood, with the conditional log-likelihood function for a single observation

(z,z) on (Zjt4+1,X+) taking the simple form
I(nj(2)) = zn;(z) —1n[l + exp n;(z)).

There may be as many thresholds y; as one wishes. By suitably choosing their number and position,

one may hope to get a reasonably accurate description of F(y|z).

If the conditional distribution of Y341 is continuous with support on the whole real line, then



the sequence of functions {F;(z)}/_; must satisfy
0< Fj(z) <1, i=1,...,J, (1)

0< Fi(z) < Fp(z) < -+ < Fy(z) < 1, (2)

for all z in the support of X. Modeling the log odds-ratio ensures among other things that condi-
tion (1) is automatically satisfied.
The monotonicity condition (2) is harder to impose. Since n;(z) is strictly increasing in Fj(z),

(2) is equivalent to the condition that
~00 < mz) < Mz) < ...<nu(z) <00

for all z in the support of X. If we write n;(z) = v; + pj(z), then sufficient conditions for
monotonicity are that 7; > ;-1 and pj(z) > pj-1(z). One case where these conditions are
satisfied is the ordered logit model, where vy; = y; and p;(z) = p(z) for all j. This model is too
restrictive, however, for it implies that changes in the predictors affect the distribution of future
excess returns only through a location shift.

An alternative would be to model instead Fy(z) and the probability increments
7i(z) = Fj(z) — Fj-1(z) = P(yj-1 < Y < 9;|X = z), 7i=2,...,J.

If one can guarantee that 0 < 7;(z) < 1, for example by modeling the log odds-ratio of 7;(z), then
monotonicity is clearly satisfied. We run, however, into difficulties of a different type, for the model
does not automatically imply that Fy(z) = Fi(z) + Yh=; ma(z) < 1.

Finally, one could model Fj(z) and the conditional probabilities (or discrete hazards)

Si-1(z) — Sj(=)
Sj-1(z) 7

Ai(z) = P(Y < y;lY > yj-1, X = z)=



where §j(z) = 1 - Fj(z) = P(Y > y;|X = ) is the survivor function evaluated at y;. Using the

recursion S;(z) = [1 — A;(2)]S;-1,5 = 2,...,J, one can write Fj(z) as

Fi(z) = 1= Si(z) J][1 - An(2)]. (3)

h=2
If A\j(z) is modelled to guarantee that 0 < A;(z) < 1, then both monotonicity and the constraint
that 0 < Fj(z) < 1 for all j are automatically satisfied.

The resulting model is difficult to interpret, however, because the link between its parameters
and the conditional distribution function is quite involved. To see this, consider the impact of the
predictors on Fj(z). If 61(z) is the log odds-ratio of Fi(z) and 6;(z) is the log odds-ratio of ;(z),
then Fj(z) =1 - f;=1(1 + exp On(z))7 1, j =2,...,J. Hence, denoting by a ’ differentiation

with respect to z, we get

Fiz) = 5,() z TrR S 0(@) = S,@) @) A + 2 M(@) 842,

which is a complicated weighted average of the gradients of the first j log odds-ratios. This may

be contrasted with our choice of modeling 7;(z), the log odds-ratio of Fj(z). In this case
Fi(z) = nj(2) S;(=) Fj(=).

Thus, the gradient of n;(z) is immediately interpretable in terms of the gradient of Fj(z).
Because we see no simple way of ensuring monotonicity while preserving interpretability and

ease of estimation, (2) will not be imposed here.



2.2 Specification of the log odds-ratios

The conventional parametric approach proceeds by restricting the log odds-ratio 7;(z) to a family

of functions indexed by a finite-dimensional real parameter. If
k
ni(z) =i + hZ zhbh; = 75 + 9, T, (4)
=1
then we have the classical logit model. Beside ease of estimation, one important feature of the linear
specification (4) is interpretability, for 6s; may be interpreted as the constant partial derivative of
the log odds-ratio of Fj(z) with respect to the h-th variable in X;.

While the linear specification is probably restrictive, the alternative of a fully nonparametric
specification is out of the question for small to moderate sample sizes, if one wants to allow for a
broad enough set of predictors. One way of attacking the curse of dimensionality problem would
be to consider projection-pursuit logistic regression. We choose for simplicity to work with a
specification that is intermediate between projection pursuit and the classical linear logit, namely

k
ni(z) =715 + Y gni(an), (8)
h=1
where {gx;} are arbitrary univariate smooth functions, one for each component of the vector X;,
to be estimated nonparametrically. The additivity imposed by (5) makes it possible to interpret
the gradient of gi;, now a function of zj, as the partial derivative of the log odds-ratio of F;(z)

with respect to the h-th component of X, thereby retaining interpretability, which is one of the

attractive features of the linear specification (4).

We shall also compare (5) with the semi-additive model

k—k;
ni(e) =7 + 6D+ 3 gri(aP), (6)
h=1



where the k; variables in z(1) enter linearly and the remaining k — k; variables in z(®) enter non-
parametrically. A specification similar to (6) was used by Engle et al. (1986) in the context of

modeling a conditional expectation function.

2.3 Model estimation

We estimate models (5) and (6) using the local scoring algorithm proposed by Hastie and Tibshirani
(1990) for generalized additive models. Their method modifies the scoring algorithm for the linear
logit model by constructing at each iteration nonparametric estimates of the univariate functions
{gn;}, obtained by smoothing the transformed residuals from the previous iteration. Smoothing
may be based on nearest neighborhood methods, such as Cleveland’s (1979) loess, or on cubic
smoothing splines. The latter have certain advantages, including convergence of the local scoring
algorithm. The degree of smoothing may be chosen subjectively or an automatic selection criterion,
such as cross-validation, may be employed. For a discussion of the properties of these estimators
in the case of independently and identically distributed observations see Stone (1986).

The linear, semi-additive and additive specifications form a nested sequence. In the empirical
section below we compare them using the logarithm of the likelihood ratio. Although the distri-
bution theory for this statistic is not yet developed, simulation results in Hastie and Tibshirani
(1990) show that the x? distribution provides a useful approximation. Following their suggestion,
we compute the number of degrees of freedom of the asymptotic x? approximation as the value of a

quadratic approximation to the expectation of the likelihood ratio statistic under the truth of the

restricted model.



3 Data

Our raw data are monthly time-series from March 1959 to July 1992. Details on their sources
are provided in the Appendix. The time-series has been split in two. The data prior to April
1989 are used for model selection and estimation. At the model selection stage we choose the
predictors, their transformations, the type and degree of smoothing for the additive model, and the
best semi-additive model. The data from April 1989 to July 1992 are left aside for the out-of-sample

prediction exercise of Section 4.4.
3.1 Dependent variable

The dependent variable is the excess return, defined as the difference between the return on the
equally-weighted portfolio of New York Stock Exchange common stocks and the one-month U.S.
Treasury bill. The time-series plot of these data is shown in Figure 1. The dotted vertical bar
indicates April 1989. It separates the data used for model selection and estimation from those left
aside for out-of-sample prediction. The choice of excess returns rather than returns on stocks follows
previous theoretical and empirical analysis. Because the return on a one-month Treasury bill is
known at the beginning of the month, one needs to explain only the excess returns. Another reason
for using excess returns is inflation. In periods of inflation, stocks and Treasury bills offer higher
returns to compensate for the loss of purchasing power. Working with excess returns eliminates,
to a first approximation, the scale effect of inflation. This simplifies the statistical model because

excess returns do not display trends in the level.



3.2 Choice of predictors and data transformations

Previous empirical evidence guides our choice of predictors. Our general frame of reference is an
equilibrium model of the economy in which future excess returns are determined by the current
state of the financial, real, and monetary sectors of the economy.

Current excess returns, the short term interest rate, and the dividend yield (dividend-price ratio)
summarize the state of the financial sector. Theoretical models suggest that the short term interest
rate tracks movements of the investment opportunity set over time [Merton (1973)] and its ability
to predict asset returns is well documented [Fama and Schwert (1977)]. The use of current excess
returns as a predictor captures possible persistence in excess returns [Conrad and Kaul (1988)]. The
dividend yield contains information on expected stock returns, as documented by several authors
[Rozeff (1984), Campbell and Shiller (1988)]. In theory, however, the dividend yield encompasses
both expected stock returns and expected dividend growth. To control for dividend growth, we
consider measures of growth of the economy based on industrial production and employment.

Industrial production and employment also contain information on the state of the real sector,
as they capture the level of busir. -s activity and the labor market conditions. Industrial production
[Chen, Roll, and Ross (1986)] and unemployment [Gertler and Grinols (1982)] have been considered
as proxies for macroeconomic risk “factors” in the literature on the cross sectional variation in
asset returns. In as much as current values of these factors can help forecast future ones, they
contain information on future returns. We consider also two other financial variables that contain
information on the state of the economy: a default spread - the monthly average yield to maturity
of corporate bonds rated Baa by Moody’s Investor Services less the Aaa corporate bond yield — and

a term structure variable —~ the one-month rate of return of a 3-month Treasury bill less the one-
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month return on a one-month bill. It is usually argued that the default spread contains information
useful to forecast future business conditions, since the return on private debt instruments reflects
the near-term risk in the economy. Term structure variables may capture the relative availability
of credit with respect to the demand. The predictive power of default and term structure variables
for excess returns is also well documented in the empirical literature [see for example Keim and
Stambaugh (1986) for the default spread, and Campbell (1987) for term structure variables].
Finally, we consider a broad monetary aggregate, M2, as an indicator of the state of the mon-
etary sector. Monetary variables have received considerable attention in studies of the relation
between stock returns and inflation such as Fama (1981), Geske and Roll (1983), and Kaul (1987).
These studies have mainly emphasized the contemporaneous reaction of money and stock prices to
current and anticipated economic activity. Recent evidence [Chan, Foresi, and Lang (1992)] sug-
gests however that monetary aggregates such as M2 and M3 have incremental explanatory power
for future excess returns over and above that of other business-cycle predictors such as the term
spread and the default spread. This is not surprising in light of the well recognized role of money
as a leading indicator of future_ business conditions. The default spread and the term structure
spread, two predictors we are using to forecast excess returns, have a similar leading indicator role.
We work with the continuously compounded rates of growth of employment, industrial pro-
duction, and M2/. We consider both month-to-month and year-to-year growth rates. The latter
eliminate seasonal components up to the monthly frequency. Year-to-year growth rates of industrial
production, employment, and M2 display a smoother profile than the month-to-month ones and
show no recognizable seasonal pattern. The use of year-to-year growth rates has a natural inter-

pretation, as stock market returns are related not only to short-run changes, but also to changes
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in industrial activity over longer horizons.

Industrial production and employment contain similar information for predicting excess returns.
Thus we drop industrial production and use only employment as a proxy for the business cycle.
M2 and employment for a given month are made available only the following month. Thus we use
M2 and employment growth of month ¢ — 1 to predict excess returns in month ¢t + 1. We do not
transform the other predictors other than by rescaling the rates of returns to express them all in
percentage form.

To summarize, the predictors that we consider are: the dividend yield, the excess returns, the
term-structure spread, the default spread, the one-month Treasury bill yield, the twelve-month
differences of the log of M2, and the twelve-month differences of log employment. Ferson and
Harvey (1991) use the first five to explain excess returns. To their list, we have added two standard
macroeconomic variables — the year-to-year rates of growth of employment and M2.

After transforming the predictors, our estimation sample covers the period from April 1960
through March 1989, for a total of 348 data points. Figure 2 presents some features of the data.
In plotting the data we symmetrically trim 2.5 percent of the data at the top and the bottom
to eliminate the visual effect of a few extreme outliers. The top-left panel shows the density of
excess returns (solid line) estimated using a kernel smoother with a triangular kernel and a fixed
bandwidth chosen subjectively. For comparison, we overlay a Gaussian density (broken line) with
mean and variance equal to the sample mean and variance of excess returns. The two densities
differ mainly in kurtosis: an overall test based on the empirical third and fourth moments rejects
the assumption of normality of excess returns.

The remaining panels are bivariate scatterplots of excess returns against each of the predictors.
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To help visualize the central tendency of the d‘ata, we add a locally linear scatterplot smooth
estimated by Cleveland’s (1979) loess method using neighborhoods covering 40 percent of the data.
On the right side of each scatterplot, we reproduce the univariate density of excess returns and, on
the top, we present the univariate density of the predictor. These scatterplots show some structure
in the data and suggest that the location of the response variable changes with the predictors.

However, it remains difficult to see how other aspects of the distribution vary with the predictors.

4 Findings

We now present the results of estimating the conditional distribution function of excess returns by a
sequence of logit models, where the binary response variable takes value one if future excess returns
do not exceed a threshold y; and value zero otherwise. The predictors are the ones described in
Section 3.2. As thresholds, we select the percentiles of the empirical distribution of excess returns
from the 10-th to the 90-th with increments of five percent. Because the financial literature on
market timing is often interested in the probability of positive excess returns, we also consider zero
as an additional threshold. This gives a total of eighteen evaluation points for F(y|z). We use
S-PLUS as a computation environment.

Section 4.1 presents the results for the linear logit model. Section 4.2 compares these results
with the ones obtained by fitting the more flexible additive logit model. Section 4.3 presents
the results of our search for a semi-additive specification intermediate between the linear and the

additive logit. Section 4.4 compares the three models in terms of out-of-sample prediction.
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4.1 Linear logit

We begin with log odds-ratios that are specified as linear in the predictors, \;(z) = 7; + 6/ z. In
order to keep the dimensionality of the model to a manageable dimension we exclude interactions
among the predictors. Notice, however, that absence of interactions in the logit space does not
imply absence of interactions in the probability space.

Figure 3 plots the estimated intercepts 4; and slopes 5]- for the 18 evaluation points. The vertical
bars at the bottom of each plot correspond to the evaluation points. The estimates are connected
by a solid line to help visualizing the differential impact of a predictor at different values of y in
F(y|z). The dotted lines are pointwise two-standard error bands. In reading these pictures one
should keep in mind that the smoothness of the lines is partly an artifact of the high correlation
between estimated coefficients for adjacent threshold values.

The coefficients on the dividend yield are negative and significant for all threshold values. This
implies that an increase in this variable, keeping all other predictors constant, shifts the conditional
distribution function of excess returns to the right. This result agrees with the well-known finding
of a positive relationship betwee: dividend yields and mean excess returns. For the one-month
Treasury bill yield the effect is just the opposite. Since the coefficients are now always positive
and significant, an increase in the Treasury bill yield shifts the conditional distribution to the
left. Observe that in both cases the coefficients do not change much across threshold values. If
the distribution of excess returns was logistic, constancy of the logit coefficients across thresholds
would correspond to a pure location shift in the distribution.

For current excess returns and M2 growth we observe a different pattern. Coefficients change

sign from negative to positive, and lose statistical significance, as we move from negative to positive
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threshold values. In this case, an increase in either variable, keeping all other predictors constant,
lowers the probability of negative excess returns and may also lower the probability of very high
excess returns. This corresponds to a decrease in the spread of the distribution — a reduced volatility
of excess returns, which is consistent with the findings of Black (1976) and others. However, because
the magnitude of the effect is different at different thresholds, not only the spread but also other
aspects of the distribution may be affected.

Figure 4 gives an alternative way of summarizing the information provided by the linear logit
fit. It shows how the estimated conditional distribution changes when a single predictor changes
and all the others remain constant. Each panel in the figure is constructed by evaluating the fitted
probabilities FJ(x), j=1,...,J, over a grid of 100 equally spaced points between the 2.5-th and
the 97.5-th percentile of one of the predictors, with all the others kept constant at their average
value. We then plot the contours of iso-probability using an interpolating algorithm.

These iso-probability contours have a nice interpretation as conditional quantiles of excess
returns. For example, projecting the curve indexed by .5 onto the y-axis traces out the behavior
of the conditional median as one of the predictors changes and all the others remain constant. A
positive (negative) slope of an iso-probability contour indicates a positive (negative) impact of the
predictor on the corresponding conditional quantile. Horizontal contours correspond to a predictor
having no impact. One can detect violation of the monotonicity constraint (2) by looking at the
iso-probability maps, as lines parallel to the y-axis should never cross twice the same contour.
Although we see some violations in the case of the dividend yield, current excess returns, and the
one-month Treasury bill yield, these occur in regions of the predictors’ space where the sample

information is too low to afford reliable conclusions.
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The figure gives a convenient way of representing the effect of a predictor on various aspects of
the distribution of excess returns. Iso-probability contours that are parallel to each other indicate
that the variable affects only the location of the distribution, not its shape. This appears to be the
case with the dividend yield and the term spread. The figure suggests that while other predictors
may have limited information about location, they carry information about spread, symmetry,
and tail weight. For example, higher current excess returns or M2 growth decrease dispersion of
future returns as measured by the interquartile range (IQR). However, they also affect the degree of
symmetry of the distribution, which tends to become more skewed to the right. Another example
is employment growth: an increase in employment growth lowers the median and the IQR of future
excess returns but also increases the weight in the tail of the distribution, as measured by the
ratio of the distance between the 10-th and the 90-th percentile and the IQR, and changes the
distribution from left- to right-skewed.

We conclude that although the significance of a predictor in a model of mean excess returns
may be limited, this does not imply that the predictor contains no information, because its role

may only be appreciated by looling at other aspects of the distribution.

4.2 Additive logit

We now consider what may be gained by allowing for a more flexible relation between predictors
and excess returns.

Fitting the additive logit model (5) requires making a number of choices. After some experiments
with both cubic splines and loess, we decided to use cubic splines to smooth the data. The overall
shape of the estimated relations is similar for the two smoothers, but the visual appearance of splines

is more regular. Loess is also computationally more cumbersome: the local scoring algorithm

16



requires more iterations and in a few cases failed to converge. The degree of smoothing, which
corresponds to roughly five degrees of freedom for each nonparametric term, is the same for all
predictors and was chosen subjectively, after an informal comparison of Akaike criteria.

Figure 5 has been constructed in exactly the same way as Figure 4 and shows the iso-probability
contours corresponding to the additive fit. Although some broad features are common to the two
figures, the additive contour maps are much less regular: they are far from linear and often change
orientation. Further, condition (2) is violated more frequently than for the linear case, although
in most cases this occurs in regions that correspoﬁd to infrequent values of the predictors. In the
absence of measures of statistical accuracy, it is hard to draw firm conclusions from a comparison
of these two figures. We note, however, that the conditional medians from the additive logit are in
much closer agreement with the loess smooths in Figure 1. This is somewhat reassuring, especially
if one considers that our models are not explicitly designed to track location.

In Figures 6a and 6b we compare in more detail the linear and the additive logit fit for the
probability of negative excess returns, y = 0. Each figure consists of seven panels, one for each
predictor. The plots in Figure 6a are on the scale of the log odds-ratio and present the contribution
of each predictor to the fit. The vértica.l bars at the basis of each plot show the frequency distribution
of that predictor. The thicker solid curves represents the nonparametric components gp;(zx) from
the additive logit, while the lighter solid lines represent the corresponding linear components (Ehghj
from the linear logit. To facilitate the comparison, all components are normalized to be equal to
zero at the average value of the predictor. The dotted lines are two standard-error bands associated
with the linear component. If the linear logit model was correct, these standard-error bands could

be interpreted as approximate 95-percent confidence intervals for the variation in the slope of the
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linear component.

Figure 6a helps visualizing the differences between the fit the nonparametric and linear com-
ponents. These differences are not confined to regions of low density of the data. The inversions
in the slope of the additive components are the most apparent departures from the linear logit.
Increases in M2 growth, for example, may be good or bad news for the stock market. If M2 growth
is below-average, an increase in M2 growth lowers the probability of negative excess returns. If
M2 growth is above-average, an increase in M2 growth increases instead the probability of negative
excess returns.

Even when the nonparametric components look approximately linear, we still observe inter-
esting departures from the linear logit. Consider for example the dividend yield. Although the
nonparametric component is monotone over most of its range, its slope is steeper than the linear
component, and the difference becomes more pronounced for above-average values of the predictor.
The lower slope of the linear logit is clearly a compromise to get a good fit at extreme values of
the predictor.

The plots in Figure 6b are on the probability scale and show how estimated probabilities from
the two models vary as functioné of a single predictor, keeping all the others constant at their
average value. Estimated probabilities from the additive logit model are represented by a thicker
solid curve, while those from the linear model are represented by a lighter solid curve. The broken
curves are estimates from a nonparametric logit model fitted to the response variable Z; ;41 using
just a single predictor. They give useful benchmarks for the multivariate models. The vertical bars
at zero and one indicate the occurrence of zeros and ones in the response variable Z;:4+3. They

help detect local concentrations of ones and zeros which, by inflating the nonparametric slopes,
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may produce extreme fitted probabilities.

A comparison of the univariate smooth with the additive fit again suggests that the nonlineari-
ties captured by the additive model are genuine aspects of the data and not the result of overfitting
or spillover effects from other terms of the model. Interestingly, the additive and the univariate
nonparametric fit are in reasonable agreement with each other except for two predictors, the divi-
dend yield and the one-month Treasury bill yield. For either predictor the effect on the probability
of negative excess returns is enhanced by the presence of the other predictor.

An overall comparison of the linear and the additive model is presented in Table 1. This
table reports, for each threshold value of excess returns and for each model, the residual deviance
(minus twice the maximized log likelihood) and the effective degrees of freedom. It also reports
the likelihood ratio statistic and the p-value of a likelihood ratio test based on the x? distribution
with number of degrees of freedom equal to the difference in degrees of freedom of the two models.
Although one may question the use of conventional significance levels, we notice that the likelihood
ratio test rejects the linear logit at the 10 percent level in 15 out of 18 cases, and at the 5 percent
level in 10 out of 18 cases. To interpret this pattern one should keep in mind that all the results in
Table 1 are correlated, some highiy; however, the small p-values in the middle of the table provide
some evidence that the additive model is fitting better. Interestingly, we observe very few rejections

of linearity in the upper part of the distribution of excess returns.
4.3 Semi-additive logit

The additive logit fits the data better than the linear one but uses many more degrees of freedom.
This suggests that by selecting only a few nonparametric terms one may attain a better balance

between goodness-of-fit and model parsimony. Hopefully, this would give a model that, while still
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flexible, is better able to predict future excess returns.

One measure of predictive accuracy is the Akaike Information Criterion (AIC)
AIC = —2In [ + 2df,

where I denotes the maximized value of the likelihood and df denotes the number of degrees of
freedom. We use this criterion to select, for each threshold value of excess returns, the best semi-
additive model among all possible combinations of linear and nonparametric terms. For simplicity,
we keep the amount of smoothing the same for all nonparametric components.

Figure 7 plots, for six threshold values of excess returns, the residual deviance and the degrees
of freedom of semi-additive models combining linear and nonparametric terms: each “+” mark
represents one of the resulting 128 (= 27) semi-additive models, including the fully additive and
the linear logit ones. The six threshold values are roughly evenly spaced in the range from the
10-th and 90-th percentile of the unconditional distribution. The top broken line represents all
combinations of deviance and degrees of freedom that give the same AIC as the additive logit,
while the bottom line corresponds to the linear logit. Any line parallel to the two broken lines
describes a collection of different models with the same value of AIC. The lower the line, the better
the AIC associated with the model. The linear logit always dominates the additive on the basis of
AIC. There are, however, semi-additive models that do better than the linear logit. The best of
these models are indicated by a black square, while black diamonds denote the ones that do worst
in terms of AIC.

Tables 2 shows which nonparametric components are included in the best and worst models
according to AIC. The best models may be interpreted as the directions of departure from the

linear logit that result in the highest decrease in AIC. As an example, the best AIC model of the
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probability of negative excess returns is the one where the one-month Treasury-bill yield and the
growth rates of M2 and employment are aliowed to enter nonparametrically. This model results
in a decrease of the deviance from 447.1 of the linear logit to 422.8, which more than offsets the
increase in degrees of freedom from 8 to roughly 19.

Few of the “+” marks are to the lower left of the AIC line corresponding to the linear logit
model, indicating that the linear logit is nearly best for all the quantiles of y displayed. If we
replace the AIC with a more general criterion of the form C(a) = ~2In I + adf, we can compute
the critical value of a above which the linear logit model would be chosen. In the case of the
probability ofA negative excess returns, this critical value is equal to 2.19. On the other hand, the
additive model would be chosen only if o falls below .98. Thus, a small departure from the Akaike
criterion (o = 2) towards a more conservative one such as the Schwarz criterion (e = In 348 = 5.85),
which corresponds to a steepening of the broken lines in Figure 7, would be enough for the linear
model to be chosen. Choosing the additive model requires instead a large reduction in the trade-off

between goodness-of-fit and parsimony.
4.4 Out-of-sample prediction

A reader may wonder to what extent our results depend on the particular data set used for model
specification and estimation. After all, smoothing operations are very much data-specific and, at
least to some extent, the choice of the predictors and their transformation is also data-based.

We address this issue by considering how the three models predict the data after March 1989.
Recall that these data have been left aside at the model specification and estimation stages. Our
out of sample prediction exercise covers the period from May 1989 through July 1992, a total of

thirty-nine data points. We look at four summaries of predictive accuracy for the different models
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of the probability of negative excess returns. The first three are based on the fitted model for the
probability of negative excess returns. The last statistic uses also the probabilities associated to
the other 17 evaluation points of F(y|z).

To simplify notation, let the response variable Z; be a binary indicator taking value zero if future
excess returns are positive and value one otherwise, with F; as a short-hand for P(Y; < 0|Xi—).
We denote the predicted value of F, by F}. The top-left panel of Figure 8 shows the time-series
plot of the estimated probabilities for the additive, linear, and best (AIC) semi-additive models of
negative excess returns.

The first statistic is the sum of the squared prediction errors
39 R
Sl = Z(Zt - Ft)z.
t=1

The additive logit does best with S; = 9.06, the linear logit gives S; = 9.23, and the semi-additive
does worst with 57 = 9.38. The second measure is the sum of weighted squared prediction errors,

39

Zi— F)?
SZ:Z(t t)7

t=1 W

where the weights w; are equal tu he reciprocal of the variance of Z;, as estimated by the additive
model. The ordering of the three models remain the same, with S, = 43.9 for the additive, S, = 44.9
for the linear, and §2 = 45.6 for the semi-additive. The ranking does not change if the variance
estimates from the linear logit are used instead as weights.

The top-right panel of Figure 8 shows the time-series plot of the squared prediction errors (the
plot of the weighted squared error, not shown, is quite similar). Being a less parsimonious model,
it is remarkable how well the additive does until the end of the prediction period. We expected its

predictive accuracy to deteriorate over time. The additive model does display some large errors at
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the beginning, but there is no indication that it is performing worse than the linear logit in the
later part of the prediction period.

To spice up the comparison, the third statistic is the overall return from a simple market-timing
strategy. Starting with one dollar in April 1989, each month we decide to invest in Treasury bills or
stocks depending on whether the predicted probability of negative excess returns.is above or below
.5.

The total return for the market-timing strategy based on the predictions of the linear logit
(Strategy L) is $1.80, or 80 per cent, the additive (Strategy A) gives $1.85, while the semi-additive
(Strategy SA) gives $1.79. The count of wrong timing predictions is 14 for L, 15 for A, and 16
for SA. To see that our market-timing strategies fare quite well, consider that an investor holding
Treasury bills over the same thirty-nine month period would get a total return of $1.23, while one
holding stocks would get $1.32. Investors flipping a coin to time the market (the unconditional
probability of negative excess returns is .46) would average somewhere between the overall return
on Treasury bills and that on stocks.

Reshuffling one’s portfolio to time the market is costly because it requires paying commission
fees, for example. Strategy L is ﬁore aggressive and switches portfolio ten times, A and SA are more
conservative and require three and four switches respectively. Assuming a rather crude proportional
adjustment cost of .5 percent per each portfolio switch, Strategy A comes clearly ahead with a net
return of $1.82 against $1.72 for L and $1.76 for SA. By comparing the cumulative rates of return
on the lower-left panel of Figure 8 with the estimated probabilities on the top-left panel, we see that
all three strategies outperform the buy-and-hold all-stocks strategy because they switch to Treasury

bills after August 1989, as the stock market was just starting on a long negative trend. Strategies
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A and SA are “bearish” until October 1990, when they turn “bullish”. Being conservative turns
out to be a plus for A and SA: by timing the market more aggressively, L starts better but it takes
a false step when it turns bullish one month too early in September 1990. This, and the lower
adjustment costs, explain why A and SA end up above L in overall returns. On the other hand,
the difference between A and SA is entirely due to the last month, when SA shifts to Treasury bills
missing a stock market increase.

The three summaries of predictive accuracy for the models of negative excess returns indicate
that the additive logit model performs better than the linear and the semi-additive ones. In
particular, the use of monetary weights to assess performance strongly favors the additive over the
linear. Contrary to our expectations, the semi-additive does not come out so well from the exercise.

A portfolio strategy which invests entirely in Treasury bills or entirely in stocks is only a coarse
approximation to an optimal strategy. To hedge his bets, an investor may prefer investing a fraction
w; in stocks, and 1 — w; in Treasury bills. The return on such a composite portfolio is the weighted
average of the rate of return on Treasury bills, b;+;, and the rate of return on stocks s;41, that is
wySt41 + (1 — wy)byy1 (these are gross rates of return, so that 1.03 means a 3% net rate of return).
For simplicity, we assume that the investor cannot borrow (w; < 1) and cannot sell stocks they
do not own (no “short” selling, w; > 0). The investor chooses a portfolio weight to maximize
the expected utility of next period portfolio wealth W;,,, where the utility function is a standard
power utility function. More precisely, in each period ¢ the investor chooses a portfolio weight w}
by solving the problem

Wi
ol ('1——a) !

st. Wipr = Wi [bey1 + wi(Se41 = big)],
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where the expectation is taken with respect to the estimated conditional distribution of future
excess returns s;4; — by41 given current information. The real valued parameter a regulates the
degree of risk aversion. For risk averse investors a is positive and there is consensus in the literature
that it should exceed one.

We approximate the expectation in (7) using the predicted probabilities from the linear and
additive logit fits associated with the 18 evaluation points of F(y|z), and choose w by a grid-search
over the interval [0, 1] with step size equal to .005.

The end-of-period wealth from the strategy {w;} is the last statistic we consider. For any value
of the risk-aversion parameter @, the ranking of the end-of-period wealth across different probability
models is the same as the ranking of the end-of-period utilities. This statistic is interesting for two
reasons. First, it provides a comprehensive measure of predictive accuracy, as it involves not only
the probability of negative excess returns, but also the probability corresponding to the other
evaluation points of F(y|z). Second, it allows to relate our model to a standard Gaussian model of
log-stock prices. When log-stock prices are conditionally normal, the choice of the portfolio weights

depends only on the mean and variance of log-stock returns

w* — Et(ln St+1) + .5 Va,rt(ln St+1) —1n bt+l (8)
t a Vary(In s¢41) ’

a result which is exact in the continuous-time optimal portfolio model of Merton (1973). The
weights (8) can be computed by estimating the conditional mean and variance of log-stock returns.
For the mean, we fit an additive model to the logarithm of stock returns at time ¢ + 1, with the
same covariate vector X; used in the linear and additive logit models. For the variance, we fit an
additive model to the logarithm of the squared residuals from the previous regression, with X; as

the covariate vector. Both regressions are fitted to the data before April 1989 using a degree of
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smoothing corresponding roughly to five degrees of freedom for each nonparametric term, which is
the same used for the additive logit models.

The lower-right panel of Figure 8 plots, for different values of the risk-aversion parameter, the
end-of-period wealth from the Gaussian model and the linear and additive logits. Because there
is no simple choice of which semiparametric terms to include, since different semi-additive models
do best at different quantiles, we leave the semiadditive model out of this last comparison. The
additive logit model does best for investors with risk-aversion above two, while the Gaussian does
best for less risk-averse investors; the linear model is the worst performer. The benefits (and costs)
of using the entire distribution depend on the risk aversion of the investors. Investors with low
risk aversion are interested mainly in average performances: a model of mean log-stock returns
makes the best use of information to this end. As risk aversion increases, higher-order moments
of the distribution become important. In this case, the Gaussianity assumption appears to be too

restrictive, as the additive logit model outperforms the Gaussian one for more risk-averse investors.

5 Conclusions

In this paper we describe the cﬁmulative distribution function of excess returns conditional on
a broad set of predictors that summarize the state of the economy. We do so by estimating a
sequence of conditional logit models over a grid of values of the response variable. Our method
uncovers highly multidimensional structure that could not be found by modeling only the first two
moments of the distribution. Our analysis suggests also that focusing on location, for example on
the conditional mean or median, may lead one to overlook the role of certain predictors, such as

M2 and employment growth, whose impact is mainly on higher order aspects of the distribution.
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We compare two approaches to modeling: a conventional linear logit and an additive logit
model. The second model avoids the “curse of dimensionality” problem of fully nonparametric
methods while retaining both interpretability and the ability to let the data determine the shape
of the relationship between the response variable and the predictors.

We find that the additive logit fits better and reveals aspects of the data that remain undetected
by the linear logit. It uses many more degrees of freedom, however. Surprisingly, the additive model
retains its superiority even in out-of-sample prediction, where it also outperforms a Gaussian model
in choosing optimal portfolios for more risk-averse investors. This suggests that the within-sample
performance is not due to overfitting and confirms our view that this model captures genuine

features of the data which seem to be important for optimal portfolio selection.
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For each threshold value of excess returns and for each model, we report the residual deviance (minus twice
the maximized log likelihood) and the effective degrees of freedom (df), along with the likelihood ratio
statistic and the p-value of a likelihood ratio test based on the x? distribution with number of degrees of
freedom equal to the difference in degrees of freedom of the two models. The number of degrees of freedom

Table 1

are computed as in Hastie and Tibshirani (1990).

Linear logit Additive logit Test of linear vs additive
Excess returns | Deviance df (1) | Deviance df (2) | Log likelihood ratio  (1)-(2) p-value
<-5.52 175.28 8 129.95 35.09 45.33 27.09 015
< -4.38 260.40 8 219.99 35.01 40.42 27.01 .047
< -3.06 314.50 8 269.20 35.31 45.29 27.31 .017
<-2.24 356.67 8 317.08 35.46 39.59 27.46 .063
<-1.69 397.03 8 355.46 35.52 41.57 27.53 .042
< -1.25 413.81 8 371.15 35.77 42.66 27.77 .035
< -.78 435.93 8 396.81 35.29 39.12 27.29 .067
< 0.00 447.08 8 403.71 35.38 43.37 27.38 .027
< 0.12 447.29 8 402.24 35.36 45.05 27.36 .018
< 0381 450.87 8 408.93 34.95 41.94 26.95 .033
< 1.33 444.21 8 403.64 35.40 40.56 27.40 .051
< 1.99 433.13 8 390.76 35.68 42.37 27.68 037
< 279 421.90 8 383.80 35.77 38.10 27.77 .091
< 335 397.43 8 360.08 35.81 37.35 27.81 107
< 4.00 371.54 8 335.90 35.74 35.64 27.74 144
< 4.83 327.01 8 288.00 35.54 39.01 27.54 .072
< 5.74 269.42 8 237.97 34.95 31.45 26.95 .251
< 6.81 207.75 8 160.78 35.36 46.98 27.36 .011
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Table 2

The + sign denotes whether a nonparametric component is included in the best and the worst semi-additive
model according to AIC. A blank indicates that a predictor enters linearly.

Excess Dividend Excess Term Default 1-month M2 Employment
returns yield return at ¢ spread spread Treasury-bill yield growth growth

Best AIC model
< 5.52 +
-4.38 +
-3.06
-2.24
-1.69
-1.25
-.78
0.00
0.12 +
0.81
1.33
1.99
2.79 +
3.35 + +
4.00 +
4.83
5.74
6.81

Worst AIC model
< 5.52
< -4.38
< -3.06
-2.24
-1.69
-1.25
-.78
0.00
0.12
0.81
1.33
1.99
2.79
3.35
4.00
4.83
5.74
6.81
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Figure 1

Monthly rates of return on US stocks and one-month Treasury bills and their difference — the excess returns
— from April 1960 to July 1992. The dotted vertical bar indicates April 1989.
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Figure 2

The data used in estimation are from April 1960 through March 1989. The top-left panel shows the density of
excess returns (solid line), estimated using a kernel smoother with a triangular kernel and a fixed bandwidth
chosen subjectively. As a reference point, we have overlaid the density of a normal distribution (broken line)
with mean and variance equal to those of the excess returns. The remaining panels are bivariate scatterplots
of future excess returns against each of the predictors. The solid line is a loess scatterplot smooth. On the
right and the top of each scatterplot are the univariate densities of excess returns and the predictor. In
plotting the data, we symmetrically trimmed 2.5 percent at the top and the bottom to eliminate the visual
effect of a few extreme outliers.
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Figure 3

Estimated coefficients for the linear logit model (4). The vertical bars on the horizontal axis correspond to

the 18 values of excess returns at which the conditional distribution function is estimated. The dotted lines
are pointwise two-standard error bands.
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Figure 4

Iso-probability contours of the conditional distribution function estimated by the linear logit model (4).
Each plot is constructed by evaluating the fitted probabilities 1'::7'(3), J=1,...,J, over a grid of 100 equally

spaced points between the 2.5-th and the 97.5-th percentile of one of the predictors, keeping all the others
constant at their average value.
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Figure 5

Iso-probability contours of the conditional distribution function estimated by the additive logit model (5).
Each plot is constructed by evaluating the fitted probabilities ﬁj(:c), j=1,...,J, over agrid of 100 equally

spaced points between the 2.5-th and the 97.5-th percentile of one of the predictors, keeping all the others
constant at their average value.
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Figure 6a

Each plot is on the scale of the log odds-ratio of P(Y;4; < 0|X;). The thicker solid curves represent the
nonparametric components §n;j(zs) from the additive logit, while the lighter solid lines represent the linear
components xhghj from the linear logit. All components are normalized to be equal to zero at the average
value of the predictor. The dotted lines are two standard-error bands associated with the linear component.

The vertical bars at the basis of each plot show the frequency distribution of the predictor.
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Figure 6b

Each plot shows the estimates of P(Y;4; < 0/X;) as a function of a single predictor, keeping all the others
constant at their average value. Estimates from the additive logit are represented by a thicker solid curve,
those from the linear logit by a lighter solid curve. The broken curves are estimates from a nonparametric
logit fitted using just a single predictor. The vertical bars at zero and one indicate the occurrence of zeros

and ones in the response variable Z = I(_q 0)(Yt+1)-
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Figure 7

For six threshold values y, we plot the residual deviance and the degrees of freedom of the 128 models
obtained by considering all possible combinations of linear and nonparametric terms. The upper dotted line
represents all combinations of deviance and degrees of freedom that give the same AIC as the additive logit,
while the lower line corresponds to the linear logit. Black squares and black diamonds denote the best and

the worst semi-additive model, respectively.
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Figure 8

The top-left panel plots the estimates of the probability of negative excess returns. The vertical bars at
one (zero) show when actual excess returns are negative (positive). The top-right panel plots the squared
prediction errors of each model for the out-of-sample period May 1989-July 1992. The bottom-left panel
plots the cumulated returns from $1 invested on April 1989. “Stocks” denotes the returns from holding the
equally-weighted portfolio of New York Stock Exchange common stocks. Strategies A, L, and SA time the
market by switching between stocks and a portfolio of 1-month Treasury bills depending on the probability
of negative excess returns as predicted by the additive logit (A), the linear logit (L), and the semi-additive
logit (SA). The bottom-right panel plots, for different levels of risk aversion, the end-of-period returns from
$1 invested by risk-averse investors on April 1989. “Gaussian” denotes the return from a gaussian model of

log-stock returns.
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APPENDIX

Our raw data are monthly, from March 1959 to July 1992.

The following variables are from the Center for Research in Security Prices (CRSP) at the
University of Chicago. The original return data in the CRSP data set are in decimal form. We
express them in percentage, but we do not annualize them.

1. Returns on the equally-weighted portfolio of New York Stock Exchange common stocks

1 N
ewret; = -]V Z Tnts
=1

where 7, ; = p—"*%"-ﬂﬁ%ﬁ and 7, is the return on stock n purchased at t — 1, p, ; is the stock
n,t—

price at time ¢, d,, ¢ is the dividend, f, is the price adjustment factor to allow for stock splits.

Monthly, not annualized.

2. ustret: return on U.S. Treasury bills with one month to maturity, from Ibbotson Associates.
Monthly yield, not annualized. The yield for month ¢+ 1 is computed from the price quoted
at the end of month ¢ for the Treasury bill closest to one month maturity but with less than

30 days to maturity. The d:Terence between ewret and ustret is the excess return.

3. Return on U.S. Treasury bills with one month to maturity, from the CRSP “Fama” Treasury
bill term structure files. Monthly yield, not annualized, continuously compounded. The yield
for month ¢+ 1 is computed from the price quoted at the end of month ¢ for the Treasury bill
closest to one month maturity. It may not coincide with ustret, as the maturity of the bill

can exceed 30 days.

4. Monthly holding period returns on 3- and 1-month Treasury bills, from the CRSP “Fama”

Treasury bill term structure files. Monthly rate, not annualized, continuously compounded.
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The return for month ¢ + 1 is computed from the price quoted at the end of the month ¢ for

the Treasury bill closest to 3- and 1-month maturities. The difference between the 3- and the

1-month Treasury-bill return is the term spread.

The following variables are from Citibase:

1. Industrial production, total index (1987=100). Seasonally adjusted. We use the year-to-year

continuously compounded growth rate.

2. Employment, employees on nonagricultural payroll, total of private sector. Seasonally ad-

justed. We use the year-to-year continuously compounded growth rate.

3. M2 money stock: includes M1 (currency + traveler checks + bank demand deposits + other
checkable deposits) + small-denomination time deposits + savings deposits + money mar-
ket deposit accounts + money market mutual funds shares (noninstitutional) + overnight

repurchase agreements + overnight Eurodollars. Daily averages, seasonally adjusted.

4. Dividend yield: dividend-price ratio of the Standard & Poor’s 500 composite common stock
portfolio. Per cent per annum. This is the 12-month moving sum of dividends divided by

Standard & Poor’s 500 index level for the current month.

5. Yield to maturity on speculative grade corporate bonds (Moody’s Baa Corporate Bond Yield).

Per cent per annum. Monthly averages of daily yields.

6. Yield to maturity on investment grade corporate bonds (Moody’s Aaa Corporate Bond Yield).
Per cent per annum. Monthly averages of daily yields. The difference of the Baa and the Aaa

yields gives the “default spread”.
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